xref: /titanic_50/usr/src/uts/i86pc/os/fakebop.c (revision de6d0fcd730431ea0d586564c1551016efe19f56)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * This file contains the functionality that mimics the boot operations
29  * on SPARC systems or the old boot.bin/multiboot programs on x86 systems.
30  * The x86 kernel now does everything on its own.
31  */
32 
33 #include <sys/types.h>
34 #include <sys/bootconf.h>
35 #include <sys/bootsvcs.h>
36 #include <sys/bootinfo.h>
37 #include <sys/multiboot.h>
38 #include <sys/bootvfs.h>
39 #include <sys/bootprops.h>
40 #include <sys/varargs.h>
41 #include <sys/param.h>
42 #include <sys/machparam.h>
43 #include <sys/archsystm.h>
44 #include <sys/boot_console.h>
45 #include <sys/cmn_err.h>
46 #include <sys/systm.h>
47 #include <sys/promif.h>
48 #include <sys/archsystm.h>
49 #include <sys/x86_archext.h>
50 #include <sys/kobj.h>
51 #include <sys/privregs.h>
52 #include <sys/sysmacros.h>
53 #include <sys/ctype.h>
54 #include <sys/fastboot.h>
55 #ifdef __xpv
56 #include <sys/hypervisor.h>
57 #include <net/if.h>
58 #endif
59 #include <vm/kboot_mmu.h>
60 #include <vm/hat_pte.h>
61 #include <sys/kobj.h>
62 #include <sys/kobj_lex.h>
63 #include <sys/pci_cfgspace_impl.h>
64 #include "acpi_fw.h"
65 
66 static int have_console = 0;	/* set once primitive console is initialized */
67 static char *boot_args = "";
68 
69 /*
70  * Debugging macros
71  */
72 static uint_t kbm_debug = 0;
73 #define	DBG_MSG(s)	{ if (kbm_debug) bop_printf(NULL, "%s", s); }
74 #define	DBG(x)		{ if (kbm_debug)			\
75 	bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x));	\
76 	}
77 
78 #define	PUT_STRING(s) {				\
79 	char *cp;				\
80 	for (cp = (s); *cp; ++cp)		\
81 		bcons_putchar(*cp);		\
82 	}
83 
84 struct xboot_info *xbootp;	/* boot info from "glue" code in low memory */
85 bootops_t bootop;	/* simple bootops we'll pass on to kernel */
86 struct bsys_mem bm;
87 
88 static uintptr_t next_virt;	/* next available virtual address */
89 static paddr_t next_phys;	/* next available physical address from dboot */
90 static paddr_t high_phys = -(paddr_t)1;	/* last used physical address */
91 
92 /*
93  * buffer for vsnprintf for console I/O
94  */
95 #define	BUFFERSIZE	256
96 static char buffer[BUFFERSIZE];
97 /*
98  * stuff to store/report/manipulate boot property settings.
99  */
100 typedef struct bootprop {
101 	struct bootprop *bp_next;
102 	char *bp_name;
103 	uint_t bp_vlen;
104 	char *bp_value;
105 } bootprop_t;
106 
107 static bootprop_t *bprops = NULL;
108 static char *curr_page = NULL;		/* ptr to avail bprop memory */
109 static int curr_space = 0;		/* amount of memory at curr_page */
110 
111 #ifdef __xpv
112 start_info_t *xen_info;
113 shared_info_t *HYPERVISOR_shared_info;
114 #endif
115 
116 /*
117  * some allocator statistics
118  */
119 static ulong_t total_bop_alloc_scratch = 0;
120 static ulong_t total_bop_alloc_kernel = 0;
121 
122 static void build_firmware_properties(void);
123 
124 static int early_allocation = 1;
125 
126 int force_fastreboot = 0;
127 volatile int fastreboot_onpanic = 0;
128 int post_fastreboot = 0;
129 #ifdef	__xpv
130 volatile int fastreboot_capable = 0;
131 #else
132 volatile int fastreboot_capable = 1;
133 #endif
134 
135 /*
136  * Information saved from current boot for fast reboot.
137  * If the information size exceeds what we have allocated, fast reboot
138  * will not be supported.
139  */
140 multiboot_info_t saved_mbi;
141 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT];
142 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE];
143 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
144 int saved_cmdline_len = 0;
145 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP];
146 
147 /*
148  * Turn off fastreboot_onpanic to avoid panic loop.
149  */
150 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
151 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0";
152 
153 /*
154  * Pointers to where System Resource Affinity Table (SRAT) and
155  * System Locality Information Table (SLIT) are mapped into virtual memory
156  */
157 struct srat	*srat_ptr = NULL;
158 struct slit	*slit_ptr = NULL;
159 
160 
161 /*
162  * Allocate aligned physical memory at boot time. This allocator allocates
163  * from the highest possible addresses. This avoids exhausting memory that
164  * would be useful for DMA buffers.
165  */
166 paddr_t
167 do_bop_phys_alloc(uint64_t size, uint64_t align)
168 {
169 	paddr_t	pa = 0;
170 	paddr_t	start;
171 	paddr_t	end;
172 	struct memlist	*ml = (struct memlist *)xbootp->bi_phys_install;
173 
174 	/*
175 	 * Be careful if high memory usage is limited in startup.c
176 	 * Since there are holes in the low part of the physical address
177 	 * space we can treat physmem as a pfn (not just a pgcnt) and
178 	 * get a conservative upper limit.
179 	 */
180 	if (physmem != 0 && high_phys > pfn_to_pa(physmem))
181 		high_phys = pfn_to_pa(physmem);
182 
183 	/*
184 	 * find the lowest or highest available memory in physinstalled
185 	 * On 32 bit avoid physmem above 4Gig if PAE isn't enabled
186 	 */
187 #if defined(__i386)
188 	if (xbootp->bi_use_pae == 0 && high_phys > FOUR_GIG)
189 		high_phys = FOUR_GIG;
190 #endif
191 
192 	/*
193 	 * find the highest available memory in physinstalled
194 	 */
195 	size = P2ROUNDUP(size, align);
196 	for (; ml; ml = ml->ml_next) {
197 		start = P2ROUNDUP(ml->ml_address, align);
198 		end = P2ALIGN(ml->ml_address + ml->ml_size, align);
199 		if (start < next_phys)
200 			start = P2ROUNDUP(next_phys, align);
201 		if (end > high_phys)
202 			end = P2ALIGN(high_phys, align);
203 
204 		if (end <= start)
205 			continue;
206 		if (end - start < size)
207 			continue;
208 
209 		/*
210 		 * Early allocations need to use low memory, since
211 		 * physmem might be further limited by bootenv.rc
212 		 */
213 		if (early_allocation) {
214 			if (pa == 0 || start < pa)
215 				pa = start;
216 		} else {
217 			if (end - size > pa)
218 				pa = end - size;
219 		}
220 	}
221 	if (pa != 0) {
222 		if (early_allocation)
223 			next_phys = pa + size;
224 		else
225 			high_phys = pa;
226 		return (pa);
227 	}
228 	bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64
229 	    ") Out of memory\n", size, align);
230 	/*NOTREACHED*/
231 }
232 
233 uintptr_t
234 alloc_vaddr(size_t size, paddr_t align)
235 {
236 	uintptr_t rv;
237 
238 	next_virt = P2ROUNDUP(next_virt, (uintptr_t)align);
239 	rv = (uintptr_t)next_virt;
240 	next_virt += size;
241 	return (rv);
242 }
243 
244 /*
245  * Allocate virtual memory. The size is always rounded up to a multiple
246  * of base pagesize.
247  */
248 
249 /*ARGSUSED*/
250 static caddr_t
251 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
252 {
253 	paddr_t a = align;	/* same type as pa for masking */
254 	uint_t pgsize;
255 	paddr_t pa;
256 	uintptr_t va;
257 	ssize_t s;		/* the aligned size */
258 	uint_t level;
259 	uint_t is_kernel = (virthint != 0);
260 
261 	if (a < MMU_PAGESIZE)
262 		a = MMU_PAGESIZE;
263 	else if (!ISP2(a))
264 		prom_panic("do_bsys_alloc() incorrect alignment");
265 	size = P2ROUNDUP(size, MMU_PAGESIZE);
266 
267 	/*
268 	 * Use the next aligned virtual address if we weren't given one.
269 	 */
270 	if (virthint == NULL) {
271 		virthint = (caddr_t)alloc_vaddr(size, a);
272 		total_bop_alloc_scratch += size;
273 	} else {
274 		total_bop_alloc_kernel += size;
275 	}
276 
277 	/*
278 	 * allocate the physical memory
279 	 */
280 	pa = do_bop_phys_alloc(size, a);
281 
282 	/*
283 	 * Add the mappings to the page tables, try large pages first.
284 	 */
285 	va = (uintptr_t)virthint;
286 	s = size;
287 	level = 1;
288 	pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG;
289 	if (xbootp->bi_use_largepage && a == pgsize) {
290 		while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) &&
291 		    s >= pgsize) {
292 			kbm_map(va, pa, level, is_kernel);
293 			va += pgsize;
294 			pa += pgsize;
295 			s -= pgsize;
296 		}
297 	}
298 
299 	/*
300 	 * Map remaining pages use small mappings
301 	 */
302 	level = 0;
303 	pgsize = MMU_PAGESIZE;
304 	while (s > 0) {
305 		kbm_map(va, pa, level, is_kernel);
306 		va += pgsize;
307 		pa += pgsize;
308 		s -= pgsize;
309 	}
310 	return (virthint);
311 }
312 
313 /*
314  * Free virtual memory - we'll just ignore these.
315  */
316 /*ARGSUSED*/
317 static void
318 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size)
319 {
320 	bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n",
321 	    (void *)virt, size);
322 }
323 
324 /*
325  * Old interface
326  */
327 /*ARGSUSED*/
328 static caddr_t
329 do_bsys_ealloc(
330 	bootops_t *bop,
331 	caddr_t virthint,
332 	size_t size,
333 	int align,
334 	int flags)
335 {
336 	prom_panic("unsupported call to BOP_EALLOC()\n");
337 	return (0);
338 }
339 
340 
341 static void
342 bsetprop(char *name, int nlen, void *value, int vlen)
343 {
344 	uint_t size;
345 	uint_t need_size;
346 	bootprop_t *b;
347 
348 	/*
349 	 * align the size to 16 byte boundary
350 	 */
351 	size = sizeof (bootprop_t) + nlen + 1 + vlen;
352 	size = (size + 0xf) & ~0xf;
353 	if (size > curr_space) {
354 		need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK;
355 		curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE);
356 		curr_space = need_size;
357 	}
358 
359 	/*
360 	 * use a bootprop_t at curr_page and link into list
361 	 */
362 	b = (bootprop_t *)curr_page;
363 	curr_page += sizeof (bootprop_t);
364 	curr_space -=  sizeof (bootprop_t);
365 	b->bp_next = bprops;
366 	bprops = b;
367 
368 	/*
369 	 * follow by name and ending zero byte
370 	 */
371 	b->bp_name = curr_page;
372 	bcopy(name, curr_page, nlen);
373 	curr_page += nlen;
374 	*curr_page++ = 0;
375 	curr_space -= nlen + 1;
376 
377 	/*
378 	 * copy in value, but no ending zero byte
379 	 */
380 	b->bp_value = curr_page;
381 	b->bp_vlen = vlen;
382 	if (vlen > 0) {
383 		bcopy(value, curr_page, vlen);
384 		curr_page += vlen;
385 		curr_space -= vlen;
386 	}
387 
388 	/*
389 	 * align new values of curr_page, curr_space
390 	 */
391 	while (curr_space & 0xf) {
392 		++curr_page;
393 		--curr_space;
394 	}
395 }
396 
397 static void
398 bsetprops(char *name, char *value)
399 {
400 	bsetprop(name, strlen(name), value, strlen(value) + 1);
401 }
402 
403 static void
404 bsetprop64(char *name, uint64_t value)
405 {
406 	bsetprop(name, strlen(name), (void *)&value, sizeof (value));
407 }
408 
409 static void
410 bsetpropsi(char *name, int value)
411 {
412 	char prop_val[32];
413 
414 	(void) snprintf(prop_val, sizeof (prop_val), "%d", value);
415 	bsetprops(name, prop_val);
416 }
417 
418 /*
419  * to find the size of the buffer to allocate
420  */
421 /*ARGSUSED*/
422 int
423 do_bsys_getproplen(bootops_t *bop, const char *name)
424 {
425 	bootprop_t *b;
426 
427 	for (b = bprops; b; b = b->bp_next) {
428 		if (strcmp(name, b->bp_name) != 0)
429 			continue;
430 		return (b->bp_vlen);
431 	}
432 	return (-1);
433 }
434 
435 /*
436  * get the value associated with this name
437  */
438 /*ARGSUSED*/
439 int
440 do_bsys_getprop(bootops_t *bop, const char *name, void *value)
441 {
442 	bootprop_t *b;
443 
444 	for (b = bprops; b; b = b->bp_next) {
445 		if (strcmp(name, b->bp_name) != 0)
446 			continue;
447 		bcopy(b->bp_value, value, b->bp_vlen);
448 		return (0);
449 	}
450 	return (-1);
451 }
452 
453 /*
454  * get the name of the next property in succession from the standalone
455  */
456 /*ARGSUSED*/
457 static char *
458 do_bsys_nextprop(bootops_t *bop, char *name)
459 {
460 	bootprop_t *b;
461 
462 	/*
463 	 * A null name is a special signal for the 1st boot property
464 	 */
465 	if (name == NULL || strlen(name) == 0) {
466 		if (bprops == NULL)
467 			return (NULL);
468 		return (bprops->bp_name);
469 	}
470 
471 	for (b = bprops; b; b = b->bp_next) {
472 		if (name != b->bp_name)
473 			continue;
474 		b = b->bp_next;
475 		if (b == NULL)
476 			return (NULL);
477 		return (b->bp_name);
478 	}
479 	return (NULL);
480 }
481 
482 /*
483  * Parse numeric value from a string. Understands decimal, hex, octal, - and ~
484  */
485 static int
486 parse_value(char *p, uint64_t *retval)
487 {
488 	int adjust = 0;
489 	uint64_t tmp = 0;
490 	int digit;
491 	int radix = 10;
492 
493 	*retval = 0;
494 	if (*p == '-' || *p == '~')
495 		adjust = *p++;
496 
497 	if (*p == '0') {
498 		++p;
499 		if (*p == 0)
500 			return (0);
501 		if (*p == 'x' || *p == 'X') {
502 			radix = 16;
503 			++p;
504 		} else {
505 			radix = 8;
506 			++p;
507 		}
508 	}
509 	while (*p) {
510 		if ('0' <= *p && *p <= '9')
511 			digit = *p - '0';
512 		else if ('a' <= *p && *p <= 'f')
513 			digit = 10 + *p - 'a';
514 		else if ('A' <= *p && *p <= 'F')
515 			digit = 10 + *p - 'A';
516 		else
517 			return (-1);
518 		if (digit >= radix)
519 			return (-1);
520 		tmp = tmp * radix + digit;
521 		++p;
522 	}
523 	if (adjust == '-')
524 		tmp = -tmp;
525 	else if (adjust == '~')
526 		tmp = ~tmp;
527 	*retval = tmp;
528 	return (0);
529 }
530 
531 /*
532  * 2nd part of building the table of boot properties. This includes:
533  * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
534  *
535  * lines look like one of:
536  * ^$
537  * ^# comment till end of line
538  * setprop name 'value'
539  * setprop name value
540  * setprop name "value"
541  *
542  * we do single character I/O since this is really just looking at memory
543  */
544 void
545 boot_prop_finish(void)
546 {
547 	int fd;
548 	char *line;
549 	int c;
550 	int bytes_read;
551 	char *name;
552 	int n_len;
553 	char *value;
554 	int v_len;
555 	char *inputdev;	/* these override the command line if serial ports */
556 	char *outputdev;
557 	char *consoledev;
558 	uint64_t lvalue;
559 	int use_xencons = 0;
560 
561 #ifdef __xpv
562 	if (!DOMAIN_IS_INITDOMAIN(xen_info))
563 		use_xencons = 1;
564 #endif /* __xpv */
565 
566 	DBG_MSG("Opening /boot/solaris/bootenv.rc\n");
567 	fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0);
568 	DBG(fd);
569 
570 	line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
571 	while (fd >= 0) {
572 
573 		/*
574 		 * get a line
575 		 */
576 		for (c = 0; ; ++c) {
577 			bytes_read = BRD_READ(bfs_ops, fd, line + c, 1);
578 			if (bytes_read == 0) {
579 				if (c == 0)
580 					goto done;
581 				break;
582 			}
583 			if (line[c] == '\n')
584 				break;
585 		}
586 		line[c] = 0;
587 
588 		/*
589 		 * ignore comment lines
590 		 */
591 		c = 0;
592 		while (ISSPACE(line[c]))
593 			++c;
594 		if (line[c] == '#' || line[c] == 0)
595 			continue;
596 
597 		/*
598 		 * must have "setprop " or "setprop\t"
599 		 */
600 		if (strncmp(line + c, "setprop ", 8) != 0 &&
601 		    strncmp(line + c, "setprop\t", 8) != 0)
602 			continue;
603 		c += 8;
604 		while (ISSPACE(line[c]))
605 			++c;
606 		if (line[c] == 0)
607 			continue;
608 
609 		/*
610 		 * gather up the property name
611 		 */
612 		name = line + c;
613 		n_len = 0;
614 		while (line[c] && !ISSPACE(line[c]))
615 			++n_len, ++c;
616 
617 		/*
618 		 * gather up the value, if any
619 		 */
620 		value = "";
621 		v_len = 0;
622 		while (ISSPACE(line[c]))
623 			++c;
624 		if (line[c] != 0) {
625 			value = line + c;
626 			while (line[c] && !ISSPACE(line[c]))
627 				++v_len, ++c;
628 		}
629 
630 		if (v_len >= 2 && value[0] == value[v_len - 1] &&
631 		    (value[0] == '\'' || value[0] == '"')) {
632 			++value;
633 			v_len -= 2;
634 		}
635 		name[n_len] = 0;
636 		if (v_len > 0)
637 			value[v_len] = 0;
638 		else
639 			continue;
640 
641 		/*
642 		 * ignore "boot-file" property, it's now meaningless
643 		 */
644 		if (strcmp(name, "boot-file") == 0)
645 			continue;
646 		if (strcmp(name, "boot-args") == 0 &&
647 		    strlen(boot_args) > 0)
648 			continue;
649 
650 		/*
651 		 * If a property was explicitly set on the command line
652 		 * it will override a setting in bootenv.rc
653 		 */
654 		if (do_bsys_getproplen(NULL, name) > 0)
655 			continue;
656 
657 		bsetprop(name, n_len, value, v_len + 1);
658 	}
659 done:
660 	if (fd >= 0)
661 		BRD_CLOSE(bfs_ops, fd);
662 
663 	/*
664 	 * Check if we have to limit the boot time allocator
665 	 */
666 	if (do_bsys_getproplen(NULL, "physmem") != -1 &&
667 	    do_bsys_getprop(NULL, "physmem", line) >= 0 &&
668 	    parse_value(line, &lvalue) != -1) {
669 		if (0 < lvalue && (lvalue < physmem || physmem == 0)) {
670 			physmem = (pgcnt_t)lvalue;
671 			DBG(physmem);
672 		}
673 	}
674 	early_allocation = 0;
675 
676 	/*
677 	 * check to see if we have to override the default value of the console
678 	 */
679 	if (!use_xencons) {
680 		inputdev = line;
681 		v_len = do_bsys_getproplen(NULL, "input-device");
682 		if (v_len > 0)
683 			(void) do_bsys_getprop(NULL, "input-device", inputdev);
684 		else
685 			v_len = 0;
686 		inputdev[v_len] = 0;
687 
688 		outputdev = inputdev + v_len + 1;
689 		v_len = do_bsys_getproplen(NULL, "output-device");
690 		if (v_len > 0)
691 			(void) do_bsys_getprop(NULL, "output-device",
692 			    outputdev);
693 		else
694 			v_len = 0;
695 		outputdev[v_len] = 0;
696 
697 		consoledev = outputdev + v_len + 1;
698 		v_len = do_bsys_getproplen(NULL, "console");
699 		if (v_len > 0) {
700 			(void) do_bsys_getprop(NULL, "console", consoledev);
701 			if (post_fastreboot &&
702 			    strcmp(consoledev, "graphics") == 0) {
703 				bsetprops("console", "text");
704 				v_len = strlen("text");
705 				bcopy("text", consoledev, v_len);
706 			}
707 		} else {
708 			v_len = 0;
709 		}
710 		consoledev[v_len] = 0;
711 		bcons_init2(inputdev, outputdev, consoledev);
712 	} else {
713 		/*
714 		 * Ensure console property exists
715 		 * If not create it as "hypervisor"
716 		 */
717 		v_len = do_bsys_getproplen(NULL, "console");
718 		if (v_len < 0)
719 			bsetprops("console", "hypervisor");
720 		inputdev = outputdev = consoledev = "hypervisor";
721 		bcons_init2(inputdev, outputdev, consoledev);
722 	}
723 
724 	if (strstr((char *)xbootp->bi_cmdline, "prom_debug") || kbm_debug) {
725 		value = line;
726 		bop_printf(NULL, "\nBoot properties:\n");
727 		name = "";
728 		while ((name = do_bsys_nextprop(NULL, name)) != NULL) {
729 			bop_printf(NULL, "\t0x%p %s = ", (void *)name, name);
730 			(void) do_bsys_getprop(NULL, name, value);
731 			v_len = do_bsys_getproplen(NULL, name);
732 			bop_printf(NULL, "len=%d ", v_len);
733 			value[v_len] = 0;
734 			bop_printf(NULL, "%s\n", value);
735 		}
736 	}
737 }
738 
739 /*
740  * print formatted output
741  */
742 /*PRINTFLIKE2*/
743 /*ARGSUSED*/
744 void
745 bop_printf(bootops_t *bop, const char *fmt, ...)
746 {
747 	va_list	ap;
748 
749 	if (have_console == 0)
750 		return;
751 
752 	va_start(ap, fmt);
753 	(void) vsnprintf(buffer, BUFFERSIZE, fmt, ap);
754 	va_end(ap);
755 	PUT_STRING(buffer);
756 }
757 
758 /*
759  * Another panic() variant; this one can be used even earlier during boot than
760  * prom_panic().
761  */
762 /*PRINTFLIKE1*/
763 void
764 bop_panic(const char *fmt, ...)
765 {
766 	va_list ap;
767 
768 	va_start(ap, fmt);
769 	bop_printf(NULL, fmt, ap);
770 	va_end(ap);
771 
772 	bop_printf(NULL, "\nPress any key to reboot.\n");
773 	(void) bcons_getchar();
774 	bop_printf(NULL, "Resetting...\n");
775 	pc_reset();
776 }
777 
778 /*
779  * Do a real mode interrupt BIOS call
780  */
781 typedef struct bios_regs {
782 	unsigned short ax, bx, cx, dx, si, di, bp, es, ds;
783 } bios_regs_t;
784 typedef int (*bios_func_t)(int, bios_regs_t *);
785 
786 /*ARGSUSED*/
787 static void
788 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp)
789 {
790 #if defined(__xpv)
791 	prom_panic("unsupported call to BOP_DOINT()\n");
792 #else	/* __xpv */
793 	static int firsttime = 1;
794 	bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000;
795 	bios_regs_t br;
796 
797 	/*
798 	 * The first time we do this, we have to copy the pre-packaged
799 	 * low memory bios call code image into place.
800 	 */
801 	if (firsttime) {
802 		extern char bios_image[];
803 		extern uint32_t bios_size;
804 
805 		bcopy(bios_image, (void *)bios_func, bios_size);
806 		firsttime = 0;
807 	}
808 
809 	br.ax = rp->eax.word.ax;
810 	br.bx = rp->ebx.word.bx;
811 	br.cx = rp->ecx.word.cx;
812 	br.dx = rp->edx.word.dx;
813 	br.bp = rp->ebp.word.bp;
814 	br.si = rp->esi.word.si;
815 	br.di = rp->edi.word.di;
816 	br.ds = rp->ds;
817 	br.es = rp->es;
818 
819 	DBG_MSG("Doing BIOS call...");
820 	DBG(br.ax);
821 	DBG(br.bx);
822 	DBG(br.dx);
823 	rp->eflags = bios_func(intnum, &br);
824 	DBG_MSG("done\n");
825 
826 	rp->eax.word.ax = br.ax;
827 	rp->ebx.word.bx = br.bx;
828 	rp->ecx.word.cx = br.cx;
829 	rp->edx.word.dx = br.dx;
830 	rp->ebp.word.bp = br.bp;
831 	rp->esi.word.si = br.si;
832 	rp->edi.word.di = br.di;
833 	rp->ds = br.ds;
834 	rp->es = br.es;
835 #endif /* __xpv */
836 }
837 
838 static struct boot_syscalls bop_sysp = {
839 	bcons_getchar,
840 	bcons_putchar,
841 	bcons_ischar,
842 };
843 
844 static char *whoami;
845 
846 #define	BUFLEN	64
847 
848 #if defined(__xpv)
849 
850 static char namebuf[32];
851 
852 static void
853 xen_parse_props(char *s, char *prop_map[], int n_prop)
854 {
855 	char **prop_name = prop_map;
856 	char *cp = s, *scp;
857 
858 	do {
859 		scp = cp;
860 		while ((*cp != NULL) && (*cp != ':'))
861 			cp++;
862 
863 		if ((scp != cp) && (*prop_name != NULL)) {
864 			*cp = NULL;
865 			bsetprops(*prop_name, scp);
866 		}
867 
868 		cp++;
869 		prop_name++;
870 		n_prop--;
871 	} while (n_prop > 0);
872 }
873 
874 #define	VBDPATHLEN	64
875 
876 /*
877  * parse the 'xpv-root' property to create properties used by
878  * ufs_mountroot.
879  */
880 static void
881 xen_vbdroot_props(char *s)
882 {
883 	char vbdpath[VBDPATHLEN] = "/xpvd/xdf@";
884 	const char lnamefix[] = "/dev/dsk/c0d";
885 	char *pnp;
886 	char *prop_p;
887 	char mi;
888 	short minor;
889 	long addr = 0;
890 
891 	pnp = vbdpath + strlen(vbdpath);
892 	prop_p = s + strlen(lnamefix);
893 	while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p'))
894 		addr = addr * 10 + *prop_p++ - '0';
895 	(void) snprintf(pnp, VBDPATHLEN, "%lx", addr);
896 	pnp = vbdpath + strlen(vbdpath);
897 	if (*prop_p == 's')
898 		mi = 'a';
899 	else if (*prop_p == 'p')
900 		mi = 'q';
901 	else
902 		ASSERT(0); /* shouldn't be here */
903 	prop_p++;
904 	ASSERT(*prop_p != '\0');
905 	if (ISDIGIT(*prop_p)) {
906 		minor = *prop_p - '0';
907 		prop_p++;
908 		if (ISDIGIT(*prop_p)) {
909 			minor = minor * 10 + *prop_p - '0';
910 		}
911 	} else {
912 		/* malformed root path, use 0 as default */
913 		minor = 0;
914 	}
915 	ASSERT(minor < 16); /* at most 16 partitions */
916 	mi += minor;
917 	*pnp++ = ':';
918 	*pnp++ = mi;
919 	*pnp++ = '\0';
920 	bsetprops("fstype", "ufs");
921 	bsetprops("bootpath", vbdpath);
922 
923 	DBG_MSG("VBD bootpath set to ");
924 	DBG_MSG(vbdpath);
925 	DBG_MSG("\n");
926 }
927 
928 /*
929  * parse the xpv-nfsroot property to create properties used by
930  * nfs_mountroot.
931  */
932 static void
933 xen_nfsroot_props(char *s)
934 {
935 	char *prop_map[] = {
936 		BP_SERVER_IP,	/* server IP address */
937 		BP_SERVER_NAME,	/* server hostname */
938 		BP_SERVER_PATH,	/* root path */
939 	};
940 	int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
941 
942 	bsetprop("fstype", 6, "nfs", 4);
943 
944 	xen_parse_props(s, prop_map, n_prop);
945 
946 	/*
947 	 * If a server name wasn't specified, use a default.
948 	 */
949 	if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1)
950 		bsetprops(BP_SERVER_NAME, "unknown");
951 }
952 
953 /*
954  * Extract our IP address, etc. from the "xpv-ip" property.
955  */
956 static void
957 xen_ip_props(char *s)
958 {
959 	char *prop_map[] = {
960 		BP_HOST_IP,		/* IP address */
961 		NULL,			/* NFS server IP address (ignored in */
962 					/* favour of xpv-nfsroot) */
963 		BP_ROUTER_IP,		/* IP gateway */
964 		BP_SUBNET_MASK,		/* IP subnet mask */
965 		"xpv-hostname",		/* hostname (ignored) */
966 		BP_NETWORK_INTERFACE,	/* interface name */
967 		"xpv-hcp",		/* host configuration protocol */
968 	};
969 	int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
970 	char ifname[IFNAMSIZ];
971 
972 	xen_parse_props(s, prop_map, n_prop);
973 
974 	/*
975 	 * A Linux dom0 administrator expects all interfaces to be
976 	 * called "ethX", which is not the case here.
977 	 *
978 	 * If the interface name specified is "eth0", presume that
979 	 * this is really intended to be "xnf0" (the first domU ->
980 	 * dom0 interface for this domain).
981 	 */
982 	if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) &&
983 	    (strcmp("eth0", ifname) == 0)) {
984 		bsetprops(BP_NETWORK_INTERFACE, "xnf0");
985 		bop_printf(NULL,
986 		    "network interface name 'eth0' replaced with 'xnf0'\n");
987 	}
988 }
989 
990 #else	/* __xpv */
991 
992 static void
993 setup_rarp_props(struct sol_netinfo *sip)
994 {
995 	char buf[BUFLEN];	/* to hold ip/mac addrs */
996 	uint8_t *val;
997 
998 	val = (uint8_t *)&sip->sn_ciaddr;
999 	(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1000 	    val[0], val[1], val[2], val[3]);
1001 	bsetprops(BP_HOST_IP, buf);
1002 
1003 	val = (uint8_t *)&sip->sn_siaddr;
1004 	(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1005 	    val[0], val[1], val[2], val[3]);
1006 	bsetprops(BP_SERVER_IP, buf);
1007 
1008 	if (sip->sn_giaddr != 0) {
1009 		val = (uint8_t *)&sip->sn_giaddr;
1010 		(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1011 		    val[0], val[1], val[2], val[3]);
1012 		bsetprops(BP_ROUTER_IP, buf);
1013 	}
1014 
1015 	if (sip->sn_netmask != 0) {
1016 		val = (uint8_t *)&sip->sn_netmask;
1017 		(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1018 		    val[0], val[1], val[2], val[3]);
1019 		bsetprops(BP_SUBNET_MASK, buf);
1020 	}
1021 
1022 	if (sip->sn_mactype != 4 || sip->sn_maclen != 6) {
1023 		bop_printf(NULL, "unsupported mac type %d, mac len %d\n",
1024 		    sip->sn_mactype, sip->sn_maclen);
1025 	} else {
1026 		val = sip->sn_macaddr;
1027 		(void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x",
1028 		    val[0], val[1], val[2], val[3], val[4], val[5]);
1029 		bsetprops(BP_BOOT_MAC, buf);
1030 	}
1031 }
1032 
1033 #endif	/* __xpv */
1034 
1035 static void
1036 build_panic_cmdline(const char *cmd, int cmdlen)
1037 {
1038 	int proplen;
1039 	size_t arglen;
1040 
1041 	arglen = sizeof (fastreboot_onpanic_args);
1042 	/*
1043 	 * If we allready have fastreboot-onpanic set to zero,
1044 	 * don't add them again.
1045 	 */
1046 	if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 &&
1047 	    proplen <=  sizeof (fastreboot_onpanic_cmdline)) {
1048 		(void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC,
1049 		    fastreboot_onpanic_cmdline);
1050 		if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline))
1051 			arglen = 1;
1052 	}
1053 
1054 	/*
1055 	 * construct fastreboot_onpanic_cmdline
1056 	 */
1057 	if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) {
1058 		DBG_MSG("Command line too long: clearing "
1059 		    FASTREBOOT_ONPANIC "\n");
1060 		fastreboot_onpanic = 0;
1061 	} else {
1062 		bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen);
1063 		if (arglen != 1)
1064 			bcopy(fastreboot_onpanic_args,
1065 			    fastreboot_onpanic_cmdline + cmdlen, arglen);
1066 		else
1067 			fastreboot_onpanic_cmdline[cmdlen] = 0;
1068 	}
1069 }
1070 
1071 
1072 #ifndef	__xpv
1073 /*
1074  * Construct boot command line for Fast Reboot
1075  */
1076 static void
1077 build_fastboot_cmdline(void)
1078 {
1079 	saved_cmdline_len =  strlen(xbootp->bi_cmdline) + 1;
1080 	if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) {
1081 		DBG(saved_cmdline_len);
1082 		DBG_MSG("Command line too long: clearing fastreboot_capable\n");
1083 		fastreboot_capable = 0;
1084 	} else {
1085 		bcopy((void *)(xbootp->bi_cmdline), (void *)saved_cmdline,
1086 		    saved_cmdline_len);
1087 		saved_cmdline[saved_cmdline_len - 1] = '\0';
1088 		build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1);
1089 	}
1090 }
1091 
1092 /*
1093  * Save memory layout, disk drive information, unix and boot archive sizes for
1094  * Fast Reboot.
1095  */
1096 static void
1097 save_boot_info(multiboot_info_t *mbi, struct xboot_info *xbi)
1098 {
1099 	struct boot_modules *modp;
1100 	int i;
1101 
1102 	bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t));
1103 	if (mbi->mmap_length > sizeof (saved_mmap)) {
1104 		DBG_MSG("mbi->mmap_length too big: clearing "
1105 		    "fastreboot_capable\n");
1106 		fastreboot_capable = 0;
1107 	} else {
1108 		bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap,
1109 		    mbi->mmap_length);
1110 	}
1111 
1112 	if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) {
1113 		if (mbi->drives_length > sizeof (saved_drives)) {
1114 			DBG(mbi->drives_length);
1115 			DBG_MSG("mbi->drives_length too big: clearing "
1116 			    "fastreboot_capable\n");
1117 			fastreboot_capable = 0;
1118 		} else {
1119 			bcopy((void *)(uintptr_t)mbi->drives_addr,
1120 			    (void *)saved_drives, mbi->drives_length);
1121 		}
1122 	} else {
1123 		saved_mbi.drives_length = 0;
1124 		saved_mbi.drives_addr = NULL;
1125 	}
1126 
1127 	/*
1128 	 * Current file sizes.  Used by fastboot.c to figure out how much
1129 	 * memory to reserve for panic reboot.
1130 	 * Use the module list from the dboot-constructed xboot_info
1131 	 * instead of the list referenced by the multiboot structure
1132 	 * because that structure may not be addressable now.
1133 	 */
1134 	saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE;
1135 	for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules;
1136 	    i < xbi->bi_module_cnt; i++, modp++) {
1137 		saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size;
1138 	}
1139 }
1140 #endif	/* __xpv */
1141 
1142 
1143 /*
1144  * 1st pass at building the table of boot properties. This includes:
1145  * - values set on the command line: -B a=x,b=y,c=z ....
1146  * - known values we just compute (ie. from xbootp)
1147  * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
1148  *
1149  * the grub command line looked like:
1150  * kernel boot-file [-B prop=value[,prop=value]...] [boot-args]
1151  *
1152  * whoami is the same as boot-file
1153  */
1154 static void
1155 build_boot_properties(void)
1156 {
1157 	char *name;
1158 	int name_len;
1159 	char *value;
1160 	int value_len;
1161 	struct boot_modules *bm;
1162 	char *propbuf;
1163 	int quoted = 0;
1164 	int boot_arg_len;
1165 #ifndef __xpv
1166 	static int stdout_val = 0;
1167 	uchar_t boot_device;
1168 	char str[3];
1169 	multiboot_info_t *mbi;
1170 	int netboot;
1171 	struct sol_netinfo *sip;
1172 #endif
1173 
1174 	/*
1175 	 * These have to be done first, so that kobj_mount_root() works
1176 	 */
1177 	DBG_MSG("Building boot properties\n");
1178 	propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0);
1179 	DBG((uintptr_t)propbuf);
1180 	if (xbootp->bi_module_cnt > 0) {
1181 		bm = xbootp->bi_modules;
1182 		bsetprop64("ramdisk_start", (uint64_t)(uintptr_t)bm->bm_addr);
1183 		bsetprop64("ramdisk_end", (uint64_t)(uintptr_t)bm->bm_addr +
1184 		    bm->bm_size);
1185 	}
1186 
1187 	DBG_MSG("Parsing command line for boot properties\n");
1188 	value = xbootp->bi_cmdline;
1189 
1190 	/*
1191 	 * allocate memory to collect boot_args into
1192 	 */
1193 	boot_arg_len = strlen(xbootp->bi_cmdline) + 1;
1194 	boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE);
1195 	boot_args[0] = 0;
1196 	boot_arg_len = 0;
1197 
1198 #ifdef __xpv
1199 	/*
1200 	 * Xen puts a lot of device information in front of the kernel name
1201 	 * let's grab them and make them boot properties.  The first
1202 	 * string w/o an "=" in it will be the boot-file property.
1203 	 */
1204 	(void) strcpy(namebuf, "xpv-");
1205 	for (;;) {
1206 		/*
1207 		 * get to next property
1208 		 */
1209 		while (ISSPACE(*value))
1210 			++value;
1211 		name = value;
1212 		/*
1213 		 * look for an "="
1214 		 */
1215 		while (*value && !ISSPACE(*value) && *value != '=') {
1216 			value++;
1217 		}
1218 		if (*value != '=') { /* no "=" in the property */
1219 			value = name;
1220 			break;
1221 		}
1222 		name_len = value - name;
1223 		value_len = 0;
1224 		/*
1225 		 * skip over the "="
1226 		 */
1227 		value++;
1228 		while (value[value_len] && !ISSPACE(value[value_len])) {
1229 			++value_len;
1230 		}
1231 		/*
1232 		 * build property name with "xpv-" prefix
1233 		 */
1234 		if (name_len + 4 > 32) { /* skip if name too long */
1235 			value += value_len;
1236 			continue;
1237 		}
1238 		bcopy(name, &namebuf[4], name_len);
1239 		name_len += 4;
1240 		namebuf[name_len] = 0;
1241 		bcopy(value, propbuf, value_len);
1242 		propbuf[value_len] = 0;
1243 		bsetprops(namebuf, propbuf);
1244 
1245 		/*
1246 		 * xpv-root is set to the logical disk name of the xen
1247 		 * VBD when booting from a disk-based filesystem.
1248 		 */
1249 		if (strcmp(namebuf, "xpv-root") == 0)
1250 			xen_vbdroot_props(propbuf);
1251 		/*
1252 		 * While we're here, if we have a "xpv-nfsroot" property
1253 		 * then we need to set "fstype" to "nfs" so we mount
1254 		 * our root from the nfs server.  Also parse the xpv-nfsroot
1255 		 * property to create the properties that nfs_mountroot will
1256 		 * need to find the root and mount it.
1257 		 */
1258 		if (strcmp(namebuf, "xpv-nfsroot") == 0)
1259 			xen_nfsroot_props(propbuf);
1260 
1261 		if (strcmp(namebuf, "xpv-ip") == 0)
1262 			xen_ip_props(propbuf);
1263 		value += value_len;
1264 	}
1265 #endif
1266 
1267 	while (ISSPACE(*value))
1268 		++value;
1269 	/*
1270 	 * value now points at the boot-file
1271 	 */
1272 	value_len = 0;
1273 	while (value[value_len] && !ISSPACE(value[value_len]))
1274 		++value_len;
1275 	if (value_len > 0) {
1276 		whoami = propbuf;
1277 		bcopy(value, whoami, value_len);
1278 		whoami[value_len] = 0;
1279 		bsetprops("boot-file", whoami);
1280 		/*
1281 		 * strip leading path stuff from whoami, so running from
1282 		 * PXE/miniroot makes sense.
1283 		 */
1284 		if (strstr(whoami, "/platform/") != NULL)
1285 			whoami = strstr(whoami, "/platform/");
1286 		bsetprops("whoami", whoami);
1287 	}
1288 
1289 	/*
1290 	 * Values forcibly set boot properties on the command line via -B.
1291 	 * Allow use of quotes in values. Other stuff goes on kernel
1292 	 * command line.
1293 	 */
1294 	name = value + value_len;
1295 	while (*name != 0) {
1296 		/*
1297 		 * anything not " -B" is copied to the command line
1298 		 */
1299 		if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') {
1300 			boot_args[boot_arg_len++] = *name;
1301 			boot_args[boot_arg_len] = 0;
1302 			++name;
1303 			continue;
1304 		}
1305 
1306 		/*
1307 		 * skip the " -B" and following white space
1308 		 */
1309 		name += 3;
1310 		while (ISSPACE(*name))
1311 			++name;
1312 		while (*name && !ISSPACE(*name)) {
1313 			value = strstr(name, "=");
1314 			if (value == NULL)
1315 				break;
1316 			name_len = value - name;
1317 			++value;
1318 			value_len = 0;
1319 			quoted = 0;
1320 			for (; ; ++value_len) {
1321 				if (!value[value_len])
1322 					break;
1323 
1324 				/*
1325 				 * is this value quoted?
1326 				 */
1327 				if (value_len == 0 &&
1328 				    (value[0] == '\'' || value[0] == '"')) {
1329 					quoted = value[0];
1330 					++value_len;
1331 				}
1332 
1333 				/*
1334 				 * In the quote accept any character,
1335 				 * but look for ending quote.
1336 				 */
1337 				if (quoted) {
1338 					if (value[value_len] == quoted)
1339 						quoted = 0;
1340 					continue;
1341 				}
1342 
1343 				/*
1344 				 * a comma or white space ends the value
1345 				 */
1346 				if (value[value_len] == ',' ||
1347 				    ISSPACE(value[value_len]))
1348 					break;
1349 			}
1350 
1351 			if (value_len == 0) {
1352 				bsetprop(name, name_len, "true", 5);
1353 			} else {
1354 				char *v = value;
1355 				int l = value_len;
1356 				if (v[0] == v[l - 1] &&
1357 				    (v[0] == '\'' || v[0] == '"')) {
1358 					++v;
1359 					l -= 2;
1360 				}
1361 				bcopy(v, propbuf, l);
1362 				propbuf[l] = '\0';
1363 				bsetprop(name, name_len, propbuf,
1364 				    l + 1);
1365 			}
1366 			name = value + value_len;
1367 			while (*name == ',')
1368 				++name;
1369 		}
1370 	}
1371 
1372 	/*
1373 	 * set boot-args property
1374 	 * 1275 name is bootargs, so set
1375 	 * that too
1376 	 */
1377 	bsetprops("boot-args", boot_args);
1378 	bsetprops("bootargs", boot_args);
1379 
1380 #ifndef __xpv
1381 	/*
1382 	 * set the BIOS boot device from GRUB
1383 	 */
1384 	netboot = 0;
1385 	mbi = xbootp->bi_mb_info;
1386 
1387 	/*
1388 	 * Build boot command line for Fast Reboot
1389 	 */
1390 	build_fastboot_cmdline();
1391 
1392 	/*
1393 	 * Save various boot information for Fast Reboot
1394 	 */
1395 	save_boot_info(mbi, xbootp);
1396 
1397 	if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) {
1398 		boot_device = mbi->boot_device >> 24;
1399 		if (boot_device == 0x20)
1400 			netboot++;
1401 		str[0] = (boot_device >> 4) + '0';
1402 		str[1] = (boot_device & 0xf) + '0';
1403 		str[2] = 0;
1404 		bsetprops("bios-boot-device", str);
1405 	} else {
1406 		netboot = 1;
1407 	}
1408 
1409 	/*
1410 	 * In the netboot case, drives_info is overloaded with the dhcp ack.
1411 	 * This is not multiboot compliant and requires special pxegrub!
1412 	 */
1413 	if (netboot && mbi->drives_length != 0) {
1414 		sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr;
1415 		if (sip->sn_infotype == SN_TYPE_BOOTP)
1416 			bsetprop("bootp-response", sizeof ("bootp-response"),
1417 			    (void *)(uintptr_t)mbi->drives_addr,
1418 			    mbi->drives_length);
1419 		else if (sip->sn_infotype == SN_TYPE_RARP)
1420 			setup_rarp_props(sip);
1421 	}
1422 	bsetprop("stdout", strlen("stdout"),
1423 	    &stdout_val, sizeof (stdout_val));
1424 #endif /* __xpv */
1425 
1426 	/*
1427 	 * more conjured up values for made up things....
1428 	 */
1429 #if defined(__xpv)
1430 	bsetprops("mfg-name", "i86xpv");
1431 	bsetprops("impl-arch-name", "i86xpv");
1432 #else
1433 	bsetprops("mfg-name", "i86pc");
1434 	bsetprops("impl-arch-name", "i86pc");
1435 #endif
1436 
1437 	/*
1438 	 * Build firmware-provided system properties
1439 	 */
1440 	build_firmware_properties();
1441 
1442 	/*
1443 	 * XXPV
1444 	 *
1445 	 * Find out what these are:
1446 	 * - cpuid_feature_ecx_include
1447 	 * - cpuid_feature_ecx_exclude
1448 	 * - cpuid_feature_edx_include
1449 	 * - cpuid_feature_edx_exclude
1450 	 *
1451 	 * Find out what these are in multiboot:
1452 	 * - netdev-path
1453 	 * - fstype
1454 	 */
1455 }
1456 
1457 #ifdef __xpv
1458 /*
1459  * Under the Hypervisor, memory usable for DMA may be scarce. One
1460  * very likely large pool of DMA friendly memory is occupied by
1461  * the boot_archive, as it was loaded by grub into low MFNs.
1462  *
1463  * Here we free up that memory by copying the boot archive to what are
1464  * likely higher MFN pages and then swapping the mfn/pfn mappings.
1465  */
1466 #define	PFN_2GIG	0x80000
1467 static void
1468 relocate_boot_archive(void)
1469 {
1470 	mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
1471 	struct boot_modules *bm = xbootp->bi_modules;
1472 	uintptr_t va;
1473 	pfn_t va_pfn;
1474 	mfn_t va_mfn;
1475 	caddr_t copy;
1476 	pfn_t copy_pfn;
1477 	mfn_t copy_mfn;
1478 	size_t	len;
1479 	int slop;
1480 	int total = 0;
1481 	int relocated = 0;
1482 	int mmu_update_return;
1483 	mmu_update_t t[2];
1484 	x86pte_t pte;
1485 
1486 	/*
1487 	 * If all MFN's are below 2Gig, don't bother doing this.
1488 	 */
1489 	if (max_mfn < PFN_2GIG)
1490 		return;
1491 	if (xbootp->bi_module_cnt < 1) {
1492 		DBG_MSG("no boot_archive!");
1493 		return;
1494 	}
1495 
1496 	DBG_MSG("moving boot_archive to high MFN memory\n");
1497 	va = (uintptr_t)bm->bm_addr;
1498 	len = bm->bm_size;
1499 	slop = va & MMU_PAGEOFFSET;
1500 	if (slop) {
1501 		va += MMU_PAGESIZE - slop;
1502 		len -= MMU_PAGESIZE - slop;
1503 	}
1504 	len = P2ALIGN(len, MMU_PAGESIZE);
1505 
1506 	/*
1507 	 * Go through all boot_archive pages, swapping any low MFN pages
1508 	 * with memory at next_phys.
1509 	 */
1510 	while (len != 0) {
1511 		++total;
1512 		va_pfn = mmu_btop(va - ONE_GIG);
1513 		va_mfn = mfn_list[va_pfn];
1514 		if (mfn_list[va_pfn] < PFN_2GIG) {
1515 			copy = kbm_remap_window(next_phys, 1);
1516 			bcopy((void *)va, copy, MMU_PAGESIZE);
1517 			copy_pfn = mmu_btop(next_phys);
1518 			copy_mfn = mfn_list[copy_pfn];
1519 
1520 			pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID;
1521 			if (HYPERVISOR_update_va_mapping(va, pte,
1522 			    UVMF_INVLPG | UVMF_LOCAL))
1523 				bop_panic("relocate_boot_archive():  "
1524 				    "HYPERVISOR_update_va_mapping() failed");
1525 
1526 			mfn_list[va_pfn] = copy_mfn;
1527 			mfn_list[copy_pfn] = va_mfn;
1528 
1529 			t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE;
1530 			t[0].val = va_pfn;
1531 			t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE;
1532 			t[1].val = copy_pfn;
1533 			if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return,
1534 			    DOMID_SELF) != 0 || mmu_update_return != 2)
1535 				bop_panic("relocate_boot_archive():  "
1536 				    "HYPERVISOR_mmu_update() failed");
1537 
1538 			next_phys += MMU_PAGESIZE;
1539 			++relocated;
1540 		}
1541 		len -= MMU_PAGESIZE;
1542 		va += MMU_PAGESIZE;
1543 	}
1544 	DBG_MSG("Relocated pages:\n");
1545 	DBG(relocated);
1546 	DBG_MSG("Out of total pages:\n");
1547 	DBG(total);
1548 }
1549 #endif /* __xpv */
1550 
1551 #if !defined(__xpv)
1552 /*
1553  * Install a temporary IDT that lets us catch errors in the boot time code.
1554  * We shouldn't get any faults at all while this is installed, so we'll
1555  * just generate a traceback and exit.
1556  */
1557 #ifdef __amd64
1558 static const int bcode_sel = B64CODE_SEL;
1559 #else
1560 static const int bcode_sel = B32CODE_SEL;
1561 #endif
1562 
1563 /*
1564  * simple description of a stack frame (args are 32 bit only currently)
1565  */
1566 typedef struct bop_frame {
1567 	struct bop_frame *old_frame;
1568 	pc_t retaddr;
1569 	long arg[1];
1570 } bop_frame_t;
1571 
1572 void
1573 bop_traceback(bop_frame_t *frame)
1574 {
1575 	pc_t pc;
1576 	int cnt;
1577 	char *ksym;
1578 	ulong_t off;
1579 #if defined(__i386)
1580 	int a;
1581 #endif
1582 
1583 	bop_printf(NULL, "Stack traceback:\n");
1584 	for (cnt = 0; cnt < 30; ++cnt) {	/* up to 30 frames */
1585 		pc = frame->retaddr;
1586 		if (pc == 0)
1587 			break;
1588 		ksym = kobj_getsymname(pc, &off);
1589 		if (ksym)
1590 			bop_printf(NULL, "  %s+%lx", ksym, off);
1591 		else
1592 			bop_printf(NULL, "  0x%lx", pc);
1593 
1594 		frame = frame->old_frame;
1595 		if (frame == 0) {
1596 			bop_printf(NULL, "\n");
1597 			break;
1598 		}
1599 #if defined(__i386)
1600 		for (a = 0; a < 6; ++a) {	/* try for 6 args */
1601 			if ((void *)&frame->arg[a] == (void *)frame->old_frame)
1602 				break;
1603 			if (a == 0)
1604 				bop_printf(NULL, "(");
1605 			else
1606 				bop_printf(NULL, ",");
1607 			bop_printf(NULL, "0x%lx", frame->arg[a]);
1608 		}
1609 		bop_printf(NULL, ")");
1610 #endif
1611 		bop_printf(NULL, "\n");
1612 	}
1613 }
1614 
1615 struct trapframe {
1616 	ulong_t error_code;	/* optional */
1617 	ulong_t inst_ptr;
1618 	ulong_t code_seg;
1619 	ulong_t flags_reg;
1620 #ifdef __amd64
1621 	ulong_t stk_ptr;
1622 	ulong_t stk_seg;
1623 #endif
1624 };
1625 
1626 void
1627 bop_trap(ulong_t *tfp)
1628 {
1629 	struct trapframe *tf = (struct trapframe *)tfp;
1630 	bop_frame_t fakeframe;
1631 	static int depth = 0;
1632 
1633 	/*
1634 	 * Check for an infinite loop of traps.
1635 	 */
1636 	if (++depth > 2)
1637 		bop_panic("Nested trap");
1638 
1639 	bop_printf(NULL, "Unexpected trap\n");
1640 
1641 	/*
1642 	 * adjust the tf for optional error_code by detecting the code selector
1643 	 */
1644 	if (tf->code_seg != bcode_sel)
1645 		tf = (struct trapframe *)(tfp - 1);
1646 	else
1647 		bop_printf(NULL, "error code           0x%lx\n",
1648 		    tf->error_code & 0xffffffff);
1649 
1650 	bop_printf(NULL, "instruction pointer  0x%lx\n", tf->inst_ptr);
1651 	bop_printf(NULL, "code segment         0x%lx\n", tf->code_seg & 0xffff);
1652 	bop_printf(NULL, "flags register       0x%lx\n", tf->flags_reg);
1653 #ifdef __amd64
1654 	bop_printf(NULL, "return %%rsp          0x%lx\n", tf->stk_ptr);
1655 	bop_printf(NULL, "return %%ss           0x%lx\n", tf->stk_seg & 0xffff);
1656 #endif
1657 
1658 	/* grab %[er]bp pushed by our code from the stack */
1659 	fakeframe.old_frame = (bop_frame_t *)*(tfp - 3);
1660 	fakeframe.retaddr = (pc_t)tf->inst_ptr;
1661 	bop_printf(NULL, "Attempting stack backtrace:\n");
1662 	bop_traceback(&fakeframe);
1663 	bop_panic("unexpected trap in early boot");
1664 }
1665 
1666 extern void bop_trap_handler(void);
1667 
1668 static gate_desc_t *bop_idt;
1669 
1670 static desctbr_t bop_idt_info;
1671 
1672 static void
1673 bop_idt_init(void)
1674 {
1675 	int t;
1676 
1677 	bop_idt = (gate_desc_t *)
1678 	    do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
1679 	bzero(bop_idt, MMU_PAGESIZE);
1680 	for (t = 0; t < NIDT; ++t) {
1681 		/*
1682 		 * Note that since boot runs without a TSS, the
1683 		 * double fault handler cannot use an alternate stack
1684 		 * (64-bit) or a task gate (32-bit).
1685 		 */
1686 		set_gatesegd(&bop_idt[t], &bop_trap_handler, bcode_sel,
1687 		    SDT_SYSIGT, TRP_KPL, 0);
1688 	}
1689 	bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1;
1690 	bop_idt_info.dtr_base = (uintptr_t)bop_idt;
1691 	wr_idtr(&bop_idt_info);
1692 }
1693 #endif	/* !defined(__xpv) */
1694 
1695 /*
1696  * This is where we enter the kernel. It dummies up the boot_ops and
1697  * boot_syscalls vectors and jumps off to _kobj_boot()
1698  */
1699 void
1700 _start(struct xboot_info *xbp)
1701 {
1702 	bootops_t *bops = &bootop;
1703 	extern void _kobj_boot();
1704 
1705 	/*
1706 	 * 1st off - initialize the console for any error messages
1707 	 */
1708 	xbootp = xbp;
1709 #ifdef __xpv
1710 	HYPERVISOR_shared_info = (void *)xbootp->bi_shared_info;
1711 	xen_info = xbootp->bi_xen_start_info;
1712 #endif
1713 
1714 #ifndef __xpv
1715 	if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) ==
1716 	    FASTBOOT_MAGIC) {
1717 		post_fastreboot = 1;
1718 		*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0;
1719 	}
1720 #endif
1721 
1722 	bcons_init((void *)xbootp->bi_cmdline);
1723 	have_console = 1;
1724 
1725 	/*
1726 	 * enable debugging
1727 	 */
1728 	if (strstr((char *)xbootp->bi_cmdline, "kbm_debug"))
1729 		kbm_debug = 1;
1730 
1731 	DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: ");
1732 	DBG_MSG((char *)xbootp->bi_cmdline);
1733 	DBG_MSG("\n\n\n");
1734 
1735 	/*
1736 	 * physavail is no longer used by startup
1737 	 */
1738 	bm.physinstalled = xbp->bi_phys_install;
1739 	bm.pcimem = xbp->bi_pcimem;
1740 	bm.rsvdmem = xbp->bi_rsvdmem;
1741 	bm.physavail = NULL;
1742 
1743 	/*
1744 	 * initialize the boot time allocator
1745 	 */
1746 	next_phys = xbootp->bi_next_paddr;
1747 	DBG(next_phys);
1748 	next_virt = (uintptr_t)xbootp->bi_next_vaddr;
1749 	DBG(next_virt);
1750 	DBG_MSG("Initializing boot time memory management...");
1751 #ifdef __xpv
1752 	{
1753 		xen_platform_parameters_t p;
1754 
1755 		/* This call shouldn't fail, dboot already did it once. */
1756 		(void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p);
1757 		mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start);
1758 		DBG(xen_virt_start);
1759 	}
1760 #endif
1761 	kbm_init(xbootp);
1762 	DBG_MSG("done\n");
1763 
1764 	/*
1765 	 * Fill in the bootops vector
1766 	 */
1767 	bops->bsys_version = BO_VERSION;
1768 	bops->boot_mem = &bm;
1769 	bops->bsys_alloc = do_bsys_alloc;
1770 	bops->bsys_free = do_bsys_free;
1771 	bops->bsys_getproplen = do_bsys_getproplen;
1772 	bops->bsys_getprop = do_bsys_getprop;
1773 	bops->bsys_nextprop = do_bsys_nextprop;
1774 	bops->bsys_printf = bop_printf;
1775 	bops->bsys_doint = do_bsys_doint;
1776 
1777 	/*
1778 	 * BOP_EALLOC() is no longer needed
1779 	 */
1780 	bops->bsys_ealloc = do_bsys_ealloc;
1781 
1782 #ifdef __xpv
1783 	/*
1784 	 * On domain 0 we need to free up some physical memory that is
1785 	 * usable for DMA. Since GRUB loaded the boot_archive, it is
1786 	 * sitting in low MFN memory. We'll relocated the boot archive
1787 	 * pages to high PFN memory.
1788 	 */
1789 	if (DOMAIN_IS_INITDOMAIN(xen_info))
1790 		relocate_boot_archive();
1791 #endif
1792 
1793 #ifndef __xpv
1794 	/*
1795 	 * Install an IDT to catch early pagefaults (shouldn't have any).
1796 	 * Also needed for kmdb.
1797 	 */
1798 	bop_idt_init();
1799 #endif
1800 
1801 	/*
1802 	 * Start building the boot properties from the command line
1803 	 */
1804 	DBG_MSG("Initializing boot properties:\n");
1805 	build_boot_properties();
1806 
1807 	if (strstr((char *)xbootp->bi_cmdline, "prom_debug") || kbm_debug) {
1808 		char *name;
1809 		char *value;
1810 		char *cp;
1811 		int len;
1812 
1813 		value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
1814 		bop_printf(NULL, "\nBoot properties:\n");
1815 		name = "";
1816 		while ((name = do_bsys_nextprop(NULL, name)) != NULL) {
1817 			bop_printf(NULL, "\t0x%p %s = ", (void *)name, name);
1818 			(void) do_bsys_getprop(NULL, name, value);
1819 			len = do_bsys_getproplen(NULL, name);
1820 			bop_printf(NULL, "len=%d ", len);
1821 			value[len] = 0;
1822 			for (cp = value; *cp; ++cp) {
1823 				if (' ' <= *cp && *cp <= '~')
1824 					bop_printf(NULL, "%c", *cp);
1825 				else
1826 					bop_printf(NULL, "-0x%x-", *cp);
1827 			}
1828 			bop_printf(NULL, "\n");
1829 		}
1830 	}
1831 
1832 	/*
1833 	 * jump into krtld...
1834 	 */
1835 	_kobj_boot(&bop_sysp, NULL, bops, NULL);
1836 }
1837 
1838 
1839 /*ARGSUSED*/
1840 static caddr_t
1841 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
1842 {
1843 	panic("Attempt to bsys_alloc() too late\n");
1844 	return (NULL);
1845 }
1846 
1847 /*ARGSUSED*/
1848 static void
1849 no_more_free(bootops_t *bop, caddr_t virt, size_t size)
1850 {
1851 	panic("Attempt to bsys_free() too late\n");
1852 }
1853 
1854 void
1855 bop_no_more_mem(void)
1856 {
1857 	DBG(total_bop_alloc_scratch);
1858 	DBG(total_bop_alloc_kernel);
1859 	bootops->bsys_alloc = no_more_alloc;
1860 	bootops->bsys_free = no_more_free;
1861 }
1862 
1863 
1864 /*
1865  * Set ACPI firmware properties
1866  */
1867 
1868 static caddr_t
1869 vmap_phys(size_t length, paddr_t pa)
1870 {
1871 	paddr_t	start, end;
1872 	caddr_t	va;
1873 	size_t	len, page;
1874 
1875 #ifdef __xpv
1876 	pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET);
1877 #endif
1878 	start = P2ALIGN(pa, MMU_PAGESIZE);
1879 	end = P2ROUNDUP(pa + length, MMU_PAGESIZE);
1880 	len = end - start;
1881 	va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE);
1882 	for (page = 0; page < len; page += MMU_PAGESIZE)
1883 		kbm_map((uintptr_t)va + page, start + page, 0, 0);
1884 	return (va + (pa & MMU_PAGEOFFSET));
1885 }
1886 
1887 static uint8_t
1888 checksum_table(uint8_t *tp, size_t len)
1889 {
1890 	uint8_t sum = 0;
1891 
1892 	while (len-- > 0)
1893 		sum += *tp++;
1894 
1895 	return (sum);
1896 }
1897 
1898 static int
1899 valid_rsdp(struct rsdp *rp)
1900 {
1901 
1902 	/* validate the V1.x checksum */
1903 	if (checksum_table((uint8_t *)&rp->v1, sizeof (struct rsdp_v1)) != 0)
1904 		return (0);
1905 
1906 	/* If pre-ACPI 2.0, this is a valid RSDP */
1907 	if (rp->v1.revision < 2)
1908 		return (1);
1909 
1910 	/* validate the V2.x checksum */
1911 	if (checksum_table((uint8_t *)rp, sizeof (struct rsdp)) != 0)
1912 		return (0);
1913 
1914 	return (1);
1915 }
1916 
1917 /*
1918  * Scan memory range for an RSDP;
1919  * see ACPI 3.0 Spec, 5.2.5.1
1920  */
1921 static struct rsdp *
1922 scan_rsdp(paddr_t start, paddr_t end)
1923 {
1924 	size_t len  = end - start + 1;
1925 	caddr_t ptr;
1926 
1927 	ptr = vmap_phys(len, start);
1928 	while (len > 0) {
1929 		if (strncmp(ptr, ACPI_RSDP_SIG, ACPI_RSDP_SIG_LEN) == 0)
1930 			if (valid_rsdp((struct rsdp *)ptr))
1931 				return ((struct rsdp *)ptr);
1932 		ptr += 16;
1933 		len -= 16;
1934 	}
1935 
1936 	return (NULL);
1937 }
1938 
1939 /*
1940  * Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function
1941  */
1942 static struct rsdp *
1943 find_rsdp() {
1944 	struct rsdp *rsdp;
1945 	uint16_t *ebda_seg;
1946 	paddr_t  ebda_addr;
1947 
1948 	/*
1949 	 * Get the EBDA segment and scan the first 1K
1950 	 */
1951 	ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t), ACPI_EBDA_SEG_ADDR);
1952 	ebda_addr = *ebda_seg << 4;
1953 	rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_LEN - 1);
1954 	if (rsdp == NULL)
1955 		/* if EBDA doesn't contain RSDP, look in BIOS memory */
1956 		rsdp = scan_rsdp(0xe0000, 0xfffff);
1957 	return (rsdp);
1958 }
1959 
1960 static struct table_header *
1961 map_fw_table(paddr_t table_addr)
1962 {
1963 	struct table_header *tp;
1964 	size_t len = MAX(sizeof (struct table_header), MMU_PAGESIZE);
1965 
1966 	/*
1967 	 * Map at least a page; if the table is larger than this, remap it
1968 	 */
1969 	tp = (struct table_header *)vmap_phys(len, table_addr);
1970 	if (tp->len > len)
1971 		tp = (struct table_header *)vmap_phys(tp->len, table_addr);
1972 	return (tp);
1973 }
1974 
1975 static struct table_header *
1976 find_fw_table(char *signature)
1977 {
1978 	static int revision = 0;
1979 	static struct xsdt *xsdt;
1980 	static int len;
1981 	paddr_t xsdt_addr;
1982 	struct rsdp *rsdp;
1983 	struct table_header *tp;
1984 	paddr_t table_addr;
1985 	int	n;
1986 
1987 	if (strlen(signature) != ACPI_TABLE_SIG_LEN)
1988 		return (NULL);
1989 
1990 	/*
1991 	 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help
1992 	 * understand this code.  If we haven't already found the RSDT/XSDT,
1993 	 * revision will be 0. Find the RSDP and check the revision
1994 	 * to find out whether to use the RSDT or XSDT.  If revision is
1995 	 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2,
1996 	 * use the XSDT.  If the XSDT address is 0, though, fall back to
1997 	 * revision 1 and use the RSDT.
1998 	 */
1999 	if (revision == 0) {
2000 		if ((rsdp = (struct rsdp *)find_rsdp()) != NULL) {
2001 			revision = rsdp->v1.revision;
2002 			switch (revision) {
2003 			case 2:
2004 				/*
2005 				 * Use the XSDT unless BIOS is buggy and
2006 				 * claims to be rev 2 but has a null XSDT
2007 				 * address
2008 				 */
2009 				xsdt_addr = rsdp->xsdt;
2010 				if (xsdt_addr != 0)
2011 					break;
2012 				/* FALLTHROUGH */
2013 			case 0:
2014 				/* treat RSDP rev 0 as revision 1 internally */
2015 				revision = 1;
2016 				/* FALLTHROUGH */
2017 			case 1:
2018 				/* use the RSDT for rev 0/1 */
2019 				xsdt_addr = rsdp->v1.rsdt;
2020 				break;
2021 			default:
2022 				/* unknown revision */
2023 				revision = 0;
2024 				break;
2025 			}
2026 		}
2027 		if (revision == 0)
2028 			return (NULL);
2029 
2030 		/* cache the XSDT info */
2031 		xsdt = (struct xsdt *)map_fw_table(xsdt_addr);
2032 		len = (xsdt->hdr.len - sizeof (xsdt->hdr)) /
2033 		    ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t));
2034 	}
2035 
2036 	/*
2037 	 * Scan the table headers looking for a signature match
2038 	 */
2039 	for (n = 0; n < len; n++) {
2040 		table_addr = (revision == 1) ? xsdt->p.r[n] : xsdt->p.x[n];
2041 		if (table_addr == 0)
2042 			continue;
2043 		tp = map_fw_table(table_addr);
2044 		if (strncmp(tp->sig, signature, ACPI_TABLE_SIG_LEN) == 0) {
2045 			return (tp);
2046 		}
2047 	}
2048 	return (NULL);
2049 }
2050 
2051 static void
2052 process_mcfg(struct mcfg *tp)
2053 {
2054 	struct cfg_base_addr_alloc *cfg_baap;
2055 	char *cfg_baa_endp;
2056 	int64_t ecfginfo[4];
2057 
2058 	cfg_baap = tp->CfgBaseAddrAllocList;
2059 	cfg_baa_endp = ((char *)tp) + tp->Length;
2060 	while ((char *)cfg_baap < cfg_baa_endp) {
2061 		if (cfg_baap->base_addr != 0 && cfg_baap->segment == 0) {
2062 			ecfginfo[0] = cfg_baap->base_addr;
2063 			ecfginfo[1] = cfg_baap->segment;
2064 			ecfginfo[2] = cfg_baap->start_bno;
2065 			ecfginfo[3] = cfg_baap->end_bno;
2066 			bsetprop(MCFG_PROPNAME, strlen(MCFG_PROPNAME),
2067 			    ecfginfo, sizeof (ecfginfo));
2068 			break;
2069 		}
2070 		cfg_baap++;
2071 	}
2072 }
2073 
2074 #ifndef __xpv
2075 static void
2076 process_madt(struct madt *tp)
2077 {
2078 	struct madt_processor *cpu, *end;
2079 	uint32_t cpu_count = 0;
2080 	uint8_t cpu_apicid_array[UINT8_MAX + 1];
2081 
2082 	if (tp != NULL) {
2083 		/*
2084 		 * Determine number of CPUs and keep track of "final" APIC ID
2085 		 * for each CPU by walking through ACPI MADT processor list
2086 		 */
2087 		end = (struct madt_processor *)(tp->hdr.len + (uintptr_t)tp);
2088 		cpu = tp->list;
2089 		while (cpu < end) {
2090 			if (cpu->type == MADT_PROCESSOR) {
2091 				if (cpu->flags & 1) {
2092 					if (cpu_count < UINT8_MAX)
2093 						cpu_apicid_array[cpu_count] =
2094 						    cpu->apic_id;
2095 					cpu_count++;
2096 				}
2097 			}
2098 
2099 			cpu = (struct madt_processor *)
2100 			    (cpu->len + (uintptr_t)cpu);
2101 		}
2102 
2103 		/*
2104 		 * Make boot property for array of "final" APIC IDs for each
2105 		 * CPU
2106 		 */
2107 		bsetprop(BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY),
2108 		    cpu_apicid_array, cpu_count * sizeof (uint8_t));
2109 	}
2110 
2111 	/*
2112 	 * User-set boot-ncpus overrides firmware count
2113 	 */
2114 	if (do_bsys_getproplen(NULL, "boot-ncpus") >= 0)
2115 		return;
2116 
2117 	/*
2118 	 * Set boot property for boot-ncpus to number of CPUs given in MADT
2119 	 * if user hasn't set the property already
2120 	 */
2121 	if (tp != NULL)
2122 		bsetpropsi("boot-ncpus", cpu_count);
2123 }
2124 
2125 static void
2126 process_srat(struct srat *tp)
2127 {
2128 	struct srat_item *item, *end;
2129 	int i;
2130 	int proc_num, mem_num;
2131 #pragma pack(1)
2132 	struct {
2133 		uint32_t domain;
2134 		uint32_t apic_id;
2135 		uint32_t sapic_id;
2136 	} processor;
2137 	struct {
2138 		uint32_t domain;
2139 		uint32_t x2apic_id;
2140 	} x2apic;
2141 	struct {
2142 		uint32_t domain;
2143 		uint64_t addr;
2144 		uint64_t length;
2145 		uint32_t flags;
2146 	} memory;
2147 #pragma pack()
2148 	char prop_name[30];
2149 
2150 	if (tp == NULL)
2151 		return;
2152 
2153 	proc_num = mem_num = 0;
2154 	end = (struct srat_item *)(tp->hdr.len + (uintptr_t)tp);
2155 	item = tp->list;
2156 	while (item < end) {
2157 		switch (item->type) {
2158 		case SRAT_PROCESSOR:
2159 			if (!(item->i.p.flags & SRAT_ENABLED))
2160 				break;
2161 			processor.domain = item->i.p.domain1;
2162 			for (i = 0; i < 3; i++)
2163 				processor.domain +=
2164 				    item->i.p.domain2[i] << ((i + 1) * 8);
2165 			processor.apic_id = item->i.p.apic_id;
2166 			processor.sapic_id = item->i.p.local_sapic_eid;
2167 			(void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2168 			    proc_num);
2169 			bsetprop(prop_name, strlen(prop_name), &processor,
2170 			    sizeof (processor));
2171 			proc_num++;
2172 			break;
2173 		case SRAT_MEMORY:
2174 			if (!(item->i.m.flags & SRAT_ENABLED))
2175 				break;
2176 			memory.domain = item->i.m.domain;
2177 			memory.addr = item->i.m.base_addr;
2178 			memory.length = item->i.m.len;
2179 			memory.flags = item->i.m.flags;
2180 			(void) snprintf(prop_name, 30, "acpi-srat-memory-%d",
2181 			    mem_num);
2182 			bsetprop(prop_name, strlen(prop_name), &memory,
2183 			    sizeof (memory));
2184 			mem_num++;
2185 			break;
2186 		case SRAT_X2APIC:
2187 			if (!(item->i.xp.flags & SRAT_ENABLED))
2188 				break;
2189 			x2apic.domain = item->i.xp.domain;
2190 			x2apic.x2apic_id = item->i.xp.x2apic_id;
2191 			(void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2192 			    proc_num);
2193 			bsetprop(prop_name, strlen(prop_name), &x2apic,
2194 			    sizeof (x2apic));
2195 			proc_num++;
2196 			break;
2197 		}
2198 
2199 		item = (struct srat_item *)
2200 		    (item->len + (caddr_t)item);
2201 	}
2202 }
2203 
2204 static void
2205 process_slit(struct slit *tp)
2206 {
2207 
2208 	/*
2209 	 * Check the number of localities; if it's too huge, we just
2210 	 * return and locality enumeration code will handle this later,
2211 	 * if possible.
2212 	 *
2213 	 * Note that the size of the table is the square of the
2214 	 * number of localities; if the number of localities exceeds
2215 	 * UINT16_MAX, the table size may overflow an int when being
2216 	 * passed to bsetprop() below.
2217 	 */
2218 	if (tp->number >= SLIT_LOCALITIES_MAX)
2219 		return;
2220 
2221 	bsetprop(SLIT_NUM_PROPNAME, strlen(SLIT_NUM_PROPNAME), &tp->number,
2222 	    sizeof (tp->number));
2223 	bsetprop(SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->entry,
2224 	    tp->number * tp->number);
2225 }
2226 
2227 #else /* __xpv */
2228 static void
2229 enumerate_xen_cpus()
2230 {
2231 	processorid_t	id, max_id;
2232 
2233 	/*
2234 	 * User-set boot-ncpus overrides enumeration
2235 	 */
2236 	if (do_bsys_getproplen(NULL, "boot-ncpus") >= 0)
2237 		return;
2238 
2239 	/*
2240 	 * Probe every possible virtual CPU id and remember the
2241 	 * highest id present; the count of CPUs is one greater
2242 	 * than this.  This tacitly assumes at least cpu 0 is present.
2243 	 */
2244 	max_id = 0;
2245 	for (id = 0; id < MAX_VIRT_CPUS; id++)
2246 		if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0)
2247 			max_id = id;
2248 
2249 	bsetpropsi("boot-ncpus", max_id+1);
2250 
2251 }
2252 #endif /* __xpv */
2253 
2254 static void
2255 build_firmware_properties(void)
2256 {
2257 	struct table_header *tp = NULL;
2258 
2259 #ifndef __xpv
2260 	if ((tp = find_fw_table("APIC")) != NULL)
2261 		process_madt((struct madt *)tp);
2262 
2263 	if ((srat_ptr = (struct srat *)find_fw_table("SRAT")) != NULL)
2264 		process_srat(srat_ptr);
2265 
2266 	if (slit_ptr = (struct slit *)find_fw_table("SLIT"))
2267 		process_slit(slit_ptr);
2268 
2269 	tp = find_fw_table("MCFG");
2270 #else /* __xpv */
2271 	enumerate_xen_cpus();
2272 	if (DOMAIN_IS_INITDOMAIN(xen_info))
2273 		tp = find_fw_table("MCFG");
2274 #endif /* __xpv */
2275 	if (tp != NULL)
2276 		process_mcfg((struct mcfg *)tp);
2277 }
2278 
2279 /*
2280  * fake up a boot property for deferred early console output
2281  * this is used by both graphical boot and the (developer only)
2282  * USB serial console
2283  */
2284 void *
2285 defcons_init(size_t size)
2286 {
2287 	static char *p = NULL;
2288 
2289 	p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE);
2290 	*p = 0;
2291 	bsetprop("deferred-console-buf", strlen("deferred-console-buf") + 1,
2292 	    &p, sizeof (p));
2293 	return (p);
2294 }
2295 
2296 /*ARGSUSED*/
2297 int
2298 boot_compinfo(int fd, struct compinfo *cbp)
2299 {
2300 	cbp->iscmp = 0;
2301 	cbp->blksize = MAXBSIZE;
2302 	return (0);
2303 }
2304 
2305 #define	BP_MAX_STRLEN	32
2306 
2307 /*
2308  * Get value for given boot property
2309  */
2310 int
2311 bootprop_getval(const char *prop_name, u_longlong_t *prop_value)
2312 {
2313 	int		boot_prop_len;
2314 	char		str[BP_MAX_STRLEN];
2315 	u_longlong_t	value;
2316 
2317 	boot_prop_len = BOP_GETPROPLEN(bootops, prop_name);
2318 	if (boot_prop_len < 0 || boot_prop_len > sizeof (str) ||
2319 	    BOP_GETPROP(bootops, prop_name, str) < 0 ||
2320 	    kobj_getvalue(str, &value) == -1)
2321 		return (-1);
2322 
2323 	if (prop_value)
2324 		*prop_value = value;
2325 
2326 	return (0);
2327 }
2328