1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains the functionality that mimics the boot operations 31 * on SPARC systems or the old boot.bin/multiboot programs on x86 systems. 32 * The x86 kernel now does everything on its own. 33 */ 34 35 #include <sys/types.h> 36 #include <sys/bootconf.h> 37 #include <sys/bootsvcs.h> 38 #include <sys/bootinfo.h> 39 #include <sys/multiboot.h> 40 #include <sys/bootvfs.h> 41 #include <sys/bootprops.h> 42 #include <sys/varargs.h> 43 #include <sys/param.h> 44 #include <sys/machparam.h> 45 #include <sys/archsystm.h> 46 #include <sys/boot_console.h> 47 #include <sys/cmn_err.h> 48 #include <sys/systm.h> 49 #include <sys/promif.h> 50 #include <sys/archsystm.h> 51 #include <sys/x86_archext.h> 52 #include <sys/kobj.h> 53 #include <sys/privregs.h> 54 #include <sys/sysmacros.h> 55 #include <sys/ctype.h> 56 #ifdef __xpv 57 #include <sys/hypervisor.h> 58 #include <net/if.h> 59 #endif 60 #include <vm/kboot_mmu.h> 61 #include <vm/hat_pte.h> 62 #include "acpi_fw.h" 63 64 static int have_console = 0; /* set once primitive console is initialized */ 65 static char *boot_args = ""; 66 67 /* 68 * Debugging macros 69 */ 70 static uint_t kbm_debug = 0; 71 #define DBG_MSG(s) { if (kbm_debug) bop_printf(NULL, "%s", s); } 72 #define DBG(x) { if (kbm_debug) \ 73 bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x)); \ 74 } 75 76 #define PUT_STRING(s) { \ 77 char *cp; \ 78 for (cp = (s); *cp; ++cp) \ 79 bcons_putchar(*cp); \ 80 } 81 82 struct xboot_info *xbootp; /* boot info from "glue" code in low memory */ 83 bootops_t bootop; /* simple bootops we'll pass on to kernel */ 84 struct bsys_mem bm; 85 86 static uintptr_t next_virt; /* next available virtual address */ 87 static paddr_t next_phys; /* next available physical address from dboot */ 88 static paddr_t high_phys = -(paddr_t)1; /* last used physical address */ 89 90 /* 91 * buffer for vsnprintf for console I/O 92 */ 93 #define BUFFERSIZE 256 94 static char buffer[BUFFERSIZE]; 95 /* 96 * stuff to store/report/manipulate boot property settings. 97 */ 98 typedef struct bootprop { 99 struct bootprop *bp_next; 100 char *bp_name; 101 uint_t bp_vlen; 102 char *bp_value; 103 } bootprop_t; 104 105 static bootprop_t *bprops = NULL; 106 static char *curr_page = NULL; /* ptr to avail bprop memory */ 107 static int curr_space = 0; /* amount of memory at curr_page */ 108 109 #ifdef __xpv 110 start_info_t *xen_info; 111 shared_info_t *HYPERVISOR_shared_info; 112 #endif 113 114 /* 115 * some allocator statistics 116 */ 117 static ulong_t total_bop_alloc_scratch = 0; 118 static ulong_t total_bop_alloc_kernel = 0; 119 120 static void build_firmware_properties(void); 121 122 static int early_allocation = 1; 123 124 /* 125 * Allocate aligned physical memory at boot time. This allocator allocates 126 * from the highest possible addresses. This avoids exhausting memory that 127 * would be useful for DMA buffers. 128 */ 129 paddr_t 130 do_bop_phys_alloc(uint64_t size, uint64_t align) 131 { 132 paddr_t pa = 0; 133 paddr_t start; 134 paddr_t end; 135 struct memlist *ml = (struct memlist *)xbootp->bi_phys_install; 136 137 /* 138 * Be careful if high memory usage is limited in startup.c 139 * Since there are holes in the low part of the physical address 140 * space we can treat physmem as a pfn (not just a pgcnt) and 141 * get a conservative upper limit. 142 */ 143 if (physmem != 0 && high_phys > pfn_to_pa(physmem)) 144 high_phys = pfn_to_pa(physmem); 145 146 /* 147 * find the lowest or highest available memory in physinstalled 148 * On 32 bit avoid physmem above 4Gig if PAE isn't enabled 149 */ 150 #if defined(__i386) 151 if (xbootp->bi_use_pae == 0 && high_phys > FOUR_GIG) 152 high_phys = FOUR_GIG; 153 #endif 154 155 /* 156 * find the highest available memory in physinstalled 157 */ 158 size = P2ROUNDUP(size, align); 159 for (; ml; ml = ml->next) { 160 start = P2ROUNDUP(ml->address, align); 161 end = P2ALIGN(ml->address + ml->size, align); 162 if (start < next_phys) 163 start = P2ROUNDUP(next_phys, align); 164 if (end > high_phys) 165 end = P2ALIGN(high_phys, align); 166 167 if (end <= start) 168 continue; 169 if (end - start < size) 170 continue; 171 172 /* 173 * Early allocations need to use low memory, since 174 * physmem might be further limited by bootenv.rc 175 */ 176 if (early_allocation) { 177 if (pa == 0 || start < pa) 178 pa = start; 179 } else { 180 if (end - size > pa) 181 pa = end - size; 182 } 183 } 184 if (pa != 0) { 185 if (early_allocation) 186 next_phys = pa + size; 187 else 188 high_phys = pa; 189 return (pa); 190 } 191 panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64 ") Out of memory\n", 192 size, align); 193 /*NOTREACHED*/ 194 } 195 196 static uintptr_t 197 alloc_vaddr(size_t size, paddr_t align) 198 { 199 uintptr_t rv; 200 201 next_virt = P2ROUNDUP(next_virt, (uintptr_t)align); 202 rv = (uintptr_t)next_virt; 203 next_virt += size; 204 return (rv); 205 } 206 207 /* 208 * Allocate virtual memory. The size is always rounded up to a multiple 209 * of base pagesize. 210 */ 211 212 /*ARGSUSED*/ 213 static caddr_t 214 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 215 { 216 paddr_t a = align; /* same type as pa for masking */ 217 uint_t pgsize; 218 paddr_t pa; 219 uintptr_t va; 220 ssize_t s; /* the aligned size */ 221 uint_t level; 222 uint_t is_kernel = (virthint != 0); 223 224 if (a < MMU_PAGESIZE) 225 a = MMU_PAGESIZE; 226 else if (!ISP2(a)) 227 prom_panic("do_bsys_alloc() incorrect alignment"); 228 size = P2ROUNDUP(size, MMU_PAGESIZE); 229 230 /* 231 * Use the next aligned virtual address if we weren't given one. 232 */ 233 if (virthint == NULL) { 234 virthint = (caddr_t)alloc_vaddr(size, a); 235 total_bop_alloc_scratch += size; 236 } else { 237 total_bop_alloc_kernel += size; 238 } 239 240 /* 241 * allocate the physical memory 242 */ 243 pa = do_bop_phys_alloc(size, a); 244 245 /* 246 * Add the mappings to the page tables, try large pages first. 247 */ 248 va = (uintptr_t)virthint; 249 s = size; 250 level = 1; 251 pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG; 252 if (xbootp->bi_use_largepage && a == pgsize) { 253 while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) && 254 s >= pgsize) { 255 kbm_map(va, pa, level, is_kernel); 256 va += pgsize; 257 pa += pgsize; 258 s -= pgsize; 259 } 260 } 261 262 /* 263 * Map remaining pages use small mappings 264 */ 265 level = 0; 266 pgsize = MMU_PAGESIZE; 267 while (s > 0) { 268 kbm_map(va, pa, level, is_kernel); 269 va += pgsize; 270 pa += pgsize; 271 s -= pgsize; 272 } 273 return (virthint); 274 } 275 276 /* 277 * Free virtual memory - we'll just ignore these. 278 */ 279 /*ARGSUSED*/ 280 static void 281 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size) 282 { 283 bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n", 284 (void *)virt, size); 285 } 286 287 /* 288 * Old interface 289 */ 290 /*ARGSUSED*/ 291 static caddr_t 292 do_bsys_ealloc( 293 bootops_t *bop, 294 caddr_t virthint, 295 size_t size, 296 int align, 297 int flags) 298 { 299 prom_panic("unsupported call to BOP_EALLOC()\n"); 300 return (0); 301 } 302 303 304 static void 305 bsetprop(char *name, int nlen, void *value, int vlen) 306 { 307 uint_t size; 308 uint_t need_size; 309 bootprop_t *b; 310 311 /* 312 * align the size to 16 byte boundary 313 */ 314 size = sizeof (bootprop_t) + nlen + 1 + vlen; 315 size = (size + 0xf) & ~0xf; 316 if (size > curr_space) { 317 need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK; 318 curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE); 319 curr_space = need_size; 320 } 321 322 /* 323 * use a bootprop_t at curr_page and link into list 324 */ 325 b = (bootprop_t *)curr_page; 326 curr_page += sizeof (bootprop_t); 327 curr_space -= sizeof (bootprop_t); 328 b->bp_next = bprops; 329 bprops = b; 330 331 /* 332 * follow by name and ending zero byte 333 */ 334 b->bp_name = curr_page; 335 bcopy(name, curr_page, nlen); 336 curr_page += nlen; 337 *curr_page++ = 0; 338 curr_space -= nlen + 1; 339 340 /* 341 * copy in value, but no ending zero byte 342 */ 343 b->bp_value = curr_page; 344 b->bp_vlen = vlen; 345 if (vlen > 0) { 346 bcopy(value, curr_page, vlen); 347 curr_page += vlen; 348 curr_space -= vlen; 349 } 350 351 /* 352 * align new values of curr_page, curr_space 353 */ 354 while (curr_space & 0xf) { 355 ++curr_page; 356 --curr_space; 357 } 358 } 359 360 static void 361 bsetprops(char *name, char *value) 362 { 363 bsetprop(name, strlen(name), value, strlen(value) + 1); 364 } 365 366 static void 367 bsetprop64(char *name, uint64_t value) 368 { 369 bsetprop(name, strlen(name), (void *)&value, sizeof (value)); 370 } 371 372 static void 373 bsetpropsi(char *name, int value) 374 { 375 char prop_val[32]; 376 377 (void) snprintf(prop_val, sizeof (prop_val), "%d", value); 378 bsetprops(name, prop_val); 379 } 380 381 /* 382 * to find the size of the buffer to allocate 383 */ 384 /*ARGSUSED*/ 385 int 386 do_bsys_getproplen(bootops_t *bop, char *name) 387 { 388 bootprop_t *b; 389 390 for (b = bprops; b; b = b->bp_next) { 391 if (strcmp(name, b->bp_name) != 0) 392 continue; 393 return (b->bp_vlen); 394 } 395 return (-1); 396 } 397 398 /* 399 * get the value associated with this name 400 */ 401 /*ARGSUSED*/ 402 int 403 do_bsys_getprop(bootops_t *bop, char *name, void *value) 404 { 405 bootprop_t *b; 406 407 for (b = bprops; b; b = b->bp_next) { 408 if (strcmp(name, b->bp_name) != 0) 409 continue; 410 bcopy(b->bp_value, value, b->bp_vlen); 411 return (0); 412 } 413 return (-1); 414 } 415 416 /* 417 * get the name of the next property in succession from the standalone 418 */ 419 /*ARGSUSED*/ 420 static char * 421 do_bsys_nextprop(bootops_t *bop, char *name) 422 { 423 bootprop_t *b; 424 425 /* 426 * A null name is a special signal for the 1st boot property 427 */ 428 if (name == NULL || strlen(name) == 0) { 429 if (bprops == NULL) 430 return (NULL); 431 return (bprops->bp_name); 432 } 433 434 for (b = bprops; b; b = b->bp_next) { 435 if (name != b->bp_name) 436 continue; 437 b = b->bp_next; 438 if (b == NULL) 439 return (NULL); 440 return (b->bp_name); 441 } 442 return (NULL); 443 } 444 445 /* 446 * Parse numeric value from a string. Understands decimal, hex, octal, - and ~ 447 */ 448 static int 449 parse_value(char *p, uint64_t *retval) 450 { 451 int adjust = 0; 452 uint64_t tmp = 0; 453 int digit; 454 int radix = 10; 455 456 *retval = 0; 457 if (*p == '-' || *p == '~') 458 adjust = *p++; 459 460 if (*p == '0') { 461 ++p; 462 if (*p == 0) 463 return (0); 464 if (*p == 'x' || *p == 'X') { 465 radix = 16; 466 ++p; 467 } else { 468 radix = 8; 469 ++p; 470 } 471 } 472 while (*p) { 473 if ('0' <= *p && *p <= '9') 474 digit = *p - '0'; 475 else if ('a' <= *p && *p <= 'f') 476 digit = 10 + *p - 'a'; 477 else if ('A' <= *p && *p <= 'F') 478 digit = 10 + *p - 'A'; 479 else 480 return (-1); 481 if (digit >= radix) 482 return (-1); 483 tmp = tmp * radix + digit; 484 ++p; 485 } 486 if (adjust == '-') 487 tmp = -tmp; 488 else if (adjust == '~') 489 tmp = ~tmp; 490 *retval = tmp; 491 return (0); 492 } 493 494 /* 495 * 2nd part of building the table of boot properties. This includes: 496 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values) 497 * 498 * lines look like one of: 499 * ^$ 500 * ^# comment till end of line 501 * setprop name 'value' 502 * setprop name value 503 * setprop name "value" 504 * 505 * we do single character I/O since this is really just looking at memory 506 */ 507 void 508 boot_prop_finish(void) 509 { 510 int fd; 511 char *line; 512 int c; 513 int bytes_read; 514 char *name; 515 int n_len; 516 char *value; 517 int v_len; 518 char *inputdev; /* these override the command line if serial ports */ 519 char *outputdev; 520 char *consoledev; 521 uint64_t lvalue; 522 int use_xencons = 0; 523 524 #ifdef __xpv 525 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 526 use_xencons = 1; 527 #endif /* __xpv */ 528 529 DBG_MSG("Opening /boot/solaris/bootenv.rc\n"); 530 fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0); 531 DBG(fd); 532 533 line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 534 while (fd >= 0) { 535 536 /* 537 * get a line 538 */ 539 for (c = 0; ; ++c) { 540 bytes_read = BRD_READ(bfs_ops, fd, line + c, 1); 541 if (bytes_read == 0) { 542 if (c == 0) 543 goto done; 544 break; 545 } 546 if (line[c] == '\n') 547 break; 548 } 549 line[c] = 0; 550 551 /* 552 * ignore comment lines 553 */ 554 c = 0; 555 while (ISSPACE(line[c])) 556 ++c; 557 if (line[c] == '#' || line[c] == 0) 558 continue; 559 560 /* 561 * must have "setprop " or "setprop\t" 562 */ 563 if (strncmp(line + c, "setprop ", 8) != 0 && 564 strncmp(line + c, "setprop\t", 8) != 0) 565 continue; 566 c += 8; 567 while (ISSPACE(line[c])) 568 ++c; 569 if (line[c] == 0) 570 continue; 571 572 /* 573 * gather up the property name 574 */ 575 name = line + c; 576 n_len = 0; 577 while (line[c] && !ISSPACE(line[c])) 578 ++n_len, ++c; 579 580 /* 581 * gather up the value, if any 582 */ 583 value = ""; 584 v_len = 0; 585 while (ISSPACE(line[c])) 586 ++c; 587 if (line[c] != 0) { 588 value = line + c; 589 while (line[c] && !ISSPACE(line[c])) 590 ++v_len, ++c; 591 } 592 593 if (v_len >= 2 && value[0] == value[v_len - 1] && 594 (value[0] == '\'' || value[0] == '"')) { 595 ++value; 596 v_len -= 2; 597 } 598 name[n_len] = 0; 599 if (v_len > 0) 600 value[v_len] = 0; 601 else 602 continue; 603 604 /* 605 * ignore "boot-file" property, it's now meaningless 606 */ 607 if (strcmp(name, "boot-file") == 0) 608 continue; 609 if (strcmp(name, "boot-args") == 0 && 610 strlen(boot_args) > 0) 611 continue; 612 613 /* 614 * If a property was explicitly set on the command line 615 * it will override a setting in bootenv.rc 616 */ 617 if (do_bsys_getproplen(NULL, name) > 0) 618 continue; 619 620 bsetprop(name, n_len, value, v_len + 1); 621 } 622 done: 623 if (fd >= 0) 624 BRD_CLOSE(bfs_ops, fd); 625 626 /* 627 * Check if we have to limit the boot time allocator 628 */ 629 if (do_bsys_getproplen(NULL, "physmem") != -1 && 630 do_bsys_getprop(NULL, "physmem", line) >= 0 && 631 parse_value(line, &lvalue) != -1) { 632 if (0 < lvalue && (lvalue < physmem || physmem == 0)) { 633 physmem = (pgcnt_t)lvalue; 634 DBG(physmem); 635 } 636 } 637 early_allocation = 0; 638 639 /* 640 * check to see if we have to override the default value of the console 641 */ 642 if (!use_xencons) { 643 inputdev = line; 644 v_len = do_bsys_getproplen(NULL, "input-device"); 645 if (v_len > 0) 646 (void) do_bsys_getprop(NULL, "input-device", inputdev); 647 else 648 v_len = 0; 649 inputdev[v_len] = 0; 650 651 outputdev = inputdev + v_len + 1; 652 v_len = do_bsys_getproplen(NULL, "output-device"); 653 if (v_len > 0) 654 (void) do_bsys_getprop(NULL, "output-device", 655 outputdev); 656 else 657 v_len = 0; 658 outputdev[v_len] = 0; 659 660 consoledev = outputdev + v_len + 1; 661 v_len = do_bsys_getproplen(NULL, "console"); 662 if (v_len > 0) 663 (void) do_bsys_getprop(NULL, "console", consoledev); 664 else 665 v_len = 0; 666 consoledev[v_len] = 0; 667 bcons_init2(inputdev, outputdev, consoledev); 668 } else { 669 /* 670 * Ensure console property exists 671 * If not create it as "hypervisor" 672 */ 673 v_len = do_bsys_getproplen(NULL, "console"); 674 if (v_len < 0) 675 bsetprops("console", "hypervisor"); 676 inputdev = outputdev = consoledev = "hypervisor"; 677 bcons_init2(inputdev, outputdev, consoledev); 678 } 679 680 if (strstr((char *)xbootp->bi_cmdline, "prom_debug") || kbm_debug) { 681 value = line; 682 bop_printf(NULL, "\nBoot properties:\n"); 683 name = ""; 684 while ((name = do_bsys_nextprop(NULL, name)) != NULL) { 685 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name); 686 (void) do_bsys_getprop(NULL, name, value); 687 v_len = do_bsys_getproplen(NULL, name); 688 bop_printf(NULL, "len=%d ", v_len); 689 value[v_len] = 0; 690 bop_printf(NULL, "%s\n", value); 691 } 692 } 693 } 694 695 /* 696 * print formatted output 697 */ 698 /*PRINTFLIKE2*/ 699 /*ARGSUSED*/ 700 void 701 bop_printf(bootops_t *bop, char *fmt, ...) 702 { 703 va_list ap; 704 705 if (have_console == 0) 706 return; 707 708 va_start(ap, fmt); 709 (void) vsnprintf(buffer, BUFFERSIZE, fmt, ap); 710 va_end(ap); 711 PUT_STRING(buffer); 712 } 713 714 /* 715 * Another panic() variant; this one can be used even earlier during boot than 716 * prom_panic(). 717 */ 718 /*PRINTFLIKE1*/ 719 void 720 bop_panic(char *fmt, ...) 721 { 722 va_list ap; 723 724 va_start(ap, fmt); 725 bop_printf(NULL, fmt, ap); 726 va_end(ap); 727 728 bop_printf(NULL, "\nPress any key to reboot.\n"); 729 (void) bcons_getchar(); 730 bop_printf(NULL, "Resetting...\n"); 731 pc_reset(); 732 } 733 734 /* 735 * Do a real mode interrupt BIOS call 736 */ 737 typedef struct bios_regs { 738 unsigned short ax, bx, cx, dx, si, di, bp, es, ds; 739 } bios_regs_t; 740 typedef int (*bios_func_t)(int, bios_regs_t *); 741 742 /*ARGSUSED*/ 743 static void 744 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp) 745 { 746 #if defined(__xpv) 747 prom_panic("unsupported call to BOP_DOINT()\n"); 748 #else /* __xpv */ 749 static int firsttime = 1; 750 bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000; 751 bios_regs_t br; 752 753 /* 754 * The first time we do this, we have to copy the pre-packaged 755 * low memory bios call code image into place. 756 */ 757 if (firsttime) { 758 extern char bios_image[]; 759 extern uint32_t bios_size; 760 761 bcopy(bios_image, (void *)bios_func, bios_size); 762 firsttime = 0; 763 } 764 765 br.ax = rp->eax.word.ax; 766 br.bx = rp->ebx.word.bx; 767 br.cx = rp->ecx.word.cx; 768 br.dx = rp->edx.word.dx; 769 br.bp = rp->ebp.word.bp; 770 br.si = rp->esi.word.si; 771 br.di = rp->edi.word.di; 772 br.ds = rp->ds; 773 br.es = rp->es; 774 775 DBG_MSG("Doing BIOS call..."); 776 rp->eflags = bios_func(intnum, &br); 777 DBG_MSG("done\n"); 778 779 rp->eax.word.ax = br.ax; 780 rp->ebx.word.bx = br.bx; 781 rp->ecx.word.cx = br.cx; 782 rp->edx.word.dx = br.dx; 783 rp->ebp.word.bp = br.bp; 784 rp->esi.word.si = br.si; 785 rp->edi.word.di = br.di; 786 rp->ds = br.ds; 787 rp->es = br.es; 788 #endif /* __xpv */ 789 } 790 791 static struct boot_syscalls bop_sysp = { 792 bcons_getchar, 793 bcons_putchar, 794 bcons_ischar, 795 }; 796 797 static char *whoami; 798 799 #define BUFLEN 64 800 801 #if defined(__xpv) 802 803 static char namebuf[32]; 804 805 static void 806 xen_parse_props(char *s, char *prop_map[], int n_prop) 807 { 808 char **prop_name = prop_map; 809 char *cp = s, *scp; 810 811 do { 812 scp = cp; 813 while ((*cp != NULL) && (*cp != ':')) 814 cp++; 815 816 if ((scp != cp) && (*prop_name != NULL)) { 817 *cp = NULL; 818 bsetprops(*prop_name, scp); 819 } 820 821 cp++; 822 prop_name++; 823 n_prop--; 824 } while (n_prop > 0); 825 } 826 827 #define VBDPATHLEN 64 828 829 /* 830 * parse the 'xpv-root' property to create properties used by 831 * ufs_mountroot. 832 */ 833 static void 834 xen_vbdroot_props(char *s) 835 { 836 char vbdpath[VBDPATHLEN] = "/xpvd/xdf@"; 837 const char lnamefix[] = "/dev/dsk/c0d"; 838 char *pnp; 839 char *prop_p; 840 char mi; 841 short minor; 842 long addr = 0; 843 844 pnp = vbdpath + strlen(vbdpath); 845 prop_p = s + strlen(lnamefix); 846 while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p')) 847 addr = addr * 10 + *prop_p++ - '0'; 848 (void) snprintf(pnp, VBDPATHLEN, "%lx", addr); 849 pnp = vbdpath + strlen(vbdpath); 850 if (*prop_p == 's') 851 mi = 'a'; 852 else if (*prop_p == 'p') 853 mi = 'q'; 854 else 855 ASSERT(0); /* shouldn't be here */ 856 prop_p++; 857 ASSERT(*prop_p != '\0'); 858 if (ISDIGIT(*prop_p)) { 859 minor = *prop_p - '0'; 860 prop_p++; 861 if (ISDIGIT(*prop_p)) { 862 minor = minor * 10 + *prop_p - '0'; 863 } 864 } else { 865 /* malformed root path, use 0 as default */ 866 minor = 0; 867 } 868 ASSERT(minor < 16); /* at most 16 partitions */ 869 mi += minor; 870 *pnp++ = ':'; 871 *pnp++ = mi; 872 *pnp++ = '\0'; 873 bsetprops("fstype", "ufs"); 874 bsetprops("bootpath", vbdpath); 875 876 DBG_MSG("VBD bootpath set to "); 877 DBG_MSG(vbdpath); 878 DBG_MSG("\n"); 879 } 880 881 /* 882 * parse the xpv-nfsroot property to create properties used by 883 * nfs_mountroot. 884 */ 885 static void 886 xen_nfsroot_props(char *s) 887 { 888 char *prop_map[] = { 889 BP_SERVER_IP, /* server IP address */ 890 BP_SERVER_NAME, /* server hostname */ 891 BP_SERVER_PATH, /* root path */ 892 }; 893 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]); 894 895 bsetprop("fstype", 6, "nfsdyn", 7); 896 897 xen_parse_props(s, prop_map, n_prop); 898 899 /* 900 * If a server name wasn't specified, use a default. 901 */ 902 if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1) 903 bsetprops(BP_SERVER_NAME, "unknown"); 904 } 905 906 /* 907 * Extract our IP address, etc. from the "xpv-ip" property. 908 */ 909 static void 910 xen_ip_props(char *s) 911 { 912 char *prop_map[] = { 913 BP_HOST_IP, /* IP address */ 914 NULL, /* NFS server IP address (ignored in */ 915 /* favour of xpv-nfsroot) */ 916 BP_ROUTER_IP, /* IP gateway */ 917 BP_SUBNET_MASK, /* IP subnet mask */ 918 "xpv-hostname", /* hostname (ignored) */ 919 BP_NETWORK_INTERFACE, /* interface name */ 920 "xpv-hcp", /* host configuration protocol */ 921 }; 922 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]); 923 char ifname[IFNAMSIZ]; 924 925 xen_parse_props(s, prop_map, n_prop); 926 927 /* 928 * A Linux dom0 administrator expects all interfaces to be 929 * called "ethX", which is not the case here. 930 * 931 * If the interface name specified is "eth0", presume that 932 * this is really intended to be "xnf0" (the first domU -> 933 * dom0 interface for this domain). 934 */ 935 if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) && 936 (strcmp("eth0", ifname) == 0)) { 937 bsetprops(BP_NETWORK_INTERFACE, "xnf0"); 938 bop_printf(NULL, 939 "network interface name 'eth0' replaced with 'xnf0'\n"); 940 } 941 } 942 943 #else /* __xpv */ 944 945 static void 946 setup_rarp_props(struct sol_netinfo *sip) 947 { 948 char buf[BUFLEN]; /* to hold ip/mac addrs */ 949 uint8_t *val; 950 951 val = (uint8_t *)&sip->sn_ciaddr; 952 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 953 val[0], val[1], val[2], val[3]); 954 bsetprops(BP_HOST_IP, buf); 955 956 val = (uint8_t *)&sip->sn_siaddr; 957 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 958 val[0], val[1], val[2], val[3]); 959 bsetprops(BP_SERVER_IP, buf); 960 961 if (sip->sn_giaddr != 0) { 962 val = (uint8_t *)&sip->sn_giaddr; 963 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 964 val[0], val[1], val[2], val[3]); 965 bsetprops(BP_ROUTER_IP, buf); 966 } 967 968 if (sip->sn_netmask != 0) { 969 val = (uint8_t *)&sip->sn_netmask; 970 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 971 val[0], val[1], val[2], val[3]); 972 bsetprops(BP_SUBNET_MASK, buf); 973 } 974 975 if (sip->sn_mactype != 4 || sip->sn_maclen != 6) { 976 bop_printf(NULL, "unsupported mac type %d, mac len %d\n", 977 sip->sn_mactype, sip->sn_maclen); 978 } else { 979 val = sip->sn_macaddr; 980 (void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x", 981 val[0], val[1], val[2], val[3], val[4], val[5]); 982 bsetprops(BP_BOOT_MAC, buf); 983 } 984 } 985 986 #endif /* __xpv */ 987 988 /* 989 * 1st pass at building the table of boot properties. This includes: 990 * - values set on the command line: -B a=x,b=y,c=z .... 991 * - known values we just compute (ie. from xbootp) 992 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values) 993 * 994 * the grub command line looked like: 995 * kernel boot-file [-B prop=value[,prop=value]...] [boot-args] 996 * 997 * whoami is the same as boot-file 998 */ 999 static void 1000 build_boot_properties(void) 1001 { 1002 char *name; 1003 int name_len; 1004 char *value; 1005 int value_len; 1006 struct boot_modules *bm; 1007 char *propbuf; 1008 int quoted = 0; 1009 int boot_arg_len; 1010 #ifndef __xpv 1011 static int stdout_val = 0; 1012 uchar_t boot_device; 1013 char str[3]; 1014 multiboot_info_t *mbi; 1015 int netboot; 1016 struct sol_netinfo *sip; 1017 #endif 1018 1019 /* 1020 * These have to be done first, so that kobj_mount_root() works 1021 */ 1022 DBG_MSG("Building boot properties\n"); 1023 propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0); 1024 DBG((uintptr_t)propbuf); 1025 if (xbootp->bi_module_cnt > 0) { 1026 bm = xbootp->bi_modules; 1027 bsetprop64("ramdisk_start", (uint64_t)(uintptr_t)bm->bm_addr); 1028 bsetprop64("ramdisk_end", (uint64_t)(uintptr_t)bm->bm_addr + 1029 bm->bm_size); 1030 } 1031 1032 DBG_MSG("Parsing command line for boot properties\n"); 1033 value = xbootp->bi_cmdline; 1034 1035 /* 1036 * allocate memory to collect boot_args into 1037 */ 1038 boot_arg_len = strlen(xbootp->bi_cmdline) + 1; 1039 boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE); 1040 boot_args[0] = 0; 1041 boot_arg_len = 0; 1042 1043 #ifdef __xpv 1044 /* 1045 * Xen puts a lot of device information in front of the kernel name 1046 * let's grab them and make them boot properties. The first 1047 * string w/o an "=" in it will be the boot-file property. 1048 */ 1049 (void) strcpy(namebuf, "xpv-"); 1050 for (;;) { 1051 /* 1052 * get to next property 1053 */ 1054 while (ISSPACE(*value)) 1055 ++value; 1056 name = value; 1057 /* 1058 * look for an "=" 1059 */ 1060 while (*value && !ISSPACE(*value) && *value != '=') { 1061 value++; 1062 } 1063 if (*value != '=') { /* no "=" in the property */ 1064 value = name; 1065 break; 1066 } 1067 name_len = value - name; 1068 value_len = 0; 1069 /* 1070 * skip over the "=" 1071 */ 1072 value++; 1073 while (value[value_len] && !ISSPACE(value[value_len])) { 1074 ++value_len; 1075 } 1076 /* 1077 * build property name with "xpv-" prefix 1078 */ 1079 if (name_len + 4 > 32) { /* skip if name too long */ 1080 value += value_len; 1081 continue; 1082 } 1083 bcopy(name, &namebuf[4], name_len); 1084 name_len += 4; 1085 namebuf[name_len] = 0; 1086 bcopy(value, propbuf, value_len); 1087 propbuf[value_len] = 0; 1088 bsetprops(namebuf, propbuf); 1089 1090 /* 1091 * xpv-root is set to the logical disk name of the xen 1092 * VBD when booting from a disk-based filesystem. 1093 */ 1094 if (strcmp(namebuf, "xpv-root") == 0) 1095 xen_vbdroot_props(propbuf); 1096 /* 1097 * While we're here, if we have a "xpv-nfsroot" property 1098 * then we need to set "fstype" to "nfsdyn" so we mount 1099 * our root from the nfs server. Also parse the xpv-nfsroot 1100 * property to create the properties that nfs_mountroot will 1101 * need to find the root and mount it. 1102 */ 1103 if (strcmp(namebuf, "xpv-nfsroot") == 0) 1104 xen_nfsroot_props(propbuf); 1105 1106 if (strcmp(namebuf, "xpv-ip") == 0) 1107 xen_ip_props(propbuf); 1108 value += value_len; 1109 } 1110 #endif 1111 1112 while (ISSPACE(*value)) 1113 ++value; 1114 /* 1115 * value now points at the boot-file 1116 */ 1117 value_len = 0; 1118 while (value[value_len] && !ISSPACE(value[value_len])) 1119 ++value_len; 1120 if (value_len > 0) { 1121 whoami = propbuf; 1122 bcopy(value, whoami, value_len); 1123 whoami[value_len] = 0; 1124 bsetprops("boot-file", whoami); 1125 /* 1126 * strip leading path stuff from whoami, so running from 1127 * PXE/miniroot makes sense. 1128 */ 1129 if (strstr(whoami, "/platform/") != NULL) 1130 whoami = strstr(whoami, "/platform/"); 1131 bsetprops("whoami", whoami); 1132 } 1133 1134 /* 1135 * Values forcibly set boot properties on the command line via -B. 1136 * Allow use of quotes in values. Other stuff goes on kernel 1137 * command line. 1138 */ 1139 name = value + value_len; 1140 while (*name != 0) { 1141 /* 1142 * anything not " -B" is copied to the command line 1143 */ 1144 if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') { 1145 boot_args[boot_arg_len++] = *name; 1146 boot_args[boot_arg_len] = 0; 1147 ++name; 1148 continue; 1149 } 1150 1151 /* 1152 * skip the " -B" and following white space 1153 */ 1154 name += 3; 1155 while (ISSPACE(*name)) 1156 ++name; 1157 while (*name && !ISSPACE(*name)) { 1158 value = strstr(name, "="); 1159 if (value == NULL) 1160 break; 1161 name_len = value - name; 1162 ++value; 1163 value_len = 0; 1164 quoted = 0; 1165 for (; ; ++value_len) { 1166 if (!value[value_len]) 1167 break; 1168 1169 /* 1170 * is this value quoted? 1171 */ 1172 if (value_len == 0 && 1173 (value[0] == '\'' || value[0] == '"')) { 1174 quoted = value[0]; 1175 ++value_len; 1176 } 1177 1178 /* 1179 * In the quote accept any character, 1180 * but look for ending quote. 1181 */ 1182 if (quoted) { 1183 if (value[value_len] == quoted) 1184 quoted = 0; 1185 continue; 1186 } 1187 1188 /* 1189 * a comma or white space ends the value 1190 */ 1191 if (value[value_len] == ',' || 1192 ISSPACE(value[value_len])) 1193 break; 1194 } 1195 1196 if (value_len == 0) { 1197 bsetprop(name, name_len, "true", 5); 1198 } else { 1199 char *v = value; 1200 int l = value_len; 1201 if (v[0] == v[l - 1] && 1202 (v[0] == '\'' || v[0] == '"')) { 1203 ++v; 1204 l -= 2; 1205 } 1206 bcopy(v, propbuf, l); 1207 propbuf[l] = '\0'; 1208 bsetprop(name, name_len, propbuf, 1209 l + 1); 1210 } 1211 name = value + value_len; 1212 while (*name == ',') 1213 ++name; 1214 } 1215 } 1216 1217 /* 1218 * set boot-args property 1219 */ 1220 bsetprops("boot-args", boot_args); 1221 1222 #ifndef __xpv 1223 /* 1224 * set the BIOS boot device from GRUB 1225 */ 1226 netboot = 0; 1227 mbi = xbootp->bi_mb_info; 1228 if (mbi != NULL && mbi->flags & 0x2) { 1229 boot_device = mbi->boot_device >> 24; 1230 if (boot_device == 0x20) 1231 netboot++; 1232 str[0] = (boot_device >> 4) + '0'; 1233 str[1] = (boot_device & 0xf) + '0'; 1234 str[2] = 0; 1235 bsetprops("bios-boot-device", str); 1236 } else { 1237 netboot = 1; 1238 } 1239 1240 /* 1241 * In the netboot case, drives_info is overloaded with the dhcp ack. 1242 * This is not multiboot compliant and requires special pxegrub! 1243 */ 1244 if (netboot && mbi->drives_length != 0) { 1245 sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr; 1246 if (sip->sn_infotype == SN_TYPE_BOOTP) 1247 bsetprop("bootp-response", sizeof ("bootp-response"), 1248 (void *)(uintptr_t)mbi->drives_addr, 1249 mbi->drives_length); 1250 else if (sip->sn_infotype == SN_TYPE_RARP) 1251 setup_rarp_props(sip); 1252 } 1253 bsetprop("stdout", strlen("stdout"), 1254 &stdout_val, sizeof (stdout_val)); 1255 #endif /* __xpv */ 1256 1257 /* 1258 * more conjured up values for made up things.... 1259 */ 1260 #if defined(__xpv) 1261 bsetprops("mfg-name", "i86xpv"); 1262 bsetprops("impl-arch-name", "i86xpv"); 1263 #else 1264 bsetprops("mfg-name", "i86pc"); 1265 bsetprops("impl-arch-name", "i86pc"); 1266 #endif 1267 1268 /* 1269 * Build firmware-provided system properties 1270 */ 1271 build_firmware_properties(); 1272 1273 /* 1274 * XXPV 1275 * 1276 * Find out what these are: 1277 * - cpuid_feature_ecx_include 1278 * - cpuid_feature_ecx_exclude 1279 * - cpuid_feature_edx_include 1280 * - cpuid_feature_edx_exclude 1281 * 1282 * Find out what these are in multiboot: 1283 * - netdev-path 1284 * - fstype 1285 */ 1286 } 1287 1288 #ifdef __xpv 1289 /* 1290 * Under the Hypervisor, memory usable for DMA may be scarce. One 1291 * very likely large pool of DMA friendly memory is occupied by 1292 * the boot_archive, as it was loaded by grub into low MFNs. 1293 * 1294 * Here we free up that memory by copying the boot archive to what are 1295 * likely higher MFN pages and then swapping the mfn/pfn mappings. 1296 */ 1297 #define PFN_2GIG 0x80000 1298 static void 1299 relocate_boot_archive(void) 1300 { 1301 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL); 1302 struct boot_modules *bm = xbootp->bi_modules; 1303 uintptr_t va; 1304 pfn_t va_pfn; 1305 mfn_t va_mfn; 1306 caddr_t copy; 1307 pfn_t copy_pfn; 1308 mfn_t copy_mfn; 1309 size_t len; 1310 int slop; 1311 int total = 0; 1312 int relocated = 0; 1313 int mmu_update_return; 1314 mmu_update_t t[2]; 1315 x86pte_t pte; 1316 1317 /* 1318 * If all MFN's are below 2Gig, don't bother doing this. 1319 */ 1320 if (max_mfn < PFN_2GIG) 1321 return; 1322 if (xbootp->bi_module_cnt < 1) { 1323 DBG_MSG("no boot_archive!"); 1324 return; 1325 } 1326 1327 DBG_MSG("moving boot_archive to high MFN memory\n"); 1328 va = (uintptr_t)bm->bm_addr; 1329 len = bm->bm_size; 1330 slop = va & MMU_PAGEOFFSET; 1331 if (slop) { 1332 va += MMU_PAGESIZE - slop; 1333 len -= MMU_PAGESIZE - slop; 1334 } 1335 len = P2ALIGN(len, MMU_PAGESIZE); 1336 1337 /* 1338 * Go through all boot_archive pages, swapping any low MFN pages 1339 * with memory at next_phys. 1340 */ 1341 while (len != 0) { 1342 ++total; 1343 va_pfn = mmu_btop(va - ONE_GIG); 1344 va_mfn = mfn_list[va_pfn]; 1345 if (mfn_list[va_pfn] < PFN_2GIG) { 1346 copy = kbm_remap_window(next_phys, 1); 1347 bcopy((void *)va, copy, MMU_PAGESIZE); 1348 copy_pfn = mmu_btop(next_phys); 1349 copy_mfn = mfn_list[copy_pfn]; 1350 1351 pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID; 1352 if (HYPERVISOR_update_va_mapping(va, pte, 1353 UVMF_INVLPG | UVMF_LOCAL)) 1354 bop_panic("relocate_boot_archive(): " 1355 "HYPERVISOR_update_va_mapping() failed"); 1356 1357 mfn_list[va_pfn] = copy_mfn; 1358 mfn_list[copy_pfn] = va_mfn; 1359 1360 t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE; 1361 t[0].val = va_pfn; 1362 t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE; 1363 t[1].val = copy_pfn; 1364 if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return, 1365 DOMID_SELF) != 0 || mmu_update_return != 2) 1366 bop_panic("relocate_boot_archive(): " 1367 "HYPERVISOR_mmu_update() failed"); 1368 1369 next_phys += MMU_PAGESIZE; 1370 ++relocated; 1371 } 1372 len -= MMU_PAGESIZE; 1373 va += MMU_PAGESIZE; 1374 } 1375 DBG_MSG("Relocated pages:\n"); 1376 DBG(relocated); 1377 DBG_MSG("Out of total pages:\n"); 1378 DBG(total); 1379 } 1380 #endif /* __xpv */ 1381 1382 #if !defined(__xpv) 1383 /* 1384 * Install a temporary IDT that lets us catch errors in the boot time code. 1385 * We shouldn't get any faults at all while this is installed, so we'll 1386 * just generate a traceback and exit. 1387 */ 1388 #ifdef __amd64 1389 static const int bcode_sel = B64CODE_SEL; 1390 #else 1391 static const int bcode_sel = B32CODE_SEL; 1392 #endif 1393 1394 /* 1395 * simple description of a stack frame (args are 32 bit only currently) 1396 */ 1397 typedef struct bop_frame { 1398 struct bop_frame *old_frame; 1399 pc_t retaddr; 1400 long arg[1]; 1401 } bop_frame_t; 1402 1403 void 1404 bop_traceback(bop_frame_t *frame) 1405 { 1406 pc_t pc; 1407 int cnt; 1408 int a; 1409 char *ksym; 1410 ulong_t off; 1411 1412 bop_printf(NULL, "Stack traceback:\n"); 1413 for (cnt = 0; cnt < 30; ++cnt) { /* up to 30 frames */ 1414 pc = frame->retaddr; 1415 if (pc == 0) 1416 break; 1417 ksym = kobj_getsymname(pc, &off); 1418 if (ksym) 1419 bop_printf(NULL, " %s+%lx", ksym, off); 1420 else 1421 bop_printf(NULL, " 0x%lx", pc); 1422 1423 frame = frame->old_frame; 1424 if (frame == 0) { 1425 bop_printf(NULL, "\n"); 1426 break; 1427 } 1428 for (a = 0; a < 6; ++a) { /* try for 6 args */ 1429 #if defined(__i386) 1430 if ((void *)&frame->arg[a] == (void *)frame->old_frame) 1431 break; 1432 if (a == 0) 1433 bop_printf(NULL, "("); 1434 else 1435 bop_printf(NULL, ","); 1436 bop_printf(NULL, "0x%lx", frame->arg[a]); 1437 #endif 1438 } 1439 bop_printf(NULL, ")\n"); 1440 } 1441 } 1442 1443 struct trapframe { 1444 ulong_t frame_ptr; /* %[er]bp pushed by our code */ 1445 ulong_t error_code; /* optional */ 1446 ulong_t inst_ptr; 1447 ulong_t code_seg; 1448 ulong_t flags_reg; 1449 #ifdef __amd64 1450 ulong_t stk_ptr; 1451 ulong_t stk_seg; 1452 #endif 1453 }; 1454 1455 void 1456 bop_trap(struct trapframe *tf) 1457 { 1458 bop_frame_t fakeframe; 1459 static int depth = 0; 1460 1461 /* 1462 * Check for an infinite loop of traps. 1463 */ 1464 if (++depth > 2) 1465 bop_panic("Nested trap"); 1466 1467 /* 1468 * adjust the tf for optional error_code by detecting the code selector 1469 */ 1470 if (tf->code_seg != bcode_sel) 1471 tf = (struct trapframe *)((uintptr_t)tf - sizeof (ulong_t)); 1472 1473 bop_printf(NULL, "Unexpected trap\n"); 1474 bop_printf(NULL, "instruction pointer 0x%lx\n", tf->inst_ptr); 1475 bop_printf(NULL, "error code, optional 0x%lx\n", 1476 tf->error_code & 0xffffffff); 1477 bop_printf(NULL, "code segment 0x%lx\n", tf->code_seg & 0xffff); 1478 bop_printf(NULL, "flags register 0x%lx\n", tf->flags_reg); 1479 #ifdef __amd64 1480 bop_printf(NULL, "return %%rsp 0x%lx\n", tf->stk_ptr); 1481 bop_printf(NULL, "return %%ss 0x%lx\n", tf->stk_seg & 0xffff); 1482 #endif 1483 fakeframe.old_frame = (bop_frame_t *)tf->frame_ptr; 1484 fakeframe.retaddr = (pc_t)tf->inst_ptr; 1485 bop_printf(NULL, "Attempting stack backtrace:\n"); 1486 bop_traceback(&fakeframe); 1487 bop_panic("unexpected trap in early boot"); 1488 } 1489 1490 extern void bop_trap_handler(void); 1491 1492 static gate_desc_t bop_idt[NIDT]; 1493 1494 static desctbr_t bop_idt_info; 1495 1496 static void 1497 bop_idt_init(void) 1498 { 1499 int t; 1500 1501 bzero(&bop_idt, sizeof (bop_idt)); 1502 for (t = 0; t < NIDT; ++t) { 1503 set_gatesegd(&bop_idt[t], &bop_trap_handler, bcode_sel, 1504 SDT_SYSIGT, TRP_KPL); 1505 } 1506 bop_idt_info.dtr_limit = sizeof (bop_idt) - 1; 1507 bop_idt_info.dtr_base = (uintptr_t)&bop_idt; 1508 wr_idtr(&bop_idt_info); 1509 } 1510 #endif 1511 1512 /* 1513 * This is where we enter the kernel. It dummies up the boot_ops and 1514 * boot_syscalls vectors and jumps off to _kobj_boot() 1515 */ 1516 void 1517 _start(struct xboot_info *xbp) 1518 { 1519 bootops_t *bops = &bootop; 1520 extern void _kobj_boot(); 1521 1522 /* 1523 * 1st off - initialize the console for any error messages 1524 */ 1525 xbootp = xbp; 1526 #ifdef __xpv 1527 HYPERVISOR_shared_info = (void *)xbootp->bi_shared_info; 1528 xen_info = xbootp->bi_xen_start_info; 1529 #endif 1530 bcons_init((void *)xbootp->bi_cmdline); 1531 have_console = 1; 1532 1533 /* 1534 * enable debugging 1535 */ 1536 if (strstr((char *)xbootp->bi_cmdline, "kbm_debug")) 1537 kbm_debug = 1; 1538 1539 DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: "); 1540 DBG_MSG((char *)xbootp->bi_cmdline); 1541 DBG_MSG("\n\n\n"); 1542 1543 #ifndef __xpv 1544 /* 1545 * Install an IDT to catch early pagefaults (shouldn't have any). 1546 * Also needed for kmdb. 1547 */ 1548 bop_idt_init(); 1549 #endif 1550 1551 /* 1552 * physavail is no longer used by startup 1553 */ 1554 bm.physinstalled = xbp->bi_phys_install; 1555 bm.pcimem = xbp->bi_pcimem; 1556 bm.physavail = NULL; 1557 1558 /* 1559 * initialize the boot time allocator 1560 */ 1561 next_phys = xbootp->bi_next_paddr; 1562 DBG(next_phys); 1563 next_virt = (uintptr_t)xbootp->bi_next_vaddr; 1564 DBG(next_virt); 1565 DBG_MSG("Initializing boot time memory management..."); 1566 #ifdef __xpv 1567 { 1568 xen_platform_parameters_t p; 1569 1570 /* This call shouldn't fail, dboot already did it once. */ 1571 (void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p); 1572 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start); 1573 DBG(xen_virt_start); 1574 } 1575 #endif 1576 kbm_init(xbootp); 1577 DBG_MSG("done\n"); 1578 1579 /* 1580 * Fill in the bootops vector 1581 */ 1582 bops->bsys_version = BO_VERSION; 1583 bops->boot_mem = &bm; 1584 bops->bsys_alloc = do_bsys_alloc; 1585 bops->bsys_free = do_bsys_free; 1586 bops->bsys_getproplen = do_bsys_getproplen; 1587 bops->bsys_getprop = do_bsys_getprop; 1588 bops->bsys_nextprop = do_bsys_nextprop; 1589 bops->bsys_printf = bop_printf; 1590 bops->bsys_doint = do_bsys_doint; 1591 1592 /* 1593 * BOP_EALLOC() is no longer needed 1594 */ 1595 bops->bsys_ealloc = do_bsys_ealloc; 1596 1597 #ifdef __xpv 1598 /* 1599 * On domain 0 we need to free up some physical memory that is 1600 * usable for DMA. Since GRUB loaded the boot_archive, it is 1601 * sitting in low MFN memory. We'll relocated the boot archive 1602 * pages to high PFN memory. 1603 */ 1604 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1605 relocate_boot_archive(); 1606 #endif 1607 1608 /* 1609 * 1610 */ 1611 DBG_MSG("Initializing boot properties:\n"); 1612 build_boot_properties(); 1613 1614 if (strstr((char *)xbootp->bi_cmdline, "prom_debug") || kbm_debug) { 1615 char *name; 1616 char *value; 1617 char *cp; 1618 int len; 1619 1620 value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 1621 bop_printf(NULL, "\nBoot properties:\n"); 1622 name = ""; 1623 while ((name = do_bsys_nextprop(NULL, name)) != NULL) { 1624 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name); 1625 (void) do_bsys_getprop(NULL, name, value); 1626 len = do_bsys_getproplen(NULL, name); 1627 bop_printf(NULL, "len=%d ", len); 1628 value[len] = 0; 1629 for (cp = value; *cp; ++cp) { 1630 if (' ' <= *cp && *cp <= '~') 1631 bop_printf(NULL, "%c", *cp); 1632 else 1633 bop_printf(NULL, "-0x%x-", *cp); 1634 } 1635 bop_printf(NULL, "\n"); 1636 } 1637 } 1638 1639 /* 1640 * jump into krtld... 1641 */ 1642 _kobj_boot(&bop_sysp, NULL, bops, NULL); 1643 } 1644 1645 1646 /*ARGSUSED*/ 1647 static caddr_t 1648 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 1649 { 1650 panic("Attempt to bsys_alloc() too late\n"); 1651 return (NULL); 1652 } 1653 1654 /*ARGSUSED*/ 1655 static void 1656 no_more_free(bootops_t *bop, caddr_t virt, size_t size) 1657 { 1658 panic("Attempt to bsys_free() too late\n"); 1659 } 1660 1661 void 1662 bop_no_more_mem(void) 1663 { 1664 DBG(total_bop_alloc_scratch); 1665 DBG(total_bop_alloc_kernel); 1666 bootops->bsys_alloc = no_more_alloc; 1667 bootops->bsys_free = no_more_free; 1668 } 1669 1670 1671 #ifndef __xpv 1672 /* 1673 * Set ACPI firmware properties 1674 */ 1675 1676 static caddr_t 1677 vmap_phys(size_t length, paddr_t pa) 1678 { 1679 paddr_t start, end; 1680 caddr_t va; 1681 size_t len, page; 1682 1683 start = P2ALIGN(pa, MMU_PAGESIZE); 1684 end = P2ROUNDUP(pa + length, MMU_PAGESIZE); 1685 len = end - start; 1686 va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE); 1687 for (page = 0; page < len; page += MMU_PAGESIZE) 1688 kbm_map((uintptr_t)va + page, start + page, 0, 0); 1689 return (va + (pa & MMU_PAGEOFFSET)); 1690 } 1691 1692 static uint8_t 1693 checksum_table(uint8_t *tp, size_t len) 1694 { 1695 uint8_t sum = 0; 1696 1697 while (len-- > 0) 1698 sum += *tp++; 1699 1700 return (sum); 1701 } 1702 1703 static int 1704 valid_rsdp(struct rsdp *rp) 1705 { 1706 1707 /* validate the V1.x checksum */ 1708 if (checksum_table((uint8_t *)&rp->v1, sizeof (struct rsdp_v1)) != 0) 1709 return (0); 1710 1711 /* If pre-ACPI 2.0, this is a valid RSDP */ 1712 if (rp->v1.revision < 2) 1713 return (1); 1714 1715 /* validate the V2.x checksum */ 1716 if (checksum_table((uint8_t *)rp, sizeof (struct rsdp)) != 0) 1717 return (0); 1718 1719 return (1); 1720 } 1721 1722 /* 1723 * Scan memory range for an RSDP; 1724 * see ACPI 3.0 Spec, 5.2.5.1 1725 */ 1726 static struct rsdp * 1727 scan_rsdp(paddr_t start, paddr_t end) 1728 { 1729 size_t len = end - start + 1; 1730 caddr_t ptr; 1731 1732 ptr = vmap_phys(len, start); 1733 while (len > 0) { 1734 if (strncmp(ptr, ACPI_RSDP_SIG, ACPI_RSDP_SIG_LEN) == 0) 1735 if (valid_rsdp((struct rsdp *)ptr)) 1736 return ((struct rsdp *)ptr); 1737 ptr += 16; 1738 len -= 16; 1739 } 1740 1741 return (NULL); 1742 } 1743 1744 /* 1745 * Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function 1746 */ 1747 static struct rsdp * 1748 find_rsdp() { 1749 struct rsdp *rsdp; 1750 uint16_t *ebda_seg; 1751 paddr_t ebda_addr; 1752 1753 /* 1754 * Get the EBDA segment and scan the first 1K 1755 */ 1756 ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t), ACPI_EBDA_SEG_ADDR); 1757 ebda_addr = *ebda_seg << 4; 1758 rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_LEN - 1); 1759 if (rsdp == NULL) 1760 /* if EBDA doesn't contain RSDP, look in BIOS memory */ 1761 rsdp = scan_rsdp(0xe0000, 0xfffff); 1762 return (rsdp); 1763 } 1764 1765 static struct table_header * 1766 map_fw_table(paddr_t table_addr) 1767 { 1768 struct table_header *tp; 1769 size_t len = MAX(sizeof (struct table_header), MMU_PAGESIZE); 1770 1771 /* 1772 * Map at least a page; if the table is larger than this, remap it 1773 */ 1774 tp = (struct table_header *)vmap_phys(len, table_addr); 1775 if (tp->len > len) 1776 tp = (struct table_header *)vmap_phys(tp->len, table_addr); 1777 return (tp); 1778 } 1779 1780 static struct table_header * 1781 find_fw_table(char *signature) 1782 { 1783 static int revision = 0; 1784 static struct xsdt *xsdt; 1785 static int len; 1786 paddr_t xsdt_addr; 1787 struct rsdp *rsdp; 1788 struct table_header *tp; 1789 paddr_t table_addr; 1790 int n; 1791 1792 if (strlen(signature) != ACPI_TABLE_SIG_LEN) 1793 return (NULL); 1794 1795 /* 1796 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help 1797 * understand this code. If we haven't already found the RSDT/XSDT, 1798 * revision will be 0. Find the RSDP and check the revision 1799 * to find out whether to use the RSDT or XSDT. If revision is 1800 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2, 1801 * use the XSDT. If the XSDT address is 0, though, fall back to 1802 * revision 1 and use the RSDT. 1803 */ 1804 if (revision == 0) { 1805 if ((rsdp = (struct rsdp *)find_rsdp()) != NULL) { 1806 revision = rsdp->v1.revision; 1807 switch (revision) { 1808 case 2: 1809 /* 1810 * Use the XSDT unless BIOS is buggy and 1811 * claims to be rev 2 but has a null XSDT 1812 * address 1813 */ 1814 xsdt_addr = rsdp->xsdt; 1815 if (xsdt_addr != 0) 1816 break; 1817 /* FALLTHROUGH */ 1818 case 0: 1819 /* treat RSDP rev 0 as revision 1 internally */ 1820 revision = 1; 1821 /* FALLTHROUGH */ 1822 case 1: 1823 /* use the RSDT for rev 0/1 */ 1824 xsdt_addr = rsdp->v1.rsdt; 1825 break; 1826 default: 1827 /* unknown revision */ 1828 revision = 0; 1829 break; 1830 } 1831 } 1832 if (revision == 0) 1833 return (NULL); 1834 1835 /* cache the XSDT info */ 1836 xsdt = (struct xsdt *)map_fw_table(xsdt_addr); 1837 len = (xsdt->hdr.len - sizeof (xsdt->hdr)) / 1838 ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t)); 1839 } 1840 1841 /* 1842 * Scan the table headers looking for a signature match 1843 */ 1844 for (n = 0; n < len; n++) { 1845 table_addr = (revision == 1) ? xsdt->p.r[n] : xsdt->p.x[n]; 1846 if (table_addr == 0) 1847 continue; 1848 tp = map_fw_table(table_addr); 1849 if (strncmp(tp->sig, signature, ACPI_TABLE_SIG_LEN) == 0) { 1850 return (tp); 1851 } 1852 } 1853 return (NULL); 1854 } 1855 1856 static void 1857 process_madt(struct madt *tp) 1858 { 1859 struct madt_processor *cpu, *end; 1860 uint32_t cpu_count = 0; 1861 1862 /* 1863 * User-set boot-ncpus overrides firmware count 1864 */ 1865 if (do_bsys_getproplen(NULL, "boot-ncpus") >= 0) 1866 return; 1867 1868 if (tp != NULL) { 1869 end = (struct madt_processor *)(tp->hdr.len + (uintptr_t)tp); 1870 cpu = tp->list; 1871 while (cpu < end) { 1872 if (cpu->type == MADT_PROCESSOR) 1873 if (cpu->flags & 1) 1874 cpu_count++; 1875 1876 cpu = (struct madt_processor *) 1877 (cpu->len + (uintptr_t)cpu); 1878 } 1879 bsetpropsi("boot-ncpus", cpu_count); 1880 } 1881 1882 } 1883 1884 static void 1885 process_srat(struct srat *tp) 1886 { 1887 struct srat_item *item, *end; 1888 int i; 1889 int proc_num, mem_num; 1890 #pragma pack(1) 1891 struct { 1892 uint32_t domain; 1893 uint32_t apic_id; 1894 uint32_t sapic_id; 1895 } processor; 1896 struct { 1897 uint32_t domain; 1898 uint64_t addr; 1899 uint64_t length; 1900 uint32_t flags; 1901 } memory; 1902 #pragma pack() 1903 char prop_name[30]; 1904 1905 if (tp == NULL) 1906 return; 1907 1908 proc_num = mem_num = 0; 1909 end = (struct srat_item *)(tp->hdr.len + (uintptr_t)tp); 1910 item = tp->list; 1911 while (item < end) { 1912 switch (item->type) { 1913 case SRAT_PROCESSOR: 1914 if (!(item->i.p.flags & SRAT_ENABLED)) 1915 break; 1916 processor.domain = item->i.p.domain1; 1917 for (i = 0; i < 3; i++) 1918 processor.domain += 1919 item->i.p.domain2[i] << ((i + 1) * 8); 1920 processor.apic_id = item->i.p.apic_id; 1921 processor.sapic_id = item->i.p.local_sapic_eid; 1922 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d", 1923 proc_num); 1924 bsetprop(prop_name, strlen(prop_name), &processor, 1925 sizeof (processor)); 1926 proc_num++; 1927 break; 1928 case SRAT_MEMORY: 1929 if (!(item->i.m.flags & SRAT_ENABLED)) 1930 break; 1931 memory.domain = item->i.m.domain; 1932 memory.addr = item->i.m.base_addr; 1933 memory.length = item->i.m.len; 1934 memory.flags = item->i.m.flags; 1935 (void) snprintf(prop_name, 30, "acpi-srat-memory-%d", 1936 mem_num); 1937 bsetprop(prop_name, strlen(prop_name), &memory, 1938 sizeof (memory)); 1939 mem_num++; 1940 break; 1941 } 1942 1943 item = (struct srat_item *) 1944 (item->len + (caddr_t)item); 1945 } 1946 } 1947 1948 static void 1949 process_slit(struct slit *tp) 1950 { 1951 1952 /* 1953 * Check the number of localities; if it's too huge, we just 1954 * return and locality enumeration code will handle this later, 1955 * if possible. 1956 * 1957 * Note that the size of the table is the square of the 1958 * number of localities; if the number of localities exceeds 1959 * UINT16_MAX, the table size may overflow an int when being 1960 * passed to bsetprop() below. 1961 */ 1962 if (tp->number >= SLIT_LOCALITIES_MAX) 1963 return; 1964 1965 bsetprop(SLIT_NUM_PROPNAME, strlen(SLIT_NUM_PROPNAME), &tp->number, 1966 sizeof (tp->number)); 1967 bsetprop(SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->entry, 1968 tp->number * tp->number); 1969 } 1970 #else /* __xpv */ 1971 static void 1972 enumerate_xen_cpus() 1973 { 1974 processorid_t id, max_id; 1975 1976 /* 1977 * User-set boot-ncpus overrides enumeration 1978 */ 1979 if (do_bsys_getproplen(NULL, "boot-ncpus") >= 0) 1980 return; 1981 1982 /* 1983 * Probe every possible virtual CPU id and remember the 1984 * highest id present; the count of CPUs is one greater 1985 * than this. This tacitly assumes at least cpu 0 is present. 1986 */ 1987 max_id = 0; 1988 for (id = 0; id < MAX_VIRT_CPUS; id++) 1989 if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0) 1990 max_id = id; 1991 1992 bsetpropsi("boot-ncpus", max_id+1); 1993 1994 } 1995 #endif /* __xpv */ 1996 1997 static void 1998 build_firmware_properties(void) 1999 { 2000 #ifndef __xpv 2001 struct table_header *tp; 2002 2003 if ((tp = find_fw_table("APIC")) != NULL) 2004 process_madt((struct madt *)tp); 2005 2006 if ((tp = find_fw_table("SRAT")) != NULL) 2007 process_srat((struct srat *)tp); 2008 2009 if (tp = find_fw_table("SLIT")) 2010 process_slit((struct slit *)tp); 2011 #else /* __xpv */ 2012 enumerate_xen_cpus(); 2013 #endif /* __xpv */ 2014 } 2015 2016 /* 2017 * fake up a boot property for USB serial console early boot output 2018 */ 2019 void * 2020 usbser_init(size_t size) 2021 { 2022 static char *p = NULL; 2023 2024 p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE); 2025 *p = 0; 2026 bsetprop("usb-serial-buf", strlen("usb-serial-buf") + 1, 2027 &p, sizeof (p)); 2028 return (p); 2029 } 2030