1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/cpuvar.h> 30 #include <sys/regset.h> 31 #include <sys/psw.h> 32 #include <sys/types.h> 33 #include <sys/thread.h> 34 #include <sys/systm.h> 35 #include <sys/segments.h> 36 #include <sys/pcb.h> 37 #include <sys/trap.h> 38 #include <sys/ftrace.h> 39 #include <sys/traptrace.h> 40 #include <sys/clock.h> 41 #include <sys/panic.h> 42 #include <sys/disp.h> 43 #include <vm/seg_kp.h> 44 #include <sys/stack.h> 45 #include <sys/sysmacros.h> 46 #include <sys/cmn_err.h> 47 #include <sys/kstat.h> 48 #include <sys/smp_impldefs.h> 49 #include <sys/pool_pset.h> 50 #include <sys/zone.h> 51 #include <sys/bitmap.h> 52 53 #if defined(__amd64) 54 55 #if defined(__lint) 56 /* 57 * atomic_btr32() is a gcc __inline__ function, defined in <asm/bitmap.h> 58 * For lint purposes, define it here. 59 */ 60 uint_t 61 atomic_btr32(uint32_t *pending, uint_t pil) 62 { 63 return (*pending &= ~(1 << pil)); 64 } 65 #else 66 67 extern uint_t atomic_btr32(uint32_t *pending, uint_t pil); 68 69 #endif 70 71 /* 72 * This code is amd64-only for now, but as time permits, we should 73 * use this on i386 too. 74 */ 75 76 /* 77 * Some questions to ponder: 78 * - in several of these routines, we make multiple calls to tsc_read() 79 * without invoking functions .. couldn't we just reuse the same 80 * timestamp sometimes? 81 * - if we have the inline, we can probably make set_base_spl be a 82 * C routine too. 83 */ 84 85 static uint_t 86 bsrw_insn(uint16_t mask) 87 { 88 uint_t index = sizeof (mask) * NBBY - 1; 89 90 ASSERT(mask != 0); 91 92 while ((mask & (1 << index)) == 0) 93 index--; 94 return (index); 95 } 96 97 /* 98 * Do all the work necessary to set up the cpu and thread structures 99 * to dispatch a high-level interrupt. 100 * 101 * Returns 0 if we're -not- already on the high-level interrupt stack, 102 * (and *must* switch to it), non-zero if we are already on that stack. 103 * 104 * Called with interrupts masked. 105 * The 'pil' is already set to the appropriate level for rp->r_trapno. 106 */ 107 int 108 hilevel_intr_prolog(struct cpu *cpu, uint_t pil, uint_t oldpil, struct regs *rp) 109 { 110 struct machcpu *mcpu = &cpu->cpu_m; 111 uint_t mask; 112 hrtime_t intrtime; 113 114 ASSERT(pil > LOCK_LEVEL); 115 116 if (pil == CBE_HIGH_PIL) { 117 cpu->cpu_profile_pil = oldpil; 118 if (USERMODE(rp->r_cs)) { 119 cpu->cpu_profile_pc = 0; 120 cpu->cpu_profile_upc = rp->r_pc; 121 } else { 122 cpu->cpu_profile_pc = rp->r_pc; 123 cpu->cpu_profile_upc = 0; 124 } 125 } 126 127 mask = cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK; 128 if (mask != 0) { 129 int nestpil; 130 131 /* 132 * We have interrupted another high-level interrupt. 133 * Load starting timestamp, compute interval, update 134 * cumulative counter. 135 */ 136 nestpil = bsrw_insn((uint16_t)mask); 137 ASSERT(nestpil < pil); 138 intrtime = tsc_read() - 139 mcpu->pil_high_start[nestpil - (LOCK_LEVEL + 1)]; 140 mcpu->intrstat[nestpil][0] += intrtime; 141 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 142 /* 143 * Another high-level interrupt is active below this one, so 144 * there is no need to check for an interrupt thread. That 145 * will be done by the lowest priority high-level interrupt 146 * active. 147 */ 148 } else { 149 kthread_t *t = cpu->cpu_thread; 150 151 /* 152 * See if we are interrupting a low-level interrupt thread. 153 * If so, account for its time slice only if its time stamp 154 * is non-zero. 155 */ 156 if ((t->t_flag & T_INTR_THREAD) != 0 && t->t_intr_start != 0) { 157 intrtime = tsc_read() - t->t_intr_start; 158 mcpu->intrstat[t->t_pil][0] += intrtime; 159 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 160 t->t_intr_start = 0; 161 } 162 } 163 164 /* 165 * Store starting timestamp in CPU structure for this PIL. 166 */ 167 mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)] = tsc_read(); 168 169 ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0); 170 171 if (pil == 15) { 172 /* 173 * To support reentrant level 15 interrupts, we maintain a 174 * recursion count in the top half of cpu_intr_actv. Only 175 * when this count hits zero do we clear the PIL 15 bit from 176 * the lower half of cpu_intr_actv. 177 */ 178 uint16_t *refcntp = (uint16_t *)&cpu->cpu_intr_actv + 1; 179 (*refcntp)++; 180 } 181 182 mask = cpu->cpu_intr_actv; 183 184 cpu->cpu_intr_actv |= (1 << pil); 185 186 return (mask & CPU_INTR_ACTV_HIGH_LEVEL_MASK); 187 } 188 189 /* 190 * Does most of the work of returning from a high level interrupt. 191 * 192 * Returns 0 if there are no more high level interrupts (in which 193 * case we must switch back to the interrupted thread stack) or 194 * non-zero if there are more (in which case we should stay on it). 195 * 196 * Called with interrupts masked 197 */ 198 int 199 hilevel_intr_epilog(struct cpu *cpu, uint_t pil, uint_t oldpil, uint_t vecnum) 200 { 201 struct machcpu *mcpu = &cpu->cpu_m; 202 uint_t mask; 203 hrtime_t intrtime; 204 205 ASSERT(mcpu->mcpu_pri == pil); 206 207 cpu->cpu_stats.sys.intr[pil - 1]++; 208 209 ASSERT(cpu->cpu_intr_actv & (1 << pil)); 210 211 if (pil == 15) { 212 /* 213 * To support reentrant level 15 interrupts, we maintain a 214 * recursion count in the top half of cpu_intr_actv. Only 215 * when this count hits zero do we clear the PIL 15 bit from 216 * the lower half of cpu_intr_actv. 217 */ 218 uint16_t *refcntp = (uint16_t *)&cpu->cpu_intr_actv + 1; 219 220 ASSERT(*refcntp > 0); 221 222 if (--(*refcntp) == 0) 223 cpu->cpu_intr_actv &= ~(1 << pil); 224 } else { 225 cpu->cpu_intr_actv &= ~(1 << pil); 226 } 227 228 ASSERT(mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)] != 0); 229 230 intrtime = tsc_read() - mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)]; 231 mcpu->intrstat[pil][0] += intrtime; 232 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 233 234 /* 235 * Check for lower-pil nested high-level interrupt beneath 236 * current one. If so, place a starting timestamp in its 237 * pil_high_start entry. 238 */ 239 mask = cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK; 240 if (mask != 0) { 241 int nestpil; 242 243 /* 244 * find PIL of nested interrupt 245 */ 246 nestpil = bsrw_insn((uint16_t)mask); 247 ASSERT(nestpil < pil); 248 mcpu->pil_high_start[nestpil - (LOCK_LEVEL + 1)] = tsc_read(); 249 /* 250 * (Another high-level interrupt is active below this one, 251 * so there is no need to check for an interrupt 252 * thread. That will be done by the lowest priority 253 * high-level interrupt active.) 254 */ 255 } else { 256 /* 257 * Check to see if there is a low-level interrupt active. 258 * If so, place a starting timestamp in the thread 259 * structure. 260 */ 261 kthread_t *t = cpu->cpu_thread; 262 263 if (t->t_flag & T_INTR_THREAD) 264 t->t_intr_start = tsc_read(); 265 } 266 267 mcpu->mcpu_pri = oldpil; 268 (void) (*setlvlx)(oldpil, vecnum); 269 270 return (cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK); 271 } 272 273 /* 274 * Set up the cpu, thread and interrupt thread structures for 275 * executing an interrupt thread. The new stack pointer of the 276 * interrupt thread (which *must* be switched to) is returned. 277 */ 278 caddr_t 279 intr_thread_prolog(struct cpu *cpu, caddr_t stackptr, uint_t pil) 280 { 281 struct machcpu *mcpu = &cpu->cpu_m; 282 kthread_t *t, *volatile it; 283 284 ASSERT(pil > 0); 285 ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0); 286 cpu->cpu_intr_actv |= (1 << pil); 287 288 /* 289 * Get set to run an interrupt thread. 290 * There should always be an interrupt thread, since we 291 * allocate one for each level on each CPU. 292 * 293 * Note that the code in kcpc_overflow_intr -relies- on the 294 * ordering of events here - in particular that t->t_lwp of 295 * the interrupt thread is set to the pinned thread *before* 296 * curthread is changed. 297 */ 298 t = cpu->cpu_thread; 299 if (t->t_flag & T_INTR_THREAD) { 300 hrtime_t intrtime = tsc_read() - t->t_intr_start; 301 mcpu->intrstat[t->t_pil][0] += intrtime; 302 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 303 t->t_intr_start = 0; 304 } 305 306 ASSERT(SA((uintptr_t)stackptr) == (uintptr_t)stackptr); 307 308 t->t_sp = (uintptr_t)stackptr; /* mark stack in curthread for resume */ 309 310 /* 311 * unlink the interrupt thread off the cpu 312 */ 313 it = cpu->cpu_intr_thread; 314 cpu->cpu_intr_thread = it->t_link; 315 it->t_intr = t; 316 it->t_lwp = t->t_lwp; 317 318 /* 319 * (threads on the interrupt thread free list could have state 320 * preset to TS_ONPROC, but it helps in debugging if 321 * they're TS_FREE.) 322 */ 323 it->t_state = TS_ONPROC; 324 325 cpu->cpu_thread = it; /* new curthread on this cpu */ 326 it->t_pil = (uchar_t)pil; 327 it->t_pri = intr_pri + (pri_t)pil; 328 it->t_intr_start = tsc_read(); 329 330 return (it->t_stk); 331 } 332 333 334 #ifdef DEBUG 335 int intr_thread_cnt; 336 #endif 337 338 /* 339 * Called with interrupts disabled 340 */ 341 void 342 intr_thread_epilog(struct cpu *cpu, uint_t vec, uint_t oldpil) 343 { 344 struct machcpu *mcpu = &cpu->cpu_m; 345 kthread_t *t; 346 kthread_t *it = cpu->cpu_thread; /* curthread */ 347 uint_t pil, basespl; 348 hrtime_t intrtime; 349 350 pil = it->t_pil; 351 cpu->cpu_stats.sys.intr[pil - 1]++; 352 353 ASSERT(it->t_intr_start != 0); 354 intrtime = tsc_read() - it->t_intr_start; 355 mcpu->intrstat[pil][0] += intrtime; 356 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 357 358 ASSERT(cpu->cpu_intr_actv & (1 << pil)); 359 cpu->cpu_intr_actv &= ~(1 << pil); 360 361 /* 362 * If there is still an interrupted thread underneath this one 363 * then the interrupt was never blocked and the return is 364 * fairly simple. Otherwise it isn't. 365 */ 366 if ((t = it->t_intr) == NULL) { 367 /* 368 * The interrupted thread is no longer pinned underneath 369 * the interrupt thread. This means the interrupt must 370 * have blocked, and the interrupted thread has been 371 * unpinned, and has probably been running around the 372 * system for a while. 373 * 374 * Since there is no longer a thread under this one, put 375 * this interrupt thread back on the CPU's free list and 376 * resume the idle thread which will dispatch the next 377 * thread to run. 378 */ 379 #ifdef DEBUG 380 intr_thread_cnt++; 381 #endif 382 cpu->cpu_stats.sys.intrblk++; 383 /* 384 * Set CPU's base SPL based on active interrupts bitmask 385 */ 386 set_base_spl(); 387 basespl = cpu->cpu_base_spl; 388 mcpu->mcpu_pri = basespl; 389 (*setlvlx)(basespl, vec); 390 (void) splhigh(); 391 it->t_state = TS_FREE; 392 /* 393 * Return interrupt thread to pool 394 */ 395 it->t_link = cpu->cpu_intr_thread; 396 cpu->cpu_intr_thread = it; 397 swtch(); 398 /*NOTREACHED*/ 399 } 400 401 /* 402 * Return interrupt thread to the pool 403 */ 404 it->t_link = cpu->cpu_intr_thread; 405 cpu->cpu_intr_thread = it; 406 it->t_state = TS_FREE; 407 408 basespl = cpu->cpu_base_spl; 409 pil = MAX(oldpil, basespl); 410 mcpu->mcpu_pri = pil; 411 (*setlvlx)(pil, vec); 412 t->t_intr_start = tsc_read(); 413 cpu->cpu_thread = t; 414 } 415 416 /* 417 * Called with interrupts disabled by an interrupt thread to determine 418 * how much time has elapsed. See interrupt.s:intr_get_time() for detailed 419 * theory of operation. 420 */ 421 uint64_t 422 intr_thread_get_time(struct cpu *cpu) 423 { 424 struct machcpu *mcpu = &cpu->cpu_m; 425 kthread_t *t = cpu->cpu_thread; 426 uint64_t time, delta, ret; 427 uint_t pil = t->t_pil; 428 429 ASSERT((cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK) == 0); 430 ASSERT(t->t_flag & T_INTR_THREAD); 431 ASSERT(pil != 0); 432 ASSERT(t->t_intr_start != 0); 433 434 time = tsc_read(); 435 delta = time - t->t_intr_start; 436 t->t_intr_start = time; 437 438 time = mcpu->intrstat[pil][0] + delta; 439 ret = time - mcpu->intrstat[pil][1]; 440 mcpu->intrstat[pil][0] = time; 441 mcpu->intrstat[pil][1] = time; 442 443 return (ret); 444 } 445 446 caddr_t 447 dosoftint_prolog( 448 struct cpu *cpu, 449 caddr_t stackptr, 450 uint32_t st_pending, 451 uint_t oldpil) 452 { 453 kthread_t *t, *volatile it; 454 struct machcpu *mcpu = &cpu->cpu_m; 455 uint_t pil; 456 457 top: 458 ASSERT(st_pending == mcpu->mcpu_softinfo.st_pending); 459 460 pil = bsrw_insn((uint16_t)st_pending); 461 if (pil <= oldpil || pil <= cpu->cpu_base_spl) 462 return (0); 463 464 /* 465 * XX64 Sigh. 466 * 467 * This is a transliteration of the i386 assembler code for 468 * soft interrupts. One question is "why does this need 469 * to be atomic?" One possible race is -other- processors 470 * posting soft interrupts to us in set_pending() i.e. the 471 * CPU might get preempted just after the address computation, 472 * but just before the atomic transaction, so another CPU would 473 * actually set the original CPU's st_pending bit. However, 474 * it looks like it would be simpler to disable preemption there. 475 * Are there other races for which preemption control doesn't work? 476 * 477 * The i386 assembler version -also- checks to see if the bit 478 * being cleared was actually set; if it wasn't, it rechecks 479 * for more. This seems a bit strange, as the only code that 480 * ever clears the bit is -this- code running with interrupts 481 * disabled on -this- CPU. This code would probably be cheaper: 482 * 483 * atomic_and_32((uint32_t *)&mcpu->mcpu_softinfo.st_pending, 484 * ~(1 << pil)); 485 * 486 * and t->t_preempt--/++ around set_pending() even cheaper, 487 * but at this point, correctness is critical, so we slavishly 488 * emulate the i386 port. 489 */ 490 if (atomic_btr32((uint32_t *)&mcpu->mcpu_softinfo.st_pending, pil) 491 == 0) { 492 st_pending = mcpu->mcpu_softinfo.st_pending; 493 goto top; 494 } 495 496 mcpu->mcpu_pri = pil; 497 (*setspl)(pil); 498 499 /* 500 * Get set to run interrupt thread. 501 * There should always be an interrupt thread since we 502 * allocate one for each level on the CPU. 503 */ 504 it = cpu->cpu_intr_thread; 505 cpu->cpu_intr_thread = it->t_link; 506 507 /* 508 * Note that the code in kcpc_overflow_intr -relies- on the 509 * ordering of events here - in particular that t->t_lwp of 510 * the interrupt thread is set to the pinned thread *before* 511 * curthread is changed 512 */ 513 t = cpu->cpu_thread; 514 if (t->t_flag & T_INTR_THREAD) { 515 hrtime_t intrtime = tsc_read() - t->t_intr_start; 516 mcpu->intrstat[pil][0] += intrtime; 517 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 518 } 519 it->t_lwp = t->t_lwp; 520 it->t_state = TS_ONPROC; 521 522 /* 523 * Push interrupted thread onto list from new thread. 524 * Set the new thread as the current one. 525 * Set interrupted thread's T_SP because if it is the idle thread, 526 * resume() may use that stack between threads. 527 */ 528 529 ASSERT(SA((uintptr_t)stackptr) == (uintptr_t)stackptr); 530 t->t_sp = (uintptr_t)stackptr; 531 532 it->t_intr = t; 533 cpu->cpu_thread = it; 534 535 /* 536 * Set bit for this pil in CPU's interrupt active bitmask. 537 */ 538 ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0); 539 cpu->cpu_intr_actv |= (1 << pil); 540 541 /* 542 * Initialize thread priority level from intr_pri 543 */ 544 it->t_pil = (uchar_t)pil; 545 it->t_pri = (pri_t)pil + intr_pri; 546 it->t_intr_start = tsc_read(); 547 548 return (it->t_stk); 549 } 550 551 void 552 dosoftint_epilog(struct cpu *cpu, uint_t oldpil) 553 { 554 struct machcpu *mcpu = &cpu->cpu_m; 555 kthread_t *t, *it; 556 uint_t pil, basespl; 557 hrtime_t intrtime; 558 559 it = cpu->cpu_thread; 560 pil = it->t_pil; 561 562 cpu->cpu_stats.sys.intr[pil - 1]++; 563 564 ASSERT(cpu->cpu_intr_actv & (1 << pil)); 565 cpu->cpu_intr_actv &= ~(1 << pil); 566 intrtime = tsc_read() - it->t_intr_start; 567 mcpu->intrstat[pil][0] += intrtime; 568 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 569 570 /* 571 * If there is still an interrupted thread underneath this one 572 * then the interrupt was never blocked and the return is 573 * fairly simple. Otherwise it isn't. 574 */ 575 if ((t = it->t_intr) == NULL) { 576 /* 577 * Put thread back on the interrupt thread list. 578 * This was an interrupt thread, so set CPU's base SPL. 579 */ 580 set_base_spl(); 581 it->t_state = TS_FREE; 582 it->t_link = cpu->cpu_intr_thread; 583 cpu->cpu_intr_thread = it; 584 (void) splhigh(); 585 swtch(); 586 /*NOTREACHED*/ 587 } 588 it->t_link = cpu->cpu_intr_thread; 589 cpu->cpu_intr_thread = it; 590 it->t_state = TS_FREE; 591 cpu->cpu_thread = t; 592 if (t->t_flag & T_INTR_THREAD) 593 t->t_intr_start = tsc_read(); 594 basespl = cpu->cpu_base_spl; 595 pil = MAX(oldpil, basespl); 596 mcpu->mcpu_pri = pil; 597 (*setspl)(pil); 598 } 599 600 /* 601 * Make the interrupted thread 'to' be runnable. 602 * 603 * Since t->t_sp has already been saved, t->t_pc is all 604 * that needs to be set in this function. 605 * 606 * Returns the interrupt level of the interrupt thread. 607 */ 608 int 609 intr_passivate( 610 kthread_t *it, /* interrupt thread */ 611 kthread_t *t) /* interrupted thread */ 612 { 613 extern void _sys_rtt(); 614 615 ASSERT(it->t_flag & T_INTR_THREAD); 616 ASSERT(SA(t->t_sp) == t->t_sp); 617 618 t->t_pc = (uintptr_t)_sys_rtt; 619 return (it->t_pil); 620 } 621 622 #endif /* __amd64 */ 623 624 /* 625 * Allocate threads and stacks for interrupt handling. 626 */ 627 #define NINTR_THREADS (LOCK_LEVEL-1) /* number of interrupt threads */ 628 629 void 630 init_intr_threads(struct cpu *cp) 631 { 632 int i; 633 634 for (i = 0; i < NINTR_THREADS; i++) 635 thread_create_intr(cp); 636 637 cp->cpu_intr_stack = (caddr_t)segkp_get(segkp, INTR_STACK_SIZE, 638 KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED) + 639 INTR_STACK_SIZE - SA(MINFRAME); 640 } 641 642 /* 643 * Create interrupt kstats for this CPU. 644 */ 645 void 646 cpu_create_intrstat(cpu_t *cp) 647 { 648 int i; 649 kstat_t *intr_ksp; 650 kstat_named_t *knp; 651 char name[KSTAT_STRLEN]; 652 zoneid_t zoneid; 653 654 ASSERT(MUTEX_HELD(&cpu_lock)); 655 656 if (pool_pset_enabled()) 657 zoneid = GLOBAL_ZONEID; 658 else 659 zoneid = ALL_ZONES; 660 661 intr_ksp = kstat_create_zone("cpu", cp->cpu_id, "intrstat", "misc", 662 KSTAT_TYPE_NAMED, PIL_MAX * 2, NULL, zoneid); 663 664 /* 665 * Initialize each PIL's named kstat 666 */ 667 if (intr_ksp != NULL) { 668 intr_ksp->ks_update = cpu_kstat_intrstat_update; 669 knp = (kstat_named_t *)intr_ksp->ks_data; 670 intr_ksp->ks_private = cp; 671 for (i = 0; i < PIL_MAX; i++) { 672 (void) snprintf(name, KSTAT_STRLEN, "level-%d-time", 673 i + 1); 674 kstat_named_init(&knp[i * 2], name, KSTAT_DATA_UINT64); 675 (void) snprintf(name, KSTAT_STRLEN, "level-%d-count", 676 i + 1); 677 kstat_named_init(&knp[(i * 2) + 1], name, 678 KSTAT_DATA_UINT64); 679 } 680 kstat_install(intr_ksp); 681 } 682 } 683 684 /* 685 * Delete interrupt kstats for this CPU. 686 */ 687 void 688 cpu_delete_intrstat(cpu_t *cp) 689 { 690 kstat_delete_byname_zone("cpu", cp->cpu_id, "intrstat", ALL_ZONES); 691 } 692 693 /* 694 * Convert interrupt statistics from CPU ticks to nanoseconds and 695 * update kstat. 696 */ 697 int 698 cpu_kstat_intrstat_update(kstat_t *ksp, int rw) 699 { 700 kstat_named_t *knp = ksp->ks_data; 701 cpu_t *cpup = (cpu_t *)ksp->ks_private; 702 int i; 703 hrtime_t hrt; 704 705 if (rw == KSTAT_WRITE) 706 return (EACCES); 707 708 for (i = 0; i < PIL_MAX; i++) { 709 hrt = (hrtime_t)cpup->cpu_m.intrstat[i + 1][0]; 710 tsc_scalehrtime(&hrt); 711 knp[i * 2].value.ui64 = (uint64_t)hrt; 712 knp[(i * 2) + 1].value.ui64 = cpup->cpu_stats.sys.intr[i]; 713 } 714 715 return (0); 716 } 717 718 /* 719 * An interrupt thread is ending a time slice, so compute the interval it 720 * ran for and update the statistic for its PIL. 721 */ 722 void 723 cpu_intr_swtch_enter(kthread_id_t t) 724 { 725 uint64_t interval; 726 uint64_t start; 727 cpu_t *cpu; 728 729 ASSERT((t->t_flag & T_INTR_THREAD) != 0); 730 ASSERT(t->t_pil > 0 && t->t_pil <= LOCK_LEVEL); 731 732 /* 733 * We could be here with a zero timestamp. This could happen if: 734 * an interrupt thread which no longer has a pinned thread underneath 735 * it (i.e. it blocked at some point in its past) has finished running 736 * its handler. intr_thread() updated the interrupt statistic for its 737 * PIL and zeroed its timestamp. Since there was no pinned thread to 738 * return to, swtch() gets called and we end up here. 739 * 740 * Note that we use atomic ops below (cas64 and atomic_add_64), which 741 * we don't use in the functions above, because we're not called 742 * with interrupts blocked, but the epilog/prolog functions are. 743 */ 744 if (t->t_intr_start) { 745 do { 746 start = t->t_intr_start; 747 interval = tsc_read() - start; 748 } while (cas64(&t->t_intr_start, start, 0) != start); 749 cpu = CPU; 750 cpu->cpu_m.intrstat[t->t_pil][0] += interval; 751 752 atomic_add_64((uint64_t *)&cpu->cpu_intracct[cpu->cpu_mstate], 753 interval); 754 } else 755 ASSERT(t->t_intr == NULL); 756 } 757 758 /* 759 * An interrupt thread is returning from swtch(). Place a starting timestamp 760 * in its thread structure. 761 */ 762 void 763 cpu_intr_swtch_exit(kthread_id_t t) 764 { 765 uint64_t ts; 766 767 ASSERT((t->t_flag & T_INTR_THREAD) != 0); 768 ASSERT(t->t_pil > 0 && t->t_pil <= LOCK_LEVEL); 769 770 do { 771 ts = t->t_intr_start; 772 } while (cas64(&t->t_intr_start, ts, tsc_read()) != ts); 773 } 774