xref: /titanic_50/usr/src/uts/i86pc/os/fakebop.c (revision 7f11fd00fc23e2af7ae21cc8837a2b86380dcfa7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2010, Intel Corporation.
27  * All rights reserved.
28  *
29  * Copyright 2013 Joyent, Inc.  All rights reserved.
30  */
31 
32 /*
33  * This file contains the functionality that mimics the boot operations
34  * on SPARC systems or the old boot.bin/multiboot programs on x86 systems.
35  * The x86 kernel now does everything on its own.
36  */
37 
38 #include <sys/types.h>
39 #include <sys/bootconf.h>
40 #include <sys/bootsvcs.h>
41 #include <sys/bootinfo.h>
42 #include <sys/multiboot.h>
43 #include <sys/bootvfs.h>
44 #include <sys/bootprops.h>
45 #include <sys/varargs.h>
46 #include <sys/param.h>
47 #include <sys/machparam.h>
48 #include <sys/machsystm.h>
49 #include <sys/archsystm.h>
50 #include <sys/boot_console.h>
51 #include <sys/cmn_err.h>
52 #include <sys/systm.h>
53 #include <sys/promif.h>
54 #include <sys/archsystm.h>
55 #include <sys/x86_archext.h>
56 #include <sys/kobj.h>
57 #include <sys/privregs.h>
58 #include <sys/sysmacros.h>
59 #include <sys/ctype.h>
60 #include <sys/fastboot.h>
61 #ifdef __xpv
62 #include <sys/hypervisor.h>
63 #include <net/if.h>
64 #endif
65 #include <vm/kboot_mmu.h>
66 #include <vm/hat_pte.h>
67 #include <sys/kobj.h>
68 #include <sys/kobj_lex.h>
69 #include <sys/pci_cfgspace_impl.h>
70 #include <sys/fastboot_impl.h>
71 #include "acpi_fw.h"
72 
73 static int have_console = 0;	/* set once primitive console is initialized */
74 static char *boot_args = "";
75 
76 /*
77  * Debugging macros
78  */
79 static uint_t kbm_debug = 0;
80 #define	DBG_MSG(s)	{ if (kbm_debug) bop_printf(NULL, "%s", s); }
81 #define	DBG(x)		{ if (kbm_debug)			\
82 	bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x));	\
83 	}
84 
85 #define	PUT_STRING(s) {				\
86 	char *cp;				\
87 	for (cp = (s); *cp; ++cp)		\
88 		bcons_putchar(*cp);		\
89 	}
90 
91 struct xboot_info *xbootp;	/* boot info from "glue" code in low memory */
92 bootops_t bootop;	/* simple bootops we'll pass on to kernel */
93 struct bsys_mem bm;
94 
95 static uintptr_t next_virt;	/* next available virtual address */
96 static paddr_t next_phys;	/* next available physical address from dboot */
97 static paddr_t high_phys = -(paddr_t)1;	/* last used physical address */
98 
99 /*
100  * buffer for vsnprintf for console I/O
101  */
102 #define	BUFFERSIZE	256
103 static char buffer[BUFFERSIZE];
104 /*
105  * stuff to store/report/manipulate boot property settings.
106  */
107 typedef struct bootprop {
108 	struct bootprop *bp_next;
109 	char *bp_name;
110 	uint_t bp_vlen;
111 	char *bp_value;
112 } bootprop_t;
113 
114 static bootprop_t *bprops = NULL;
115 static char *curr_page = NULL;		/* ptr to avail bprop memory */
116 static int curr_space = 0;		/* amount of memory at curr_page */
117 
118 #ifdef __xpv
119 start_info_t *xen_info;
120 shared_info_t *HYPERVISOR_shared_info;
121 #endif
122 
123 /*
124  * some allocator statistics
125  */
126 static ulong_t total_bop_alloc_scratch = 0;
127 static ulong_t total_bop_alloc_kernel = 0;
128 
129 static void build_firmware_properties(void);
130 
131 static int early_allocation = 1;
132 
133 int force_fastreboot = 0;
134 volatile int fastreboot_onpanic = 0;
135 int post_fastreboot = 0;
136 #ifdef	__xpv
137 volatile int fastreboot_capable = 0;
138 #else
139 volatile int fastreboot_capable = 1;
140 #endif
141 
142 /*
143  * Information saved from current boot for fast reboot.
144  * If the information size exceeds what we have allocated, fast reboot
145  * will not be supported.
146  */
147 multiboot_info_t saved_mbi;
148 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT];
149 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE];
150 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
151 int saved_cmdline_len = 0;
152 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP];
153 
154 /*
155  * Turn off fastreboot_onpanic to avoid panic loop.
156  */
157 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
158 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0";
159 
160 /*
161  * Pointers to where System Resource Affinity Table (SRAT), System Locality
162  * Information Table (SLIT) and Maximum System Capability Table (MSCT)
163  * are mapped into virtual memory
164  */
165 struct srat	*srat_ptr = NULL;
166 struct slit	*slit_ptr = NULL;
167 struct msct	*msct_ptr = NULL;
168 
169 /*
170  * Allocate aligned physical memory at boot time. This allocator allocates
171  * from the highest possible addresses. This avoids exhausting memory that
172  * would be useful for DMA buffers.
173  */
174 paddr_t
175 do_bop_phys_alloc(uint64_t size, uint64_t align)
176 {
177 	paddr_t	pa = 0;
178 	paddr_t	start;
179 	paddr_t	end;
180 	struct memlist	*ml = (struct memlist *)xbootp->bi_phys_install;
181 
182 	/*
183 	 * Be careful if high memory usage is limited in startup.c
184 	 * Since there are holes in the low part of the physical address
185 	 * space we can treat physmem as a pfn (not just a pgcnt) and
186 	 * get a conservative upper limit.
187 	 */
188 	if (physmem != 0 && high_phys > pfn_to_pa(physmem))
189 		high_phys = pfn_to_pa(physmem);
190 
191 	/*
192 	 * find the lowest or highest available memory in physinstalled
193 	 * On 32 bit avoid physmem above 4Gig if PAE isn't enabled
194 	 */
195 #if defined(__i386)
196 	if (xbootp->bi_use_pae == 0 && high_phys > FOUR_GIG)
197 		high_phys = FOUR_GIG;
198 #endif
199 
200 	/*
201 	 * find the highest available memory in physinstalled
202 	 */
203 	size = P2ROUNDUP(size, align);
204 	for (; ml; ml = ml->ml_next) {
205 		start = P2ROUNDUP(ml->ml_address, align);
206 		end = P2ALIGN(ml->ml_address + ml->ml_size, align);
207 		if (start < next_phys)
208 			start = P2ROUNDUP(next_phys, align);
209 		if (end > high_phys)
210 			end = P2ALIGN(high_phys, align);
211 
212 		if (end <= start)
213 			continue;
214 		if (end - start < size)
215 			continue;
216 
217 		/*
218 		 * Early allocations need to use low memory, since
219 		 * physmem might be further limited by bootenv.rc
220 		 */
221 		if (early_allocation) {
222 			if (pa == 0 || start < pa)
223 				pa = start;
224 		} else {
225 			if (end - size > pa)
226 				pa = end - size;
227 		}
228 	}
229 	if (pa != 0) {
230 		if (early_allocation)
231 			next_phys = pa + size;
232 		else
233 			high_phys = pa;
234 		return (pa);
235 	}
236 	bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64
237 	    ") Out of memory\n", size, align);
238 	/*NOTREACHED*/
239 }
240 
241 uintptr_t
242 alloc_vaddr(size_t size, paddr_t align)
243 {
244 	uintptr_t rv;
245 
246 	next_virt = P2ROUNDUP(next_virt, (uintptr_t)align);
247 	rv = (uintptr_t)next_virt;
248 	next_virt += size;
249 	return (rv);
250 }
251 
252 /*
253  * Allocate virtual memory. The size is always rounded up to a multiple
254  * of base pagesize.
255  */
256 
257 /*ARGSUSED*/
258 static caddr_t
259 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
260 {
261 	paddr_t a = align;	/* same type as pa for masking */
262 	uint_t pgsize;
263 	paddr_t pa;
264 	uintptr_t va;
265 	ssize_t s;		/* the aligned size */
266 	uint_t level;
267 	uint_t is_kernel = (virthint != 0);
268 
269 	if (a < MMU_PAGESIZE)
270 		a = MMU_PAGESIZE;
271 	else if (!ISP2(a))
272 		prom_panic("do_bsys_alloc() incorrect alignment");
273 	size = P2ROUNDUP(size, MMU_PAGESIZE);
274 
275 	/*
276 	 * Use the next aligned virtual address if we weren't given one.
277 	 */
278 	if (virthint == NULL) {
279 		virthint = (caddr_t)alloc_vaddr(size, a);
280 		total_bop_alloc_scratch += size;
281 	} else {
282 		total_bop_alloc_kernel += size;
283 	}
284 
285 	/*
286 	 * allocate the physical memory
287 	 */
288 	pa = do_bop_phys_alloc(size, a);
289 
290 	/*
291 	 * Add the mappings to the page tables, try large pages first.
292 	 */
293 	va = (uintptr_t)virthint;
294 	s = size;
295 	level = 1;
296 	pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG;
297 	if (xbootp->bi_use_largepage && a == pgsize) {
298 		while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) &&
299 		    s >= pgsize) {
300 			kbm_map(va, pa, level, is_kernel);
301 			va += pgsize;
302 			pa += pgsize;
303 			s -= pgsize;
304 		}
305 	}
306 
307 	/*
308 	 * Map remaining pages use small mappings
309 	 */
310 	level = 0;
311 	pgsize = MMU_PAGESIZE;
312 	while (s > 0) {
313 		kbm_map(va, pa, level, is_kernel);
314 		va += pgsize;
315 		pa += pgsize;
316 		s -= pgsize;
317 	}
318 	return (virthint);
319 }
320 
321 /*
322  * Free virtual memory - we'll just ignore these.
323  */
324 /*ARGSUSED*/
325 static void
326 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size)
327 {
328 	bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n",
329 	    (void *)virt, size);
330 }
331 
332 /*
333  * Old interface
334  */
335 /*ARGSUSED*/
336 static caddr_t
337 do_bsys_ealloc(
338 	bootops_t *bop,
339 	caddr_t virthint,
340 	size_t size,
341 	int align,
342 	int flags)
343 {
344 	prom_panic("unsupported call to BOP_EALLOC()\n");
345 	return (0);
346 }
347 
348 
349 static void
350 bsetprop(char *name, int nlen, void *value, int vlen)
351 {
352 	uint_t size;
353 	uint_t need_size;
354 	bootprop_t *b;
355 
356 	/*
357 	 * align the size to 16 byte boundary
358 	 */
359 	size = sizeof (bootprop_t) + nlen + 1 + vlen;
360 	size = (size + 0xf) & ~0xf;
361 	if (size > curr_space) {
362 		need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK;
363 		curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE);
364 		curr_space = need_size;
365 	}
366 
367 	/*
368 	 * use a bootprop_t at curr_page and link into list
369 	 */
370 	b = (bootprop_t *)curr_page;
371 	curr_page += sizeof (bootprop_t);
372 	curr_space -=  sizeof (bootprop_t);
373 	b->bp_next = bprops;
374 	bprops = b;
375 
376 	/*
377 	 * follow by name and ending zero byte
378 	 */
379 	b->bp_name = curr_page;
380 	bcopy(name, curr_page, nlen);
381 	curr_page += nlen;
382 	*curr_page++ = 0;
383 	curr_space -= nlen + 1;
384 
385 	/*
386 	 * copy in value, but no ending zero byte
387 	 */
388 	b->bp_value = curr_page;
389 	b->bp_vlen = vlen;
390 	if (vlen > 0) {
391 		bcopy(value, curr_page, vlen);
392 		curr_page += vlen;
393 		curr_space -= vlen;
394 	}
395 
396 	/*
397 	 * align new values of curr_page, curr_space
398 	 */
399 	while (curr_space & 0xf) {
400 		++curr_page;
401 		--curr_space;
402 	}
403 }
404 
405 static void
406 bsetprops(char *name, char *value)
407 {
408 	bsetprop(name, strlen(name), value, strlen(value) + 1);
409 }
410 
411 static void
412 bsetprop64(char *name, uint64_t value)
413 {
414 	bsetprop(name, strlen(name), (void *)&value, sizeof (value));
415 }
416 
417 static void
418 bsetpropsi(char *name, int value)
419 {
420 	char prop_val[32];
421 
422 	(void) snprintf(prop_val, sizeof (prop_val), "%d", value);
423 	bsetprops(name, prop_val);
424 }
425 
426 /*
427  * to find the size of the buffer to allocate
428  */
429 /*ARGSUSED*/
430 int
431 do_bsys_getproplen(bootops_t *bop, const char *name)
432 {
433 	bootprop_t *b;
434 
435 	for (b = bprops; b; b = b->bp_next) {
436 		if (strcmp(name, b->bp_name) != 0)
437 			continue;
438 		return (b->bp_vlen);
439 	}
440 	return (-1);
441 }
442 
443 /*
444  * get the value associated with this name
445  */
446 /*ARGSUSED*/
447 int
448 do_bsys_getprop(bootops_t *bop, const char *name, void *value)
449 {
450 	bootprop_t *b;
451 
452 	for (b = bprops; b; b = b->bp_next) {
453 		if (strcmp(name, b->bp_name) != 0)
454 			continue;
455 		bcopy(b->bp_value, value, b->bp_vlen);
456 		return (0);
457 	}
458 	return (-1);
459 }
460 
461 /*
462  * get the name of the next property in succession from the standalone
463  */
464 /*ARGSUSED*/
465 static char *
466 do_bsys_nextprop(bootops_t *bop, char *name)
467 {
468 	bootprop_t *b;
469 
470 	/*
471 	 * A null name is a special signal for the 1st boot property
472 	 */
473 	if (name == NULL || strlen(name) == 0) {
474 		if (bprops == NULL)
475 			return (NULL);
476 		return (bprops->bp_name);
477 	}
478 
479 	for (b = bprops; b; b = b->bp_next) {
480 		if (name != b->bp_name)
481 			continue;
482 		b = b->bp_next;
483 		if (b == NULL)
484 			return (NULL);
485 		return (b->bp_name);
486 	}
487 	return (NULL);
488 }
489 
490 /*
491  * Parse numeric value from a string. Understands decimal, hex, octal, - and ~
492  */
493 static int
494 parse_value(char *p, uint64_t *retval)
495 {
496 	int adjust = 0;
497 	uint64_t tmp = 0;
498 	int digit;
499 	int radix = 10;
500 
501 	*retval = 0;
502 	if (*p == '-' || *p == '~')
503 		adjust = *p++;
504 
505 	if (*p == '0') {
506 		++p;
507 		if (*p == 0)
508 			return (0);
509 		if (*p == 'x' || *p == 'X') {
510 			radix = 16;
511 			++p;
512 		} else {
513 			radix = 8;
514 			++p;
515 		}
516 	}
517 	while (*p) {
518 		if ('0' <= *p && *p <= '9')
519 			digit = *p - '0';
520 		else if ('a' <= *p && *p <= 'f')
521 			digit = 10 + *p - 'a';
522 		else if ('A' <= *p && *p <= 'F')
523 			digit = 10 + *p - 'A';
524 		else
525 			return (-1);
526 		if (digit >= radix)
527 			return (-1);
528 		tmp = tmp * radix + digit;
529 		++p;
530 	}
531 	if (adjust == '-')
532 		tmp = -tmp;
533 	else if (adjust == '~')
534 		tmp = ~tmp;
535 	*retval = tmp;
536 	return (0);
537 }
538 
539 /*
540  * 2nd part of building the table of boot properties. This includes:
541  * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
542  *
543  * lines look like one of:
544  * ^$
545  * ^# comment till end of line
546  * setprop name 'value'
547  * setprop name value
548  * setprop name "value"
549  *
550  * we do single character I/O since this is really just looking at memory
551  */
552 void
553 boot_prop_finish(void)
554 {
555 	int fd;
556 	char *line;
557 	int c;
558 	int bytes_read;
559 	char *name;
560 	int n_len;
561 	char *value;
562 	int v_len;
563 	char *inputdev;	/* these override the command line if serial ports */
564 	char *outputdev;
565 	char *consoledev;
566 	uint64_t lvalue;
567 	int use_xencons = 0;
568 
569 #ifdef __xpv
570 	if (!DOMAIN_IS_INITDOMAIN(xen_info))
571 		use_xencons = 1;
572 #endif /* __xpv */
573 
574 	DBG_MSG("Opening /boot/solaris/bootenv.rc\n");
575 	fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0);
576 	DBG(fd);
577 
578 	line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
579 	while (fd >= 0) {
580 
581 		/*
582 		 * get a line
583 		 */
584 		for (c = 0; ; ++c) {
585 			bytes_read = BRD_READ(bfs_ops, fd, line + c, 1);
586 			if (bytes_read == 0) {
587 				if (c == 0)
588 					goto done;
589 				break;
590 			}
591 			if (line[c] == '\n')
592 				break;
593 		}
594 		line[c] = 0;
595 
596 		/*
597 		 * ignore comment lines
598 		 */
599 		c = 0;
600 		while (ISSPACE(line[c]))
601 			++c;
602 		if (line[c] == '#' || line[c] == 0)
603 			continue;
604 
605 		/*
606 		 * must have "setprop " or "setprop\t"
607 		 */
608 		if (strncmp(line + c, "setprop ", 8) != 0 &&
609 		    strncmp(line + c, "setprop\t", 8) != 0)
610 			continue;
611 		c += 8;
612 		while (ISSPACE(line[c]))
613 			++c;
614 		if (line[c] == 0)
615 			continue;
616 
617 		/*
618 		 * gather up the property name
619 		 */
620 		name = line + c;
621 		n_len = 0;
622 		while (line[c] && !ISSPACE(line[c]))
623 			++n_len, ++c;
624 
625 		/*
626 		 * gather up the value, if any
627 		 */
628 		value = "";
629 		v_len = 0;
630 		while (ISSPACE(line[c]))
631 			++c;
632 		if (line[c] != 0) {
633 			value = line + c;
634 			while (line[c] && !ISSPACE(line[c]))
635 				++v_len, ++c;
636 		}
637 
638 		if (v_len >= 2 && value[0] == value[v_len - 1] &&
639 		    (value[0] == '\'' || value[0] == '"')) {
640 			++value;
641 			v_len -= 2;
642 		}
643 		name[n_len] = 0;
644 		if (v_len > 0)
645 			value[v_len] = 0;
646 		else
647 			continue;
648 
649 		/*
650 		 * ignore "boot-file" property, it's now meaningless
651 		 */
652 		if (strcmp(name, "boot-file") == 0)
653 			continue;
654 		if (strcmp(name, "boot-args") == 0 &&
655 		    strlen(boot_args) > 0)
656 			continue;
657 
658 		/*
659 		 * If a property was explicitly set on the command line
660 		 * it will override a setting in bootenv.rc
661 		 */
662 		if (do_bsys_getproplen(NULL, name) > 0)
663 			continue;
664 
665 		bsetprop(name, n_len, value, v_len + 1);
666 	}
667 done:
668 	if (fd >= 0)
669 		(void) BRD_CLOSE(bfs_ops, fd);
670 
671 	/*
672 	 * Check if we have to limit the boot time allocator
673 	 */
674 	if (do_bsys_getproplen(NULL, "physmem") != -1 &&
675 	    do_bsys_getprop(NULL, "physmem", line) >= 0 &&
676 	    parse_value(line, &lvalue) != -1) {
677 		if (0 < lvalue && (lvalue < physmem || physmem == 0)) {
678 			physmem = (pgcnt_t)lvalue;
679 			DBG(physmem);
680 		}
681 	}
682 	early_allocation = 0;
683 
684 	/*
685 	 * check to see if we have to override the default value of the console
686 	 */
687 	if (!use_xencons) {
688 		inputdev = line;
689 		v_len = do_bsys_getproplen(NULL, "input-device");
690 		if (v_len > 0)
691 			(void) do_bsys_getprop(NULL, "input-device", inputdev);
692 		else
693 			v_len = 0;
694 		inputdev[v_len] = 0;
695 
696 		outputdev = inputdev + v_len + 1;
697 		v_len = do_bsys_getproplen(NULL, "output-device");
698 		if (v_len > 0)
699 			(void) do_bsys_getprop(NULL, "output-device",
700 			    outputdev);
701 		else
702 			v_len = 0;
703 		outputdev[v_len] = 0;
704 
705 		consoledev = outputdev + v_len + 1;
706 		v_len = do_bsys_getproplen(NULL, "console");
707 		if (v_len > 0) {
708 			(void) do_bsys_getprop(NULL, "console", consoledev);
709 			if (post_fastreboot &&
710 			    strcmp(consoledev, "graphics") == 0) {
711 				bsetprops("console", "text");
712 				v_len = strlen("text");
713 				bcopy("text", consoledev, v_len);
714 			}
715 		} else {
716 			v_len = 0;
717 		}
718 		consoledev[v_len] = 0;
719 		bcons_init2(inputdev, outputdev, consoledev);
720 	} else {
721 		/*
722 		 * Ensure console property exists
723 		 * If not create it as "hypervisor"
724 		 */
725 		v_len = do_bsys_getproplen(NULL, "console");
726 		if (v_len < 0)
727 			bsetprops("console", "hypervisor");
728 		inputdev = outputdev = consoledev = "hypervisor";
729 		bcons_init2(inputdev, outputdev, consoledev);
730 	}
731 
732 	if (strstr((char *)xbootp->bi_cmdline, "prom_debug") || kbm_debug) {
733 		value = line;
734 		bop_printf(NULL, "\nBoot properties:\n");
735 		name = "";
736 		while ((name = do_bsys_nextprop(NULL, name)) != NULL) {
737 			bop_printf(NULL, "\t0x%p %s = ", (void *)name, name);
738 			(void) do_bsys_getprop(NULL, name, value);
739 			v_len = do_bsys_getproplen(NULL, name);
740 			bop_printf(NULL, "len=%d ", v_len);
741 			value[v_len] = 0;
742 			bop_printf(NULL, "%s\n", value);
743 		}
744 	}
745 }
746 
747 /*
748  * print formatted output
749  */
750 /*PRINTFLIKE2*/
751 /*ARGSUSED*/
752 void
753 bop_printf(bootops_t *bop, const char *fmt, ...)
754 {
755 	va_list	ap;
756 
757 	if (have_console == 0)
758 		return;
759 
760 	va_start(ap, fmt);
761 	(void) vsnprintf(buffer, BUFFERSIZE, fmt, ap);
762 	va_end(ap);
763 	PUT_STRING(buffer);
764 }
765 
766 /*
767  * Another panic() variant; this one can be used even earlier during boot than
768  * prom_panic().
769  */
770 /*PRINTFLIKE1*/
771 void
772 bop_panic(const char *fmt, ...)
773 {
774 	va_list ap;
775 
776 	va_start(ap, fmt);
777 	bop_printf(NULL, fmt, ap);
778 	va_end(ap);
779 
780 	bop_printf(NULL, "\nPress any key to reboot.\n");
781 	(void) bcons_getchar();
782 	bop_printf(NULL, "Resetting...\n");
783 	pc_reset();
784 }
785 
786 /*
787  * Do a real mode interrupt BIOS call
788  */
789 typedef struct bios_regs {
790 	unsigned short ax, bx, cx, dx, si, di, bp, es, ds;
791 } bios_regs_t;
792 typedef int (*bios_func_t)(int, bios_regs_t *);
793 
794 /*ARGSUSED*/
795 static void
796 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp)
797 {
798 #if defined(__xpv)
799 	prom_panic("unsupported call to BOP_DOINT()\n");
800 #else	/* __xpv */
801 	static int firsttime = 1;
802 	bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000;
803 	bios_regs_t br;
804 
805 	/*
806 	 * The first time we do this, we have to copy the pre-packaged
807 	 * low memory bios call code image into place.
808 	 */
809 	if (firsttime) {
810 		extern char bios_image[];
811 		extern uint32_t bios_size;
812 
813 		bcopy(bios_image, (void *)bios_func, bios_size);
814 		firsttime = 0;
815 	}
816 
817 	br.ax = rp->eax.word.ax;
818 	br.bx = rp->ebx.word.bx;
819 	br.cx = rp->ecx.word.cx;
820 	br.dx = rp->edx.word.dx;
821 	br.bp = rp->ebp.word.bp;
822 	br.si = rp->esi.word.si;
823 	br.di = rp->edi.word.di;
824 	br.ds = rp->ds;
825 	br.es = rp->es;
826 
827 	DBG_MSG("Doing BIOS call...");
828 	DBG(br.ax);
829 	DBG(br.bx);
830 	DBG(br.dx);
831 	rp->eflags = bios_func(intnum, &br);
832 	DBG_MSG("done\n");
833 
834 	rp->eax.word.ax = br.ax;
835 	rp->ebx.word.bx = br.bx;
836 	rp->ecx.word.cx = br.cx;
837 	rp->edx.word.dx = br.dx;
838 	rp->ebp.word.bp = br.bp;
839 	rp->esi.word.si = br.si;
840 	rp->edi.word.di = br.di;
841 	rp->ds = br.ds;
842 	rp->es = br.es;
843 #endif /* __xpv */
844 }
845 
846 static struct boot_syscalls bop_sysp = {
847 	bcons_getchar,
848 	bcons_putchar,
849 	bcons_ischar,
850 };
851 
852 static char *whoami;
853 
854 #define	BUFLEN	64
855 
856 #if defined(__xpv)
857 
858 static char namebuf[32];
859 
860 static void
861 xen_parse_props(char *s, char *prop_map[], int n_prop)
862 {
863 	char **prop_name = prop_map;
864 	char *cp = s, *scp;
865 
866 	do {
867 		scp = cp;
868 		while ((*cp != NULL) && (*cp != ':'))
869 			cp++;
870 
871 		if ((scp != cp) && (*prop_name != NULL)) {
872 			*cp = NULL;
873 			bsetprops(*prop_name, scp);
874 		}
875 
876 		cp++;
877 		prop_name++;
878 		n_prop--;
879 	} while (n_prop > 0);
880 }
881 
882 #define	VBDPATHLEN	64
883 
884 /*
885  * parse the 'xpv-root' property to create properties used by
886  * ufs_mountroot.
887  */
888 static void
889 xen_vbdroot_props(char *s)
890 {
891 	char vbdpath[VBDPATHLEN] = "/xpvd/xdf@";
892 	const char lnamefix[] = "/dev/dsk/c0d";
893 	char *pnp;
894 	char *prop_p;
895 	char mi;
896 	short minor;
897 	long addr = 0;
898 
899 	pnp = vbdpath + strlen(vbdpath);
900 	prop_p = s + strlen(lnamefix);
901 	while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p'))
902 		addr = addr * 10 + *prop_p++ - '0';
903 	(void) snprintf(pnp, VBDPATHLEN, "%lx", addr);
904 	pnp = vbdpath + strlen(vbdpath);
905 	if (*prop_p == 's')
906 		mi = 'a';
907 	else if (*prop_p == 'p')
908 		mi = 'q';
909 	else
910 		ASSERT(0); /* shouldn't be here */
911 	prop_p++;
912 	ASSERT(*prop_p != '\0');
913 	if (ISDIGIT(*prop_p)) {
914 		minor = *prop_p - '0';
915 		prop_p++;
916 		if (ISDIGIT(*prop_p)) {
917 			minor = minor * 10 + *prop_p - '0';
918 		}
919 	} else {
920 		/* malformed root path, use 0 as default */
921 		minor = 0;
922 	}
923 	ASSERT(minor < 16); /* at most 16 partitions */
924 	mi += minor;
925 	*pnp++ = ':';
926 	*pnp++ = mi;
927 	*pnp++ = '\0';
928 	bsetprops("fstype", "ufs");
929 	bsetprops("bootpath", vbdpath);
930 
931 	DBG_MSG("VBD bootpath set to ");
932 	DBG_MSG(vbdpath);
933 	DBG_MSG("\n");
934 }
935 
936 /*
937  * parse the xpv-nfsroot property to create properties used by
938  * nfs_mountroot.
939  */
940 static void
941 xen_nfsroot_props(char *s)
942 {
943 	char *prop_map[] = {
944 		BP_SERVER_IP,	/* server IP address */
945 		BP_SERVER_NAME,	/* server hostname */
946 		BP_SERVER_PATH,	/* root path */
947 	};
948 	int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
949 
950 	bsetprop("fstype", 6, "nfs", 4);
951 
952 	xen_parse_props(s, prop_map, n_prop);
953 
954 	/*
955 	 * If a server name wasn't specified, use a default.
956 	 */
957 	if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1)
958 		bsetprops(BP_SERVER_NAME, "unknown");
959 }
960 
961 /*
962  * Extract our IP address, etc. from the "xpv-ip" property.
963  */
964 static void
965 xen_ip_props(char *s)
966 {
967 	char *prop_map[] = {
968 		BP_HOST_IP,		/* IP address */
969 		NULL,			/* NFS server IP address (ignored in */
970 					/* favour of xpv-nfsroot) */
971 		BP_ROUTER_IP,		/* IP gateway */
972 		BP_SUBNET_MASK,		/* IP subnet mask */
973 		"xpv-hostname",		/* hostname (ignored) */
974 		BP_NETWORK_INTERFACE,	/* interface name */
975 		"xpv-hcp",		/* host configuration protocol */
976 	};
977 	int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
978 	char ifname[IFNAMSIZ];
979 
980 	xen_parse_props(s, prop_map, n_prop);
981 
982 	/*
983 	 * A Linux dom0 administrator expects all interfaces to be
984 	 * called "ethX", which is not the case here.
985 	 *
986 	 * If the interface name specified is "eth0", presume that
987 	 * this is really intended to be "xnf0" (the first domU ->
988 	 * dom0 interface for this domain).
989 	 */
990 	if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) &&
991 	    (strcmp("eth0", ifname) == 0)) {
992 		bsetprops(BP_NETWORK_INTERFACE, "xnf0");
993 		bop_printf(NULL,
994 		    "network interface name 'eth0' replaced with 'xnf0'\n");
995 	}
996 }
997 
998 #else	/* __xpv */
999 
1000 static void
1001 setup_rarp_props(struct sol_netinfo *sip)
1002 {
1003 	char buf[BUFLEN];	/* to hold ip/mac addrs */
1004 	uint8_t *val;
1005 
1006 	val = (uint8_t *)&sip->sn_ciaddr;
1007 	(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1008 	    val[0], val[1], val[2], val[3]);
1009 	bsetprops(BP_HOST_IP, buf);
1010 
1011 	val = (uint8_t *)&sip->sn_siaddr;
1012 	(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1013 	    val[0], val[1], val[2], val[3]);
1014 	bsetprops(BP_SERVER_IP, buf);
1015 
1016 	if (sip->sn_giaddr != 0) {
1017 		val = (uint8_t *)&sip->sn_giaddr;
1018 		(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1019 		    val[0], val[1], val[2], val[3]);
1020 		bsetprops(BP_ROUTER_IP, buf);
1021 	}
1022 
1023 	if (sip->sn_netmask != 0) {
1024 		val = (uint8_t *)&sip->sn_netmask;
1025 		(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1026 		    val[0], val[1], val[2], val[3]);
1027 		bsetprops(BP_SUBNET_MASK, buf);
1028 	}
1029 
1030 	if (sip->sn_mactype != 4 || sip->sn_maclen != 6) {
1031 		bop_printf(NULL, "unsupported mac type %d, mac len %d\n",
1032 		    sip->sn_mactype, sip->sn_maclen);
1033 	} else {
1034 		val = sip->sn_macaddr;
1035 		(void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x",
1036 		    val[0], val[1], val[2], val[3], val[4], val[5]);
1037 		bsetprops(BP_BOOT_MAC, buf);
1038 	}
1039 }
1040 
1041 #endif	/* __xpv */
1042 
1043 static void
1044 build_panic_cmdline(const char *cmd, int cmdlen)
1045 {
1046 	int proplen;
1047 	size_t arglen;
1048 
1049 	arglen = sizeof (fastreboot_onpanic_args);
1050 	/*
1051 	 * If we allready have fastreboot-onpanic set to zero,
1052 	 * don't add them again.
1053 	 */
1054 	if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 &&
1055 	    proplen <=  sizeof (fastreboot_onpanic_cmdline)) {
1056 		(void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC,
1057 		    fastreboot_onpanic_cmdline);
1058 		if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline))
1059 			arglen = 1;
1060 	}
1061 
1062 	/*
1063 	 * construct fastreboot_onpanic_cmdline
1064 	 */
1065 	if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) {
1066 		DBG_MSG("Command line too long: clearing "
1067 		    FASTREBOOT_ONPANIC "\n");
1068 		fastreboot_onpanic = 0;
1069 	} else {
1070 		bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen);
1071 		if (arglen != 1)
1072 			bcopy(fastreboot_onpanic_args,
1073 			    fastreboot_onpanic_cmdline + cmdlen, arglen);
1074 		else
1075 			fastreboot_onpanic_cmdline[cmdlen] = 0;
1076 	}
1077 }
1078 
1079 
1080 #ifndef	__xpv
1081 /*
1082  * Construct boot command line for Fast Reboot
1083  */
1084 static void
1085 build_fastboot_cmdline(void)
1086 {
1087 	saved_cmdline_len =  strlen(xbootp->bi_cmdline) + 1;
1088 	if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) {
1089 		DBG(saved_cmdline_len);
1090 		DBG_MSG("Command line too long: clearing fastreboot_capable\n");
1091 		fastreboot_capable = 0;
1092 	} else {
1093 		bcopy((void *)(xbootp->bi_cmdline), (void *)saved_cmdline,
1094 		    saved_cmdline_len);
1095 		saved_cmdline[saved_cmdline_len - 1] = '\0';
1096 		build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1);
1097 	}
1098 }
1099 
1100 /*
1101  * Save memory layout, disk drive information, unix and boot archive sizes for
1102  * Fast Reboot.
1103  */
1104 static void
1105 save_boot_info(multiboot_info_t *mbi, struct xboot_info *xbi)
1106 {
1107 	struct boot_modules *modp;
1108 	int i;
1109 
1110 	bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t));
1111 	if (mbi->mmap_length > sizeof (saved_mmap)) {
1112 		DBG_MSG("mbi->mmap_length too big: clearing "
1113 		    "fastreboot_capable\n");
1114 		fastreboot_capable = 0;
1115 	} else {
1116 		bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap,
1117 		    mbi->mmap_length);
1118 	}
1119 
1120 	if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) {
1121 		if (mbi->drives_length > sizeof (saved_drives)) {
1122 			DBG(mbi->drives_length);
1123 			DBG_MSG("mbi->drives_length too big: clearing "
1124 			    "fastreboot_capable\n");
1125 			fastreboot_capable = 0;
1126 		} else {
1127 			bcopy((void *)(uintptr_t)mbi->drives_addr,
1128 			    (void *)saved_drives, mbi->drives_length);
1129 		}
1130 	} else {
1131 		saved_mbi.drives_length = 0;
1132 		saved_mbi.drives_addr = NULL;
1133 	}
1134 
1135 	/*
1136 	 * Current file sizes.  Used by fastboot.c to figure out how much
1137 	 * memory to reserve for panic reboot.
1138 	 * Use the module list from the dboot-constructed xboot_info
1139 	 * instead of the list referenced by the multiboot structure
1140 	 * because that structure may not be addressable now.
1141 	 */
1142 	saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE;
1143 	for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules;
1144 	    i < xbi->bi_module_cnt; i++, modp++) {
1145 		saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size;
1146 	}
1147 }
1148 #endif	/* __xpv */
1149 
1150 
1151 /*
1152  * 1st pass at building the table of boot properties. This includes:
1153  * - values set on the command line: -B a=x,b=y,c=z ....
1154  * - known values we just compute (ie. from xbootp)
1155  * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
1156  *
1157  * the grub command line looked like:
1158  * kernel boot-file [-B prop=value[,prop=value]...] [boot-args]
1159  *
1160  * whoami is the same as boot-file
1161  */
1162 static void
1163 build_boot_properties(void)
1164 {
1165 	char *name;
1166 	int name_len;
1167 	char *value;
1168 	int value_len;
1169 	struct boot_modules *bm, *rdbm;
1170 	char *propbuf;
1171 	int quoted = 0;
1172 	int boot_arg_len;
1173 	uint_t i, midx;
1174 	char modid[32];
1175 #ifndef __xpv
1176 	static int stdout_val = 0;
1177 	uchar_t boot_device;
1178 	char str[3];
1179 	multiboot_info_t *mbi;
1180 	int netboot;
1181 	struct sol_netinfo *sip;
1182 #endif
1183 
1184 	/*
1185 	 * These have to be done first, so that kobj_mount_root() works
1186 	 */
1187 	DBG_MSG("Building boot properties\n");
1188 	propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0);
1189 	DBG((uintptr_t)propbuf);
1190 	if (xbootp->bi_module_cnt > 0) {
1191 		bm = xbootp->bi_modules;
1192 		rdbm = NULL;
1193 		for (midx = i = 0; i < xbootp->bi_module_cnt; i++) {
1194 			if (bm[i].bm_type == BMT_ROOTFS) {
1195 				rdbm = &bm[i];
1196 				continue;
1197 			}
1198 			if (bm[i].bm_type == BMT_HASH || bm[i].bm_name == NULL)
1199 				continue;
1200 
1201 			(void) snprintf(modid, sizeof (modid),
1202 			    "module-name-%u", midx);
1203 			bsetprops(modid, (char *)bm[i].bm_name);
1204 			(void) snprintf(modid, sizeof (modid),
1205 			    "module-addr-%u", midx);
1206 			bsetprop64(modid, (uint64_t)(uintptr_t)bm[i].bm_addr);
1207 			(void) snprintf(modid, sizeof (modid),
1208 			    "module-size-%u", midx);
1209 			bsetprop64(modid, (uint64_t)bm[i].bm_size);
1210 			++midx;
1211 		}
1212 		if (rdbm != NULL) {
1213 			bsetprop64("ramdisk_start",
1214 			    (uint64_t)(uintptr_t)rdbm->bm_addr);
1215 			bsetprop64("ramdisk_end",
1216 			    (uint64_t)(uintptr_t)rdbm->bm_addr + rdbm->bm_size);
1217 		}
1218 	}
1219 
1220 	/*
1221 	 * If there are any boot time modules or hashes present, then disable
1222 	 * fast reboot.
1223 	 */
1224 	if (xbootp->bi_module_cnt > 1) {
1225 		fastreboot_disable(FBNS_BOOTMOD);
1226 	}
1227 
1228 	DBG_MSG("Parsing command line for boot properties\n");
1229 	value = xbootp->bi_cmdline;
1230 
1231 	/*
1232 	 * allocate memory to collect boot_args into
1233 	 */
1234 	boot_arg_len = strlen(xbootp->bi_cmdline) + 1;
1235 	boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE);
1236 	boot_args[0] = 0;
1237 	boot_arg_len = 0;
1238 
1239 #ifdef __xpv
1240 	/*
1241 	 * Xen puts a lot of device information in front of the kernel name
1242 	 * let's grab them and make them boot properties.  The first
1243 	 * string w/o an "=" in it will be the boot-file property.
1244 	 */
1245 	(void) strcpy(namebuf, "xpv-");
1246 	for (;;) {
1247 		/*
1248 		 * get to next property
1249 		 */
1250 		while (ISSPACE(*value))
1251 			++value;
1252 		name = value;
1253 		/*
1254 		 * look for an "="
1255 		 */
1256 		while (*value && !ISSPACE(*value) && *value != '=') {
1257 			value++;
1258 		}
1259 		if (*value != '=') { /* no "=" in the property */
1260 			value = name;
1261 			break;
1262 		}
1263 		name_len = value - name;
1264 		value_len = 0;
1265 		/*
1266 		 * skip over the "="
1267 		 */
1268 		value++;
1269 		while (value[value_len] && !ISSPACE(value[value_len])) {
1270 			++value_len;
1271 		}
1272 		/*
1273 		 * build property name with "xpv-" prefix
1274 		 */
1275 		if (name_len + 4 > 32) { /* skip if name too long */
1276 			value += value_len;
1277 			continue;
1278 		}
1279 		bcopy(name, &namebuf[4], name_len);
1280 		name_len += 4;
1281 		namebuf[name_len] = 0;
1282 		bcopy(value, propbuf, value_len);
1283 		propbuf[value_len] = 0;
1284 		bsetprops(namebuf, propbuf);
1285 
1286 		/*
1287 		 * xpv-root is set to the logical disk name of the xen
1288 		 * VBD when booting from a disk-based filesystem.
1289 		 */
1290 		if (strcmp(namebuf, "xpv-root") == 0)
1291 			xen_vbdroot_props(propbuf);
1292 		/*
1293 		 * While we're here, if we have a "xpv-nfsroot" property
1294 		 * then we need to set "fstype" to "nfs" so we mount
1295 		 * our root from the nfs server.  Also parse the xpv-nfsroot
1296 		 * property to create the properties that nfs_mountroot will
1297 		 * need to find the root and mount it.
1298 		 */
1299 		if (strcmp(namebuf, "xpv-nfsroot") == 0)
1300 			xen_nfsroot_props(propbuf);
1301 
1302 		if (strcmp(namebuf, "xpv-ip") == 0)
1303 			xen_ip_props(propbuf);
1304 		value += value_len;
1305 	}
1306 #endif
1307 
1308 	while (ISSPACE(*value))
1309 		++value;
1310 	/*
1311 	 * value now points at the boot-file
1312 	 */
1313 	value_len = 0;
1314 	while (value[value_len] && !ISSPACE(value[value_len]))
1315 		++value_len;
1316 	if (value_len > 0) {
1317 		whoami = propbuf;
1318 		bcopy(value, whoami, value_len);
1319 		whoami[value_len] = 0;
1320 		bsetprops("boot-file", whoami);
1321 		/*
1322 		 * strip leading path stuff from whoami, so running from
1323 		 * PXE/miniroot makes sense.
1324 		 */
1325 		if (strstr(whoami, "/platform/") != NULL)
1326 			whoami = strstr(whoami, "/platform/");
1327 		bsetprops("whoami", whoami);
1328 	}
1329 
1330 	/*
1331 	 * Values forcibly set boot properties on the command line via -B.
1332 	 * Allow use of quotes in values. Other stuff goes on kernel
1333 	 * command line.
1334 	 */
1335 	name = value + value_len;
1336 	while (*name != 0) {
1337 		/*
1338 		 * anything not " -B" is copied to the command line
1339 		 */
1340 		if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') {
1341 			boot_args[boot_arg_len++] = *name;
1342 			boot_args[boot_arg_len] = 0;
1343 			++name;
1344 			continue;
1345 		}
1346 
1347 		/*
1348 		 * skip the " -B" and following white space
1349 		 */
1350 		name += 3;
1351 		while (ISSPACE(*name))
1352 			++name;
1353 		while (*name && !ISSPACE(*name)) {
1354 			value = strstr(name, "=");
1355 			if (value == NULL)
1356 				break;
1357 			name_len = value - name;
1358 			++value;
1359 			value_len = 0;
1360 			quoted = 0;
1361 			for (; ; ++value_len) {
1362 				if (!value[value_len])
1363 					break;
1364 
1365 				/*
1366 				 * is this value quoted?
1367 				 */
1368 				if (value_len == 0 &&
1369 				    (value[0] == '\'' || value[0] == '"')) {
1370 					quoted = value[0];
1371 					++value_len;
1372 				}
1373 
1374 				/*
1375 				 * In the quote accept any character,
1376 				 * but look for ending quote.
1377 				 */
1378 				if (quoted) {
1379 					if (value[value_len] == quoted)
1380 						quoted = 0;
1381 					continue;
1382 				}
1383 
1384 				/*
1385 				 * a comma or white space ends the value
1386 				 */
1387 				if (value[value_len] == ',' ||
1388 				    ISSPACE(value[value_len]))
1389 					break;
1390 			}
1391 
1392 			if (value_len == 0) {
1393 				bsetprop(name, name_len, "true", 5);
1394 			} else {
1395 				char *v = value;
1396 				int l = value_len;
1397 				if (v[0] == v[l - 1] &&
1398 				    (v[0] == '\'' || v[0] == '"')) {
1399 					++v;
1400 					l -= 2;
1401 				}
1402 				bcopy(v, propbuf, l);
1403 				propbuf[l] = '\0';
1404 				bsetprop(name, name_len, propbuf,
1405 				    l + 1);
1406 			}
1407 			name = value + value_len;
1408 			while (*name == ',')
1409 				++name;
1410 		}
1411 	}
1412 
1413 	/*
1414 	 * set boot-args property
1415 	 * 1275 name is bootargs, so set
1416 	 * that too
1417 	 */
1418 	bsetprops("boot-args", boot_args);
1419 	bsetprops("bootargs", boot_args);
1420 
1421 #ifndef __xpv
1422 	/*
1423 	 * set the BIOS boot device from GRUB
1424 	 */
1425 	netboot = 0;
1426 	mbi = xbootp->bi_mb_info;
1427 
1428 	/*
1429 	 * Build boot command line for Fast Reboot
1430 	 */
1431 	build_fastboot_cmdline();
1432 
1433 	/*
1434 	 * Save various boot information for Fast Reboot
1435 	 */
1436 	save_boot_info(mbi, xbootp);
1437 
1438 	if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) {
1439 		boot_device = mbi->boot_device >> 24;
1440 		if (boot_device == 0x20)
1441 			netboot++;
1442 		str[0] = (boot_device >> 4) + '0';
1443 		str[1] = (boot_device & 0xf) + '0';
1444 		str[2] = 0;
1445 		bsetprops("bios-boot-device", str);
1446 	} else {
1447 		netboot = 1;
1448 	}
1449 
1450 	/*
1451 	 * In the netboot case, drives_info is overloaded with the dhcp ack.
1452 	 * This is not multiboot compliant and requires special pxegrub!
1453 	 */
1454 	if (netboot && mbi->drives_length != 0) {
1455 		sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr;
1456 		if (sip->sn_infotype == SN_TYPE_BOOTP)
1457 			bsetprop("bootp-response", sizeof ("bootp-response"),
1458 			    (void *)(uintptr_t)mbi->drives_addr,
1459 			    mbi->drives_length);
1460 		else if (sip->sn_infotype == SN_TYPE_RARP)
1461 			setup_rarp_props(sip);
1462 	}
1463 	bsetprop("stdout", strlen("stdout"),
1464 	    &stdout_val, sizeof (stdout_val));
1465 #endif /* __xpv */
1466 
1467 	/*
1468 	 * more conjured up values for made up things....
1469 	 */
1470 #if defined(__xpv)
1471 	bsetprops("mfg-name", "i86xpv");
1472 	bsetprops("impl-arch-name", "i86xpv");
1473 #else
1474 	bsetprops("mfg-name", "i86pc");
1475 	bsetprops("impl-arch-name", "i86pc");
1476 #endif
1477 
1478 	/*
1479 	 * Build firmware-provided system properties
1480 	 */
1481 	build_firmware_properties();
1482 
1483 	/*
1484 	 * XXPV
1485 	 *
1486 	 * Find out what these are:
1487 	 * - cpuid_feature_ecx_include
1488 	 * - cpuid_feature_ecx_exclude
1489 	 * - cpuid_feature_edx_include
1490 	 * - cpuid_feature_edx_exclude
1491 	 *
1492 	 * Find out what these are in multiboot:
1493 	 * - netdev-path
1494 	 * - fstype
1495 	 */
1496 }
1497 
1498 #ifdef __xpv
1499 /*
1500  * Under the Hypervisor, memory usable for DMA may be scarce. One
1501  * very likely large pool of DMA friendly memory is occupied by
1502  * the boot_archive, as it was loaded by grub into low MFNs.
1503  *
1504  * Here we free up that memory by copying the boot archive to what are
1505  * likely higher MFN pages and then swapping the mfn/pfn mappings.
1506  */
1507 #define	PFN_2GIG	0x80000
1508 static void
1509 relocate_boot_archive(void)
1510 {
1511 	mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
1512 	struct boot_modules *bm = xbootp->bi_modules;
1513 	uintptr_t va;
1514 	pfn_t va_pfn;
1515 	mfn_t va_mfn;
1516 	caddr_t copy;
1517 	pfn_t copy_pfn;
1518 	mfn_t copy_mfn;
1519 	size_t	len;
1520 	int slop;
1521 	int total = 0;
1522 	int relocated = 0;
1523 	int mmu_update_return;
1524 	mmu_update_t t[2];
1525 	x86pte_t pte;
1526 
1527 	/*
1528 	 * If all MFN's are below 2Gig, don't bother doing this.
1529 	 */
1530 	if (max_mfn < PFN_2GIG)
1531 		return;
1532 	if (xbootp->bi_module_cnt < 1) {
1533 		DBG_MSG("no boot_archive!");
1534 		return;
1535 	}
1536 
1537 	DBG_MSG("moving boot_archive to high MFN memory\n");
1538 	va = (uintptr_t)bm->bm_addr;
1539 	len = bm->bm_size;
1540 	slop = va & MMU_PAGEOFFSET;
1541 	if (slop) {
1542 		va += MMU_PAGESIZE - slop;
1543 		len -= MMU_PAGESIZE - slop;
1544 	}
1545 	len = P2ALIGN(len, MMU_PAGESIZE);
1546 
1547 	/*
1548 	 * Go through all boot_archive pages, swapping any low MFN pages
1549 	 * with memory at next_phys.
1550 	 */
1551 	while (len != 0) {
1552 		++total;
1553 		va_pfn = mmu_btop(va - ONE_GIG);
1554 		va_mfn = mfn_list[va_pfn];
1555 		if (mfn_list[va_pfn] < PFN_2GIG) {
1556 			copy = kbm_remap_window(next_phys, 1);
1557 			bcopy((void *)va, copy, MMU_PAGESIZE);
1558 			copy_pfn = mmu_btop(next_phys);
1559 			copy_mfn = mfn_list[copy_pfn];
1560 
1561 			pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID;
1562 			if (HYPERVISOR_update_va_mapping(va, pte,
1563 			    UVMF_INVLPG | UVMF_LOCAL))
1564 				bop_panic("relocate_boot_archive():  "
1565 				    "HYPERVISOR_update_va_mapping() failed");
1566 
1567 			mfn_list[va_pfn] = copy_mfn;
1568 			mfn_list[copy_pfn] = va_mfn;
1569 
1570 			t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE;
1571 			t[0].val = va_pfn;
1572 			t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE;
1573 			t[1].val = copy_pfn;
1574 			if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return,
1575 			    DOMID_SELF) != 0 || mmu_update_return != 2)
1576 				bop_panic("relocate_boot_archive():  "
1577 				    "HYPERVISOR_mmu_update() failed");
1578 
1579 			next_phys += MMU_PAGESIZE;
1580 			++relocated;
1581 		}
1582 		len -= MMU_PAGESIZE;
1583 		va += MMU_PAGESIZE;
1584 	}
1585 	DBG_MSG("Relocated pages:\n");
1586 	DBG(relocated);
1587 	DBG_MSG("Out of total pages:\n");
1588 	DBG(total);
1589 }
1590 #endif /* __xpv */
1591 
1592 #if !defined(__xpv)
1593 /*
1594  * Install a temporary IDT that lets us catch errors in the boot time code.
1595  * We shouldn't get any faults at all while this is installed, so we'll
1596  * just generate a traceback and exit.
1597  */
1598 #ifdef __amd64
1599 static const int bcode_sel = B64CODE_SEL;
1600 #else
1601 static const int bcode_sel = B32CODE_SEL;
1602 #endif
1603 
1604 /*
1605  * simple description of a stack frame (args are 32 bit only currently)
1606  */
1607 typedef struct bop_frame {
1608 	struct bop_frame *old_frame;
1609 	pc_t retaddr;
1610 	long arg[1];
1611 } bop_frame_t;
1612 
1613 void
1614 bop_traceback(bop_frame_t *frame)
1615 {
1616 	pc_t pc;
1617 	int cnt;
1618 	char *ksym;
1619 	ulong_t off;
1620 #if defined(__i386)
1621 	int a;
1622 #endif
1623 
1624 	bop_printf(NULL, "Stack traceback:\n");
1625 	for (cnt = 0; cnt < 30; ++cnt) {	/* up to 30 frames */
1626 		pc = frame->retaddr;
1627 		if (pc == 0)
1628 			break;
1629 		ksym = kobj_getsymname(pc, &off);
1630 		if (ksym)
1631 			bop_printf(NULL, "  %s+%lx", ksym, off);
1632 		else
1633 			bop_printf(NULL, "  0x%lx", pc);
1634 
1635 		frame = frame->old_frame;
1636 		if (frame == 0) {
1637 			bop_printf(NULL, "\n");
1638 			break;
1639 		}
1640 #if defined(__i386)
1641 		for (a = 0; a < 6; ++a) {	/* try for 6 args */
1642 			if ((void *)&frame->arg[a] == (void *)frame->old_frame)
1643 				break;
1644 			if (a == 0)
1645 				bop_printf(NULL, "(");
1646 			else
1647 				bop_printf(NULL, ",");
1648 			bop_printf(NULL, "0x%lx", frame->arg[a]);
1649 		}
1650 		bop_printf(NULL, ")");
1651 #endif
1652 		bop_printf(NULL, "\n");
1653 	}
1654 }
1655 
1656 struct trapframe {
1657 	ulong_t error_code;	/* optional */
1658 	ulong_t inst_ptr;
1659 	ulong_t code_seg;
1660 	ulong_t flags_reg;
1661 #ifdef __amd64
1662 	ulong_t stk_ptr;
1663 	ulong_t stk_seg;
1664 #endif
1665 };
1666 
1667 void
1668 bop_trap(ulong_t *tfp)
1669 {
1670 	struct trapframe *tf = (struct trapframe *)tfp;
1671 	bop_frame_t fakeframe;
1672 	static int depth = 0;
1673 
1674 	/*
1675 	 * Check for an infinite loop of traps.
1676 	 */
1677 	if (++depth > 2)
1678 		bop_panic("Nested trap");
1679 
1680 	bop_printf(NULL, "Unexpected trap\n");
1681 
1682 	/*
1683 	 * adjust the tf for optional error_code by detecting the code selector
1684 	 */
1685 	if (tf->code_seg != bcode_sel)
1686 		tf = (struct trapframe *)(tfp - 1);
1687 	else
1688 		bop_printf(NULL, "error code           0x%lx\n",
1689 		    tf->error_code & 0xffffffff);
1690 
1691 	bop_printf(NULL, "instruction pointer  0x%lx\n", tf->inst_ptr);
1692 	bop_printf(NULL, "code segment         0x%lx\n", tf->code_seg & 0xffff);
1693 	bop_printf(NULL, "flags register       0x%lx\n", tf->flags_reg);
1694 #ifdef __amd64
1695 	bop_printf(NULL, "return %%rsp          0x%lx\n", tf->stk_ptr);
1696 	bop_printf(NULL, "return %%ss           0x%lx\n", tf->stk_seg & 0xffff);
1697 #endif
1698 
1699 	/* grab %[er]bp pushed by our code from the stack */
1700 	fakeframe.old_frame = (bop_frame_t *)*(tfp - 3);
1701 	fakeframe.retaddr = (pc_t)tf->inst_ptr;
1702 	bop_printf(NULL, "Attempting stack backtrace:\n");
1703 	bop_traceback(&fakeframe);
1704 	bop_panic("unexpected trap in early boot");
1705 }
1706 
1707 extern void bop_trap_handler(void);
1708 
1709 static gate_desc_t *bop_idt;
1710 
1711 static desctbr_t bop_idt_info;
1712 
1713 static void
1714 bop_idt_init(void)
1715 {
1716 	int t;
1717 
1718 	bop_idt = (gate_desc_t *)
1719 	    do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
1720 	bzero(bop_idt, MMU_PAGESIZE);
1721 	for (t = 0; t < NIDT; ++t) {
1722 		/*
1723 		 * Note that since boot runs without a TSS, the
1724 		 * double fault handler cannot use an alternate stack
1725 		 * (64-bit) or a task gate (32-bit).
1726 		 */
1727 		set_gatesegd(&bop_idt[t], &bop_trap_handler, bcode_sel,
1728 		    SDT_SYSIGT, TRP_KPL, 0);
1729 	}
1730 	bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1;
1731 	bop_idt_info.dtr_base = (uintptr_t)bop_idt;
1732 	wr_idtr(&bop_idt_info);
1733 }
1734 #endif	/* !defined(__xpv) */
1735 
1736 /*
1737  * This is where we enter the kernel. It dummies up the boot_ops and
1738  * boot_syscalls vectors and jumps off to _kobj_boot()
1739  */
1740 void
1741 _start(struct xboot_info *xbp)
1742 {
1743 	bootops_t *bops = &bootop;
1744 	extern void _kobj_boot();
1745 
1746 	/*
1747 	 * 1st off - initialize the console for any error messages
1748 	 */
1749 	xbootp = xbp;
1750 #ifdef __xpv
1751 	HYPERVISOR_shared_info = (void *)xbootp->bi_shared_info;
1752 	xen_info = xbootp->bi_xen_start_info;
1753 #endif
1754 
1755 #ifndef __xpv
1756 	if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) ==
1757 	    FASTBOOT_MAGIC) {
1758 		post_fastreboot = 1;
1759 		*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0;
1760 	}
1761 #endif
1762 
1763 	bcons_init((void *)xbootp->bi_cmdline);
1764 	have_console = 1;
1765 
1766 	/*
1767 	 * enable debugging
1768 	 */
1769 	if (strstr((char *)xbootp->bi_cmdline, "kbm_debug"))
1770 		kbm_debug = 1;
1771 
1772 	DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: ");
1773 	DBG_MSG((char *)xbootp->bi_cmdline);
1774 	DBG_MSG("\n\n\n");
1775 
1776 	/*
1777 	 * physavail is no longer used by startup
1778 	 */
1779 	bm.physinstalled = xbp->bi_phys_install;
1780 	bm.pcimem = xbp->bi_pcimem;
1781 	bm.rsvdmem = xbp->bi_rsvdmem;
1782 	bm.physavail = NULL;
1783 
1784 	/*
1785 	 * initialize the boot time allocator
1786 	 */
1787 	next_phys = xbootp->bi_next_paddr;
1788 	DBG(next_phys);
1789 	next_virt = (uintptr_t)xbootp->bi_next_vaddr;
1790 	DBG(next_virt);
1791 	DBG_MSG("Initializing boot time memory management...");
1792 #ifdef __xpv
1793 	{
1794 		xen_platform_parameters_t p;
1795 
1796 		/* This call shouldn't fail, dboot already did it once. */
1797 		(void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p);
1798 		mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start);
1799 		DBG(xen_virt_start);
1800 	}
1801 #endif
1802 	kbm_init(xbootp);
1803 	DBG_MSG("done\n");
1804 
1805 	/*
1806 	 * Fill in the bootops vector
1807 	 */
1808 	bops->bsys_version = BO_VERSION;
1809 	bops->boot_mem = &bm;
1810 	bops->bsys_alloc = do_bsys_alloc;
1811 	bops->bsys_free = do_bsys_free;
1812 	bops->bsys_getproplen = do_bsys_getproplen;
1813 	bops->bsys_getprop = do_bsys_getprop;
1814 	bops->bsys_nextprop = do_bsys_nextprop;
1815 	bops->bsys_printf = bop_printf;
1816 	bops->bsys_doint = do_bsys_doint;
1817 
1818 	/*
1819 	 * BOP_EALLOC() is no longer needed
1820 	 */
1821 	bops->bsys_ealloc = do_bsys_ealloc;
1822 
1823 #ifdef __xpv
1824 	/*
1825 	 * On domain 0 we need to free up some physical memory that is
1826 	 * usable for DMA. Since GRUB loaded the boot_archive, it is
1827 	 * sitting in low MFN memory. We'll relocated the boot archive
1828 	 * pages to high PFN memory.
1829 	 */
1830 	if (DOMAIN_IS_INITDOMAIN(xen_info))
1831 		relocate_boot_archive();
1832 #endif
1833 
1834 #ifndef __xpv
1835 	/*
1836 	 * Install an IDT to catch early pagefaults (shouldn't have any).
1837 	 * Also needed for kmdb.
1838 	 */
1839 	bop_idt_init();
1840 #endif
1841 
1842 	/*
1843 	 * Start building the boot properties from the command line
1844 	 */
1845 	DBG_MSG("Initializing boot properties:\n");
1846 	build_boot_properties();
1847 
1848 	if (strstr((char *)xbootp->bi_cmdline, "prom_debug") || kbm_debug) {
1849 		char *name;
1850 		char *value;
1851 		char *cp;
1852 		int len;
1853 
1854 		value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
1855 		bop_printf(NULL, "\nBoot properties:\n");
1856 		name = "";
1857 		while ((name = do_bsys_nextprop(NULL, name)) != NULL) {
1858 			bop_printf(NULL, "\t0x%p %s = ", (void *)name, name);
1859 			(void) do_bsys_getprop(NULL, name, value);
1860 			len = do_bsys_getproplen(NULL, name);
1861 			bop_printf(NULL, "len=%d ", len);
1862 			value[len] = 0;
1863 			for (cp = value; *cp; ++cp) {
1864 				if (' ' <= *cp && *cp <= '~')
1865 					bop_printf(NULL, "%c", *cp);
1866 				else
1867 					bop_printf(NULL, "-0x%x-", *cp);
1868 			}
1869 			bop_printf(NULL, "\n");
1870 		}
1871 	}
1872 
1873 	/*
1874 	 * jump into krtld...
1875 	 */
1876 	_kobj_boot(&bop_sysp, NULL, bops, NULL);
1877 }
1878 
1879 
1880 /*ARGSUSED*/
1881 static caddr_t
1882 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
1883 {
1884 	panic("Attempt to bsys_alloc() too late\n");
1885 	return (NULL);
1886 }
1887 
1888 /*ARGSUSED*/
1889 static void
1890 no_more_free(bootops_t *bop, caddr_t virt, size_t size)
1891 {
1892 	panic("Attempt to bsys_free() too late\n");
1893 }
1894 
1895 void
1896 bop_no_more_mem(void)
1897 {
1898 	DBG(total_bop_alloc_scratch);
1899 	DBG(total_bop_alloc_kernel);
1900 	bootops->bsys_alloc = no_more_alloc;
1901 	bootops->bsys_free = no_more_free;
1902 }
1903 
1904 
1905 /*
1906  * Set ACPI firmware properties
1907  */
1908 
1909 static caddr_t
1910 vmap_phys(size_t length, paddr_t pa)
1911 {
1912 	paddr_t	start, end;
1913 	caddr_t	va;
1914 	size_t	len, page;
1915 
1916 #ifdef __xpv
1917 	pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET);
1918 #endif
1919 	start = P2ALIGN(pa, MMU_PAGESIZE);
1920 	end = P2ROUNDUP(pa + length, MMU_PAGESIZE);
1921 	len = end - start;
1922 	va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE);
1923 	for (page = 0; page < len; page += MMU_PAGESIZE)
1924 		kbm_map((uintptr_t)va + page, start + page, 0, 0);
1925 	return (va + (pa & MMU_PAGEOFFSET));
1926 }
1927 
1928 static uint8_t
1929 checksum_table(uint8_t *tp, size_t len)
1930 {
1931 	uint8_t sum = 0;
1932 
1933 	while (len-- > 0)
1934 		sum += *tp++;
1935 
1936 	return (sum);
1937 }
1938 
1939 static int
1940 valid_rsdp(struct rsdp *rp)
1941 {
1942 
1943 	/* validate the V1.x checksum */
1944 	if (checksum_table((uint8_t *)&rp->v1, sizeof (struct rsdp_v1)) != 0)
1945 		return (0);
1946 
1947 	/* If pre-ACPI 2.0, this is a valid RSDP */
1948 	if (rp->v1.revision < 2)
1949 		return (1);
1950 
1951 	/* validate the V2.x checksum */
1952 	if (checksum_table((uint8_t *)rp, sizeof (struct rsdp)) != 0)
1953 		return (0);
1954 
1955 	return (1);
1956 }
1957 
1958 /*
1959  * Scan memory range for an RSDP;
1960  * see ACPI 3.0 Spec, 5.2.5.1
1961  */
1962 static struct rsdp *
1963 scan_rsdp(paddr_t start, paddr_t end)
1964 {
1965 	size_t len  = end - start + 1;
1966 	caddr_t ptr;
1967 
1968 	ptr = vmap_phys(len, start);
1969 	while (len > 0) {
1970 		if (strncmp(ptr, ACPI_RSDP_SIG, ACPI_RSDP_SIG_LEN) == 0)
1971 			if (valid_rsdp((struct rsdp *)ptr))
1972 				return ((struct rsdp *)ptr);
1973 		ptr += 16;
1974 		len -= 16;
1975 	}
1976 
1977 	return (NULL);
1978 }
1979 
1980 /*
1981  * Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function
1982  */
1983 static struct rsdp *
1984 find_rsdp() {
1985 	struct rsdp *rsdp;
1986 	uint16_t *ebda_seg;
1987 	paddr_t  ebda_addr;
1988 
1989 	/*
1990 	 * Get the EBDA segment and scan the first 1K
1991 	 */
1992 	ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t), ACPI_EBDA_SEG_ADDR);
1993 	ebda_addr = *ebda_seg << 4;
1994 	rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_LEN - 1);
1995 	if (rsdp == NULL)
1996 		/* if EBDA doesn't contain RSDP, look in BIOS memory */
1997 		rsdp = scan_rsdp(0xe0000, 0xfffff);
1998 	return (rsdp);
1999 }
2000 
2001 static struct table_header *
2002 map_fw_table(paddr_t table_addr)
2003 {
2004 	struct table_header *tp;
2005 	size_t len = MAX(sizeof (struct table_header), MMU_PAGESIZE);
2006 
2007 	/*
2008 	 * Map at least a page; if the table is larger than this, remap it
2009 	 */
2010 	tp = (struct table_header *)vmap_phys(len, table_addr);
2011 	if (tp->len > len)
2012 		tp = (struct table_header *)vmap_phys(tp->len, table_addr);
2013 	return (tp);
2014 }
2015 
2016 static struct table_header *
2017 find_fw_table(char *signature)
2018 {
2019 	static int revision = 0;
2020 	static struct xsdt *xsdt;
2021 	static int len;
2022 	paddr_t xsdt_addr;
2023 	struct rsdp *rsdp;
2024 	struct table_header *tp;
2025 	paddr_t table_addr;
2026 	int	n;
2027 
2028 	if (strlen(signature) != ACPI_TABLE_SIG_LEN)
2029 		return (NULL);
2030 
2031 	/*
2032 	 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help
2033 	 * understand this code.  If we haven't already found the RSDT/XSDT,
2034 	 * revision will be 0. Find the RSDP and check the revision
2035 	 * to find out whether to use the RSDT or XSDT.  If revision is
2036 	 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2,
2037 	 * use the XSDT.  If the XSDT address is 0, though, fall back to
2038 	 * revision 1 and use the RSDT.
2039 	 */
2040 	if (revision == 0) {
2041 		if ((rsdp = (struct rsdp *)find_rsdp()) != NULL) {
2042 			revision = rsdp->v1.revision;
2043 			switch (revision) {
2044 			case 2:
2045 				/*
2046 				 * Use the XSDT unless BIOS is buggy and
2047 				 * claims to be rev 2 but has a null XSDT
2048 				 * address
2049 				 */
2050 				xsdt_addr = rsdp->xsdt;
2051 				if (xsdt_addr != 0)
2052 					break;
2053 				/* FALLTHROUGH */
2054 			case 0:
2055 				/* treat RSDP rev 0 as revision 1 internally */
2056 				revision = 1;
2057 				/* FALLTHROUGH */
2058 			case 1:
2059 				/* use the RSDT for rev 0/1 */
2060 				xsdt_addr = rsdp->v1.rsdt;
2061 				break;
2062 			default:
2063 				/* unknown revision */
2064 				revision = 0;
2065 				break;
2066 			}
2067 		}
2068 		if (revision == 0)
2069 			return (NULL);
2070 
2071 		/* cache the XSDT info */
2072 		xsdt = (struct xsdt *)map_fw_table(xsdt_addr);
2073 		len = (xsdt->hdr.len - sizeof (xsdt->hdr)) /
2074 		    ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t));
2075 	}
2076 
2077 	/*
2078 	 * Scan the table headers looking for a signature match
2079 	 */
2080 	for (n = 0; n < len; n++) {
2081 		table_addr = (revision == 1) ? xsdt->p.r[n] : xsdt->p.x[n];
2082 		if (table_addr == 0)
2083 			continue;
2084 		tp = map_fw_table(table_addr);
2085 		if (strncmp(tp->sig, signature, ACPI_TABLE_SIG_LEN) == 0) {
2086 			return (tp);
2087 		}
2088 	}
2089 	return (NULL);
2090 }
2091 
2092 static void
2093 process_mcfg(struct mcfg *tp)
2094 {
2095 	struct cfg_base_addr_alloc *cfg_baap;
2096 	char *cfg_baa_endp;
2097 	int64_t ecfginfo[4];
2098 
2099 	cfg_baap = tp->CfgBaseAddrAllocList;
2100 	cfg_baa_endp = ((char *)tp) + tp->Length;
2101 	while ((char *)cfg_baap < cfg_baa_endp) {
2102 		if (cfg_baap->base_addr != 0 && cfg_baap->segment == 0) {
2103 			ecfginfo[0] = cfg_baap->base_addr;
2104 			ecfginfo[1] = cfg_baap->segment;
2105 			ecfginfo[2] = cfg_baap->start_bno;
2106 			ecfginfo[3] = cfg_baap->end_bno;
2107 			bsetprop(MCFG_PROPNAME, strlen(MCFG_PROPNAME),
2108 			    ecfginfo, sizeof (ecfginfo));
2109 			break;
2110 		}
2111 		cfg_baap++;
2112 	}
2113 }
2114 
2115 #ifndef __xpv
2116 static void
2117 process_madt(struct madt *tp)
2118 {
2119 	struct madt_processor *cpu, *end;
2120 	uint32_t cpu_count = 0;
2121 	uint32_t cpu_possible_count = 0;
2122 	uint8_t cpu_apicid_array[UINT8_MAX + 1];
2123 
2124 	if (tp != NULL) {
2125 		/*
2126 		 * Determine number of CPUs and keep track of "final" APIC ID
2127 		 * for each CPU by walking through ACPI MADT processor list
2128 		 */
2129 		end = (struct madt_processor *)(tp->hdr.len + (uintptr_t)tp);
2130 		cpu = tp->list;
2131 		while (cpu < end) {
2132 			if (cpu->type == MADT_PROCESSOR) {
2133 				if (cpu->flags & 1) {
2134 					if (cpu_count < UINT8_MAX)
2135 						cpu_apicid_array[cpu_count] =
2136 						    cpu->apic_id;
2137 					cpu_count++;
2138 				}
2139 				cpu_possible_count++;
2140 			}
2141 
2142 			cpu = (struct madt_processor *)
2143 			    (cpu->len + (uintptr_t)cpu);
2144 		}
2145 
2146 		/*
2147 		 * Make boot property for array of "final" APIC IDs for each
2148 		 * CPU
2149 		 */
2150 		bsetprop(BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY),
2151 		    cpu_apicid_array, cpu_count * sizeof (uint8_t));
2152 	}
2153 
2154 	/*
2155 	 * Check whehter property plat-max-ncpus is already set.
2156 	 */
2157 	if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2158 		/*
2159 		 * Set plat-max-ncpus to number of maximum possible CPUs given
2160 		 * in MADT if it hasn't been set.
2161 		 * There's no formal way to detect max possible CPUs supported
2162 		 * by platform according to ACPI spec3.0b. So current CPU
2163 		 * hotplug implementation expects that all possible CPUs will
2164 		 * have an entry in MADT table and set plat-max-ncpus to number
2165 		 * of entries in MADT.
2166 		 * With introducing of ACPI4.0, Maximum System Capability Table
2167 		 * (MSCT) provides maximum number of CPUs supported by platform.
2168 		 * If MSCT is unavailable, fall back to old way.
2169 		 */
2170 		if (tp != NULL)
2171 			bsetpropsi(PLAT_MAX_NCPUS_NAME, cpu_possible_count);
2172 	}
2173 
2174 	/*
2175 	 * Set boot property boot-max-ncpus to number of CPUs existing at
2176 	 * boot time. boot-max-ncpus is mainly used for optimization.
2177 	 */
2178 	if (tp != NULL)
2179 		bsetpropsi(BOOT_MAX_NCPUS_NAME, cpu_count);
2180 
2181 	/*
2182 	 * User-set boot-ncpus overrides firmware count
2183 	 */
2184 	if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2185 		return;
2186 
2187 	/*
2188 	 * Set boot property boot-ncpus to number of active CPUs given in MADT
2189 	 * if it hasn't been set yet.
2190 	 */
2191 	if (tp != NULL)
2192 		bsetpropsi(BOOT_NCPUS_NAME, cpu_count);
2193 }
2194 
2195 static void
2196 process_srat(struct srat *tp)
2197 {
2198 	struct srat_item *item, *end;
2199 	int i;
2200 	int proc_num, mem_num;
2201 #pragma pack(1)
2202 	struct {
2203 		uint32_t domain;
2204 		uint32_t apic_id;
2205 		uint32_t sapic_id;
2206 	} processor;
2207 	struct {
2208 		uint32_t domain;
2209 		uint32_t x2apic_id;
2210 	} x2apic;
2211 	struct {
2212 		uint32_t domain;
2213 		uint64_t addr;
2214 		uint64_t length;
2215 		uint32_t flags;
2216 	} memory;
2217 #pragma pack()
2218 	char prop_name[30];
2219 	uint64_t maxmem = 0;
2220 
2221 	if (tp == NULL)
2222 		return;
2223 
2224 	proc_num = mem_num = 0;
2225 	end = (struct srat_item *)(tp->hdr.len + (uintptr_t)tp);
2226 	item = tp->list;
2227 	while (item < end) {
2228 		switch (item->type) {
2229 		case SRAT_PROCESSOR:
2230 			if (!(item->i.p.flags & SRAT_ENABLED))
2231 				break;
2232 			processor.domain = item->i.p.domain1;
2233 			for (i = 0; i < 3; i++)
2234 				processor.domain +=
2235 				    item->i.p.domain2[i] << ((i + 1) * 8);
2236 			processor.apic_id = item->i.p.apic_id;
2237 			processor.sapic_id = item->i.p.local_sapic_eid;
2238 			(void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2239 			    proc_num);
2240 			bsetprop(prop_name, strlen(prop_name), &processor,
2241 			    sizeof (processor));
2242 			proc_num++;
2243 			break;
2244 		case SRAT_MEMORY:
2245 			if (!(item->i.m.flags & SRAT_ENABLED))
2246 				break;
2247 			memory.domain = item->i.m.domain;
2248 			memory.addr = item->i.m.base_addr;
2249 			memory.length = item->i.m.len;
2250 			memory.flags = item->i.m.flags;
2251 			(void) snprintf(prop_name, 30, "acpi-srat-memory-%d",
2252 			    mem_num);
2253 			bsetprop(prop_name, strlen(prop_name), &memory,
2254 			    sizeof (memory));
2255 			if ((item->i.m.flags & SRAT_HOT_PLUG) &&
2256 			    (memory.addr + memory.length > maxmem)) {
2257 				maxmem = memory.addr + memory.length;
2258 			}
2259 			mem_num++;
2260 			break;
2261 		case SRAT_X2APIC:
2262 			if (!(item->i.xp.flags & SRAT_ENABLED))
2263 				break;
2264 			x2apic.domain = item->i.xp.domain;
2265 			x2apic.x2apic_id = item->i.xp.x2apic_id;
2266 			(void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2267 			    proc_num);
2268 			bsetprop(prop_name, strlen(prop_name), &x2apic,
2269 			    sizeof (x2apic));
2270 			proc_num++;
2271 			break;
2272 		}
2273 
2274 		item = (struct srat_item *)
2275 		    (item->len + (caddr_t)item);
2276 	}
2277 
2278 	/*
2279 	 * The maximum physical address calculated from the SRAT table is more
2280 	 * accurate than that calculated from the MSCT table.
2281 	 */
2282 	if (maxmem != 0) {
2283 		plat_dr_physmax = btop(maxmem);
2284 	}
2285 }
2286 
2287 static void
2288 process_slit(struct slit *tp)
2289 {
2290 
2291 	/*
2292 	 * Check the number of localities; if it's too huge, we just
2293 	 * return and locality enumeration code will handle this later,
2294 	 * if possible.
2295 	 *
2296 	 * Note that the size of the table is the square of the
2297 	 * number of localities; if the number of localities exceeds
2298 	 * UINT16_MAX, the table size may overflow an int when being
2299 	 * passed to bsetprop() below.
2300 	 */
2301 	if (tp->number >= SLIT_LOCALITIES_MAX)
2302 		return;
2303 
2304 	bsetprop(SLIT_NUM_PROPNAME, strlen(SLIT_NUM_PROPNAME), &tp->number,
2305 	    sizeof (tp->number));
2306 	bsetprop(SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->entry,
2307 	    tp->number * tp->number);
2308 }
2309 
2310 static struct msct *
2311 process_msct(struct msct *tp)
2312 {
2313 	int last_seen = 0;
2314 	int proc_num = 0;
2315 	struct msct_proximity_domain *item, *end;
2316 	extern uint64_t plat_dr_options;
2317 
2318 	ASSERT(tp != NULL);
2319 
2320 	end = (void *)(tp->hdr.len + (uintptr_t)tp);
2321 	for (item = (void *)((uintptr_t)tp + tp->proximity_domain_offset);
2322 	    item < end;
2323 	    item = (void *)(item->length + (uintptr_t)item)) {
2324 		/*
2325 		 * Sanity check according to section 5.2.19.1 of ACPI 4.0.
2326 		 * Revision 	1
2327 		 * Length	22
2328 		 */
2329 		if (item->revision != 1 || item->length != 22) {
2330 			cmn_err(CE_CONT,
2331 			    "?boot: unknown proximity domain structure in MSCT "
2332 			    "with rev(%d), len(%d).\n",
2333 			    (int)item->revision, (int)item->length);
2334 			return (NULL);
2335 		} else if (item->domain_min > item->domain_max) {
2336 			cmn_err(CE_CONT,
2337 			    "?boot: invalid proximity domain structure in MSCT "
2338 			    "with domain_min(%u), domain_max(%u).\n",
2339 			    item->domain_min, item->domain_max);
2340 			return (NULL);
2341 		} else if (item->domain_min != last_seen) {
2342 			/*
2343 			 * Items must be organized in ascending order of the
2344 			 * proximity domain enumerations.
2345 			 */
2346 			cmn_err(CE_CONT,
2347 			    "?boot: invalid proximity domain structure in MSCT,"
2348 			    " items are not orginized in ascending order.\n");
2349 			return (NULL);
2350 		}
2351 
2352 		/*
2353 		 * If processor_max is 0 then there would be no CPUs in this
2354 		 * domain.
2355 		 */
2356 		if (item->processor_max != 0) {
2357 			proc_num += (item->domain_max - item->domain_min + 1) *
2358 			    item->processor_max;
2359 		}
2360 
2361 		last_seen = item->domain_max - item->domain_min + 1;
2362 		/*
2363 		 * Break out if all proximity domains have been processed.
2364 		 * Some BIOSes may have unused items at the end of MSCT table.
2365 		 */
2366 		if (last_seen > tp->maximum_proximity_domains) {
2367 			break;
2368 		}
2369 	}
2370 	if (last_seen != tp->maximum_proximity_domains + 1) {
2371 		cmn_err(CE_CONT,
2372 		    "?boot: invalid proximity domain structure in MSCT, "
2373 		    "proximity domain count doesn't match.\n");
2374 		return (NULL);
2375 	}
2376 
2377 	/*
2378 	 * Set plat-max-ncpus property if it hasn't been set yet.
2379 	 */
2380 	if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2381 		if (proc_num != 0) {
2382 			bsetpropsi(PLAT_MAX_NCPUS_NAME, proc_num);
2383 		}
2384 	}
2385 
2386 	/*
2387 	 * Use Maximum Physical Address from the MSCT table as upper limit for
2388 	 * memory hot-adding by default. It may be overridden by value from
2389 	 * the SRAT table or the "plat-dr-physmax" boot option.
2390 	 */
2391 	plat_dr_physmax = btop(tp->maximum_physical_address + 1);
2392 
2393 	/*
2394 	 * Existence of MSCT implies CPU/memory hotplug-capability for the
2395 	 * platform.
2396 	 */
2397 	plat_dr_options |= PLAT_DR_FEATURE_CPU;
2398 	plat_dr_options |= PLAT_DR_FEATURE_MEMORY;
2399 
2400 	return (tp);
2401 }
2402 
2403 #else /* __xpv */
2404 static void
2405 enumerate_xen_cpus()
2406 {
2407 	processorid_t	id, max_id;
2408 
2409 	/*
2410 	 * User-set boot-ncpus overrides enumeration
2411 	 */
2412 	if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2413 		return;
2414 
2415 	/*
2416 	 * Probe every possible virtual CPU id and remember the
2417 	 * highest id present; the count of CPUs is one greater
2418 	 * than this.  This tacitly assumes at least cpu 0 is present.
2419 	 */
2420 	max_id = 0;
2421 	for (id = 0; id < MAX_VIRT_CPUS; id++)
2422 		if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0)
2423 			max_id = id;
2424 
2425 	bsetpropsi(BOOT_NCPUS_NAME, max_id+1);
2426 
2427 }
2428 #endif /* __xpv */
2429 
2430 static void
2431 build_firmware_properties(void)
2432 {
2433 	struct table_header *tp = NULL;
2434 
2435 #ifndef __xpv
2436 	if ((msct_ptr = (struct msct *)find_fw_table("MSCT")) != NULL)
2437 		msct_ptr = process_msct(msct_ptr);
2438 
2439 	if ((tp = find_fw_table("APIC")) != NULL)
2440 		process_madt((struct madt *)tp);
2441 
2442 	if ((srat_ptr = (struct srat *)find_fw_table("SRAT")) != NULL)
2443 		process_srat(srat_ptr);
2444 
2445 	if (slit_ptr = (struct slit *)find_fw_table("SLIT"))
2446 		process_slit(slit_ptr);
2447 
2448 	tp = find_fw_table("MCFG");
2449 #else /* __xpv */
2450 	enumerate_xen_cpus();
2451 	if (DOMAIN_IS_INITDOMAIN(xen_info))
2452 		tp = find_fw_table("MCFG");
2453 #endif /* __xpv */
2454 	if (tp != NULL)
2455 		process_mcfg((struct mcfg *)tp);
2456 }
2457 
2458 /*
2459  * fake up a boot property for deferred early console output
2460  * this is used by both graphical boot and the (developer only)
2461  * USB serial console
2462  */
2463 void *
2464 defcons_init(size_t size)
2465 {
2466 	static char *p = NULL;
2467 
2468 	p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE);
2469 	*p = 0;
2470 	bsetprop("deferred-console-buf", strlen("deferred-console-buf") + 1,
2471 	    &p, sizeof (p));
2472 	return (p);
2473 }
2474 
2475 /*ARGSUSED*/
2476 int
2477 boot_compinfo(int fd, struct compinfo *cbp)
2478 {
2479 	cbp->iscmp = 0;
2480 	cbp->blksize = MAXBSIZE;
2481 	return (0);
2482 }
2483 
2484 #define	BP_MAX_STRLEN	32
2485 
2486 /*
2487  * Get value for given boot property
2488  */
2489 int
2490 bootprop_getval(const char *prop_name, u_longlong_t *prop_value)
2491 {
2492 	int		boot_prop_len;
2493 	char		str[BP_MAX_STRLEN];
2494 	u_longlong_t	value;
2495 
2496 	boot_prop_len = BOP_GETPROPLEN(bootops, prop_name);
2497 	if (boot_prop_len < 0 || boot_prop_len > sizeof (str) ||
2498 	    BOP_GETPROP(bootops, prop_name, str) < 0 ||
2499 	    kobj_getvalue(str, &value) == -1)
2500 		return (-1);
2501 
2502 	if (prop_value)
2503 		*prop_value = value;
2504 
2505 	return (0);
2506 }
2507