17c478bd9Sstevel@tonic-gate /* 27c478bd9Sstevel@tonic-gate * CDDL HEADER START 37c478bd9Sstevel@tonic-gate * 47c478bd9Sstevel@tonic-gate * The contents of this file are subject to the terms of the 5c39996a7Sstevel * Common Development and Distribution License (the "License"). 6c39996a7Sstevel * You may not use this file except in compliance with the License. 77c478bd9Sstevel@tonic-gate * 87c478bd9Sstevel@tonic-gate * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 97c478bd9Sstevel@tonic-gate * or http://www.opensolaris.org/os/licensing. 107c478bd9Sstevel@tonic-gate * See the License for the specific language governing permissions 117c478bd9Sstevel@tonic-gate * and limitations under the License. 127c478bd9Sstevel@tonic-gate * 137c478bd9Sstevel@tonic-gate * When distributing Covered Code, include this CDDL HEADER in each 147c478bd9Sstevel@tonic-gate * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 157c478bd9Sstevel@tonic-gate * If applicable, add the following below this CDDL HEADER, with the 167c478bd9Sstevel@tonic-gate * fields enclosed by brackets "[]" replaced with your own identifying 177c478bd9Sstevel@tonic-gate * information: Portions Copyright [yyyy] [name of copyright owner] 187c478bd9Sstevel@tonic-gate * 197c478bd9Sstevel@tonic-gate * CDDL HEADER END 207c478bd9Sstevel@tonic-gate */ 21c39996a7Sstevel 227c478bd9Sstevel@tonic-gate /* 232baa66a0SJonathan Chew * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 247c478bd9Sstevel@tonic-gate * Use is subject to license terms. 257c478bd9Sstevel@tonic-gate */ 267c478bd9Sstevel@tonic-gate 272e2c009bSjjc /* 282e2c009bSjjc * LOCALITY GROUP (LGROUP) PLATFORM SUPPORT FOR X86/AMD64 PLATFORMS 292e2c009bSjjc * ================================================================ 302e2c009bSjjc * Multiprocessor AMD and Intel systems may have Non Uniform Memory Access 312e2c009bSjjc * (NUMA). A NUMA machine consists of one or more "nodes" that each consist of 322e2c009bSjjc * one or more CPUs and some local memory. The CPUs in each node can access 332e2c009bSjjc * the memory in the other nodes but at a higher latency than accessing their 342e2c009bSjjc * local memory. Typically, a system with only one node has Uniform Memory 352e2c009bSjjc * Access (UMA), but it may be possible to have a one node system that has 362e2c009bSjjc * some global memory outside of the node which is higher latency. 372e2c009bSjjc * 382e2c009bSjjc * Module Description 392e2c009bSjjc * ------------------ 402e2c009bSjjc * This module provides a platform interface for determining which CPUs and 412e2c009bSjjc * which memory (and how much) are in a NUMA node and how far each node is from 422e2c009bSjjc * each other. The interface is used by the Virtual Memory (VM) system and the 432e2c009bSjjc * common lgroup framework. The VM system uses the plat_*() routines to fill 442e2c009bSjjc * in its memory node (memnode) array with the physical address range spanned 452e2c009bSjjc * by each NUMA node to know which memory belongs to which node, so it can 462e2c009bSjjc * build and manage a physical page free list for each NUMA node and allocate 472e2c009bSjjc * local memory from each node as needed. The common lgroup framework uses the 482e2c009bSjjc * exported lgrp_plat_*() routines to figure out which CPUs and memory belong 492e2c009bSjjc * to each node (leaf lgroup) and how far each node is from each other, so it 502e2c009bSjjc * can build the latency (lgroup) topology for the machine in order to optimize 512e2c009bSjjc * for locality. Also, an lgroup platform handle instead of lgroups are used 522e2c009bSjjc * in the interface with this module, so this module shouldn't need to know 532e2c009bSjjc * anything about lgroups. Instead, it just needs to know which CPUs, memory, 542e2c009bSjjc * etc. are in each NUMA node, how far each node is from each other, and to use 552e2c009bSjjc * a unique lgroup platform handle to refer to each node through the interface. 562e2c009bSjjc * 572e2c009bSjjc * Determining NUMA Configuration 582e2c009bSjjc * ------------------------------ 592e2c009bSjjc * By default, this module will try to determine the NUMA configuration of the 602e2c009bSjjc * machine by reading the ACPI System Resource Affinity Table (SRAT) and System 612e2c009bSjjc * Locality Information Table (SLIT). The SRAT contains info to tell which 622e2c009bSjjc * CPUs and memory are local to a given proximity domain (NUMA node). The SLIT 632e2c009bSjjc * is a matrix that gives the distance between each system locality (which is 642e2c009bSjjc * a NUMA node and should correspond to proximity domains in the SRAT). For 652e2c009bSjjc * more details on the SRAT and SLIT, please refer to an ACPI 3.0 or newer 662e2c009bSjjc * specification. 672e2c009bSjjc * 682e2c009bSjjc * If the SRAT doesn't exist on a system with AMD Opteron processors, we 692e2c009bSjjc * examine registers in PCI configuration space to determine how many nodes are 702e2c009bSjjc * in the system and which CPUs and memory are in each node. 712e2c009bSjjc * do while booting the kernel. 722e2c009bSjjc * 732e2c009bSjjc * NOTE: Using these PCI configuration space registers to determine this 742e2c009bSjjc * locality info is not guaranteed to work or be compatible across all 752e2c009bSjjc * Opteron processor families. 762e2c009bSjjc * 772e2c009bSjjc * If the SLIT does not exist or look right, the kernel will probe to determine 782e2c009bSjjc * the distance between nodes as long as the NUMA CPU and memory configuration 792e2c009bSjjc * has been determined (see lgrp_plat_probe() for details). 802e2c009bSjjc * 812e2c009bSjjc * Data Structures 822e2c009bSjjc * --------------- 832e2c009bSjjc * The main data structures used by this code are the following: 842e2c009bSjjc * 85dae2fa37Sjjc * - lgrp_plat_cpu_node[] CPU to node ID mapping table indexed by 86dae2fa37Sjjc * CPU ID (only used for SRAT) 872e2c009bSjjc * 882e2c009bSjjc * - lgrp_plat_lat_stats.latencies[][] Table of latencies between same and 892e2c009bSjjc * different nodes indexed by node ID 902e2c009bSjjc * 912e2c009bSjjc * - lgrp_plat_node_cnt Number of NUMA nodes in system 922e2c009bSjjc * 932e2c009bSjjc * - lgrp_plat_node_domain[] Node ID to proximity domain ID mapping 942e2c009bSjjc * table indexed by node ID (only used 952e2c009bSjjc * for SRAT) 962e2c009bSjjc * 972e2c009bSjjc * - lgrp_plat_node_memory[] Table with physical address range for 982e2c009bSjjc * each node indexed by node ID 992e2c009bSjjc * 1002e2c009bSjjc * The code is implemented to make the following always be true: 1012e2c009bSjjc * 1022e2c009bSjjc * lgroup platform handle == node ID == memnode ID 1032e2c009bSjjc * 1042e2c009bSjjc * Moreover, it allows for the proximity domain ID to be equal to all of the 1052e2c009bSjjc * above as long as the proximity domains IDs are numbered from 0 to <number of 1062e2c009bSjjc * nodes - 1>. This is done by hashing each proximity domain ID into the range 1072e2c009bSjjc * from 0 to <number of nodes - 1>. Then proximity ID N will hash into node ID 1082e2c009bSjjc * N and proximity domain ID N will be entered into lgrp_plat_node_domain[N] 1092e2c009bSjjc * and be assigned node ID N. If the proximity domain IDs aren't numbered 1102e2c009bSjjc * from 0 to <number of nodes - 1>, then hashing the proximity domain IDs into 1112e2c009bSjjc * lgrp_plat_node_domain[] will still work for assigning proximity domain IDs 1122e2c009bSjjc * to node IDs. However, the proximity domain IDs may not map to the 1132e2c009bSjjc * equivalent node ID since we want to keep the node IDs numbered from 0 to 1142e2c009bSjjc * <number of nodes - 1> to minimize cost of searching and potentially space. 11581d9ccb6SJonathan Chew * 11681d9ccb6SJonathan Chew * The code below really tries to do the above. However, the virtual memory 11781d9ccb6SJonathan Chew * system expects the memnodes which describe the physical address range for 11881d9ccb6SJonathan Chew * each NUMA node to be arranged in ascending order by physical address. (:-( 11981d9ccb6SJonathan Chew * Otherwise, the kernel will panic in different semi-random places in the VM 120cf5755f2SJonathan Chew * system. 12181d9ccb6SJonathan Chew * 12281d9ccb6SJonathan Chew * Consequently, this module has to try to sort the nodes in ascending order by 12381d9ccb6SJonathan Chew * each node's starting physical address to try to meet this "constraint" in 12481d9ccb6SJonathan Chew * the VM system (see lgrp_plat_node_sort()). Also, the lowest numbered 12581d9ccb6SJonathan Chew * proximity domain ID in the system is deteremined and used to make the lowest 12681d9ccb6SJonathan Chew * numbered proximity domain map to node 0 in hopes that the proximity domains 12781d9ccb6SJonathan Chew * are sorted in ascending order by physical address already even if their IDs 12881d9ccb6SJonathan Chew * don't start at 0 (see NODE_DOMAIN_HASH() and lgrp_plat_srat_domains()). 12981d9ccb6SJonathan Chew * Finally, it is important to note that these workarounds may not be 13081d9ccb6SJonathan Chew * sufficient if/when memory hotplugging is supported and the VM system may 13181d9ccb6SJonathan Chew * ultimately need to be fixed to handle this.... 1322e2c009bSjjc */ 1332e2c009bSjjc 1342e2c009bSjjc 1357c478bd9Sstevel@tonic-gate #include <sys/archsystm.h> /* for {in,out}{b,w,l}() */ 136dae2fa37Sjjc #include <sys/bootconf.h> 1377c478bd9Sstevel@tonic-gate #include <sys/cmn_err.h> 138f78a91cdSjjc #include <sys/controlregs.h> 1397c478bd9Sstevel@tonic-gate #include <sys/cpupart.h> 1407c478bd9Sstevel@tonic-gate #include <sys/cpuvar.h> 1417c478bd9Sstevel@tonic-gate #include <sys/lgrp.h> 1427c478bd9Sstevel@tonic-gate #include <sys/machsystm.h> 1437c478bd9Sstevel@tonic-gate #include <sys/memlist.h> 1447c478bd9Sstevel@tonic-gate #include <sys/memnode.h> 1457c478bd9Sstevel@tonic-gate #include <sys/mman.h> 146ef50d8c0Sesaxe #include <sys/pci_cfgspace.h> 147ef50d8c0Sesaxe #include <sys/pci_impl.h> 1487c478bd9Sstevel@tonic-gate #include <sys/param.h> 149fb2f18f8Sesaxe #include <sys/pghw.h> 1507c478bd9Sstevel@tonic-gate #include <sys/promif.h> /* for prom_printf() */ 1512e2c009bSjjc #include <sys/sysmacros.h> 1527c478bd9Sstevel@tonic-gate #include <sys/systm.h> 1537c478bd9Sstevel@tonic-gate #include <sys/thread.h> 1547c478bd9Sstevel@tonic-gate #include <sys/types.h> 1557c478bd9Sstevel@tonic-gate #include <sys/var.h> 1567c478bd9Sstevel@tonic-gate #include <sys/x86_archext.h> /* for x86_feature and X86_AMD */ 1577c478bd9Sstevel@tonic-gate #include <vm/hat_i86.h> 1587c478bd9Sstevel@tonic-gate #include <vm/seg_kmem.h> 159affbd3ccSkchow #include <vm/vm_dep.h> 1607c478bd9Sstevel@tonic-gate 1612e2c009bSjjc #include "acpi_fw.h" /* for SRAT and SLIT */ 1627c478bd9Sstevel@tonic-gate 1637c478bd9Sstevel@tonic-gate 1647c478bd9Sstevel@tonic-gate #define MAX_NODES 8 1657c478bd9Sstevel@tonic-gate #define NLGRP (MAX_NODES * (MAX_NODES - 1) + 1) 1667c478bd9Sstevel@tonic-gate 1672e2c009bSjjc /* 1682e2c009bSjjc * Constants for configuring probing 1692e2c009bSjjc */ 1707c478bd9Sstevel@tonic-gate #define LGRP_PLAT_PROBE_NROUNDS 64 /* default laps for probing */ 1717c478bd9Sstevel@tonic-gate #define LGRP_PLAT_PROBE_NSAMPLES 1 /* default samples to take */ 1728949bcd6Sandrei #define LGRP_PLAT_PROBE_NREADS 256 /* number of vendor ID reads */ 1737c478bd9Sstevel@tonic-gate 1747c478bd9Sstevel@tonic-gate /* 1752e2c009bSjjc * Flags for probing 1762e2c009bSjjc */ 1772e2c009bSjjc #define LGRP_PLAT_PROBE_ENABLE 0x1 /* enable probing */ 1782e2c009bSjjc #define LGRP_PLAT_PROBE_PGCPY 0x2 /* probe using page copy */ 1792e2c009bSjjc #define LGRP_PLAT_PROBE_VENDOR 0x4 /* probe vendor ID register */ 1802e2c009bSjjc 1812e2c009bSjjc /* 18281d9ccb6SJonathan Chew * Hash proximity domain ID into node to domain mapping table "mod" number of 18381d9ccb6SJonathan Chew * nodes to minimize span of entries used and try to have lowest numbered 18481d9ccb6SJonathan Chew * proximity domain be node 0 1852e2c009bSjjc */ 18681d9ccb6SJonathan Chew #define NODE_DOMAIN_HASH(domain, node_cnt) \ 18781d9ccb6SJonathan Chew ((lgrp_plat_prox_domain_min == UINT32_MAX) ? (domain) % node_cnt : \ 18881d9ccb6SJonathan Chew ((domain) - lgrp_plat_prox_domain_min) % node_cnt) 1892e2c009bSjjc 1902e2c009bSjjc 1912e2c009bSjjc /* 192dae2fa37Sjjc * CPU to node ID mapping structure (only used with SRAT) 1932e2c009bSjjc */ 1942e2c009bSjjc typedef struct cpu_node_map { 1952e2c009bSjjc int exists; 1962e2c009bSjjc uint_t node; 1972e2c009bSjjc uint32_t apicid; 1982e2c009bSjjc uint32_t prox_domain; 1992e2c009bSjjc } cpu_node_map_t; 2002e2c009bSjjc 2012e2c009bSjjc /* 2022e2c009bSjjc * Latency statistics 2032e2c009bSjjc */ 2042e2c009bSjjc typedef struct lgrp_plat_latency_stats { 2052e2c009bSjjc hrtime_t latencies[MAX_NODES][MAX_NODES]; 2062e2c009bSjjc hrtime_t latency_max; 2072e2c009bSjjc hrtime_t latency_min; 2082e2c009bSjjc } lgrp_plat_latency_stats_t; 2092e2c009bSjjc 2102e2c009bSjjc /* 2112e2c009bSjjc * Memory configuration for probing 2122e2c009bSjjc */ 2132e2c009bSjjc typedef struct lgrp_plat_probe_mem_config { 2142e2c009bSjjc size_t probe_memsize; /* how much memory to probe per node */ 2152e2c009bSjjc caddr_t probe_va[MAX_NODES]; /* where memory mapped for probing */ 2162e2c009bSjjc pfn_t probe_pfn[MAX_NODES]; /* physical pages to map for probing */ 2172e2c009bSjjc } lgrp_plat_probe_mem_config_t; 2182e2c009bSjjc 2192e2c009bSjjc /* 2202e2c009bSjjc * Statistics kept for probing 2212e2c009bSjjc */ 2222e2c009bSjjc typedef struct lgrp_plat_probe_stats { 2232e2c009bSjjc hrtime_t flush_cost; 2242e2c009bSjjc hrtime_t probe_cost; 2252e2c009bSjjc hrtime_t probe_cost_total; 2262e2c009bSjjc hrtime_t probe_error_code; 2272e2c009bSjjc hrtime_t probe_errors[MAX_NODES][MAX_NODES]; 2282e2c009bSjjc int probe_suspect[MAX_NODES][MAX_NODES]; 2292e2c009bSjjc hrtime_t probe_max[MAX_NODES][MAX_NODES]; 2302e2c009bSjjc hrtime_t probe_min[MAX_NODES][MAX_NODES]; 2312e2c009bSjjc } lgrp_plat_probe_stats_t; 2322e2c009bSjjc 2332e2c009bSjjc /* 2342e2c009bSjjc * Node to proximity domain ID mapping structure (only used with SRAT) 2352e2c009bSjjc */ 2362e2c009bSjjc typedef struct node_domain_map { 2372e2c009bSjjc int exists; 2382e2c009bSjjc uint32_t prox_domain; 2392e2c009bSjjc } node_domain_map_t; 2402e2c009bSjjc 2412e2c009bSjjc /* 2422e2c009bSjjc * Node ID and starting and ending page for physical memory in node 2432e2c009bSjjc */ 2442e2c009bSjjc typedef struct node_phys_addr_map { 2452e2c009bSjjc pfn_t start; 2462e2c009bSjjc pfn_t end; 2472e2c009bSjjc int exists; 2482e2c009bSjjc uint32_t prox_domain; 2492e2c009bSjjc } node_phys_addr_map_t; 2502e2c009bSjjc 251dae2fa37Sjjc /* 252d821f0f0Sjjc * Number of CPUs for which we got APIC IDs 253dae2fa37Sjjc */ 254d821f0f0Sjjc static int lgrp_plat_apic_ncpus = 0; 2552e2c009bSjjc 2562e2c009bSjjc /* 257dae2fa37Sjjc * CPU to node ID mapping table (only used for SRAT) 2582e2c009bSjjc */ 2592e2c009bSjjc static cpu_node_map_t lgrp_plat_cpu_node[NCPU]; 2602e2c009bSjjc 2612e2c009bSjjc /* 2622e2c009bSjjc * Latency statistics 2632e2c009bSjjc */ 2642e2c009bSjjc lgrp_plat_latency_stats_t lgrp_plat_lat_stats; 2652e2c009bSjjc 2662e2c009bSjjc /* 2672e2c009bSjjc * Whether memory is interleaved across nodes causing MPO to be disabled 2682e2c009bSjjc */ 2692e2c009bSjjc static int lgrp_plat_mem_intrlv = 0; 2702e2c009bSjjc 2712e2c009bSjjc /* 2722e2c009bSjjc * Node ID to proximity domain ID mapping table (only used for SRAT) 2732e2c009bSjjc */ 2742e2c009bSjjc static node_domain_map_t lgrp_plat_node_domain[MAX_NODES]; 2752e2c009bSjjc 2762e2c009bSjjc /* 2772e2c009bSjjc * Physical address range for memory in each node 2782e2c009bSjjc */ 2792e2c009bSjjc static node_phys_addr_map_t lgrp_plat_node_memory[MAX_NODES]; 2802e2c009bSjjc 2812e2c009bSjjc /* 2822e2c009bSjjc * Statistics gotten from probing 2832e2c009bSjjc */ 2842e2c009bSjjc static lgrp_plat_probe_stats_t lgrp_plat_probe_stats; 2852e2c009bSjjc 2862e2c009bSjjc /* 2872e2c009bSjjc * Memory configuration for probing 2882e2c009bSjjc */ 2892e2c009bSjjc static lgrp_plat_probe_mem_config_t lgrp_plat_probe_mem_config; 2902e2c009bSjjc 2912e2c009bSjjc /* 29281d9ccb6SJonathan Chew * Lowest proximity domain ID seen in ACPI SRAT 29381d9ccb6SJonathan Chew */ 29481d9ccb6SJonathan Chew static uint32_t lgrp_plat_prox_domain_min = UINT32_MAX; 29581d9ccb6SJonathan Chew 29681d9ccb6SJonathan Chew /* 2972e2c009bSjjc * Error code from processing ACPI SRAT 2982e2c009bSjjc */ 2992e2c009bSjjc static int lgrp_plat_srat_error = 0; 3002e2c009bSjjc 3012e2c009bSjjc /* 3022e2c009bSjjc * Error code from processing ACPI SLIT 3032e2c009bSjjc */ 3042e2c009bSjjc static int lgrp_plat_slit_error = 0; 3052e2c009bSjjc 3062e2c009bSjjc /* 3072e2c009bSjjc * Allocate lgroup array statically 3082e2c009bSjjc */ 3092e2c009bSjjc static lgrp_t lgrp_space[NLGRP]; 3102e2c009bSjjc static int nlgrps_alloc; 3112e2c009bSjjc 3122e2c009bSjjc 3132e2c009bSjjc /* 31481d9ccb6SJonathan Chew * Enable finding and using minimum proximity domain ID when hashing 31581d9ccb6SJonathan Chew */ 31681d9ccb6SJonathan Chew int lgrp_plat_domain_min_enable = 1; 31781d9ccb6SJonathan Chew 31881d9ccb6SJonathan Chew /* 3192e2c009bSjjc * Number of nodes in system 3202e2c009bSjjc */ 3212e2c009bSjjc uint_t lgrp_plat_node_cnt = 1; 3222e2c009bSjjc 3232e2c009bSjjc /* 32481d9ccb6SJonathan Chew * Enable sorting nodes in ascending order by starting physical address 32581d9ccb6SJonathan Chew */ 32681d9ccb6SJonathan Chew int lgrp_plat_node_sort_enable = 1; 32781d9ccb6SJonathan Chew 32881d9ccb6SJonathan Chew /* 3292e2c009bSjjc * Configuration Parameters for Probing 3302e2c009bSjjc * - lgrp_plat_probe_flags Flags to specify enabling probing, probe 3312e2c009bSjjc * operation, etc. 3322e2c009bSjjc * - lgrp_plat_probe_nrounds How many rounds of probing to do 3332e2c009bSjjc * - lgrp_plat_probe_nsamples Number of samples to take when probing each 3342e2c009bSjjc * node 3352e2c009bSjjc * - lgrp_plat_probe_nreads Number of times to read vendor ID from 3362e2c009bSjjc * Northbridge for each probe 3372e2c009bSjjc */ 3382e2c009bSjjc uint_t lgrp_plat_probe_flags = 0; 3392e2c009bSjjc int lgrp_plat_probe_nrounds = LGRP_PLAT_PROBE_NROUNDS; 3402e2c009bSjjc int lgrp_plat_probe_nsamples = LGRP_PLAT_PROBE_NSAMPLES; 3412e2c009bSjjc int lgrp_plat_probe_nreads = LGRP_PLAT_PROBE_NREADS; 3422e2c009bSjjc 3432e2c009bSjjc /* 3442e2c009bSjjc * Enable use of ACPI System Resource Affinity Table (SRAT) and System 3452e2c009bSjjc * Locality Information Table (SLIT) 3462e2c009bSjjc */ 3472e2c009bSjjc int lgrp_plat_srat_enable = 1; 3482e2c009bSjjc int lgrp_plat_slit_enable = 1; 3492e2c009bSjjc 3502e2c009bSjjc /* 35118968004SKit Chow * mnode_xwa: set to non-zero value to initiate workaround if large pages are 35218968004SKit Chow * found to be crossing memory node boundaries. The workaround will eliminate 35318968004SKit Chow * a base size page at the end of each memory node boundary to ensure that 35418968004SKit Chow * a large page with constituent pages that span more than 1 memory node 35518968004SKit Chow * can never be formed. 35618968004SKit Chow * 35718968004SKit Chow */ 35818968004SKit Chow int mnode_xwa = 1; 35918968004SKit Chow 36018968004SKit Chow /* 3612e2c009bSjjc * Static array to hold lgroup statistics 3622e2c009bSjjc */ 3632e2c009bSjjc struct lgrp_stats lgrp_stats[NLGRP]; 3642e2c009bSjjc 3652e2c009bSjjc 3662e2c009bSjjc /* 3672e2c009bSjjc * Forward declarations of platform interface routines 3682e2c009bSjjc */ 3692e2c009bSjjc void plat_build_mem_nodes(struct memlist *list); 3702e2c009bSjjc 3712e2c009bSjjc int plat_lgrphand_to_mem_node(lgrp_handle_t hand); 3722e2c009bSjjc 3732e2c009bSjjc lgrp_handle_t plat_mem_node_to_lgrphand(int mnode); 3742e2c009bSjjc 3752e2c009bSjjc int plat_mnode_xcheck(pfn_t pfncnt); 3762e2c009bSjjc 3772e2c009bSjjc int plat_pfn_to_mem_node(pfn_t pfn); 3782e2c009bSjjc 3792e2c009bSjjc /* 3802e2c009bSjjc * Forward declarations of lgroup platform interface routines 3812e2c009bSjjc */ 3822e2c009bSjjc lgrp_t *lgrp_plat_alloc(lgrp_id_t lgrpid); 3832e2c009bSjjc 3842e2c009bSjjc void lgrp_plat_config(lgrp_config_flag_t flag, uintptr_t arg); 3852e2c009bSjjc 3862e2c009bSjjc lgrp_handle_t lgrp_plat_cpu_to_hand(processorid_t id); 3872e2c009bSjjc 3882e2c009bSjjc void lgrp_plat_init(void); 3892e2c009bSjjc 3902e2c009bSjjc int lgrp_plat_latency(lgrp_handle_t from, lgrp_handle_t to); 3912e2c009bSjjc 3922e2c009bSjjc void lgrp_plat_main_init(void); 3932e2c009bSjjc 3942e2c009bSjjc int lgrp_plat_max_lgrps(void); 3952e2c009bSjjc 3962e2c009bSjjc pgcnt_t lgrp_plat_mem_size(lgrp_handle_t plathand, 3972e2c009bSjjc lgrp_mem_query_t query); 3982e2c009bSjjc 3992e2c009bSjjc lgrp_handle_t lgrp_plat_pfn_to_hand(pfn_t pfn); 4002e2c009bSjjc 4012e2c009bSjjc void lgrp_plat_probe(void); 4022e2c009bSjjc 4032e2c009bSjjc lgrp_handle_t lgrp_plat_root_hand(void); 4042e2c009bSjjc 4052e2c009bSjjc 4062e2c009bSjjc /* 4072e2c009bSjjc * Forward declarations of local routines 4082e2c009bSjjc */ 4092e2c009bSjjc static int is_opteron(void); 4102e2c009bSjjc 411dae2fa37Sjjc static int lgrp_plat_cpu_node_update(node_domain_map_t *node_domain, 412d821f0f0Sjjc int node_cnt, cpu_node_map_t *cpu_node, int nentries, uint32_t apicid, 413d821f0f0Sjjc uint32_t domain); 414dae2fa37Sjjc 4152e2c009bSjjc static int lgrp_plat_cpu_to_node(cpu_t *cp, cpu_node_map_t *cpu_node); 4162e2c009bSjjc 4172e2c009bSjjc static int lgrp_plat_domain_to_node(node_domain_map_t *node_domain, 418d821f0f0Sjjc int node_cnt, uint32_t domain); 4192e2c009bSjjc 4202e2c009bSjjc static void lgrp_plat_latency_adjust(node_phys_addr_map_t *node_memory, 4212e2c009bSjjc lgrp_plat_latency_stats_t *lat_stats, 4222e2c009bSjjc lgrp_plat_probe_stats_t *probe_stats); 4232e2c009bSjjc 4242e2c009bSjjc static int lgrp_plat_latency_verify(node_phys_addr_map_t *node_memory, 4252e2c009bSjjc lgrp_plat_latency_stats_t *lat_stats); 4262e2c009bSjjc 4272e2c009bSjjc static pgcnt_t lgrp_plat_mem_size_default(lgrp_handle_t, lgrp_mem_query_t); 4282e2c009bSjjc 4292e2c009bSjjc static int lgrp_plat_node_domain_update(node_domain_map_t *node_domain, 430d821f0f0Sjjc int node_cnt, uint32_t domain); 4312e2c009bSjjc 4322e2c009bSjjc static int lgrp_plat_node_memory_update(node_domain_map_t *node_domain, 433d821f0f0Sjjc int node_cnt, node_phys_addr_map_t *node_memory, uint64_t start, 434d821f0f0Sjjc uint64_t end, uint32_t domain); 4352e2c009bSjjc 43681d9ccb6SJonathan Chew static void lgrp_plat_node_sort(node_domain_map_t *node_domain, 43781d9ccb6SJonathan Chew int node_cnt, cpu_node_map_t *cpu_node, int cpu_count, 43881d9ccb6SJonathan Chew node_phys_addr_map_t *node_memory); 43981d9ccb6SJonathan Chew 4402e2c009bSjjc static hrtime_t lgrp_plat_probe_time(int to, cpu_node_map_t *cpu_node, 4412e2c009bSjjc lgrp_plat_probe_mem_config_t *probe_mem_config, 4422e2c009bSjjc lgrp_plat_latency_stats_t *lat_stats, 4432e2c009bSjjc lgrp_plat_probe_stats_t *probe_stats); 4442e2c009bSjjc 445d821f0f0Sjjc static int lgrp_plat_process_cpu_apicids(cpu_node_map_t *cpu_node); 446dae2fa37Sjjc 4472e2c009bSjjc static int lgrp_plat_process_slit(struct slit *tp, uint_t node_cnt, 4482e2c009bSjjc node_phys_addr_map_t *node_memory, lgrp_plat_latency_stats_t *lat_stats); 4492e2c009bSjjc 450d821f0f0Sjjc static int lgrp_plat_process_srat(struct srat *tp, 45181d9ccb6SJonathan Chew uint32_t *prox_domain_min, node_domain_map_t *node_domain, 45281d9ccb6SJonathan Chew cpu_node_map_t *cpu_node, int cpu_count, 4532e2c009bSjjc node_phys_addr_map_t *node_memory); 4542e2c009bSjjc 45581d9ccb6SJonathan Chew static int lgrp_plat_srat_domains(struct srat *tp, 45681d9ccb6SJonathan Chew uint32_t *prox_domain_min); 4572e2c009bSjjc 4582e2c009bSjjc static void lgrp_plat_2level_setup(node_phys_addr_map_t *node_memory, 4592e2c009bSjjc lgrp_plat_latency_stats_t *lat_stats); 4602e2c009bSjjc 4612e2c009bSjjc static void opt_get_numa_config(uint_t *node_cnt, int *mem_intrlv, 4622e2c009bSjjc node_phys_addr_map_t *node_memory); 4632e2c009bSjjc 4642e2c009bSjjc static hrtime_t opt_probe_vendor(int dest_node, int nreads); 4652e2c009bSjjc 4662e2c009bSjjc 4672e2c009bSjjc /* 4682e2c009bSjjc * PLATFORM INTERFACE ROUTINES 4697c478bd9Sstevel@tonic-gate */ 4707c478bd9Sstevel@tonic-gate 4717c478bd9Sstevel@tonic-gate /* 4722e2c009bSjjc * Configure memory nodes for machines with more than one node (ie NUMA) 4732e2c009bSjjc */ 4742e2c009bSjjc void 4752e2c009bSjjc plat_build_mem_nodes(struct memlist *list) 4762e2c009bSjjc { 4772e2c009bSjjc pfn_t cur_start; /* start addr of subrange */ 4782e2c009bSjjc pfn_t cur_end; /* end addr of subrange */ 4792e2c009bSjjc pfn_t start; /* start addr of whole range */ 4802e2c009bSjjc pfn_t end; /* end addr of whole range */ 48118968004SKit Chow pgcnt_t endcnt; /* pages to sacrifice */ 4822e2c009bSjjc 4832e2c009bSjjc /* 4842e2c009bSjjc * Boot install lists are arranged <addr, len>, ... 4852e2c009bSjjc */ 4862e2c009bSjjc while (list) { 4872e2c009bSjjc int node; 4882e2c009bSjjc 4892e2c009bSjjc start = list->address >> PAGESHIFT; 4902e2c009bSjjc end = (list->address + list->size - 1) >> PAGESHIFT; 4912e2c009bSjjc 4922e2c009bSjjc if (start > physmax) { 4932e2c009bSjjc list = list->next; 4942e2c009bSjjc continue; 4952e2c009bSjjc } 4962e2c009bSjjc if (end > physmax) 4972e2c009bSjjc end = physmax; 4982e2c009bSjjc 4992e2c009bSjjc /* 5002e2c009bSjjc * When there is only one memnode, just add memory to memnode 5012e2c009bSjjc */ 5022e2c009bSjjc if (max_mem_nodes == 1) { 5032e2c009bSjjc mem_node_add_slice(start, end); 5042e2c009bSjjc list = list->next; 5052e2c009bSjjc continue; 5062e2c009bSjjc } 5072e2c009bSjjc 5082e2c009bSjjc /* 5092e2c009bSjjc * mem_node_add_slice() expects to get a memory range that 5102e2c009bSjjc * is within one memnode, so need to split any memory range 5112e2c009bSjjc * that spans multiple memnodes into subranges that are each 5122e2c009bSjjc * contained within one memnode when feeding them to 5132e2c009bSjjc * mem_node_add_slice() 5142e2c009bSjjc */ 5152e2c009bSjjc cur_start = start; 5162e2c009bSjjc do { 5172e2c009bSjjc node = plat_pfn_to_mem_node(cur_start); 5182e2c009bSjjc 5192e2c009bSjjc /* 5202e2c009bSjjc * Panic if DRAM address map registers or SRAT say 5212e2c009bSjjc * memory in node doesn't exist or address from 5222e2c009bSjjc * boot installed memory list entry isn't in this node. 5232e2c009bSjjc * This shouldn't happen and rest of code can't deal 5242e2c009bSjjc * with this if it does. 5252e2c009bSjjc */ 5262e2c009bSjjc if (node < 0 || node >= lgrp_plat_node_cnt || 5272e2c009bSjjc !lgrp_plat_node_memory[node].exists || 5282e2c009bSjjc cur_start < lgrp_plat_node_memory[node].start || 5292e2c009bSjjc cur_start > lgrp_plat_node_memory[node].end) { 5302e2c009bSjjc cmn_err(CE_PANIC, "Don't know which memnode " 5312e2c009bSjjc "to add installed memory address 0x%lx\n", 5322e2c009bSjjc cur_start); 5332e2c009bSjjc } 5342e2c009bSjjc 5352e2c009bSjjc /* 5362e2c009bSjjc * End of current subrange should not span memnodes 5372e2c009bSjjc */ 5382e2c009bSjjc cur_end = end; 53918968004SKit Chow endcnt = 0; 5402e2c009bSjjc if (lgrp_plat_node_memory[node].exists && 54118968004SKit Chow cur_end > lgrp_plat_node_memory[node].end) { 5422e2c009bSjjc cur_end = lgrp_plat_node_memory[node].end; 54318968004SKit Chow if (mnode_xwa > 1) { 54418968004SKit Chow /* 54518968004SKit Chow * sacrifice the last page in each 54618968004SKit Chow * node to eliminate large pages 54718968004SKit Chow * that span more than 1 memory node. 54818968004SKit Chow */ 54918968004SKit Chow endcnt = 1; 550bcee7a0bSKit Chow physinstalled--; 55118968004SKit Chow } 55218968004SKit Chow } 5532e2c009bSjjc 55418968004SKit Chow mem_node_add_slice(cur_start, cur_end - endcnt); 5552e2c009bSjjc 5562e2c009bSjjc /* 5572e2c009bSjjc * Next subrange starts after end of current one 5582e2c009bSjjc */ 5592e2c009bSjjc cur_start = cur_end + 1; 5602e2c009bSjjc } while (cur_end < end); 5612e2c009bSjjc 5622e2c009bSjjc list = list->next; 5632e2c009bSjjc } 5642e2c009bSjjc mem_node_physalign = 0; 5652e2c009bSjjc mem_node_pfn_shift = 0; 5662e2c009bSjjc } 5672e2c009bSjjc 5682e2c009bSjjc 5692e2c009bSjjc int 5702e2c009bSjjc plat_lgrphand_to_mem_node(lgrp_handle_t hand) 5712e2c009bSjjc { 5722e2c009bSjjc if (max_mem_nodes == 1) 5732e2c009bSjjc return (0); 5742e2c009bSjjc 5752e2c009bSjjc return ((int)hand); 5762e2c009bSjjc } 5772e2c009bSjjc 5782e2c009bSjjc 5792e2c009bSjjc /* 5802e2c009bSjjc * plat_mnode_xcheck: checks the node memory ranges to see if there is a pfncnt 5812e2c009bSjjc * range of pages aligned on pfncnt that crosses an node boundary. Returns 1 if 5822e2c009bSjjc * a crossing is found and returns 0 otherwise. 5832e2c009bSjjc */ 5842e2c009bSjjc int 5852e2c009bSjjc plat_mnode_xcheck(pfn_t pfncnt) 5862e2c009bSjjc { 5872e2c009bSjjc int node, prevnode = -1, basenode; 5882e2c009bSjjc pfn_t ea, sa; 5892e2c009bSjjc 5902e2c009bSjjc for (node = 0; node < lgrp_plat_node_cnt; node++) { 5912e2c009bSjjc 5922e2c009bSjjc if (lgrp_plat_node_memory[node].exists == 0) 5932e2c009bSjjc continue; 5942e2c009bSjjc 5952e2c009bSjjc if (prevnode == -1) { 5962e2c009bSjjc prevnode = node; 5972e2c009bSjjc basenode = node; 5982e2c009bSjjc continue; 5992e2c009bSjjc } 6002e2c009bSjjc 6012e2c009bSjjc /* assume x86 node pfn ranges are in increasing order */ 6022e2c009bSjjc ASSERT(lgrp_plat_node_memory[node].start > 6032e2c009bSjjc lgrp_plat_node_memory[prevnode].end); 6042e2c009bSjjc 6052e2c009bSjjc /* 6062e2c009bSjjc * continue if the starting address of node is not contiguous 6072e2c009bSjjc * with the previous node. 6082e2c009bSjjc */ 6092e2c009bSjjc 6102e2c009bSjjc if (lgrp_plat_node_memory[node].start != 6112e2c009bSjjc (lgrp_plat_node_memory[prevnode].end + 1)) { 6122e2c009bSjjc basenode = node; 6132e2c009bSjjc prevnode = node; 6142e2c009bSjjc continue; 6152e2c009bSjjc } 6162e2c009bSjjc 6172e2c009bSjjc /* check if the starting address of node is pfncnt aligned */ 6182e2c009bSjjc if ((lgrp_plat_node_memory[node].start & (pfncnt - 1)) != 0) { 6192e2c009bSjjc 6202e2c009bSjjc /* 6212e2c009bSjjc * at this point, node starts at an unaligned boundary 6222e2c009bSjjc * and is contiguous with the previous node(s) to 6232e2c009bSjjc * basenode. Check if there is an aligned contiguous 6242e2c009bSjjc * range of length pfncnt that crosses this boundary. 6252e2c009bSjjc */ 6262e2c009bSjjc 6272e2c009bSjjc sa = P2ALIGN(lgrp_plat_node_memory[prevnode].end, 6282e2c009bSjjc pfncnt); 6292e2c009bSjjc ea = P2ROUNDUP((lgrp_plat_node_memory[node].start), 6302e2c009bSjjc pfncnt); 6312e2c009bSjjc 6322e2c009bSjjc ASSERT((ea - sa) == pfncnt); 6332e2c009bSjjc if (sa >= lgrp_plat_node_memory[basenode].start && 63418968004SKit Chow ea <= (lgrp_plat_node_memory[node].end + 1)) { 63518968004SKit Chow /* 63618968004SKit Chow * large page found to cross mnode boundary. 63718968004SKit Chow * Return Failure if workaround not enabled. 63818968004SKit Chow */ 63918968004SKit Chow if (mnode_xwa == 0) 6402e2c009bSjjc return (1); 64118968004SKit Chow mnode_xwa++; 64218968004SKit Chow } 6432e2c009bSjjc } 6442e2c009bSjjc prevnode = node; 6452e2c009bSjjc } 6462e2c009bSjjc return (0); 6472e2c009bSjjc } 6482e2c009bSjjc 6492e2c009bSjjc 6502e2c009bSjjc lgrp_handle_t 6512e2c009bSjjc plat_mem_node_to_lgrphand(int mnode) 6522e2c009bSjjc { 6532e2c009bSjjc if (max_mem_nodes == 1) 6542e2c009bSjjc return (LGRP_DEFAULT_HANDLE); 6552e2c009bSjjc 6562e2c009bSjjc return ((lgrp_handle_t)mnode); 6572e2c009bSjjc } 6582e2c009bSjjc 6592e2c009bSjjc 6602e2c009bSjjc int 6612e2c009bSjjc plat_pfn_to_mem_node(pfn_t pfn) 6622e2c009bSjjc { 6632e2c009bSjjc int node; 6642e2c009bSjjc 6652e2c009bSjjc if (max_mem_nodes == 1) 6662e2c009bSjjc return (0); 6672e2c009bSjjc 6682e2c009bSjjc for (node = 0; node < lgrp_plat_node_cnt; node++) { 6692e2c009bSjjc /* 6702e2c009bSjjc * Skip nodes with no memory 6712e2c009bSjjc */ 6722e2c009bSjjc if (!lgrp_plat_node_memory[node].exists) 6732e2c009bSjjc continue; 6742e2c009bSjjc 6752e2c009bSjjc if (pfn >= lgrp_plat_node_memory[node].start && 6762e2c009bSjjc pfn <= lgrp_plat_node_memory[node].end) 6772e2c009bSjjc return (node); 6782e2c009bSjjc } 6792e2c009bSjjc 6802e2c009bSjjc /* 6812e2c009bSjjc * Didn't find memnode where this PFN lives which should never happen 6822e2c009bSjjc */ 6832e2c009bSjjc ASSERT(node < lgrp_plat_node_cnt); 6842e2c009bSjjc return (-1); 6852e2c009bSjjc } 6862e2c009bSjjc 6872e2c009bSjjc 6882e2c009bSjjc /* 6892e2c009bSjjc * LGROUP PLATFORM INTERFACE ROUTINES 6902e2c009bSjjc */ 6912e2c009bSjjc 6922e2c009bSjjc /* 6932e2c009bSjjc * Allocate additional space for an lgroup. 6942e2c009bSjjc */ 6952e2c009bSjjc /* ARGSUSED */ 6962e2c009bSjjc lgrp_t * 6972e2c009bSjjc lgrp_plat_alloc(lgrp_id_t lgrpid) 6982e2c009bSjjc { 6992e2c009bSjjc lgrp_t *lgrp; 7002e2c009bSjjc 7012e2c009bSjjc lgrp = &lgrp_space[nlgrps_alloc++]; 7022e2c009bSjjc if (lgrpid >= NLGRP || nlgrps_alloc > NLGRP) 7032e2c009bSjjc return (NULL); 7042e2c009bSjjc return (lgrp); 7052e2c009bSjjc } 7062e2c009bSjjc 7072e2c009bSjjc 7082e2c009bSjjc /* 7092e2c009bSjjc * Platform handling for (re)configuration changes 7102e2c009bSjjc */ 7112e2c009bSjjc /* ARGSUSED */ 7122e2c009bSjjc void 7132e2c009bSjjc lgrp_plat_config(lgrp_config_flag_t flag, uintptr_t arg) 7142e2c009bSjjc { 7152e2c009bSjjc } 7162e2c009bSjjc 7172e2c009bSjjc 7182e2c009bSjjc /* 7192e2c009bSjjc * Return the platform handle for the lgroup containing the given CPU 7202e2c009bSjjc */ 7212e2c009bSjjc /* ARGSUSED */ 7222e2c009bSjjc lgrp_handle_t 7232e2c009bSjjc lgrp_plat_cpu_to_hand(processorid_t id) 7242e2c009bSjjc { 7252e2c009bSjjc lgrp_handle_t hand; 7262e2c009bSjjc 7272e2c009bSjjc if (lgrp_plat_node_cnt == 1) 7282e2c009bSjjc return (LGRP_DEFAULT_HANDLE); 7292e2c009bSjjc 7302e2c009bSjjc hand = (lgrp_handle_t)lgrp_plat_cpu_to_node(cpu[id], 7312e2c009bSjjc lgrp_plat_cpu_node); 7322e2c009bSjjc 7332e2c009bSjjc ASSERT(hand != (lgrp_handle_t)-1); 7342e2c009bSjjc if (hand == (lgrp_handle_t)-1) 7352e2c009bSjjc return (LGRP_NULL_HANDLE); 7362e2c009bSjjc 7372e2c009bSjjc return (hand); 7382e2c009bSjjc } 7392e2c009bSjjc 7402e2c009bSjjc 7412e2c009bSjjc /* 7422e2c009bSjjc * Platform-specific initialization of lgroups 7432e2c009bSjjc */ 7442e2c009bSjjc void 7452e2c009bSjjc lgrp_plat_init(void) 7462e2c009bSjjc { 7472e2c009bSjjc #if defined(__xpv) 7482e2c009bSjjc /* 7492e2c009bSjjc * XXPV For now, the hypervisor treats all memory equally. 7502e2c009bSjjc */ 7512e2c009bSjjc lgrp_plat_node_cnt = max_mem_nodes = 1; 7522e2c009bSjjc #else /* __xpv */ 7532e2c009bSjjc uint_t probe_op; 7542baa66a0SJonathan Chew u_longlong_t value; 7552baa66a0SJonathan Chew 7562baa66a0SJonathan Chew /* 7572baa66a0SJonathan Chew * Get boot property for lgroup topology height limit 7582baa66a0SJonathan Chew */ 7592baa66a0SJonathan Chew if (bootprop_getval(BP_LGRP_TOPO_LEVELS, &value) == 0) 7602baa66a0SJonathan Chew (void) lgrp_topo_ht_limit_set((int)value); 7612baa66a0SJonathan Chew 7622baa66a0SJonathan Chew /* 7632baa66a0SJonathan Chew * Get boot property for enabling/disabling SRAT 7642baa66a0SJonathan Chew */ 7652baa66a0SJonathan Chew if (bootprop_getval(BP_LGRP_SRAT_ENABLE, &value) == 0) 7662baa66a0SJonathan Chew lgrp_plat_srat_enable = (int)value; 7672baa66a0SJonathan Chew 7682baa66a0SJonathan Chew /* 7692baa66a0SJonathan Chew * Get boot property for enabling/disabling SLIT 7702baa66a0SJonathan Chew */ 7712baa66a0SJonathan Chew if (bootprop_getval(BP_LGRP_SLIT_ENABLE, &value) == 0) 7722baa66a0SJonathan Chew lgrp_plat_slit_enable = (int)value; 7732e2c009bSjjc 7742e2c009bSjjc /* 7752e2c009bSjjc * Initialize as a UMA machine 7762e2c009bSjjc */ 7772e2c009bSjjc if (lgrp_topo_ht_limit() == 1) { 7782e2c009bSjjc lgrp_plat_node_cnt = max_mem_nodes = 1; 7792e2c009bSjjc return; 7802e2c009bSjjc } 7812e2c009bSjjc 7822e2c009bSjjc /* 783dae2fa37Sjjc * Read boot property with CPU to APIC ID mapping table/array and fill 784dae2fa37Sjjc * in CPU to node ID mapping table with APIC ID for each CPU 785dae2fa37Sjjc */ 786d821f0f0Sjjc lgrp_plat_apic_ncpus = 787d821f0f0Sjjc lgrp_plat_process_cpu_apicids(lgrp_plat_cpu_node); 788dae2fa37Sjjc 789dae2fa37Sjjc /* 7902e2c009bSjjc * Determine which CPUs and memory are local to each other and number 7912e2c009bSjjc * of NUMA nodes by reading ACPI System Resource Affinity Table (SRAT) 7922e2c009bSjjc */ 793d821f0f0Sjjc if (lgrp_plat_apic_ncpus > 0) { 794d821f0f0Sjjc int retval; 795d821f0f0Sjjc 796d821f0f0Sjjc retval = lgrp_plat_process_srat(srat_ptr, 79781d9ccb6SJonathan Chew &lgrp_plat_prox_domain_min, 798d821f0f0Sjjc lgrp_plat_node_domain, lgrp_plat_cpu_node, 799d821f0f0Sjjc lgrp_plat_apic_ncpus, lgrp_plat_node_memory); 800d821f0f0Sjjc if (retval <= 0) { 801d821f0f0Sjjc lgrp_plat_srat_error = retval; 802d821f0f0Sjjc lgrp_plat_node_cnt = 1; 803d821f0f0Sjjc } else { 804d821f0f0Sjjc lgrp_plat_srat_error = 0; 805d821f0f0Sjjc lgrp_plat_node_cnt = retval; 806d821f0f0Sjjc } 807dae2fa37Sjjc } 8082e2c009bSjjc 8092e2c009bSjjc /* 810dae2fa37Sjjc * Try to use PCI config space registers on Opteron if there's an error 811dae2fa37Sjjc * processing CPU to APIC ID mapping or SRAT 8122e2c009bSjjc */ 813d821f0f0Sjjc if ((lgrp_plat_apic_ncpus <= 0 || lgrp_plat_srat_error != 0) && 814dae2fa37Sjjc is_opteron()) 8152e2c009bSjjc opt_get_numa_config(&lgrp_plat_node_cnt, &lgrp_plat_mem_intrlv, 8162e2c009bSjjc lgrp_plat_node_memory); 8172e2c009bSjjc 8182e2c009bSjjc /* 8192e2c009bSjjc * Don't bother to setup system for multiple lgroups and only use one 8202e2c009bSjjc * memory node when memory is interleaved between any nodes or there is 8212e2c009bSjjc * only one NUMA node 8222e2c009bSjjc * 8232e2c009bSjjc * NOTE: May need to change this for Dynamic Reconfiguration (DR) 8242e2c009bSjjc * when and if it happens for x86/x64 8252e2c009bSjjc */ 8262e2c009bSjjc if (lgrp_plat_mem_intrlv || lgrp_plat_node_cnt == 1) { 8272e2c009bSjjc lgrp_plat_node_cnt = max_mem_nodes = 1; 8282e2c009bSjjc (void) lgrp_topo_ht_limit_set(1); 8292e2c009bSjjc return; 8302e2c009bSjjc } 8312e2c009bSjjc 8322e2c009bSjjc /* 8332e2c009bSjjc * Leaf lgroups on x86/x64 architectures contain one physical 8342e2c009bSjjc * processor chip. Tune lgrp_expand_proc_thresh and 8352e2c009bSjjc * lgrp_expand_proc_diff so that lgrp_choose() will spread 8362e2c009bSjjc * things out aggressively. 8372e2c009bSjjc */ 8382e2c009bSjjc lgrp_expand_proc_thresh = LGRP_LOADAVG_THREAD_MAX / 2; 8392e2c009bSjjc lgrp_expand_proc_diff = 0; 8402e2c009bSjjc 8412e2c009bSjjc /* 8422e2c009bSjjc * There should be one memnode (physical page free list(s)) for 8432e2c009bSjjc * each node 8442e2c009bSjjc */ 8452e2c009bSjjc max_mem_nodes = lgrp_plat_node_cnt; 8462e2c009bSjjc 8472e2c009bSjjc /* 8485b7cf7f0Sjjc * Initialize min and max latency before reading SLIT or probing 8495b7cf7f0Sjjc */ 8505b7cf7f0Sjjc lgrp_plat_lat_stats.latency_min = -1; 8515b7cf7f0Sjjc lgrp_plat_lat_stats.latency_max = 0; 8525b7cf7f0Sjjc 8535b7cf7f0Sjjc /* 8542e2c009bSjjc * Determine how far each NUMA node is from each other by 8552e2c009bSjjc * reading ACPI System Locality Information Table (SLIT) if it 8562e2c009bSjjc * exists 8572e2c009bSjjc */ 8582e2c009bSjjc lgrp_plat_slit_error = lgrp_plat_process_slit(slit_ptr, 8592e2c009bSjjc lgrp_plat_node_cnt, lgrp_plat_node_memory, 8602e2c009bSjjc &lgrp_plat_lat_stats); 8612e2c009bSjjc if (lgrp_plat_slit_error == 0) 8622e2c009bSjjc return; 8632e2c009bSjjc 8642e2c009bSjjc /* 8652e2c009bSjjc * Probe to determine latency between NUMA nodes when SLIT 8662e2c009bSjjc * doesn't exist or make sense 8672e2c009bSjjc */ 8682e2c009bSjjc lgrp_plat_probe_flags |= LGRP_PLAT_PROBE_ENABLE; 8692e2c009bSjjc 8702e2c009bSjjc /* 8712e2c009bSjjc * Specify whether to probe using vendor ID register or page copy 8722e2c009bSjjc * if hasn't been specified already or is overspecified 8732e2c009bSjjc */ 8742e2c009bSjjc probe_op = lgrp_plat_probe_flags & 8752e2c009bSjjc (LGRP_PLAT_PROBE_PGCPY|LGRP_PLAT_PROBE_VENDOR); 8762e2c009bSjjc 8772e2c009bSjjc if (probe_op == 0 || 8782e2c009bSjjc probe_op == (LGRP_PLAT_PROBE_PGCPY|LGRP_PLAT_PROBE_VENDOR)) { 8792e2c009bSjjc lgrp_plat_probe_flags &= 8802e2c009bSjjc ~(LGRP_PLAT_PROBE_PGCPY|LGRP_PLAT_PROBE_VENDOR); 8812e2c009bSjjc if (is_opteron()) 8822e2c009bSjjc lgrp_plat_probe_flags |= 8832e2c009bSjjc LGRP_PLAT_PROBE_VENDOR; 8842e2c009bSjjc else 8852e2c009bSjjc lgrp_plat_probe_flags |= LGRP_PLAT_PROBE_PGCPY; 8862e2c009bSjjc } 8872e2c009bSjjc 8882e2c009bSjjc /* 8892e2c009bSjjc * Probing errors can mess up the lgroup topology and 8902e2c009bSjjc * force us fall back to a 2 level lgroup topology. 8912e2c009bSjjc * Here we bound how tall the lgroup topology can grow 8922e2c009bSjjc * in hopes of avoiding any anamolies in probing from 8932e2c009bSjjc * messing up the lgroup topology by limiting the 8942e2c009bSjjc * accuracy of the latency topology. 8952e2c009bSjjc * 8962e2c009bSjjc * Assume that nodes will at least be configured in a 8972e2c009bSjjc * ring, so limit height of lgroup topology to be less 8982e2c009bSjjc * than number of nodes on a system with 4 or more 8992e2c009bSjjc * nodes 9002e2c009bSjjc */ 9012e2c009bSjjc if (lgrp_plat_node_cnt >= 4 && lgrp_topo_ht_limit() == 9022e2c009bSjjc lgrp_topo_ht_limit_default()) 9032e2c009bSjjc (void) lgrp_topo_ht_limit_set(lgrp_plat_node_cnt - 1); 9042e2c009bSjjc #endif /* __xpv */ 9052e2c009bSjjc } 9062e2c009bSjjc 9072e2c009bSjjc 9082e2c009bSjjc /* 9092e2c009bSjjc * Return latency between "from" and "to" lgroups 9102e2c009bSjjc * 9112e2c009bSjjc * This latency number can only be used for relative comparison 9122e2c009bSjjc * between lgroups on the running system, cannot be used across platforms, 9132e2c009bSjjc * and may not reflect the actual latency. It is platform and implementation 9142e2c009bSjjc * specific, so platform gets to decide its value. It would be nice if the 9152e2c009bSjjc * number was at least proportional to make comparisons more meaningful though. 9162e2c009bSjjc */ 9172e2c009bSjjc /* ARGSUSED */ 9182e2c009bSjjc int 9192e2c009bSjjc lgrp_plat_latency(lgrp_handle_t from, lgrp_handle_t to) 9202e2c009bSjjc { 9212e2c009bSjjc lgrp_handle_t src, dest; 9222e2c009bSjjc int node; 9232e2c009bSjjc 9242e2c009bSjjc if (max_mem_nodes == 1) 9252e2c009bSjjc return (0); 9262e2c009bSjjc 9272e2c009bSjjc /* 9282e2c009bSjjc * Return max latency for root lgroup 9292e2c009bSjjc */ 9302e2c009bSjjc if (from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE) 9312e2c009bSjjc return (lgrp_plat_lat_stats.latency_max); 9322e2c009bSjjc 9332e2c009bSjjc src = from; 9342e2c009bSjjc dest = to; 9352e2c009bSjjc 9362e2c009bSjjc /* 9372e2c009bSjjc * Return 0 for nodes (lgroup platform handles) out of range 9382e2c009bSjjc */ 9392e2c009bSjjc if (src < 0 || src >= MAX_NODES || dest < 0 || dest >= MAX_NODES) 9402e2c009bSjjc return (0); 9412e2c009bSjjc 9422e2c009bSjjc /* 9432e2c009bSjjc * Probe from current CPU if its lgroup latencies haven't been set yet 9442e2c009bSjjc * and we are trying to get latency from current CPU to some node 9452e2c009bSjjc */ 9462e2c009bSjjc node = lgrp_plat_cpu_to_node(CPU, lgrp_plat_cpu_node); 9472e2c009bSjjc ASSERT(node >= 0 && node < lgrp_plat_node_cnt); 9482e2c009bSjjc if (lgrp_plat_lat_stats.latencies[src][src] == 0 && node == src) 9492e2c009bSjjc lgrp_plat_probe(); 9502e2c009bSjjc 9512e2c009bSjjc return (lgrp_plat_lat_stats.latencies[src][dest]); 9522e2c009bSjjc } 9532e2c009bSjjc 9542e2c009bSjjc 9552e2c009bSjjc /* 9562e2c009bSjjc * Platform-specific initialization 9572e2c009bSjjc */ 9582e2c009bSjjc void 9592e2c009bSjjc lgrp_plat_main_init(void) 9602e2c009bSjjc { 9612e2c009bSjjc int curnode; 9622e2c009bSjjc int ht_limit; 9632e2c009bSjjc int i; 9642e2c009bSjjc 9652e2c009bSjjc /* 9662e2c009bSjjc * Print a notice that MPO is disabled when memory is interleaved 9672e2c009bSjjc * across nodes....Would do this when it is discovered, but can't 9682e2c009bSjjc * because it happens way too early during boot.... 9692e2c009bSjjc */ 9702e2c009bSjjc if (lgrp_plat_mem_intrlv) 9712e2c009bSjjc cmn_err(CE_NOTE, 9722e2c009bSjjc "MPO disabled because memory is interleaved\n"); 9732e2c009bSjjc 9742e2c009bSjjc /* 9752e2c009bSjjc * Don't bother to do any probing if it is disabled, there is only one 9762e2c009bSjjc * node, or the height of the lgroup topology less than or equal to 2 9772e2c009bSjjc */ 9782e2c009bSjjc ht_limit = lgrp_topo_ht_limit(); 9792e2c009bSjjc if (!(lgrp_plat_probe_flags & LGRP_PLAT_PROBE_ENABLE) || 9802e2c009bSjjc max_mem_nodes == 1 || ht_limit <= 2) { 9812e2c009bSjjc /* 9822e2c009bSjjc * Setup lgroup latencies for 2 level lgroup topology 9832e2c009bSjjc * (ie. local and remote only) if they haven't been set yet 9842e2c009bSjjc */ 9852e2c009bSjjc if (ht_limit == 2 && lgrp_plat_lat_stats.latency_min == -1 && 9862e2c009bSjjc lgrp_plat_lat_stats.latency_max == 0) 9872e2c009bSjjc lgrp_plat_2level_setup(lgrp_plat_node_memory, 9882e2c009bSjjc &lgrp_plat_lat_stats); 9892e2c009bSjjc return; 9902e2c009bSjjc } 9912e2c009bSjjc 9922e2c009bSjjc if (lgrp_plat_probe_flags & LGRP_PLAT_PROBE_VENDOR) { 9932e2c009bSjjc /* 9942e2c009bSjjc * Should have been able to probe from CPU 0 when it was added 9952e2c009bSjjc * to lgroup hierarchy, but may not have been able to then 9962e2c009bSjjc * because it happens so early in boot that gethrtime() hasn't 9972e2c009bSjjc * been initialized. (:-( 9982e2c009bSjjc */ 9992e2c009bSjjc curnode = lgrp_plat_cpu_to_node(CPU, lgrp_plat_cpu_node); 10002e2c009bSjjc ASSERT(curnode >= 0 && curnode < lgrp_plat_node_cnt); 10012e2c009bSjjc if (lgrp_plat_lat_stats.latencies[curnode][curnode] == 0) 10022e2c009bSjjc lgrp_plat_probe(); 10032e2c009bSjjc 10042e2c009bSjjc return; 10052e2c009bSjjc } 10062e2c009bSjjc 10072e2c009bSjjc /* 10082e2c009bSjjc * When probing memory, use one page for every sample to determine 10092e2c009bSjjc * lgroup topology and taking multiple samples 10102e2c009bSjjc */ 10112e2c009bSjjc if (lgrp_plat_probe_mem_config.probe_memsize == 0) 10122e2c009bSjjc lgrp_plat_probe_mem_config.probe_memsize = PAGESIZE * 10132e2c009bSjjc lgrp_plat_probe_nsamples; 10142e2c009bSjjc 10152e2c009bSjjc /* 10162e2c009bSjjc * Map memory in each node needed for probing to determine latency 10172e2c009bSjjc * topology 10182e2c009bSjjc */ 10192e2c009bSjjc for (i = 0; i < lgrp_plat_node_cnt; i++) { 10202e2c009bSjjc int mnode; 10212e2c009bSjjc 10222e2c009bSjjc /* 10232e2c009bSjjc * Skip this node and leave its probe page NULL 10242e2c009bSjjc * if it doesn't have any memory 10252e2c009bSjjc */ 10262e2c009bSjjc mnode = plat_lgrphand_to_mem_node((lgrp_handle_t)i); 10272e2c009bSjjc if (!mem_node_config[mnode].exists) { 10282e2c009bSjjc lgrp_plat_probe_mem_config.probe_va[i] = NULL; 10292e2c009bSjjc continue; 10302e2c009bSjjc } 10312e2c009bSjjc 10322e2c009bSjjc /* 10332e2c009bSjjc * Allocate one kernel virtual page 10342e2c009bSjjc */ 10352e2c009bSjjc lgrp_plat_probe_mem_config.probe_va[i] = vmem_alloc(heap_arena, 10362e2c009bSjjc lgrp_plat_probe_mem_config.probe_memsize, VM_NOSLEEP); 10372e2c009bSjjc if (lgrp_plat_probe_mem_config.probe_va[i] == NULL) { 10382e2c009bSjjc cmn_err(CE_WARN, 10392e2c009bSjjc "lgrp_plat_main_init: couldn't allocate memory"); 10402e2c009bSjjc return; 10412e2c009bSjjc } 10422e2c009bSjjc 10432e2c009bSjjc /* 10442e2c009bSjjc * Get PFN for first page in each node 10452e2c009bSjjc */ 10462e2c009bSjjc lgrp_plat_probe_mem_config.probe_pfn[i] = 10472e2c009bSjjc mem_node_config[mnode].physbase; 10482e2c009bSjjc 10492e2c009bSjjc /* 10502e2c009bSjjc * Map virtual page to first page in node 10512e2c009bSjjc */ 10522e2c009bSjjc hat_devload(kas.a_hat, lgrp_plat_probe_mem_config.probe_va[i], 10532e2c009bSjjc lgrp_plat_probe_mem_config.probe_memsize, 10542e2c009bSjjc lgrp_plat_probe_mem_config.probe_pfn[i], 10552e2c009bSjjc PROT_READ | PROT_WRITE | HAT_PLAT_NOCACHE, 10562e2c009bSjjc HAT_LOAD_NOCONSIST); 10572e2c009bSjjc } 10582e2c009bSjjc 10592e2c009bSjjc /* 10602e2c009bSjjc * Probe from current CPU 10612e2c009bSjjc */ 10622e2c009bSjjc lgrp_plat_probe(); 10632e2c009bSjjc } 10642e2c009bSjjc 10652e2c009bSjjc 10662e2c009bSjjc /* 10672e2c009bSjjc * Return the maximum number of lgrps supported by the platform. 10682e2c009bSjjc * Before lgrp topology is known it returns an estimate based on the number of 10692e2c009bSjjc * nodes. Once topology is known it returns the actual maximim number of lgrps 10702e2c009bSjjc * created. Since x86/x64 doesn't support Dynamic Reconfiguration (DR) and 10712e2c009bSjjc * dynamic addition of new nodes, this number may not grow during system 10722e2c009bSjjc * lifetime (yet). 10732e2c009bSjjc */ 10742e2c009bSjjc int 10752e2c009bSjjc lgrp_plat_max_lgrps(void) 10762e2c009bSjjc { 10772e2c009bSjjc return (lgrp_topo_initialized ? 10782e2c009bSjjc lgrp_alloc_max + 1 : 10792e2c009bSjjc lgrp_plat_node_cnt * (lgrp_plat_node_cnt - 1) + 1); 10802e2c009bSjjc } 10812e2c009bSjjc 10822e2c009bSjjc 10832e2c009bSjjc /* 10842e2c009bSjjc * Return the number of free pages in an lgroup. 10852e2c009bSjjc * 10862e2c009bSjjc * For query of LGRP_MEM_SIZE_FREE, return the number of base pagesize 10872e2c009bSjjc * pages on freelists. For query of LGRP_MEM_SIZE_AVAIL, return the 10882e2c009bSjjc * number of allocatable base pagesize pages corresponding to the 10892e2c009bSjjc * lgroup (e.g. do not include page_t's, BOP_ALLOC()'ed memory, ..) 10902e2c009bSjjc * For query of LGRP_MEM_SIZE_INSTALL, return the amount of physical 10912e2c009bSjjc * memory installed, regardless of whether or not it's usable. 10922e2c009bSjjc */ 10932e2c009bSjjc pgcnt_t 10942e2c009bSjjc lgrp_plat_mem_size(lgrp_handle_t plathand, lgrp_mem_query_t query) 10952e2c009bSjjc { 10962e2c009bSjjc int mnode; 10972e2c009bSjjc pgcnt_t npgs = (pgcnt_t)0; 10982e2c009bSjjc extern struct memlist *phys_avail; 10992e2c009bSjjc extern struct memlist *phys_install; 11002e2c009bSjjc 11012e2c009bSjjc 11022e2c009bSjjc if (plathand == LGRP_DEFAULT_HANDLE) 11032e2c009bSjjc return (lgrp_plat_mem_size_default(plathand, query)); 11042e2c009bSjjc 11052e2c009bSjjc if (plathand != LGRP_NULL_HANDLE) { 11062e2c009bSjjc mnode = plat_lgrphand_to_mem_node(plathand); 11072e2c009bSjjc if (mnode >= 0 && mem_node_config[mnode].exists) { 11082e2c009bSjjc switch (query) { 11092e2c009bSjjc case LGRP_MEM_SIZE_FREE: 11102e2c009bSjjc npgs = MNODE_PGCNT(mnode); 11112e2c009bSjjc break; 11122e2c009bSjjc case LGRP_MEM_SIZE_AVAIL: 11132e2c009bSjjc npgs = mem_node_memlist_pages(mnode, 11142e2c009bSjjc phys_avail); 11152e2c009bSjjc break; 11162e2c009bSjjc case LGRP_MEM_SIZE_INSTALL: 11172e2c009bSjjc npgs = mem_node_memlist_pages(mnode, 11182e2c009bSjjc phys_install); 11192e2c009bSjjc break; 11202e2c009bSjjc default: 11212e2c009bSjjc break; 11222e2c009bSjjc } 11232e2c009bSjjc } 11242e2c009bSjjc } 11252e2c009bSjjc return (npgs); 11262e2c009bSjjc } 11272e2c009bSjjc 11282e2c009bSjjc 11292e2c009bSjjc /* 11302e2c009bSjjc * Return the platform handle of the lgroup that contains the physical memory 11312e2c009bSjjc * corresponding to the given page frame number 11322e2c009bSjjc */ 11332e2c009bSjjc /* ARGSUSED */ 11342e2c009bSjjc lgrp_handle_t 11352e2c009bSjjc lgrp_plat_pfn_to_hand(pfn_t pfn) 11362e2c009bSjjc { 11372e2c009bSjjc int mnode; 11382e2c009bSjjc 11392e2c009bSjjc if (max_mem_nodes == 1) 11402e2c009bSjjc return (LGRP_DEFAULT_HANDLE); 11412e2c009bSjjc 11422e2c009bSjjc if (pfn > physmax) 11432e2c009bSjjc return (LGRP_NULL_HANDLE); 11442e2c009bSjjc 11452e2c009bSjjc mnode = plat_pfn_to_mem_node(pfn); 11462e2c009bSjjc if (mnode < 0) 11472e2c009bSjjc return (LGRP_NULL_HANDLE); 11482e2c009bSjjc 11492e2c009bSjjc return (MEM_NODE_2_LGRPHAND(mnode)); 11502e2c009bSjjc } 11512e2c009bSjjc 11522e2c009bSjjc 11532e2c009bSjjc /* 11542e2c009bSjjc * Probe memory in each node from current CPU to determine latency topology 11552e2c009bSjjc * 11562e2c009bSjjc * The probing code will probe the vendor ID register on the Northbridge of 11572e2c009bSjjc * Opteron processors and probe memory for other processors by default. 11582e2c009bSjjc * 11592e2c009bSjjc * Since probing is inherently error prone, the code takes laps across all the 11602e2c009bSjjc * nodes probing from each node to each of the other nodes some number of 11612e2c009bSjjc * times. Furthermore, each node is probed some number of times before moving 11622e2c009bSjjc * onto the next one during each lap. The minimum latency gotten between nodes 11632e2c009bSjjc * is kept as the latency between the nodes. 11642e2c009bSjjc * 11652e2c009bSjjc * After all that, the probe times are adjusted by normalizing values that are 11662e2c009bSjjc * close to each other and local latencies are made the same. Lastly, the 11672e2c009bSjjc * latencies are verified to make sure that certain conditions are met (eg. 11682e2c009bSjjc * local < remote, latency(a, b) == latency(b, a), etc.). 11692e2c009bSjjc * 11702e2c009bSjjc * If any of the conditions aren't met, the code will export a NUMA 11712e2c009bSjjc * configuration with the local CPUs and memory given by the SRAT or PCI config 11722e2c009bSjjc * space registers and one remote memory latency since it can't tell exactly 11732e2c009bSjjc * how far each node is from each other. 11742e2c009bSjjc */ 11752e2c009bSjjc void 11762e2c009bSjjc lgrp_plat_probe(void) 11772e2c009bSjjc { 11782e2c009bSjjc int from; 11792e2c009bSjjc int i; 11802e2c009bSjjc lgrp_plat_latency_stats_t *lat_stats; 1181*1ce8847aSJonathan Chew boolean_t probed; 11822e2c009bSjjc hrtime_t probe_time; 11832e2c009bSjjc int to; 11842e2c009bSjjc 11852e2c009bSjjc if (!(lgrp_plat_probe_flags & LGRP_PLAT_PROBE_ENABLE) || 11862e2c009bSjjc max_mem_nodes == 1 || lgrp_topo_ht_limit() <= 2) 11872e2c009bSjjc return; 11882e2c009bSjjc 11892e2c009bSjjc /* 11902e2c009bSjjc * Determine ID of node containing current CPU 11912e2c009bSjjc */ 11922e2c009bSjjc from = lgrp_plat_cpu_to_node(CPU, lgrp_plat_cpu_node); 11932e2c009bSjjc ASSERT(from >= 0 && from < lgrp_plat_node_cnt); 11942e2c009bSjjc if (srat_ptr && lgrp_plat_srat_enable && !lgrp_plat_srat_error) 11952e2c009bSjjc ASSERT(lgrp_plat_node_domain[from].exists); 11962e2c009bSjjc 11972e2c009bSjjc /* 11982e2c009bSjjc * Don't need to probe if got times already 11992e2c009bSjjc */ 12002e2c009bSjjc lat_stats = &lgrp_plat_lat_stats; 12012e2c009bSjjc if (lat_stats->latencies[from][from] != 0) 12022e2c009bSjjc return; 12032e2c009bSjjc 12042e2c009bSjjc /* 12052e2c009bSjjc * Read vendor ID in Northbridge or read and write page(s) 12062e2c009bSjjc * in each node from current CPU and remember how long it takes, 12072e2c009bSjjc * so we can build latency topology of machine later. 12082e2c009bSjjc * This should approximate the memory latency between each node. 12092e2c009bSjjc */ 1210*1ce8847aSJonathan Chew probed = B_FALSE; 12112e2c009bSjjc for (i = 0; i < lgrp_plat_probe_nrounds; i++) { 12122e2c009bSjjc for (to = 0; to < lgrp_plat_node_cnt; to++) { 12132e2c009bSjjc /* 1214*1ce8847aSJonathan Chew * Get probe time and skip over any nodes that can't be 1215*1ce8847aSJonathan Chew * probed yet or don't have memory 12162e2c009bSjjc */ 12172e2c009bSjjc probe_time = lgrp_plat_probe_time(to, 12182e2c009bSjjc lgrp_plat_cpu_node, &lgrp_plat_probe_mem_config, 12192e2c009bSjjc &lgrp_plat_lat_stats, &lgrp_plat_probe_stats); 12202e2c009bSjjc if (probe_time == 0) 1221*1ce8847aSJonathan Chew continue; 1222*1ce8847aSJonathan Chew 1223*1ce8847aSJonathan Chew probed = B_TRUE; 12242e2c009bSjjc 12252e2c009bSjjc /* 12262e2c009bSjjc * Keep lowest probe time as latency between nodes 12272e2c009bSjjc */ 12282e2c009bSjjc if (lat_stats->latencies[from][to] == 0 || 12292e2c009bSjjc probe_time < lat_stats->latencies[from][to]) 12302e2c009bSjjc lat_stats->latencies[from][to] = probe_time; 12312e2c009bSjjc 12322e2c009bSjjc /* 12332e2c009bSjjc * Update overall minimum and maximum probe times 12342e2c009bSjjc * across all nodes 12352e2c009bSjjc */ 12362e2c009bSjjc if (probe_time < lat_stats->latency_min || 12372e2c009bSjjc lat_stats->latency_min == -1) 12382e2c009bSjjc lat_stats->latency_min = probe_time; 12392e2c009bSjjc if (probe_time > lat_stats->latency_max) 12402e2c009bSjjc lat_stats->latency_max = probe_time; 12412e2c009bSjjc } 12422e2c009bSjjc } 12432e2c009bSjjc 12442e2c009bSjjc /* 1245*1ce8847aSJonathan Chew * Bail out if weren't able to probe any nodes from current CPU 1246*1ce8847aSJonathan Chew */ 1247*1ce8847aSJonathan Chew if (probed == B_FALSE) 1248*1ce8847aSJonathan Chew return; 1249*1ce8847aSJonathan Chew 1250*1ce8847aSJonathan Chew /* 12512e2c009bSjjc * - Fix up latencies such that local latencies are same, 12522e2c009bSjjc * latency(i, j) == latency(j, i), etc. (if possible) 12532e2c009bSjjc * 12542e2c009bSjjc * - Verify that latencies look ok 12552e2c009bSjjc * 12562e2c009bSjjc * - Fallback to just optimizing for local and remote if 12572e2c009bSjjc * latencies didn't look right 12582e2c009bSjjc */ 12592e2c009bSjjc lgrp_plat_latency_adjust(lgrp_plat_node_memory, &lgrp_plat_lat_stats, 12602e2c009bSjjc &lgrp_plat_probe_stats); 12612e2c009bSjjc lgrp_plat_probe_stats.probe_error_code = 12622e2c009bSjjc lgrp_plat_latency_verify(lgrp_plat_node_memory, 12632e2c009bSjjc &lgrp_plat_lat_stats); 12642e2c009bSjjc if (lgrp_plat_probe_stats.probe_error_code) 12652e2c009bSjjc lgrp_plat_2level_setup(lgrp_plat_node_memory, 12662e2c009bSjjc &lgrp_plat_lat_stats); 12672e2c009bSjjc } 12682e2c009bSjjc 12692e2c009bSjjc 12702e2c009bSjjc /* 12712e2c009bSjjc * Return platform handle for root lgroup 12722e2c009bSjjc */ 12732e2c009bSjjc lgrp_handle_t 12742e2c009bSjjc lgrp_plat_root_hand(void) 12752e2c009bSjjc { 12762e2c009bSjjc return (LGRP_DEFAULT_HANDLE); 12772e2c009bSjjc } 12782e2c009bSjjc 12792e2c009bSjjc 12802e2c009bSjjc /* 12812e2c009bSjjc * INTERNAL ROUTINES 12822e2c009bSjjc */ 12832e2c009bSjjc 12842e2c009bSjjc 12852e2c009bSjjc /* 12862e2c009bSjjc * Update CPU to node mapping for given CPU and proximity domain (and returns 12872e2c009bSjjc * negative numbers for errors and positive ones for success) 12882e2c009bSjjc */ 12892e2c009bSjjc static int 1290d821f0f0Sjjc lgrp_plat_cpu_node_update(node_domain_map_t *node_domain, int node_cnt, 1291dae2fa37Sjjc cpu_node_map_t *cpu_node, int nentries, uint32_t apicid, uint32_t domain) 12922e2c009bSjjc { 12932e2c009bSjjc uint_t i; 12942e2c009bSjjc int node; 12952e2c009bSjjc 12962e2c009bSjjc /* 12972e2c009bSjjc * Get node number for proximity domain 12982e2c009bSjjc */ 1299d821f0f0Sjjc node = lgrp_plat_domain_to_node(node_domain, node_cnt, domain); 13002e2c009bSjjc if (node == -1) { 1301d821f0f0Sjjc node = lgrp_plat_node_domain_update(node_domain, node_cnt, 1302d821f0f0Sjjc domain); 13032e2c009bSjjc if (node == -1) 13042e2c009bSjjc return (-1); 13052e2c009bSjjc } 13062e2c009bSjjc 13072e2c009bSjjc /* 1308dae2fa37Sjjc * Search for entry with given APIC ID and fill in its node and 1309dae2fa37Sjjc * proximity domain IDs (if they haven't been set already) 13102e2c009bSjjc */ 1311dae2fa37Sjjc for (i = 0; i < nentries; i++) { 13122e2c009bSjjc /* 1313dae2fa37Sjjc * Skip nonexistent entries and ones without matching APIC ID 13142e2c009bSjjc */ 1315dae2fa37Sjjc if (!cpu_node[i].exists || cpu_node[i].apicid != apicid) 1316dae2fa37Sjjc continue; 1317dae2fa37Sjjc 13182e2c009bSjjc /* 1319dae2fa37Sjjc * Just return if entry completely and correctly filled in 1320dae2fa37Sjjc * already 13212e2c009bSjjc */ 13222e2c009bSjjc if (cpu_node[i].prox_domain == domain && 13232e2c009bSjjc cpu_node[i].node == node) 13242e2c009bSjjc return (1); 13252e2c009bSjjc 13262e2c009bSjjc /* 1327dae2fa37Sjjc * Fill in node and proximity domain IDs 13282e2c009bSjjc */ 13292e2c009bSjjc cpu_node[i].prox_domain = domain; 13302e2c009bSjjc cpu_node[i].node = node; 1331dae2fa37Sjjc 13322e2c009bSjjc return (0); 13332e2c009bSjjc } 13342e2c009bSjjc 13352e2c009bSjjc /* 1336dae2fa37Sjjc * Return error when entry for APIC ID wasn't found in table 13372e2c009bSjjc */ 1338dae2fa37Sjjc return (-2); 13392e2c009bSjjc } 13402e2c009bSjjc 13412e2c009bSjjc 13422e2c009bSjjc /* 1343dae2fa37Sjjc * Get node ID for given CPU 13442e2c009bSjjc */ 13452e2c009bSjjc static int 13462e2c009bSjjc lgrp_plat_cpu_to_node(cpu_t *cp, cpu_node_map_t *cpu_node) 13472e2c009bSjjc { 1348dae2fa37Sjjc processorid_t cpuid; 13492e2c009bSjjc 13502e2c009bSjjc if (cp == NULL) 13512e2c009bSjjc return (-1); 13522e2c009bSjjc 1353dae2fa37Sjjc cpuid = cp->cpu_id; 1354dae2fa37Sjjc if (cpuid < 0 || cpuid >= max_ncpus) 1355dae2fa37Sjjc return (-1); 1356dae2fa37Sjjc 13572e2c009bSjjc /* 13582e2c009bSjjc * SRAT doesn't exist, isn't enabled, or there was an error processing 13592e2c009bSjjc * it, so return chip ID for Opteron and -1 otherwise. 13602e2c009bSjjc */ 13612e2c009bSjjc if (srat_ptr == NULL || !lgrp_plat_srat_enable || 13622e2c009bSjjc lgrp_plat_srat_error) { 13632e2c009bSjjc if (is_opteron()) 13642e2c009bSjjc return (pg_plat_hw_instance_id(cp, PGHW_CHIP)); 13652e2c009bSjjc return (-1); 13662e2c009bSjjc } 13672e2c009bSjjc 13682e2c009bSjjc /* 1369dae2fa37Sjjc * Return -1 when CPU to node ID mapping entry doesn't exist for given 1370dae2fa37Sjjc * CPU 13712e2c009bSjjc */ 1372dae2fa37Sjjc if (!cpu_node[cpuid].exists) 13732e2c009bSjjc return (-1); 1374dae2fa37Sjjc 1375dae2fa37Sjjc return (cpu_node[cpuid].node); 13762e2c009bSjjc } 13772e2c009bSjjc 13782e2c009bSjjc 13792e2c009bSjjc /* 13802e2c009bSjjc * Return node number for given proximity domain/system locality 13812e2c009bSjjc */ 13822e2c009bSjjc static int 1383d821f0f0Sjjc lgrp_plat_domain_to_node(node_domain_map_t *node_domain, int node_cnt, 1384d821f0f0Sjjc uint32_t domain) 13852e2c009bSjjc { 13862e2c009bSjjc uint_t node; 13872e2c009bSjjc uint_t start; 13882e2c009bSjjc 13892e2c009bSjjc /* 13902e2c009bSjjc * Hash proximity domain ID into node to domain mapping table (array), 13912e2c009bSjjc * search for entry with matching proximity domain ID, and return index 13922e2c009bSjjc * of matching entry as node ID. 13932e2c009bSjjc */ 1394d821f0f0Sjjc node = start = NODE_DOMAIN_HASH(domain, node_cnt); 13952e2c009bSjjc do { 13962e2c009bSjjc if (node_domain[node].prox_domain == domain && 13972e2c009bSjjc node_domain[node].exists) 13982e2c009bSjjc return (node); 1399cf5755f2SJonathan Chew node = (node + 1) % node_cnt; 14002e2c009bSjjc } while (node != start); 14012e2c009bSjjc return (-1); 14022e2c009bSjjc } 14032e2c009bSjjc 14042e2c009bSjjc 14052e2c009bSjjc /* 14062e2c009bSjjc * Latencies must be within 1/(2**LGRP_LAT_TOLERANCE_SHIFT) of each other to 14072e2c009bSjjc * be considered same 14082e2c009bSjjc */ 14092e2c009bSjjc #define LGRP_LAT_TOLERANCE_SHIFT 4 14102e2c009bSjjc 14112e2c009bSjjc int lgrp_plat_probe_lt_shift = LGRP_LAT_TOLERANCE_SHIFT; 14122e2c009bSjjc 14132e2c009bSjjc 14142e2c009bSjjc /* 14152e2c009bSjjc * Adjust latencies between nodes to be symmetric, normalize latencies between 14162e2c009bSjjc * any nodes that are within some tolerance to be same, and make local 14172e2c009bSjjc * latencies be same 14182e2c009bSjjc */ 14192e2c009bSjjc static void 14202e2c009bSjjc lgrp_plat_latency_adjust(node_phys_addr_map_t *node_memory, 14212e2c009bSjjc lgrp_plat_latency_stats_t *lat_stats, lgrp_plat_probe_stats_t *probe_stats) 14222e2c009bSjjc { 14232e2c009bSjjc int i; 14242e2c009bSjjc int j; 14252e2c009bSjjc int k; 14262e2c009bSjjc int l; 14272e2c009bSjjc u_longlong_t max; 14282e2c009bSjjc u_longlong_t min; 14292e2c009bSjjc u_longlong_t t; 14302e2c009bSjjc u_longlong_t t1; 14312e2c009bSjjc u_longlong_t t2; 14322e2c009bSjjc const lgrp_config_flag_t cflag = LGRP_CONFIG_LAT_CHANGE_ALL; 14332e2c009bSjjc int lat_corrected[MAX_NODES][MAX_NODES]; 14342e2c009bSjjc 14352e2c009bSjjc /* 14362e2c009bSjjc * Nothing to do when this is an UMA machine or don't have args needed 14372e2c009bSjjc */ 14382e2c009bSjjc if (max_mem_nodes == 1) 14392e2c009bSjjc return; 14402e2c009bSjjc 14412e2c009bSjjc ASSERT(node_memory != NULL && lat_stats != NULL && 14422e2c009bSjjc probe_stats != NULL); 14432e2c009bSjjc 14442e2c009bSjjc /* 14452e2c009bSjjc * Make sure that latencies are symmetric between any two nodes 14462e2c009bSjjc * (ie. latency(node0, node1) == latency(node1, node0)) 14472e2c009bSjjc */ 14482e2c009bSjjc for (i = 0; i < lgrp_plat_node_cnt; i++) { 14492e2c009bSjjc if (!node_memory[i].exists) 14502e2c009bSjjc continue; 14512e2c009bSjjc 14522e2c009bSjjc for (j = 0; j < lgrp_plat_node_cnt; j++) { 14532e2c009bSjjc if (!node_memory[j].exists) 14542e2c009bSjjc continue; 14552e2c009bSjjc 14562e2c009bSjjc t1 = lat_stats->latencies[i][j]; 14572e2c009bSjjc t2 = lat_stats->latencies[j][i]; 14582e2c009bSjjc 14592e2c009bSjjc if (t1 == 0 || t2 == 0 || t1 == t2) 14602e2c009bSjjc continue; 14612e2c009bSjjc 14622e2c009bSjjc /* 14632e2c009bSjjc * Latencies should be same 14642e2c009bSjjc * - Use minimum of two latencies which should be same 14652e2c009bSjjc * - Track suspect probe times not within tolerance of 14662e2c009bSjjc * min value 14672e2c009bSjjc * - Remember how much values are corrected by 14682e2c009bSjjc */ 14692e2c009bSjjc if (t1 > t2) { 14702e2c009bSjjc t = t2; 14712e2c009bSjjc probe_stats->probe_errors[i][j] += t1 - t2; 14722e2c009bSjjc if (t1 - t2 > t2 >> lgrp_plat_probe_lt_shift) { 14732e2c009bSjjc probe_stats->probe_suspect[i][j]++; 14742e2c009bSjjc probe_stats->probe_suspect[j][i]++; 14752e2c009bSjjc } 14762e2c009bSjjc } else if (t2 > t1) { 14772e2c009bSjjc t = t1; 14782e2c009bSjjc probe_stats->probe_errors[j][i] += t2 - t1; 14792e2c009bSjjc if (t2 - t1 > t1 >> lgrp_plat_probe_lt_shift) { 14802e2c009bSjjc probe_stats->probe_suspect[i][j]++; 14812e2c009bSjjc probe_stats->probe_suspect[j][i]++; 14822e2c009bSjjc } 14832e2c009bSjjc } 14842e2c009bSjjc 14852e2c009bSjjc lat_stats->latencies[i][j] = 14862e2c009bSjjc lat_stats->latencies[j][i] = t; 14872e2c009bSjjc lgrp_config(cflag, t1, t); 14882e2c009bSjjc lgrp_config(cflag, t2, t); 14892e2c009bSjjc } 14902e2c009bSjjc } 14912e2c009bSjjc 14922e2c009bSjjc /* 14932e2c009bSjjc * Keep track of which latencies get corrected 14942e2c009bSjjc */ 14952e2c009bSjjc for (i = 0; i < MAX_NODES; i++) 14962e2c009bSjjc for (j = 0; j < MAX_NODES; j++) 14972e2c009bSjjc lat_corrected[i][j] = 0; 14982e2c009bSjjc 14992e2c009bSjjc /* 15002e2c009bSjjc * For every two nodes, see whether there is another pair of nodes which 15012e2c009bSjjc * are about the same distance apart and make the latencies be the same 15022e2c009bSjjc * if they are close enough together 15032e2c009bSjjc */ 15042e2c009bSjjc for (i = 0; i < lgrp_plat_node_cnt; i++) { 15052e2c009bSjjc for (j = 0; j < lgrp_plat_node_cnt; j++) { 15062e2c009bSjjc if (!node_memory[j].exists) 15072e2c009bSjjc continue; 15082e2c009bSjjc /* 15092e2c009bSjjc * Pick one pair of nodes (i, j) 15102e2c009bSjjc * and get latency between them 15112e2c009bSjjc */ 15122e2c009bSjjc t1 = lat_stats->latencies[i][j]; 15132e2c009bSjjc 15142e2c009bSjjc /* 15152e2c009bSjjc * Skip this pair of nodes if there isn't a latency 15162e2c009bSjjc * for it yet 15172e2c009bSjjc */ 15182e2c009bSjjc if (t1 == 0) 15192e2c009bSjjc continue; 15202e2c009bSjjc 15212e2c009bSjjc for (k = 0; k < lgrp_plat_node_cnt; k++) { 15222e2c009bSjjc for (l = 0; l < lgrp_plat_node_cnt; l++) { 15232e2c009bSjjc if (!node_memory[l].exists) 15242e2c009bSjjc continue; 15252e2c009bSjjc /* 15262e2c009bSjjc * Pick another pair of nodes (k, l) 15272e2c009bSjjc * not same as (i, j) and get latency 15282e2c009bSjjc * between them 15292e2c009bSjjc */ 15302e2c009bSjjc if (k == i && l == j) 15312e2c009bSjjc continue; 15322e2c009bSjjc 15332e2c009bSjjc t2 = lat_stats->latencies[k][l]; 15342e2c009bSjjc 15352e2c009bSjjc /* 15362e2c009bSjjc * Skip this pair of nodes if there 15372e2c009bSjjc * isn't a latency for it yet 15382e2c009bSjjc */ 15392e2c009bSjjc 15402e2c009bSjjc if (t2 == 0) 15412e2c009bSjjc continue; 15422e2c009bSjjc 15432e2c009bSjjc /* 15442e2c009bSjjc * Skip nodes (k, l) if they already 15452e2c009bSjjc * have same latency as (i, j) or 15462e2c009bSjjc * their latency isn't close enough to 15472e2c009bSjjc * be considered/made the same 15482e2c009bSjjc */ 15492e2c009bSjjc if (t1 == t2 || (t1 > t2 && t1 - t2 > 15502e2c009bSjjc t1 >> lgrp_plat_probe_lt_shift) || 15512e2c009bSjjc (t2 > t1 && t2 - t1 > 15522e2c009bSjjc t2 >> lgrp_plat_probe_lt_shift)) 15532e2c009bSjjc continue; 15542e2c009bSjjc 15552e2c009bSjjc /* 15562e2c009bSjjc * Make latency(i, j) same as 15572e2c009bSjjc * latency(k, l), try to use latency 15582e2c009bSjjc * that has been adjusted already to get 15592e2c009bSjjc * more consistency (if possible), and 15602e2c009bSjjc * remember which latencies were 15612e2c009bSjjc * adjusted for next time 15622e2c009bSjjc */ 15632e2c009bSjjc if (lat_corrected[i][j]) { 15642e2c009bSjjc t = t1; 15652e2c009bSjjc lgrp_config(cflag, t2, t); 15662e2c009bSjjc t2 = t; 15672e2c009bSjjc } else if (lat_corrected[k][l]) { 15682e2c009bSjjc t = t2; 15692e2c009bSjjc lgrp_config(cflag, t1, t); 15702e2c009bSjjc t1 = t; 15712e2c009bSjjc } else { 15722e2c009bSjjc if (t1 > t2) 15732e2c009bSjjc t = t2; 15742e2c009bSjjc else 15752e2c009bSjjc t = t1; 15762e2c009bSjjc lgrp_config(cflag, t1, t); 15772e2c009bSjjc lgrp_config(cflag, t2, t); 15782e2c009bSjjc t1 = t2 = t; 15792e2c009bSjjc } 15802e2c009bSjjc 15812e2c009bSjjc lat_stats->latencies[i][j] = 15822e2c009bSjjc lat_stats->latencies[k][l] = t; 15832e2c009bSjjc 15842e2c009bSjjc lat_corrected[i][j] = 15852e2c009bSjjc lat_corrected[k][l] = 1; 15862e2c009bSjjc } 15872e2c009bSjjc } 15882e2c009bSjjc } 15892e2c009bSjjc } 15902e2c009bSjjc 15912e2c009bSjjc /* 15922e2c009bSjjc * Local latencies should be same 15932e2c009bSjjc * - Find min and max local latencies 15942e2c009bSjjc * - Make all local latencies be minimum 15952e2c009bSjjc */ 15962e2c009bSjjc min = -1; 15972e2c009bSjjc max = 0; 15982e2c009bSjjc for (i = 0; i < lgrp_plat_node_cnt; i++) { 15992e2c009bSjjc if (!node_memory[i].exists) 16002e2c009bSjjc continue; 16012e2c009bSjjc t = lat_stats->latencies[i][i]; 16022e2c009bSjjc if (t == 0) 16032e2c009bSjjc continue; 16042e2c009bSjjc if (min == -1 || t < min) 16052e2c009bSjjc min = t; 16062e2c009bSjjc if (t > max) 16072e2c009bSjjc max = t; 16082e2c009bSjjc } 16092e2c009bSjjc if (min != max) { 16102e2c009bSjjc for (i = 0; i < lgrp_plat_node_cnt; i++) { 16112e2c009bSjjc int local; 16122e2c009bSjjc 16132e2c009bSjjc if (!node_memory[i].exists) 16142e2c009bSjjc continue; 16152e2c009bSjjc 16162e2c009bSjjc local = lat_stats->latencies[i][i]; 16172e2c009bSjjc if (local == 0) 16182e2c009bSjjc continue; 16192e2c009bSjjc 16202e2c009bSjjc /* 16212e2c009bSjjc * Track suspect probe times that aren't within 16222e2c009bSjjc * tolerance of minimum local latency and how much 16232e2c009bSjjc * probe times are corrected by 16242e2c009bSjjc */ 16252e2c009bSjjc if (local - min > min >> lgrp_plat_probe_lt_shift) 16262e2c009bSjjc probe_stats->probe_suspect[i][i]++; 16272e2c009bSjjc 16282e2c009bSjjc probe_stats->probe_errors[i][i] += local - min; 16292e2c009bSjjc 16302e2c009bSjjc /* 16312e2c009bSjjc * Make local latencies be minimum 16322e2c009bSjjc */ 16332e2c009bSjjc lgrp_config(LGRP_CONFIG_LAT_CHANGE, i, min); 16342e2c009bSjjc lat_stats->latencies[i][i] = min; 16352e2c009bSjjc } 16362e2c009bSjjc } 16372e2c009bSjjc 16382e2c009bSjjc /* 16392e2c009bSjjc * Determine max probe time again since just adjusted latencies 16402e2c009bSjjc */ 16412e2c009bSjjc lat_stats->latency_max = 0; 16422e2c009bSjjc for (i = 0; i < lgrp_plat_node_cnt; i++) { 16432e2c009bSjjc for (j = 0; j < lgrp_plat_node_cnt; j++) { 16442e2c009bSjjc if (!node_memory[j].exists) 16452e2c009bSjjc continue; 16462e2c009bSjjc t = lat_stats->latencies[i][j]; 16472e2c009bSjjc if (t > lat_stats->latency_max) 16482e2c009bSjjc lat_stats->latency_max = t; 16492e2c009bSjjc } 16502e2c009bSjjc } 16512e2c009bSjjc } 16522e2c009bSjjc 16532e2c009bSjjc 16542e2c009bSjjc /* 16552e2c009bSjjc * Verify following about latencies between nodes: 16562e2c009bSjjc * 16572e2c009bSjjc * - Latencies should be symmetric (ie. latency(a, b) == latency(b, a)) 16582e2c009bSjjc * - Local latencies same 16592e2c009bSjjc * - Local < remote 16602e2c009bSjjc * - Number of latencies seen is reasonable 16612e2c009bSjjc * - Number of occurrences of a given latency should be more than 1 16622e2c009bSjjc * 16632e2c009bSjjc * Returns: 16642e2c009bSjjc * 0 Success 16652e2c009bSjjc * -1 Not symmetric 16662e2c009bSjjc * -2 Local latencies not same 16672e2c009bSjjc * -3 Local >= remote 16682e2c009bSjjc */ 16692e2c009bSjjc static int 16702e2c009bSjjc lgrp_plat_latency_verify(node_phys_addr_map_t *node_memory, 16712e2c009bSjjc lgrp_plat_latency_stats_t *lat_stats) 16722e2c009bSjjc { 16732e2c009bSjjc int i; 16742e2c009bSjjc int j; 16752e2c009bSjjc u_longlong_t t1; 16762e2c009bSjjc u_longlong_t t2; 16772e2c009bSjjc 16782e2c009bSjjc ASSERT(node_memory != NULL && lat_stats != NULL); 16792e2c009bSjjc 16802e2c009bSjjc /* 16812e2c009bSjjc * Nothing to do when this is an UMA machine, lgroup topology is 16822e2c009bSjjc * limited to 2 levels, or there aren't any probe times yet 16832e2c009bSjjc */ 16842e2c009bSjjc if (max_mem_nodes == 1 || lgrp_topo_levels < 2 || 16852e2c009bSjjc lat_stats->latencies[0][0] == 0) 16862e2c009bSjjc return (0); 16872e2c009bSjjc 16882e2c009bSjjc /* 16892e2c009bSjjc * Make sure that latencies are symmetric between any two nodes 16902e2c009bSjjc * (ie. latency(node0, node1) == latency(node1, node0)) 16912e2c009bSjjc */ 16922e2c009bSjjc for (i = 0; i < lgrp_plat_node_cnt; i++) { 16932e2c009bSjjc if (!node_memory[i].exists) 16942e2c009bSjjc continue; 16952e2c009bSjjc for (j = 0; j < lgrp_plat_node_cnt; j++) { 16962e2c009bSjjc if (!node_memory[j].exists) 16972e2c009bSjjc continue; 16982e2c009bSjjc t1 = lat_stats->latencies[i][j]; 16992e2c009bSjjc t2 = lat_stats->latencies[j][i]; 17002e2c009bSjjc 17012e2c009bSjjc if (t1 == 0 || t2 == 0 || t1 == t2) 17022e2c009bSjjc continue; 17032e2c009bSjjc 17042e2c009bSjjc return (-1); 17052e2c009bSjjc } 17062e2c009bSjjc } 17072e2c009bSjjc 17082e2c009bSjjc /* 17092e2c009bSjjc * Local latencies should be same 17102e2c009bSjjc */ 17112e2c009bSjjc t1 = lat_stats->latencies[0][0]; 17122e2c009bSjjc for (i = 1; i < lgrp_plat_node_cnt; i++) { 17132e2c009bSjjc if (!node_memory[i].exists) 17142e2c009bSjjc continue; 17152e2c009bSjjc 17162e2c009bSjjc t2 = lat_stats->latencies[i][i]; 17172e2c009bSjjc if (t2 == 0) 17182e2c009bSjjc continue; 17192e2c009bSjjc 17202e2c009bSjjc if (t1 == 0) { 17212e2c009bSjjc t1 = t2; 17222e2c009bSjjc continue; 17232e2c009bSjjc } 17242e2c009bSjjc 17252e2c009bSjjc if (t1 != t2) 17262e2c009bSjjc return (-2); 17272e2c009bSjjc } 17282e2c009bSjjc 17292e2c009bSjjc /* 17302e2c009bSjjc * Local latencies should be less than remote 17312e2c009bSjjc */ 17322e2c009bSjjc if (t1) { 17332e2c009bSjjc for (i = 0; i < lgrp_plat_node_cnt; i++) { 17342e2c009bSjjc for (j = 0; j < lgrp_plat_node_cnt; j++) { 17352e2c009bSjjc if (!node_memory[j].exists) 17362e2c009bSjjc continue; 17372e2c009bSjjc t2 = lat_stats->latencies[i][j]; 17382e2c009bSjjc if (i == j || t2 == 0) 17392e2c009bSjjc continue; 17402e2c009bSjjc 17412e2c009bSjjc if (t1 >= t2) 17422e2c009bSjjc return (-3); 17432e2c009bSjjc } 17442e2c009bSjjc } 17452e2c009bSjjc } 17462e2c009bSjjc 17472e2c009bSjjc return (0); 17482e2c009bSjjc } 17492e2c009bSjjc 17502e2c009bSjjc 17512e2c009bSjjc /* 17522e2c009bSjjc * Return the number of free, allocatable, or installed 17532e2c009bSjjc * pages in an lgroup 17542e2c009bSjjc * This is a copy of the MAX_MEM_NODES == 1 version of the routine 17552e2c009bSjjc * used when MPO is disabled (i.e. single lgroup) or this is the root lgroup 17562e2c009bSjjc */ 17572e2c009bSjjc /* ARGSUSED */ 17582e2c009bSjjc static pgcnt_t 17592e2c009bSjjc lgrp_plat_mem_size_default(lgrp_handle_t lgrphand, lgrp_mem_query_t query) 17602e2c009bSjjc { 17612e2c009bSjjc struct memlist *mlist; 17622e2c009bSjjc pgcnt_t npgs = 0; 17632e2c009bSjjc extern struct memlist *phys_avail; 17642e2c009bSjjc extern struct memlist *phys_install; 17652e2c009bSjjc 17662e2c009bSjjc switch (query) { 17672e2c009bSjjc case LGRP_MEM_SIZE_FREE: 17682e2c009bSjjc return ((pgcnt_t)freemem); 17692e2c009bSjjc case LGRP_MEM_SIZE_AVAIL: 17702e2c009bSjjc memlist_read_lock(); 17712e2c009bSjjc for (mlist = phys_avail; mlist; mlist = mlist->next) 17722e2c009bSjjc npgs += btop(mlist->size); 17732e2c009bSjjc memlist_read_unlock(); 17742e2c009bSjjc return (npgs); 17752e2c009bSjjc case LGRP_MEM_SIZE_INSTALL: 17762e2c009bSjjc memlist_read_lock(); 17772e2c009bSjjc for (mlist = phys_install; mlist; mlist = mlist->next) 17782e2c009bSjjc npgs += btop(mlist->size); 17792e2c009bSjjc memlist_read_unlock(); 17802e2c009bSjjc return (npgs); 17812e2c009bSjjc default: 17822e2c009bSjjc return ((pgcnt_t)0); 17832e2c009bSjjc } 17842e2c009bSjjc } 17852e2c009bSjjc 17862e2c009bSjjc 17872e2c009bSjjc /* 17882e2c009bSjjc * Update node to proximity domain mappings for given domain and return node ID 17892e2c009bSjjc */ 17902e2c009bSjjc static int 1791d821f0f0Sjjc lgrp_plat_node_domain_update(node_domain_map_t *node_domain, int node_cnt, 1792d821f0f0Sjjc uint32_t domain) 17932e2c009bSjjc { 17942e2c009bSjjc uint_t node; 17952e2c009bSjjc uint_t start; 17962e2c009bSjjc 17972e2c009bSjjc /* 17982e2c009bSjjc * Hash proximity domain ID into node to domain mapping table (array) 17992e2c009bSjjc * and add entry for it into first non-existent or matching entry found 18002e2c009bSjjc */ 1801d821f0f0Sjjc node = start = NODE_DOMAIN_HASH(domain, node_cnt); 18022e2c009bSjjc do { 18032e2c009bSjjc /* 18042e2c009bSjjc * Entry doesn't exist yet, so create one for this proximity 18052e2c009bSjjc * domain and return node ID which is index into mapping table. 18062e2c009bSjjc */ 18072e2c009bSjjc if (!node_domain[node].exists) { 18082e2c009bSjjc node_domain[node].exists = 1; 18092e2c009bSjjc node_domain[node].prox_domain = domain; 18102e2c009bSjjc return (node); 18112e2c009bSjjc } 18122e2c009bSjjc 18132e2c009bSjjc /* 18142e2c009bSjjc * Entry exists for this proximity domain already, so just 18152e2c009bSjjc * return node ID (index into table). 18162e2c009bSjjc */ 18172e2c009bSjjc if (node_domain[node].prox_domain == domain) 18182e2c009bSjjc return (node); 1819d821f0f0Sjjc node = NODE_DOMAIN_HASH(node + 1, node_cnt); 18202e2c009bSjjc } while (node != start); 18212e2c009bSjjc 18222e2c009bSjjc /* 18232e2c009bSjjc * Ran out of supported number of entries which shouldn't happen.... 18242e2c009bSjjc */ 18252e2c009bSjjc ASSERT(node != start); 18262e2c009bSjjc return (-1); 18272e2c009bSjjc } 18282e2c009bSjjc 18292e2c009bSjjc 18302e2c009bSjjc /* 18312e2c009bSjjc * Update node memory information for given proximity domain with specified 18322e2c009bSjjc * starting and ending physical address range (and return positive numbers for 18332e2c009bSjjc * success and negative ones for errors) 18342e2c009bSjjc */ 18352e2c009bSjjc static int 1836d821f0f0Sjjc lgrp_plat_node_memory_update(node_domain_map_t *node_domain, int node_cnt, 1837e9dd3ea3Sjjc node_phys_addr_map_t *node_memory, uint64_t start, uint64_t end, 18382e2c009bSjjc uint32_t domain) 18392e2c009bSjjc { 18402e2c009bSjjc int node; 18412e2c009bSjjc 18422e2c009bSjjc /* 18432e2c009bSjjc * Get node number for proximity domain 18442e2c009bSjjc */ 1845d821f0f0Sjjc node = lgrp_plat_domain_to_node(node_domain, node_cnt, domain); 18462e2c009bSjjc if (node == -1) { 1847d821f0f0Sjjc node = lgrp_plat_node_domain_update(node_domain, node_cnt, 1848d821f0f0Sjjc domain); 18492e2c009bSjjc if (node == -1) 18502e2c009bSjjc return (-1); 18512e2c009bSjjc } 18522e2c009bSjjc 18532e2c009bSjjc /* 18542e2c009bSjjc * Create entry in table for node if it doesn't exist 18552e2c009bSjjc */ 18562e2c009bSjjc if (!node_memory[node].exists) { 18572e2c009bSjjc node_memory[node].exists = 1; 18582e2c009bSjjc node_memory[node].start = btop(start); 18592e2c009bSjjc node_memory[node].end = btop(end); 18602e2c009bSjjc node_memory[node].prox_domain = domain; 18612e2c009bSjjc return (0); 18622e2c009bSjjc } 18632e2c009bSjjc 18642e2c009bSjjc /* 18652e2c009bSjjc * Entry already exists for this proximity domain 18662e2c009bSjjc * 18672e2c009bSjjc * There may be more than one SRAT memory entry for a domain, so we may 18682e2c009bSjjc * need to update existing start or end address for the node. 18692e2c009bSjjc */ 18702e2c009bSjjc if (node_memory[node].prox_domain == domain) { 18712e2c009bSjjc if (btop(start) < node_memory[node].start) 18722e2c009bSjjc node_memory[node].start = btop(start); 18732e2c009bSjjc if (btop(end) > node_memory[node].end) 18742e2c009bSjjc node_memory[node].end = btop(end); 18752e2c009bSjjc return (1); 18762e2c009bSjjc } 18772e2c009bSjjc return (-2); 18782e2c009bSjjc } 18792e2c009bSjjc 18802e2c009bSjjc 18812e2c009bSjjc /* 188281d9ccb6SJonathan Chew * Have to sort node by starting physical address because VM system (physical 188381d9ccb6SJonathan Chew * page free list management) assumes and expects memnodes to be sorted in 188481d9ccb6SJonathan Chew * ascending order by physical address. If not, the kernel will panic in 188581d9ccb6SJonathan Chew * potentially a number of different places. (:-( 188681d9ccb6SJonathan Chew * NOTE: This workaround will not be sufficient if/when hotplugging memory is 188781d9ccb6SJonathan Chew * supported on x86/x64. 188881d9ccb6SJonathan Chew */ 188981d9ccb6SJonathan Chew static void 189081d9ccb6SJonathan Chew lgrp_plat_node_sort(node_domain_map_t *node_domain, int node_cnt, 189181d9ccb6SJonathan Chew cpu_node_map_t *cpu_node, int cpu_count, node_phys_addr_map_t *node_memory) 189281d9ccb6SJonathan Chew { 189381d9ccb6SJonathan Chew boolean_t found; 189481d9ccb6SJonathan Chew int i; 189581d9ccb6SJonathan Chew int j; 189681d9ccb6SJonathan Chew int n; 189781d9ccb6SJonathan Chew boolean_t sorted; 189881d9ccb6SJonathan Chew boolean_t swapped; 189981d9ccb6SJonathan Chew 190081d9ccb6SJonathan Chew if (!lgrp_plat_node_sort_enable || node_cnt <= 1 || 190181d9ccb6SJonathan Chew node_domain == NULL || node_memory == NULL) 190281d9ccb6SJonathan Chew return; 190381d9ccb6SJonathan Chew 190481d9ccb6SJonathan Chew /* 190581d9ccb6SJonathan Chew * Sorted already? 190681d9ccb6SJonathan Chew */ 190781d9ccb6SJonathan Chew sorted = B_TRUE; 190881d9ccb6SJonathan Chew for (i = 0; i < node_cnt - 1; i++) { 190981d9ccb6SJonathan Chew /* 191081d9ccb6SJonathan Chew * Skip entries that don't exist 191181d9ccb6SJonathan Chew */ 191281d9ccb6SJonathan Chew if (!node_memory[i].exists) 191381d9ccb6SJonathan Chew continue; 191481d9ccb6SJonathan Chew 191581d9ccb6SJonathan Chew /* 191681d9ccb6SJonathan Chew * Try to find next existing entry to compare against 191781d9ccb6SJonathan Chew */ 191881d9ccb6SJonathan Chew found = B_FALSE; 191981d9ccb6SJonathan Chew for (j = i + 1; j < node_cnt; j++) { 192081d9ccb6SJonathan Chew if (node_memory[j].exists) { 192181d9ccb6SJonathan Chew found = B_TRUE; 192281d9ccb6SJonathan Chew break; 192381d9ccb6SJonathan Chew } 192481d9ccb6SJonathan Chew } 192581d9ccb6SJonathan Chew 192681d9ccb6SJonathan Chew /* 192781d9ccb6SJonathan Chew * Done if no more existing entries to compare against 192881d9ccb6SJonathan Chew */ 192981d9ccb6SJonathan Chew if (found == B_FALSE) 193081d9ccb6SJonathan Chew break; 193181d9ccb6SJonathan Chew 193281d9ccb6SJonathan Chew /* 193381d9ccb6SJonathan Chew * Not sorted if starting address of current entry is bigger 193481d9ccb6SJonathan Chew * than starting address of next existing entry 193581d9ccb6SJonathan Chew */ 193681d9ccb6SJonathan Chew if (node_memory[i].start > node_memory[j].start) { 193781d9ccb6SJonathan Chew sorted = B_FALSE; 193881d9ccb6SJonathan Chew break; 193981d9ccb6SJonathan Chew } 194081d9ccb6SJonathan Chew } 194181d9ccb6SJonathan Chew 194281d9ccb6SJonathan Chew /* 194381d9ccb6SJonathan Chew * Don't need to sort if sorted already 194481d9ccb6SJonathan Chew */ 194581d9ccb6SJonathan Chew if (sorted == B_TRUE) 194681d9ccb6SJonathan Chew return; 194781d9ccb6SJonathan Chew 194881d9ccb6SJonathan Chew /* 194981d9ccb6SJonathan Chew * Just use bubble sort since number of nodes is small 195081d9ccb6SJonathan Chew */ 195181d9ccb6SJonathan Chew n = node_cnt; 195281d9ccb6SJonathan Chew do { 195381d9ccb6SJonathan Chew swapped = B_FALSE; 195481d9ccb6SJonathan Chew n--; 195581d9ccb6SJonathan Chew for (i = 0; i < n; i++) { 195681d9ccb6SJonathan Chew /* 195781d9ccb6SJonathan Chew * Skip entries that don't exist 195881d9ccb6SJonathan Chew */ 195981d9ccb6SJonathan Chew if (!node_memory[i].exists) 196081d9ccb6SJonathan Chew continue; 196181d9ccb6SJonathan Chew 196281d9ccb6SJonathan Chew /* 196381d9ccb6SJonathan Chew * Try to find next existing entry to compare against 196481d9ccb6SJonathan Chew */ 196581d9ccb6SJonathan Chew found = B_FALSE; 196681d9ccb6SJonathan Chew for (j = i + 1; j <= n; j++) { 196781d9ccb6SJonathan Chew if (node_memory[j].exists) { 196881d9ccb6SJonathan Chew found = B_TRUE; 196981d9ccb6SJonathan Chew break; 197081d9ccb6SJonathan Chew } 197181d9ccb6SJonathan Chew } 197281d9ccb6SJonathan Chew 197381d9ccb6SJonathan Chew /* 197481d9ccb6SJonathan Chew * Done if no more existing entries to compare against 197581d9ccb6SJonathan Chew */ 197681d9ccb6SJonathan Chew if (found == B_FALSE) 197781d9ccb6SJonathan Chew break; 197881d9ccb6SJonathan Chew 197981d9ccb6SJonathan Chew if (node_memory[i].start > node_memory[j].start) { 198081d9ccb6SJonathan Chew node_phys_addr_map_t save_addr; 198181d9ccb6SJonathan Chew node_domain_map_t save_node; 198281d9ccb6SJonathan Chew 198381d9ccb6SJonathan Chew /* 198481d9ccb6SJonathan Chew * Swap node to proxmity domain ID assignments 198581d9ccb6SJonathan Chew */ 198681d9ccb6SJonathan Chew bcopy(&node_domain[i], &save_node, 198781d9ccb6SJonathan Chew sizeof (node_domain_map_t)); 198881d9ccb6SJonathan Chew bcopy(&node_domain[j], &node_domain[i], 198981d9ccb6SJonathan Chew sizeof (node_domain_map_t)); 199081d9ccb6SJonathan Chew bcopy(&save_node, &node_domain[j], 199181d9ccb6SJonathan Chew sizeof (node_domain_map_t)); 199281d9ccb6SJonathan Chew 199381d9ccb6SJonathan Chew /* 199481d9ccb6SJonathan Chew * Swap node to physical memory assignments 199581d9ccb6SJonathan Chew */ 199681d9ccb6SJonathan Chew bcopy(&node_memory[i], &save_addr, 199781d9ccb6SJonathan Chew sizeof (node_phys_addr_map_t)); 199881d9ccb6SJonathan Chew bcopy(&node_memory[j], &node_memory[i], 199981d9ccb6SJonathan Chew sizeof (node_phys_addr_map_t)); 200081d9ccb6SJonathan Chew bcopy(&save_addr, &node_memory[j], 200181d9ccb6SJonathan Chew sizeof (node_phys_addr_map_t)); 200281d9ccb6SJonathan Chew swapped = B_TRUE; 200381d9ccb6SJonathan Chew } 200481d9ccb6SJonathan Chew } 200581d9ccb6SJonathan Chew } while (swapped == B_TRUE); 200681d9ccb6SJonathan Chew 200781d9ccb6SJonathan Chew /* 200881d9ccb6SJonathan Chew * Check to make sure that CPUs assigned to correct node IDs now since 200981d9ccb6SJonathan Chew * node to proximity domain ID assignments may have been changed above 201081d9ccb6SJonathan Chew */ 201181d9ccb6SJonathan Chew if (n == node_cnt - 1 || cpu_node == NULL || cpu_count < 1) 201281d9ccb6SJonathan Chew return; 201381d9ccb6SJonathan Chew for (i = 0; i < cpu_count; i++) { 201481d9ccb6SJonathan Chew int node; 201581d9ccb6SJonathan Chew 201681d9ccb6SJonathan Chew node = lgrp_plat_domain_to_node(node_domain, node_cnt, 201781d9ccb6SJonathan Chew cpu_node[i].prox_domain); 201881d9ccb6SJonathan Chew if (cpu_node[i].node != node) 201981d9ccb6SJonathan Chew cpu_node[i].node = node; 202081d9ccb6SJonathan Chew } 202181d9ccb6SJonathan Chew 202281d9ccb6SJonathan Chew } 202381d9ccb6SJonathan Chew 202481d9ccb6SJonathan Chew 202581d9ccb6SJonathan Chew /* 20262e2c009bSjjc * Return time needed to probe from current CPU to memory in given node 20272e2c009bSjjc */ 20282e2c009bSjjc static hrtime_t 20292e2c009bSjjc lgrp_plat_probe_time(int to, cpu_node_map_t *cpu_node, 20302e2c009bSjjc lgrp_plat_probe_mem_config_t *probe_mem_config, 20312e2c009bSjjc lgrp_plat_latency_stats_t *lat_stats, lgrp_plat_probe_stats_t *probe_stats) 20322e2c009bSjjc { 20332e2c009bSjjc caddr_t buf; 20342e2c009bSjjc hrtime_t elapsed; 20352e2c009bSjjc hrtime_t end; 20362e2c009bSjjc int from; 20372e2c009bSjjc int i; 20382e2c009bSjjc int ipl; 20392e2c009bSjjc hrtime_t max; 20402e2c009bSjjc hrtime_t min; 20412e2c009bSjjc hrtime_t start; 20422e2c009bSjjc extern int use_sse_pagecopy; 20432e2c009bSjjc 20442e2c009bSjjc /* 20452e2c009bSjjc * Determine ID of node containing current CPU 20462e2c009bSjjc */ 20472e2c009bSjjc from = lgrp_plat_cpu_to_node(CPU, cpu_node); 20482e2c009bSjjc ASSERT(from >= 0 && from < lgrp_plat_node_cnt); 20492e2c009bSjjc 20502e2c009bSjjc /* 20512e2c009bSjjc * Do common work for probing main memory 20522e2c009bSjjc */ 20532e2c009bSjjc if (lgrp_plat_probe_flags & LGRP_PLAT_PROBE_PGCPY) { 20542e2c009bSjjc /* 20552e2c009bSjjc * Skip probing any nodes without memory and 20562e2c009bSjjc * set probe time to 0 20572e2c009bSjjc */ 20582e2c009bSjjc if (probe_mem_config->probe_va[to] == NULL) { 20592e2c009bSjjc lat_stats->latencies[from][to] = 0; 20602e2c009bSjjc return (0); 20612e2c009bSjjc } 20622e2c009bSjjc 20632e2c009bSjjc /* 20642e2c009bSjjc * Invalidate caches once instead of once every sample 20652e2c009bSjjc * which should cut cost of probing by a lot 20662e2c009bSjjc */ 20672e2c009bSjjc probe_stats->flush_cost = gethrtime(); 20682e2c009bSjjc invalidate_cache(); 20692e2c009bSjjc probe_stats->flush_cost = gethrtime() - 20702e2c009bSjjc probe_stats->flush_cost; 20712e2c009bSjjc probe_stats->probe_cost_total += probe_stats->flush_cost; 20722e2c009bSjjc } 20732e2c009bSjjc 20742e2c009bSjjc /* 20752e2c009bSjjc * Probe from current CPU to given memory using specified operation 20762e2c009bSjjc * and take specified number of samples 20772e2c009bSjjc */ 20782e2c009bSjjc max = 0; 20792e2c009bSjjc min = -1; 20802e2c009bSjjc for (i = 0; i < lgrp_plat_probe_nsamples; i++) { 20812e2c009bSjjc probe_stats->probe_cost = gethrtime(); 20822e2c009bSjjc 20832e2c009bSjjc /* 20842e2c009bSjjc * Can't measure probe time if gethrtime() isn't working yet 20852e2c009bSjjc */ 20862e2c009bSjjc if (probe_stats->probe_cost == 0 && gethrtime() == 0) 20872e2c009bSjjc return (0); 20882e2c009bSjjc 20892e2c009bSjjc if (lgrp_plat_probe_flags & LGRP_PLAT_PROBE_VENDOR) { 20902e2c009bSjjc /* 20912e2c009bSjjc * Measure how long it takes to read vendor ID from 20922e2c009bSjjc * Northbridge 20932e2c009bSjjc */ 20942e2c009bSjjc elapsed = opt_probe_vendor(to, lgrp_plat_probe_nreads); 20952e2c009bSjjc } else { 20962e2c009bSjjc /* 20972e2c009bSjjc * Measure how long it takes to copy page 20982e2c009bSjjc * on top of itself 20992e2c009bSjjc */ 21002e2c009bSjjc buf = probe_mem_config->probe_va[to] + (i * PAGESIZE); 21012e2c009bSjjc 21022e2c009bSjjc kpreempt_disable(); 21032e2c009bSjjc ipl = splhigh(); 21042e2c009bSjjc start = gethrtime(); 21052e2c009bSjjc if (use_sse_pagecopy) 21062e2c009bSjjc hwblkpagecopy(buf, buf); 21072e2c009bSjjc else 21082e2c009bSjjc bcopy(buf, buf, PAGESIZE); 21092e2c009bSjjc end = gethrtime(); 21102e2c009bSjjc elapsed = end - start; 21112e2c009bSjjc splx(ipl); 21122e2c009bSjjc kpreempt_enable(); 21132e2c009bSjjc } 21142e2c009bSjjc 21152e2c009bSjjc probe_stats->probe_cost = gethrtime() - 21162e2c009bSjjc probe_stats->probe_cost; 21172e2c009bSjjc probe_stats->probe_cost_total += probe_stats->probe_cost; 21182e2c009bSjjc 21192e2c009bSjjc if (min == -1 || elapsed < min) 21202e2c009bSjjc min = elapsed; 21212e2c009bSjjc if (elapsed > max) 21222e2c009bSjjc max = elapsed; 21232e2c009bSjjc } 21242e2c009bSjjc 21252e2c009bSjjc /* 21262e2c009bSjjc * Update minimum and maximum probe times between 21272e2c009bSjjc * these two nodes 21282e2c009bSjjc */ 21292e2c009bSjjc if (min < probe_stats->probe_min[from][to] || 21302e2c009bSjjc probe_stats->probe_min[from][to] == 0) 21312e2c009bSjjc probe_stats->probe_min[from][to] = min; 21322e2c009bSjjc 21332e2c009bSjjc if (max > probe_stats->probe_max[from][to]) 21342e2c009bSjjc probe_stats->probe_max[from][to] = max; 21352e2c009bSjjc 21362e2c009bSjjc return (min); 21372e2c009bSjjc } 21382e2c009bSjjc 21392e2c009bSjjc 21402e2c009bSjjc /* 2141d821f0f0Sjjc * Read boot property with CPU to APIC ID array, fill in CPU to node ID 2142d821f0f0Sjjc * mapping table with APIC ID for each CPU, and return number of CPU APIC IDs. 2143dae2fa37Sjjc * 2144dae2fa37Sjjc * NOTE: This code assumes that CPU IDs are assigned in order that they appear 2145dae2fa37Sjjc * in in cpu_apicid_array boot property which is based on and follows 2146dae2fa37Sjjc * same ordering as processor list in ACPI MADT. If the code in 2147dae2fa37Sjjc * usr/src/uts/i86pc/io/pcplusmp/apic.c that reads MADT and assigns 2148dae2fa37Sjjc * CPU IDs ever changes, then this code will need to change too.... 2149dae2fa37Sjjc */ 2150dae2fa37Sjjc static int 2151d821f0f0Sjjc lgrp_plat_process_cpu_apicids(cpu_node_map_t *cpu_node) 2152dae2fa37Sjjc { 2153d821f0f0Sjjc int boot_prop_len; 2154dae2fa37Sjjc char *boot_prop_name = BP_CPU_APICID_ARRAY; 2155dae2fa37Sjjc uint8_t cpu_apicid_array[UINT8_MAX + 1]; 2156dae2fa37Sjjc int i; 2157d821f0f0Sjjc int n; 2158dae2fa37Sjjc 2159dae2fa37Sjjc /* 2160dae2fa37Sjjc * Nothing to do when no array to fill in or not enough CPUs 2161dae2fa37Sjjc */ 2162d821f0f0Sjjc if (cpu_node == NULL) 2163d821f0f0Sjjc return (-1); 2164dae2fa37Sjjc 2165dae2fa37Sjjc /* 2166dae2fa37Sjjc * Check length of property value 2167dae2fa37Sjjc */ 2168dae2fa37Sjjc boot_prop_len = BOP_GETPROPLEN(bootops, boot_prop_name); 2169d821f0f0Sjjc if (boot_prop_len <= 0 || boot_prop_len > sizeof (cpu_apicid_array)) 2170d821f0f0Sjjc return (-2); 2171d821f0f0Sjjc 2172d821f0f0Sjjc /* 2173d821f0f0Sjjc * Calculate number of entries in array and return when there's just 2174d821f0f0Sjjc * one CPU since that's not very interesting for NUMA 2175d821f0f0Sjjc */ 2176d821f0f0Sjjc n = boot_prop_len / sizeof (uint8_t); 2177d821f0f0Sjjc if (n == 1) 2178d821f0f0Sjjc return (-3); 2179dae2fa37Sjjc 2180dae2fa37Sjjc /* 2181dae2fa37Sjjc * Get CPU to APIC ID property value 2182dae2fa37Sjjc */ 2183dae2fa37Sjjc if (BOP_GETPROP(bootops, boot_prop_name, cpu_apicid_array) < 0) 2184d821f0f0Sjjc return (-4); 2185dae2fa37Sjjc 2186dae2fa37Sjjc /* 2187dae2fa37Sjjc * Fill in CPU to node ID mapping table with APIC ID for each CPU 2188dae2fa37Sjjc */ 2189d821f0f0Sjjc for (i = 0; i < n; i++) { 2190dae2fa37Sjjc cpu_node[i].exists = 1; 2191dae2fa37Sjjc cpu_node[i].apicid = cpu_apicid_array[i]; 2192dae2fa37Sjjc } 2193dae2fa37Sjjc 2194d821f0f0Sjjc /* 2195d821f0f0Sjjc * Return number of CPUs based on number of APIC IDs 2196d821f0f0Sjjc */ 2197d821f0f0Sjjc return (n); 2198dae2fa37Sjjc } 2199dae2fa37Sjjc 2200dae2fa37Sjjc 2201dae2fa37Sjjc /* 22022e2c009bSjjc * Read ACPI System Locality Information Table (SLIT) to determine how far each 22032e2c009bSjjc * NUMA node is from each other 22042e2c009bSjjc */ 22052e2c009bSjjc static int 22062e2c009bSjjc lgrp_plat_process_slit(struct slit *tp, uint_t node_cnt, 22072e2c009bSjjc node_phys_addr_map_t *node_memory, lgrp_plat_latency_stats_t *lat_stats) 22082e2c009bSjjc { 22092e2c009bSjjc int i; 22102e2c009bSjjc int j; 22112e2c009bSjjc int localities; 22122e2c009bSjjc hrtime_t max; 22132e2c009bSjjc hrtime_t min; 22142e2c009bSjjc int retval; 22152e2c009bSjjc uint8_t *slit_entries; 22162e2c009bSjjc 22172e2c009bSjjc if (tp == NULL || !lgrp_plat_slit_enable) 22182e2c009bSjjc return (1); 22192e2c009bSjjc 22202e2c009bSjjc if (lat_stats == NULL) 22212e2c009bSjjc return (2); 22222e2c009bSjjc 22232e2c009bSjjc localities = tp->number; 22242e2c009bSjjc if (localities != node_cnt) 22252e2c009bSjjc return (3); 22262e2c009bSjjc 22272e2c009bSjjc min = lat_stats->latency_min; 22282e2c009bSjjc max = lat_stats->latency_max; 22292e2c009bSjjc 22302e2c009bSjjc /* 22312e2c009bSjjc * Fill in latency matrix based on SLIT entries 22322e2c009bSjjc */ 22332e2c009bSjjc slit_entries = tp->entry; 22342e2c009bSjjc for (i = 0; i < localities; i++) { 22352e2c009bSjjc for (j = 0; j < localities; j++) { 22362e2c009bSjjc uint8_t latency; 22372e2c009bSjjc 22382e2c009bSjjc latency = slit_entries[(i * localities) + j]; 22392e2c009bSjjc lat_stats->latencies[i][j] = latency; 22405b7cf7f0Sjjc if (latency < min || min == -1) 22412e2c009bSjjc min = latency; 22422e2c009bSjjc if (latency > max) 22432e2c009bSjjc max = latency; 22442e2c009bSjjc } 22452e2c009bSjjc } 22462e2c009bSjjc 22472e2c009bSjjc /* 22482e2c009bSjjc * Verify that latencies/distances given in SLIT look reasonable 22492e2c009bSjjc */ 22502e2c009bSjjc retval = lgrp_plat_latency_verify(node_memory, lat_stats); 22512e2c009bSjjc 22522e2c009bSjjc if (retval) { 22532e2c009bSjjc /* 22542e2c009bSjjc * Reinitialize (zero) latency table since SLIT doesn't look 22552e2c009bSjjc * right 22562e2c009bSjjc */ 22572e2c009bSjjc for (i = 0; i < localities; i++) { 22582e2c009bSjjc for (j = 0; j < localities; j++) 22592e2c009bSjjc lat_stats->latencies[i][j] = 0; 22602e2c009bSjjc } 22612e2c009bSjjc } else { 22622e2c009bSjjc /* 22632e2c009bSjjc * Update min and max latencies seen since SLIT looks valid 22642e2c009bSjjc */ 22652e2c009bSjjc lat_stats->latency_min = min; 22662e2c009bSjjc lat_stats->latency_max = max; 22672e2c009bSjjc } 22682e2c009bSjjc 22692e2c009bSjjc return (retval); 22702e2c009bSjjc } 22712e2c009bSjjc 22722e2c009bSjjc 22732e2c009bSjjc /* 22742e2c009bSjjc * Read ACPI System Resource Affinity Table (SRAT) to determine which CPUs 2275d821f0f0Sjjc * and memory are local to each other in the same NUMA node and return number 2276d821f0f0Sjjc * of nodes 22772e2c009bSjjc */ 22782e2c009bSjjc static int 227981d9ccb6SJonathan Chew lgrp_plat_process_srat(struct srat *tp, uint32_t *prox_domain_min, 228081d9ccb6SJonathan Chew node_domain_map_t *node_domain, cpu_node_map_t *cpu_node, int cpu_count, 228181d9ccb6SJonathan Chew node_phys_addr_map_t *node_memory) 22822e2c009bSjjc { 22835b7cf7f0Sjjc struct srat_item *srat_end; 22842e2c009bSjjc int i; 22852e2c009bSjjc struct srat_item *item; 2286d821f0f0Sjjc int node_cnt; 2287dae2fa37Sjjc int proc_entry_count; 22882e2c009bSjjc 2289d821f0f0Sjjc /* 2290d821f0f0Sjjc * Nothing to do when no SRAT or disabled 2291d821f0f0Sjjc */ 22922e2c009bSjjc if (tp == NULL || !lgrp_plat_srat_enable) 2293d821f0f0Sjjc return (-1); 22942e2c009bSjjc 22952e2c009bSjjc /* 22962e2c009bSjjc * Determine number of nodes by counting number of proximity domains in 2297d821f0f0Sjjc * SRAT and return if number of nodes is 1 or less since don't need to 2298d821f0f0Sjjc * read SRAT then 22992e2c009bSjjc */ 230081d9ccb6SJonathan Chew node_cnt = lgrp_plat_srat_domains(tp, prox_domain_min); 2301d821f0f0Sjjc if (node_cnt == 1) 2302d821f0f0Sjjc return (1); 2303d821f0f0Sjjc else if (node_cnt <= 0) 2304d821f0f0Sjjc return (-2); 23052e2c009bSjjc 23062e2c009bSjjc /* 23072e2c009bSjjc * Walk through SRAT, examining each CPU and memory entry to determine 23082e2c009bSjjc * which CPUs and memory belong to which node. 23092e2c009bSjjc */ 23102e2c009bSjjc item = tp->list; 23115b7cf7f0Sjjc srat_end = (struct srat_item *)(tp->hdr.len + (uintptr_t)tp); 2312dae2fa37Sjjc proc_entry_count = 0; 23135b7cf7f0Sjjc while (item < srat_end) { 23142e2c009bSjjc uint32_t apic_id; 23152e2c009bSjjc uint32_t domain; 23162e2c009bSjjc uint64_t end; 23172e2c009bSjjc uint64_t length; 23182e2c009bSjjc uint64_t start; 23192e2c009bSjjc 23202e2c009bSjjc switch (item->type) { 23212e2c009bSjjc case SRAT_PROCESSOR: /* CPU entry */ 23222e2c009bSjjc if (!(item->i.p.flags & SRAT_ENABLED) || 23232e2c009bSjjc cpu_node == NULL) 23242e2c009bSjjc break; 23252e2c009bSjjc 23262e2c009bSjjc /* 23272e2c009bSjjc * Calculate domain (node) ID and fill in APIC ID to 23282e2c009bSjjc * domain/node mapping table 23292e2c009bSjjc */ 23302e2c009bSjjc domain = item->i.p.domain1; 23312e2c009bSjjc for (i = 0; i < 3; i++) { 23322e2c009bSjjc domain += item->i.p.domain2[i] << 23332e2c009bSjjc ((i + 1) * 8); 23342e2c009bSjjc } 23352e2c009bSjjc apic_id = item->i.p.apic_id; 23362e2c009bSjjc 2337d821f0f0Sjjc if (lgrp_plat_cpu_node_update(node_domain, node_cnt, 2338d821f0f0Sjjc cpu_node, cpu_count, apic_id, domain) < 0) 2339d821f0f0Sjjc return (-3); 2340dae2fa37Sjjc 2341dae2fa37Sjjc proc_entry_count++; 23422e2c009bSjjc break; 23432e2c009bSjjc 23442e2c009bSjjc case SRAT_MEMORY: /* memory entry */ 23452e2c009bSjjc if (!(item->i.m.flags & SRAT_ENABLED) || 23462e2c009bSjjc node_memory == NULL) 23472e2c009bSjjc break; 23482e2c009bSjjc 23492e2c009bSjjc /* 23502e2c009bSjjc * Get domain (node) ID and fill in domain/node 23512e2c009bSjjc * to memory mapping table 23522e2c009bSjjc */ 23532e2c009bSjjc domain = item->i.m.domain; 23542e2c009bSjjc start = item->i.m.base_addr; 23552e2c009bSjjc length = item->i.m.len; 23562e2c009bSjjc end = start + length - 1; 23572e2c009bSjjc 2358d821f0f0Sjjc if (lgrp_plat_node_memory_update(node_domain, node_cnt, 23592e2c009bSjjc node_memory, start, end, domain) < 0) 2360d821f0f0Sjjc return (-4); 23612e2c009bSjjc break; 2362b6917abeSmishra case SRAT_X2APIC: /* x2apic CPU entry */ 2363b6917abeSmishra if (!(item->i.xp.flags & SRAT_ENABLED) || 2364b6917abeSmishra cpu_node == NULL) 2365b6917abeSmishra break; 2366b6917abeSmishra 2367b6917abeSmishra /* 2368b6917abeSmishra * Calculate domain (node) ID and fill in APIC ID to 2369b6917abeSmishra * domain/node mapping table 2370b6917abeSmishra */ 2371b6917abeSmishra domain = item->i.xp.domain; 2372b6917abeSmishra apic_id = item->i.xp.x2apic_id; 2373b6917abeSmishra 2374b6917abeSmishra if (lgrp_plat_cpu_node_update(node_domain, node_cnt, 2375b6917abeSmishra cpu_node, cpu_count, apic_id, domain) < 0) 2376b6917abeSmishra return (-3); 2377b6917abeSmishra 2378b6917abeSmishra proc_entry_count++; 2379b6917abeSmishra break; 23802e2c009bSjjc 23812e2c009bSjjc default: 23822e2c009bSjjc break; 23832e2c009bSjjc } 23842e2c009bSjjc 23852e2c009bSjjc item = (struct srat_item *)((uintptr_t)item + item->len); 23862e2c009bSjjc } 2387dae2fa37Sjjc 2388dae2fa37Sjjc /* 2389dae2fa37Sjjc * Should have seen at least as many SRAT processor entries as CPUs 2390dae2fa37Sjjc */ 2391d821f0f0Sjjc if (proc_entry_count < cpu_count) 2392d821f0f0Sjjc return (-5); 2393dae2fa37Sjjc 239481d9ccb6SJonathan Chew /* 239581d9ccb6SJonathan Chew * Need to sort nodes by starting physical address since VM system 239681d9ccb6SJonathan Chew * assumes and expects memnodes to be sorted in ascending order by 239781d9ccb6SJonathan Chew * physical address 239881d9ccb6SJonathan Chew */ 239981d9ccb6SJonathan Chew lgrp_plat_node_sort(node_domain, node_cnt, cpu_node, cpu_count, 240081d9ccb6SJonathan Chew node_memory); 240181d9ccb6SJonathan Chew 2402d821f0f0Sjjc return (node_cnt); 24032e2c009bSjjc } 24042e2c009bSjjc 24052e2c009bSjjc 24062e2c009bSjjc /* 24072e2c009bSjjc * Return number of proximity domains given in ACPI SRAT 24082e2c009bSjjc */ 24092e2c009bSjjc static int 241081d9ccb6SJonathan Chew lgrp_plat_srat_domains(struct srat *tp, uint32_t *prox_domain_min) 24112e2c009bSjjc { 24122e2c009bSjjc int domain_cnt; 241381d9ccb6SJonathan Chew uint32_t domain_min; 24142e2c009bSjjc struct srat_item *end; 24152e2c009bSjjc int i; 24162e2c009bSjjc struct srat_item *item; 24172e2c009bSjjc node_domain_map_t node_domain[MAX_NODES]; 24182e2c009bSjjc 24192e2c009bSjjc 24202e2c009bSjjc if (tp == NULL || !lgrp_plat_srat_enable) 24212e2c009bSjjc return (1); 24222e2c009bSjjc 24232e2c009bSjjc /* 242481d9ccb6SJonathan Chew * Walk through SRAT to find minimum proximity domain ID 242581d9ccb6SJonathan Chew */ 242681d9ccb6SJonathan Chew domain_min = UINT32_MAX; 242781d9ccb6SJonathan Chew item = tp->list; 242881d9ccb6SJonathan Chew end = (struct srat_item *)(tp->hdr.len + (uintptr_t)tp); 242981d9ccb6SJonathan Chew while (item < end) { 243081d9ccb6SJonathan Chew uint32_t domain; 243181d9ccb6SJonathan Chew 243281d9ccb6SJonathan Chew switch (item->type) { 243381d9ccb6SJonathan Chew case SRAT_PROCESSOR: /* CPU entry */ 243481d9ccb6SJonathan Chew if (!(item->i.p.flags & SRAT_ENABLED)) { 243581d9ccb6SJonathan Chew item = (struct srat_item *)((uintptr_t)item + 243681d9ccb6SJonathan Chew item->len); 243781d9ccb6SJonathan Chew continue; 243881d9ccb6SJonathan Chew } 243981d9ccb6SJonathan Chew domain = item->i.p.domain1; 244081d9ccb6SJonathan Chew for (i = 0; i < 3; i++) { 244181d9ccb6SJonathan Chew domain += item->i.p.domain2[i] << 244281d9ccb6SJonathan Chew ((i + 1) * 8); 244381d9ccb6SJonathan Chew } 244481d9ccb6SJonathan Chew break; 244581d9ccb6SJonathan Chew 244681d9ccb6SJonathan Chew case SRAT_MEMORY: /* memory entry */ 244781d9ccb6SJonathan Chew if (!(item->i.m.flags & SRAT_ENABLED)) { 244881d9ccb6SJonathan Chew item = (struct srat_item *)((uintptr_t)item + 244981d9ccb6SJonathan Chew item->len); 245081d9ccb6SJonathan Chew continue; 245181d9ccb6SJonathan Chew } 245281d9ccb6SJonathan Chew domain = item->i.m.domain; 245381d9ccb6SJonathan Chew break; 245481d9ccb6SJonathan Chew 245581d9ccb6SJonathan Chew case SRAT_X2APIC: /* x2apic CPU entry */ 245681d9ccb6SJonathan Chew if (!(item->i.xp.flags & SRAT_ENABLED)) { 245781d9ccb6SJonathan Chew item = (struct srat_item *)((uintptr_t)item + 245881d9ccb6SJonathan Chew item->len); 245981d9ccb6SJonathan Chew continue; 246081d9ccb6SJonathan Chew } 246181d9ccb6SJonathan Chew domain = item->i.xp.domain; 246281d9ccb6SJonathan Chew break; 246381d9ccb6SJonathan Chew 246481d9ccb6SJonathan Chew default: 246581d9ccb6SJonathan Chew item = (struct srat_item *)((uintptr_t)item + 246681d9ccb6SJonathan Chew item->len); 246781d9ccb6SJonathan Chew continue; 246881d9ccb6SJonathan Chew } 246981d9ccb6SJonathan Chew 247081d9ccb6SJonathan Chew /* 247181d9ccb6SJonathan Chew * Keep track of minimum proximity domain ID 247281d9ccb6SJonathan Chew */ 247381d9ccb6SJonathan Chew if (domain < domain_min) 247481d9ccb6SJonathan Chew domain_min = domain; 247581d9ccb6SJonathan Chew 247681d9ccb6SJonathan Chew item = (struct srat_item *)((uintptr_t)item + item->len); 247781d9ccb6SJonathan Chew } 247881d9ccb6SJonathan Chew if (lgrp_plat_domain_min_enable && prox_domain_min != NULL) 247981d9ccb6SJonathan Chew *prox_domain_min = domain_min; 248081d9ccb6SJonathan Chew 248181d9ccb6SJonathan Chew /* 24822e2c009bSjjc * Walk through SRAT, examining each CPU and memory entry to determine 24832e2c009bSjjc * proximity domain ID for each. 24842e2c009bSjjc */ 24852e2c009bSjjc domain_cnt = 0; 24862e2c009bSjjc item = tp->list; 24872e2c009bSjjc end = (struct srat_item *)(tp->hdr.len + (uintptr_t)tp); 24882e2c009bSjjc bzero(node_domain, MAX_NODES * sizeof (node_domain_map_t)); 24892e2c009bSjjc while (item < end) { 24902e2c009bSjjc uint32_t domain; 24912e2c009bSjjc boolean_t overflow; 24922e2c009bSjjc uint_t start; 24932e2c009bSjjc 24942e2c009bSjjc switch (item->type) { 24952e2c009bSjjc case SRAT_PROCESSOR: /* CPU entry */ 249681d9ccb6SJonathan Chew if (!(item->i.p.flags & SRAT_ENABLED)) { 249781d9ccb6SJonathan Chew item = (struct srat_item *)((uintptr_t)item + 249881d9ccb6SJonathan Chew item->len); 249981d9ccb6SJonathan Chew continue; 250081d9ccb6SJonathan Chew } 25012e2c009bSjjc domain = item->i.p.domain1; 25022e2c009bSjjc for (i = 0; i < 3; i++) { 25032e2c009bSjjc domain += item->i.p.domain2[i] << 25042e2c009bSjjc ((i + 1) * 8); 25052e2c009bSjjc } 25062e2c009bSjjc break; 25072e2c009bSjjc 25082e2c009bSjjc case SRAT_MEMORY: /* memory entry */ 250981d9ccb6SJonathan Chew if (!(item->i.m.flags & SRAT_ENABLED)) { 251081d9ccb6SJonathan Chew item = (struct srat_item *)((uintptr_t)item + 251181d9ccb6SJonathan Chew item->len); 251281d9ccb6SJonathan Chew continue; 251381d9ccb6SJonathan Chew } 25142e2c009bSjjc domain = item->i.m.domain; 25152e2c009bSjjc break; 25162e2c009bSjjc 2517b6917abeSmishra case SRAT_X2APIC: /* x2apic CPU entry */ 251881d9ccb6SJonathan Chew if (!(item->i.xp.flags & SRAT_ENABLED)) { 251981d9ccb6SJonathan Chew item = (struct srat_item *)((uintptr_t)item + 252081d9ccb6SJonathan Chew item->len); 252181d9ccb6SJonathan Chew continue; 252281d9ccb6SJonathan Chew } 2523b6917abeSmishra domain = item->i.xp.domain; 2524b6917abeSmishra break; 2525b6917abeSmishra 25262e2c009bSjjc default: 252781d9ccb6SJonathan Chew item = (struct srat_item *)((uintptr_t)item + 252881d9ccb6SJonathan Chew item->len); 252981d9ccb6SJonathan Chew continue; 25302e2c009bSjjc } 25312e2c009bSjjc 25322e2c009bSjjc /* 25332e2c009bSjjc * Count and keep track of which proximity domain IDs seen 25342e2c009bSjjc */ 25352e2c009bSjjc start = i = domain % MAX_NODES; 25362e2c009bSjjc overflow = B_TRUE; 25372e2c009bSjjc do { 25382e2c009bSjjc /* 25392e2c009bSjjc * Create entry for proximity domain and increment 25402e2c009bSjjc * count when no entry exists where proximity domain 25412e2c009bSjjc * hashed 25422e2c009bSjjc */ 25432e2c009bSjjc if (!node_domain[i].exists) { 25442e2c009bSjjc node_domain[i].exists = 1; 25452e2c009bSjjc node_domain[i].prox_domain = domain; 25462e2c009bSjjc domain_cnt++; 25472e2c009bSjjc overflow = B_FALSE; 25482e2c009bSjjc break; 25492e2c009bSjjc } 25502e2c009bSjjc 25512e2c009bSjjc /* 25522e2c009bSjjc * Nothing to do when proximity domain seen already 25532e2c009bSjjc * and its entry exists 25542e2c009bSjjc */ 25552e2c009bSjjc if (node_domain[i].prox_domain == domain) { 25562e2c009bSjjc overflow = B_FALSE; 25572e2c009bSjjc break; 25582e2c009bSjjc } 25592e2c009bSjjc 25602e2c009bSjjc /* 25612e2c009bSjjc * Entry exists where proximity domain hashed, but for 25622e2c009bSjjc * different proximity domain so keep search for empty 25632e2c009bSjjc * slot to put it or matching entry whichever comes 25642e2c009bSjjc * first. 25652e2c009bSjjc */ 25662e2c009bSjjc i = (i + 1) % MAX_NODES; 25672e2c009bSjjc } while (i != start); 25682e2c009bSjjc 25692e2c009bSjjc /* 25702e2c009bSjjc * Didn't find empty or matching entry which means have more 25712e2c009bSjjc * proximity domains than supported nodes (:-( 25722e2c009bSjjc */ 25732e2c009bSjjc ASSERT(overflow != B_TRUE); 25742e2c009bSjjc if (overflow == B_TRUE) 25752e2c009bSjjc return (-1); 25762e2c009bSjjc 25772e2c009bSjjc item = (struct srat_item *)((uintptr_t)item + item->len); 25782e2c009bSjjc } 25792e2c009bSjjc return (domain_cnt); 25802e2c009bSjjc } 25812e2c009bSjjc 25822e2c009bSjjc 25832e2c009bSjjc /* 25842e2c009bSjjc * Set lgroup latencies for 2 level lgroup topology 25852e2c009bSjjc */ 25862e2c009bSjjc static void 25872e2c009bSjjc lgrp_plat_2level_setup(node_phys_addr_map_t *node_memory, 25882e2c009bSjjc lgrp_plat_latency_stats_t *lat_stats) 25892e2c009bSjjc { 25902e2c009bSjjc int i; 25912e2c009bSjjc 25922e2c009bSjjc ASSERT(node_memory != NULL && lat_stats != NULL); 25932e2c009bSjjc 25942e2c009bSjjc if (lgrp_plat_node_cnt >= 4) 25952e2c009bSjjc cmn_err(CE_NOTE, 25962e2c009bSjjc "MPO only optimizing for local and remote\n"); 25972e2c009bSjjc for (i = 0; i < lgrp_plat_node_cnt; i++) { 25982e2c009bSjjc int j; 25992e2c009bSjjc 26002e2c009bSjjc if (!node_memory[i].exists) 26012e2c009bSjjc continue; 26022e2c009bSjjc for (j = 0; j < lgrp_plat_node_cnt; j++) { 26032e2c009bSjjc if (!node_memory[j].exists) 26042e2c009bSjjc continue; 26052e2c009bSjjc if (i == j) 26062e2c009bSjjc lat_stats->latencies[i][j] = 2; 26072e2c009bSjjc else 26082e2c009bSjjc lat_stats->latencies[i][j] = 3; 26092e2c009bSjjc } 26102e2c009bSjjc } 26112e2c009bSjjc lat_stats->latency_min = 2; 26122e2c009bSjjc lat_stats->latency_max = 3; 26132e2c009bSjjc lgrp_config(LGRP_CONFIG_FLATTEN, 2, 0); 26142e2c009bSjjc } 26152e2c009bSjjc 26162e2c009bSjjc 26172e2c009bSjjc /* 26182e2c009bSjjc * The following Opteron specific constants, macros, types, and routines define 26192e2c009bSjjc * PCI configuration space registers and how to read them to determine the NUMA 26202e2c009bSjjc * configuration of *supported* Opteron processors. They provide the same 26212e2c009bSjjc * information that may be gotten from the ACPI System Resource Affinity Table 26222e2c009bSjjc * (SRAT) if it exists on the machine of interest. 26232e2c009bSjjc * 26242e2c009bSjjc * The AMD BIOS and Kernel Developer's Guide (BKDG) for the processor family 26252e2c009bSjjc * of interest describes all of these registers and their contents. The main 26262e2c009bSjjc * registers used by this code to determine the NUMA configuration of the 26272e2c009bSjjc * machine are the node ID register for the number of NUMA nodes and the DRAM 26282e2c009bSjjc * address map registers for the physical address range of each node. 26292e2c009bSjjc * 26302e2c009bSjjc * NOTE: The format and how to determine the NUMA configuration using PCI 26312e2c009bSjjc * config space registers may change or may not be supported in future 26322e2c009bSjjc * Opteron processor families. 26337c478bd9Sstevel@tonic-gate */ 26347c478bd9Sstevel@tonic-gate 26357c478bd9Sstevel@tonic-gate /* 26367c478bd9Sstevel@tonic-gate * How many bits to shift Opteron DRAM Address Map base and limit registers 26377c478bd9Sstevel@tonic-gate * to get actual value 26387c478bd9Sstevel@tonic-gate */ 2639f78a91cdSjjc #define OPT_DRAMADDR_HI_LSHIFT_ADDR 40 /* shift left for address */ 2640f78a91cdSjjc #define OPT_DRAMADDR_LO_LSHIFT_ADDR 8 /* shift left for address */ 26417c478bd9Sstevel@tonic-gate 2642f78a91cdSjjc #define OPT_DRAMADDR_HI_MASK_ADDR 0x000000FF /* address bits 47-40 */ 2643f78a91cdSjjc #define OPT_DRAMADDR_LO_MASK_ADDR 0xFFFF0000 /* address bits 39-24 */ 2644f78a91cdSjjc 2645f78a91cdSjjc #define OPT_DRAMADDR_LO_MASK_OFF 0xFFFFFF /* offset for address */ 2646f78a91cdSjjc 2647f78a91cdSjjc /* 2648f78a91cdSjjc * Macros to derive addresses from Opteron DRAM Address Map registers 2649f78a91cdSjjc */ 2650f78a91cdSjjc #define OPT_DRAMADDR_HI(reg) \ 2651f78a91cdSjjc (((u_longlong_t)reg & OPT_DRAMADDR_HI_MASK_ADDR) << \ 2652f78a91cdSjjc OPT_DRAMADDR_HI_LSHIFT_ADDR) 2653f78a91cdSjjc 2654f78a91cdSjjc #define OPT_DRAMADDR_LO(reg) \ 2655f78a91cdSjjc (((u_longlong_t)reg & OPT_DRAMADDR_LO_MASK_ADDR) << \ 2656f78a91cdSjjc OPT_DRAMADDR_LO_LSHIFT_ADDR) 2657f78a91cdSjjc 2658f78a91cdSjjc #define OPT_DRAMADDR(high, low) \ 2659f78a91cdSjjc (OPT_DRAMADDR_HI(high) | OPT_DRAMADDR_LO(low)) 26607c478bd9Sstevel@tonic-gate 26617c478bd9Sstevel@tonic-gate /* 26627c478bd9Sstevel@tonic-gate * Bit masks defining what's in Opteron DRAM Address Map base register 26637c478bd9Sstevel@tonic-gate */ 2664f78a91cdSjjc #define OPT_DRAMBASE_LO_MASK_RE 0x1 /* read enable */ 2665f78a91cdSjjc #define OPT_DRAMBASE_LO_MASK_WE 0x2 /* write enable */ 2666f78a91cdSjjc #define OPT_DRAMBASE_LO_MASK_INTRLVEN 0x700 /* interleave */ 26677c478bd9Sstevel@tonic-gate 26687c478bd9Sstevel@tonic-gate /* 26697c478bd9Sstevel@tonic-gate * Bit masks defining what's in Opteron DRAM Address Map limit register 26707c478bd9Sstevel@tonic-gate */ 2671f78a91cdSjjc #define OPT_DRAMLIMIT_LO_MASK_DSTNODE 0x7 /* destination node */ 2672f78a91cdSjjc #define OPT_DRAMLIMIT_LO_MASK_INTRLVSEL 0x700 /* interleave select */ 26737c478bd9Sstevel@tonic-gate 26747c478bd9Sstevel@tonic-gate 26757c478bd9Sstevel@tonic-gate /* 26767c478bd9Sstevel@tonic-gate * Opteron Node ID register in PCI configuration space contains 26777c478bd9Sstevel@tonic-gate * number of nodes in system, etc. for Opteron K8. The following 26787c478bd9Sstevel@tonic-gate * constants and macros define its contents, structure, and access. 26797c478bd9Sstevel@tonic-gate */ 26807c478bd9Sstevel@tonic-gate 26817c478bd9Sstevel@tonic-gate /* 26827c478bd9Sstevel@tonic-gate * Bit masks defining what's in Opteron Node ID register 26837c478bd9Sstevel@tonic-gate */ 26847c478bd9Sstevel@tonic-gate #define OPT_NODE_MASK_ID 0x7 /* node ID */ 26857c478bd9Sstevel@tonic-gate #define OPT_NODE_MASK_CNT 0x70 /* node count */ 26867c478bd9Sstevel@tonic-gate #define OPT_NODE_MASK_IONODE 0x700 /* Hypertransport I/O hub node ID */ 26877c478bd9Sstevel@tonic-gate #define OPT_NODE_MASK_LCKNODE 0x7000 /* lock controller node ID */ 26887c478bd9Sstevel@tonic-gate #define OPT_NODE_MASK_CPUCNT 0xF0000 /* CPUs in system (0 means 1 CPU) */ 26897c478bd9Sstevel@tonic-gate 26907c478bd9Sstevel@tonic-gate /* 26917c478bd9Sstevel@tonic-gate * How many bits in Opteron Node ID register to shift right to get actual value 26927c478bd9Sstevel@tonic-gate */ 26937c478bd9Sstevel@tonic-gate #define OPT_NODE_RSHIFT_CNT 0x4 /* shift right for node count value */ 26947c478bd9Sstevel@tonic-gate 26957c478bd9Sstevel@tonic-gate /* 26967c478bd9Sstevel@tonic-gate * Macros to get values from Opteron Node ID register 26977c478bd9Sstevel@tonic-gate */ 26987c478bd9Sstevel@tonic-gate #define OPT_NODE_CNT(reg) \ 26997c478bd9Sstevel@tonic-gate ((reg & OPT_NODE_MASK_CNT) >> OPT_NODE_RSHIFT_CNT) 27007c478bd9Sstevel@tonic-gate 2701f78a91cdSjjc /* 2702f78a91cdSjjc * Macro to setup PCI Extended Configuration Space (ECS) address to give to 2703f78a91cdSjjc * "in/out" instructions 2704f78a91cdSjjc * 2705f78a91cdSjjc * NOTE: Should only be used in lgrp_plat_init() before MMIO setup because any 2706f78a91cdSjjc * other uses should just do MMIO to access PCI ECS. 2707f78a91cdSjjc * Must enable special bit in Northbridge Configuration Register on 2708f78a91cdSjjc * Greyhound for extended CF8 space access to be able to access PCI ECS 2709f78a91cdSjjc * using "in/out" instructions and restore special bit after done 2710f78a91cdSjjc * accessing PCI ECS. 2711f78a91cdSjjc */ 2712f78a91cdSjjc #define OPT_PCI_ECS_ADDR(bus, device, function, reg) \ 2713f78a91cdSjjc (PCI_CONE | (((bus) & 0xff) << 16) | (((device & 0x1f)) << 11) | \ 2714f78a91cdSjjc (((function) & 0x7) << 8) | ((reg) & 0xfc) | \ 2715f78a91cdSjjc ((((reg) >> 8) & 0xf) << 24)) 27167c478bd9Sstevel@tonic-gate 27177c478bd9Sstevel@tonic-gate /* 27187c478bd9Sstevel@tonic-gate * PCI configuration space registers accessed by specifying 27197c478bd9Sstevel@tonic-gate * a bus, device, function, and offset. The following constants 27207c478bd9Sstevel@tonic-gate * define the values needed to access Opteron K8 configuration 27217c478bd9Sstevel@tonic-gate * info to determine its node topology 27227c478bd9Sstevel@tonic-gate */ 27237c478bd9Sstevel@tonic-gate 27247c478bd9Sstevel@tonic-gate #define OPT_PCS_BUS_CONFIG 0 /* Hypertransport config space bus */ 27257c478bd9Sstevel@tonic-gate 27267c478bd9Sstevel@tonic-gate /* 27277c478bd9Sstevel@tonic-gate * Opteron PCI configuration space register function values 27287c478bd9Sstevel@tonic-gate */ 27297c478bd9Sstevel@tonic-gate #define OPT_PCS_FUNC_HT 0 /* Hypertransport configuration */ 27307c478bd9Sstevel@tonic-gate #define OPT_PCS_FUNC_ADDRMAP 1 /* Address map configuration */ 27317c478bd9Sstevel@tonic-gate #define OPT_PCS_FUNC_DRAM 2 /* DRAM configuration */ 27327c478bd9Sstevel@tonic-gate #define OPT_PCS_FUNC_MISC 3 /* Miscellaneous configuration */ 27337c478bd9Sstevel@tonic-gate 27347c478bd9Sstevel@tonic-gate /* 27357c478bd9Sstevel@tonic-gate * PCI Configuration Space register offsets 27367c478bd9Sstevel@tonic-gate */ 27377c478bd9Sstevel@tonic-gate #define OPT_PCS_OFF_VENDOR 0x0 /* device/vendor ID register */ 2738f78a91cdSjjc #define OPT_PCS_OFF_DRAMBASE_HI 0x140 /* DRAM Base register (node 0) */ 2739f78a91cdSjjc #define OPT_PCS_OFF_DRAMBASE_LO 0x40 /* DRAM Base register (node 0) */ 27407c478bd9Sstevel@tonic-gate #define OPT_PCS_OFF_NODEID 0x60 /* Node ID register */ 27417c478bd9Sstevel@tonic-gate 27427c478bd9Sstevel@tonic-gate /* 27437c478bd9Sstevel@tonic-gate * Opteron PCI Configuration Space device IDs for nodes 27447c478bd9Sstevel@tonic-gate */ 27457c478bd9Sstevel@tonic-gate #define OPT_PCS_DEV_NODE0 24 /* device number for node 0 */ 27467c478bd9Sstevel@tonic-gate 27477c478bd9Sstevel@tonic-gate 27487c478bd9Sstevel@tonic-gate /* 27497c478bd9Sstevel@tonic-gate * Opteron DRAM address map gives base and limit for physical memory in a node 27507c478bd9Sstevel@tonic-gate */ 27517c478bd9Sstevel@tonic-gate typedef struct opt_dram_addr_map { 2752f78a91cdSjjc uint32_t base_hi; 2753f78a91cdSjjc uint32_t base_lo; 2754f78a91cdSjjc uint32_t limit_hi; 2755f78a91cdSjjc uint32_t limit_lo; 27567c478bd9Sstevel@tonic-gate } opt_dram_addr_map_t; 27577c478bd9Sstevel@tonic-gate 27587c478bd9Sstevel@tonic-gate 27597c478bd9Sstevel@tonic-gate /* 2760f78a91cdSjjc * Supported AMD processor families 2761f78a91cdSjjc */ 2762f78a91cdSjjc #define AMD_FAMILY_HAMMER 15 2763f78a91cdSjjc #define AMD_FAMILY_GREYHOUND 16 27647c478bd9Sstevel@tonic-gate 2765f78a91cdSjjc /* 27662e2c009bSjjc * Whether to have is_opteron() return 1 even when processor isn't supported 2767f78a91cdSjjc */ 2768f78a91cdSjjc uint_t is_opteron_override = 0; 2769f78a91cdSjjc 2770f78a91cdSjjc /* 2771f78a91cdSjjc * AMD processor family for current CPU 2772f78a91cdSjjc */ 27737c478bd9Sstevel@tonic-gate uint_t opt_family = 0; 2774f78a91cdSjjc 27757c478bd9Sstevel@tonic-gate 27767c478bd9Sstevel@tonic-gate /* 2777f78a91cdSjjc * Determine whether we're running on a supported AMD Opteron since reading 2778f78a91cdSjjc * node count and DRAM address map registers may have different format or 27792e2c009bSjjc * may not be supported across processor families 27807c478bd9Sstevel@tonic-gate */ 27812e2c009bSjjc static int 27827c478bd9Sstevel@tonic-gate is_opteron(void) 27837c478bd9Sstevel@tonic-gate { 2784f78a91cdSjjc 27857c478bd9Sstevel@tonic-gate if (x86_vendor != X86_VENDOR_AMD) 27867c478bd9Sstevel@tonic-gate return (0); 27877c478bd9Sstevel@tonic-gate 2788f78a91cdSjjc opt_family = cpuid_getfamily(CPU); 2789f78a91cdSjjc if (opt_family == AMD_FAMILY_HAMMER || 2790f78a91cdSjjc opt_family == AMD_FAMILY_GREYHOUND || is_opteron_override) 27917c478bd9Sstevel@tonic-gate return (1); 27927c478bd9Sstevel@tonic-gate else 27937c478bd9Sstevel@tonic-gate return (0); 27947c478bd9Sstevel@tonic-gate } 27957c478bd9Sstevel@tonic-gate 27962e2c009bSjjc 27972e2c009bSjjc /* 27982e2c009bSjjc * Determine NUMA configuration for Opteron from registers that live in PCI 27992e2c009bSjjc * configuration space 28002e2c009bSjjc */ 28012e2c009bSjjc static void 28022e2c009bSjjc opt_get_numa_config(uint_t *node_cnt, int *mem_intrlv, 28032e2c009bSjjc node_phys_addr_map_t *node_memory) 28047c478bd9Sstevel@tonic-gate { 28057c478bd9Sstevel@tonic-gate uint_t bus; 28067c478bd9Sstevel@tonic-gate uint_t dev; 28072e2c009bSjjc struct opt_dram_addr_map dram_map[MAX_NODES]; 28087c478bd9Sstevel@tonic-gate uint_t node; 28092e2c009bSjjc uint_t node_info[MAX_NODES]; 2810f78a91cdSjjc uint_t off_hi; 2811f78a91cdSjjc uint_t off_lo; 2812f78a91cdSjjc uint64_t nb_cfg_reg; 28137c478bd9Sstevel@tonic-gate 28147c478bd9Sstevel@tonic-gate /* 28157c478bd9Sstevel@tonic-gate * Read configuration registers from PCI configuration space to 28167c478bd9Sstevel@tonic-gate * determine node information, which memory is in each node, etc. 28177c478bd9Sstevel@tonic-gate * 28187c478bd9Sstevel@tonic-gate * Write to PCI configuration space address register to specify 28197c478bd9Sstevel@tonic-gate * which configuration register to read and read/write PCI 28207c478bd9Sstevel@tonic-gate * configuration space data register to get/set contents 28217c478bd9Sstevel@tonic-gate */ 28227c478bd9Sstevel@tonic-gate bus = OPT_PCS_BUS_CONFIG; 28237c478bd9Sstevel@tonic-gate dev = OPT_PCS_DEV_NODE0; 2824f78a91cdSjjc off_hi = OPT_PCS_OFF_DRAMBASE_HI; 2825f78a91cdSjjc off_lo = OPT_PCS_OFF_DRAMBASE_LO; 28267c478bd9Sstevel@tonic-gate 28277c478bd9Sstevel@tonic-gate /* 28287c478bd9Sstevel@tonic-gate * Read node ID register for node 0 to get node count 28297c478bd9Sstevel@tonic-gate */ 28302e2c009bSjjc node_info[0] = pci_getl_func(bus, dev, OPT_PCS_FUNC_HT, 2831ef50d8c0Sesaxe OPT_PCS_OFF_NODEID); 28322e2c009bSjjc *node_cnt = OPT_NODE_CNT(node_info[0]) + 1; 28332e2c009bSjjc 28342e2c009bSjjc /* 28352e2c009bSjjc * If number of nodes is more than maximum supported, then set node 28362e2c009bSjjc * count to 1 and treat system as UMA instead of NUMA. 28372e2c009bSjjc */ 28382e2c009bSjjc if (*node_cnt > MAX_NODES) { 28392e2c009bSjjc *node_cnt = 1; 28402e2c009bSjjc return; 28412e2c009bSjjc } 28427c478bd9Sstevel@tonic-gate 2843f78a91cdSjjc /* 2844f78a91cdSjjc * For Greyhound, PCI Extended Configuration Space must be enabled to 2845f78a91cdSjjc * read high DRAM address map base and limit registers 2846f78a91cdSjjc */ 2847f78a91cdSjjc if (opt_family == AMD_FAMILY_GREYHOUND) { 2848f78a91cdSjjc nb_cfg_reg = rdmsr(MSR_AMD_NB_CFG); 2849f78a91cdSjjc if ((nb_cfg_reg & AMD_GH_NB_CFG_EN_ECS) == 0) 2850f78a91cdSjjc wrmsr(MSR_AMD_NB_CFG, 2851f78a91cdSjjc nb_cfg_reg | AMD_GH_NB_CFG_EN_ECS); 2852f78a91cdSjjc } 2853f78a91cdSjjc 28542e2c009bSjjc for (node = 0; node < *node_cnt; node++) { 2855f78a91cdSjjc uint32_t base_hi; 2856f78a91cdSjjc uint32_t base_lo; 2857f78a91cdSjjc uint32_t limit_hi; 2858f78a91cdSjjc uint32_t limit_lo; 2859f78a91cdSjjc 28607c478bd9Sstevel@tonic-gate /* 28617c478bd9Sstevel@tonic-gate * Read node ID register (except for node 0 which we just read) 28627c478bd9Sstevel@tonic-gate */ 28637c478bd9Sstevel@tonic-gate if (node > 0) { 28642e2c009bSjjc node_info[node] = pci_getl_func(bus, dev, 2865ef50d8c0Sesaxe OPT_PCS_FUNC_HT, OPT_PCS_OFF_NODEID); 28667c478bd9Sstevel@tonic-gate } 28677c478bd9Sstevel@tonic-gate 28687c478bd9Sstevel@tonic-gate /* 28697c478bd9Sstevel@tonic-gate * Read DRAM base and limit registers which specify 28707c478bd9Sstevel@tonic-gate * physical memory range of each node 28717c478bd9Sstevel@tonic-gate */ 2872f78a91cdSjjc if (opt_family != AMD_FAMILY_GREYHOUND) 2873f78a91cdSjjc base_hi = 0; 2874f78a91cdSjjc else { 2875f78a91cdSjjc outl(PCI_CONFADD, OPT_PCI_ECS_ADDR(bus, dev, 2876f78a91cdSjjc OPT_PCS_FUNC_ADDRMAP, off_hi)); 28772e2c009bSjjc base_hi = dram_map[node].base_hi = 2878f78a91cdSjjc inl(PCI_CONFDATA); 2879f78a91cdSjjc } 28802e2c009bSjjc base_lo = dram_map[node].base_lo = pci_getl_func(bus, dev, 2881f78a91cdSjjc OPT_PCS_FUNC_ADDRMAP, off_lo); 2882f78a91cdSjjc 28832e2c009bSjjc if ((dram_map[node].base_lo & OPT_DRAMBASE_LO_MASK_INTRLVEN) && 28842e2c009bSjjc mem_intrlv) 28852e2c009bSjjc *mem_intrlv = *mem_intrlv + 1; 28867c478bd9Sstevel@tonic-gate 2887f78a91cdSjjc off_hi += 4; /* high limit register offset */ 2888f78a91cdSjjc if (opt_family != AMD_FAMILY_GREYHOUND) 2889f78a91cdSjjc limit_hi = 0; 2890f78a91cdSjjc else { 2891f78a91cdSjjc outl(PCI_CONFADD, OPT_PCI_ECS_ADDR(bus, dev, 2892f78a91cdSjjc OPT_PCS_FUNC_ADDRMAP, off_hi)); 28932e2c009bSjjc limit_hi = dram_map[node].limit_hi = 2894f78a91cdSjjc inl(PCI_CONFDATA); 2895f78a91cdSjjc } 2896f78a91cdSjjc 2897f78a91cdSjjc off_lo += 4; /* low limit register offset */ 28982e2c009bSjjc limit_lo = dram_map[node].limit_lo = pci_getl_func(bus, 2899f78a91cdSjjc dev, OPT_PCS_FUNC_ADDRMAP, off_lo); 29007c478bd9Sstevel@tonic-gate 29017c478bd9Sstevel@tonic-gate /* 2902f78a91cdSjjc * Increment device number to next node and register offsets 2903f78a91cdSjjc * for DRAM base register of next node 29047c478bd9Sstevel@tonic-gate */ 2905f78a91cdSjjc off_hi += 4; 2906f78a91cdSjjc off_lo += 4; 29077c478bd9Sstevel@tonic-gate dev++; 29087c478bd9Sstevel@tonic-gate 29097c478bd9Sstevel@tonic-gate /* 2910a940d195Sjjc * Both read and write enable bits must be enabled in DRAM 2911a940d195Sjjc * address map base register for physical memory to exist in 2912a940d195Sjjc * node 2913a940d195Sjjc */ 2914f78a91cdSjjc if ((base_lo & OPT_DRAMBASE_LO_MASK_RE) == 0 || 2915f78a91cdSjjc (base_lo & OPT_DRAMBASE_LO_MASK_WE) == 0) { 2916a940d195Sjjc /* 2917a940d195Sjjc * Mark node memory as non-existent and set start and 29182e2c009bSjjc * end addresses to be same in node_memory[] 2919a940d195Sjjc */ 29202e2c009bSjjc node_memory[node].exists = 0; 29212e2c009bSjjc node_memory[node].start = node_memory[node].end = 29222e2c009bSjjc (pfn_t)-1; 2923a940d195Sjjc continue; 2924a940d195Sjjc } 2925a940d195Sjjc 2926a940d195Sjjc /* 2927a940d195Sjjc * Mark node memory as existing and remember physical address 2928a940d195Sjjc * range of each node for use later 29297c478bd9Sstevel@tonic-gate */ 29302e2c009bSjjc node_memory[node].exists = 1; 2931f78a91cdSjjc 29322e2c009bSjjc node_memory[node].start = btop(OPT_DRAMADDR(base_hi, base_lo)); 2933f78a91cdSjjc 29342e2c009bSjjc node_memory[node].end = btop(OPT_DRAMADDR(limit_hi, limit_lo) | 2935f78a91cdSjjc OPT_DRAMADDR_LO_MASK_OFF); 2936f78a91cdSjjc } 2937f78a91cdSjjc 2938f78a91cdSjjc /* 2939f78a91cdSjjc * Restore PCI Extended Configuration Space enable bit 2940f78a91cdSjjc */ 2941f78a91cdSjjc if (opt_family == AMD_FAMILY_GREYHOUND) { 2942f78a91cdSjjc if ((nb_cfg_reg & AMD_GH_NB_CFG_EN_ECS) == 0) 2943f78a91cdSjjc wrmsr(MSR_AMD_NB_CFG, nb_cfg_reg); 29447c478bd9Sstevel@tonic-gate } 29457c478bd9Sstevel@tonic-gate } 29467c478bd9Sstevel@tonic-gate 29477c478bd9Sstevel@tonic-gate 29487c478bd9Sstevel@tonic-gate /* 29492e2c009bSjjc * Return average amount of time to read vendor ID register on Northbridge 29502e2c009bSjjc * N times on specified destination node from current CPU 29517c478bd9Sstevel@tonic-gate */ 29527c478bd9Sstevel@tonic-gate static hrtime_t 29532e2c009bSjjc opt_probe_vendor(int dest_node, int nreads) 29547c478bd9Sstevel@tonic-gate { 29552e2c009bSjjc int cnt; 29567c478bd9Sstevel@tonic-gate uint_t dev; 29577c478bd9Sstevel@tonic-gate /* LINTED: set but not used in function */ 29587c478bd9Sstevel@tonic-gate volatile uint_t dev_vendor; 29597c478bd9Sstevel@tonic-gate hrtime_t elapsed; 29607c478bd9Sstevel@tonic-gate hrtime_t end; 29617c478bd9Sstevel@tonic-gate int ipl; 29627c478bd9Sstevel@tonic-gate hrtime_t start; 29637c478bd9Sstevel@tonic-gate 29642e2c009bSjjc dev = OPT_PCS_DEV_NODE0 + dest_node; 29657c478bd9Sstevel@tonic-gate kpreempt_disable(); 29667c478bd9Sstevel@tonic-gate ipl = spl8(); 29672e2c009bSjjc outl(PCI_CONFADD, PCI_CADDR1(0, dev, OPT_PCS_FUNC_DRAM, 29687c478bd9Sstevel@tonic-gate OPT_PCS_OFF_VENDOR)); 29697c478bd9Sstevel@tonic-gate start = gethrtime(); 29702e2c009bSjjc for (cnt = 0; cnt < nreads; cnt++) 29717c478bd9Sstevel@tonic-gate dev_vendor = inl(PCI_CONFDATA); 29727c478bd9Sstevel@tonic-gate end = gethrtime(); 29732e2c009bSjjc elapsed = (end - start) / nreads; 29747c478bd9Sstevel@tonic-gate splx(ipl); 29757c478bd9Sstevel@tonic-gate kpreempt_enable(); 29762e2c009bSjjc return (elapsed); 29777c478bd9Sstevel@tonic-gate } 2978