xref: /titanic_50/usr/src/uts/i86pc/os/lgrpplat.c (revision bcee7a0b0779fb8c238fd397238e77e5e5940577)
17c478bd9Sstevel@tonic-gate /*
27c478bd9Sstevel@tonic-gate  * CDDL HEADER START
37c478bd9Sstevel@tonic-gate  *
47c478bd9Sstevel@tonic-gate  * The contents of this file are subject to the terms of the
5c39996a7Sstevel  * Common Development and Distribution License (the "License").
6c39996a7Sstevel  * You may not use this file except in compliance with the License.
77c478bd9Sstevel@tonic-gate  *
87c478bd9Sstevel@tonic-gate  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
97c478bd9Sstevel@tonic-gate  * or http://www.opensolaris.org/os/licensing.
107c478bd9Sstevel@tonic-gate  * See the License for the specific language governing permissions
117c478bd9Sstevel@tonic-gate  * and limitations under the License.
127c478bd9Sstevel@tonic-gate  *
137c478bd9Sstevel@tonic-gate  * When distributing Covered Code, include this CDDL HEADER in each
147c478bd9Sstevel@tonic-gate  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
157c478bd9Sstevel@tonic-gate  * If applicable, add the following below this CDDL HEADER, with the
167c478bd9Sstevel@tonic-gate  * fields enclosed by brackets "[]" replaced with your own identifying
177c478bd9Sstevel@tonic-gate  * information: Portions Copyright [yyyy] [name of copyright owner]
187c478bd9Sstevel@tonic-gate  *
197c478bd9Sstevel@tonic-gate  * CDDL HEADER END
207c478bd9Sstevel@tonic-gate  */
21c39996a7Sstevel 
227c478bd9Sstevel@tonic-gate /*
232baa66a0SJonathan Chew  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
247c478bd9Sstevel@tonic-gate  * Use is subject to license terms.
257c478bd9Sstevel@tonic-gate  */
267c478bd9Sstevel@tonic-gate 
272e2c009bSjjc /*
282e2c009bSjjc  * LOCALITY GROUP (LGROUP) PLATFORM SUPPORT FOR X86/AMD64 PLATFORMS
292e2c009bSjjc  * ================================================================
302e2c009bSjjc  * Multiprocessor AMD and Intel systems may have Non Uniform Memory Access
312e2c009bSjjc  * (NUMA).  A NUMA machine consists of one or more "nodes" that each consist of
322e2c009bSjjc  * one or more CPUs and some local memory.  The CPUs in each node can access
332e2c009bSjjc  * the memory in the other nodes but at a higher latency than accessing their
342e2c009bSjjc  * local memory.  Typically, a system with only one node has Uniform Memory
352e2c009bSjjc  * Access (UMA), but it may be possible to have a one node system that has
362e2c009bSjjc  * some global memory outside of the node which is higher latency.
372e2c009bSjjc  *
382e2c009bSjjc  * Module Description
392e2c009bSjjc  * ------------------
402e2c009bSjjc  * This module provides a platform interface for determining which CPUs and
412e2c009bSjjc  * which memory (and how much) are in a NUMA node and how far each node is from
422e2c009bSjjc  * each other.  The interface is used by the Virtual Memory (VM) system and the
432e2c009bSjjc  * common lgroup framework.  The VM system uses the plat_*() routines to fill
442e2c009bSjjc  * in its memory node (memnode) array with the physical address range spanned
452e2c009bSjjc  * by each NUMA node to know which memory belongs to which node, so it can
462e2c009bSjjc  * build and manage a physical page free list for each NUMA node and allocate
472e2c009bSjjc  * local memory from each node as needed.  The common lgroup framework uses the
482e2c009bSjjc  * exported lgrp_plat_*() routines to figure out which CPUs and memory belong
492e2c009bSjjc  * to each node (leaf lgroup) and how far each node is from each other, so it
502e2c009bSjjc  * can build the latency (lgroup) topology for the machine in order to optimize
512e2c009bSjjc  * for locality.  Also, an lgroup platform handle instead of lgroups are used
522e2c009bSjjc  * in the interface with this module, so this module shouldn't need to know
532e2c009bSjjc  * anything about lgroups.  Instead, it just needs to know which CPUs, memory,
542e2c009bSjjc  * etc. are in each NUMA node, how far each node is from each other, and to use
552e2c009bSjjc  * a unique lgroup platform handle to refer to each node through the interface.
562e2c009bSjjc  *
572e2c009bSjjc  * Determining NUMA Configuration
582e2c009bSjjc  * ------------------------------
592e2c009bSjjc  * By default, this module will try to determine the NUMA configuration of the
602e2c009bSjjc  * machine by reading the ACPI System Resource Affinity Table (SRAT) and System
612e2c009bSjjc  * Locality Information Table (SLIT).  The SRAT contains info to tell which
622e2c009bSjjc  * CPUs and memory are local to a given proximity domain (NUMA node).  The SLIT
632e2c009bSjjc  * is a matrix that gives the distance between each system locality (which is
642e2c009bSjjc  * a NUMA node and should correspond to proximity domains in the SRAT).  For
652e2c009bSjjc  * more details on the SRAT and SLIT, please refer to an ACPI 3.0 or newer
662e2c009bSjjc  * specification.
672e2c009bSjjc  *
682e2c009bSjjc  * If the SRAT doesn't exist on a system with AMD Opteron processors, we
692e2c009bSjjc  * examine registers in PCI configuration space to determine how many nodes are
702e2c009bSjjc  * in the system and which CPUs and memory are in each node.
712e2c009bSjjc  * do while booting the kernel.
722e2c009bSjjc  *
732e2c009bSjjc  * NOTE: Using these PCI configuration space registers to determine this
742e2c009bSjjc  *       locality info is not guaranteed to work or be compatible across all
752e2c009bSjjc  *	 Opteron processor families.
762e2c009bSjjc  *
772e2c009bSjjc  * If the SLIT does not exist or look right, the kernel will probe to determine
782e2c009bSjjc  * the distance between nodes as long as the NUMA CPU and memory configuration
792e2c009bSjjc  * has been determined (see lgrp_plat_probe() for details).
802e2c009bSjjc  *
812e2c009bSjjc  * Data Structures
822e2c009bSjjc  * ---------------
832e2c009bSjjc  * The main data structures used by this code are the following:
842e2c009bSjjc  *
85dae2fa37Sjjc  * - lgrp_plat_cpu_node[]		CPU to node ID mapping table indexed by
86dae2fa37Sjjc  *					CPU ID (only used for SRAT)
872e2c009bSjjc  *
882e2c009bSjjc  * - lgrp_plat_lat_stats.latencies[][]	Table of latencies between same and
892e2c009bSjjc  *					different nodes indexed by node ID
902e2c009bSjjc  *
912e2c009bSjjc  * - lgrp_plat_node_cnt			Number of NUMA nodes in system
922e2c009bSjjc  *
932e2c009bSjjc  * - lgrp_plat_node_domain[]		Node ID to proximity domain ID mapping
942e2c009bSjjc  *					table indexed by node ID (only used
952e2c009bSjjc  *					for SRAT)
962e2c009bSjjc  *
972e2c009bSjjc  * - lgrp_plat_node_memory[]		Table with physical address range for
982e2c009bSjjc  *					each node indexed by node ID
992e2c009bSjjc  *
1002e2c009bSjjc  * The code is implemented to make the following always be true:
1012e2c009bSjjc  *
1022e2c009bSjjc  *	lgroup platform handle == node ID == memnode ID
1032e2c009bSjjc  *
1042e2c009bSjjc  * Moreover, it allows for the proximity domain ID to be equal to all of the
1052e2c009bSjjc  * above as long as the proximity domains IDs are numbered from 0 to <number of
1062e2c009bSjjc  * nodes - 1>.  This is done by hashing each proximity domain ID into the range
1072e2c009bSjjc  * from 0 to <number of nodes - 1>.  Then proximity ID N will hash into node ID
1082e2c009bSjjc  * N and proximity domain ID N will be entered into lgrp_plat_node_domain[N]
1092e2c009bSjjc  * and be assigned node ID N.  If the proximity domain IDs aren't numbered
1102e2c009bSjjc  * from 0 to <number of nodes - 1>, then hashing the proximity domain IDs into
1112e2c009bSjjc  * lgrp_plat_node_domain[] will still work for assigning proximity domain IDs
1122e2c009bSjjc  * to node IDs.  However, the proximity domain IDs may not map to the
1132e2c009bSjjc  * equivalent node ID since we want to keep the node IDs numbered from 0 to
1142e2c009bSjjc  * <number of nodes - 1> to minimize cost of searching and potentially space.
11581d9ccb6SJonathan Chew  *
11681d9ccb6SJonathan Chew  * The code below really tries to do the above.  However, the virtual memory
11781d9ccb6SJonathan Chew  * system expects the memnodes which describe the physical address range for
11881d9ccb6SJonathan Chew  * each NUMA node to be arranged in ascending order by physical address.  (:-(
11981d9ccb6SJonathan Chew  * Otherwise, the kernel will panic in different semi-random places in the VM
120cf5755f2SJonathan Chew  * system.
12181d9ccb6SJonathan Chew  *
12281d9ccb6SJonathan Chew  * Consequently, this module has to try to sort the nodes in ascending order by
12381d9ccb6SJonathan Chew  * each node's starting physical address to try to meet this "constraint" in
12481d9ccb6SJonathan Chew  * the VM system (see lgrp_plat_node_sort()).  Also, the lowest numbered
12581d9ccb6SJonathan Chew  * proximity domain ID in the system is deteremined and used to make the lowest
12681d9ccb6SJonathan Chew  * numbered proximity domain map to node 0 in hopes that the proximity domains
12781d9ccb6SJonathan Chew  * are sorted in ascending order by physical address already even if their IDs
12881d9ccb6SJonathan Chew  * don't start at 0 (see NODE_DOMAIN_HASH() and lgrp_plat_srat_domains()).
12981d9ccb6SJonathan Chew  * Finally, it is important to note that these workarounds may not be
13081d9ccb6SJonathan Chew  * sufficient if/when memory hotplugging is supported and the VM system may
13181d9ccb6SJonathan Chew  * ultimately need to be fixed to handle this....
1322e2c009bSjjc  */
1332e2c009bSjjc 
1342e2c009bSjjc 
1357c478bd9Sstevel@tonic-gate #include <sys/archsystm.h>	/* for {in,out}{b,w,l}() */
136dae2fa37Sjjc #include <sys/bootconf.h>
1377c478bd9Sstevel@tonic-gate #include <sys/cmn_err.h>
138f78a91cdSjjc #include <sys/controlregs.h>
1397c478bd9Sstevel@tonic-gate #include <sys/cpupart.h>
1407c478bd9Sstevel@tonic-gate #include <sys/cpuvar.h>
1417c478bd9Sstevel@tonic-gate #include <sys/lgrp.h>
1427c478bd9Sstevel@tonic-gate #include <sys/machsystm.h>
1437c478bd9Sstevel@tonic-gate #include <sys/memlist.h>
1447c478bd9Sstevel@tonic-gate #include <sys/memnode.h>
1457c478bd9Sstevel@tonic-gate #include <sys/mman.h>
146ef50d8c0Sesaxe #include <sys/pci_cfgspace.h>
147ef50d8c0Sesaxe #include <sys/pci_impl.h>
1487c478bd9Sstevel@tonic-gate #include <sys/param.h>
149fb2f18f8Sesaxe #include <sys/pghw.h>
1507c478bd9Sstevel@tonic-gate #include <sys/promif.h>		/* for prom_printf() */
1512e2c009bSjjc #include <sys/sysmacros.h>
1527c478bd9Sstevel@tonic-gate #include <sys/systm.h>
1537c478bd9Sstevel@tonic-gate #include <sys/thread.h>
1547c478bd9Sstevel@tonic-gate #include <sys/types.h>
1557c478bd9Sstevel@tonic-gate #include <sys/var.h>
1567c478bd9Sstevel@tonic-gate #include <sys/x86_archext.h>	/* for x86_feature and X86_AMD */
1577c478bd9Sstevel@tonic-gate #include <vm/hat_i86.h>
1587c478bd9Sstevel@tonic-gate #include <vm/seg_kmem.h>
159affbd3ccSkchow #include <vm/vm_dep.h>
1607c478bd9Sstevel@tonic-gate 
1612e2c009bSjjc #include "acpi_fw.h"		/* for SRAT and SLIT */
1627c478bd9Sstevel@tonic-gate 
1637c478bd9Sstevel@tonic-gate 
1647c478bd9Sstevel@tonic-gate #define	MAX_NODES		8
1657c478bd9Sstevel@tonic-gate #define	NLGRP			(MAX_NODES * (MAX_NODES - 1) + 1)
1667c478bd9Sstevel@tonic-gate 
1672e2c009bSjjc /*
1682e2c009bSjjc  * Constants for configuring probing
1692e2c009bSjjc  */
1707c478bd9Sstevel@tonic-gate #define	LGRP_PLAT_PROBE_NROUNDS		64	/* default laps for probing */
1717c478bd9Sstevel@tonic-gate #define	LGRP_PLAT_PROBE_NSAMPLES	1	/* default samples to take */
1728949bcd6Sandrei #define	LGRP_PLAT_PROBE_NREADS		256	/* number of vendor ID reads */
1737c478bd9Sstevel@tonic-gate 
1747c478bd9Sstevel@tonic-gate /*
1752e2c009bSjjc  * Flags for probing
1762e2c009bSjjc  */
1772e2c009bSjjc #define	LGRP_PLAT_PROBE_ENABLE		0x1	/* enable probing */
1782e2c009bSjjc #define	LGRP_PLAT_PROBE_PGCPY		0x2	/* probe using page copy */
1792e2c009bSjjc #define	LGRP_PLAT_PROBE_VENDOR		0x4	/* probe vendor ID register */
1802e2c009bSjjc 
1812e2c009bSjjc /*
18281d9ccb6SJonathan Chew  * Hash proximity domain ID into node to domain mapping table "mod" number of
18381d9ccb6SJonathan Chew  * nodes to minimize span of entries used and try to have lowest numbered
18481d9ccb6SJonathan Chew  * proximity domain be node 0
1852e2c009bSjjc  */
18681d9ccb6SJonathan Chew #define	NODE_DOMAIN_HASH(domain, node_cnt) \
18781d9ccb6SJonathan Chew 	((lgrp_plat_prox_domain_min == UINT32_MAX) ? (domain) % node_cnt : \
18881d9ccb6SJonathan Chew 	    ((domain) - lgrp_plat_prox_domain_min) % node_cnt)
1892e2c009bSjjc 
1902e2c009bSjjc 
1912e2c009bSjjc /*
192dae2fa37Sjjc  * CPU to node ID mapping structure (only used with SRAT)
1932e2c009bSjjc  */
1942e2c009bSjjc typedef	struct cpu_node_map {
1952e2c009bSjjc 	int		exists;
1962e2c009bSjjc 	uint_t		node;
1972e2c009bSjjc 	uint32_t	apicid;
1982e2c009bSjjc 	uint32_t	prox_domain;
1992e2c009bSjjc } cpu_node_map_t;
2002e2c009bSjjc 
2012e2c009bSjjc /*
2022e2c009bSjjc  * Latency statistics
2032e2c009bSjjc  */
2042e2c009bSjjc typedef struct lgrp_plat_latency_stats {
2052e2c009bSjjc 	hrtime_t	latencies[MAX_NODES][MAX_NODES];
2062e2c009bSjjc 	hrtime_t	latency_max;
2072e2c009bSjjc 	hrtime_t	latency_min;
2082e2c009bSjjc } lgrp_plat_latency_stats_t;
2092e2c009bSjjc 
2102e2c009bSjjc /*
2112e2c009bSjjc  * Memory configuration for probing
2122e2c009bSjjc  */
2132e2c009bSjjc typedef struct lgrp_plat_probe_mem_config {
2142e2c009bSjjc 	size_t	probe_memsize;		/* how much memory to probe per node */
2152e2c009bSjjc 	caddr_t	probe_va[MAX_NODES];	/* where memory mapped for probing */
2162e2c009bSjjc 	pfn_t	probe_pfn[MAX_NODES];	/* physical pages to map for probing */
2172e2c009bSjjc } lgrp_plat_probe_mem_config_t;
2182e2c009bSjjc 
2192e2c009bSjjc /*
2202e2c009bSjjc  * Statistics kept for probing
2212e2c009bSjjc  */
2222e2c009bSjjc typedef struct lgrp_plat_probe_stats {
2232e2c009bSjjc 	hrtime_t	flush_cost;
2242e2c009bSjjc 	hrtime_t	probe_cost;
2252e2c009bSjjc 	hrtime_t	probe_cost_total;
2262e2c009bSjjc 	hrtime_t	probe_error_code;
2272e2c009bSjjc 	hrtime_t	probe_errors[MAX_NODES][MAX_NODES];
2282e2c009bSjjc 	int		probe_suspect[MAX_NODES][MAX_NODES];
2292e2c009bSjjc 	hrtime_t	probe_max[MAX_NODES][MAX_NODES];
2302e2c009bSjjc 	hrtime_t	probe_min[MAX_NODES][MAX_NODES];
2312e2c009bSjjc } lgrp_plat_probe_stats_t;
2322e2c009bSjjc 
2332e2c009bSjjc /*
2342e2c009bSjjc  * Node to proximity domain ID mapping structure (only used with SRAT)
2352e2c009bSjjc  */
2362e2c009bSjjc typedef	struct node_domain_map {
2372e2c009bSjjc 	int		exists;
2382e2c009bSjjc 	uint32_t	prox_domain;
2392e2c009bSjjc } node_domain_map_t;
2402e2c009bSjjc 
2412e2c009bSjjc /*
2422e2c009bSjjc  * Node ID and starting and ending page for physical memory in node
2432e2c009bSjjc  */
2442e2c009bSjjc typedef	struct node_phys_addr_map {
2452e2c009bSjjc 	pfn_t		start;
2462e2c009bSjjc 	pfn_t		end;
2472e2c009bSjjc 	int		exists;
2482e2c009bSjjc 	uint32_t	prox_domain;
2492e2c009bSjjc } node_phys_addr_map_t;
2502e2c009bSjjc 
251dae2fa37Sjjc /*
252d821f0f0Sjjc  * Number of CPUs for which we got APIC IDs
253dae2fa37Sjjc  */
254d821f0f0Sjjc static int				lgrp_plat_apic_ncpus = 0;
2552e2c009bSjjc 
2562e2c009bSjjc /*
257dae2fa37Sjjc  * CPU to node ID mapping table (only used for SRAT)
2582e2c009bSjjc  */
2592e2c009bSjjc static cpu_node_map_t			lgrp_plat_cpu_node[NCPU];
2602e2c009bSjjc 
2612e2c009bSjjc /*
2622e2c009bSjjc  * Latency statistics
2632e2c009bSjjc  */
2642e2c009bSjjc lgrp_plat_latency_stats_t		lgrp_plat_lat_stats;
2652e2c009bSjjc 
2662e2c009bSjjc /*
2672e2c009bSjjc  * Whether memory is interleaved across nodes causing MPO to be disabled
2682e2c009bSjjc  */
2692e2c009bSjjc static int				lgrp_plat_mem_intrlv = 0;
2702e2c009bSjjc 
2712e2c009bSjjc /*
2722e2c009bSjjc  * Node ID to proximity domain ID mapping table (only used for SRAT)
2732e2c009bSjjc  */
2742e2c009bSjjc static node_domain_map_t		lgrp_plat_node_domain[MAX_NODES];
2752e2c009bSjjc 
2762e2c009bSjjc /*
2772e2c009bSjjc  * Physical address range for memory in each node
2782e2c009bSjjc  */
2792e2c009bSjjc static node_phys_addr_map_t		lgrp_plat_node_memory[MAX_NODES];
2802e2c009bSjjc 
2812e2c009bSjjc /*
2822e2c009bSjjc  * Statistics gotten from probing
2832e2c009bSjjc  */
2842e2c009bSjjc static lgrp_plat_probe_stats_t		lgrp_plat_probe_stats;
2852e2c009bSjjc 
2862e2c009bSjjc /*
2872e2c009bSjjc  * Memory configuration for probing
2882e2c009bSjjc  */
2892e2c009bSjjc static lgrp_plat_probe_mem_config_t	lgrp_plat_probe_mem_config;
2902e2c009bSjjc 
2912e2c009bSjjc /*
29281d9ccb6SJonathan Chew  * Lowest proximity domain ID seen in ACPI SRAT
29381d9ccb6SJonathan Chew  */
29481d9ccb6SJonathan Chew static uint32_t				lgrp_plat_prox_domain_min = UINT32_MAX;
29581d9ccb6SJonathan Chew 
29681d9ccb6SJonathan Chew /*
2972e2c009bSjjc  * Error code from processing ACPI SRAT
2982e2c009bSjjc  */
2992e2c009bSjjc static int				lgrp_plat_srat_error = 0;
3002e2c009bSjjc 
3012e2c009bSjjc /*
3022e2c009bSjjc  * Error code from processing ACPI SLIT
3032e2c009bSjjc  */
3042e2c009bSjjc static int				lgrp_plat_slit_error = 0;
3052e2c009bSjjc 
3062e2c009bSjjc /*
3072e2c009bSjjc  * Allocate lgroup array statically
3082e2c009bSjjc  */
3092e2c009bSjjc static lgrp_t				lgrp_space[NLGRP];
3102e2c009bSjjc static int				nlgrps_alloc;
3112e2c009bSjjc 
3122e2c009bSjjc 
3132e2c009bSjjc /*
31481d9ccb6SJonathan Chew  * Enable finding and using minimum proximity domain ID when hashing
31581d9ccb6SJonathan Chew  */
31681d9ccb6SJonathan Chew int			lgrp_plat_domain_min_enable = 1;
31781d9ccb6SJonathan Chew 
31881d9ccb6SJonathan Chew /*
3192e2c009bSjjc  * Number of nodes in system
3202e2c009bSjjc  */
3212e2c009bSjjc uint_t			lgrp_plat_node_cnt = 1;
3222e2c009bSjjc 
3232e2c009bSjjc /*
32481d9ccb6SJonathan Chew  * Enable sorting nodes in ascending order by starting physical address
32581d9ccb6SJonathan Chew  */
32681d9ccb6SJonathan Chew int			lgrp_plat_node_sort_enable = 1;
32781d9ccb6SJonathan Chew 
32881d9ccb6SJonathan Chew /*
3292e2c009bSjjc  * Configuration Parameters for Probing
3302e2c009bSjjc  * - lgrp_plat_probe_flags	Flags to specify enabling probing, probe
3312e2c009bSjjc  *				operation, etc.
3322e2c009bSjjc  * - lgrp_plat_probe_nrounds	How many rounds of probing to do
3332e2c009bSjjc  * - lgrp_plat_probe_nsamples	Number of samples to take when probing each
3342e2c009bSjjc  *				node
3352e2c009bSjjc  * - lgrp_plat_probe_nreads	Number of times to read vendor ID from
3362e2c009bSjjc  *				Northbridge for each probe
3372e2c009bSjjc  */
3382e2c009bSjjc uint_t			lgrp_plat_probe_flags = 0;
3392e2c009bSjjc int			lgrp_plat_probe_nrounds = LGRP_PLAT_PROBE_NROUNDS;
3402e2c009bSjjc int			lgrp_plat_probe_nsamples = LGRP_PLAT_PROBE_NSAMPLES;
3412e2c009bSjjc int			lgrp_plat_probe_nreads = LGRP_PLAT_PROBE_NREADS;
3422e2c009bSjjc 
3432e2c009bSjjc /*
3442e2c009bSjjc  * Enable use of ACPI System Resource Affinity Table (SRAT) and System
3452e2c009bSjjc  * Locality Information Table (SLIT)
3462e2c009bSjjc  */
3472e2c009bSjjc int			lgrp_plat_srat_enable = 1;
3482e2c009bSjjc int			lgrp_plat_slit_enable = 1;
3492e2c009bSjjc 
3502e2c009bSjjc /*
35118968004SKit Chow  * mnode_xwa: set to non-zero value to initiate workaround if large pages are
35218968004SKit Chow  * found to be crossing memory node boundaries. The workaround will eliminate
35318968004SKit Chow  * a base size page at the end of each memory node boundary to ensure that
35418968004SKit Chow  * a large page with constituent pages that span more than 1 memory node
35518968004SKit Chow  * can never be formed.
35618968004SKit Chow  *
35718968004SKit Chow  */
35818968004SKit Chow int	mnode_xwa = 1;
35918968004SKit Chow 
36018968004SKit Chow /*
3612e2c009bSjjc  * Static array to hold lgroup statistics
3622e2c009bSjjc  */
3632e2c009bSjjc struct lgrp_stats	lgrp_stats[NLGRP];
3642e2c009bSjjc 
3652e2c009bSjjc 
3662e2c009bSjjc /*
3672e2c009bSjjc  * Forward declarations of platform interface routines
3682e2c009bSjjc  */
3692e2c009bSjjc void		plat_build_mem_nodes(struct memlist *list);
3702e2c009bSjjc 
3712e2c009bSjjc int		plat_lgrphand_to_mem_node(lgrp_handle_t hand);
3722e2c009bSjjc 
3732e2c009bSjjc lgrp_handle_t	plat_mem_node_to_lgrphand(int mnode);
3742e2c009bSjjc 
3752e2c009bSjjc int		plat_mnode_xcheck(pfn_t pfncnt);
3762e2c009bSjjc 
3772e2c009bSjjc int		plat_pfn_to_mem_node(pfn_t pfn);
3782e2c009bSjjc 
3792e2c009bSjjc /*
3802e2c009bSjjc  * Forward declarations of lgroup platform interface routines
3812e2c009bSjjc  */
3822e2c009bSjjc lgrp_t		*lgrp_plat_alloc(lgrp_id_t lgrpid);
3832e2c009bSjjc 
3842e2c009bSjjc void		lgrp_plat_config(lgrp_config_flag_t flag, uintptr_t arg);
3852e2c009bSjjc 
3862e2c009bSjjc lgrp_handle_t	lgrp_plat_cpu_to_hand(processorid_t id);
3872e2c009bSjjc 
3882e2c009bSjjc void		lgrp_plat_init(void);
3892e2c009bSjjc 
3902e2c009bSjjc int		lgrp_plat_latency(lgrp_handle_t from, lgrp_handle_t to);
3912e2c009bSjjc 
3922e2c009bSjjc void		lgrp_plat_main_init(void);
3932e2c009bSjjc 
3942e2c009bSjjc int		lgrp_plat_max_lgrps(void);
3952e2c009bSjjc 
3962e2c009bSjjc pgcnt_t		lgrp_plat_mem_size(lgrp_handle_t plathand,
3972e2c009bSjjc     lgrp_mem_query_t query);
3982e2c009bSjjc 
3992e2c009bSjjc lgrp_handle_t	lgrp_plat_pfn_to_hand(pfn_t pfn);
4002e2c009bSjjc 
4012e2c009bSjjc void		lgrp_plat_probe(void);
4022e2c009bSjjc 
4032e2c009bSjjc lgrp_handle_t	lgrp_plat_root_hand(void);
4042e2c009bSjjc 
4052e2c009bSjjc 
4062e2c009bSjjc /*
4072e2c009bSjjc  * Forward declarations of local routines
4082e2c009bSjjc  */
4092e2c009bSjjc static int	is_opteron(void);
4102e2c009bSjjc 
411dae2fa37Sjjc static int	lgrp_plat_cpu_node_update(node_domain_map_t *node_domain,
412d821f0f0Sjjc     int node_cnt, cpu_node_map_t *cpu_node, int nentries, uint32_t apicid,
413d821f0f0Sjjc     uint32_t domain);
414dae2fa37Sjjc 
4152e2c009bSjjc static int	lgrp_plat_cpu_to_node(cpu_t *cp, cpu_node_map_t *cpu_node);
4162e2c009bSjjc 
4172e2c009bSjjc static int	lgrp_plat_domain_to_node(node_domain_map_t *node_domain,
418d821f0f0Sjjc     int node_cnt, uint32_t domain);
4192e2c009bSjjc 
4202e2c009bSjjc static void	lgrp_plat_latency_adjust(node_phys_addr_map_t *node_memory,
4212e2c009bSjjc     lgrp_plat_latency_stats_t *lat_stats,
4222e2c009bSjjc     lgrp_plat_probe_stats_t *probe_stats);
4232e2c009bSjjc 
4242e2c009bSjjc static int	lgrp_plat_latency_verify(node_phys_addr_map_t *node_memory,
4252e2c009bSjjc     lgrp_plat_latency_stats_t *lat_stats);
4262e2c009bSjjc 
4272e2c009bSjjc static pgcnt_t	lgrp_plat_mem_size_default(lgrp_handle_t, lgrp_mem_query_t);
4282e2c009bSjjc 
4292e2c009bSjjc static int	lgrp_plat_node_domain_update(node_domain_map_t *node_domain,
430d821f0f0Sjjc     int node_cnt, uint32_t domain);
4312e2c009bSjjc 
4322e2c009bSjjc static int	lgrp_plat_node_memory_update(node_domain_map_t *node_domain,
433d821f0f0Sjjc     int node_cnt, node_phys_addr_map_t *node_memory, uint64_t start,
434d821f0f0Sjjc     uint64_t end, uint32_t domain);
4352e2c009bSjjc 
43681d9ccb6SJonathan Chew static void	lgrp_plat_node_sort(node_domain_map_t *node_domain,
43781d9ccb6SJonathan Chew     int node_cnt, cpu_node_map_t *cpu_node, int cpu_count,
43881d9ccb6SJonathan Chew     node_phys_addr_map_t *node_memory);
43981d9ccb6SJonathan Chew 
4402e2c009bSjjc static hrtime_t	lgrp_plat_probe_time(int to, cpu_node_map_t *cpu_node,
4412e2c009bSjjc     lgrp_plat_probe_mem_config_t *probe_mem_config,
4422e2c009bSjjc     lgrp_plat_latency_stats_t *lat_stats,
4432e2c009bSjjc     lgrp_plat_probe_stats_t *probe_stats);
4442e2c009bSjjc 
445d821f0f0Sjjc static int	lgrp_plat_process_cpu_apicids(cpu_node_map_t *cpu_node);
446dae2fa37Sjjc 
4472e2c009bSjjc static int	lgrp_plat_process_slit(struct slit *tp, uint_t node_cnt,
4482e2c009bSjjc     node_phys_addr_map_t *node_memory, lgrp_plat_latency_stats_t *lat_stats);
4492e2c009bSjjc 
450d821f0f0Sjjc static int	lgrp_plat_process_srat(struct srat *tp,
45181d9ccb6SJonathan Chew     uint32_t *prox_domain_min, node_domain_map_t *node_domain,
45281d9ccb6SJonathan Chew     cpu_node_map_t *cpu_node, int cpu_count,
4532e2c009bSjjc     node_phys_addr_map_t *node_memory);
4542e2c009bSjjc 
45581d9ccb6SJonathan Chew static int	lgrp_plat_srat_domains(struct srat *tp,
45681d9ccb6SJonathan Chew     uint32_t *prox_domain_min);
4572e2c009bSjjc 
4582e2c009bSjjc static void	lgrp_plat_2level_setup(node_phys_addr_map_t *node_memory,
4592e2c009bSjjc     lgrp_plat_latency_stats_t *lat_stats);
4602e2c009bSjjc 
4612e2c009bSjjc static void	opt_get_numa_config(uint_t *node_cnt, int *mem_intrlv,
4622e2c009bSjjc     node_phys_addr_map_t *node_memory);
4632e2c009bSjjc 
4642e2c009bSjjc static hrtime_t	opt_probe_vendor(int dest_node, int nreads);
4652e2c009bSjjc 
4662e2c009bSjjc 
4672e2c009bSjjc /*
4682e2c009bSjjc  * PLATFORM INTERFACE ROUTINES
4697c478bd9Sstevel@tonic-gate  */
4707c478bd9Sstevel@tonic-gate 
4717c478bd9Sstevel@tonic-gate /*
4722e2c009bSjjc  * Configure memory nodes for machines with more than one node (ie NUMA)
4732e2c009bSjjc  */
4742e2c009bSjjc void
4752e2c009bSjjc plat_build_mem_nodes(struct memlist *list)
4762e2c009bSjjc {
4772e2c009bSjjc 	pfn_t		cur_start;	/* start addr of subrange */
4782e2c009bSjjc 	pfn_t		cur_end;	/* end addr of subrange */
4792e2c009bSjjc 	pfn_t		start;		/* start addr of whole range */
4802e2c009bSjjc 	pfn_t		end;		/* end addr of whole range */
48118968004SKit Chow 	pgcnt_t		endcnt;		/* pages to sacrifice */
4822e2c009bSjjc 
4832e2c009bSjjc 	/*
4842e2c009bSjjc 	 * Boot install lists are arranged <addr, len>, ...
4852e2c009bSjjc 	 */
4862e2c009bSjjc 	while (list) {
4872e2c009bSjjc 		int	node;
4882e2c009bSjjc 
4892e2c009bSjjc 		start = list->address >> PAGESHIFT;
4902e2c009bSjjc 		end = (list->address + list->size - 1) >> PAGESHIFT;
4912e2c009bSjjc 
4922e2c009bSjjc 		if (start > physmax) {
4932e2c009bSjjc 			list = list->next;
4942e2c009bSjjc 			continue;
4952e2c009bSjjc 		}
4962e2c009bSjjc 		if (end > physmax)
4972e2c009bSjjc 			end = physmax;
4982e2c009bSjjc 
4992e2c009bSjjc 		/*
5002e2c009bSjjc 		 * When there is only one memnode, just add memory to memnode
5012e2c009bSjjc 		 */
5022e2c009bSjjc 		if (max_mem_nodes == 1) {
5032e2c009bSjjc 			mem_node_add_slice(start, end);
5042e2c009bSjjc 			list = list->next;
5052e2c009bSjjc 			continue;
5062e2c009bSjjc 		}
5072e2c009bSjjc 
5082e2c009bSjjc 		/*
5092e2c009bSjjc 		 * mem_node_add_slice() expects to get a memory range that
5102e2c009bSjjc 		 * is within one memnode, so need to split any memory range
5112e2c009bSjjc 		 * that spans multiple memnodes into subranges that are each
5122e2c009bSjjc 		 * contained within one memnode when feeding them to
5132e2c009bSjjc 		 * mem_node_add_slice()
5142e2c009bSjjc 		 */
5152e2c009bSjjc 		cur_start = start;
5162e2c009bSjjc 		do {
5172e2c009bSjjc 			node = plat_pfn_to_mem_node(cur_start);
5182e2c009bSjjc 
5192e2c009bSjjc 			/*
5202e2c009bSjjc 			 * Panic if DRAM address map registers or SRAT say
5212e2c009bSjjc 			 * memory in node doesn't exist or address from
5222e2c009bSjjc 			 * boot installed memory list entry isn't in this node.
5232e2c009bSjjc 			 * This shouldn't happen and rest of code can't deal
5242e2c009bSjjc 			 * with this if it does.
5252e2c009bSjjc 			 */
5262e2c009bSjjc 			if (node < 0 || node >= lgrp_plat_node_cnt ||
5272e2c009bSjjc 			    !lgrp_plat_node_memory[node].exists ||
5282e2c009bSjjc 			    cur_start < lgrp_plat_node_memory[node].start ||
5292e2c009bSjjc 			    cur_start > lgrp_plat_node_memory[node].end) {
5302e2c009bSjjc 				cmn_err(CE_PANIC, "Don't know which memnode "
5312e2c009bSjjc 				    "to add installed memory address 0x%lx\n",
5322e2c009bSjjc 				    cur_start);
5332e2c009bSjjc 			}
5342e2c009bSjjc 
5352e2c009bSjjc 			/*
5362e2c009bSjjc 			 * End of current subrange should not span memnodes
5372e2c009bSjjc 			 */
5382e2c009bSjjc 			cur_end = end;
53918968004SKit Chow 			endcnt = 0;
5402e2c009bSjjc 			if (lgrp_plat_node_memory[node].exists &&
54118968004SKit Chow 			    cur_end > lgrp_plat_node_memory[node].end) {
5422e2c009bSjjc 				cur_end = lgrp_plat_node_memory[node].end;
54318968004SKit Chow 				if (mnode_xwa > 1) {
54418968004SKit Chow 					/*
54518968004SKit Chow 					 * sacrifice the last page in each
54618968004SKit Chow 					 * node to eliminate large pages
54718968004SKit Chow 					 * that span more than 1 memory node.
54818968004SKit Chow 					 */
54918968004SKit Chow 					endcnt = 1;
550*bcee7a0bSKit Chow 					physinstalled--;
55118968004SKit Chow 				}
55218968004SKit Chow 			}
5532e2c009bSjjc 
55418968004SKit Chow 			mem_node_add_slice(cur_start, cur_end - endcnt);
5552e2c009bSjjc 
5562e2c009bSjjc 			/*
5572e2c009bSjjc 			 * Next subrange starts after end of current one
5582e2c009bSjjc 			 */
5592e2c009bSjjc 			cur_start = cur_end + 1;
5602e2c009bSjjc 		} while (cur_end < end);
5612e2c009bSjjc 
5622e2c009bSjjc 		list = list->next;
5632e2c009bSjjc 	}
5642e2c009bSjjc 	mem_node_physalign = 0;
5652e2c009bSjjc 	mem_node_pfn_shift = 0;
5662e2c009bSjjc }
5672e2c009bSjjc 
5682e2c009bSjjc 
5692e2c009bSjjc int
5702e2c009bSjjc plat_lgrphand_to_mem_node(lgrp_handle_t hand)
5712e2c009bSjjc {
5722e2c009bSjjc 	if (max_mem_nodes == 1)
5732e2c009bSjjc 		return (0);
5742e2c009bSjjc 
5752e2c009bSjjc 	return ((int)hand);
5762e2c009bSjjc }
5772e2c009bSjjc 
5782e2c009bSjjc 
5792e2c009bSjjc /*
5802e2c009bSjjc  * plat_mnode_xcheck: checks the node memory ranges to see if there is a pfncnt
5812e2c009bSjjc  * range of pages aligned on pfncnt that crosses an node boundary. Returns 1 if
5822e2c009bSjjc  * a crossing is found and returns 0 otherwise.
5832e2c009bSjjc  */
5842e2c009bSjjc int
5852e2c009bSjjc plat_mnode_xcheck(pfn_t pfncnt)
5862e2c009bSjjc {
5872e2c009bSjjc 	int	node, prevnode = -1, basenode;
5882e2c009bSjjc 	pfn_t	ea, sa;
5892e2c009bSjjc 
5902e2c009bSjjc 	for (node = 0; node < lgrp_plat_node_cnt; node++) {
5912e2c009bSjjc 
5922e2c009bSjjc 		if (lgrp_plat_node_memory[node].exists == 0)
5932e2c009bSjjc 			continue;
5942e2c009bSjjc 
5952e2c009bSjjc 		if (prevnode == -1) {
5962e2c009bSjjc 			prevnode = node;
5972e2c009bSjjc 			basenode = node;
5982e2c009bSjjc 			continue;
5992e2c009bSjjc 		}
6002e2c009bSjjc 
6012e2c009bSjjc 		/* assume x86 node pfn ranges are in increasing order */
6022e2c009bSjjc 		ASSERT(lgrp_plat_node_memory[node].start >
6032e2c009bSjjc 		    lgrp_plat_node_memory[prevnode].end);
6042e2c009bSjjc 
6052e2c009bSjjc 		/*
6062e2c009bSjjc 		 * continue if the starting address of node is not contiguous
6072e2c009bSjjc 		 * with the previous node.
6082e2c009bSjjc 		 */
6092e2c009bSjjc 
6102e2c009bSjjc 		if (lgrp_plat_node_memory[node].start !=
6112e2c009bSjjc 		    (lgrp_plat_node_memory[prevnode].end + 1)) {
6122e2c009bSjjc 			basenode = node;
6132e2c009bSjjc 			prevnode = node;
6142e2c009bSjjc 			continue;
6152e2c009bSjjc 		}
6162e2c009bSjjc 
6172e2c009bSjjc 		/* check if the starting address of node is pfncnt aligned */
6182e2c009bSjjc 		if ((lgrp_plat_node_memory[node].start & (pfncnt - 1)) != 0) {
6192e2c009bSjjc 
6202e2c009bSjjc 			/*
6212e2c009bSjjc 			 * at this point, node starts at an unaligned boundary
6222e2c009bSjjc 			 * and is contiguous with the previous node(s) to
6232e2c009bSjjc 			 * basenode. Check if there is an aligned contiguous
6242e2c009bSjjc 			 * range of length pfncnt that crosses this boundary.
6252e2c009bSjjc 			 */
6262e2c009bSjjc 
6272e2c009bSjjc 			sa = P2ALIGN(lgrp_plat_node_memory[prevnode].end,
6282e2c009bSjjc 			    pfncnt);
6292e2c009bSjjc 			ea = P2ROUNDUP((lgrp_plat_node_memory[node].start),
6302e2c009bSjjc 			    pfncnt);
6312e2c009bSjjc 
6322e2c009bSjjc 			ASSERT((ea - sa) == pfncnt);
6332e2c009bSjjc 			if (sa >= lgrp_plat_node_memory[basenode].start &&
63418968004SKit Chow 			    ea <= (lgrp_plat_node_memory[node].end + 1)) {
63518968004SKit Chow 				/*
63618968004SKit Chow 				 * large page found to cross mnode boundary.
63718968004SKit Chow 				 * Return Failure if workaround not enabled.
63818968004SKit Chow 				 */
63918968004SKit Chow 				if (mnode_xwa == 0)
6402e2c009bSjjc 					return (1);
64118968004SKit Chow 				mnode_xwa++;
64218968004SKit Chow 			}
6432e2c009bSjjc 		}
6442e2c009bSjjc 		prevnode = node;
6452e2c009bSjjc 	}
6462e2c009bSjjc 	return (0);
6472e2c009bSjjc }
6482e2c009bSjjc 
6492e2c009bSjjc 
6502e2c009bSjjc lgrp_handle_t
6512e2c009bSjjc plat_mem_node_to_lgrphand(int mnode)
6522e2c009bSjjc {
6532e2c009bSjjc 	if (max_mem_nodes == 1)
6542e2c009bSjjc 		return (LGRP_DEFAULT_HANDLE);
6552e2c009bSjjc 
6562e2c009bSjjc 	return ((lgrp_handle_t)mnode);
6572e2c009bSjjc }
6582e2c009bSjjc 
6592e2c009bSjjc 
6602e2c009bSjjc int
6612e2c009bSjjc plat_pfn_to_mem_node(pfn_t pfn)
6622e2c009bSjjc {
6632e2c009bSjjc 	int	node;
6642e2c009bSjjc 
6652e2c009bSjjc 	if (max_mem_nodes == 1)
6662e2c009bSjjc 		return (0);
6672e2c009bSjjc 
6682e2c009bSjjc 	for (node = 0; node < lgrp_plat_node_cnt; node++) {
6692e2c009bSjjc 		/*
6702e2c009bSjjc 		 * Skip nodes with no memory
6712e2c009bSjjc 		 */
6722e2c009bSjjc 		if (!lgrp_plat_node_memory[node].exists)
6732e2c009bSjjc 			continue;
6742e2c009bSjjc 
6752e2c009bSjjc 		if (pfn >= lgrp_plat_node_memory[node].start &&
6762e2c009bSjjc 		    pfn <= lgrp_plat_node_memory[node].end)
6772e2c009bSjjc 			return (node);
6782e2c009bSjjc 	}
6792e2c009bSjjc 
6802e2c009bSjjc 	/*
6812e2c009bSjjc 	 * Didn't find memnode where this PFN lives which should never happen
6822e2c009bSjjc 	 */
6832e2c009bSjjc 	ASSERT(node < lgrp_plat_node_cnt);
6842e2c009bSjjc 	return (-1);
6852e2c009bSjjc }
6862e2c009bSjjc 
6872e2c009bSjjc 
6882e2c009bSjjc /*
6892e2c009bSjjc  * LGROUP PLATFORM INTERFACE ROUTINES
6902e2c009bSjjc  */
6912e2c009bSjjc 
6922e2c009bSjjc /*
6932e2c009bSjjc  * Allocate additional space for an lgroup.
6942e2c009bSjjc  */
6952e2c009bSjjc /* ARGSUSED */
6962e2c009bSjjc lgrp_t *
6972e2c009bSjjc lgrp_plat_alloc(lgrp_id_t lgrpid)
6982e2c009bSjjc {
6992e2c009bSjjc 	lgrp_t *lgrp;
7002e2c009bSjjc 
7012e2c009bSjjc 	lgrp = &lgrp_space[nlgrps_alloc++];
7022e2c009bSjjc 	if (lgrpid >= NLGRP || nlgrps_alloc > NLGRP)
7032e2c009bSjjc 		return (NULL);
7042e2c009bSjjc 	return (lgrp);
7052e2c009bSjjc }
7062e2c009bSjjc 
7072e2c009bSjjc 
7082e2c009bSjjc /*
7092e2c009bSjjc  * Platform handling for (re)configuration changes
7102e2c009bSjjc  */
7112e2c009bSjjc /* ARGSUSED */
7122e2c009bSjjc void
7132e2c009bSjjc lgrp_plat_config(lgrp_config_flag_t flag, uintptr_t arg)
7142e2c009bSjjc {
7152e2c009bSjjc }
7162e2c009bSjjc 
7172e2c009bSjjc 
7182e2c009bSjjc /*
7192e2c009bSjjc  * Return the platform handle for the lgroup containing the given CPU
7202e2c009bSjjc  */
7212e2c009bSjjc /* ARGSUSED */
7222e2c009bSjjc lgrp_handle_t
7232e2c009bSjjc lgrp_plat_cpu_to_hand(processorid_t id)
7242e2c009bSjjc {
7252e2c009bSjjc 	lgrp_handle_t	hand;
7262e2c009bSjjc 
7272e2c009bSjjc 	if (lgrp_plat_node_cnt == 1)
7282e2c009bSjjc 		return (LGRP_DEFAULT_HANDLE);
7292e2c009bSjjc 
7302e2c009bSjjc 	hand = (lgrp_handle_t)lgrp_plat_cpu_to_node(cpu[id],
7312e2c009bSjjc 	    lgrp_plat_cpu_node);
7322e2c009bSjjc 
7332e2c009bSjjc 	ASSERT(hand != (lgrp_handle_t)-1);
7342e2c009bSjjc 	if (hand == (lgrp_handle_t)-1)
7352e2c009bSjjc 		return (LGRP_NULL_HANDLE);
7362e2c009bSjjc 
7372e2c009bSjjc 	return (hand);
7382e2c009bSjjc }
7392e2c009bSjjc 
7402e2c009bSjjc 
7412e2c009bSjjc /*
7422e2c009bSjjc  * Platform-specific initialization of lgroups
7432e2c009bSjjc  */
7442e2c009bSjjc void
7452e2c009bSjjc lgrp_plat_init(void)
7462e2c009bSjjc {
7472e2c009bSjjc #if defined(__xpv)
7482e2c009bSjjc 	/*
7492e2c009bSjjc 	 * XXPV	For now, the hypervisor treats all memory equally.
7502e2c009bSjjc 	 */
7512e2c009bSjjc 	lgrp_plat_node_cnt = max_mem_nodes = 1;
7522e2c009bSjjc #else	/* __xpv */
7532e2c009bSjjc 	uint_t		probe_op;
7542baa66a0SJonathan Chew 	u_longlong_t	value;
7552baa66a0SJonathan Chew 
7562baa66a0SJonathan Chew 	/*
7572baa66a0SJonathan Chew 	 * Get boot property for lgroup topology height limit
7582baa66a0SJonathan Chew 	 */
7592baa66a0SJonathan Chew 	if (bootprop_getval(BP_LGRP_TOPO_LEVELS, &value) == 0)
7602baa66a0SJonathan Chew 		(void) lgrp_topo_ht_limit_set((int)value);
7612baa66a0SJonathan Chew 
7622baa66a0SJonathan Chew 	/*
7632baa66a0SJonathan Chew 	 * Get boot property for enabling/disabling SRAT
7642baa66a0SJonathan Chew 	 */
7652baa66a0SJonathan Chew 	if (bootprop_getval(BP_LGRP_SRAT_ENABLE, &value) == 0)
7662baa66a0SJonathan Chew 		lgrp_plat_srat_enable = (int)value;
7672baa66a0SJonathan Chew 
7682baa66a0SJonathan Chew 	/*
7692baa66a0SJonathan Chew 	 * Get boot property for enabling/disabling SLIT
7702baa66a0SJonathan Chew 	 */
7712baa66a0SJonathan Chew 	if (bootprop_getval(BP_LGRP_SLIT_ENABLE, &value) == 0)
7722baa66a0SJonathan Chew 		lgrp_plat_slit_enable = (int)value;
7732e2c009bSjjc 
7742e2c009bSjjc 	/*
7752e2c009bSjjc 	 * Initialize as a UMA machine
7762e2c009bSjjc 	 */
7772e2c009bSjjc 	if (lgrp_topo_ht_limit() == 1) {
7782e2c009bSjjc 		lgrp_plat_node_cnt = max_mem_nodes = 1;
7792e2c009bSjjc 		return;
7802e2c009bSjjc 	}
7812e2c009bSjjc 
7822e2c009bSjjc 	/*
783dae2fa37Sjjc 	 * Read boot property with CPU to APIC ID mapping table/array and fill
784dae2fa37Sjjc 	 * in CPU to node ID mapping table with APIC ID for each CPU
785dae2fa37Sjjc 	 */
786d821f0f0Sjjc 	lgrp_plat_apic_ncpus =
787d821f0f0Sjjc 	    lgrp_plat_process_cpu_apicids(lgrp_plat_cpu_node);
788dae2fa37Sjjc 
789dae2fa37Sjjc 	/*
7902e2c009bSjjc 	 * Determine which CPUs and memory are local to each other and number
7912e2c009bSjjc 	 * of NUMA nodes by reading ACPI System Resource Affinity Table (SRAT)
7922e2c009bSjjc 	 */
793d821f0f0Sjjc 	if (lgrp_plat_apic_ncpus > 0) {
794d821f0f0Sjjc 		int	retval;
795d821f0f0Sjjc 
796d821f0f0Sjjc 		retval = lgrp_plat_process_srat(srat_ptr,
79781d9ccb6SJonathan Chew 		    &lgrp_plat_prox_domain_min,
798d821f0f0Sjjc 		    lgrp_plat_node_domain, lgrp_plat_cpu_node,
799d821f0f0Sjjc 		    lgrp_plat_apic_ncpus, lgrp_plat_node_memory);
800d821f0f0Sjjc 		if (retval <= 0) {
801d821f0f0Sjjc 			lgrp_plat_srat_error = retval;
802d821f0f0Sjjc 			lgrp_plat_node_cnt = 1;
803d821f0f0Sjjc 		} else {
804d821f0f0Sjjc 			lgrp_plat_srat_error = 0;
805d821f0f0Sjjc 			lgrp_plat_node_cnt = retval;
806d821f0f0Sjjc 		}
807dae2fa37Sjjc 	}
8082e2c009bSjjc 
8092e2c009bSjjc 	/*
810dae2fa37Sjjc 	 * Try to use PCI config space registers on Opteron if there's an error
811dae2fa37Sjjc 	 * processing CPU to APIC ID mapping or SRAT
8122e2c009bSjjc 	 */
813d821f0f0Sjjc 	if ((lgrp_plat_apic_ncpus <= 0 || lgrp_plat_srat_error != 0) &&
814dae2fa37Sjjc 	    is_opteron())
8152e2c009bSjjc 		opt_get_numa_config(&lgrp_plat_node_cnt, &lgrp_plat_mem_intrlv,
8162e2c009bSjjc 		    lgrp_plat_node_memory);
8172e2c009bSjjc 
8182e2c009bSjjc 	/*
8192e2c009bSjjc 	 * Don't bother to setup system for multiple lgroups and only use one
8202e2c009bSjjc 	 * memory node when memory is interleaved between any nodes or there is
8212e2c009bSjjc 	 * only one NUMA node
8222e2c009bSjjc 	 *
8232e2c009bSjjc 	 * NOTE: May need to change this for Dynamic Reconfiguration (DR)
8242e2c009bSjjc 	 *	 when and if it happens for x86/x64
8252e2c009bSjjc 	 */
8262e2c009bSjjc 	if (lgrp_plat_mem_intrlv || lgrp_plat_node_cnt == 1) {
8272e2c009bSjjc 		lgrp_plat_node_cnt = max_mem_nodes = 1;
8282e2c009bSjjc 		(void) lgrp_topo_ht_limit_set(1);
8292e2c009bSjjc 		return;
8302e2c009bSjjc 	}
8312e2c009bSjjc 
8322e2c009bSjjc 	/*
8332e2c009bSjjc 	 * Leaf lgroups on x86/x64 architectures contain one physical
8342e2c009bSjjc 	 * processor chip. Tune lgrp_expand_proc_thresh and
8352e2c009bSjjc 	 * lgrp_expand_proc_diff so that lgrp_choose() will spread
8362e2c009bSjjc 	 * things out aggressively.
8372e2c009bSjjc 	 */
8382e2c009bSjjc 	lgrp_expand_proc_thresh = LGRP_LOADAVG_THREAD_MAX / 2;
8392e2c009bSjjc 	lgrp_expand_proc_diff = 0;
8402e2c009bSjjc 
8412e2c009bSjjc 	/*
8422e2c009bSjjc 	 * There should be one memnode (physical page free list(s)) for
8432e2c009bSjjc 	 * each node
8442e2c009bSjjc 	 */
8452e2c009bSjjc 	max_mem_nodes = lgrp_plat_node_cnt;
8462e2c009bSjjc 
8472e2c009bSjjc 	/*
8485b7cf7f0Sjjc 	 * Initialize min and max latency before reading SLIT or probing
8495b7cf7f0Sjjc 	 */
8505b7cf7f0Sjjc 	lgrp_plat_lat_stats.latency_min = -1;
8515b7cf7f0Sjjc 	lgrp_plat_lat_stats.latency_max = 0;
8525b7cf7f0Sjjc 
8535b7cf7f0Sjjc 	/*
8542e2c009bSjjc 	 * Determine how far each NUMA node is from each other by
8552e2c009bSjjc 	 * reading ACPI System Locality Information Table (SLIT) if it
8562e2c009bSjjc 	 * exists
8572e2c009bSjjc 	 */
8582e2c009bSjjc 	lgrp_plat_slit_error = lgrp_plat_process_slit(slit_ptr,
8592e2c009bSjjc 	    lgrp_plat_node_cnt, lgrp_plat_node_memory,
8602e2c009bSjjc 	    &lgrp_plat_lat_stats);
8612e2c009bSjjc 	if (lgrp_plat_slit_error == 0)
8622e2c009bSjjc 		return;
8632e2c009bSjjc 
8642e2c009bSjjc 	/*
8652e2c009bSjjc 	 * Probe to determine latency between NUMA nodes when SLIT
8662e2c009bSjjc 	 * doesn't exist or make sense
8672e2c009bSjjc 	 */
8682e2c009bSjjc 	lgrp_plat_probe_flags |= LGRP_PLAT_PROBE_ENABLE;
8692e2c009bSjjc 
8702e2c009bSjjc 	/*
8712e2c009bSjjc 	 * Specify whether to probe using vendor ID register or page copy
8722e2c009bSjjc 	 * if hasn't been specified already or is overspecified
8732e2c009bSjjc 	 */
8742e2c009bSjjc 	probe_op = lgrp_plat_probe_flags &
8752e2c009bSjjc 	    (LGRP_PLAT_PROBE_PGCPY|LGRP_PLAT_PROBE_VENDOR);
8762e2c009bSjjc 
8772e2c009bSjjc 	if (probe_op == 0 ||
8782e2c009bSjjc 	    probe_op == (LGRP_PLAT_PROBE_PGCPY|LGRP_PLAT_PROBE_VENDOR)) {
8792e2c009bSjjc 		lgrp_plat_probe_flags &=
8802e2c009bSjjc 		    ~(LGRP_PLAT_PROBE_PGCPY|LGRP_PLAT_PROBE_VENDOR);
8812e2c009bSjjc 		if (is_opteron())
8822e2c009bSjjc 			lgrp_plat_probe_flags |=
8832e2c009bSjjc 			    LGRP_PLAT_PROBE_VENDOR;
8842e2c009bSjjc 		else
8852e2c009bSjjc 			lgrp_plat_probe_flags |= LGRP_PLAT_PROBE_PGCPY;
8862e2c009bSjjc 	}
8872e2c009bSjjc 
8882e2c009bSjjc 	/*
8892e2c009bSjjc 	 * Probing errors can mess up the lgroup topology and
8902e2c009bSjjc 	 * force us fall back to a 2 level lgroup topology.
8912e2c009bSjjc 	 * Here we bound how tall the lgroup topology can grow
8922e2c009bSjjc 	 * in hopes of avoiding any anamolies in probing from
8932e2c009bSjjc 	 * messing up the lgroup topology by limiting the
8942e2c009bSjjc 	 * accuracy of the latency topology.
8952e2c009bSjjc 	 *
8962e2c009bSjjc 	 * Assume that nodes will at least be configured in a
8972e2c009bSjjc 	 * ring, so limit height of lgroup topology to be less
8982e2c009bSjjc 	 * than number of nodes on a system with 4 or more
8992e2c009bSjjc 	 * nodes
9002e2c009bSjjc 	 */
9012e2c009bSjjc 	if (lgrp_plat_node_cnt >= 4 && lgrp_topo_ht_limit() ==
9022e2c009bSjjc 	    lgrp_topo_ht_limit_default())
9032e2c009bSjjc 		(void) lgrp_topo_ht_limit_set(lgrp_plat_node_cnt - 1);
9042e2c009bSjjc #endif	/* __xpv */
9052e2c009bSjjc }
9062e2c009bSjjc 
9072e2c009bSjjc 
9082e2c009bSjjc /*
9092e2c009bSjjc  * Return latency between "from" and "to" lgroups
9102e2c009bSjjc  *
9112e2c009bSjjc  * This latency number can only be used for relative comparison
9122e2c009bSjjc  * between lgroups on the running system, cannot be used across platforms,
9132e2c009bSjjc  * and may not reflect the actual latency.  It is platform and implementation
9142e2c009bSjjc  * specific, so platform gets to decide its value.  It would be nice if the
9152e2c009bSjjc  * number was at least proportional to make comparisons more meaningful though.
9162e2c009bSjjc  */
9172e2c009bSjjc /* ARGSUSED */
9182e2c009bSjjc int
9192e2c009bSjjc lgrp_plat_latency(lgrp_handle_t from, lgrp_handle_t to)
9202e2c009bSjjc {
9212e2c009bSjjc 	lgrp_handle_t	src, dest;
9222e2c009bSjjc 	int		node;
9232e2c009bSjjc 
9242e2c009bSjjc 	if (max_mem_nodes == 1)
9252e2c009bSjjc 		return (0);
9262e2c009bSjjc 
9272e2c009bSjjc 	/*
9282e2c009bSjjc 	 * Return max latency for root lgroup
9292e2c009bSjjc 	 */
9302e2c009bSjjc 	if (from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE)
9312e2c009bSjjc 		return (lgrp_plat_lat_stats.latency_max);
9322e2c009bSjjc 
9332e2c009bSjjc 	src = from;
9342e2c009bSjjc 	dest = to;
9352e2c009bSjjc 
9362e2c009bSjjc 	/*
9372e2c009bSjjc 	 * Return 0 for nodes (lgroup platform handles) out of range
9382e2c009bSjjc 	 */
9392e2c009bSjjc 	if (src < 0 || src >= MAX_NODES || dest < 0 || dest >= MAX_NODES)
9402e2c009bSjjc 		return (0);
9412e2c009bSjjc 
9422e2c009bSjjc 	/*
9432e2c009bSjjc 	 * Probe from current CPU if its lgroup latencies haven't been set yet
9442e2c009bSjjc 	 * and we are trying to get latency from current CPU to some node
9452e2c009bSjjc 	 */
9462e2c009bSjjc 	node = lgrp_plat_cpu_to_node(CPU, lgrp_plat_cpu_node);
9472e2c009bSjjc 	ASSERT(node >= 0 && node < lgrp_plat_node_cnt);
9482e2c009bSjjc 	if (lgrp_plat_lat_stats.latencies[src][src] == 0 && node == src)
9492e2c009bSjjc 		lgrp_plat_probe();
9502e2c009bSjjc 
9512e2c009bSjjc 	return (lgrp_plat_lat_stats.latencies[src][dest]);
9522e2c009bSjjc }
9532e2c009bSjjc 
9542e2c009bSjjc 
9552e2c009bSjjc /*
9562e2c009bSjjc  * Platform-specific initialization
9572e2c009bSjjc  */
9582e2c009bSjjc void
9592e2c009bSjjc lgrp_plat_main_init(void)
9602e2c009bSjjc {
9612e2c009bSjjc 	int	curnode;
9622e2c009bSjjc 	int	ht_limit;
9632e2c009bSjjc 	int	i;
9642e2c009bSjjc 
9652e2c009bSjjc 	/*
9662e2c009bSjjc 	 * Print a notice that MPO is disabled when memory is interleaved
9672e2c009bSjjc 	 * across nodes....Would do this when it is discovered, but can't
9682e2c009bSjjc 	 * because it happens way too early during boot....
9692e2c009bSjjc 	 */
9702e2c009bSjjc 	if (lgrp_plat_mem_intrlv)
9712e2c009bSjjc 		cmn_err(CE_NOTE,
9722e2c009bSjjc 		    "MPO disabled because memory is interleaved\n");
9732e2c009bSjjc 
9742e2c009bSjjc 	/*
9752e2c009bSjjc 	 * Don't bother to do any probing if it is disabled, there is only one
9762e2c009bSjjc 	 * node, or the height of the lgroup topology less than or equal to 2
9772e2c009bSjjc 	 */
9782e2c009bSjjc 	ht_limit = lgrp_topo_ht_limit();
9792e2c009bSjjc 	if (!(lgrp_plat_probe_flags & LGRP_PLAT_PROBE_ENABLE) ||
9802e2c009bSjjc 	    max_mem_nodes == 1 || ht_limit <= 2) {
9812e2c009bSjjc 		/*
9822e2c009bSjjc 		 * Setup lgroup latencies for 2 level lgroup topology
9832e2c009bSjjc 		 * (ie. local and remote only) if they haven't been set yet
9842e2c009bSjjc 		 */
9852e2c009bSjjc 		if (ht_limit == 2 && lgrp_plat_lat_stats.latency_min == -1 &&
9862e2c009bSjjc 		    lgrp_plat_lat_stats.latency_max == 0)
9872e2c009bSjjc 			lgrp_plat_2level_setup(lgrp_plat_node_memory,
9882e2c009bSjjc 			    &lgrp_plat_lat_stats);
9892e2c009bSjjc 		return;
9902e2c009bSjjc 	}
9912e2c009bSjjc 
9922e2c009bSjjc 	if (lgrp_plat_probe_flags & LGRP_PLAT_PROBE_VENDOR) {
9932e2c009bSjjc 		/*
9942e2c009bSjjc 		 * Should have been able to probe from CPU 0 when it was added
9952e2c009bSjjc 		 * to lgroup hierarchy, but may not have been able to then
9962e2c009bSjjc 		 * because it happens so early in boot that gethrtime() hasn't
9972e2c009bSjjc 		 * been initialized.  (:-(
9982e2c009bSjjc 		 */
9992e2c009bSjjc 		curnode = lgrp_plat_cpu_to_node(CPU, lgrp_plat_cpu_node);
10002e2c009bSjjc 		ASSERT(curnode >= 0 && curnode < lgrp_plat_node_cnt);
10012e2c009bSjjc 		if (lgrp_plat_lat_stats.latencies[curnode][curnode] == 0)
10022e2c009bSjjc 			lgrp_plat_probe();
10032e2c009bSjjc 
10042e2c009bSjjc 		return;
10052e2c009bSjjc 	}
10062e2c009bSjjc 
10072e2c009bSjjc 	/*
10082e2c009bSjjc 	 * When probing memory, use one page for every sample to determine
10092e2c009bSjjc 	 * lgroup topology and taking multiple samples
10102e2c009bSjjc 	 */
10112e2c009bSjjc 	if (lgrp_plat_probe_mem_config.probe_memsize == 0)
10122e2c009bSjjc 		lgrp_plat_probe_mem_config.probe_memsize = PAGESIZE *
10132e2c009bSjjc 		    lgrp_plat_probe_nsamples;
10142e2c009bSjjc 
10152e2c009bSjjc 	/*
10162e2c009bSjjc 	 * Map memory in each node needed for probing to determine latency
10172e2c009bSjjc 	 * topology
10182e2c009bSjjc 	 */
10192e2c009bSjjc 	for (i = 0; i < lgrp_plat_node_cnt; i++) {
10202e2c009bSjjc 		int	mnode;
10212e2c009bSjjc 
10222e2c009bSjjc 		/*
10232e2c009bSjjc 		 * Skip this node and leave its probe page NULL
10242e2c009bSjjc 		 * if it doesn't have any memory
10252e2c009bSjjc 		 */
10262e2c009bSjjc 		mnode = plat_lgrphand_to_mem_node((lgrp_handle_t)i);
10272e2c009bSjjc 		if (!mem_node_config[mnode].exists) {
10282e2c009bSjjc 			lgrp_plat_probe_mem_config.probe_va[i] = NULL;
10292e2c009bSjjc 			continue;
10302e2c009bSjjc 		}
10312e2c009bSjjc 
10322e2c009bSjjc 		/*
10332e2c009bSjjc 		 * Allocate one kernel virtual page
10342e2c009bSjjc 		 */
10352e2c009bSjjc 		lgrp_plat_probe_mem_config.probe_va[i] = vmem_alloc(heap_arena,
10362e2c009bSjjc 		    lgrp_plat_probe_mem_config.probe_memsize, VM_NOSLEEP);
10372e2c009bSjjc 		if (lgrp_plat_probe_mem_config.probe_va[i] == NULL) {
10382e2c009bSjjc 			cmn_err(CE_WARN,
10392e2c009bSjjc 			    "lgrp_plat_main_init: couldn't allocate memory");
10402e2c009bSjjc 			return;
10412e2c009bSjjc 		}
10422e2c009bSjjc 
10432e2c009bSjjc 		/*
10442e2c009bSjjc 		 * Get PFN for first page in each node
10452e2c009bSjjc 		 */
10462e2c009bSjjc 		lgrp_plat_probe_mem_config.probe_pfn[i] =
10472e2c009bSjjc 		    mem_node_config[mnode].physbase;
10482e2c009bSjjc 
10492e2c009bSjjc 		/*
10502e2c009bSjjc 		 * Map virtual page to first page in node
10512e2c009bSjjc 		 */
10522e2c009bSjjc 		hat_devload(kas.a_hat, lgrp_plat_probe_mem_config.probe_va[i],
10532e2c009bSjjc 		    lgrp_plat_probe_mem_config.probe_memsize,
10542e2c009bSjjc 		    lgrp_plat_probe_mem_config.probe_pfn[i],
10552e2c009bSjjc 		    PROT_READ | PROT_WRITE | HAT_PLAT_NOCACHE,
10562e2c009bSjjc 		    HAT_LOAD_NOCONSIST);
10572e2c009bSjjc 	}
10582e2c009bSjjc 
10592e2c009bSjjc 	/*
10602e2c009bSjjc 	 * Probe from current CPU
10612e2c009bSjjc 	 */
10622e2c009bSjjc 	lgrp_plat_probe();
10632e2c009bSjjc }
10642e2c009bSjjc 
10652e2c009bSjjc 
10662e2c009bSjjc /*
10672e2c009bSjjc  * Return the maximum number of lgrps supported by the platform.
10682e2c009bSjjc  * Before lgrp topology is known it returns an estimate based on the number of
10692e2c009bSjjc  * nodes. Once topology is known it returns the actual maximim number of lgrps
10702e2c009bSjjc  * created. Since x86/x64 doesn't support Dynamic Reconfiguration (DR) and
10712e2c009bSjjc  * dynamic addition of new nodes, this number may not grow during system
10722e2c009bSjjc  * lifetime (yet).
10732e2c009bSjjc  */
10742e2c009bSjjc int
10752e2c009bSjjc lgrp_plat_max_lgrps(void)
10762e2c009bSjjc {
10772e2c009bSjjc 	return (lgrp_topo_initialized ?
10782e2c009bSjjc 	    lgrp_alloc_max + 1 :
10792e2c009bSjjc 	    lgrp_plat_node_cnt * (lgrp_plat_node_cnt - 1) + 1);
10802e2c009bSjjc }
10812e2c009bSjjc 
10822e2c009bSjjc 
10832e2c009bSjjc /*
10842e2c009bSjjc  * Return the number of free pages in an lgroup.
10852e2c009bSjjc  *
10862e2c009bSjjc  * For query of LGRP_MEM_SIZE_FREE, return the number of base pagesize
10872e2c009bSjjc  * pages on freelists.  For query of LGRP_MEM_SIZE_AVAIL, return the
10882e2c009bSjjc  * number of allocatable base pagesize pages corresponding to the
10892e2c009bSjjc  * lgroup (e.g. do not include page_t's, BOP_ALLOC()'ed memory, ..)
10902e2c009bSjjc  * For query of LGRP_MEM_SIZE_INSTALL, return the amount of physical
10912e2c009bSjjc  * memory installed, regardless of whether or not it's usable.
10922e2c009bSjjc  */
10932e2c009bSjjc pgcnt_t
10942e2c009bSjjc lgrp_plat_mem_size(lgrp_handle_t plathand, lgrp_mem_query_t query)
10952e2c009bSjjc {
10962e2c009bSjjc 	int	mnode;
10972e2c009bSjjc 	pgcnt_t npgs = (pgcnt_t)0;
10982e2c009bSjjc 	extern struct memlist *phys_avail;
10992e2c009bSjjc 	extern struct memlist *phys_install;
11002e2c009bSjjc 
11012e2c009bSjjc 
11022e2c009bSjjc 	if (plathand == LGRP_DEFAULT_HANDLE)
11032e2c009bSjjc 		return (lgrp_plat_mem_size_default(plathand, query));
11042e2c009bSjjc 
11052e2c009bSjjc 	if (plathand != LGRP_NULL_HANDLE) {
11062e2c009bSjjc 		mnode = plat_lgrphand_to_mem_node(plathand);
11072e2c009bSjjc 		if (mnode >= 0 && mem_node_config[mnode].exists) {
11082e2c009bSjjc 			switch (query) {
11092e2c009bSjjc 			case LGRP_MEM_SIZE_FREE:
11102e2c009bSjjc 				npgs = MNODE_PGCNT(mnode);
11112e2c009bSjjc 				break;
11122e2c009bSjjc 			case LGRP_MEM_SIZE_AVAIL:
11132e2c009bSjjc 				npgs = mem_node_memlist_pages(mnode,
11142e2c009bSjjc 				    phys_avail);
11152e2c009bSjjc 				break;
11162e2c009bSjjc 			case LGRP_MEM_SIZE_INSTALL:
11172e2c009bSjjc 				npgs = mem_node_memlist_pages(mnode,
11182e2c009bSjjc 				    phys_install);
11192e2c009bSjjc 				break;
11202e2c009bSjjc 			default:
11212e2c009bSjjc 				break;
11222e2c009bSjjc 			}
11232e2c009bSjjc 		}
11242e2c009bSjjc 	}
11252e2c009bSjjc 	return (npgs);
11262e2c009bSjjc }
11272e2c009bSjjc 
11282e2c009bSjjc 
11292e2c009bSjjc /*
11302e2c009bSjjc  * Return the platform handle of the lgroup that contains the physical memory
11312e2c009bSjjc  * corresponding to the given page frame number
11322e2c009bSjjc  */
11332e2c009bSjjc /* ARGSUSED */
11342e2c009bSjjc lgrp_handle_t
11352e2c009bSjjc lgrp_plat_pfn_to_hand(pfn_t pfn)
11362e2c009bSjjc {
11372e2c009bSjjc 	int	mnode;
11382e2c009bSjjc 
11392e2c009bSjjc 	if (max_mem_nodes == 1)
11402e2c009bSjjc 		return (LGRP_DEFAULT_HANDLE);
11412e2c009bSjjc 
11422e2c009bSjjc 	if (pfn > physmax)
11432e2c009bSjjc 		return (LGRP_NULL_HANDLE);
11442e2c009bSjjc 
11452e2c009bSjjc 	mnode = plat_pfn_to_mem_node(pfn);
11462e2c009bSjjc 	if (mnode < 0)
11472e2c009bSjjc 		return (LGRP_NULL_HANDLE);
11482e2c009bSjjc 
11492e2c009bSjjc 	return (MEM_NODE_2_LGRPHAND(mnode));
11502e2c009bSjjc }
11512e2c009bSjjc 
11522e2c009bSjjc 
11532e2c009bSjjc /*
11542e2c009bSjjc  * Probe memory in each node from current CPU to determine latency topology
11552e2c009bSjjc  *
11562e2c009bSjjc  * The probing code will probe the vendor ID register on the Northbridge of
11572e2c009bSjjc  * Opteron processors and probe memory for other processors by default.
11582e2c009bSjjc  *
11592e2c009bSjjc  * Since probing is inherently error prone, the code takes laps across all the
11602e2c009bSjjc  * nodes probing from each node to each of the other nodes some number of
11612e2c009bSjjc  * times.  Furthermore, each node is probed some number of times before moving
11622e2c009bSjjc  * onto the next one during each lap.  The minimum latency gotten between nodes
11632e2c009bSjjc  * is kept as the latency between the nodes.
11642e2c009bSjjc  *
11652e2c009bSjjc  * After all that,  the probe times are adjusted by normalizing values that are
11662e2c009bSjjc  * close to each other and local latencies are made the same.  Lastly, the
11672e2c009bSjjc  * latencies are verified to make sure that certain conditions are met (eg.
11682e2c009bSjjc  * local < remote, latency(a, b) == latency(b, a), etc.).
11692e2c009bSjjc  *
11702e2c009bSjjc  * If any of the conditions aren't met, the code will export a NUMA
11712e2c009bSjjc  * configuration with the local CPUs and memory given by the SRAT or PCI config
11722e2c009bSjjc  * space registers and one remote memory latency since it can't tell exactly
11732e2c009bSjjc  * how far each node is from each other.
11742e2c009bSjjc  */
11752e2c009bSjjc void
11762e2c009bSjjc lgrp_plat_probe(void)
11772e2c009bSjjc {
11782e2c009bSjjc 	int				from;
11792e2c009bSjjc 	int				i;
11802e2c009bSjjc 	lgrp_plat_latency_stats_t	*lat_stats;
11812e2c009bSjjc 	hrtime_t			probe_time;
11822e2c009bSjjc 	int				to;
11832e2c009bSjjc 
11842e2c009bSjjc 	if (!(lgrp_plat_probe_flags & LGRP_PLAT_PROBE_ENABLE) ||
11852e2c009bSjjc 	    max_mem_nodes == 1 || lgrp_topo_ht_limit() <= 2)
11862e2c009bSjjc 		return;
11872e2c009bSjjc 
11882e2c009bSjjc 	/*
11892e2c009bSjjc 	 * Determine ID of node containing current CPU
11902e2c009bSjjc 	 */
11912e2c009bSjjc 	from = lgrp_plat_cpu_to_node(CPU, lgrp_plat_cpu_node);
11922e2c009bSjjc 	ASSERT(from >= 0 && from < lgrp_plat_node_cnt);
11932e2c009bSjjc 	if (srat_ptr && lgrp_plat_srat_enable && !lgrp_plat_srat_error)
11942e2c009bSjjc 		ASSERT(lgrp_plat_node_domain[from].exists);
11952e2c009bSjjc 
11962e2c009bSjjc 	/*
11972e2c009bSjjc 	 * Don't need to probe if got times already
11982e2c009bSjjc 	 */
11992e2c009bSjjc 	lat_stats = &lgrp_plat_lat_stats;
12002e2c009bSjjc 	if (lat_stats->latencies[from][from] != 0)
12012e2c009bSjjc 		return;
12022e2c009bSjjc 
12032e2c009bSjjc 	/*
12042e2c009bSjjc 	 * Read vendor ID in Northbridge or read and write page(s)
12052e2c009bSjjc 	 * in each node from current CPU and remember how long it takes,
12062e2c009bSjjc 	 * so we can build latency topology of machine later.
12072e2c009bSjjc 	 * This should approximate the memory latency between each node.
12082e2c009bSjjc 	 */
12092e2c009bSjjc 	for (i = 0; i < lgrp_plat_probe_nrounds; i++) {
12102e2c009bSjjc 		for (to = 0; to < lgrp_plat_node_cnt; to++) {
12112e2c009bSjjc 			/*
12122e2c009bSjjc 			 * Get probe time and bail out if can't get it yet
12132e2c009bSjjc 			 */
12142e2c009bSjjc 			probe_time = lgrp_plat_probe_time(to,
12152e2c009bSjjc 			    lgrp_plat_cpu_node, &lgrp_plat_probe_mem_config,
12162e2c009bSjjc 			    &lgrp_plat_lat_stats, &lgrp_plat_probe_stats);
12172e2c009bSjjc 			if (probe_time == 0)
12182e2c009bSjjc 				return;
12192e2c009bSjjc 
12202e2c009bSjjc 			/*
12212e2c009bSjjc 			 * Keep lowest probe time as latency between nodes
12222e2c009bSjjc 			 */
12232e2c009bSjjc 			if (lat_stats->latencies[from][to] == 0 ||
12242e2c009bSjjc 			    probe_time < lat_stats->latencies[from][to])
12252e2c009bSjjc 				lat_stats->latencies[from][to] = probe_time;
12262e2c009bSjjc 
12272e2c009bSjjc 			/*
12282e2c009bSjjc 			 * Update overall minimum and maximum probe times
12292e2c009bSjjc 			 * across all nodes
12302e2c009bSjjc 			 */
12312e2c009bSjjc 			if (probe_time < lat_stats->latency_min ||
12322e2c009bSjjc 			    lat_stats->latency_min == -1)
12332e2c009bSjjc 				lat_stats->latency_min = probe_time;
12342e2c009bSjjc 			if (probe_time > lat_stats->latency_max)
12352e2c009bSjjc 				lat_stats->latency_max = probe_time;
12362e2c009bSjjc 		}
12372e2c009bSjjc 	}
12382e2c009bSjjc 
12392e2c009bSjjc 	/*
12402e2c009bSjjc 	 * - Fix up latencies such that local latencies are same,
12412e2c009bSjjc 	 *   latency(i, j) == latency(j, i), etc. (if possible)
12422e2c009bSjjc 	 *
12432e2c009bSjjc 	 * - Verify that latencies look ok
12442e2c009bSjjc 	 *
12452e2c009bSjjc 	 * - Fallback to just optimizing for local and remote if
12462e2c009bSjjc 	 *   latencies didn't look right
12472e2c009bSjjc 	 */
12482e2c009bSjjc 	lgrp_plat_latency_adjust(lgrp_plat_node_memory, &lgrp_plat_lat_stats,
12492e2c009bSjjc 	    &lgrp_plat_probe_stats);
12502e2c009bSjjc 	lgrp_plat_probe_stats.probe_error_code =
12512e2c009bSjjc 	    lgrp_plat_latency_verify(lgrp_plat_node_memory,
12522e2c009bSjjc 	    &lgrp_plat_lat_stats);
12532e2c009bSjjc 	if (lgrp_plat_probe_stats.probe_error_code)
12542e2c009bSjjc 		lgrp_plat_2level_setup(lgrp_plat_node_memory,
12552e2c009bSjjc 		    &lgrp_plat_lat_stats);
12562e2c009bSjjc }
12572e2c009bSjjc 
12582e2c009bSjjc 
12592e2c009bSjjc /*
12602e2c009bSjjc  * Return platform handle for root lgroup
12612e2c009bSjjc  */
12622e2c009bSjjc lgrp_handle_t
12632e2c009bSjjc lgrp_plat_root_hand(void)
12642e2c009bSjjc {
12652e2c009bSjjc 	return (LGRP_DEFAULT_HANDLE);
12662e2c009bSjjc }
12672e2c009bSjjc 
12682e2c009bSjjc 
12692e2c009bSjjc /*
12702e2c009bSjjc  * INTERNAL ROUTINES
12712e2c009bSjjc  */
12722e2c009bSjjc 
12732e2c009bSjjc 
12742e2c009bSjjc /*
12752e2c009bSjjc  * Update CPU to node mapping for given CPU and proximity domain (and returns
12762e2c009bSjjc  * negative numbers for errors and positive ones for success)
12772e2c009bSjjc  */
12782e2c009bSjjc static int
1279d821f0f0Sjjc lgrp_plat_cpu_node_update(node_domain_map_t *node_domain, int node_cnt,
1280dae2fa37Sjjc     cpu_node_map_t *cpu_node, int nentries, uint32_t apicid, uint32_t domain)
12812e2c009bSjjc {
12822e2c009bSjjc 	uint_t	i;
12832e2c009bSjjc 	int	node;
12842e2c009bSjjc 
12852e2c009bSjjc 	/*
12862e2c009bSjjc 	 * Get node number for proximity domain
12872e2c009bSjjc 	 */
1288d821f0f0Sjjc 	node = lgrp_plat_domain_to_node(node_domain, node_cnt, domain);
12892e2c009bSjjc 	if (node == -1) {
1290d821f0f0Sjjc 		node = lgrp_plat_node_domain_update(node_domain, node_cnt,
1291d821f0f0Sjjc 		    domain);
12922e2c009bSjjc 		if (node == -1)
12932e2c009bSjjc 			return (-1);
12942e2c009bSjjc 	}
12952e2c009bSjjc 
12962e2c009bSjjc 	/*
1297dae2fa37Sjjc 	 * Search for entry with given APIC ID and fill in its node and
1298dae2fa37Sjjc 	 * proximity domain IDs (if they haven't been set already)
12992e2c009bSjjc 	 */
1300dae2fa37Sjjc 	for (i = 0; i < nentries; i++) {
13012e2c009bSjjc 		/*
1302dae2fa37Sjjc 		 * Skip nonexistent entries and ones without matching APIC ID
13032e2c009bSjjc 		 */
1304dae2fa37Sjjc 		if (!cpu_node[i].exists || cpu_node[i].apicid != apicid)
1305dae2fa37Sjjc 			continue;
1306dae2fa37Sjjc 
13072e2c009bSjjc 		/*
1308dae2fa37Sjjc 		 * Just return if entry completely and correctly filled in
1309dae2fa37Sjjc 		 * already
13102e2c009bSjjc 		 */
13112e2c009bSjjc 		if (cpu_node[i].prox_domain == domain &&
13122e2c009bSjjc 		    cpu_node[i].node == node)
13132e2c009bSjjc 			return (1);
13142e2c009bSjjc 
13152e2c009bSjjc 		/*
1316dae2fa37Sjjc 		 * Fill in node and proximity domain IDs
13172e2c009bSjjc 		 */
13182e2c009bSjjc 		cpu_node[i].prox_domain = domain;
13192e2c009bSjjc 		cpu_node[i].node = node;
1320dae2fa37Sjjc 
13212e2c009bSjjc 		return (0);
13222e2c009bSjjc 	}
13232e2c009bSjjc 
13242e2c009bSjjc 	/*
1325dae2fa37Sjjc 	 * Return error when entry for APIC ID wasn't found in table
13262e2c009bSjjc 	 */
1327dae2fa37Sjjc 	return (-2);
13282e2c009bSjjc }
13292e2c009bSjjc 
13302e2c009bSjjc 
13312e2c009bSjjc /*
1332dae2fa37Sjjc  * Get node ID for given CPU
13332e2c009bSjjc  */
13342e2c009bSjjc static int
13352e2c009bSjjc lgrp_plat_cpu_to_node(cpu_t *cp, cpu_node_map_t *cpu_node)
13362e2c009bSjjc {
1337dae2fa37Sjjc 	processorid_t	cpuid;
13382e2c009bSjjc 
13392e2c009bSjjc 	if (cp == NULL)
13402e2c009bSjjc 		return (-1);
13412e2c009bSjjc 
1342dae2fa37Sjjc 	cpuid = cp->cpu_id;
1343dae2fa37Sjjc 	if (cpuid < 0 || cpuid >= max_ncpus)
1344dae2fa37Sjjc 		return (-1);
1345dae2fa37Sjjc 
13462e2c009bSjjc 	/*
13472e2c009bSjjc 	 * SRAT doesn't exist, isn't enabled, or there was an error processing
13482e2c009bSjjc 	 * it, so return chip ID for Opteron and -1 otherwise.
13492e2c009bSjjc 	 */
13502e2c009bSjjc 	if (srat_ptr == NULL || !lgrp_plat_srat_enable ||
13512e2c009bSjjc 	    lgrp_plat_srat_error) {
13522e2c009bSjjc 		if (is_opteron())
13532e2c009bSjjc 			return (pg_plat_hw_instance_id(cp, PGHW_CHIP));
13542e2c009bSjjc 		return (-1);
13552e2c009bSjjc 	}
13562e2c009bSjjc 
13572e2c009bSjjc 	/*
1358dae2fa37Sjjc 	 * Return -1 when CPU to node ID mapping entry doesn't exist for given
1359dae2fa37Sjjc 	 * CPU
13602e2c009bSjjc 	 */
1361dae2fa37Sjjc 	if (!cpu_node[cpuid].exists)
13622e2c009bSjjc 		return (-1);
1363dae2fa37Sjjc 
1364dae2fa37Sjjc 	return (cpu_node[cpuid].node);
13652e2c009bSjjc }
13662e2c009bSjjc 
13672e2c009bSjjc 
13682e2c009bSjjc /*
13692e2c009bSjjc  * Return node number for given proximity domain/system locality
13702e2c009bSjjc  */
13712e2c009bSjjc static int
1372d821f0f0Sjjc lgrp_plat_domain_to_node(node_domain_map_t *node_domain, int node_cnt,
1373d821f0f0Sjjc     uint32_t domain)
13742e2c009bSjjc {
13752e2c009bSjjc 	uint_t	node;
13762e2c009bSjjc 	uint_t	start;
13772e2c009bSjjc 
13782e2c009bSjjc 	/*
13792e2c009bSjjc 	 * Hash proximity domain ID into node to domain mapping table (array),
13802e2c009bSjjc 	 * search for entry with matching proximity domain ID, and return index
13812e2c009bSjjc 	 * of matching entry as node ID.
13822e2c009bSjjc 	 */
1383d821f0f0Sjjc 	node = start = NODE_DOMAIN_HASH(domain, node_cnt);
13842e2c009bSjjc 	do {
13852e2c009bSjjc 		if (node_domain[node].prox_domain == domain &&
13862e2c009bSjjc 		    node_domain[node].exists)
13872e2c009bSjjc 			return (node);
1388cf5755f2SJonathan Chew 		node = (node + 1) % node_cnt;
13892e2c009bSjjc 	} while (node != start);
13902e2c009bSjjc 	return (-1);
13912e2c009bSjjc }
13922e2c009bSjjc 
13932e2c009bSjjc 
13942e2c009bSjjc /*
13952e2c009bSjjc  * Latencies must be within 1/(2**LGRP_LAT_TOLERANCE_SHIFT) of each other to
13962e2c009bSjjc  * be considered same
13972e2c009bSjjc  */
13982e2c009bSjjc #define	LGRP_LAT_TOLERANCE_SHIFT	4
13992e2c009bSjjc 
14002e2c009bSjjc int	lgrp_plat_probe_lt_shift = LGRP_LAT_TOLERANCE_SHIFT;
14012e2c009bSjjc 
14022e2c009bSjjc 
14032e2c009bSjjc /*
14042e2c009bSjjc  * Adjust latencies between nodes to be symmetric, normalize latencies between
14052e2c009bSjjc  * any nodes that are within some tolerance to be same, and make local
14062e2c009bSjjc  * latencies be same
14072e2c009bSjjc  */
14082e2c009bSjjc static void
14092e2c009bSjjc lgrp_plat_latency_adjust(node_phys_addr_map_t *node_memory,
14102e2c009bSjjc     lgrp_plat_latency_stats_t *lat_stats, lgrp_plat_probe_stats_t *probe_stats)
14112e2c009bSjjc {
14122e2c009bSjjc 	int				i;
14132e2c009bSjjc 	int				j;
14142e2c009bSjjc 	int				k;
14152e2c009bSjjc 	int				l;
14162e2c009bSjjc 	u_longlong_t			max;
14172e2c009bSjjc 	u_longlong_t			min;
14182e2c009bSjjc 	u_longlong_t			t;
14192e2c009bSjjc 	u_longlong_t			t1;
14202e2c009bSjjc 	u_longlong_t			t2;
14212e2c009bSjjc 	const lgrp_config_flag_t	cflag = LGRP_CONFIG_LAT_CHANGE_ALL;
14222e2c009bSjjc 	int				lat_corrected[MAX_NODES][MAX_NODES];
14232e2c009bSjjc 
14242e2c009bSjjc 	/*
14252e2c009bSjjc 	 * Nothing to do when this is an UMA machine or don't have args needed
14262e2c009bSjjc 	 */
14272e2c009bSjjc 	if (max_mem_nodes == 1)
14282e2c009bSjjc 		return;
14292e2c009bSjjc 
14302e2c009bSjjc 	ASSERT(node_memory != NULL && lat_stats != NULL &&
14312e2c009bSjjc 	    probe_stats != NULL);
14322e2c009bSjjc 
14332e2c009bSjjc 	/*
14342e2c009bSjjc 	 * Make sure that latencies are symmetric between any two nodes
14352e2c009bSjjc 	 * (ie. latency(node0, node1) == latency(node1, node0))
14362e2c009bSjjc 	 */
14372e2c009bSjjc 	for (i = 0; i < lgrp_plat_node_cnt; i++) {
14382e2c009bSjjc 		if (!node_memory[i].exists)
14392e2c009bSjjc 			continue;
14402e2c009bSjjc 
14412e2c009bSjjc 		for (j = 0; j < lgrp_plat_node_cnt; j++) {
14422e2c009bSjjc 			if (!node_memory[j].exists)
14432e2c009bSjjc 				continue;
14442e2c009bSjjc 
14452e2c009bSjjc 			t1 = lat_stats->latencies[i][j];
14462e2c009bSjjc 			t2 = lat_stats->latencies[j][i];
14472e2c009bSjjc 
14482e2c009bSjjc 			if (t1 == 0 || t2 == 0 || t1 == t2)
14492e2c009bSjjc 				continue;
14502e2c009bSjjc 
14512e2c009bSjjc 			/*
14522e2c009bSjjc 			 * Latencies should be same
14532e2c009bSjjc 			 * - Use minimum of two latencies which should be same
14542e2c009bSjjc 			 * - Track suspect probe times not within tolerance of
14552e2c009bSjjc 			 *   min value
14562e2c009bSjjc 			 * - Remember how much values are corrected by
14572e2c009bSjjc 			 */
14582e2c009bSjjc 			if (t1 > t2) {
14592e2c009bSjjc 				t = t2;
14602e2c009bSjjc 				probe_stats->probe_errors[i][j] += t1 - t2;
14612e2c009bSjjc 				if (t1 - t2 > t2 >> lgrp_plat_probe_lt_shift) {
14622e2c009bSjjc 					probe_stats->probe_suspect[i][j]++;
14632e2c009bSjjc 					probe_stats->probe_suspect[j][i]++;
14642e2c009bSjjc 				}
14652e2c009bSjjc 			} else if (t2 > t1) {
14662e2c009bSjjc 				t = t1;
14672e2c009bSjjc 				probe_stats->probe_errors[j][i] += t2 - t1;
14682e2c009bSjjc 				if (t2 - t1 > t1 >> lgrp_plat_probe_lt_shift) {
14692e2c009bSjjc 					probe_stats->probe_suspect[i][j]++;
14702e2c009bSjjc 					probe_stats->probe_suspect[j][i]++;
14712e2c009bSjjc 				}
14722e2c009bSjjc 			}
14732e2c009bSjjc 
14742e2c009bSjjc 			lat_stats->latencies[i][j] =
14752e2c009bSjjc 			    lat_stats->latencies[j][i] = t;
14762e2c009bSjjc 			lgrp_config(cflag, t1, t);
14772e2c009bSjjc 			lgrp_config(cflag, t2, t);
14782e2c009bSjjc 		}
14792e2c009bSjjc 	}
14802e2c009bSjjc 
14812e2c009bSjjc 	/*
14822e2c009bSjjc 	 * Keep track of which latencies get corrected
14832e2c009bSjjc 	 */
14842e2c009bSjjc 	for (i = 0; i < MAX_NODES; i++)
14852e2c009bSjjc 		for (j = 0; j < MAX_NODES; j++)
14862e2c009bSjjc 			lat_corrected[i][j] = 0;
14872e2c009bSjjc 
14882e2c009bSjjc 	/*
14892e2c009bSjjc 	 * For every two nodes, see whether there is another pair of nodes which
14902e2c009bSjjc 	 * are about the same distance apart and make the latencies be the same
14912e2c009bSjjc 	 * if they are close enough together
14922e2c009bSjjc 	 */
14932e2c009bSjjc 	for (i = 0; i < lgrp_plat_node_cnt; i++) {
14942e2c009bSjjc 		if (!node_memory[i].exists)
14952e2c009bSjjc 			continue;
14962e2c009bSjjc 		for (j = 0; j < lgrp_plat_node_cnt; j++) {
14972e2c009bSjjc 			if (!node_memory[j].exists)
14982e2c009bSjjc 				continue;
14992e2c009bSjjc 			/*
15002e2c009bSjjc 			 * Pick one pair of nodes (i, j)
15012e2c009bSjjc 			 * and get latency between them
15022e2c009bSjjc 			 */
15032e2c009bSjjc 			t1 = lat_stats->latencies[i][j];
15042e2c009bSjjc 
15052e2c009bSjjc 			/*
15062e2c009bSjjc 			 * Skip this pair of nodes if there isn't a latency
15072e2c009bSjjc 			 * for it yet
15082e2c009bSjjc 			 */
15092e2c009bSjjc 			if (t1 == 0)
15102e2c009bSjjc 				continue;
15112e2c009bSjjc 
15122e2c009bSjjc 			for (k = 0; k < lgrp_plat_node_cnt; k++) {
15132e2c009bSjjc 				if (!node_memory[k].exists)
15142e2c009bSjjc 					continue;
15152e2c009bSjjc 				for (l = 0; l < lgrp_plat_node_cnt; l++) {
15162e2c009bSjjc 					if (!node_memory[l].exists)
15172e2c009bSjjc 						continue;
15182e2c009bSjjc 					/*
15192e2c009bSjjc 					 * Pick another pair of nodes (k, l)
15202e2c009bSjjc 					 * not same as (i, j) and get latency
15212e2c009bSjjc 					 * between them
15222e2c009bSjjc 					 */
15232e2c009bSjjc 					if (k == i && l == j)
15242e2c009bSjjc 						continue;
15252e2c009bSjjc 
15262e2c009bSjjc 					t2 = lat_stats->latencies[k][l];
15272e2c009bSjjc 
15282e2c009bSjjc 					/*
15292e2c009bSjjc 					 * Skip this pair of nodes if there
15302e2c009bSjjc 					 * isn't a latency for it yet
15312e2c009bSjjc 					 */
15322e2c009bSjjc 
15332e2c009bSjjc 					if (t2 == 0)
15342e2c009bSjjc 						continue;
15352e2c009bSjjc 
15362e2c009bSjjc 					/*
15372e2c009bSjjc 					 * Skip nodes (k, l) if they already
15382e2c009bSjjc 					 * have same latency as (i, j) or
15392e2c009bSjjc 					 * their latency isn't close enough to
15402e2c009bSjjc 					 * be considered/made the same
15412e2c009bSjjc 					 */
15422e2c009bSjjc 					if (t1 == t2 || (t1 > t2 && t1 - t2 >
15432e2c009bSjjc 					    t1 >> lgrp_plat_probe_lt_shift) ||
15442e2c009bSjjc 					    (t2 > t1 && t2 - t1 >
15452e2c009bSjjc 					    t2 >> lgrp_plat_probe_lt_shift))
15462e2c009bSjjc 						continue;
15472e2c009bSjjc 
15482e2c009bSjjc 					/*
15492e2c009bSjjc 					 * Make latency(i, j) same as
15502e2c009bSjjc 					 * latency(k, l), try to use latency
15512e2c009bSjjc 					 * that has been adjusted already to get
15522e2c009bSjjc 					 * more consistency (if possible), and
15532e2c009bSjjc 					 * remember which latencies were
15542e2c009bSjjc 					 * adjusted for next time
15552e2c009bSjjc 					 */
15562e2c009bSjjc 					if (lat_corrected[i][j]) {
15572e2c009bSjjc 						t = t1;
15582e2c009bSjjc 						lgrp_config(cflag, t2, t);
15592e2c009bSjjc 						t2 = t;
15602e2c009bSjjc 					} else if (lat_corrected[k][l]) {
15612e2c009bSjjc 						t = t2;
15622e2c009bSjjc 						lgrp_config(cflag, t1, t);
15632e2c009bSjjc 						t1 = t;
15642e2c009bSjjc 					} else {
15652e2c009bSjjc 						if (t1 > t2)
15662e2c009bSjjc 							t = t2;
15672e2c009bSjjc 						else
15682e2c009bSjjc 							t = t1;
15692e2c009bSjjc 						lgrp_config(cflag, t1, t);
15702e2c009bSjjc 						lgrp_config(cflag, t2, t);
15712e2c009bSjjc 						t1 = t2 = t;
15722e2c009bSjjc 					}
15732e2c009bSjjc 
15742e2c009bSjjc 					lat_stats->latencies[i][j] =
15752e2c009bSjjc 					    lat_stats->latencies[k][l] = t;
15762e2c009bSjjc 
15772e2c009bSjjc 					lat_corrected[i][j] =
15782e2c009bSjjc 					    lat_corrected[k][l] = 1;
15792e2c009bSjjc 				}
15802e2c009bSjjc 			}
15812e2c009bSjjc 		}
15822e2c009bSjjc 	}
15832e2c009bSjjc 
15842e2c009bSjjc 	/*
15852e2c009bSjjc 	 * Local latencies should be same
15862e2c009bSjjc 	 * - Find min and max local latencies
15872e2c009bSjjc 	 * - Make all local latencies be minimum
15882e2c009bSjjc 	 */
15892e2c009bSjjc 	min = -1;
15902e2c009bSjjc 	max = 0;
15912e2c009bSjjc 	for (i = 0; i < lgrp_plat_node_cnt; i++) {
15922e2c009bSjjc 		if (!node_memory[i].exists)
15932e2c009bSjjc 			continue;
15942e2c009bSjjc 		t = lat_stats->latencies[i][i];
15952e2c009bSjjc 		if (t == 0)
15962e2c009bSjjc 			continue;
15972e2c009bSjjc 		if (min == -1 || t < min)
15982e2c009bSjjc 			min = t;
15992e2c009bSjjc 		if (t > max)
16002e2c009bSjjc 			max = t;
16012e2c009bSjjc 	}
16022e2c009bSjjc 	if (min != max) {
16032e2c009bSjjc 		for (i = 0; i < lgrp_plat_node_cnt; i++) {
16042e2c009bSjjc 			int	local;
16052e2c009bSjjc 
16062e2c009bSjjc 			if (!node_memory[i].exists)
16072e2c009bSjjc 				continue;
16082e2c009bSjjc 
16092e2c009bSjjc 			local = lat_stats->latencies[i][i];
16102e2c009bSjjc 			if (local == 0)
16112e2c009bSjjc 				continue;
16122e2c009bSjjc 
16132e2c009bSjjc 			/*
16142e2c009bSjjc 			 * Track suspect probe times that aren't within
16152e2c009bSjjc 			 * tolerance of minimum local latency and how much
16162e2c009bSjjc 			 * probe times are corrected by
16172e2c009bSjjc 			 */
16182e2c009bSjjc 			if (local - min > min >> lgrp_plat_probe_lt_shift)
16192e2c009bSjjc 				probe_stats->probe_suspect[i][i]++;
16202e2c009bSjjc 
16212e2c009bSjjc 			probe_stats->probe_errors[i][i] += local - min;
16222e2c009bSjjc 
16232e2c009bSjjc 			/*
16242e2c009bSjjc 			 * Make local latencies be minimum
16252e2c009bSjjc 			 */
16262e2c009bSjjc 			lgrp_config(LGRP_CONFIG_LAT_CHANGE, i, min);
16272e2c009bSjjc 			lat_stats->latencies[i][i] = min;
16282e2c009bSjjc 		}
16292e2c009bSjjc 	}
16302e2c009bSjjc 
16312e2c009bSjjc 	/*
16322e2c009bSjjc 	 * Determine max probe time again since just adjusted latencies
16332e2c009bSjjc 	 */
16342e2c009bSjjc 	lat_stats->latency_max = 0;
16352e2c009bSjjc 	for (i = 0; i < lgrp_plat_node_cnt; i++) {
16362e2c009bSjjc 		if (!node_memory[i].exists)
16372e2c009bSjjc 			continue;
16382e2c009bSjjc 		for (j = 0; j < lgrp_plat_node_cnt; j++) {
16392e2c009bSjjc 			if (!node_memory[j].exists)
16402e2c009bSjjc 				continue;
16412e2c009bSjjc 			t = lat_stats->latencies[i][j];
16422e2c009bSjjc 			if (t > lat_stats->latency_max)
16432e2c009bSjjc 				lat_stats->latency_max = t;
16442e2c009bSjjc 		}
16452e2c009bSjjc 	}
16462e2c009bSjjc }
16472e2c009bSjjc 
16482e2c009bSjjc 
16492e2c009bSjjc /*
16502e2c009bSjjc  * Verify following about latencies between nodes:
16512e2c009bSjjc  *
16522e2c009bSjjc  * - Latencies should be symmetric (ie. latency(a, b) == latency(b, a))
16532e2c009bSjjc  * - Local latencies same
16542e2c009bSjjc  * - Local < remote
16552e2c009bSjjc  * - Number of latencies seen is reasonable
16562e2c009bSjjc  * - Number of occurrences of a given latency should be more than 1
16572e2c009bSjjc  *
16582e2c009bSjjc  * Returns:
16592e2c009bSjjc  *	0	Success
16602e2c009bSjjc  *	-1	Not symmetric
16612e2c009bSjjc  *	-2	Local latencies not same
16622e2c009bSjjc  *	-3	Local >= remote
16632e2c009bSjjc  */
16642e2c009bSjjc static int
16652e2c009bSjjc lgrp_plat_latency_verify(node_phys_addr_map_t *node_memory,
16662e2c009bSjjc     lgrp_plat_latency_stats_t *lat_stats)
16672e2c009bSjjc {
16682e2c009bSjjc 	int				i;
16692e2c009bSjjc 	int				j;
16702e2c009bSjjc 	u_longlong_t			t1;
16712e2c009bSjjc 	u_longlong_t			t2;
16722e2c009bSjjc 
16732e2c009bSjjc 	ASSERT(node_memory != NULL && lat_stats != NULL);
16742e2c009bSjjc 
16752e2c009bSjjc 	/*
16762e2c009bSjjc 	 * Nothing to do when this is an UMA machine, lgroup topology is
16772e2c009bSjjc 	 * limited to 2 levels, or there aren't any probe times yet
16782e2c009bSjjc 	 */
16792e2c009bSjjc 	if (max_mem_nodes == 1 || lgrp_topo_levels < 2 ||
16802e2c009bSjjc 	    lat_stats->latencies[0][0] == 0)
16812e2c009bSjjc 		return (0);
16822e2c009bSjjc 
16832e2c009bSjjc 	/*
16842e2c009bSjjc 	 * Make sure that latencies are symmetric between any two nodes
16852e2c009bSjjc 	 * (ie. latency(node0, node1) == latency(node1, node0))
16862e2c009bSjjc 	 */
16872e2c009bSjjc 	for (i = 0; i < lgrp_plat_node_cnt; i++) {
16882e2c009bSjjc 		if (!node_memory[i].exists)
16892e2c009bSjjc 			continue;
16902e2c009bSjjc 		for (j = 0; j < lgrp_plat_node_cnt; j++) {
16912e2c009bSjjc 			if (!node_memory[j].exists)
16922e2c009bSjjc 				continue;
16932e2c009bSjjc 			t1 = lat_stats->latencies[i][j];
16942e2c009bSjjc 			t2 = lat_stats->latencies[j][i];
16952e2c009bSjjc 
16962e2c009bSjjc 			if (t1 == 0 || t2 == 0 || t1 == t2)
16972e2c009bSjjc 				continue;
16982e2c009bSjjc 
16992e2c009bSjjc 			return (-1);
17002e2c009bSjjc 		}
17012e2c009bSjjc 	}
17022e2c009bSjjc 
17032e2c009bSjjc 	/*
17042e2c009bSjjc 	 * Local latencies should be same
17052e2c009bSjjc 	 */
17062e2c009bSjjc 	t1 = lat_stats->latencies[0][0];
17072e2c009bSjjc 	for (i = 1; i < lgrp_plat_node_cnt; i++) {
17082e2c009bSjjc 		if (!node_memory[i].exists)
17092e2c009bSjjc 			continue;
17102e2c009bSjjc 
17112e2c009bSjjc 		t2 = lat_stats->latencies[i][i];
17122e2c009bSjjc 		if (t2 == 0)
17132e2c009bSjjc 			continue;
17142e2c009bSjjc 
17152e2c009bSjjc 		if (t1 == 0) {
17162e2c009bSjjc 			t1 = t2;
17172e2c009bSjjc 			continue;
17182e2c009bSjjc 		}
17192e2c009bSjjc 
17202e2c009bSjjc 		if (t1 != t2)
17212e2c009bSjjc 			return (-2);
17222e2c009bSjjc 	}
17232e2c009bSjjc 
17242e2c009bSjjc 	/*
17252e2c009bSjjc 	 * Local latencies should be less than remote
17262e2c009bSjjc 	 */
17272e2c009bSjjc 	if (t1) {
17282e2c009bSjjc 		for (i = 0; i < lgrp_plat_node_cnt; i++) {
17292e2c009bSjjc 			if (!node_memory[i].exists)
17302e2c009bSjjc 				continue;
17312e2c009bSjjc 			for (j = 0; j < lgrp_plat_node_cnt; j++) {
17322e2c009bSjjc 				if (!node_memory[j].exists)
17332e2c009bSjjc 					continue;
17342e2c009bSjjc 				t2 = lat_stats->latencies[i][j];
17352e2c009bSjjc 				if (i == j || t2 == 0)
17362e2c009bSjjc 					continue;
17372e2c009bSjjc 
17382e2c009bSjjc 				if (t1 >= t2)
17392e2c009bSjjc 					return (-3);
17402e2c009bSjjc 			}
17412e2c009bSjjc 		}
17422e2c009bSjjc 	}
17432e2c009bSjjc 
17442e2c009bSjjc 	return (0);
17452e2c009bSjjc }
17462e2c009bSjjc 
17472e2c009bSjjc 
17482e2c009bSjjc /*
17492e2c009bSjjc  * Return the number of free, allocatable, or installed
17502e2c009bSjjc  * pages in an lgroup
17512e2c009bSjjc  * This is a copy of the MAX_MEM_NODES == 1 version of the routine
17522e2c009bSjjc  * used when MPO is disabled (i.e. single lgroup) or this is the root lgroup
17532e2c009bSjjc  */
17542e2c009bSjjc /* ARGSUSED */
17552e2c009bSjjc static pgcnt_t
17562e2c009bSjjc lgrp_plat_mem_size_default(lgrp_handle_t lgrphand, lgrp_mem_query_t query)
17572e2c009bSjjc {
17582e2c009bSjjc 	struct memlist *mlist;
17592e2c009bSjjc 	pgcnt_t npgs = 0;
17602e2c009bSjjc 	extern struct memlist *phys_avail;
17612e2c009bSjjc 	extern struct memlist *phys_install;
17622e2c009bSjjc 
17632e2c009bSjjc 	switch (query) {
17642e2c009bSjjc 	case LGRP_MEM_SIZE_FREE:
17652e2c009bSjjc 		return ((pgcnt_t)freemem);
17662e2c009bSjjc 	case LGRP_MEM_SIZE_AVAIL:
17672e2c009bSjjc 		memlist_read_lock();
17682e2c009bSjjc 		for (mlist = phys_avail; mlist; mlist = mlist->next)
17692e2c009bSjjc 			npgs += btop(mlist->size);
17702e2c009bSjjc 		memlist_read_unlock();
17712e2c009bSjjc 		return (npgs);
17722e2c009bSjjc 	case LGRP_MEM_SIZE_INSTALL:
17732e2c009bSjjc 		memlist_read_lock();
17742e2c009bSjjc 		for (mlist = phys_install; mlist; mlist = mlist->next)
17752e2c009bSjjc 			npgs += btop(mlist->size);
17762e2c009bSjjc 		memlist_read_unlock();
17772e2c009bSjjc 		return (npgs);
17782e2c009bSjjc 	default:
17792e2c009bSjjc 		return ((pgcnt_t)0);
17802e2c009bSjjc 	}
17812e2c009bSjjc }
17822e2c009bSjjc 
17832e2c009bSjjc 
17842e2c009bSjjc /*
17852e2c009bSjjc  * Update node to proximity domain mappings for given domain and return node ID
17862e2c009bSjjc  */
17872e2c009bSjjc static int
1788d821f0f0Sjjc lgrp_plat_node_domain_update(node_domain_map_t *node_domain, int node_cnt,
1789d821f0f0Sjjc     uint32_t domain)
17902e2c009bSjjc {
17912e2c009bSjjc 	uint_t	node;
17922e2c009bSjjc 	uint_t	start;
17932e2c009bSjjc 
17942e2c009bSjjc 	/*
17952e2c009bSjjc 	 * Hash proximity domain ID into node to domain mapping table (array)
17962e2c009bSjjc 	 * and add entry for it into first non-existent or matching entry found
17972e2c009bSjjc 	 */
1798d821f0f0Sjjc 	node = start = NODE_DOMAIN_HASH(domain, node_cnt);
17992e2c009bSjjc 	do {
18002e2c009bSjjc 		/*
18012e2c009bSjjc 		 * Entry doesn't exist yet, so create one for this proximity
18022e2c009bSjjc 		 * domain and return node ID which is index into mapping table.
18032e2c009bSjjc 		 */
18042e2c009bSjjc 		if (!node_domain[node].exists) {
18052e2c009bSjjc 			node_domain[node].exists = 1;
18062e2c009bSjjc 			node_domain[node].prox_domain = domain;
18072e2c009bSjjc 			return (node);
18082e2c009bSjjc 		}
18092e2c009bSjjc 
18102e2c009bSjjc 		/*
18112e2c009bSjjc 		 * Entry exists for this proximity domain already, so just
18122e2c009bSjjc 		 * return node ID (index into table).
18132e2c009bSjjc 		 */
18142e2c009bSjjc 		if (node_domain[node].prox_domain == domain)
18152e2c009bSjjc 			return (node);
1816d821f0f0Sjjc 		node = NODE_DOMAIN_HASH(node + 1, node_cnt);
18172e2c009bSjjc 	} while (node != start);
18182e2c009bSjjc 
18192e2c009bSjjc 	/*
18202e2c009bSjjc 	 * Ran out of supported number of entries which shouldn't happen....
18212e2c009bSjjc 	 */
18222e2c009bSjjc 	ASSERT(node != start);
18232e2c009bSjjc 	return (-1);
18242e2c009bSjjc }
18252e2c009bSjjc 
18262e2c009bSjjc 
18272e2c009bSjjc /*
18282e2c009bSjjc  * Update node memory information for given proximity domain with specified
18292e2c009bSjjc  * starting and ending physical address range (and return positive numbers for
18302e2c009bSjjc  * success and negative ones for errors)
18312e2c009bSjjc  */
18322e2c009bSjjc static int
1833d821f0f0Sjjc lgrp_plat_node_memory_update(node_domain_map_t *node_domain, int node_cnt,
1834e9dd3ea3Sjjc     node_phys_addr_map_t *node_memory, uint64_t start, uint64_t end,
18352e2c009bSjjc     uint32_t domain)
18362e2c009bSjjc {
18372e2c009bSjjc 	int	node;
18382e2c009bSjjc 
18392e2c009bSjjc 	/*
18402e2c009bSjjc 	 * Get node number for proximity domain
18412e2c009bSjjc 	 */
1842d821f0f0Sjjc 	node = lgrp_plat_domain_to_node(node_domain, node_cnt, domain);
18432e2c009bSjjc 	if (node == -1) {
1844d821f0f0Sjjc 		node = lgrp_plat_node_domain_update(node_domain, node_cnt,
1845d821f0f0Sjjc 		    domain);
18462e2c009bSjjc 		if (node == -1)
18472e2c009bSjjc 			return (-1);
18482e2c009bSjjc 	}
18492e2c009bSjjc 
18502e2c009bSjjc 	/*
18512e2c009bSjjc 	 * Create entry in table for node if it doesn't exist
18522e2c009bSjjc 	 */
18532e2c009bSjjc 	if (!node_memory[node].exists) {
18542e2c009bSjjc 		node_memory[node].exists = 1;
18552e2c009bSjjc 		node_memory[node].start = btop(start);
18562e2c009bSjjc 		node_memory[node].end = btop(end);
18572e2c009bSjjc 		node_memory[node].prox_domain = domain;
18582e2c009bSjjc 		return (0);
18592e2c009bSjjc 	}
18602e2c009bSjjc 
18612e2c009bSjjc 	/*
18622e2c009bSjjc 	 * Entry already exists for this proximity domain
18632e2c009bSjjc 	 *
18642e2c009bSjjc 	 * There may be more than one SRAT memory entry for a domain, so we may
18652e2c009bSjjc 	 * need to update existing start or end address for the node.
18662e2c009bSjjc 	 */
18672e2c009bSjjc 	if (node_memory[node].prox_domain == domain) {
18682e2c009bSjjc 		if (btop(start) < node_memory[node].start)
18692e2c009bSjjc 			node_memory[node].start = btop(start);
18702e2c009bSjjc 		if (btop(end) > node_memory[node].end)
18712e2c009bSjjc 			node_memory[node].end = btop(end);
18722e2c009bSjjc 		return (1);
18732e2c009bSjjc 	}
18742e2c009bSjjc 	return (-2);
18752e2c009bSjjc }
18762e2c009bSjjc 
18772e2c009bSjjc 
18782e2c009bSjjc /*
187981d9ccb6SJonathan Chew  * Have to sort node by starting physical address because VM system (physical
188081d9ccb6SJonathan Chew  * page free list management) assumes and expects memnodes to be sorted in
188181d9ccb6SJonathan Chew  * ascending order by physical address.  If not, the kernel will panic in
188281d9ccb6SJonathan Chew  * potentially a number of different places.  (:-(
188381d9ccb6SJonathan Chew  * NOTE: This workaround will not be sufficient if/when hotplugging memory is
188481d9ccb6SJonathan Chew  *	 supported on x86/x64.
188581d9ccb6SJonathan Chew  */
188681d9ccb6SJonathan Chew static void
188781d9ccb6SJonathan Chew lgrp_plat_node_sort(node_domain_map_t *node_domain, int node_cnt,
188881d9ccb6SJonathan Chew     cpu_node_map_t *cpu_node, int cpu_count, node_phys_addr_map_t *node_memory)
188981d9ccb6SJonathan Chew {
189081d9ccb6SJonathan Chew 	boolean_t	found;
189181d9ccb6SJonathan Chew 	int		i;
189281d9ccb6SJonathan Chew 	int		j;
189381d9ccb6SJonathan Chew 	int		n;
189481d9ccb6SJonathan Chew 	boolean_t	sorted;
189581d9ccb6SJonathan Chew 	boolean_t	swapped;
189681d9ccb6SJonathan Chew 
189781d9ccb6SJonathan Chew 	if (!lgrp_plat_node_sort_enable || node_cnt <= 1 ||
189881d9ccb6SJonathan Chew 	    node_domain == NULL || node_memory == NULL)
189981d9ccb6SJonathan Chew 		return;
190081d9ccb6SJonathan Chew 
190181d9ccb6SJonathan Chew 	/*
190281d9ccb6SJonathan Chew 	 * Sorted already?
190381d9ccb6SJonathan Chew 	 */
190481d9ccb6SJonathan Chew 	sorted = B_TRUE;
190581d9ccb6SJonathan Chew 	for (i = 0; i < node_cnt - 1; i++) {
190681d9ccb6SJonathan Chew 		/*
190781d9ccb6SJonathan Chew 		 * Skip entries that don't exist
190881d9ccb6SJonathan Chew 		 */
190981d9ccb6SJonathan Chew 		if (!node_memory[i].exists)
191081d9ccb6SJonathan Chew 			continue;
191181d9ccb6SJonathan Chew 
191281d9ccb6SJonathan Chew 		/*
191381d9ccb6SJonathan Chew 		 * Try to find next existing entry to compare against
191481d9ccb6SJonathan Chew 		 */
191581d9ccb6SJonathan Chew 		found = B_FALSE;
191681d9ccb6SJonathan Chew 		for (j = i + 1; j < node_cnt; j++) {
191781d9ccb6SJonathan Chew 			if (node_memory[j].exists) {
191881d9ccb6SJonathan Chew 				found = B_TRUE;
191981d9ccb6SJonathan Chew 				break;
192081d9ccb6SJonathan Chew 			}
192181d9ccb6SJonathan Chew 		}
192281d9ccb6SJonathan Chew 
192381d9ccb6SJonathan Chew 		/*
192481d9ccb6SJonathan Chew 		 * Done if no more existing entries to compare against
192581d9ccb6SJonathan Chew 		 */
192681d9ccb6SJonathan Chew 		if (found == B_FALSE)
192781d9ccb6SJonathan Chew 			break;
192881d9ccb6SJonathan Chew 
192981d9ccb6SJonathan Chew 		/*
193081d9ccb6SJonathan Chew 		 * Not sorted if starting address of current entry is bigger
193181d9ccb6SJonathan Chew 		 * than starting address of next existing entry
193281d9ccb6SJonathan Chew 		 */
193381d9ccb6SJonathan Chew 		if (node_memory[i].start > node_memory[j].start) {
193481d9ccb6SJonathan Chew 			sorted = B_FALSE;
193581d9ccb6SJonathan Chew 			break;
193681d9ccb6SJonathan Chew 		}
193781d9ccb6SJonathan Chew 	}
193881d9ccb6SJonathan Chew 
193981d9ccb6SJonathan Chew 	/*
194081d9ccb6SJonathan Chew 	 * Don't need to sort if sorted already
194181d9ccb6SJonathan Chew 	 */
194281d9ccb6SJonathan Chew 	if (sorted == B_TRUE)
194381d9ccb6SJonathan Chew 		return;
194481d9ccb6SJonathan Chew 
194581d9ccb6SJonathan Chew 	/*
194681d9ccb6SJonathan Chew 	 * Just use bubble sort since number of nodes is small
194781d9ccb6SJonathan Chew 	 */
194881d9ccb6SJonathan Chew 	n = node_cnt;
194981d9ccb6SJonathan Chew 	do {
195081d9ccb6SJonathan Chew 		swapped = B_FALSE;
195181d9ccb6SJonathan Chew 		n--;
195281d9ccb6SJonathan Chew 		for (i = 0; i < n; i++) {
195381d9ccb6SJonathan Chew 			/*
195481d9ccb6SJonathan Chew 			 * Skip entries that don't exist
195581d9ccb6SJonathan Chew 			 */
195681d9ccb6SJonathan Chew 			if (!node_memory[i].exists)
195781d9ccb6SJonathan Chew 				continue;
195881d9ccb6SJonathan Chew 
195981d9ccb6SJonathan Chew 			/*
196081d9ccb6SJonathan Chew 			 * Try to find next existing entry to compare against
196181d9ccb6SJonathan Chew 			 */
196281d9ccb6SJonathan Chew 			found = B_FALSE;
196381d9ccb6SJonathan Chew 			for (j = i + 1; j <= n; j++) {
196481d9ccb6SJonathan Chew 				if (node_memory[j].exists) {
196581d9ccb6SJonathan Chew 					found = B_TRUE;
196681d9ccb6SJonathan Chew 					break;
196781d9ccb6SJonathan Chew 				}
196881d9ccb6SJonathan Chew 			}
196981d9ccb6SJonathan Chew 
197081d9ccb6SJonathan Chew 			/*
197181d9ccb6SJonathan Chew 			 * Done if no more existing entries to compare against
197281d9ccb6SJonathan Chew 			 */
197381d9ccb6SJonathan Chew 			if (found == B_FALSE)
197481d9ccb6SJonathan Chew 				break;
197581d9ccb6SJonathan Chew 
197681d9ccb6SJonathan Chew 			if (node_memory[i].start > node_memory[j].start) {
197781d9ccb6SJonathan Chew 				node_phys_addr_map_t	save_addr;
197881d9ccb6SJonathan Chew 				node_domain_map_t	save_node;
197981d9ccb6SJonathan Chew 
198081d9ccb6SJonathan Chew 				/*
198181d9ccb6SJonathan Chew 				 * Swap node to proxmity domain ID assignments
198281d9ccb6SJonathan Chew 				 */
198381d9ccb6SJonathan Chew 				bcopy(&node_domain[i], &save_node,
198481d9ccb6SJonathan Chew 				    sizeof (node_domain_map_t));
198581d9ccb6SJonathan Chew 				bcopy(&node_domain[j], &node_domain[i],
198681d9ccb6SJonathan Chew 				    sizeof (node_domain_map_t));
198781d9ccb6SJonathan Chew 				bcopy(&save_node, &node_domain[j],
198881d9ccb6SJonathan Chew 				    sizeof (node_domain_map_t));
198981d9ccb6SJonathan Chew 
199081d9ccb6SJonathan Chew 				/*
199181d9ccb6SJonathan Chew 				 * Swap node to physical memory assignments
199281d9ccb6SJonathan Chew 				 */
199381d9ccb6SJonathan Chew 				bcopy(&node_memory[i], &save_addr,
199481d9ccb6SJonathan Chew 				    sizeof (node_phys_addr_map_t));
199581d9ccb6SJonathan Chew 				bcopy(&node_memory[j], &node_memory[i],
199681d9ccb6SJonathan Chew 				    sizeof (node_phys_addr_map_t));
199781d9ccb6SJonathan Chew 				bcopy(&save_addr, &node_memory[j],
199881d9ccb6SJonathan Chew 				    sizeof (node_phys_addr_map_t));
199981d9ccb6SJonathan Chew 				swapped = B_TRUE;
200081d9ccb6SJonathan Chew 			}
200181d9ccb6SJonathan Chew 		}
200281d9ccb6SJonathan Chew 	} while (swapped == B_TRUE);
200381d9ccb6SJonathan Chew 
200481d9ccb6SJonathan Chew 	/*
200581d9ccb6SJonathan Chew 	 * Check to make sure that CPUs assigned to correct node IDs now since
200681d9ccb6SJonathan Chew 	 * node to proximity domain ID assignments may have been changed above
200781d9ccb6SJonathan Chew 	 */
200881d9ccb6SJonathan Chew 	if (n == node_cnt - 1 || cpu_node == NULL || cpu_count < 1)
200981d9ccb6SJonathan Chew 		return;
201081d9ccb6SJonathan Chew 	for (i = 0; i < cpu_count; i++) {
201181d9ccb6SJonathan Chew 		int		node;
201281d9ccb6SJonathan Chew 
201381d9ccb6SJonathan Chew 		node = lgrp_plat_domain_to_node(node_domain, node_cnt,
201481d9ccb6SJonathan Chew 		    cpu_node[i].prox_domain);
201581d9ccb6SJonathan Chew 		if (cpu_node[i].node != node)
201681d9ccb6SJonathan Chew 			cpu_node[i].node = node;
201781d9ccb6SJonathan Chew 	}
201881d9ccb6SJonathan Chew 
201981d9ccb6SJonathan Chew }
202081d9ccb6SJonathan Chew 
202181d9ccb6SJonathan Chew 
202281d9ccb6SJonathan Chew /*
20232e2c009bSjjc  * Return time needed to probe from current CPU to memory in given node
20242e2c009bSjjc  */
20252e2c009bSjjc static hrtime_t
20262e2c009bSjjc lgrp_plat_probe_time(int to, cpu_node_map_t *cpu_node,
20272e2c009bSjjc     lgrp_plat_probe_mem_config_t *probe_mem_config,
20282e2c009bSjjc     lgrp_plat_latency_stats_t *lat_stats, lgrp_plat_probe_stats_t *probe_stats)
20292e2c009bSjjc {
20302e2c009bSjjc 	caddr_t			buf;
20312e2c009bSjjc 	hrtime_t		elapsed;
20322e2c009bSjjc 	hrtime_t		end;
20332e2c009bSjjc 	int			from;
20342e2c009bSjjc 	int			i;
20352e2c009bSjjc 	int			ipl;
20362e2c009bSjjc 	hrtime_t		max;
20372e2c009bSjjc 	hrtime_t		min;
20382e2c009bSjjc 	hrtime_t		start;
20392e2c009bSjjc 	extern int		use_sse_pagecopy;
20402e2c009bSjjc 
20412e2c009bSjjc 	/*
20422e2c009bSjjc 	 * Determine ID of node containing current CPU
20432e2c009bSjjc 	 */
20442e2c009bSjjc 	from = lgrp_plat_cpu_to_node(CPU, cpu_node);
20452e2c009bSjjc 	ASSERT(from >= 0 && from < lgrp_plat_node_cnt);
20462e2c009bSjjc 
20472e2c009bSjjc 	/*
20482e2c009bSjjc 	 * Do common work for probing main memory
20492e2c009bSjjc 	 */
20502e2c009bSjjc 	if (lgrp_plat_probe_flags & LGRP_PLAT_PROBE_PGCPY) {
20512e2c009bSjjc 		/*
20522e2c009bSjjc 		 * Skip probing any nodes without memory and
20532e2c009bSjjc 		 * set probe time to 0
20542e2c009bSjjc 		 */
20552e2c009bSjjc 		if (probe_mem_config->probe_va[to] == NULL) {
20562e2c009bSjjc 			lat_stats->latencies[from][to] = 0;
20572e2c009bSjjc 			return (0);
20582e2c009bSjjc 		}
20592e2c009bSjjc 
20602e2c009bSjjc 		/*
20612e2c009bSjjc 		 * Invalidate caches once instead of once every sample
20622e2c009bSjjc 		 * which should cut cost of probing by a lot
20632e2c009bSjjc 		 */
20642e2c009bSjjc 		probe_stats->flush_cost = gethrtime();
20652e2c009bSjjc 		invalidate_cache();
20662e2c009bSjjc 		probe_stats->flush_cost = gethrtime() -
20672e2c009bSjjc 		    probe_stats->flush_cost;
20682e2c009bSjjc 		probe_stats->probe_cost_total += probe_stats->flush_cost;
20692e2c009bSjjc 	}
20702e2c009bSjjc 
20712e2c009bSjjc 	/*
20722e2c009bSjjc 	 * Probe from current CPU to given memory using specified operation
20732e2c009bSjjc 	 * and take specified number of samples
20742e2c009bSjjc 	 */
20752e2c009bSjjc 	max = 0;
20762e2c009bSjjc 	min = -1;
20772e2c009bSjjc 	for (i = 0; i < lgrp_plat_probe_nsamples; i++) {
20782e2c009bSjjc 		probe_stats->probe_cost = gethrtime();
20792e2c009bSjjc 
20802e2c009bSjjc 		/*
20812e2c009bSjjc 		 * Can't measure probe time if gethrtime() isn't working yet
20822e2c009bSjjc 		 */
20832e2c009bSjjc 		if (probe_stats->probe_cost == 0 && gethrtime() == 0)
20842e2c009bSjjc 			return (0);
20852e2c009bSjjc 
20862e2c009bSjjc 		if (lgrp_plat_probe_flags & LGRP_PLAT_PROBE_VENDOR) {
20872e2c009bSjjc 			/*
20882e2c009bSjjc 			 * Measure how long it takes to read vendor ID from
20892e2c009bSjjc 			 * Northbridge
20902e2c009bSjjc 			 */
20912e2c009bSjjc 			elapsed = opt_probe_vendor(to, lgrp_plat_probe_nreads);
20922e2c009bSjjc 		} else {
20932e2c009bSjjc 			/*
20942e2c009bSjjc 			 * Measure how long it takes to copy page
20952e2c009bSjjc 			 * on top of itself
20962e2c009bSjjc 			 */
20972e2c009bSjjc 			buf = probe_mem_config->probe_va[to] + (i * PAGESIZE);
20982e2c009bSjjc 
20992e2c009bSjjc 			kpreempt_disable();
21002e2c009bSjjc 			ipl = splhigh();
21012e2c009bSjjc 			start = gethrtime();
21022e2c009bSjjc 			if (use_sse_pagecopy)
21032e2c009bSjjc 				hwblkpagecopy(buf, buf);
21042e2c009bSjjc 			else
21052e2c009bSjjc 				bcopy(buf, buf, PAGESIZE);
21062e2c009bSjjc 			end = gethrtime();
21072e2c009bSjjc 			elapsed = end - start;
21082e2c009bSjjc 			splx(ipl);
21092e2c009bSjjc 			kpreempt_enable();
21102e2c009bSjjc 		}
21112e2c009bSjjc 
21122e2c009bSjjc 		probe_stats->probe_cost = gethrtime() -
21132e2c009bSjjc 		    probe_stats->probe_cost;
21142e2c009bSjjc 		probe_stats->probe_cost_total += probe_stats->probe_cost;
21152e2c009bSjjc 
21162e2c009bSjjc 		if (min == -1 || elapsed < min)
21172e2c009bSjjc 			min = elapsed;
21182e2c009bSjjc 		if (elapsed > max)
21192e2c009bSjjc 			max = elapsed;
21202e2c009bSjjc 	}
21212e2c009bSjjc 
21222e2c009bSjjc 	/*
21232e2c009bSjjc 	 * Update minimum and maximum probe times between
21242e2c009bSjjc 	 * these two nodes
21252e2c009bSjjc 	 */
21262e2c009bSjjc 	if (min < probe_stats->probe_min[from][to] ||
21272e2c009bSjjc 	    probe_stats->probe_min[from][to] == 0)
21282e2c009bSjjc 		probe_stats->probe_min[from][to] = min;
21292e2c009bSjjc 
21302e2c009bSjjc 	if (max > probe_stats->probe_max[from][to])
21312e2c009bSjjc 		probe_stats->probe_max[from][to] = max;
21322e2c009bSjjc 
21332e2c009bSjjc 	return (min);
21342e2c009bSjjc }
21352e2c009bSjjc 
21362e2c009bSjjc 
21372e2c009bSjjc /*
2138d821f0f0Sjjc  * Read boot property with CPU to APIC ID array, fill in CPU to node ID
2139d821f0f0Sjjc  * mapping table with APIC ID for each CPU, and return number of CPU APIC IDs.
2140dae2fa37Sjjc  *
2141dae2fa37Sjjc  * NOTE: This code assumes that CPU IDs are assigned in order that they appear
2142dae2fa37Sjjc  *       in in cpu_apicid_array boot property which is based on and follows
2143dae2fa37Sjjc  *	 same ordering as processor list in ACPI MADT.  If the code in
2144dae2fa37Sjjc  *	 usr/src/uts/i86pc/io/pcplusmp/apic.c that reads MADT and assigns
2145dae2fa37Sjjc  *	 CPU IDs ever changes, then this code will need to change too....
2146dae2fa37Sjjc  */
2147dae2fa37Sjjc static int
2148d821f0f0Sjjc lgrp_plat_process_cpu_apicids(cpu_node_map_t *cpu_node)
2149dae2fa37Sjjc {
2150d821f0f0Sjjc 	int	boot_prop_len;
2151dae2fa37Sjjc 	char	*boot_prop_name = BP_CPU_APICID_ARRAY;
2152dae2fa37Sjjc 	uint8_t	cpu_apicid_array[UINT8_MAX + 1];
2153dae2fa37Sjjc 	int	i;
2154d821f0f0Sjjc 	int	n;
2155dae2fa37Sjjc 
2156dae2fa37Sjjc 	/*
2157dae2fa37Sjjc 	 * Nothing to do when no array to fill in or not enough CPUs
2158dae2fa37Sjjc 	 */
2159d821f0f0Sjjc 	if (cpu_node == NULL)
2160d821f0f0Sjjc 		return (-1);
2161dae2fa37Sjjc 
2162dae2fa37Sjjc 	/*
2163dae2fa37Sjjc 	 * Check length of property value
2164dae2fa37Sjjc 	 */
2165dae2fa37Sjjc 	boot_prop_len = BOP_GETPROPLEN(bootops, boot_prop_name);
2166d821f0f0Sjjc 	if (boot_prop_len <= 0 || boot_prop_len > sizeof (cpu_apicid_array))
2167d821f0f0Sjjc 		return (-2);
2168d821f0f0Sjjc 
2169d821f0f0Sjjc 	/*
2170d821f0f0Sjjc 	 * Calculate number of entries in array and return when there's just
2171d821f0f0Sjjc 	 * one CPU since that's not very interesting for NUMA
2172d821f0f0Sjjc 	 */
2173d821f0f0Sjjc 	n = boot_prop_len / sizeof (uint8_t);
2174d821f0f0Sjjc 	if (n == 1)
2175d821f0f0Sjjc 		return (-3);
2176dae2fa37Sjjc 
2177dae2fa37Sjjc 	/*
2178dae2fa37Sjjc 	 * Get CPU to APIC ID property value
2179dae2fa37Sjjc 	 */
2180dae2fa37Sjjc 	if (BOP_GETPROP(bootops, boot_prop_name, cpu_apicid_array) < 0)
2181d821f0f0Sjjc 		return (-4);
2182dae2fa37Sjjc 
2183dae2fa37Sjjc 	/*
2184dae2fa37Sjjc 	 * Fill in CPU to node ID mapping table with APIC ID for each CPU
2185dae2fa37Sjjc 	 */
2186d821f0f0Sjjc 	for (i = 0; i < n; i++) {
2187dae2fa37Sjjc 		cpu_node[i].exists = 1;
2188dae2fa37Sjjc 		cpu_node[i].apicid = cpu_apicid_array[i];
2189dae2fa37Sjjc 	}
2190dae2fa37Sjjc 
2191d821f0f0Sjjc 	/*
2192d821f0f0Sjjc 	 * Return number of CPUs based on number of APIC IDs
2193d821f0f0Sjjc 	 */
2194d821f0f0Sjjc 	return (n);
2195dae2fa37Sjjc }
2196dae2fa37Sjjc 
2197dae2fa37Sjjc 
2198dae2fa37Sjjc /*
21992e2c009bSjjc  * Read ACPI System Locality Information Table (SLIT) to determine how far each
22002e2c009bSjjc  * NUMA node is from each other
22012e2c009bSjjc  */
22022e2c009bSjjc static int
22032e2c009bSjjc lgrp_plat_process_slit(struct slit *tp, uint_t node_cnt,
22042e2c009bSjjc     node_phys_addr_map_t *node_memory, lgrp_plat_latency_stats_t *lat_stats)
22052e2c009bSjjc {
22062e2c009bSjjc 	int		i;
22072e2c009bSjjc 	int		j;
22082e2c009bSjjc 	int		localities;
22092e2c009bSjjc 	hrtime_t	max;
22102e2c009bSjjc 	hrtime_t	min;
22112e2c009bSjjc 	int		retval;
22122e2c009bSjjc 	uint8_t		*slit_entries;
22132e2c009bSjjc 
22142e2c009bSjjc 	if (tp == NULL || !lgrp_plat_slit_enable)
22152e2c009bSjjc 		return (1);
22162e2c009bSjjc 
22172e2c009bSjjc 	if (lat_stats == NULL)
22182e2c009bSjjc 		return (2);
22192e2c009bSjjc 
22202e2c009bSjjc 	localities = tp->number;
22212e2c009bSjjc 	if (localities != node_cnt)
22222e2c009bSjjc 		return (3);
22232e2c009bSjjc 
22242e2c009bSjjc 	min = lat_stats->latency_min;
22252e2c009bSjjc 	max = lat_stats->latency_max;
22262e2c009bSjjc 
22272e2c009bSjjc 	/*
22282e2c009bSjjc 	 * Fill in latency matrix based on SLIT entries
22292e2c009bSjjc 	 */
22302e2c009bSjjc 	slit_entries = tp->entry;
22312e2c009bSjjc 	for (i = 0; i < localities; i++) {
22322e2c009bSjjc 		for (j = 0; j < localities; j++) {
22332e2c009bSjjc 			uint8_t	latency;
22342e2c009bSjjc 
22352e2c009bSjjc 			latency = slit_entries[(i * localities) + j];
22362e2c009bSjjc 			lat_stats->latencies[i][j] = latency;
22375b7cf7f0Sjjc 			if (latency < min || min == -1)
22382e2c009bSjjc 				min = latency;
22392e2c009bSjjc 			if (latency > max)
22402e2c009bSjjc 				max = latency;
22412e2c009bSjjc 		}
22422e2c009bSjjc 	}
22432e2c009bSjjc 
22442e2c009bSjjc 	/*
22452e2c009bSjjc 	 * Verify that latencies/distances given in SLIT look reasonable
22462e2c009bSjjc 	 */
22472e2c009bSjjc 	retval = lgrp_plat_latency_verify(node_memory, lat_stats);
22482e2c009bSjjc 
22492e2c009bSjjc 	if (retval) {
22502e2c009bSjjc 		/*
22512e2c009bSjjc 		 * Reinitialize (zero) latency table since SLIT doesn't look
22522e2c009bSjjc 		 * right
22532e2c009bSjjc 		 */
22542e2c009bSjjc 		for (i = 0; i < localities; i++) {
22552e2c009bSjjc 			for (j = 0; j < localities; j++)
22562e2c009bSjjc 				lat_stats->latencies[i][j] = 0;
22572e2c009bSjjc 		}
22582e2c009bSjjc 	} else {
22592e2c009bSjjc 		/*
22602e2c009bSjjc 		 * Update min and max latencies seen since SLIT looks valid
22612e2c009bSjjc 		 */
22622e2c009bSjjc 		lat_stats->latency_min = min;
22632e2c009bSjjc 		lat_stats->latency_max = max;
22642e2c009bSjjc 	}
22652e2c009bSjjc 
22662e2c009bSjjc 	return (retval);
22672e2c009bSjjc }
22682e2c009bSjjc 
22692e2c009bSjjc 
22702e2c009bSjjc /*
22712e2c009bSjjc  * Read ACPI System Resource Affinity Table (SRAT) to determine which CPUs
2272d821f0f0Sjjc  * and memory are local to each other in the same NUMA node and return number
2273d821f0f0Sjjc  * of nodes
22742e2c009bSjjc  */
22752e2c009bSjjc static int
227681d9ccb6SJonathan Chew lgrp_plat_process_srat(struct srat *tp, uint32_t *prox_domain_min,
227781d9ccb6SJonathan Chew     node_domain_map_t *node_domain, cpu_node_map_t *cpu_node, int cpu_count,
227881d9ccb6SJonathan Chew     node_phys_addr_map_t *node_memory)
22792e2c009bSjjc {
22805b7cf7f0Sjjc 	struct srat_item	*srat_end;
22812e2c009bSjjc 	int			i;
22822e2c009bSjjc 	struct srat_item	*item;
2283d821f0f0Sjjc 	int			node_cnt;
2284dae2fa37Sjjc 	int			proc_entry_count;
22852e2c009bSjjc 
2286d821f0f0Sjjc 	/*
2287d821f0f0Sjjc 	 * Nothing to do when no SRAT or disabled
2288d821f0f0Sjjc 	 */
22892e2c009bSjjc 	if (tp == NULL || !lgrp_plat_srat_enable)
2290d821f0f0Sjjc 		return (-1);
22912e2c009bSjjc 
22922e2c009bSjjc 	/*
22932e2c009bSjjc 	 * Determine number of nodes by counting number of proximity domains in
2294d821f0f0Sjjc 	 * SRAT and return if number of nodes is 1 or less since don't need to
2295d821f0f0Sjjc 	 * read SRAT then
22962e2c009bSjjc 	 */
229781d9ccb6SJonathan Chew 	node_cnt = lgrp_plat_srat_domains(tp, prox_domain_min);
2298d821f0f0Sjjc 	if (node_cnt == 1)
2299d821f0f0Sjjc 		return (1);
2300d821f0f0Sjjc 	else if (node_cnt <= 0)
2301d821f0f0Sjjc 		return (-2);
23022e2c009bSjjc 
23032e2c009bSjjc 	/*
23042e2c009bSjjc 	 * Walk through SRAT, examining each CPU and memory entry to determine
23052e2c009bSjjc 	 * which CPUs and memory belong to which node.
23062e2c009bSjjc 	 */
23072e2c009bSjjc 	item = tp->list;
23085b7cf7f0Sjjc 	srat_end = (struct srat_item *)(tp->hdr.len + (uintptr_t)tp);
2309dae2fa37Sjjc 	proc_entry_count = 0;
23105b7cf7f0Sjjc 	while (item < srat_end) {
23112e2c009bSjjc 		uint32_t	apic_id;
23122e2c009bSjjc 		uint32_t	domain;
23132e2c009bSjjc 		uint64_t	end;
23142e2c009bSjjc 		uint64_t	length;
23152e2c009bSjjc 		uint64_t	start;
23162e2c009bSjjc 
23172e2c009bSjjc 		switch (item->type) {
23182e2c009bSjjc 		case SRAT_PROCESSOR:	/* CPU entry */
23192e2c009bSjjc 			if (!(item->i.p.flags & SRAT_ENABLED) ||
23202e2c009bSjjc 			    cpu_node == NULL)
23212e2c009bSjjc 				break;
23222e2c009bSjjc 
23232e2c009bSjjc 			/*
23242e2c009bSjjc 			 * Calculate domain (node) ID and fill in APIC ID to
23252e2c009bSjjc 			 * domain/node mapping table
23262e2c009bSjjc 			 */
23272e2c009bSjjc 			domain = item->i.p.domain1;
23282e2c009bSjjc 			for (i = 0; i < 3; i++) {
23292e2c009bSjjc 				domain += item->i.p.domain2[i] <<
23302e2c009bSjjc 				    ((i + 1) * 8);
23312e2c009bSjjc 			}
23322e2c009bSjjc 			apic_id = item->i.p.apic_id;
23332e2c009bSjjc 
2334d821f0f0Sjjc 			if (lgrp_plat_cpu_node_update(node_domain, node_cnt,
2335d821f0f0Sjjc 			    cpu_node, cpu_count, apic_id, domain) < 0)
2336d821f0f0Sjjc 				return (-3);
2337dae2fa37Sjjc 
2338dae2fa37Sjjc 			proc_entry_count++;
23392e2c009bSjjc 			break;
23402e2c009bSjjc 
23412e2c009bSjjc 		case SRAT_MEMORY:	/* memory entry */
23422e2c009bSjjc 			if (!(item->i.m.flags & SRAT_ENABLED) ||
23432e2c009bSjjc 			    node_memory == NULL)
23442e2c009bSjjc 				break;
23452e2c009bSjjc 
23462e2c009bSjjc 			/*
23472e2c009bSjjc 			 * Get domain (node) ID and fill in domain/node
23482e2c009bSjjc 			 * to memory mapping table
23492e2c009bSjjc 			 */
23502e2c009bSjjc 			domain = item->i.m.domain;
23512e2c009bSjjc 			start = item->i.m.base_addr;
23522e2c009bSjjc 			length = item->i.m.len;
23532e2c009bSjjc 			end = start + length - 1;
23542e2c009bSjjc 
2355d821f0f0Sjjc 			if (lgrp_plat_node_memory_update(node_domain, node_cnt,
23562e2c009bSjjc 			    node_memory, start, end, domain) < 0)
2357d821f0f0Sjjc 				return (-4);
23582e2c009bSjjc 			break;
2359b6917abeSmishra 		case SRAT_X2APIC:	/* x2apic CPU entry */
2360b6917abeSmishra 			if (!(item->i.xp.flags & SRAT_ENABLED) ||
2361b6917abeSmishra 			    cpu_node == NULL)
2362b6917abeSmishra 				break;
2363b6917abeSmishra 
2364b6917abeSmishra 			/*
2365b6917abeSmishra 			 * Calculate domain (node) ID and fill in APIC ID to
2366b6917abeSmishra 			 * domain/node mapping table
2367b6917abeSmishra 			 */
2368b6917abeSmishra 			domain = item->i.xp.domain;
2369b6917abeSmishra 			apic_id = item->i.xp.x2apic_id;
2370b6917abeSmishra 
2371b6917abeSmishra 			if (lgrp_plat_cpu_node_update(node_domain, node_cnt,
2372b6917abeSmishra 			    cpu_node, cpu_count, apic_id, domain) < 0)
2373b6917abeSmishra 				return (-3);
2374b6917abeSmishra 
2375b6917abeSmishra 			proc_entry_count++;
2376b6917abeSmishra 			break;
23772e2c009bSjjc 
23782e2c009bSjjc 		default:
23792e2c009bSjjc 			break;
23802e2c009bSjjc 		}
23812e2c009bSjjc 
23822e2c009bSjjc 		item = (struct srat_item *)((uintptr_t)item + item->len);
23832e2c009bSjjc 	}
2384dae2fa37Sjjc 
2385dae2fa37Sjjc 	/*
2386dae2fa37Sjjc 	 * Should have seen at least as many SRAT processor entries as CPUs
2387dae2fa37Sjjc 	 */
2388d821f0f0Sjjc 	if (proc_entry_count < cpu_count)
2389d821f0f0Sjjc 		return (-5);
2390dae2fa37Sjjc 
239181d9ccb6SJonathan Chew 	/*
239281d9ccb6SJonathan Chew 	 * Need to sort nodes by starting physical address since VM system
239381d9ccb6SJonathan Chew 	 * assumes and expects memnodes to be sorted in ascending order by
239481d9ccb6SJonathan Chew 	 * physical address
239581d9ccb6SJonathan Chew 	 */
239681d9ccb6SJonathan Chew 	lgrp_plat_node_sort(node_domain, node_cnt, cpu_node, cpu_count,
239781d9ccb6SJonathan Chew 	    node_memory);
239881d9ccb6SJonathan Chew 
2399d821f0f0Sjjc 	return (node_cnt);
24002e2c009bSjjc }
24012e2c009bSjjc 
24022e2c009bSjjc 
24032e2c009bSjjc /*
24042e2c009bSjjc  * Return number of proximity domains given in ACPI SRAT
24052e2c009bSjjc  */
24062e2c009bSjjc static int
240781d9ccb6SJonathan Chew lgrp_plat_srat_domains(struct srat *tp, uint32_t *prox_domain_min)
24082e2c009bSjjc {
24092e2c009bSjjc 	int			domain_cnt;
241081d9ccb6SJonathan Chew 	uint32_t		domain_min;
24112e2c009bSjjc 	struct srat_item	*end;
24122e2c009bSjjc 	int			i;
24132e2c009bSjjc 	struct srat_item	*item;
24142e2c009bSjjc 	node_domain_map_t	node_domain[MAX_NODES];
24152e2c009bSjjc 
24162e2c009bSjjc 
24172e2c009bSjjc 	if (tp == NULL || !lgrp_plat_srat_enable)
24182e2c009bSjjc 		return (1);
24192e2c009bSjjc 
24202e2c009bSjjc 	/*
242181d9ccb6SJonathan Chew 	 * Walk through SRAT to find minimum proximity domain ID
242281d9ccb6SJonathan Chew 	 */
242381d9ccb6SJonathan Chew 	domain_min = UINT32_MAX;
242481d9ccb6SJonathan Chew 	item = tp->list;
242581d9ccb6SJonathan Chew 	end = (struct srat_item *)(tp->hdr.len + (uintptr_t)tp);
242681d9ccb6SJonathan Chew 	while (item < end) {
242781d9ccb6SJonathan Chew 		uint32_t	domain;
242881d9ccb6SJonathan Chew 
242981d9ccb6SJonathan Chew 		switch (item->type) {
243081d9ccb6SJonathan Chew 		case SRAT_PROCESSOR:	/* CPU entry */
243181d9ccb6SJonathan Chew 			if (!(item->i.p.flags & SRAT_ENABLED)) {
243281d9ccb6SJonathan Chew 				item = (struct srat_item *)((uintptr_t)item +
243381d9ccb6SJonathan Chew 				    item->len);
243481d9ccb6SJonathan Chew 				continue;
243581d9ccb6SJonathan Chew 			}
243681d9ccb6SJonathan Chew 			domain = item->i.p.domain1;
243781d9ccb6SJonathan Chew 			for (i = 0; i < 3; i++) {
243881d9ccb6SJonathan Chew 				domain += item->i.p.domain2[i] <<
243981d9ccb6SJonathan Chew 				    ((i + 1) * 8);
244081d9ccb6SJonathan Chew 			}
244181d9ccb6SJonathan Chew 			break;
244281d9ccb6SJonathan Chew 
244381d9ccb6SJonathan Chew 		case SRAT_MEMORY:	/* memory entry */
244481d9ccb6SJonathan Chew 			if (!(item->i.m.flags & SRAT_ENABLED)) {
244581d9ccb6SJonathan Chew 				item = (struct srat_item *)((uintptr_t)item +
244681d9ccb6SJonathan Chew 				    item->len);
244781d9ccb6SJonathan Chew 				continue;
244881d9ccb6SJonathan Chew 			}
244981d9ccb6SJonathan Chew 			domain = item->i.m.domain;
245081d9ccb6SJonathan Chew 			break;
245181d9ccb6SJonathan Chew 
245281d9ccb6SJonathan Chew 		case SRAT_X2APIC:	/* x2apic CPU entry */
245381d9ccb6SJonathan Chew 			if (!(item->i.xp.flags & SRAT_ENABLED)) {
245481d9ccb6SJonathan Chew 				item = (struct srat_item *)((uintptr_t)item +
245581d9ccb6SJonathan Chew 				    item->len);
245681d9ccb6SJonathan Chew 				continue;
245781d9ccb6SJonathan Chew 			}
245881d9ccb6SJonathan Chew 			domain = item->i.xp.domain;
245981d9ccb6SJonathan Chew 			break;
246081d9ccb6SJonathan Chew 
246181d9ccb6SJonathan Chew 		default:
246281d9ccb6SJonathan Chew 			item = (struct srat_item *)((uintptr_t)item +
246381d9ccb6SJonathan Chew 			    item->len);
246481d9ccb6SJonathan Chew 			continue;
246581d9ccb6SJonathan Chew 		}
246681d9ccb6SJonathan Chew 
246781d9ccb6SJonathan Chew 		/*
246881d9ccb6SJonathan Chew 		 * Keep track of minimum proximity domain ID
246981d9ccb6SJonathan Chew 		 */
247081d9ccb6SJonathan Chew 		if (domain < domain_min)
247181d9ccb6SJonathan Chew 			domain_min = domain;
247281d9ccb6SJonathan Chew 
247381d9ccb6SJonathan Chew 		item = (struct srat_item *)((uintptr_t)item + item->len);
247481d9ccb6SJonathan Chew 	}
247581d9ccb6SJonathan Chew 	if (lgrp_plat_domain_min_enable && prox_domain_min != NULL)
247681d9ccb6SJonathan Chew 		*prox_domain_min = domain_min;
247781d9ccb6SJonathan Chew 
247881d9ccb6SJonathan Chew 	/*
24792e2c009bSjjc 	 * Walk through SRAT, examining each CPU and memory entry to determine
24802e2c009bSjjc 	 * proximity domain ID for each.
24812e2c009bSjjc 	 */
24822e2c009bSjjc 	domain_cnt = 0;
24832e2c009bSjjc 	item = tp->list;
24842e2c009bSjjc 	end = (struct srat_item *)(tp->hdr.len + (uintptr_t)tp);
24852e2c009bSjjc 	bzero(node_domain, MAX_NODES * sizeof (node_domain_map_t));
24862e2c009bSjjc 	while (item < end) {
24872e2c009bSjjc 		uint32_t	domain;
24882e2c009bSjjc 		boolean_t	overflow;
24892e2c009bSjjc 		uint_t		start;
24902e2c009bSjjc 
24912e2c009bSjjc 		switch (item->type) {
24922e2c009bSjjc 		case SRAT_PROCESSOR:	/* CPU entry */
249381d9ccb6SJonathan Chew 			if (!(item->i.p.flags & SRAT_ENABLED)) {
249481d9ccb6SJonathan Chew 				item = (struct srat_item *)((uintptr_t)item +
249581d9ccb6SJonathan Chew 				    item->len);
249681d9ccb6SJonathan Chew 				continue;
249781d9ccb6SJonathan Chew 			}
24982e2c009bSjjc 			domain = item->i.p.domain1;
24992e2c009bSjjc 			for (i = 0; i < 3; i++) {
25002e2c009bSjjc 				domain += item->i.p.domain2[i] <<
25012e2c009bSjjc 				    ((i + 1) * 8);
25022e2c009bSjjc 			}
25032e2c009bSjjc 			break;
25042e2c009bSjjc 
25052e2c009bSjjc 		case SRAT_MEMORY:	/* memory entry */
250681d9ccb6SJonathan Chew 			if (!(item->i.m.flags & SRAT_ENABLED)) {
250781d9ccb6SJonathan Chew 				item = (struct srat_item *)((uintptr_t)item +
250881d9ccb6SJonathan Chew 				    item->len);
250981d9ccb6SJonathan Chew 				continue;
251081d9ccb6SJonathan Chew 			}
25112e2c009bSjjc 			domain = item->i.m.domain;
25122e2c009bSjjc 			break;
25132e2c009bSjjc 
2514b6917abeSmishra 		case SRAT_X2APIC:	/* x2apic CPU entry */
251581d9ccb6SJonathan Chew 			if (!(item->i.xp.flags & SRAT_ENABLED)) {
251681d9ccb6SJonathan Chew 				item = (struct srat_item *)((uintptr_t)item +
251781d9ccb6SJonathan Chew 				    item->len);
251881d9ccb6SJonathan Chew 				continue;
251981d9ccb6SJonathan Chew 			}
2520b6917abeSmishra 			domain = item->i.xp.domain;
2521b6917abeSmishra 			break;
2522b6917abeSmishra 
25232e2c009bSjjc 		default:
252481d9ccb6SJonathan Chew 			item = (struct srat_item *)((uintptr_t)item +
252581d9ccb6SJonathan Chew 			    item->len);
252681d9ccb6SJonathan Chew 			continue;
25272e2c009bSjjc 		}
25282e2c009bSjjc 
25292e2c009bSjjc 		/*
25302e2c009bSjjc 		 * Count and keep track of which proximity domain IDs seen
25312e2c009bSjjc 		 */
25322e2c009bSjjc 		start = i = domain % MAX_NODES;
25332e2c009bSjjc 		overflow = B_TRUE;
25342e2c009bSjjc 		do {
25352e2c009bSjjc 			/*
25362e2c009bSjjc 			 * Create entry for proximity domain and increment
25372e2c009bSjjc 			 * count when no entry exists where proximity domain
25382e2c009bSjjc 			 * hashed
25392e2c009bSjjc 			 */
25402e2c009bSjjc 			if (!node_domain[i].exists) {
25412e2c009bSjjc 				node_domain[i].exists = 1;
25422e2c009bSjjc 				node_domain[i].prox_domain = domain;
25432e2c009bSjjc 				domain_cnt++;
25442e2c009bSjjc 				overflow = B_FALSE;
25452e2c009bSjjc 				break;
25462e2c009bSjjc 			}
25472e2c009bSjjc 
25482e2c009bSjjc 			/*
25492e2c009bSjjc 			 * Nothing to do when proximity domain seen already
25502e2c009bSjjc 			 * and its entry exists
25512e2c009bSjjc 			 */
25522e2c009bSjjc 			if (node_domain[i].prox_domain == domain) {
25532e2c009bSjjc 				overflow = B_FALSE;
25542e2c009bSjjc 				break;
25552e2c009bSjjc 			}
25562e2c009bSjjc 
25572e2c009bSjjc 			/*
25582e2c009bSjjc 			 * Entry exists where proximity domain hashed, but for
25592e2c009bSjjc 			 * different proximity domain so keep search for empty
25602e2c009bSjjc 			 * slot to put it or matching entry whichever comes
25612e2c009bSjjc 			 * first.
25622e2c009bSjjc 			 */
25632e2c009bSjjc 			i = (i + 1) % MAX_NODES;
25642e2c009bSjjc 		} while (i != start);
25652e2c009bSjjc 
25662e2c009bSjjc 		/*
25672e2c009bSjjc 		 * Didn't find empty or matching entry which means have more
25682e2c009bSjjc 		 * proximity domains than supported nodes (:-(
25692e2c009bSjjc 		 */
25702e2c009bSjjc 		ASSERT(overflow != B_TRUE);
25712e2c009bSjjc 		if (overflow == B_TRUE)
25722e2c009bSjjc 			return (-1);
25732e2c009bSjjc 
25742e2c009bSjjc 		item = (struct srat_item *)((uintptr_t)item + item->len);
25752e2c009bSjjc 	}
25762e2c009bSjjc 	return (domain_cnt);
25772e2c009bSjjc }
25782e2c009bSjjc 
25792e2c009bSjjc 
25802e2c009bSjjc /*
25812e2c009bSjjc  * Set lgroup latencies for 2 level lgroup topology
25822e2c009bSjjc  */
25832e2c009bSjjc static void
25842e2c009bSjjc lgrp_plat_2level_setup(node_phys_addr_map_t *node_memory,
25852e2c009bSjjc     lgrp_plat_latency_stats_t *lat_stats)
25862e2c009bSjjc {
25872e2c009bSjjc 	int	i;
25882e2c009bSjjc 
25892e2c009bSjjc 	ASSERT(node_memory != NULL && lat_stats != NULL);
25902e2c009bSjjc 
25912e2c009bSjjc 	if (lgrp_plat_node_cnt >= 4)
25922e2c009bSjjc 		cmn_err(CE_NOTE,
25932e2c009bSjjc 		    "MPO only optimizing for local and remote\n");
25942e2c009bSjjc 	for (i = 0; i < lgrp_plat_node_cnt; i++) {
25952e2c009bSjjc 		int	j;
25962e2c009bSjjc 
25972e2c009bSjjc 		if (!node_memory[i].exists)
25982e2c009bSjjc 			continue;
25992e2c009bSjjc 		for (j = 0; j < lgrp_plat_node_cnt; j++) {
26002e2c009bSjjc 			if (!node_memory[j].exists)
26012e2c009bSjjc 				continue;
26022e2c009bSjjc 			if (i == j)
26032e2c009bSjjc 				lat_stats->latencies[i][j] = 2;
26042e2c009bSjjc 			else
26052e2c009bSjjc 				lat_stats->latencies[i][j] = 3;
26062e2c009bSjjc 		}
26072e2c009bSjjc 	}
26082e2c009bSjjc 	lat_stats->latency_min = 2;
26092e2c009bSjjc 	lat_stats->latency_max = 3;
26102e2c009bSjjc 	lgrp_config(LGRP_CONFIG_FLATTEN, 2, 0);
26112e2c009bSjjc }
26122e2c009bSjjc 
26132e2c009bSjjc 
26142e2c009bSjjc /*
26152e2c009bSjjc  * The following Opteron specific constants, macros, types, and routines define
26162e2c009bSjjc  * PCI configuration space registers and how to read them to determine the NUMA
26172e2c009bSjjc  * configuration of *supported* Opteron processors.  They provide the same
26182e2c009bSjjc  * information that may be gotten from the ACPI System Resource Affinity Table
26192e2c009bSjjc  * (SRAT) if it exists on the machine of interest.
26202e2c009bSjjc  *
26212e2c009bSjjc  * The AMD BIOS and Kernel Developer's Guide (BKDG) for the processor family
26222e2c009bSjjc  * of interest describes all of these registers and their contents.  The main
26232e2c009bSjjc  * registers used by this code to determine the NUMA configuration of the
26242e2c009bSjjc  * machine are the node ID register for the number of NUMA nodes and the DRAM
26252e2c009bSjjc  * address map registers for the physical address range of each node.
26262e2c009bSjjc  *
26272e2c009bSjjc  * NOTE: The format and how to determine the NUMA configuration using PCI
26282e2c009bSjjc  *	 config space registers may change or may not be supported in future
26292e2c009bSjjc  *	 Opteron processor families.
26307c478bd9Sstevel@tonic-gate  */
26317c478bd9Sstevel@tonic-gate 
26327c478bd9Sstevel@tonic-gate /*
26337c478bd9Sstevel@tonic-gate  * How many bits to shift Opteron DRAM Address Map base and limit registers
26347c478bd9Sstevel@tonic-gate  * to get actual value
26357c478bd9Sstevel@tonic-gate  */
2636f78a91cdSjjc #define	OPT_DRAMADDR_HI_LSHIFT_ADDR	40	/* shift left for address */
2637f78a91cdSjjc #define	OPT_DRAMADDR_LO_LSHIFT_ADDR	8	/* shift left for address */
26387c478bd9Sstevel@tonic-gate 
2639f78a91cdSjjc #define	OPT_DRAMADDR_HI_MASK_ADDR	0x000000FF /* address bits 47-40 */
2640f78a91cdSjjc #define	OPT_DRAMADDR_LO_MASK_ADDR	0xFFFF0000 /* address bits 39-24 */
2641f78a91cdSjjc 
2642f78a91cdSjjc #define	OPT_DRAMADDR_LO_MASK_OFF	0xFFFFFF /* offset for address */
2643f78a91cdSjjc 
2644f78a91cdSjjc /*
2645f78a91cdSjjc  * Macros to derive addresses from Opteron DRAM Address Map registers
2646f78a91cdSjjc  */
2647f78a91cdSjjc #define	OPT_DRAMADDR_HI(reg) \
2648f78a91cdSjjc 	(((u_longlong_t)reg & OPT_DRAMADDR_HI_MASK_ADDR) << \
2649f78a91cdSjjc 	    OPT_DRAMADDR_HI_LSHIFT_ADDR)
2650f78a91cdSjjc 
2651f78a91cdSjjc #define	OPT_DRAMADDR_LO(reg) \
2652f78a91cdSjjc 	(((u_longlong_t)reg & OPT_DRAMADDR_LO_MASK_ADDR) << \
2653f78a91cdSjjc 	    OPT_DRAMADDR_LO_LSHIFT_ADDR)
2654f78a91cdSjjc 
2655f78a91cdSjjc #define	OPT_DRAMADDR(high, low) \
2656f78a91cdSjjc 	(OPT_DRAMADDR_HI(high) | OPT_DRAMADDR_LO(low))
26577c478bd9Sstevel@tonic-gate 
26587c478bd9Sstevel@tonic-gate /*
26597c478bd9Sstevel@tonic-gate  * Bit masks defining what's in Opteron DRAM Address Map base register
26607c478bd9Sstevel@tonic-gate  */
2661f78a91cdSjjc #define	OPT_DRAMBASE_LO_MASK_RE		0x1	/* read enable */
2662f78a91cdSjjc #define	OPT_DRAMBASE_LO_MASK_WE		0x2	/* write enable */
2663f78a91cdSjjc #define	OPT_DRAMBASE_LO_MASK_INTRLVEN	0x700	/* interleave */
26647c478bd9Sstevel@tonic-gate 
26657c478bd9Sstevel@tonic-gate /*
26667c478bd9Sstevel@tonic-gate  * Bit masks defining what's in Opteron DRAM Address Map limit register
26677c478bd9Sstevel@tonic-gate  */
2668f78a91cdSjjc #define	OPT_DRAMLIMIT_LO_MASK_DSTNODE	0x7		/* destination node */
2669f78a91cdSjjc #define	OPT_DRAMLIMIT_LO_MASK_INTRLVSEL	0x700		/* interleave select */
26707c478bd9Sstevel@tonic-gate 
26717c478bd9Sstevel@tonic-gate 
26727c478bd9Sstevel@tonic-gate /*
26737c478bd9Sstevel@tonic-gate  * Opteron Node ID register in PCI configuration space contains
26747c478bd9Sstevel@tonic-gate  * number of nodes in system, etc. for Opteron K8.  The following
26757c478bd9Sstevel@tonic-gate  * constants and macros define its contents, structure, and access.
26767c478bd9Sstevel@tonic-gate  */
26777c478bd9Sstevel@tonic-gate 
26787c478bd9Sstevel@tonic-gate /*
26797c478bd9Sstevel@tonic-gate  * Bit masks defining what's in Opteron Node ID register
26807c478bd9Sstevel@tonic-gate  */
26817c478bd9Sstevel@tonic-gate #define	OPT_NODE_MASK_ID	0x7	/* node ID */
26827c478bd9Sstevel@tonic-gate #define	OPT_NODE_MASK_CNT	0x70	/* node count */
26837c478bd9Sstevel@tonic-gate #define	OPT_NODE_MASK_IONODE	0x700	/* Hypertransport I/O hub node ID */
26847c478bd9Sstevel@tonic-gate #define	OPT_NODE_MASK_LCKNODE	0x7000	/* lock controller node ID */
26857c478bd9Sstevel@tonic-gate #define	OPT_NODE_MASK_CPUCNT	0xF0000	/* CPUs in system (0 means 1 CPU)  */
26867c478bd9Sstevel@tonic-gate 
26877c478bd9Sstevel@tonic-gate /*
26887c478bd9Sstevel@tonic-gate  * How many bits in Opteron Node ID register to shift right to get actual value
26897c478bd9Sstevel@tonic-gate  */
26907c478bd9Sstevel@tonic-gate #define	OPT_NODE_RSHIFT_CNT	0x4	/* shift right for node count value */
26917c478bd9Sstevel@tonic-gate 
26927c478bd9Sstevel@tonic-gate /*
26937c478bd9Sstevel@tonic-gate  * Macros to get values from Opteron Node ID register
26947c478bd9Sstevel@tonic-gate  */
26957c478bd9Sstevel@tonic-gate #define	OPT_NODE_CNT(reg) \
26967c478bd9Sstevel@tonic-gate 	((reg & OPT_NODE_MASK_CNT) >> OPT_NODE_RSHIFT_CNT)
26977c478bd9Sstevel@tonic-gate 
2698f78a91cdSjjc /*
2699f78a91cdSjjc  * Macro to setup PCI Extended Configuration Space (ECS) address to give to
2700f78a91cdSjjc  * "in/out" instructions
2701f78a91cdSjjc  *
2702f78a91cdSjjc  * NOTE: Should only be used in lgrp_plat_init() before MMIO setup because any
2703f78a91cdSjjc  *	 other uses should just do MMIO to access PCI ECS.
2704f78a91cdSjjc  *	 Must enable special bit in Northbridge Configuration Register on
2705f78a91cdSjjc  *	 Greyhound for extended CF8 space access to be able to access PCI ECS
2706f78a91cdSjjc  *	 using "in/out" instructions and restore special bit after done
2707f78a91cdSjjc  *	 accessing PCI ECS.
2708f78a91cdSjjc  */
2709f78a91cdSjjc #define	OPT_PCI_ECS_ADDR(bus, device, function, reg) \
2710f78a91cdSjjc 	(PCI_CONE | (((bus) & 0xff) << 16) | (((device & 0x1f)) << 11)  | \
2711f78a91cdSjjc 	    (((function) & 0x7) << 8) | ((reg) & 0xfc) | \
2712f78a91cdSjjc 	    ((((reg) >> 8) & 0xf) << 24))
27137c478bd9Sstevel@tonic-gate 
27147c478bd9Sstevel@tonic-gate /*
27157c478bd9Sstevel@tonic-gate  * PCI configuration space registers accessed by specifying
27167c478bd9Sstevel@tonic-gate  * a bus, device, function, and offset.  The following constants
27177c478bd9Sstevel@tonic-gate  * define the values needed to access Opteron K8 configuration
27187c478bd9Sstevel@tonic-gate  * info to determine its node topology
27197c478bd9Sstevel@tonic-gate  */
27207c478bd9Sstevel@tonic-gate 
27217c478bd9Sstevel@tonic-gate #define	OPT_PCS_BUS_CONFIG	0	/* Hypertransport config space bus */
27227c478bd9Sstevel@tonic-gate 
27237c478bd9Sstevel@tonic-gate /*
27247c478bd9Sstevel@tonic-gate  * Opteron PCI configuration space register function values
27257c478bd9Sstevel@tonic-gate  */
27267c478bd9Sstevel@tonic-gate #define	OPT_PCS_FUNC_HT		0	/* Hypertransport configuration */
27277c478bd9Sstevel@tonic-gate #define	OPT_PCS_FUNC_ADDRMAP	1	/* Address map configuration */
27287c478bd9Sstevel@tonic-gate #define	OPT_PCS_FUNC_DRAM	2	/* DRAM configuration */
27297c478bd9Sstevel@tonic-gate #define	OPT_PCS_FUNC_MISC	3	/* Miscellaneous configuration */
27307c478bd9Sstevel@tonic-gate 
27317c478bd9Sstevel@tonic-gate /*
27327c478bd9Sstevel@tonic-gate  * PCI Configuration Space register offsets
27337c478bd9Sstevel@tonic-gate  */
27347c478bd9Sstevel@tonic-gate #define	OPT_PCS_OFF_VENDOR	0x0	/* device/vendor ID register */
2735f78a91cdSjjc #define	OPT_PCS_OFF_DRAMBASE_HI	0x140	/* DRAM Base register (node 0) */
2736f78a91cdSjjc #define	OPT_PCS_OFF_DRAMBASE_LO	0x40	/* DRAM Base register (node 0) */
27377c478bd9Sstevel@tonic-gate #define	OPT_PCS_OFF_NODEID	0x60	/* Node ID register */
27387c478bd9Sstevel@tonic-gate 
27397c478bd9Sstevel@tonic-gate /*
27407c478bd9Sstevel@tonic-gate  * Opteron PCI Configuration Space device IDs for nodes
27417c478bd9Sstevel@tonic-gate  */
27427c478bd9Sstevel@tonic-gate #define	OPT_PCS_DEV_NODE0		24	/* device number for node 0 */
27437c478bd9Sstevel@tonic-gate 
27447c478bd9Sstevel@tonic-gate 
27457c478bd9Sstevel@tonic-gate /*
27467c478bd9Sstevel@tonic-gate  * Opteron DRAM address map gives base and limit for physical memory in a node
27477c478bd9Sstevel@tonic-gate  */
27487c478bd9Sstevel@tonic-gate typedef	struct opt_dram_addr_map {
2749f78a91cdSjjc 	uint32_t	base_hi;
2750f78a91cdSjjc 	uint32_t	base_lo;
2751f78a91cdSjjc 	uint32_t	limit_hi;
2752f78a91cdSjjc 	uint32_t	limit_lo;
27537c478bd9Sstevel@tonic-gate } opt_dram_addr_map_t;
27547c478bd9Sstevel@tonic-gate 
27557c478bd9Sstevel@tonic-gate 
27567c478bd9Sstevel@tonic-gate /*
2757f78a91cdSjjc  * Supported AMD processor families
2758f78a91cdSjjc  */
2759f78a91cdSjjc #define	AMD_FAMILY_HAMMER	15
2760f78a91cdSjjc #define	AMD_FAMILY_GREYHOUND	16
27617c478bd9Sstevel@tonic-gate 
2762f78a91cdSjjc /*
27632e2c009bSjjc  * Whether to have is_opteron() return 1 even when processor isn't supported
2764f78a91cdSjjc  */
2765f78a91cdSjjc uint_t	is_opteron_override = 0;
2766f78a91cdSjjc 
2767f78a91cdSjjc /*
2768f78a91cdSjjc  * AMD processor family for current CPU
2769f78a91cdSjjc  */
27707c478bd9Sstevel@tonic-gate uint_t	opt_family = 0;
2771f78a91cdSjjc 
27727c478bd9Sstevel@tonic-gate 
27737c478bd9Sstevel@tonic-gate /*
2774f78a91cdSjjc  * Determine whether we're running on a supported AMD Opteron since reading
2775f78a91cdSjjc  * node count and DRAM address map registers may have different format or
27762e2c009bSjjc  * may not be supported across processor families
27777c478bd9Sstevel@tonic-gate  */
27782e2c009bSjjc static int
27797c478bd9Sstevel@tonic-gate is_opteron(void)
27807c478bd9Sstevel@tonic-gate {
2781f78a91cdSjjc 
27827c478bd9Sstevel@tonic-gate 	if (x86_vendor != X86_VENDOR_AMD)
27837c478bd9Sstevel@tonic-gate 		return (0);
27847c478bd9Sstevel@tonic-gate 
2785f78a91cdSjjc 	opt_family = cpuid_getfamily(CPU);
2786f78a91cdSjjc 	if (opt_family == AMD_FAMILY_HAMMER ||
2787f78a91cdSjjc 	    opt_family == AMD_FAMILY_GREYHOUND || is_opteron_override)
27887c478bd9Sstevel@tonic-gate 		return (1);
27897c478bd9Sstevel@tonic-gate 	else
27907c478bd9Sstevel@tonic-gate 		return (0);
27917c478bd9Sstevel@tonic-gate }
27927c478bd9Sstevel@tonic-gate 
27932e2c009bSjjc 
27942e2c009bSjjc /*
27952e2c009bSjjc  * Determine NUMA configuration for Opteron from registers that live in PCI
27962e2c009bSjjc  * configuration space
27972e2c009bSjjc  */
27982e2c009bSjjc static void
27992e2c009bSjjc opt_get_numa_config(uint_t *node_cnt, int *mem_intrlv,
28002e2c009bSjjc     node_phys_addr_map_t *node_memory)
28017c478bd9Sstevel@tonic-gate {
28027c478bd9Sstevel@tonic-gate 	uint_t				bus;
28037c478bd9Sstevel@tonic-gate 	uint_t				dev;
28042e2c009bSjjc 	struct opt_dram_addr_map	dram_map[MAX_NODES];
28057c478bd9Sstevel@tonic-gate 	uint_t				node;
28062e2c009bSjjc 	uint_t				node_info[MAX_NODES];
2807f78a91cdSjjc 	uint_t				off_hi;
2808f78a91cdSjjc 	uint_t				off_lo;
2809f78a91cdSjjc 	uint64_t			nb_cfg_reg;
28107c478bd9Sstevel@tonic-gate 
28117c478bd9Sstevel@tonic-gate 	/*
28127c478bd9Sstevel@tonic-gate 	 * Read configuration registers from PCI configuration space to
28137c478bd9Sstevel@tonic-gate 	 * determine node information, which memory is in each node, etc.
28147c478bd9Sstevel@tonic-gate 	 *
28157c478bd9Sstevel@tonic-gate 	 * Write to PCI configuration space address register to specify
28167c478bd9Sstevel@tonic-gate 	 * which configuration register to read and read/write PCI
28177c478bd9Sstevel@tonic-gate 	 * configuration space data register to get/set contents
28187c478bd9Sstevel@tonic-gate 	 */
28197c478bd9Sstevel@tonic-gate 	bus = OPT_PCS_BUS_CONFIG;
28207c478bd9Sstevel@tonic-gate 	dev = OPT_PCS_DEV_NODE0;
2821f78a91cdSjjc 	off_hi = OPT_PCS_OFF_DRAMBASE_HI;
2822f78a91cdSjjc 	off_lo = OPT_PCS_OFF_DRAMBASE_LO;
28237c478bd9Sstevel@tonic-gate 
28247c478bd9Sstevel@tonic-gate 	/*
28257c478bd9Sstevel@tonic-gate 	 * Read node ID register for node 0 to get node count
28267c478bd9Sstevel@tonic-gate 	 */
28272e2c009bSjjc 	node_info[0] = pci_getl_func(bus, dev, OPT_PCS_FUNC_HT,
2828ef50d8c0Sesaxe 	    OPT_PCS_OFF_NODEID);
28292e2c009bSjjc 	*node_cnt = OPT_NODE_CNT(node_info[0]) + 1;
28302e2c009bSjjc 
28312e2c009bSjjc 	/*
28322e2c009bSjjc 	 * If number of nodes is more than maximum supported, then set node
28332e2c009bSjjc 	 * count to 1 and treat system as UMA instead of NUMA.
28342e2c009bSjjc 	 */
28352e2c009bSjjc 	if (*node_cnt > MAX_NODES) {
28362e2c009bSjjc 		*node_cnt = 1;
28372e2c009bSjjc 		return;
28382e2c009bSjjc 	}
28397c478bd9Sstevel@tonic-gate 
2840f78a91cdSjjc 	/*
2841f78a91cdSjjc 	 * For Greyhound, PCI Extended Configuration Space must be enabled to
2842f78a91cdSjjc 	 * read high DRAM address map base and limit registers
2843f78a91cdSjjc 	 */
2844f78a91cdSjjc 	if (opt_family == AMD_FAMILY_GREYHOUND) {
2845f78a91cdSjjc 		nb_cfg_reg = rdmsr(MSR_AMD_NB_CFG);
2846f78a91cdSjjc 		if ((nb_cfg_reg & AMD_GH_NB_CFG_EN_ECS) == 0)
2847f78a91cdSjjc 			wrmsr(MSR_AMD_NB_CFG,
2848f78a91cdSjjc 			    nb_cfg_reg | AMD_GH_NB_CFG_EN_ECS);
2849f78a91cdSjjc 	}
2850f78a91cdSjjc 
28512e2c009bSjjc 	for (node = 0; node < *node_cnt; node++) {
2852f78a91cdSjjc 		uint32_t	base_hi;
2853f78a91cdSjjc 		uint32_t	base_lo;
2854f78a91cdSjjc 		uint32_t	limit_hi;
2855f78a91cdSjjc 		uint32_t	limit_lo;
2856f78a91cdSjjc 
28577c478bd9Sstevel@tonic-gate 		/*
28587c478bd9Sstevel@tonic-gate 		 * Read node ID register (except for node 0 which we just read)
28597c478bd9Sstevel@tonic-gate 		 */
28607c478bd9Sstevel@tonic-gate 		if (node > 0) {
28612e2c009bSjjc 			node_info[node] = pci_getl_func(bus, dev,
2862ef50d8c0Sesaxe 			    OPT_PCS_FUNC_HT, OPT_PCS_OFF_NODEID);
28637c478bd9Sstevel@tonic-gate 		}
28647c478bd9Sstevel@tonic-gate 
28657c478bd9Sstevel@tonic-gate 		/*
28667c478bd9Sstevel@tonic-gate 		 * Read DRAM base and limit registers which specify
28677c478bd9Sstevel@tonic-gate 		 * physical memory range of each node
28687c478bd9Sstevel@tonic-gate 		 */
2869f78a91cdSjjc 		if (opt_family != AMD_FAMILY_GREYHOUND)
2870f78a91cdSjjc 			base_hi = 0;
2871f78a91cdSjjc 		else {
2872f78a91cdSjjc 			outl(PCI_CONFADD, OPT_PCI_ECS_ADDR(bus, dev,
2873f78a91cdSjjc 			    OPT_PCS_FUNC_ADDRMAP, off_hi));
28742e2c009bSjjc 			base_hi = dram_map[node].base_hi =
2875f78a91cdSjjc 			    inl(PCI_CONFDATA);
2876f78a91cdSjjc 		}
28772e2c009bSjjc 		base_lo = dram_map[node].base_lo = pci_getl_func(bus, dev,
2878f78a91cdSjjc 		    OPT_PCS_FUNC_ADDRMAP, off_lo);
2879f78a91cdSjjc 
28802e2c009bSjjc 		if ((dram_map[node].base_lo & OPT_DRAMBASE_LO_MASK_INTRLVEN) &&
28812e2c009bSjjc 		    mem_intrlv)
28822e2c009bSjjc 			*mem_intrlv = *mem_intrlv + 1;
28837c478bd9Sstevel@tonic-gate 
2884f78a91cdSjjc 		off_hi += 4;	/* high limit register offset */
2885f78a91cdSjjc 		if (opt_family != AMD_FAMILY_GREYHOUND)
2886f78a91cdSjjc 			limit_hi = 0;
2887f78a91cdSjjc 		else {
2888f78a91cdSjjc 			outl(PCI_CONFADD, OPT_PCI_ECS_ADDR(bus, dev,
2889f78a91cdSjjc 			    OPT_PCS_FUNC_ADDRMAP, off_hi));
28902e2c009bSjjc 			limit_hi = dram_map[node].limit_hi =
2891f78a91cdSjjc 			    inl(PCI_CONFDATA);
2892f78a91cdSjjc 		}
2893f78a91cdSjjc 
2894f78a91cdSjjc 		off_lo += 4;	/* low limit register offset */
28952e2c009bSjjc 		limit_lo = dram_map[node].limit_lo = pci_getl_func(bus,
2896f78a91cdSjjc 		    dev, OPT_PCS_FUNC_ADDRMAP, off_lo);
28977c478bd9Sstevel@tonic-gate 
28987c478bd9Sstevel@tonic-gate 		/*
2899f78a91cdSjjc 		 * Increment device number to next node and register offsets
2900f78a91cdSjjc 		 * for DRAM base register of next node
29017c478bd9Sstevel@tonic-gate 		 */
2902f78a91cdSjjc 		off_hi += 4;
2903f78a91cdSjjc 		off_lo += 4;
29047c478bd9Sstevel@tonic-gate 		dev++;
29057c478bd9Sstevel@tonic-gate 
29067c478bd9Sstevel@tonic-gate 		/*
2907a940d195Sjjc 		 * Both read and write enable bits must be enabled in DRAM
2908a940d195Sjjc 		 * address map base register for physical memory to exist in
2909a940d195Sjjc 		 * node
2910a940d195Sjjc 		 */
2911f78a91cdSjjc 		if ((base_lo & OPT_DRAMBASE_LO_MASK_RE) == 0 ||
2912f78a91cdSjjc 		    (base_lo & OPT_DRAMBASE_LO_MASK_WE) == 0) {
2913a940d195Sjjc 			/*
2914a940d195Sjjc 			 * Mark node memory as non-existent and set start and
29152e2c009bSjjc 			 * end addresses to be same in node_memory[]
2916a940d195Sjjc 			 */
29172e2c009bSjjc 			node_memory[node].exists = 0;
29182e2c009bSjjc 			node_memory[node].start = node_memory[node].end =
29192e2c009bSjjc 			    (pfn_t)-1;
2920a940d195Sjjc 			continue;
2921a940d195Sjjc 		}
2922a940d195Sjjc 
2923a940d195Sjjc 		/*
2924a940d195Sjjc 		 * Mark node memory as existing and remember physical address
2925a940d195Sjjc 		 * range of each node for use later
29267c478bd9Sstevel@tonic-gate 		 */
29272e2c009bSjjc 		node_memory[node].exists = 1;
2928f78a91cdSjjc 
29292e2c009bSjjc 		node_memory[node].start = btop(OPT_DRAMADDR(base_hi, base_lo));
2930f78a91cdSjjc 
29312e2c009bSjjc 		node_memory[node].end = btop(OPT_DRAMADDR(limit_hi, limit_lo) |
2932f78a91cdSjjc 		    OPT_DRAMADDR_LO_MASK_OFF);
2933f78a91cdSjjc 	}
2934f78a91cdSjjc 
2935f78a91cdSjjc 	/*
2936f78a91cdSjjc 	 * Restore PCI Extended Configuration Space enable bit
2937f78a91cdSjjc 	 */
2938f78a91cdSjjc 	if (opt_family == AMD_FAMILY_GREYHOUND) {
2939f78a91cdSjjc 		if ((nb_cfg_reg & AMD_GH_NB_CFG_EN_ECS) == 0)
2940f78a91cdSjjc 			wrmsr(MSR_AMD_NB_CFG, nb_cfg_reg);
29417c478bd9Sstevel@tonic-gate 	}
29427c478bd9Sstevel@tonic-gate }
29437c478bd9Sstevel@tonic-gate 
29447c478bd9Sstevel@tonic-gate 
29457c478bd9Sstevel@tonic-gate /*
29462e2c009bSjjc  * Return average amount of time to read vendor ID register on Northbridge
29472e2c009bSjjc  * N times on specified destination node from current CPU
29487c478bd9Sstevel@tonic-gate  */
29497c478bd9Sstevel@tonic-gate static hrtime_t
29502e2c009bSjjc opt_probe_vendor(int dest_node, int nreads)
29517c478bd9Sstevel@tonic-gate {
29522e2c009bSjjc 	int		cnt;
29537c478bd9Sstevel@tonic-gate 	uint_t		dev;
29547c478bd9Sstevel@tonic-gate 	/* LINTED: set but not used in function */
29557c478bd9Sstevel@tonic-gate 	volatile uint_t	dev_vendor;
29567c478bd9Sstevel@tonic-gate 	hrtime_t	elapsed;
29577c478bd9Sstevel@tonic-gate 	hrtime_t	end;
29587c478bd9Sstevel@tonic-gate 	int		ipl;
29597c478bd9Sstevel@tonic-gate 	hrtime_t	start;
29607c478bd9Sstevel@tonic-gate 
29612e2c009bSjjc 	dev = OPT_PCS_DEV_NODE0 + dest_node;
29627c478bd9Sstevel@tonic-gate 	kpreempt_disable();
29637c478bd9Sstevel@tonic-gate 	ipl = spl8();
29642e2c009bSjjc 	outl(PCI_CONFADD, PCI_CADDR1(0, dev, OPT_PCS_FUNC_DRAM,
29657c478bd9Sstevel@tonic-gate 	    OPT_PCS_OFF_VENDOR));
29667c478bd9Sstevel@tonic-gate 	start = gethrtime();
29672e2c009bSjjc 	for (cnt = 0; cnt < nreads; cnt++)
29687c478bd9Sstevel@tonic-gate 		dev_vendor = inl(PCI_CONFDATA);
29697c478bd9Sstevel@tonic-gate 	end = gethrtime();
29702e2c009bSjjc 	elapsed = (end - start) / nreads;
29717c478bd9Sstevel@tonic-gate 	splx(ipl);
29727c478bd9Sstevel@tonic-gate 	kpreempt_enable();
29732e2c009bSjjc 	return (elapsed);
29747c478bd9Sstevel@tonic-gate }
2975