xref: /titanic_50/usr/src/uts/i86pc/os/fakebop.c (revision 3b4b8bda7949c2c1bf610c9f0413accc9d26119a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2010, Intel Corporation.
27  * All rights reserved.
28  *
29  * Copyright 2013 Joyent, Inc.  All rights reserved.
30  */
31 
32 /*
33  * This file contains the functionality that mimics the boot operations
34  * on SPARC systems or the old boot.bin/multiboot programs on x86 systems.
35  * The x86 kernel now does everything on its own.
36  */
37 
38 #include <sys/types.h>
39 #include <sys/bootconf.h>
40 #include <sys/bootsvcs.h>
41 #include <sys/bootinfo.h>
42 #include <sys/multiboot.h>
43 #include <sys/bootvfs.h>
44 #include <sys/bootprops.h>
45 #include <sys/varargs.h>
46 #include <sys/param.h>
47 #include <sys/machparam.h>
48 #include <sys/machsystm.h>
49 #include <sys/archsystm.h>
50 #include <sys/boot_console.h>
51 #include <sys/cmn_err.h>
52 #include <sys/systm.h>
53 #include <sys/promif.h>
54 #include <sys/archsystm.h>
55 #include <sys/x86_archext.h>
56 #include <sys/kobj.h>
57 #include <sys/privregs.h>
58 #include <sys/sysmacros.h>
59 #include <sys/ctype.h>
60 #include <sys/fastboot.h>
61 #ifdef __xpv
62 #include <sys/hypervisor.h>
63 #include <net/if.h>
64 #endif
65 #include <vm/kboot_mmu.h>
66 #include <vm/hat_pte.h>
67 #include <sys/kobj.h>
68 #include <sys/kobj_lex.h>
69 #include <sys/pci_cfgspace_impl.h>
70 #include <sys/fastboot_impl.h>
71 #include <sys/acpi/acconfig.h>
72 #include <sys/acpi/acpi.h>
73 
74 static int have_console = 0;	/* set once primitive console is initialized */
75 static char *boot_args = "";
76 
77 /*
78  * Debugging macros
79  */
80 static uint_t kbm_debug = 0;
81 #define	DBG_MSG(s)	{ if (kbm_debug) bop_printf(NULL, "%s", s); }
82 #define	DBG(x)		{ if (kbm_debug)			\
83 	bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x));	\
84 	}
85 
86 #define	PUT_STRING(s) {				\
87 	char *cp;				\
88 	for (cp = (s); *cp; ++cp)		\
89 		bcons_putchar(*cp);		\
90 	}
91 
92 bootops_t bootop;	/* simple bootops we'll pass on to kernel */
93 struct bsys_mem bm;
94 
95 /*
96  * Boot info from "glue" code in low memory. xbootp is used by:
97  *	do_bop_phys_alloc(), do_bsys_alloc() and boot_prop_finish().
98  */
99 static struct xboot_info *xbootp;
100 static uintptr_t next_virt;	/* next available virtual address */
101 static paddr_t next_phys;	/* next available physical address from dboot */
102 static paddr_t high_phys = -(paddr_t)1;	/* last used physical address */
103 
104 /*
105  * buffer for vsnprintf for console I/O
106  */
107 #define	BUFFERSIZE	512
108 static char buffer[BUFFERSIZE];
109 
110 /*
111  * stuff to store/report/manipulate boot property settings.
112  */
113 typedef struct bootprop {
114 	struct bootprop *bp_next;
115 	char *bp_name;
116 	uint_t bp_vlen;
117 	char *bp_value;
118 } bootprop_t;
119 
120 static bootprop_t *bprops = NULL;
121 static char *curr_page = NULL;		/* ptr to avail bprop memory */
122 static int curr_space = 0;		/* amount of memory at curr_page */
123 
124 #ifdef __xpv
125 start_info_t *xen_info;
126 shared_info_t *HYPERVISOR_shared_info;
127 #endif
128 
129 /*
130  * some allocator statistics
131  */
132 static ulong_t total_bop_alloc_scratch = 0;
133 static ulong_t total_bop_alloc_kernel = 0;
134 
135 static void build_firmware_properties(void);
136 
137 static int early_allocation = 1;
138 
139 int force_fastreboot = 0;
140 volatile int fastreboot_onpanic = 0;
141 int post_fastreboot = 0;
142 #ifdef	__xpv
143 volatile int fastreboot_capable = 0;
144 #else
145 volatile int fastreboot_capable = 1;
146 #endif
147 
148 /*
149  * Information saved from current boot for fast reboot.
150  * If the information size exceeds what we have allocated, fast reboot
151  * will not be supported.
152  */
153 multiboot_info_t saved_mbi;
154 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT];
155 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE];
156 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
157 int saved_cmdline_len = 0;
158 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP];
159 
160 /*
161  * Turn off fastreboot_onpanic to avoid panic loop.
162  */
163 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
164 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0";
165 
166 /*
167  * Pointers to where System Resource Affinity Table (SRAT), System Locality
168  * Information Table (SLIT) and Maximum System Capability Table (MSCT)
169  * are mapped into virtual memory
170  */
171 ACPI_TABLE_SRAT	*srat_ptr = NULL;
172 ACPI_TABLE_SLIT	*slit_ptr = NULL;
173 ACPI_TABLE_MSCT	*msct_ptr = NULL;
174 
175 /*
176  * Arbitrary limit on number of localities we handle; if
177  * this limit is raised to more than UINT16_MAX, make sure
178  * process_slit() knows how to handle it.
179  */
180 #define	SLIT_LOCALITIES_MAX	(4096)
181 
182 #define	SLIT_NUM_PROPNAME	"acpi-slit-localities"
183 #define	SLIT_PROPNAME		"acpi-slit"
184 
185 /*
186  * Allocate aligned physical memory at boot time. This allocator allocates
187  * from the highest possible addresses. This avoids exhausting memory that
188  * would be useful for DMA buffers.
189  */
190 paddr_t
191 do_bop_phys_alloc(uint64_t size, uint64_t align)
192 {
193 	paddr_t	pa = 0;
194 	paddr_t	start;
195 	paddr_t	end;
196 	struct memlist	*ml = (struct memlist *)xbootp->bi_phys_install;
197 
198 	/*
199 	 * Be careful if high memory usage is limited in startup.c
200 	 * Since there are holes in the low part of the physical address
201 	 * space we can treat physmem as a pfn (not just a pgcnt) and
202 	 * get a conservative upper limit.
203 	 */
204 	if (physmem != 0 && high_phys > pfn_to_pa(physmem))
205 		high_phys = pfn_to_pa(physmem);
206 
207 	/*
208 	 * find the lowest or highest available memory in physinstalled
209 	 * On 32 bit avoid physmem above 4Gig if PAE isn't enabled
210 	 */
211 #if defined(__i386)
212 	if (xbootp->bi_use_pae == 0 && high_phys > FOUR_GIG)
213 		high_phys = FOUR_GIG;
214 #endif
215 
216 	/*
217 	 * find the highest available memory in physinstalled
218 	 */
219 	size = P2ROUNDUP(size, align);
220 	for (; ml; ml = ml->ml_next) {
221 		start = P2ROUNDUP(ml->ml_address, align);
222 		end = P2ALIGN(ml->ml_address + ml->ml_size, align);
223 		if (start < next_phys)
224 			start = P2ROUNDUP(next_phys, align);
225 		if (end > high_phys)
226 			end = P2ALIGN(high_phys, align);
227 
228 		if (end <= start)
229 			continue;
230 		if (end - start < size)
231 			continue;
232 
233 		/*
234 		 * Early allocations need to use low memory, since
235 		 * physmem might be further limited by bootenv.rc
236 		 */
237 		if (early_allocation) {
238 			if (pa == 0 || start < pa)
239 				pa = start;
240 		} else {
241 			if (end - size > pa)
242 				pa = end - size;
243 		}
244 	}
245 	if (pa != 0) {
246 		if (early_allocation)
247 			next_phys = pa + size;
248 		else
249 			high_phys = pa;
250 		return (pa);
251 	}
252 	bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64
253 	    ") Out of memory\n", size, align);
254 	/*NOTREACHED*/
255 }
256 
257 uintptr_t
258 alloc_vaddr(size_t size, paddr_t align)
259 {
260 	uintptr_t rv;
261 
262 	next_virt = P2ROUNDUP(next_virt, (uintptr_t)align);
263 	rv = (uintptr_t)next_virt;
264 	next_virt += size;
265 	return (rv);
266 }
267 
268 /*
269  * Allocate virtual memory. The size is always rounded up to a multiple
270  * of base pagesize.
271  */
272 
273 /*ARGSUSED*/
274 static caddr_t
275 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
276 {
277 	paddr_t a = align;	/* same type as pa for masking */
278 	uint_t pgsize;
279 	paddr_t pa;
280 	uintptr_t va;
281 	ssize_t s;		/* the aligned size */
282 	uint_t level;
283 	uint_t is_kernel = (virthint != 0);
284 
285 	if (a < MMU_PAGESIZE)
286 		a = MMU_PAGESIZE;
287 	else if (!ISP2(a))
288 		prom_panic("do_bsys_alloc() incorrect alignment");
289 	size = P2ROUNDUP(size, MMU_PAGESIZE);
290 
291 	/*
292 	 * Use the next aligned virtual address if we weren't given one.
293 	 */
294 	if (virthint == NULL) {
295 		virthint = (caddr_t)alloc_vaddr(size, a);
296 		total_bop_alloc_scratch += size;
297 	} else {
298 		total_bop_alloc_kernel += size;
299 	}
300 
301 	/*
302 	 * allocate the physical memory
303 	 */
304 	pa = do_bop_phys_alloc(size, a);
305 
306 	/*
307 	 * Add the mappings to the page tables, try large pages first.
308 	 */
309 	va = (uintptr_t)virthint;
310 	s = size;
311 	level = 1;
312 	pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG;
313 	if (xbootp->bi_use_largepage && a == pgsize) {
314 		while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) &&
315 		    s >= pgsize) {
316 			kbm_map(va, pa, level, is_kernel);
317 			va += pgsize;
318 			pa += pgsize;
319 			s -= pgsize;
320 		}
321 	}
322 
323 	/*
324 	 * Map remaining pages use small mappings
325 	 */
326 	level = 0;
327 	pgsize = MMU_PAGESIZE;
328 	while (s > 0) {
329 		kbm_map(va, pa, level, is_kernel);
330 		va += pgsize;
331 		pa += pgsize;
332 		s -= pgsize;
333 	}
334 	return (virthint);
335 }
336 
337 /*
338  * Free virtual memory - we'll just ignore these.
339  */
340 /*ARGSUSED*/
341 static void
342 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size)
343 {
344 	bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n",
345 	    (void *)virt, size);
346 }
347 
348 /*
349  * Old interface
350  */
351 /*ARGSUSED*/
352 static caddr_t
353 do_bsys_ealloc(bootops_t *bop, caddr_t virthint, size_t size,
354     int align, int flags)
355 {
356 	prom_panic("unsupported call to BOP_EALLOC()\n");
357 	return (0);
358 }
359 
360 
361 static void
362 bsetprop(char *name, int nlen, void *value, int vlen)
363 {
364 	uint_t size;
365 	uint_t need_size;
366 	bootprop_t *b;
367 
368 	/*
369 	 * align the size to 16 byte boundary
370 	 */
371 	size = sizeof (bootprop_t) + nlen + 1 + vlen;
372 	size = (size + 0xf) & ~0xf;
373 	if (size > curr_space) {
374 		need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK;
375 		curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE);
376 		curr_space = need_size;
377 	}
378 
379 	/*
380 	 * use a bootprop_t at curr_page and link into list
381 	 */
382 	b = (bootprop_t *)curr_page;
383 	curr_page += sizeof (bootprop_t);
384 	curr_space -=  sizeof (bootprop_t);
385 	b->bp_next = bprops;
386 	bprops = b;
387 
388 	/*
389 	 * follow by name and ending zero byte
390 	 */
391 	b->bp_name = curr_page;
392 	bcopy(name, curr_page, nlen);
393 	curr_page += nlen;
394 	*curr_page++ = 0;
395 	curr_space -= nlen + 1;
396 
397 	/*
398 	 * copy in value, but no ending zero byte
399 	 */
400 	b->bp_value = curr_page;
401 	b->bp_vlen = vlen;
402 	if (vlen > 0) {
403 		bcopy(value, curr_page, vlen);
404 		curr_page += vlen;
405 		curr_space -= vlen;
406 	}
407 
408 	/*
409 	 * align new values of curr_page, curr_space
410 	 */
411 	while (curr_space & 0xf) {
412 		++curr_page;
413 		--curr_space;
414 	}
415 }
416 
417 static void
418 bsetprops(char *name, char *value)
419 {
420 	bsetprop(name, strlen(name), value, strlen(value) + 1);
421 }
422 
423 static void
424 bsetprop64(char *name, uint64_t value)
425 {
426 	bsetprop(name, strlen(name), (void *)&value, sizeof (value));
427 }
428 
429 static void
430 bsetpropsi(char *name, int value)
431 {
432 	char prop_val[32];
433 
434 	(void) snprintf(prop_val, sizeof (prop_val), "%d", value);
435 	bsetprops(name, prop_val);
436 }
437 
438 /*
439  * to find the size of the buffer to allocate
440  */
441 /*ARGSUSED*/
442 int
443 do_bsys_getproplen(bootops_t *bop, const char *name)
444 {
445 	bootprop_t *b;
446 
447 	for (b = bprops; b; b = b->bp_next) {
448 		if (strcmp(name, b->bp_name) != 0)
449 			continue;
450 		return (b->bp_vlen);
451 	}
452 	return (-1);
453 }
454 
455 /*
456  * get the value associated with this name
457  */
458 /*ARGSUSED*/
459 int
460 do_bsys_getprop(bootops_t *bop, const char *name, void *value)
461 {
462 	bootprop_t *b;
463 
464 	for (b = bprops; b; b = b->bp_next) {
465 		if (strcmp(name, b->bp_name) != 0)
466 			continue;
467 		bcopy(b->bp_value, value, b->bp_vlen);
468 		return (0);
469 	}
470 	return (-1);
471 }
472 
473 /*
474  * get the name of the next property in succession from the standalone
475  */
476 /*ARGSUSED*/
477 static char *
478 do_bsys_nextprop(bootops_t *bop, char *name)
479 {
480 	bootprop_t *b;
481 
482 	/*
483 	 * A null name is a special signal for the 1st boot property
484 	 */
485 	if (name == NULL || strlen(name) == 0) {
486 		if (bprops == NULL)
487 			return (NULL);
488 		return (bprops->bp_name);
489 	}
490 
491 	for (b = bprops; b; b = b->bp_next) {
492 		if (name != b->bp_name)
493 			continue;
494 		b = b->bp_next;
495 		if (b == NULL)
496 			return (NULL);
497 		return (b->bp_name);
498 	}
499 	return (NULL);
500 }
501 
502 /*
503  * Parse numeric value from a string. Understands decimal, hex, octal, - and ~
504  */
505 static int
506 parse_value(char *p, uint64_t *retval)
507 {
508 	int adjust = 0;
509 	uint64_t tmp = 0;
510 	int digit;
511 	int radix = 10;
512 
513 	*retval = 0;
514 	if (*p == '-' || *p == '~')
515 		adjust = *p++;
516 
517 	if (*p == '0') {
518 		++p;
519 		if (*p == 0)
520 			return (0);
521 		if (*p == 'x' || *p == 'X') {
522 			radix = 16;
523 			++p;
524 		} else {
525 			radix = 8;
526 			++p;
527 		}
528 	}
529 	while (*p) {
530 		if ('0' <= *p && *p <= '9')
531 			digit = *p - '0';
532 		else if ('a' <= *p && *p <= 'f')
533 			digit = 10 + *p - 'a';
534 		else if ('A' <= *p && *p <= 'F')
535 			digit = 10 + *p - 'A';
536 		else
537 			return (-1);
538 		if (digit >= radix)
539 			return (-1);
540 		tmp = tmp * radix + digit;
541 		++p;
542 	}
543 	if (adjust == '-')
544 		tmp = -tmp;
545 	else if (adjust == '~')
546 		tmp = ~tmp;
547 	*retval = tmp;
548 	return (0);
549 }
550 
551 static boolean_t
552 unprintable(char *value, int size)
553 {
554 	int i;
555 
556 	if (size <= 0 || value[0] == '\0')
557 		return (B_TRUE);
558 
559 	for (i = 0; i < size; i++) {
560 		if (value[i] == '\0')
561 			return (i != (size - 1));
562 
563 		if (!isprint(value[i]))
564 			return (B_TRUE);
565 	}
566 	return (B_FALSE);
567 }
568 
569 /*
570  * Print out information about all boot properties.
571  * buffer is pointer to pre-allocated space to be used as temporary
572  * space for property values.
573  */
574 static void
575 boot_prop_display(char *buffer)
576 {
577 	char *name = "";
578 	int i, len;
579 
580 	bop_printf(NULL, "\nBoot properties:\n");
581 
582 	while ((name = do_bsys_nextprop(NULL, name)) != NULL) {
583 		bop_printf(NULL, "\t0x%p %s = ", (void *)name, name);
584 		(void) do_bsys_getprop(NULL, name, buffer);
585 		len = do_bsys_getproplen(NULL, name);
586 		bop_printf(NULL, "len=%d ", len);
587 		if (!unprintable(buffer, len)) {
588 			buffer[len] = 0;
589 			bop_printf(NULL, "%s\n", buffer);
590 			continue;
591 		}
592 		for (i = 0; i < len; i++) {
593 			bop_printf(NULL, "%02x", buffer[i] & 0xff);
594 			if (i < len - 1)
595 				bop_printf(NULL, ".");
596 		}
597 		bop_printf(NULL, "\n");
598 	}
599 }
600 
601 /*
602  * 2nd part of building the table of boot properties. This includes:
603  * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
604  *
605  * lines look like one of:
606  * ^$
607  * ^# comment till end of line
608  * setprop name 'value'
609  * setprop name value
610  * setprop name "value"
611  *
612  * we do single character I/O since this is really just looking at memory
613  */
614 void
615 boot_prop_finish(void)
616 {
617 	int fd;
618 	char *line;
619 	int c;
620 	int bytes_read;
621 	char *name;
622 	int n_len;
623 	char *value;
624 	int v_len;
625 	char *inputdev;	/* these override the command line if serial ports */
626 	char *outputdev;
627 	char *consoledev;
628 	uint64_t lvalue;
629 	int use_xencons = 0;
630 
631 #ifdef __xpv
632 	if (!DOMAIN_IS_INITDOMAIN(xen_info))
633 		use_xencons = 1;
634 #endif /* __xpv */
635 
636 	DBG_MSG("Opening /boot/solaris/bootenv.rc\n");
637 	fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0);
638 	DBG(fd);
639 
640 	line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
641 	while (fd >= 0) {
642 
643 		/*
644 		 * get a line
645 		 */
646 		for (c = 0; ; ++c) {
647 			bytes_read = BRD_READ(bfs_ops, fd, line + c, 1);
648 			if (bytes_read == 0) {
649 				if (c == 0)
650 					goto done;
651 				break;
652 			}
653 			if (line[c] == '\n')
654 				break;
655 		}
656 		line[c] = 0;
657 
658 		/*
659 		 * ignore comment lines
660 		 */
661 		c = 0;
662 		while (ISSPACE(line[c]))
663 			++c;
664 		if (line[c] == '#' || line[c] == 0)
665 			continue;
666 
667 		/*
668 		 * must have "setprop " or "setprop\t"
669 		 */
670 		if (strncmp(line + c, "setprop ", 8) != 0 &&
671 		    strncmp(line + c, "setprop\t", 8) != 0)
672 			continue;
673 		c += 8;
674 		while (ISSPACE(line[c]))
675 			++c;
676 		if (line[c] == 0)
677 			continue;
678 
679 		/*
680 		 * gather up the property name
681 		 */
682 		name = line + c;
683 		n_len = 0;
684 		while (line[c] && !ISSPACE(line[c]))
685 			++n_len, ++c;
686 
687 		/*
688 		 * gather up the value, if any
689 		 */
690 		value = "";
691 		v_len = 0;
692 		while (ISSPACE(line[c]))
693 			++c;
694 		if (line[c] != 0) {
695 			value = line + c;
696 			while (line[c] && !ISSPACE(line[c]))
697 				++v_len, ++c;
698 		}
699 
700 		if (v_len >= 2 && value[0] == value[v_len - 1] &&
701 		    (value[0] == '\'' || value[0] == '"')) {
702 			++value;
703 			v_len -= 2;
704 		}
705 		name[n_len] = 0;
706 		if (v_len > 0)
707 			value[v_len] = 0;
708 		else
709 			continue;
710 
711 		/*
712 		 * ignore "boot-file" property, it's now meaningless
713 		 */
714 		if (strcmp(name, "boot-file") == 0)
715 			continue;
716 		if (strcmp(name, "boot-args") == 0 &&
717 		    strlen(boot_args) > 0)
718 			continue;
719 
720 		/*
721 		 * If a property was explicitly set on the command line
722 		 * it will override a setting in bootenv.rc
723 		 */
724 		if (do_bsys_getproplen(NULL, name) > 0)
725 			continue;
726 
727 		bsetprop(name, n_len, value, v_len + 1);
728 	}
729 done:
730 	if (fd >= 0)
731 		(void) BRD_CLOSE(bfs_ops, fd);
732 
733 	/*
734 	 * Check if we have to limit the boot time allocator
735 	 */
736 	if (do_bsys_getproplen(NULL, "physmem") != -1 &&
737 	    do_bsys_getprop(NULL, "physmem", line) >= 0 &&
738 	    parse_value(line, &lvalue) != -1) {
739 		if (0 < lvalue && (lvalue < physmem || physmem == 0)) {
740 			physmem = (pgcnt_t)lvalue;
741 			DBG(physmem);
742 		}
743 	}
744 	early_allocation = 0;
745 
746 	/*
747 	 * check to see if we have to override the default value of the console
748 	 */
749 	if (!use_xencons) {
750 		inputdev = line;
751 		v_len = do_bsys_getproplen(NULL, "input-device");
752 		if (v_len > 0)
753 			(void) do_bsys_getprop(NULL, "input-device", inputdev);
754 		else
755 			v_len = 0;
756 		inputdev[v_len] = 0;
757 
758 		outputdev = inputdev + v_len + 1;
759 		v_len = do_bsys_getproplen(NULL, "output-device");
760 		if (v_len > 0)
761 			(void) do_bsys_getprop(NULL, "output-device",
762 			    outputdev);
763 		else
764 			v_len = 0;
765 		outputdev[v_len] = 0;
766 
767 		consoledev = outputdev + v_len + 1;
768 		v_len = do_bsys_getproplen(NULL, "console");
769 		if (v_len > 0) {
770 			(void) do_bsys_getprop(NULL, "console", consoledev);
771 			if (post_fastreboot &&
772 			    strcmp(consoledev, "graphics") == 0) {
773 				bsetprops("console", "text");
774 				v_len = strlen("text");
775 				bcopy("text", consoledev, v_len);
776 			}
777 		} else {
778 			v_len = 0;
779 		}
780 		consoledev[v_len] = 0;
781 		bcons_init2(inputdev, outputdev, consoledev);
782 	} else {
783 		/*
784 		 * Ensure console property exists
785 		 * If not create it as "hypervisor"
786 		 */
787 		v_len = do_bsys_getproplen(NULL, "console");
788 		if (v_len < 0)
789 			bsetprops("console", "hypervisor");
790 		inputdev = outputdev = consoledev = "hypervisor";
791 		bcons_init2(inputdev, outputdev, consoledev);
792 	}
793 
794 	if (strstr((char *)xbootp->bi_cmdline, "prom_debug") || kbm_debug)
795 		boot_prop_display(line);
796 }
797 
798 /*
799  * print formatted output
800  */
801 /*PRINTFLIKE2*/
802 /*ARGSUSED*/
803 void
804 bop_printf(bootops_t *bop, const char *fmt, ...)
805 {
806 	va_list	ap;
807 
808 	if (have_console == 0)
809 		return;
810 
811 	va_start(ap, fmt);
812 	(void) vsnprintf(buffer, BUFFERSIZE, fmt, ap);
813 	va_end(ap);
814 	PUT_STRING(buffer);
815 }
816 
817 /*
818  * Another panic() variant; this one can be used even earlier during boot than
819  * prom_panic().
820  */
821 /*PRINTFLIKE1*/
822 void
823 bop_panic(const char *fmt, ...)
824 {
825 	va_list ap;
826 
827 	va_start(ap, fmt);
828 	bop_printf(NULL, fmt, ap);
829 	va_end(ap);
830 
831 	bop_printf(NULL, "\nPress any key to reboot.\n");
832 	(void) bcons_getchar();
833 	bop_printf(NULL, "Resetting...\n");
834 	pc_reset();
835 }
836 
837 /*
838  * Do a real mode interrupt BIOS call
839  */
840 typedef struct bios_regs {
841 	unsigned short ax, bx, cx, dx, si, di, bp, es, ds;
842 } bios_regs_t;
843 typedef int (*bios_func_t)(int, bios_regs_t *);
844 
845 /*ARGSUSED*/
846 static void
847 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp)
848 {
849 #if defined(__xpv)
850 	prom_panic("unsupported call to BOP_DOINT()\n");
851 #else	/* __xpv */
852 	static int firsttime = 1;
853 	bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000;
854 	bios_regs_t br;
855 
856 	/*
857 	 * The first time we do this, we have to copy the pre-packaged
858 	 * low memory bios call code image into place.
859 	 */
860 	if (firsttime) {
861 		extern char bios_image[];
862 		extern uint32_t bios_size;
863 
864 		bcopy(bios_image, (void *)bios_func, bios_size);
865 		firsttime = 0;
866 	}
867 
868 	br.ax = rp->eax.word.ax;
869 	br.bx = rp->ebx.word.bx;
870 	br.cx = rp->ecx.word.cx;
871 	br.dx = rp->edx.word.dx;
872 	br.bp = rp->ebp.word.bp;
873 	br.si = rp->esi.word.si;
874 	br.di = rp->edi.word.di;
875 	br.ds = rp->ds;
876 	br.es = rp->es;
877 
878 	DBG_MSG("Doing BIOS call...");
879 	DBG(br.ax);
880 	DBG(br.bx);
881 	DBG(br.dx);
882 	rp->eflags = bios_func(intnum, &br);
883 	DBG_MSG("done\n");
884 
885 	rp->eax.word.ax = br.ax;
886 	rp->ebx.word.bx = br.bx;
887 	rp->ecx.word.cx = br.cx;
888 	rp->edx.word.dx = br.dx;
889 	rp->ebp.word.bp = br.bp;
890 	rp->esi.word.si = br.si;
891 	rp->edi.word.di = br.di;
892 	rp->ds = br.ds;
893 	rp->es = br.es;
894 #endif /* __xpv */
895 }
896 
897 static struct boot_syscalls bop_sysp = {
898 	bcons_getchar,
899 	bcons_putchar,
900 	bcons_ischar,
901 };
902 
903 static char *whoami;
904 
905 #define	BUFLEN	64
906 
907 #if defined(__xpv)
908 
909 static char namebuf[32];
910 
911 static void
912 xen_parse_props(char *s, char *prop_map[], int n_prop)
913 {
914 	char **prop_name = prop_map;
915 	char *cp = s, *scp;
916 
917 	do {
918 		scp = cp;
919 		while ((*cp != NULL) && (*cp != ':'))
920 			cp++;
921 
922 		if ((scp != cp) && (*prop_name != NULL)) {
923 			*cp = NULL;
924 			bsetprops(*prop_name, scp);
925 		}
926 
927 		cp++;
928 		prop_name++;
929 		n_prop--;
930 	} while (n_prop > 0);
931 }
932 
933 #define	VBDPATHLEN	64
934 
935 /*
936  * parse the 'xpv-root' property to create properties used by
937  * ufs_mountroot.
938  */
939 static void
940 xen_vbdroot_props(char *s)
941 {
942 	char vbdpath[VBDPATHLEN] = "/xpvd/xdf@";
943 	const char lnamefix[] = "/dev/dsk/c0d";
944 	char *pnp;
945 	char *prop_p;
946 	char mi;
947 	short minor;
948 	long addr = 0;
949 
950 	pnp = vbdpath + strlen(vbdpath);
951 	prop_p = s + strlen(lnamefix);
952 	while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p'))
953 		addr = addr * 10 + *prop_p++ - '0';
954 	(void) snprintf(pnp, VBDPATHLEN, "%lx", addr);
955 	pnp = vbdpath + strlen(vbdpath);
956 	if (*prop_p == 's')
957 		mi = 'a';
958 	else if (*prop_p == 'p')
959 		mi = 'q';
960 	else
961 		ASSERT(0); /* shouldn't be here */
962 	prop_p++;
963 	ASSERT(*prop_p != '\0');
964 	if (ISDIGIT(*prop_p)) {
965 		minor = *prop_p - '0';
966 		prop_p++;
967 		if (ISDIGIT(*prop_p)) {
968 			minor = minor * 10 + *prop_p - '0';
969 		}
970 	} else {
971 		/* malformed root path, use 0 as default */
972 		minor = 0;
973 	}
974 	ASSERT(minor < 16); /* at most 16 partitions */
975 	mi += minor;
976 	*pnp++ = ':';
977 	*pnp++ = mi;
978 	*pnp++ = '\0';
979 	bsetprops("fstype", "ufs");
980 	bsetprops("bootpath", vbdpath);
981 
982 	DBG_MSG("VBD bootpath set to ");
983 	DBG_MSG(vbdpath);
984 	DBG_MSG("\n");
985 }
986 
987 /*
988  * parse the xpv-nfsroot property to create properties used by
989  * nfs_mountroot.
990  */
991 static void
992 xen_nfsroot_props(char *s)
993 {
994 	char *prop_map[] = {
995 		BP_SERVER_IP,	/* server IP address */
996 		BP_SERVER_NAME,	/* server hostname */
997 		BP_SERVER_PATH,	/* root path */
998 	};
999 	int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
1000 
1001 	bsetprop("fstype", 6, "nfs", 4);
1002 
1003 	xen_parse_props(s, prop_map, n_prop);
1004 
1005 	/*
1006 	 * If a server name wasn't specified, use a default.
1007 	 */
1008 	if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1)
1009 		bsetprops(BP_SERVER_NAME, "unknown");
1010 }
1011 
1012 /*
1013  * Extract our IP address, etc. from the "xpv-ip" property.
1014  */
1015 static void
1016 xen_ip_props(char *s)
1017 {
1018 	char *prop_map[] = {
1019 		BP_HOST_IP,		/* IP address */
1020 		NULL,			/* NFS server IP address (ignored in */
1021 					/* favour of xpv-nfsroot) */
1022 		BP_ROUTER_IP,		/* IP gateway */
1023 		BP_SUBNET_MASK,		/* IP subnet mask */
1024 		"xpv-hostname",		/* hostname (ignored) */
1025 		BP_NETWORK_INTERFACE,	/* interface name */
1026 		"xpv-hcp",		/* host configuration protocol */
1027 	};
1028 	int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
1029 	char ifname[IFNAMSIZ];
1030 
1031 	xen_parse_props(s, prop_map, n_prop);
1032 
1033 	/*
1034 	 * A Linux dom0 administrator expects all interfaces to be
1035 	 * called "ethX", which is not the case here.
1036 	 *
1037 	 * If the interface name specified is "eth0", presume that
1038 	 * this is really intended to be "xnf0" (the first domU ->
1039 	 * dom0 interface for this domain).
1040 	 */
1041 	if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) &&
1042 	    (strcmp("eth0", ifname) == 0)) {
1043 		bsetprops(BP_NETWORK_INTERFACE, "xnf0");
1044 		bop_printf(NULL,
1045 		    "network interface name 'eth0' replaced with 'xnf0'\n");
1046 	}
1047 }
1048 
1049 #else	/* __xpv */
1050 
1051 static void
1052 setup_rarp_props(struct sol_netinfo *sip)
1053 {
1054 	char buf[BUFLEN];	/* to hold ip/mac addrs */
1055 	uint8_t *val;
1056 
1057 	val = (uint8_t *)&sip->sn_ciaddr;
1058 	(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1059 	    val[0], val[1], val[2], val[3]);
1060 	bsetprops(BP_HOST_IP, buf);
1061 
1062 	val = (uint8_t *)&sip->sn_siaddr;
1063 	(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1064 	    val[0], val[1], val[2], val[3]);
1065 	bsetprops(BP_SERVER_IP, buf);
1066 
1067 	if (sip->sn_giaddr != 0) {
1068 		val = (uint8_t *)&sip->sn_giaddr;
1069 		(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1070 		    val[0], val[1], val[2], val[3]);
1071 		bsetprops(BP_ROUTER_IP, buf);
1072 	}
1073 
1074 	if (sip->sn_netmask != 0) {
1075 		val = (uint8_t *)&sip->sn_netmask;
1076 		(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1077 		    val[0], val[1], val[2], val[3]);
1078 		bsetprops(BP_SUBNET_MASK, buf);
1079 	}
1080 
1081 	if (sip->sn_mactype != 4 || sip->sn_maclen != 6) {
1082 		bop_printf(NULL, "unsupported mac type %d, mac len %d\n",
1083 		    sip->sn_mactype, sip->sn_maclen);
1084 	} else {
1085 		val = sip->sn_macaddr;
1086 		(void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x",
1087 		    val[0], val[1], val[2], val[3], val[4], val[5]);
1088 		bsetprops(BP_BOOT_MAC, buf);
1089 	}
1090 }
1091 
1092 #endif	/* __xpv */
1093 
1094 static void
1095 build_panic_cmdline(const char *cmd, int cmdlen)
1096 {
1097 	int proplen;
1098 	size_t arglen;
1099 
1100 	arglen = sizeof (fastreboot_onpanic_args);
1101 	/*
1102 	 * If we allready have fastreboot-onpanic set to zero,
1103 	 * don't add them again.
1104 	 */
1105 	if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 &&
1106 	    proplen <=  sizeof (fastreboot_onpanic_cmdline)) {
1107 		(void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC,
1108 		    fastreboot_onpanic_cmdline);
1109 		if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline))
1110 			arglen = 1;
1111 	}
1112 
1113 	/*
1114 	 * construct fastreboot_onpanic_cmdline
1115 	 */
1116 	if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) {
1117 		DBG_MSG("Command line too long: clearing "
1118 		    FASTREBOOT_ONPANIC "\n");
1119 		fastreboot_onpanic = 0;
1120 	} else {
1121 		bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen);
1122 		if (arglen != 1)
1123 			bcopy(fastreboot_onpanic_args,
1124 			    fastreboot_onpanic_cmdline + cmdlen, arglen);
1125 		else
1126 			fastreboot_onpanic_cmdline[cmdlen] = 0;
1127 	}
1128 }
1129 
1130 
1131 #ifndef	__xpv
1132 /*
1133  * Construct boot command line for Fast Reboot
1134  */
1135 static void
1136 build_fastboot_cmdline(struct xboot_info *xbp)
1137 {
1138 	saved_cmdline_len =  strlen(xbp->bi_cmdline) + 1;
1139 	if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) {
1140 		DBG(saved_cmdline_len);
1141 		DBG_MSG("Command line too long: clearing fastreboot_capable\n");
1142 		fastreboot_capable = 0;
1143 	} else {
1144 		bcopy((void *)(xbp->bi_cmdline), (void *)saved_cmdline,
1145 		    saved_cmdline_len);
1146 		saved_cmdline[saved_cmdline_len - 1] = '\0';
1147 		build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1);
1148 	}
1149 }
1150 
1151 /*
1152  * Save memory layout, disk drive information, unix and boot archive sizes for
1153  * Fast Reboot.
1154  */
1155 static void
1156 save_boot_info(struct xboot_info *xbi)
1157 {
1158 	multiboot_info_t *mbi = xbi->bi_mb_info;
1159 	struct boot_modules *modp;
1160 	int i;
1161 
1162 	bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t));
1163 	if (mbi->mmap_length > sizeof (saved_mmap)) {
1164 		DBG_MSG("mbi->mmap_length too big: clearing "
1165 		    "fastreboot_capable\n");
1166 		fastreboot_capable = 0;
1167 	} else {
1168 		bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap,
1169 		    mbi->mmap_length);
1170 	}
1171 
1172 	if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) {
1173 		if (mbi->drives_length > sizeof (saved_drives)) {
1174 			DBG(mbi->drives_length);
1175 			DBG_MSG("mbi->drives_length too big: clearing "
1176 			    "fastreboot_capable\n");
1177 			fastreboot_capable = 0;
1178 		} else {
1179 			bcopy((void *)(uintptr_t)mbi->drives_addr,
1180 			    (void *)saved_drives, mbi->drives_length);
1181 		}
1182 	} else {
1183 		saved_mbi.drives_length = 0;
1184 		saved_mbi.drives_addr = NULL;
1185 	}
1186 
1187 	/*
1188 	 * Current file sizes.  Used by fastboot.c to figure out how much
1189 	 * memory to reserve for panic reboot.
1190 	 * Use the module list from the dboot-constructed xboot_info
1191 	 * instead of the list referenced by the multiboot structure
1192 	 * because that structure may not be addressable now.
1193 	 */
1194 	saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE;
1195 	for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules;
1196 	    i < xbi->bi_module_cnt; i++, modp++) {
1197 		saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size;
1198 	}
1199 }
1200 #endif	/* __xpv */
1201 
1202 
1203 /*
1204  * 1st pass at building the table of boot properties. This includes:
1205  * - values set on the command line: -B a=x,b=y,c=z ....
1206  * - known values we just compute (ie. from xbp)
1207  * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
1208  *
1209  * the grub command line looked like:
1210  * kernel boot-file [-B prop=value[,prop=value]...] [boot-args]
1211  *
1212  * whoami is the same as boot-file
1213  */
1214 static void
1215 build_boot_properties(struct xboot_info *xbp)
1216 {
1217 	char *name;
1218 	int name_len;
1219 	char *value;
1220 	int value_len;
1221 	struct boot_modules *bm, *rdbm;
1222 	char *propbuf;
1223 	int quoted = 0;
1224 	int boot_arg_len;
1225 	uint_t i, midx;
1226 	char modid[32];
1227 #ifndef __xpv
1228 	static int stdout_val = 0;
1229 	uchar_t boot_device;
1230 	char str[3];
1231 	multiboot_info_t *mbi;
1232 	int netboot;
1233 	struct sol_netinfo *sip;
1234 #endif
1235 
1236 	/*
1237 	 * These have to be done first, so that kobj_mount_root() works
1238 	 */
1239 	DBG_MSG("Building boot properties\n");
1240 	propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0);
1241 	DBG((uintptr_t)propbuf);
1242 	if (xbp->bi_module_cnt > 0) {
1243 		bm = xbp->bi_modules;
1244 		rdbm = NULL;
1245 		for (midx = i = 0; i < xbp->bi_module_cnt; i++) {
1246 			if (bm[i].bm_type == BMT_ROOTFS) {
1247 				rdbm = &bm[i];
1248 				continue;
1249 			}
1250 			if (bm[i].bm_type == BMT_HASH || bm[i].bm_name == NULL)
1251 				continue;
1252 
1253 			(void) snprintf(modid, sizeof (modid),
1254 			    "module-name-%u", midx);
1255 			bsetprops(modid, (char *)bm[i].bm_name);
1256 			(void) snprintf(modid, sizeof (modid),
1257 			    "module-addr-%u", midx);
1258 			bsetprop64(modid, (uint64_t)(uintptr_t)bm[i].bm_addr);
1259 			(void) snprintf(modid, sizeof (modid),
1260 			    "module-size-%u", midx);
1261 			bsetprop64(modid, (uint64_t)bm[i].bm_size);
1262 			++midx;
1263 		}
1264 		if (rdbm != NULL) {
1265 			bsetprop64("ramdisk_start",
1266 			    (uint64_t)(uintptr_t)rdbm->bm_addr);
1267 			bsetprop64("ramdisk_end",
1268 			    (uint64_t)(uintptr_t)rdbm->bm_addr + rdbm->bm_size);
1269 		}
1270 	}
1271 
1272 	/*
1273 	 * If there are any boot time modules or hashes present, then disable
1274 	 * fast reboot.
1275 	 */
1276 	if (xbp->bi_module_cnt > 1) {
1277 		fastreboot_disable(FBNS_BOOTMOD);
1278 	}
1279 
1280 	DBG_MSG("Parsing command line for boot properties\n");
1281 	value = xbp->bi_cmdline;
1282 
1283 	/*
1284 	 * allocate memory to collect boot_args into
1285 	 */
1286 	boot_arg_len = strlen(xbp->bi_cmdline) + 1;
1287 	boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE);
1288 	boot_args[0] = 0;
1289 	boot_arg_len = 0;
1290 
1291 #ifdef __xpv
1292 	/*
1293 	 * Xen puts a lot of device information in front of the kernel name
1294 	 * let's grab them and make them boot properties.  The first
1295 	 * string w/o an "=" in it will be the boot-file property.
1296 	 */
1297 	(void) strcpy(namebuf, "xpv-");
1298 	for (;;) {
1299 		/*
1300 		 * get to next property
1301 		 */
1302 		while (ISSPACE(*value))
1303 			++value;
1304 		name = value;
1305 		/*
1306 		 * look for an "="
1307 		 */
1308 		while (*value && !ISSPACE(*value) && *value != '=') {
1309 			value++;
1310 		}
1311 		if (*value != '=') { /* no "=" in the property */
1312 			value = name;
1313 			break;
1314 		}
1315 		name_len = value - name;
1316 		value_len = 0;
1317 		/*
1318 		 * skip over the "="
1319 		 */
1320 		value++;
1321 		while (value[value_len] && !ISSPACE(value[value_len])) {
1322 			++value_len;
1323 		}
1324 		/*
1325 		 * build property name with "xpv-" prefix
1326 		 */
1327 		if (name_len + 4 > 32) { /* skip if name too long */
1328 			value += value_len;
1329 			continue;
1330 		}
1331 		bcopy(name, &namebuf[4], name_len);
1332 		name_len += 4;
1333 		namebuf[name_len] = 0;
1334 		bcopy(value, propbuf, value_len);
1335 		propbuf[value_len] = 0;
1336 		bsetprops(namebuf, propbuf);
1337 
1338 		/*
1339 		 * xpv-root is set to the logical disk name of the xen
1340 		 * VBD when booting from a disk-based filesystem.
1341 		 */
1342 		if (strcmp(namebuf, "xpv-root") == 0)
1343 			xen_vbdroot_props(propbuf);
1344 		/*
1345 		 * While we're here, if we have a "xpv-nfsroot" property
1346 		 * then we need to set "fstype" to "nfs" so we mount
1347 		 * our root from the nfs server.  Also parse the xpv-nfsroot
1348 		 * property to create the properties that nfs_mountroot will
1349 		 * need to find the root and mount it.
1350 		 */
1351 		if (strcmp(namebuf, "xpv-nfsroot") == 0)
1352 			xen_nfsroot_props(propbuf);
1353 
1354 		if (strcmp(namebuf, "xpv-ip") == 0)
1355 			xen_ip_props(propbuf);
1356 		value += value_len;
1357 	}
1358 #endif
1359 
1360 	while (ISSPACE(*value))
1361 		++value;
1362 	/*
1363 	 * value now points at the boot-file
1364 	 */
1365 	value_len = 0;
1366 	while (value[value_len] && !ISSPACE(value[value_len]))
1367 		++value_len;
1368 	if (value_len > 0) {
1369 		whoami = propbuf;
1370 		bcopy(value, whoami, value_len);
1371 		whoami[value_len] = 0;
1372 		bsetprops("boot-file", whoami);
1373 		/*
1374 		 * strip leading path stuff from whoami, so running from
1375 		 * PXE/miniroot makes sense.
1376 		 */
1377 		if (strstr(whoami, "/platform/") != NULL)
1378 			whoami = strstr(whoami, "/platform/");
1379 		bsetprops("whoami", whoami);
1380 	}
1381 
1382 	/*
1383 	 * Values forcibly set boot properties on the command line via -B.
1384 	 * Allow use of quotes in values. Other stuff goes on kernel
1385 	 * command line.
1386 	 */
1387 	name = value + value_len;
1388 	while (*name != 0) {
1389 		/*
1390 		 * anything not " -B" is copied to the command line
1391 		 */
1392 		if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') {
1393 			boot_args[boot_arg_len++] = *name;
1394 			boot_args[boot_arg_len] = 0;
1395 			++name;
1396 			continue;
1397 		}
1398 
1399 		/*
1400 		 * skip the " -B" and following white space
1401 		 */
1402 		name += 3;
1403 		while (ISSPACE(*name))
1404 			++name;
1405 		while (*name && !ISSPACE(*name)) {
1406 			value = strstr(name, "=");
1407 			if (value == NULL)
1408 				break;
1409 			name_len = value - name;
1410 			++value;
1411 			value_len = 0;
1412 			quoted = 0;
1413 			for (; ; ++value_len) {
1414 				if (!value[value_len])
1415 					break;
1416 
1417 				/*
1418 				 * is this value quoted?
1419 				 */
1420 				if (value_len == 0 &&
1421 				    (value[0] == '\'' || value[0] == '"')) {
1422 					quoted = value[0];
1423 					++value_len;
1424 				}
1425 
1426 				/*
1427 				 * In the quote accept any character,
1428 				 * but look for ending quote.
1429 				 */
1430 				if (quoted) {
1431 					if (value[value_len] == quoted)
1432 						quoted = 0;
1433 					continue;
1434 				}
1435 
1436 				/*
1437 				 * a comma or white space ends the value
1438 				 */
1439 				if (value[value_len] == ',' ||
1440 				    ISSPACE(value[value_len]))
1441 					break;
1442 			}
1443 
1444 			if (value_len == 0) {
1445 				bsetprop(name, name_len, "true", 5);
1446 			} else {
1447 				char *v = value;
1448 				int l = value_len;
1449 				if (v[0] == v[l - 1] &&
1450 				    (v[0] == '\'' || v[0] == '"')) {
1451 					++v;
1452 					l -= 2;
1453 				}
1454 				bcopy(v, propbuf, l);
1455 				propbuf[l] = '\0';
1456 				bsetprop(name, name_len, propbuf,
1457 				    l + 1);
1458 			}
1459 			name = value + value_len;
1460 			while (*name == ',')
1461 				++name;
1462 		}
1463 	}
1464 
1465 	/*
1466 	 * set boot-args property
1467 	 * 1275 name is bootargs, so set
1468 	 * that too
1469 	 */
1470 	bsetprops("boot-args", boot_args);
1471 	bsetprops("bootargs", boot_args);
1472 
1473 #ifndef __xpv
1474 	/*
1475 	 * set the BIOS boot device from GRUB
1476 	 */
1477 	netboot = 0;
1478 	mbi = xbp->bi_mb_info;
1479 
1480 	/*
1481 	 * Build boot command line for Fast Reboot
1482 	 */
1483 	build_fastboot_cmdline(xbp);
1484 
1485 	/*
1486 	 * Save various boot information for Fast Reboot
1487 	 */
1488 	save_boot_info(xbp);
1489 
1490 	if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) {
1491 		boot_device = mbi->boot_device >> 24;
1492 		if (boot_device == 0x20)
1493 			netboot++;
1494 		str[0] = (boot_device >> 4) + '0';
1495 		str[1] = (boot_device & 0xf) + '0';
1496 		str[2] = 0;
1497 		bsetprops("bios-boot-device", str);
1498 	} else {
1499 		netboot = 1;
1500 	}
1501 
1502 	/*
1503 	 * In the netboot case, drives_info is overloaded with the dhcp ack.
1504 	 * This is not multiboot compliant and requires special pxegrub!
1505 	 */
1506 	if (netboot && mbi->drives_length != 0) {
1507 		sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr;
1508 		if (sip->sn_infotype == SN_TYPE_BOOTP)
1509 			bsetprop("bootp-response", sizeof ("bootp-response"),
1510 			    (void *)(uintptr_t)mbi->drives_addr,
1511 			    mbi->drives_length);
1512 		else if (sip->sn_infotype == SN_TYPE_RARP)
1513 			setup_rarp_props(sip);
1514 	}
1515 	bsetprop("stdout", strlen("stdout"),
1516 	    &stdout_val, sizeof (stdout_val));
1517 #endif /* __xpv */
1518 
1519 	/*
1520 	 * more conjured up values for made up things....
1521 	 */
1522 #if defined(__xpv)
1523 	bsetprops("mfg-name", "i86xpv");
1524 	bsetprops("impl-arch-name", "i86xpv");
1525 #else
1526 	bsetprops("mfg-name", "i86pc");
1527 	bsetprops("impl-arch-name", "i86pc");
1528 #endif
1529 
1530 	/*
1531 	 * Build firmware-provided system properties
1532 	 */
1533 	build_firmware_properties();
1534 
1535 	/*
1536 	 * XXPV
1537 	 *
1538 	 * Find out what these are:
1539 	 * - cpuid_feature_ecx_include
1540 	 * - cpuid_feature_ecx_exclude
1541 	 * - cpuid_feature_edx_include
1542 	 * - cpuid_feature_edx_exclude
1543 	 *
1544 	 * Find out what these are in multiboot:
1545 	 * - netdev-path
1546 	 * - fstype
1547 	 */
1548 }
1549 
1550 #ifdef __xpv
1551 /*
1552  * Under the Hypervisor, memory usable for DMA may be scarce. One
1553  * very likely large pool of DMA friendly memory is occupied by
1554  * the boot_archive, as it was loaded by grub into low MFNs.
1555  *
1556  * Here we free up that memory by copying the boot archive to what are
1557  * likely higher MFN pages and then swapping the mfn/pfn mappings.
1558  */
1559 #define	PFN_2GIG	0x80000
1560 static void
1561 relocate_boot_archive(struct xboot_info *xbp)
1562 {
1563 	mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
1564 	struct boot_modules *bm = xbp->bi_modules;
1565 	uintptr_t va;
1566 	pfn_t va_pfn;
1567 	mfn_t va_mfn;
1568 	caddr_t copy;
1569 	pfn_t copy_pfn;
1570 	mfn_t copy_mfn;
1571 	size_t	len;
1572 	int slop;
1573 	int total = 0;
1574 	int relocated = 0;
1575 	int mmu_update_return;
1576 	mmu_update_t t[2];
1577 	x86pte_t pte;
1578 
1579 	/*
1580 	 * If all MFN's are below 2Gig, don't bother doing this.
1581 	 */
1582 	if (max_mfn < PFN_2GIG)
1583 		return;
1584 	if (xbp->bi_module_cnt < 1) {
1585 		DBG_MSG("no boot_archive!");
1586 		return;
1587 	}
1588 
1589 	DBG_MSG("moving boot_archive to high MFN memory\n");
1590 	va = (uintptr_t)bm->bm_addr;
1591 	len = bm->bm_size;
1592 	slop = va & MMU_PAGEOFFSET;
1593 	if (slop) {
1594 		va += MMU_PAGESIZE - slop;
1595 		len -= MMU_PAGESIZE - slop;
1596 	}
1597 	len = P2ALIGN(len, MMU_PAGESIZE);
1598 
1599 	/*
1600 	 * Go through all boot_archive pages, swapping any low MFN pages
1601 	 * with memory at next_phys.
1602 	 */
1603 	while (len != 0) {
1604 		++total;
1605 		va_pfn = mmu_btop(va - ONE_GIG);
1606 		va_mfn = mfn_list[va_pfn];
1607 		if (mfn_list[va_pfn] < PFN_2GIG) {
1608 			copy = kbm_remap_window(next_phys, 1);
1609 			bcopy((void *)va, copy, MMU_PAGESIZE);
1610 			copy_pfn = mmu_btop(next_phys);
1611 			copy_mfn = mfn_list[copy_pfn];
1612 
1613 			pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID;
1614 			if (HYPERVISOR_update_va_mapping(va, pte,
1615 			    UVMF_INVLPG | UVMF_LOCAL))
1616 				bop_panic("relocate_boot_archive():  "
1617 				    "HYPERVISOR_update_va_mapping() failed");
1618 
1619 			mfn_list[va_pfn] = copy_mfn;
1620 			mfn_list[copy_pfn] = va_mfn;
1621 
1622 			t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE;
1623 			t[0].val = va_pfn;
1624 			t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE;
1625 			t[1].val = copy_pfn;
1626 			if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return,
1627 			    DOMID_SELF) != 0 || mmu_update_return != 2)
1628 				bop_panic("relocate_boot_archive():  "
1629 				    "HYPERVISOR_mmu_update() failed");
1630 
1631 			next_phys += MMU_PAGESIZE;
1632 			++relocated;
1633 		}
1634 		len -= MMU_PAGESIZE;
1635 		va += MMU_PAGESIZE;
1636 	}
1637 	DBG_MSG("Relocated pages:\n");
1638 	DBG(relocated);
1639 	DBG_MSG("Out of total pages:\n");
1640 	DBG(total);
1641 }
1642 #endif /* __xpv */
1643 
1644 #if !defined(__xpv)
1645 /*
1646  * Install a temporary IDT that lets us catch errors in the boot time code.
1647  * We shouldn't get any faults at all while this is installed, so we'll
1648  * just generate a traceback and exit.
1649  */
1650 #ifdef __amd64
1651 static const int bcode_sel = B64CODE_SEL;
1652 #else
1653 static const int bcode_sel = B32CODE_SEL;
1654 #endif
1655 
1656 /*
1657  * simple description of a stack frame (args are 32 bit only currently)
1658  */
1659 typedef struct bop_frame {
1660 	struct bop_frame *old_frame;
1661 	pc_t retaddr;
1662 	long arg[1];
1663 } bop_frame_t;
1664 
1665 void
1666 bop_traceback(bop_frame_t *frame)
1667 {
1668 	pc_t pc;
1669 	int cnt;
1670 	char *ksym;
1671 	ulong_t off;
1672 #if defined(__i386)
1673 	int a;
1674 #endif
1675 
1676 	bop_printf(NULL, "Stack traceback:\n");
1677 	for (cnt = 0; cnt < 30; ++cnt) {	/* up to 30 frames */
1678 		pc = frame->retaddr;
1679 		if (pc == 0)
1680 			break;
1681 		ksym = kobj_getsymname(pc, &off);
1682 		if (ksym)
1683 			bop_printf(NULL, "  %s+%lx", ksym, off);
1684 		else
1685 			bop_printf(NULL, "  0x%lx", pc);
1686 
1687 		frame = frame->old_frame;
1688 		if (frame == 0) {
1689 			bop_printf(NULL, "\n");
1690 			break;
1691 		}
1692 #if defined(__i386)
1693 		for (a = 0; a < 6; ++a) {	/* try for 6 args */
1694 			if ((void *)&frame->arg[a] == (void *)frame->old_frame)
1695 				break;
1696 			if (a == 0)
1697 				bop_printf(NULL, "(");
1698 			else
1699 				bop_printf(NULL, ",");
1700 			bop_printf(NULL, "0x%lx", frame->arg[a]);
1701 		}
1702 		bop_printf(NULL, ")");
1703 #endif
1704 		bop_printf(NULL, "\n");
1705 	}
1706 }
1707 
1708 struct trapframe {
1709 	ulong_t error_code;	/* optional */
1710 	ulong_t inst_ptr;
1711 	ulong_t code_seg;
1712 	ulong_t flags_reg;
1713 #ifdef __amd64
1714 	ulong_t stk_ptr;
1715 	ulong_t stk_seg;
1716 #endif
1717 };
1718 
1719 void
1720 bop_trap(ulong_t *tfp)
1721 {
1722 	struct trapframe *tf = (struct trapframe *)tfp;
1723 	bop_frame_t fakeframe;
1724 	static int depth = 0;
1725 
1726 	/*
1727 	 * Check for an infinite loop of traps.
1728 	 */
1729 	if (++depth > 2)
1730 		bop_panic("Nested trap");
1731 
1732 	bop_printf(NULL, "Unexpected trap\n");
1733 
1734 	/*
1735 	 * adjust the tf for optional error_code by detecting the code selector
1736 	 */
1737 	if (tf->code_seg != bcode_sel)
1738 		tf = (struct trapframe *)(tfp - 1);
1739 	else
1740 		bop_printf(NULL, "error code           0x%lx\n",
1741 		    tf->error_code & 0xffffffff);
1742 
1743 	bop_printf(NULL, "instruction pointer  0x%lx\n", tf->inst_ptr);
1744 	bop_printf(NULL, "code segment         0x%lx\n", tf->code_seg & 0xffff);
1745 	bop_printf(NULL, "flags register       0x%lx\n", tf->flags_reg);
1746 #ifdef __amd64
1747 	bop_printf(NULL, "return %%rsp          0x%lx\n", tf->stk_ptr);
1748 	bop_printf(NULL, "return %%ss           0x%lx\n", tf->stk_seg & 0xffff);
1749 #endif
1750 
1751 	/* grab %[er]bp pushed by our code from the stack */
1752 	fakeframe.old_frame = (bop_frame_t *)*(tfp - 3);
1753 	fakeframe.retaddr = (pc_t)tf->inst_ptr;
1754 	bop_printf(NULL, "Attempting stack backtrace:\n");
1755 	bop_traceback(&fakeframe);
1756 	bop_panic("unexpected trap in early boot");
1757 }
1758 
1759 extern void bop_trap_handler(void);
1760 
1761 static gate_desc_t *bop_idt;
1762 
1763 static desctbr_t bop_idt_info;
1764 
1765 static void
1766 bop_idt_init(void)
1767 {
1768 	int t;
1769 
1770 	bop_idt = (gate_desc_t *)
1771 	    do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
1772 	bzero(bop_idt, MMU_PAGESIZE);
1773 	for (t = 0; t < NIDT; ++t) {
1774 		/*
1775 		 * Note that since boot runs without a TSS, the
1776 		 * double fault handler cannot use an alternate stack
1777 		 * (64-bit) or a task gate (32-bit).
1778 		 */
1779 		set_gatesegd(&bop_idt[t], &bop_trap_handler, bcode_sel,
1780 		    SDT_SYSIGT, TRP_KPL, 0);
1781 	}
1782 	bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1;
1783 	bop_idt_info.dtr_base = (uintptr_t)bop_idt;
1784 	wr_idtr(&bop_idt_info);
1785 }
1786 #endif	/* !defined(__xpv) */
1787 
1788 /*
1789  * This is where we enter the kernel. It dummies up the boot_ops and
1790  * boot_syscalls vectors and jumps off to _kobj_boot()
1791  */
1792 void
1793 _start(struct xboot_info *xbp)
1794 {
1795 	bootops_t *bops = &bootop;
1796 	extern void _kobj_boot();
1797 
1798 	/*
1799 	 * 1st off - initialize the console for any error messages
1800 	 */
1801 	xbootp = xbp;
1802 #ifdef __xpv
1803 	HYPERVISOR_shared_info = (void *)xbp->bi_shared_info;
1804 	xen_info = xbp->bi_xen_start_info;
1805 #endif
1806 
1807 #ifndef __xpv
1808 	if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) ==
1809 	    FASTBOOT_MAGIC) {
1810 		post_fastreboot = 1;
1811 		*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0;
1812 	}
1813 #endif
1814 
1815 	bcons_init((void *)xbp->bi_cmdline);
1816 	have_console = 1;
1817 
1818 	/*
1819 	 * enable debugging
1820 	 */
1821 	if (strstr((char *)xbp->bi_cmdline, "kbm_debug"))
1822 		kbm_debug = 1;
1823 
1824 	DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: ");
1825 	DBG_MSG((char *)xbp->bi_cmdline);
1826 	DBG_MSG("\n\n\n");
1827 
1828 	/*
1829 	 * physavail is no longer used by startup
1830 	 */
1831 	bm.physinstalled = xbp->bi_phys_install;
1832 	bm.pcimem = xbp->bi_pcimem;
1833 	bm.rsvdmem = xbp->bi_rsvdmem;
1834 	bm.physavail = NULL;
1835 
1836 	/*
1837 	 * initialize the boot time allocator
1838 	 */
1839 	next_phys = xbp->bi_next_paddr;
1840 	DBG(next_phys);
1841 	next_virt = (uintptr_t)xbp->bi_next_vaddr;
1842 	DBG(next_virt);
1843 	DBG_MSG("Initializing boot time memory management...");
1844 #ifdef __xpv
1845 	{
1846 		xen_platform_parameters_t p;
1847 
1848 		/* This call shouldn't fail, dboot already did it once. */
1849 		(void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p);
1850 		mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start);
1851 		DBG(xen_virt_start);
1852 	}
1853 #endif
1854 	kbm_init(xbp);
1855 	DBG_MSG("done\n");
1856 
1857 	/*
1858 	 * Fill in the bootops vector
1859 	 */
1860 	bops->bsys_version = BO_VERSION;
1861 	bops->boot_mem = &bm;
1862 	bops->bsys_alloc = do_bsys_alloc;
1863 	bops->bsys_free = do_bsys_free;
1864 	bops->bsys_getproplen = do_bsys_getproplen;
1865 	bops->bsys_getprop = do_bsys_getprop;
1866 	bops->bsys_nextprop = do_bsys_nextprop;
1867 	bops->bsys_printf = bop_printf;
1868 	bops->bsys_doint = do_bsys_doint;
1869 
1870 	/*
1871 	 * BOP_EALLOC() is no longer needed
1872 	 */
1873 	bops->bsys_ealloc = do_bsys_ealloc;
1874 
1875 #ifdef __xpv
1876 	/*
1877 	 * On domain 0 we need to free up some physical memory that is
1878 	 * usable for DMA. Since GRUB loaded the boot_archive, it is
1879 	 * sitting in low MFN memory. We'll relocated the boot archive
1880 	 * pages to high PFN memory.
1881 	 */
1882 	if (DOMAIN_IS_INITDOMAIN(xen_info))
1883 		relocate_boot_archive(xbp);
1884 #endif
1885 
1886 #ifndef __xpv
1887 	/*
1888 	 * Install an IDT to catch early pagefaults (shouldn't have any).
1889 	 * Also needed for kmdb.
1890 	 */
1891 	bop_idt_init();
1892 #endif
1893 
1894 	/*
1895 	 * Start building the boot properties from the command line
1896 	 */
1897 	DBG_MSG("Initializing boot properties:\n");
1898 	build_boot_properties(xbp);
1899 
1900 	if (strstr((char *)xbp->bi_cmdline, "prom_debug") || kbm_debug) {
1901 		char *value;
1902 
1903 		value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
1904 		boot_prop_display(value);
1905 	}
1906 
1907 	/*
1908 	 * jump into krtld...
1909 	 */
1910 	_kobj_boot(&bop_sysp, NULL, bops, NULL);
1911 }
1912 
1913 
1914 /*ARGSUSED*/
1915 static caddr_t
1916 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
1917 {
1918 	panic("Attempt to bsys_alloc() too late\n");
1919 	return (NULL);
1920 }
1921 
1922 /*ARGSUSED*/
1923 static void
1924 no_more_free(bootops_t *bop, caddr_t virt, size_t size)
1925 {
1926 	panic("Attempt to bsys_free() too late\n");
1927 }
1928 
1929 void
1930 bop_no_more_mem(void)
1931 {
1932 	DBG(total_bop_alloc_scratch);
1933 	DBG(total_bop_alloc_kernel);
1934 	bootops->bsys_alloc = no_more_alloc;
1935 	bootops->bsys_free = no_more_free;
1936 }
1937 
1938 
1939 /*
1940  * Set ACPI firmware properties
1941  */
1942 
1943 static caddr_t
1944 vmap_phys(size_t length, paddr_t pa)
1945 {
1946 	paddr_t	start, end;
1947 	caddr_t	va;
1948 	size_t	len, page;
1949 
1950 #ifdef __xpv
1951 	pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET);
1952 #endif
1953 	start = P2ALIGN(pa, MMU_PAGESIZE);
1954 	end = P2ROUNDUP(pa + length, MMU_PAGESIZE);
1955 	len = end - start;
1956 	va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE);
1957 	for (page = 0; page < len; page += MMU_PAGESIZE)
1958 		kbm_map((uintptr_t)va + page, start + page, 0, 0);
1959 	return (va + (pa & MMU_PAGEOFFSET));
1960 }
1961 
1962 static uint8_t
1963 checksum_table(uint8_t *tp, size_t len)
1964 {
1965 	uint8_t sum = 0;
1966 
1967 	while (len-- > 0)
1968 		sum += *tp++;
1969 
1970 	return (sum);
1971 }
1972 
1973 static int
1974 valid_rsdp(ACPI_TABLE_RSDP *rp)
1975 {
1976 
1977 	/* validate the V1.x checksum */
1978 	if (checksum_table((uint8_t *)rp, ACPI_RSDP_CHECKSUM_LENGTH) != 0)
1979 		return (0);
1980 
1981 	/* If pre-ACPI 2.0, this is a valid RSDP */
1982 	if (rp->Revision < 2)
1983 		return (1);
1984 
1985 	/* validate the V2.x checksum */
1986 	if (checksum_table((uint8_t *)rp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0)
1987 		return (0);
1988 
1989 	return (1);
1990 }
1991 
1992 /*
1993  * Scan memory range for an RSDP;
1994  * see ACPI 3.0 Spec, 5.2.5.1
1995  */
1996 static ACPI_TABLE_RSDP *
1997 scan_rsdp(paddr_t start, paddr_t end)
1998 {
1999 	ssize_t len  = end - start;
2000 	caddr_t ptr;
2001 
2002 	ptr = vmap_phys(len, start);
2003 	while (len > 0) {
2004 		if (strncmp(ptr, ACPI_SIG_RSDP, strlen(ACPI_SIG_RSDP)) == 0 &&
2005 		    valid_rsdp((ACPI_TABLE_RSDP *)ptr))
2006 			return ((ACPI_TABLE_RSDP *)ptr);
2007 
2008 		ptr += ACPI_RSDP_SCAN_STEP;
2009 		len -= ACPI_RSDP_SCAN_STEP;
2010 	}
2011 
2012 	return (NULL);
2013 }
2014 
2015 /*
2016  * Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function
2017  */
2018 static ACPI_TABLE_RSDP *
2019 find_rsdp()
2020 {
2021 	ACPI_TABLE_RSDP *rsdp;
2022 	uint16_t *ebda_seg;
2023 	paddr_t  ebda_addr;
2024 
2025 	/*
2026 	 * Get the EBDA segment and scan the first 1K
2027 	 */
2028 	ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t),
2029 	    ACPI_EBDA_PTR_LOCATION);
2030 	ebda_addr = *ebda_seg << 4;
2031 	rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_WINDOW_SIZE);
2032 	if (rsdp == NULL)
2033 		/* if EBDA doesn't contain RSDP, look in BIOS memory */
2034 		rsdp = scan_rsdp(ACPI_HI_RSDP_WINDOW_BASE,
2035 		    ACPI_HI_RSDP_WINDOW_BASE + ACPI_HI_RSDP_WINDOW_SIZE);
2036 	return (rsdp);
2037 }
2038 
2039 static ACPI_TABLE_HEADER *
2040 map_fw_table(paddr_t table_addr)
2041 {
2042 	ACPI_TABLE_HEADER *tp;
2043 	size_t len = MAX(sizeof (*tp), MMU_PAGESIZE);
2044 
2045 	/*
2046 	 * Map at least a page; if the table is larger than this, remap it
2047 	 */
2048 	tp = (ACPI_TABLE_HEADER *)vmap_phys(len, table_addr);
2049 	if (tp->Length > len)
2050 		tp = (ACPI_TABLE_HEADER *)vmap_phys(tp->Length, table_addr);
2051 	return (tp);
2052 }
2053 
2054 static ACPI_TABLE_HEADER *
2055 find_fw_table(char *signature)
2056 {
2057 	static int revision = 0;
2058 	static ACPI_TABLE_XSDT *xsdt;
2059 	static int len;
2060 	paddr_t xsdt_addr;
2061 	ACPI_TABLE_RSDP *rsdp;
2062 	ACPI_TABLE_HEADER *tp;
2063 	paddr_t table_addr;
2064 	int	n;
2065 
2066 	if (strlen(signature) != ACPI_NAME_SIZE)
2067 		return (NULL);
2068 
2069 	/*
2070 	 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help
2071 	 * understand this code.  If we haven't already found the RSDT/XSDT,
2072 	 * revision will be 0. Find the RSDP and check the revision
2073 	 * to find out whether to use the RSDT or XSDT.  If revision is
2074 	 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2,
2075 	 * use the XSDT.  If the XSDT address is 0, though, fall back to
2076 	 * revision 1 and use the RSDT.
2077 	 */
2078 	if (revision == 0) {
2079 		if ((rsdp = find_rsdp()) != NULL) {
2080 			revision = rsdp->Revision;
2081 			/*
2082 			 * ACPI 6.0 states that current revision is 2
2083 			 * from acpi_table_rsdp definition:
2084 			 * Must be (0) for ACPI 1.0 or (2) for ACPI 2.0+
2085 			 */
2086 			if (revision > 2)
2087 				revision = 2;
2088 			switch (revision) {
2089 			case 2:
2090 				/*
2091 				 * Use the XSDT unless BIOS is buggy and
2092 				 * claims to be rev 2 but has a null XSDT
2093 				 * address
2094 				 */
2095 				xsdt_addr = rsdp->XsdtPhysicalAddress;
2096 				if (xsdt_addr != 0)
2097 					break;
2098 				/* FALLTHROUGH */
2099 			case 0:
2100 				/* treat RSDP rev 0 as revision 1 internally */
2101 				revision = 1;
2102 				/* FALLTHROUGH */
2103 			case 1:
2104 				/* use the RSDT for rev 0/1 */
2105 				xsdt_addr = rsdp->RsdtPhysicalAddress;
2106 				break;
2107 			default:
2108 				/* unknown revision */
2109 				revision = 0;
2110 				break;
2111 			}
2112 		}
2113 		if (revision == 0)
2114 			return (NULL);
2115 
2116 		/* cache the XSDT info */
2117 		xsdt = (ACPI_TABLE_XSDT *)map_fw_table(xsdt_addr);
2118 		len = (xsdt->Header.Length - sizeof (xsdt->Header)) /
2119 		    ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t));
2120 	}
2121 
2122 	/*
2123 	 * Scan the table headers looking for a signature match
2124 	 */
2125 	for (n = 0; n < len; n++) {
2126 		ACPI_TABLE_RSDT *rsdt = (ACPI_TABLE_RSDT *)xsdt;
2127 		table_addr = (revision == 1) ? rsdt->TableOffsetEntry[n] :
2128 		    xsdt->TableOffsetEntry[n];
2129 
2130 		if (table_addr == 0)
2131 			continue;
2132 		tp = map_fw_table(table_addr);
2133 		if (strncmp(tp->Signature, signature, ACPI_NAME_SIZE) == 0) {
2134 			return (tp);
2135 		}
2136 	}
2137 	return (NULL);
2138 }
2139 
2140 static void
2141 process_mcfg(ACPI_TABLE_MCFG *tp)
2142 {
2143 	ACPI_MCFG_ALLOCATION *cfg_baap;
2144 	char *cfg_baa_endp;
2145 	int64_t ecfginfo[4];
2146 
2147 	cfg_baap = (ACPI_MCFG_ALLOCATION *)((uintptr_t)tp + sizeof (*tp));
2148 	cfg_baa_endp = ((char *)tp) + tp->Header.Length;
2149 	while ((char *)cfg_baap < cfg_baa_endp) {
2150 		if (cfg_baap->Address != 0 && cfg_baap->PciSegment == 0) {
2151 			ecfginfo[0] = cfg_baap->Address;
2152 			ecfginfo[1] = cfg_baap->PciSegment;
2153 			ecfginfo[2] = cfg_baap->StartBusNumber;
2154 			ecfginfo[3] = cfg_baap->EndBusNumber;
2155 			bsetprop(MCFG_PROPNAME, strlen(MCFG_PROPNAME),
2156 			    ecfginfo, sizeof (ecfginfo));
2157 			break;
2158 		}
2159 		cfg_baap++;
2160 	}
2161 }
2162 
2163 #ifndef __xpv
2164 static void
2165 process_madt_entries(ACPI_TABLE_MADT *tp, uint32_t *cpu_countp,
2166     uint32_t *cpu_possible_countp, uint32_t *cpu_apicid_array)
2167 {
2168 	ACPI_SUBTABLE_HEADER *item, *end;
2169 	uint32_t cpu_count = 0;
2170 	uint32_t cpu_possible_count = 0;
2171 
2172 	/*
2173 	 * Determine number of CPUs and keep track of "final" APIC ID
2174 	 * for each CPU by walking through ACPI MADT processor list
2175 	 */
2176 	end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2177 	item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2178 
2179 	while (item < end) {
2180 		switch (item->Type) {
2181 		case ACPI_MADT_TYPE_LOCAL_APIC: {
2182 			ACPI_MADT_LOCAL_APIC *cpu =
2183 			    (ACPI_MADT_LOCAL_APIC *) item;
2184 
2185 			if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2186 				if (cpu_apicid_array != NULL)
2187 					cpu_apicid_array[cpu_count] = cpu->Id;
2188 				cpu_count++;
2189 			}
2190 			cpu_possible_count++;
2191 			break;
2192 		}
2193 		case ACPI_MADT_TYPE_LOCAL_X2APIC: {
2194 			ACPI_MADT_LOCAL_X2APIC *cpu =
2195 			    (ACPI_MADT_LOCAL_X2APIC *) item;
2196 
2197 			if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2198 				if (cpu_apicid_array != NULL)
2199 					cpu_apicid_array[cpu_count] =
2200 					    cpu->LocalApicId;
2201 				cpu_count++;
2202 			}
2203 			cpu_possible_count++;
2204 			break;
2205 		}
2206 		default:
2207 			if (kbm_debug)
2208 				bop_printf(NULL, "MADT type %d\n", item->Type);
2209 			break;
2210 		}
2211 
2212 		item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length);
2213 	}
2214 	if (cpu_countp)
2215 		*cpu_countp = cpu_count;
2216 	if (cpu_possible_countp)
2217 		*cpu_possible_countp = cpu_possible_count;
2218 }
2219 
2220 static void
2221 process_madt(ACPI_TABLE_MADT *tp)
2222 {
2223 	uint32_t cpu_count = 0;
2224 	uint32_t cpu_possible_count = 0;
2225 	uint32_t *cpu_apicid_array; /* x2APIC ID is 32bit! */
2226 
2227 	if (tp != NULL) {
2228 		/* count cpu's */
2229 		process_madt_entries(tp, &cpu_count, &cpu_possible_count, NULL);
2230 
2231 		cpu_apicid_array = (uint32_t *)do_bsys_alloc(NULL, NULL,
2232 		    cpu_count * sizeof (*cpu_apicid_array), MMU_PAGESIZE);
2233 		if (cpu_apicid_array == NULL)
2234 			bop_panic("Not enough memory for APIC ID array");
2235 
2236 		/* copy IDs */
2237 		process_madt_entries(tp, NULL, NULL, cpu_apicid_array);
2238 
2239 		/*
2240 		 * Make boot property for array of "final" APIC IDs for each
2241 		 * CPU
2242 		 */
2243 		bsetprop(BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY),
2244 		    cpu_apicid_array, cpu_count * sizeof (*cpu_apicid_array));
2245 	}
2246 
2247 	/*
2248 	 * Check whether property plat-max-ncpus is already set.
2249 	 */
2250 	if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2251 		/*
2252 		 * Set plat-max-ncpus to number of maximum possible CPUs given
2253 		 * in MADT if it hasn't been set.
2254 		 * There's no formal way to detect max possible CPUs supported
2255 		 * by platform according to ACPI spec3.0b. So current CPU
2256 		 * hotplug implementation expects that all possible CPUs will
2257 		 * have an entry in MADT table and set plat-max-ncpus to number
2258 		 * of entries in MADT.
2259 		 * With introducing of ACPI4.0, Maximum System Capability Table
2260 		 * (MSCT) provides maximum number of CPUs supported by platform.
2261 		 * If MSCT is unavailable, fall back to old way.
2262 		 */
2263 		if (tp != NULL)
2264 			bsetpropsi(PLAT_MAX_NCPUS_NAME, cpu_possible_count);
2265 	}
2266 
2267 	/*
2268 	 * Set boot property boot-max-ncpus to number of CPUs existing at
2269 	 * boot time. boot-max-ncpus is mainly used for optimization.
2270 	 */
2271 	if (tp != NULL)
2272 		bsetpropsi(BOOT_MAX_NCPUS_NAME, cpu_count);
2273 
2274 	/*
2275 	 * User-set boot-ncpus overrides firmware count
2276 	 */
2277 	if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2278 		return;
2279 
2280 	/*
2281 	 * Set boot property boot-ncpus to number of active CPUs given in MADT
2282 	 * if it hasn't been set yet.
2283 	 */
2284 	if (tp != NULL)
2285 		bsetpropsi(BOOT_NCPUS_NAME, cpu_count);
2286 }
2287 
2288 static void
2289 process_srat(ACPI_TABLE_SRAT *tp)
2290 {
2291 	ACPI_SUBTABLE_HEADER *item, *end;
2292 	int i;
2293 	int proc_num, mem_num;
2294 #pragma pack(1)
2295 	struct {
2296 		uint32_t domain;
2297 		uint32_t apic_id;
2298 		uint32_t sapic_id;
2299 	} processor;
2300 	struct {
2301 		uint32_t domain;
2302 		uint32_t x2apic_id;
2303 	} x2apic;
2304 	struct {
2305 		uint32_t domain;
2306 		uint64_t addr;
2307 		uint64_t length;
2308 		uint32_t flags;
2309 	} memory;
2310 #pragma pack()
2311 	char prop_name[30];
2312 	uint64_t maxmem = 0;
2313 
2314 	if (tp == NULL)
2315 		return;
2316 
2317 	proc_num = mem_num = 0;
2318 	end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2319 	item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2320 	while (item < end) {
2321 		switch (item->Type) {
2322 		case ACPI_SRAT_TYPE_CPU_AFFINITY: {
2323 			ACPI_SRAT_CPU_AFFINITY *cpu =
2324 			    (ACPI_SRAT_CPU_AFFINITY *) item;
2325 
2326 			if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2327 				break;
2328 			processor.domain = cpu->ProximityDomainLo;
2329 			for (i = 0; i < 3; i++)
2330 				processor.domain +=
2331 				    cpu->ProximityDomainHi[i] << ((i + 1) * 8);
2332 			processor.apic_id = cpu->ApicId;
2333 			processor.sapic_id = cpu->LocalSapicEid;
2334 			(void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2335 			    proc_num);
2336 			bsetprop(prop_name, strlen(prop_name), &processor,
2337 			    sizeof (processor));
2338 			proc_num++;
2339 			break;
2340 		}
2341 		case ACPI_SRAT_TYPE_MEMORY_AFFINITY: {
2342 			ACPI_SRAT_MEM_AFFINITY *mem =
2343 			    (ACPI_SRAT_MEM_AFFINITY *)item;
2344 
2345 			if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED))
2346 				break;
2347 			memory.domain = mem->ProximityDomain;
2348 			memory.addr = mem->BaseAddress;
2349 			memory.length = mem->Length;
2350 			memory.flags = mem->Flags;
2351 			(void) snprintf(prop_name, 30, "acpi-srat-memory-%d",
2352 			    mem_num);
2353 			bsetprop(prop_name, strlen(prop_name), &memory,
2354 			    sizeof (memory));
2355 			if ((mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) &&
2356 			    (memory.addr + memory.length > maxmem)) {
2357 				maxmem = memory.addr + memory.length;
2358 			}
2359 			mem_num++;
2360 			break;
2361 		}
2362 		case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: {
2363 			ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu =
2364 			    (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item;
2365 
2366 			if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2367 				break;
2368 			x2apic.domain = x2cpu->ProximityDomain;
2369 			x2apic.x2apic_id = x2cpu->ApicId;
2370 			(void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2371 			    proc_num);
2372 			bsetprop(prop_name, strlen(prop_name), &x2apic,
2373 			    sizeof (x2apic));
2374 			proc_num++;
2375 			break;
2376 		}
2377 		default:
2378 			if (kbm_debug)
2379 				bop_printf(NULL, "SRAT type %d\n", item->Type);
2380 			break;
2381 		}
2382 
2383 		item = (ACPI_SUBTABLE_HEADER *)
2384 		    (item->Length + (uintptr_t)item);
2385 	}
2386 
2387 	/*
2388 	 * The maximum physical address calculated from the SRAT table is more
2389 	 * accurate than that calculated from the MSCT table.
2390 	 */
2391 	if (maxmem != 0) {
2392 		plat_dr_physmax = btop(maxmem);
2393 	}
2394 }
2395 
2396 static void
2397 process_slit(ACPI_TABLE_SLIT *tp)
2398 {
2399 
2400 	/*
2401 	 * Check the number of localities; if it's too huge, we just
2402 	 * return and locality enumeration code will handle this later,
2403 	 * if possible.
2404 	 *
2405 	 * Note that the size of the table is the square of the
2406 	 * number of localities; if the number of localities exceeds
2407 	 * UINT16_MAX, the table size may overflow an int when being
2408 	 * passed to bsetprop() below.
2409 	 */
2410 	if (tp->LocalityCount >= SLIT_LOCALITIES_MAX)
2411 		return;
2412 
2413 	bsetprop(SLIT_NUM_PROPNAME, strlen(SLIT_NUM_PROPNAME),
2414 	    &tp->LocalityCount, sizeof (tp->LocalityCount));
2415 	bsetprop(SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->Entry,
2416 	    tp->LocalityCount * tp->LocalityCount);
2417 }
2418 
2419 static ACPI_TABLE_MSCT *
2420 process_msct(ACPI_TABLE_MSCT *tp)
2421 {
2422 	int last_seen = 0;
2423 	int proc_num = 0;
2424 	ACPI_MSCT_PROXIMITY *item, *end;
2425 	extern uint64_t plat_dr_options;
2426 
2427 	ASSERT(tp != NULL);
2428 
2429 	end = (ACPI_MSCT_PROXIMITY *)(tp->Header.Length + (uintptr_t)tp);
2430 	for (item = (void *)((uintptr_t)tp + tp->ProximityOffset);
2431 	    item < end;
2432 	    item = (void *)(item->Length + (uintptr_t)item)) {
2433 		/*
2434 		 * Sanity check according to section 5.2.19.1 of ACPI 4.0.
2435 		 * Revision 	1
2436 		 * Length	22
2437 		 */
2438 		if (item->Revision != 1 || item->Length != 22) {
2439 			cmn_err(CE_CONT,
2440 			    "?boot: unknown proximity domain structure in MSCT "
2441 			    "with Revision(%d), Length(%d).\n",
2442 			    (int)item->Revision, (int)item->Length);
2443 			return (NULL);
2444 		} else if (item->RangeStart > item->RangeEnd) {
2445 			cmn_err(CE_CONT,
2446 			    "?boot: invalid proximity domain structure in MSCT "
2447 			    "with RangeStart(%u), RangeEnd(%u).\n",
2448 			    item->RangeStart, item->RangeEnd);
2449 			return (NULL);
2450 		} else if (item->RangeStart != last_seen) {
2451 			/*
2452 			 * Items must be organized in ascending order of the
2453 			 * proximity domain enumerations.
2454 			 */
2455 			cmn_err(CE_CONT,
2456 			    "?boot: invalid proximity domain structure in MSCT,"
2457 			    " items are not orginized in ascending order.\n");
2458 			return (NULL);
2459 		}
2460 
2461 		/*
2462 		 * If ProcessorCapacity is 0 then there would be no CPUs in this
2463 		 * domain.
2464 		 */
2465 		if (item->ProcessorCapacity != 0) {
2466 			proc_num += (item->RangeEnd - item->RangeStart + 1) *
2467 			    item->ProcessorCapacity;
2468 		}
2469 
2470 		last_seen = item->RangeEnd - item->RangeStart + 1;
2471 		/*
2472 		 * Break out if all proximity domains have been processed.
2473 		 * Some BIOSes may have unused items at the end of MSCT table.
2474 		 */
2475 		if (last_seen > tp->MaxProximityDomains) {
2476 			break;
2477 		}
2478 	}
2479 	if (last_seen != tp->MaxProximityDomains + 1) {
2480 		cmn_err(CE_CONT,
2481 		    "?boot: invalid proximity domain structure in MSCT, "
2482 		    "proximity domain count doesn't match.\n");
2483 		return (NULL);
2484 	}
2485 
2486 	/*
2487 	 * Set plat-max-ncpus property if it hasn't been set yet.
2488 	 */
2489 	if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2490 		if (proc_num != 0) {
2491 			bsetpropsi(PLAT_MAX_NCPUS_NAME, proc_num);
2492 		}
2493 	}
2494 
2495 	/*
2496 	 * Use Maximum Physical Address from the MSCT table as upper limit for
2497 	 * memory hot-adding by default. It may be overridden by value from
2498 	 * the SRAT table or the "plat-dr-physmax" boot option.
2499 	 */
2500 	plat_dr_physmax = btop(tp->MaxAddress + 1);
2501 
2502 	/*
2503 	 * Existence of MSCT implies CPU/memory hotplug-capability for the
2504 	 * platform.
2505 	 */
2506 	plat_dr_options |= PLAT_DR_FEATURE_CPU;
2507 	plat_dr_options |= PLAT_DR_FEATURE_MEMORY;
2508 
2509 	return (tp);
2510 }
2511 
2512 #else /* __xpv */
2513 static void
2514 enumerate_xen_cpus()
2515 {
2516 	processorid_t	id, max_id;
2517 
2518 	/*
2519 	 * User-set boot-ncpus overrides enumeration
2520 	 */
2521 	if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2522 		return;
2523 
2524 	/*
2525 	 * Probe every possible virtual CPU id and remember the
2526 	 * highest id present; the count of CPUs is one greater
2527 	 * than this.  This tacitly assumes at least cpu 0 is present.
2528 	 */
2529 	max_id = 0;
2530 	for (id = 0; id < MAX_VIRT_CPUS; id++)
2531 		if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0)
2532 			max_id = id;
2533 
2534 	bsetpropsi(BOOT_NCPUS_NAME, max_id+1);
2535 
2536 }
2537 #endif /* __xpv */
2538 
2539 static void
2540 build_firmware_properties(void)
2541 {
2542 	ACPI_TABLE_HEADER *tp = NULL;
2543 
2544 #ifndef __xpv
2545 	if ((tp = find_fw_table(ACPI_SIG_MSCT)) != NULL)
2546 		msct_ptr = process_msct((ACPI_TABLE_MSCT *)tp);
2547 	else
2548 		msct_ptr = NULL;
2549 
2550 	if ((tp = find_fw_table(ACPI_SIG_MADT)) != NULL)
2551 		process_madt((ACPI_TABLE_MADT *)tp);
2552 
2553 	if ((srat_ptr = (ACPI_TABLE_SRAT *)
2554 	    find_fw_table(ACPI_SIG_SRAT)) != NULL)
2555 		process_srat(srat_ptr);
2556 
2557 	if (slit_ptr = (ACPI_TABLE_SLIT *)find_fw_table(ACPI_SIG_SLIT))
2558 		process_slit(slit_ptr);
2559 
2560 	tp = find_fw_table(ACPI_SIG_MCFG);
2561 #else /* __xpv */
2562 	enumerate_xen_cpus();
2563 	if (DOMAIN_IS_INITDOMAIN(xen_info))
2564 		tp = find_fw_table(ACPI_SIG_MCFG);
2565 #endif /* __xpv */
2566 	if (tp != NULL)
2567 		process_mcfg((ACPI_TABLE_MCFG *)tp);
2568 }
2569 
2570 /*
2571  * fake up a boot property for deferred early console output
2572  * this is used by both graphical boot and the (developer only)
2573  * USB serial console
2574  */
2575 void *
2576 defcons_init(size_t size)
2577 {
2578 	static char *p = NULL;
2579 
2580 	p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE);
2581 	*p = 0;
2582 	bsetprop("deferred-console-buf", strlen("deferred-console-buf") + 1,
2583 	    &p, sizeof (p));
2584 	return (p);
2585 }
2586 
2587 /*ARGSUSED*/
2588 int
2589 boot_compinfo(int fd, struct compinfo *cbp)
2590 {
2591 	cbp->iscmp = 0;
2592 	cbp->blksize = MAXBSIZE;
2593 	return (0);
2594 }
2595 
2596 #define	BP_MAX_STRLEN	32
2597 
2598 /*
2599  * Get value for given boot property
2600  */
2601 int
2602 bootprop_getval(const char *prop_name, u_longlong_t *prop_value)
2603 {
2604 	int		boot_prop_len;
2605 	char		str[BP_MAX_STRLEN];
2606 	u_longlong_t	value;
2607 
2608 	boot_prop_len = BOP_GETPROPLEN(bootops, prop_name);
2609 	if (boot_prop_len < 0 || boot_prop_len > sizeof (str) ||
2610 	    BOP_GETPROP(bootops, prop_name, str) < 0 ||
2611 	    kobj_getvalue(str, &value) == -1)
2612 		return (-1);
2613 
2614 	if (prop_value)
2615 		*prop_value = value;
2616 
2617 	return (0);
2618 }
2619