xref: /titanic_50/usr/src/uts/i86pc/os/ddi_impl.c (revision d2b85481f18adf6f3720470849b073e3b8dd3ed8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * PC specific DDI implementation
31  */
32 #include <sys/types.h>
33 #include <sys/autoconf.h>
34 #include <sys/avintr.h>
35 #include <sys/bootconf.h>
36 #include <sys/conf.h>
37 #include <sys/cpuvar.h>
38 #include <sys/ddi_impldefs.h>
39 #include <sys/ddi_subrdefs.h>
40 #include <sys/ethernet.h>
41 #include <sys/fp.h>
42 #include <sys/instance.h>
43 #include <sys/kmem.h>
44 #include <sys/machsystm.h>
45 #include <sys/modctl.h>
46 #include <sys/promif.h>
47 #include <sys/prom_plat.h>
48 #include <sys/sunndi.h>
49 #include <sys/ndi_impldefs.h>
50 #include <sys/ddi_impldefs.h>
51 #include <sys/sysmacros.h>
52 #include <sys/systeminfo.h>
53 #include <sys/utsname.h>
54 #include <sys/atomic.h>
55 #include <sys/spl.h>
56 #include <sys/archsystm.h>
57 #include <vm/seg_kmem.h>
58 #include <sys/ontrap.h>
59 #include <sys/fm/protocol.h>
60 #include <sys/ramdisk.h>
61 #include <sys/sunndi.h>
62 #include <sys/vmem.h>
63 #include <sys/pci_impl.h>
64 #if defined(__xpv)
65 #include <sys/hypervisor.h>
66 #endif
67 #include <sys/mach_intr.h>
68 #include <vm/hat_i86.h>
69 #include <sys/x86_archext.h>
70 
71 /*
72  * DDI Boot Configuration
73  */
74 
75 /*
76  * No platform drivers on this platform
77  */
78 char *platform_module_list[] = {
79 	"ppm",
80 	(char *)0
81 };
82 
83 /* pci bus resource maps */
84 struct pci_bus_resource *pci_bus_res;
85 
86 size_t dma_max_copybuf_size = 0x101000;		/* 1M + 4K */
87 
88 extern int root_is_svm;
89 uint64_t ramdisk_start, ramdisk_end;
90 
91 /*
92  * Forward declarations
93  */
94 static int getlongprop_buf();
95 static void get_boot_properties(void);
96 static void impl_bus_initialprobe(void);
97 static void impl_bus_reprobe(void);
98 
99 static int poke_mem(peekpoke_ctlops_t *in_args);
100 static int peek_mem(peekpoke_ctlops_t *in_args);
101 
102 static int kmem_override_cache_attrs(caddr_t, size_t, uint_t);
103 
104 #define	CTGENTRIES	15
105 
106 static struct ctgas {
107 	struct ctgas	*ctg_next;
108 	int		ctg_index;
109 	void		*ctg_addr[CTGENTRIES];
110 	size_t		ctg_size[CTGENTRIES];
111 } ctglist;
112 
113 static kmutex_t		ctgmutex;
114 #define	CTGLOCK()	mutex_enter(&ctgmutex)
115 #define	CTGUNLOCK()	mutex_exit(&ctgmutex)
116 
117 /*
118  * Minimum pfn value of page_t's put on the free list.  This is to simplify
119  * support of ddi dma memory requests which specify small, non-zero addr_lo
120  * values.
121  *
122  * The default value of 2, which corresponds to the only known non-zero addr_lo
123  * value used, means a single page will be sacrificed (pfn typically starts
124  * at 1).  ddiphysmin can be set to 0 to disable. It cannot be set above 0x100
125  * otherwise mp startup panics.
126  */
127 pfn_t	ddiphysmin = 2;
128 
129 static void
130 check_driver_disable(void)
131 {
132 	int proplen = 128;
133 	char *prop_name;
134 	char *drv_name, *propval;
135 	major_t major;
136 
137 	prop_name = kmem_alloc(proplen, KM_SLEEP);
138 	for (major = 0; major < devcnt; major++) {
139 		drv_name = ddi_major_to_name(major);
140 		if (drv_name == NULL)
141 			continue;
142 		(void) snprintf(prop_name, proplen, "disable-%s", drv_name);
143 		if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
144 		    DDI_PROP_DONTPASS, prop_name, &propval) == DDI_SUCCESS) {
145 			if (strcmp(propval, "true") == 0) {
146 				devnamesp[major].dn_flags |= DN_DRIVER_REMOVED;
147 				cmn_err(CE_NOTE, "driver %s disabled",
148 				    drv_name);
149 			}
150 			ddi_prop_free(propval);
151 		}
152 	}
153 	kmem_free(prop_name, proplen);
154 }
155 
156 
157 /*
158  * Configure the hardware on the system.
159  * Called before the rootfs is mounted
160  */
161 void
162 configure(void)
163 {
164 	extern void i_ddi_init_root();
165 
166 #if defined(__i386)
167 	extern int fpu_pentium_fdivbug;
168 #endif	/* __i386 */
169 	extern int fpu_ignored;
170 
171 	/*
172 	 * Determine if an FPU is attached
173 	 */
174 
175 	fpu_probe();
176 
177 #if defined(__i386)
178 	if (fpu_pentium_fdivbug) {
179 		printf("\
180 FP hardware exhibits Pentium floating point divide problem\n");
181 	}
182 #endif	/* __i386 */
183 
184 	if (fpu_ignored) {
185 		printf("FP hardware will not be used\n");
186 	} else if (!fpu_exists) {
187 		printf("No FPU in configuration\n");
188 	}
189 
190 	/*
191 	 * Initialize devices on the machine.
192 	 * Uses configuration tree built by the PROMs to determine what
193 	 * is present, and builds a tree of prototype dev_info nodes
194 	 * corresponding to the hardware which identified itself.
195 	 */
196 #if !defined(SAS) && !defined(MPSAS)
197 	/*
198 	 * Check for disabled drivers and initialize root node.
199 	 */
200 	check_driver_disable();
201 	i_ddi_init_root();
202 
203 	/*
204 	 * attach the isa nexus to get ACPI resource usage
205 	 * isa is "kind of" a pseudo node
206 	 */
207 #if defined(__xpv)
208 	if (DOMAIN_IS_INITDOMAIN(xen_info))
209 		(void) i_ddi_attach_pseudo_node("isa");
210 #else
211 	(void) i_ddi_attach_pseudo_node("isa");
212 #endif
213 
214 	/* reprogram devices not set up by firmware (BIOS) */
215 	impl_bus_reprobe();
216 #endif	/* !SAS && !MPSAS */
217 }
218 
219 /*
220  * The "status" property indicates the operational status of a device.
221  * If this property is present, the value is a string indicating the
222  * status of the device as follows:
223  *
224  *	"okay"		operational.
225  *	"disabled"	not operational, but might become operational.
226  *	"fail"		not operational because a fault has been detected,
227  *			and it is unlikely that the device will become
228  *			operational without repair. no additional details
229  *			are available.
230  *	"fail-xxx"	not operational because a fault has been detected,
231  *			and it is unlikely that the device will become
232  *			operational without repair. "xxx" is additional
233  *			human-readable information about the particular
234  *			fault condition that was detected.
235  *
236  * The absence of this property means that the operational status is
237  * unknown or okay.
238  *
239  * This routine checks the status property of the specified device node
240  * and returns 0 if the operational status indicates failure, and 1 otherwise.
241  *
242  * The property may exist on plug-in cards the existed before IEEE 1275-1994.
243  * And, in that case, the property may not even be a string. So we carefully
244  * check for the value "fail", in the beginning of the string, noting
245  * the property length.
246  */
247 int
248 status_okay(int id, char *buf, int buflen)
249 {
250 	char status_buf[OBP_MAXPROPNAME];
251 	char *bufp = buf;
252 	int len = buflen;
253 	int proplen;
254 	static const char *status = "status";
255 	static const char *fail = "fail";
256 	int fail_len = (int)strlen(fail);
257 
258 	/*
259 	 * Get the proplen ... if it's smaller than "fail",
260 	 * or doesn't exist ... then we don't care, since
261 	 * the value can't begin with the char string "fail".
262 	 *
263 	 * NB: proplen, if it's a string, includes the NULL in the
264 	 * the size of the property, and fail_len does not.
265 	 */
266 	proplen = prom_getproplen((pnode_t)id, (caddr_t)status);
267 	if (proplen <= fail_len)	/* nonexistant or uninteresting len */
268 		return (1);
269 
270 	/*
271 	 * if a buffer was provided, use it
272 	 */
273 	if ((buf == (char *)NULL) || (buflen <= 0)) {
274 		bufp = status_buf;
275 		len = sizeof (status_buf);
276 	}
277 	*bufp = (char)0;
278 
279 	/*
280 	 * Get the property into the buffer, to the extent of the buffer,
281 	 * and in case the buffer is smaller than the property size,
282 	 * NULL terminate the buffer. (This handles the case where
283 	 * a buffer was passed in and the caller wants to print the
284 	 * value, but the buffer was too small).
285 	 */
286 	(void) prom_bounded_getprop((pnode_t)id, (caddr_t)status,
287 	    (caddr_t)bufp, len);
288 	*(bufp + len - 1) = (char)0;
289 
290 	/*
291 	 * If the value begins with the char string "fail",
292 	 * then it means the node is failed. We don't care
293 	 * about any other values. We assume the node is ok
294 	 * although it might be 'disabled'.
295 	 */
296 	if (strncmp(bufp, fail, fail_len) == 0)
297 		return (0);
298 
299 	return (1);
300 }
301 
302 /*
303  * Check the status of the device node passed as an argument.
304  *
305  *	if ((status is OKAY) || (status is DISABLED))
306  *		return DDI_SUCCESS
307  *	else
308  *		print a warning and return DDI_FAILURE
309  */
310 /*ARGSUSED1*/
311 int
312 check_status(int id, char *name, dev_info_t *parent)
313 {
314 	char status_buf[64];
315 	char devtype_buf[OBP_MAXPROPNAME];
316 	int retval = DDI_FAILURE;
317 
318 	/*
319 	 * is the status okay?
320 	 */
321 	if (status_okay(id, status_buf, sizeof (status_buf)))
322 		return (DDI_SUCCESS);
323 
324 	/*
325 	 * a status property indicating bad memory will be associated
326 	 * with a node which has a "device_type" property with a value of
327 	 * "memory-controller". in this situation, return DDI_SUCCESS
328 	 */
329 	if (getlongprop_buf(id, OBP_DEVICETYPE, devtype_buf,
330 	    sizeof (devtype_buf)) > 0) {
331 		if (strcmp(devtype_buf, "memory-controller") == 0)
332 			retval = DDI_SUCCESS;
333 	}
334 
335 	/*
336 	 * print the status property information
337 	 */
338 	cmn_err(CE_WARN, "status '%s' for '%s'", status_buf, name);
339 	return (retval);
340 }
341 
342 /*ARGSUSED*/
343 uint_t
344 softlevel1(caddr_t arg1, caddr_t arg2)
345 {
346 	softint();
347 	return (1);
348 }
349 
350 /*
351  * Allow for implementation specific correction of PROM property values.
352  */
353 
354 /*ARGSUSED*/
355 void
356 impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len,
357     caddr_t buffer)
358 {
359 	/*
360 	 * There are no adjustments needed in this implementation.
361 	 */
362 }
363 
364 static int
365 getlongprop_buf(int id, char *name, char *buf, int maxlen)
366 {
367 	int size;
368 
369 	size = prom_getproplen((pnode_t)id, name);
370 	if (size <= 0 || (size > maxlen - 1))
371 		return (-1);
372 
373 	if (-1 == prom_getprop((pnode_t)id, name, buf))
374 		return (-1);
375 
376 	if (strcmp("name", name) == 0) {
377 		if (buf[size - 1] != '\0') {
378 			buf[size] = '\0';
379 			size += 1;
380 		}
381 	}
382 
383 	return (size);
384 }
385 
386 static int
387 get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen)
388 {
389 	int ret;
390 
391 	if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di,
392 	    DDI_PROP_DONTPASS, pname, pval, plen))
393 	    == DDI_PROP_SUCCESS) {
394 		*plen = (*plen) * (sizeof (int));
395 	}
396 	return (ret);
397 }
398 
399 
400 /*
401  * Node Configuration
402  */
403 
404 struct prop_ispec {
405 	uint_t	pri, vec;
406 };
407 
408 /*
409  * For the x86, we're prepared to claim that the interrupt string
410  * is in the form of a list of <ipl,vec> specifications.
411  */
412 
413 #define	VEC_MIN	1
414 #define	VEC_MAX	255
415 
416 static int
417 impl_xlate_intrs(dev_info_t *child, int *in,
418     struct ddi_parent_private_data *pdptr)
419 {
420 	size_t size;
421 	int n;
422 	struct intrspec *new;
423 	caddr_t got_prop;
424 	int *inpri;
425 	int got_len;
426 	extern int ignore_hardware_nodes;	/* force flag from ddi_impl.c */
427 
428 	static char bad_intr_fmt[] =
429 	    "bad interrupt spec from %s%d - ipl %d, irq %d\n";
430 
431 	/*
432 	 * determine if the driver is expecting the new style "interrupts"
433 	 * property which just contains the IRQ, or the old style which
434 	 * contains pairs of <IPL,IRQ>.  if it is the new style, we always
435 	 * assign IPL 5 unless an "interrupt-priorities" property exists.
436 	 * in that case, the "interrupt-priorities" property contains the
437 	 * IPL values that match, one for one, the IRQ values in the
438 	 * "interrupts" property.
439 	 */
440 	inpri = NULL;
441 	if ((ddi_getprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS,
442 	    "ignore-hardware-nodes", -1) != -1) || ignore_hardware_nodes) {
443 		/* the old style "interrupts" property... */
444 
445 		/*
446 		 * The list consists of <ipl,vec> elements
447 		 */
448 		if ((n = (*in++ >> 1)) < 1)
449 			return (DDI_FAILURE);
450 
451 		pdptr->par_nintr = n;
452 		size = n * sizeof (struct intrspec);
453 		new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP);
454 
455 		while (n--) {
456 			int level = *in++;
457 			int vec = *in++;
458 
459 			if (level < 1 || level > MAXIPL ||
460 			    vec < VEC_MIN || vec > VEC_MAX) {
461 				cmn_err(CE_CONT, bad_intr_fmt,
462 				    DEVI(child)->devi_name,
463 				    DEVI(child)->devi_instance, level, vec);
464 				goto broken;
465 			}
466 			new->intrspec_pri = level;
467 			if (vec != 2)
468 				new->intrspec_vec = vec;
469 			else
470 				/*
471 				 * irq 2 on the PC bus is tied to irq 9
472 				 * on ISA, EISA and MicroChannel
473 				 */
474 				new->intrspec_vec = 9;
475 			new++;
476 		}
477 
478 		return (DDI_SUCCESS);
479 	} else {
480 		/* the new style "interrupts" property... */
481 
482 		/*
483 		 * The list consists of <vec> elements
484 		 */
485 		if ((n = (*in++)) < 1)
486 			return (DDI_FAILURE);
487 
488 		pdptr->par_nintr = n;
489 		size = n * sizeof (struct intrspec);
490 		new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP);
491 
492 		/* XXX check for "interrupt-priorities" property... */
493 		if (ddi_getlongprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS,
494 		    "interrupt-priorities", (caddr_t)&got_prop, &got_len)
495 		    == DDI_PROP_SUCCESS) {
496 			if (n != (got_len / sizeof (int))) {
497 				cmn_err(CE_CONT,
498 				    "bad interrupt-priorities length"
499 				    " from %s%d: expected %d, got %d\n",
500 				    DEVI(child)->devi_name,
501 				    DEVI(child)->devi_instance, n,
502 				    (int)(got_len / sizeof (int)));
503 				goto broken;
504 			}
505 			inpri = (int *)got_prop;
506 		}
507 
508 		while (n--) {
509 			int level;
510 			int vec = *in++;
511 
512 			if (inpri == NULL)
513 				level = 5;
514 			else
515 				level = *inpri++;
516 
517 			if (level < 1 || level > MAXIPL ||
518 			    vec < VEC_MIN || vec > VEC_MAX) {
519 				cmn_err(CE_CONT, bad_intr_fmt,
520 				    DEVI(child)->devi_name,
521 				    DEVI(child)->devi_instance, level, vec);
522 				goto broken;
523 			}
524 			new->intrspec_pri = level;
525 			if (vec != 2)
526 				new->intrspec_vec = vec;
527 			else
528 				/*
529 				 * irq 2 on the PC bus is tied to irq 9
530 				 * on ISA, EISA and MicroChannel
531 				 */
532 				new->intrspec_vec = 9;
533 			new++;
534 		}
535 
536 		if (inpri != NULL)
537 			kmem_free(got_prop, got_len);
538 		return (DDI_SUCCESS);
539 	}
540 
541 broken:
542 	kmem_free(pdptr->par_intr, size);
543 	pdptr->par_intr = NULL;
544 	pdptr->par_nintr = 0;
545 	if (inpri != NULL)
546 		kmem_free(got_prop, got_len);
547 
548 	return (DDI_FAILURE);
549 }
550 
551 /*
552  * Create a ddi_parent_private_data structure from the ddi properties of
553  * the dev_info node.
554  *
555  * The "reg" and either an "intr" or "interrupts" properties are required
556  * if the driver wishes to create mappings or field interrupts on behalf
557  * of the device.
558  *
559  * The "reg" property is assumed to be a list of at least one triple
560  *
561  *	<bustype, address, size>*1
562  *
563  * The "intr" property is assumed to be a list of at least one duple
564  *
565  *	<SPARC ipl, vector#>*1
566  *
567  * The "interrupts" property is assumed to be a list of at least one
568  * n-tuples that describes the interrupt capabilities of the bus the device
569  * is connected to.  For SBus, this looks like
570  *
571  *	<SBus-level>*1
572  *
573  * (This property obsoletes the 'intr' property).
574  *
575  * The "ranges" property is optional.
576  */
577 void
578 make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd)
579 {
580 	struct ddi_parent_private_data *pdptr;
581 	int n;
582 	int *reg_prop, *rng_prop, *intr_prop, *irupts_prop;
583 	uint_t reg_len, rng_len, intr_len, irupts_len;
584 
585 	*ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP);
586 
587 	/*
588 	 * Handle the 'reg' property.
589 	 */
590 	if ((get_prop_int_array(child, "reg", &reg_prop, &reg_len) ==
591 	    DDI_PROP_SUCCESS) && (reg_len != 0)) {
592 		pdptr->par_nreg = reg_len / (int)sizeof (struct regspec);
593 		pdptr->par_reg = (struct regspec *)reg_prop;
594 	}
595 
596 	/*
597 	 * See if I have a range (adding one where needed - this
598 	 * means to add one for sbus node in sun4c, when romvec > 0,
599 	 * if no range is already defined in the PROM node.
600 	 * (Currently no sun4c PROMS define range properties,
601 	 * but they should and may in the future.)  For the SBus
602 	 * node, the range is defined by the SBus reg property.
603 	 */
604 	if (get_prop_int_array(child, "ranges", &rng_prop, &rng_len)
605 	    == DDI_PROP_SUCCESS) {
606 		pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec));
607 		pdptr->par_rng = (struct rangespec *)rng_prop;
608 	}
609 
610 	/*
611 	 * Handle the 'intr' and 'interrupts' properties
612 	 */
613 
614 	/*
615 	 * For backwards compatibility
616 	 * we first look for the 'intr' property for the device.
617 	 */
618 	if (get_prop_int_array(child, "intr", &intr_prop, &intr_len)
619 	    != DDI_PROP_SUCCESS) {
620 		intr_len = 0;
621 	}
622 
623 	/*
624 	 * If we're to support bus adapters and future platforms cleanly,
625 	 * we need to support the generalized 'interrupts' property.
626 	 */
627 	if (get_prop_int_array(child, "interrupts", &irupts_prop,
628 	    &irupts_len) != DDI_PROP_SUCCESS) {
629 		irupts_len = 0;
630 	} else if (intr_len != 0) {
631 		/*
632 		 * If both 'intr' and 'interrupts' are defined,
633 		 * then 'interrupts' wins and we toss the 'intr' away.
634 		 */
635 		ddi_prop_free((void *)intr_prop);
636 		intr_len = 0;
637 	}
638 
639 	if (intr_len != 0) {
640 
641 		/*
642 		 * Translate the 'intr' property into an array
643 		 * an array of struct intrspec's.  There's not really
644 		 * very much to do here except copy what's out there.
645 		 */
646 
647 		struct intrspec *new;
648 		struct prop_ispec *l;
649 
650 		n = pdptr->par_nintr = intr_len / sizeof (struct prop_ispec);
651 		l = (struct prop_ispec *)intr_prop;
652 		pdptr->par_intr =
653 		    new = kmem_zalloc(n * sizeof (struct intrspec), KM_SLEEP);
654 		while (n--) {
655 			new->intrspec_pri = l->pri;
656 			new->intrspec_vec = l->vec;
657 			new++;
658 			l++;
659 		}
660 		ddi_prop_free((void *)intr_prop);
661 
662 	} else if ((n = irupts_len) != 0) {
663 		size_t size;
664 		int *out;
665 
666 		/*
667 		 * Translate the 'interrupts' property into an array
668 		 * of intrspecs for the rest of the DDI framework to
669 		 * toy with.  Only our ancestors really know how to
670 		 * do this, so ask 'em.  We massage the 'interrupts'
671 		 * property so that it is pre-pended by a count of
672 		 * the number of integers in the argument.
673 		 */
674 		size = sizeof (int) + n;
675 		out = kmem_alloc(size, KM_SLEEP);
676 		*out = n / sizeof (int);
677 		bcopy(irupts_prop, out + 1, (size_t)n);
678 		ddi_prop_free((void *)irupts_prop);
679 		if (impl_xlate_intrs(child, out, pdptr) != DDI_SUCCESS) {
680 			cmn_err(CE_CONT,
681 			    "Unable to translate 'interrupts' for %s%d\n",
682 			    DEVI(child)->devi_binding_name,
683 			    DEVI(child)->devi_instance);
684 		}
685 		kmem_free(out, size);
686 	}
687 }
688 
689 /*
690  * Name a child
691  */
692 static int
693 impl_sunbus_name_child(dev_info_t *child, char *name, int namelen)
694 {
695 	/*
696 	 * Fill in parent-private data and this function returns to us
697 	 * an indication if it used "registers" to fill in the data.
698 	 */
699 	if (ddi_get_parent_data(child) == NULL) {
700 		struct ddi_parent_private_data *pdptr;
701 		make_ddi_ppd(child, &pdptr);
702 		ddi_set_parent_data(child, pdptr);
703 	}
704 
705 	name[0] = '\0';
706 	if (sparc_pd_getnreg(child) > 0) {
707 		(void) snprintf(name, namelen, "%x,%x",
708 		    (uint_t)sparc_pd_getreg(child, 0)->regspec_bustype,
709 		    (uint_t)sparc_pd_getreg(child, 0)->regspec_addr);
710 	}
711 
712 	return (DDI_SUCCESS);
713 }
714 
715 /*
716  * Called from the bus_ctl op of sunbus (sbus, obio, etc) nexus drivers
717  * to implement the DDI_CTLOPS_INITCHILD operation.  That is, it names
718  * the children of sun busses based on the reg spec.
719  *
720  * Handles the following properties (in make_ddi_ppd):
721  *	Property		value
722  *	  Name			type
723  *	reg		register spec
724  *	intr		old-form interrupt spec
725  *	interrupts	new (bus-oriented) interrupt spec
726  *	ranges		range spec
727  */
728 int
729 impl_ddi_sunbus_initchild(dev_info_t *child)
730 {
731 	char name[MAXNAMELEN];
732 	void impl_ddi_sunbus_removechild(dev_info_t *);
733 
734 	/*
735 	 * Name the child, also makes parent private data
736 	 */
737 	(void) impl_sunbus_name_child(child, name, MAXNAMELEN);
738 	ddi_set_name_addr(child, name);
739 
740 	/*
741 	 * Attempt to merge a .conf node; if successful, remove the
742 	 * .conf node.
743 	 */
744 	if ((ndi_dev_is_persistent_node(child) == 0) &&
745 	    (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) {
746 		/*
747 		 * Return failure to remove node
748 		 */
749 		impl_ddi_sunbus_removechild(child);
750 		return (DDI_FAILURE);
751 	}
752 	return (DDI_SUCCESS);
753 }
754 
755 void
756 impl_free_ddi_ppd(dev_info_t *dip)
757 {
758 	struct ddi_parent_private_data *pdptr;
759 	size_t n;
760 
761 	if ((pdptr = ddi_get_parent_data(dip)) == NULL)
762 		return;
763 
764 	if ((n = (size_t)pdptr->par_nintr) != 0)
765 		/*
766 		 * Note that kmem_free is used here (instead of
767 		 * ddi_prop_free) because the contents of the
768 		 * property were placed into a separate buffer and
769 		 * mucked with a bit before being stored in par_intr.
770 		 * The actual return value from the prop lookup
771 		 * was freed with ddi_prop_free previously.
772 		 */
773 		kmem_free(pdptr->par_intr, n * sizeof (struct intrspec));
774 
775 	if ((n = (size_t)pdptr->par_nrng) != 0)
776 		ddi_prop_free((void *)pdptr->par_rng);
777 
778 	if ((n = pdptr->par_nreg) != 0)
779 		ddi_prop_free((void *)pdptr->par_reg);
780 
781 	kmem_free(pdptr, sizeof (*pdptr));
782 	ddi_set_parent_data(dip, NULL);
783 }
784 
785 void
786 impl_ddi_sunbus_removechild(dev_info_t *dip)
787 {
788 	impl_free_ddi_ppd(dip);
789 	ddi_set_name_addr(dip, NULL);
790 	/*
791 	 * Strip the node to properly convert it back to prototype form
792 	 */
793 	impl_rem_dev_props(dip);
794 }
795 
796 /*
797  * DDI Interrupt
798  */
799 
800 /*
801  * turn this on to force isa, eisa, and mca device to ignore the new
802  * hardware nodes in the device tree (normally turned on only for
803  * drivers that need it by setting the property "ignore-hardware-nodes"
804  * in their driver.conf file).
805  *
806  * 7/31/96 -- Turned off globally.  Leaving variable in for the moment
807  *		as safety valve.
808  */
809 int ignore_hardware_nodes = 0;
810 
811 /*
812  * Local data
813  */
814 static struct impl_bus_promops *impl_busp;
815 
816 
817 /*
818  * New DDI interrupt framework
819  */
820 
821 /*
822  * i_ddi_intr_ops:
823  *
824  * This is the interrupt operator function wrapper for the bus function
825  * bus_intr_op.
826  */
827 int
828 i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op,
829     ddi_intr_handle_impl_t *hdlp, void * result)
830 {
831 	dev_info_t	*pdip = (dev_info_t *)DEVI(dip)->devi_parent;
832 	int		ret = DDI_FAILURE;
833 
834 	/* request parent to process this interrupt op */
835 	if (NEXUS_HAS_INTR_OP(pdip))
836 		ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops->bus_intr_op))(
837 		    pdip, rdip, op, hdlp, result);
838 	else
839 		cmn_err(CE_WARN, "Failed to process interrupt "
840 		    "for %s%d due to down-rev nexus driver %s%d",
841 		    ddi_get_name(rdip), ddi_get_instance(rdip),
842 		    ddi_get_name(pdip), ddi_get_instance(pdip));
843 	return (ret);
844 }
845 
846 /*
847  * i_ddi_add_softint - allocate and add a soft interrupt to the system
848  */
849 int
850 i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp)
851 {
852 	int ret;
853 
854 	/* add soft interrupt handler */
855 	ret = add_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func,
856 	    DEVI(hdlp->ih_dip)->devi_name, hdlp->ih_cb_arg1, hdlp->ih_cb_arg2);
857 	return (ret ? DDI_SUCCESS : DDI_FAILURE);
858 }
859 
860 
861 void
862 i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp)
863 {
864 	(void) rem_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func);
865 }
866 
867 
868 extern void (*setsoftint)(int, struct av_softinfo *);
869 extern boolean_t av_check_softint_pending(struct av_softinfo *, boolean_t);
870 
871 int
872 i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2)
873 {
874 	if (av_check_softint_pending(hdlp->ih_pending, B_FALSE))
875 		return (DDI_EPENDING);
876 
877 	update_avsoftintr_args((void *)hdlp, hdlp->ih_pri, arg2);
878 
879 	(*setsoftint)(hdlp->ih_pri, hdlp->ih_pending);
880 	return (DDI_SUCCESS);
881 }
882 
883 /*
884  * i_ddi_set_softint_pri:
885  *
886  * The way this works is that it first tries to add a softint vector
887  * at the new priority in hdlp. If that succeeds; then it removes the
888  * existing softint vector at the old priority.
889  */
890 int
891 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri)
892 {
893 	int ret;
894 
895 	/*
896 	 * If a softint is pending at the old priority then fail the request.
897 	 */
898 	if (av_check_softint_pending(hdlp->ih_pending, B_TRUE))
899 		return (DDI_FAILURE);
900 
901 	ret = av_softint_movepri((void *)hdlp, old_pri);
902 	return (ret ? DDI_SUCCESS : DDI_FAILURE);
903 }
904 
905 void
906 i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp)
907 {
908 	hdlp->ih_private = (void *)kmem_zalloc(sizeof (ihdl_plat_t), KM_SLEEP);
909 }
910 
911 void
912 i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp)
913 {
914 	kmem_free(hdlp->ih_private, sizeof (ihdl_plat_t));
915 	hdlp->ih_private = NULL;
916 }
917 
918 int
919 i_ddi_get_intx_nintrs(dev_info_t *dip)
920 {
921 	struct ddi_parent_private_data *pdp;
922 
923 	if ((pdp = ddi_get_parent_data(dip)) == NULL)
924 		return (0);
925 
926 	return (pdp->par_nintr);
927 }
928 
929 /*
930  * DDI Memory/DMA
931  */
932 
933 /*
934  * Support for allocating DMAable memory to implement
935  * ddi_dma_mem_alloc(9F) interface.
936  */
937 
938 #define	KA_ALIGN_SHIFT	7
939 #define	KA_ALIGN	(1 << KA_ALIGN_SHIFT)
940 #define	KA_NCACHE	(PAGESHIFT + 1 - KA_ALIGN_SHIFT)
941 
942 /*
943  * Dummy DMA attribute template for kmem_io[].kmem_io_attr.  We only
944  * care about addr_lo, addr_hi, and align.  addr_hi will be dynamically set.
945  */
946 
947 static ddi_dma_attr_t kmem_io_attr = {
948 	DMA_ATTR_V0,
949 	0x0000000000000000ULL,		/* dma_attr_addr_lo */
950 	0x0000000000000000ULL,		/* dma_attr_addr_hi */
951 	0x00ffffff,
952 	0x1000,				/* dma_attr_align */
953 	1, 1, 0xffffffffULL, 0xffffffffULL, 0x1, 1, 0
954 };
955 
956 /* kmem io memory ranges and indices */
957 enum {
958 	IO_4P, IO_64G, IO_4G, IO_2G, IO_1G, IO_512M,
959 	IO_256M, IO_128M, IO_64M, IO_32M, IO_16M, MAX_MEM_RANGES
960 };
961 
962 static struct {
963 	vmem_t		*kmem_io_arena;
964 	kmem_cache_t	*kmem_io_cache[KA_NCACHE];
965 	ddi_dma_attr_t	kmem_io_attr;
966 } kmem_io[MAX_MEM_RANGES];
967 
968 static int kmem_io_idx;		/* index of first populated kmem_io[] */
969 
970 static page_t *
971 page_create_io_wrapper(void *addr, size_t len, int vmflag, void *arg)
972 {
973 	extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t,
974 	    uint_t, struct as *, caddr_t, ddi_dma_attr_t *);
975 
976 	return (page_create_io(&kvp, (u_offset_t)(uintptr_t)addr, len,
977 	    PG_EXCL | ((vmflag & VM_NOSLEEP) ? 0 : PG_WAIT), &kas, addr, arg));
978 }
979 
980 #ifdef __xpv
981 static void
982 segkmem_free_io(vmem_t *vmp, void * ptr, size_t size)
983 {
984 	extern void page_destroy_io(page_t *);
985 	segkmem_xfree(vmp, ptr, size, page_destroy_io);
986 }
987 #endif
988 
989 static void *
990 segkmem_alloc_io_4P(vmem_t *vmp, size_t size, int vmflag)
991 {
992 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
993 	    page_create_io_wrapper, &kmem_io[IO_4P].kmem_io_attr));
994 }
995 
996 static void *
997 segkmem_alloc_io_64G(vmem_t *vmp, size_t size, int vmflag)
998 {
999 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1000 	    page_create_io_wrapper, &kmem_io[IO_64G].kmem_io_attr));
1001 }
1002 
1003 static void *
1004 segkmem_alloc_io_4G(vmem_t *vmp, size_t size, int vmflag)
1005 {
1006 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1007 	    page_create_io_wrapper, &kmem_io[IO_4G].kmem_io_attr));
1008 }
1009 
1010 static void *
1011 segkmem_alloc_io_2G(vmem_t *vmp, size_t size, int vmflag)
1012 {
1013 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1014 	    page_create_io_wrapper, &kmem_io[IO_2G].kmem_io_attr));
1015 }
1016 
1017 static void *
1018 segkmem_alloc_io_1G(vmem_t *vmp, size_t size, int vmflag)
1019 {
1020 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1021 	    page_create_io_wrapper, &kmem_io[IO_1G].kmem_io_attr));
1022 }
1023 
1024 static void *
1025 segkmem_alloc_io_512M(vmem_t *vmp, size_t size, int vmflag)
1026 {
1027 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1028 	    page_create_io_wrapper, &kmem_io[IO_512M].kmem_io_attr));
1029 }
1030 
1031 static void *
1032 segkmem_alloc_io_256M(vmem_t *vmp, size_t size, int vmflag)
1033 {
1034 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1035 	    page_create_io_wrapper, &kmem_io[IO_256M].kmem_io_attr));
1036 }
1037 
1038 static void *
1039 segkmem_alloc_io_128M(vmem_t *vmp, size_t size, int vmflag)
1040 {
1041 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1042 	    page_create_io_wrapper, &kmem_io[IO_128M].kmem_io_attr));
1043 }
1044 
1045 static void *
1046 segkmem_alloc_io_64M(vmem_t *vmp, size_t size, int vmflag)
1047 {
1048 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1049 	    page_create_io_wrapper, &kmem_io[IO_64M].kmem_io_attr));
1050 }
1051 
1052 static void *
1053 segkmem_alloc_io_32M(vmem_t *vmp, size_t size, int vmflag)
1054 {
1055 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1056 	    page_create_io_wrapper, &kmem_io[IO_32M].kmem_io_attr));
1057 }
1058 
1059 static void *
1060 segkmem_alloc_io_16M(vmem_t *vmp, size_t size, int vmflag)
1061 {
1062 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1063 	    page_create_io_wrapper, &kmem_io[IO_16M].kmem_io_attr));
1064 }
1065 
1066 struct {
1067 	uint64_t	io_limit;
1068 	char		*io_name;
1069 	void		*(*io_alloc)(vmem_t *, size_t, int);
1070 	int		io_initial;	/* kmem_io_init during startup */
1071 } io_arena_params[MAX_MEM_RANGES] = {
1072 	{0x000fffffffffffffULL,	"kmem_io_4P",	segkmem_alloc_io_4P,	1},
1073 	{0x0000000fffffffffULL,	"kmem_io_64G",	segkmem_alloc_io_64G,	0},
1074 	{0x00000000ffffffffULL,	"kmem_io_4G",	segkmem_alloc_io_4G,	1},
1075 	{0x000000007fffffffULL,	"kmem_io_2G",	segkmem_alloc_io_2G,	1},
1076 	{0x000000003fffffffULL,	"kmem_io_1G",	segkmem_alloc_io_1G,	0},
1077 	{0x000000001fffffffULL,	"kmem_io_512M",	segkmem_alloc_io_512M,	0},
1078 	{0x000000000fffffffULL,	"kmem_io_256M",	segkmem_alloc_io_256M,	0},
1079 	{0x0000000007ffffffULL,	"kmem_io_128M",	segkmem_alloc_io_128M,	0},
1080 	{0x0000000003ffffffULL,	"kmem_io_64M",	segkmem_alloc_io_64M,	0},
1081 	{0x0000000001ffffffULL,	"kmem_io_32M",	segkmem_alloc_io_32M,	0},
1082 	{0x0000000000ffffffULL,	"kmem_io_16M",	segkmem_alloc_io_16M,	1}
1083 };
1084 
1085 void
1086 kmem_io_init(int a)
1087 {
1088 	int	c;
1089 	char name[40];
1090 
1091 	kmem_io[a].kmem_io_arena = vmem_create(io_arena_params[a].io_name,
1092 	    NULL, 0, PAGESIZE, io_arena_params[a].io_alloc,
1093 #ifdef __xpv
1094 	    segkmem_free_io,
1095 #else
1096 	    segkmem_free,
1097 #endif
1098 	    heap_arena, 0, VM_SLEEP);
1099 
1100 	for (c = 0; c < KA_NCACHE; c++) {
1101 		size_t size = KA_ALIGN << c;
1102 		(void) sprintf(name, "%s_%lu",
1103 		    io_arena_params[a].io_name, size);
1104 		kmem_io[a].kmem_io_cache[c] = kmem_cache_create(name,
1105 		    size, size, NULL, NULL, NULL, NULL,
1106 		    kmem_io[a].kmem_io_arena, 0);
1107 	}
1108 }
1109 
1110 /*
1111  * Return the index of the highest memory range for addr.
1112  */
1113 static int
1114 kmem_io_index(uint64_t addr)
1115 {
1116 	int n;
1117 
1118 	for (n = kmem_io_idx; n < MAX_MEM_RANGES; n++) {
1119 		if (kmem_io[n].kmem_io_attr.dma_attr_addr_hi <= addr) {
1120 			if (kmem_io[n].kmem_io_arena == NULL)
1121 				kmem_io_init(n);
1122 			return (n);
1123 		}
1124 	}
1125 	panic("kmem_io_index: invalid addr - must be at least 16m");
1126 
1127 	/*NOTREACHED*/
1128 }
1129 
1130 /*
1131  * Return the index of the next kmem_io populated memory range
1132  * after curindex.
1133  */
1134 static int
1135 kmem_io_index_next(int curindex)
1136 {
1137 	int n;
1138 
1139 	for (n = curindex + 1; n < MAX_MEM_RANGES; n++) {
1140 		if (kmem_io[n].kmem_io_arena)
1141 			return (n);
1142 	}
1143 	return (-1);
1144 }
1145 
1146 /*
1147  * allow kmem to be mapped in with different PTE cache attribute settings.
1148  * Used by i_ddi_mem_alloc()
1149  */
1150 int
1151 kmem_override_cache_attrs(caddr_t kva, size_t size, uint_t order)
1152 {
1153 	uint_t hat_flags;
1154 	caddr_t kva_end;
1155 	uint_t hat_attr;
1156 	pfn_t pfn;
1157 
1158 	if (hat_getattr(kas.a_hat, kva, &hat_attr) == -1) {
1159 		return (-1);
1160 	}
1161 
1162 	hat_attr &= ~HAT_ORDER_MASK;
1163 	hat_attr |= order | HAT_NOSYNC;
1164 	hat_flags = HAT_LOAD_LOCK;
1165 
1166 	kva_end = (caddr_t)(((uintptr_t)kva + size + PAGEOFFSET) &
1167 	    (uintptr_t)PAGEMASK);
1168 	kva = (caddr_t)((uintptr_t)kva & (uintptr_t)PAGEMASK);
1169 
1170 	while (kva < kva_end) {
1171 		pfn = hat_getpfnum(kas.a_hat, kva);
1172 		hat_unload(kas.a_hat, kva, PAGESIZE, HAT_UNLOAD_UNLOCK);
1173 		hat_devload(kas.a_hat, kva, PAGESIZE, pfn, hat_attr, hat_flags);
1174 		kva += MMU_PAGESIZE;
1175 	}
1176 
1177 	return (0);
1178 }
1179 
1180 void
1181 ka_init(void)
1182 {
1183 	int a;
1184 	paddr_t maxphysaddr;
1185 #if !defined(__xpv)
1186 	extern pfn_t physmax;
1187 
1188 	maxphysaddr = mmu_ptob((paddr_t)physmax) + MMU_PAGEOFFSET;
1189 #else
1190 	maxphysaddr = mmu_ptob((paddr_t)HYPERVISOR_memory_op(
1191 	    XENMEM_maximum_ram_page, NULL)) + MMU_PAGEOFFSET;
1192 #endif
1193 
1194 	ASSERT(maxphysaddr <= io_arena_params[0].io_limit);
1195 
1196 	for (a = 0; a < MAX_MEM_RANGES; a++) {
1197 		if (maxphysaddr >= io_arena_params[a + 1].io_limit) {
1198 			if (maxphysaddr > io_arena_params[a + 1].io_limit)
1199 				io_arena_params[a].io_limit = maxphysaddr;
1200 			else
1201 				a++;
1202 			break;
1203 		}
1204 	}
1205 	kmem_io_idx = a;
1206 
1207 	for (; a < MAX_MEM_RANGES; a++) {
1208 		kmem_io[a].kmem_io_attr = kmem_io_attr;
1209 		kmem_io[a].kmem_io_attr.dma_attr_addr_hi =
1210 		    io_arena_params[a].io_limit;
1211 		/*
1212 		 * initialize kmem_io[] arena/cache corresponding to
1213 		 * maxphysaddr and to the "common" io memory ranges that
1214 		 * have io_initial set to a non-zero value.
1215 		 */
1216 		if (io_arena_params[a].io_initial || a == kmem_io_idx)
1217 			kmem_io_init(a);
1218 	}
1219 }
1220 
1221 /*
1222  * put contig address/size
1223  */
1224 static void *
1225 putctgas(void *addr, size_t size)
1226 {
1227 	struct ctgas	*ctgp = &ctglist;
1228 	int		i;
1229 
1230 	CTGLOCK();
1231 	do {
1232 		if ((i = ctgp->ctg_index) < CTGENTRIES) {
1233 			ctgp->ctg_addr[i] = addr;
1234 			ctgp->ctg_size[i] = size;
1235 			ctgp->ctg_index++;
1236 			break;
1237 		}
1238 		if (!ctgp->ctg_next)
1239 			ctgp->ctg_next = kmem_zalloc(sizeof (struct ctgas),
1240 			    KM_NOSLEEP);
1241 		ctgp = ctgp->ctg_next;
1242 	} while (ctgp);
1243 
1244 	CTGUNLOCK();
1245 	return (ctgp);
1246 }
1247 
1248 /*
1249  * get contig size by addr
1250  */
1251 static size_t
1252 getctgsz(void *addr)
1253 {
1254 	struct ctgas	*ctgp = &ctglist;
1255 	int		i, j;
1256 	size_t		sz;
1257 
1258 	ASSERT(addr);
1259 	CTGLOCK();
1260 
1261 	while (ctgp) {
1262 		for (i = 0; i < ctgp->ctg_index; i++) {
1263 			if (addr != ctgp->ctg_addr[i])
1264 				continue;
1265 
1266 			sz = ctgp->ctg_size[i];
1267 			j = --ctgp->ctg_index;
1268 			if (i != j) {
1269 				ctgp->ctg_size[i] = ctgp->ctg_size[j];
1270 				ctgp->ctg_addr[i] = ctgp->ctg_addr[j];
1271 			}
1272 			CTGUNLOCK();
1273 			return (sz);
1274 		}
1275 		ctgp = ctgp->ctg_next;
1276 	}
1277 
1278 	CTGUNLOCK();
1279 	return (0);
1280 }
1281 
1282 /*
1283  * contig_alloc:
1284  *
1285  *	allocates contiguous memory to satisfy the 'size' and dma attributes
1286  *	specified in 'attr'.
1287  *
1288  *	Not all of memory need to be physically contiguous if the
1289  *	scatter-gather list length is greater than 1.
1290  */
1291 
1292 /*ARGSUSED*/
1293 void *
1294 contig_alloc(size_t size, ddi_dma_attr_t *attr, uintptr_t align, int cansleep)
1295 {
1296 	pgcnt_t		pgcnt = btopr(size);
1297 	size_t		asize = pgcnt * PAGESIZE;
1298 	page_t		*ppl;
1299 	int		pflag;
1300 	void		*addr;
1301 
1302 	extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t,
1303 	    uint_t, struct as *, caddr_t, ddi_dma_attr_t *);
1304 
1305 	/* segkmem_xalloc */
1306 
1307 	if (align <= PAGESIZE)
1308 		addr = vmem_alloc(heap_arena, asize,
1309 		    (cansleep) ? VM_SLEEP : VM_NOSLEEP);
1310 	else
1311 		addr = vmem_xalloc(heap_arena, asize, align, 0, 0, NULL, NULL,
1312 		    (cansleep) ? VM_SLEEP : VM_NOSLEEP);
1313 	if (addr) {
1314 		ASSERT(!((uintptr_t)addr & (align - 1)));
1315 
1316 		if (page_resv(pgcnt, (cansleep) ? KM_SLEEP : KM_NOSLEEP) == 0) {
1317 			vmem_free(heap_arena, addr, asize);
1318 			return (NULL);
1319 		}
1320 		pflag = PG_EXCL;
1321 
1322 		if (cansleep)
1323 			pflag |= PG_WAIT;
1324 
1325 		/* 4k req gets from freelists rather than pfn search */
1326 		if (pgcnt > 1 || align > PAGESIZE)
1327 			pflag |= PG_PHYSCONTIG;
1328 
1329 		ppl = page_create_io(&kvp, (u_offset_t)(uintptr_t)addr,
1330 		    asize, pflag, &kas, (caddr_t)addr, attr);
1331 
1332 		if (!ppl) {
1333 			vmem_free(heap_arena, addr, asize);
1334 			page_unresv(pgcnt);
1335 			return (NULL);
1336 		}
1337 
1338 		while (ppl != NULL) {
1339 			page_t	*pp = ppl;
1340 			page_sub(&ppl, pp);
1341 			ASSERT(page_iolock_assert(pp));
1342 			page_io_unlock(pp);
1343 			page_downgrade(pp);
1344 			hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset,
1345 			    pp, (PROT_ALL & ~PROT_USER) |
1346 			    HAT_NOSYNC, HAT_LOAD_LOCK);
1347 		}
1348 	}
1349 	return (addr);
1350 }
1351 
1352 static void
1353 contig_free(void *addr, size_t size)
1354 {
1355 	pgcnt_t	pgcnt = btopr(size);
1356 	size_t	asize = pgcnt * PAGESIZE;
1357 	caddr_t	a, ea;
1358 	page_t	*pp;
1359 
1360 	hat_unload(kas.a_hat, addr, asize, HAT_UNLOAD_UNLOCK);
1361 
1362 	for (a = addr, ea = a + asize; a < ea; a += PAGESIZE) {
1363 		pp = page_find(&kvp, (u_offset_t)(uintptr_t)a);
1364 		if (!pp)
1365 			panic("contig_free: contig pp not found");
1366 
1367 		if (!page_tryupgrade(pp)) {
1368 			page_unlock(pp);
1369 			pp = page_lookup(&kvp,
1370 			    (u_offset_t)(uintptr_t)a, SE_EXCL);
1371 			if (pp == NULL)
1372 				panic("contig_free: page freed");
1373 		}
1374 		page_destroy(pp, 0);
1375 	}
1376 
1377 	page_unresv(pgcnt);
1378 	vmem_free(heap_arena, addr, asize);
1379 }
1380 
1381 /*
1382  * Allocate from the system, aligned on a specific boundary.
1383  * The alignment, if non-zero, must be a power of 2.
1384  */
1385 static void *
1386 kalloca(size_t size, size_t align, int cansleep, int physcontig,
1387 	ddi_dma_attr_t *attr)
1388 {
1389 	size_t *addr, *raddr, rsize;
1390 	size_t hdrsize = 4 * sizeof (size_t);	/* must be power of 2 */
1391 	int a, i, c;
1392 	vmem_t *vmp;
1393 	kmem_cache_t *cp = NULL;
1394 
1395 	if (attr->dma_attr_addr_lo > mmu_ptob((uint64_t)ddiphysmin))
1396 		return (NULL);
1397 
1398 	align = MAX(align, hdrsize);
1399 	ASSERT((align & (align - 1)) == 0);
1400 
1401 	/*
1402 	 * All of our allocators guarantee 16-byte alignment, so we don't
1403 	 * need to reserve additional space for the header.
1404 	 * To simplify picking the correct kmem_io_cache, we round up to
1405 	 * a multiple of KA_ALIGN.
1406 	 */
1407 	rsize = P2ROUNDUP_TYPED(size + align, KA_ALIGN, size_t);
1408 
1409 	if (physcontig && rsize > PAGESIZE) {
1410 		if (addr = contig_alloc(size, attr, align, cansleep)) {
1411 			if (!putctgas(addr, size))
1412 				contig_free(addr, size);
1413 			else
1414 				return (addr);
1415 		}
1416 		return (NULL);
1417 	}
1418 
1419 	a = kmem_io_index(attr->dma_attr_addr_hi);
1420 
1421 	if (rsize > PAGESIZE) {
1422 		vmp = kmem_io[a].kmem_io_arena;
1423 		raddr = vmem_alloc(vmp, rsize,
1424 		    (cansleep) ? VM_SLEEP : VM_NOSLEEP);
1425 	} else {
1426 		c = highbit((rsize >> KA_ALIGN_SHIFT) - 1);
1427 		cp = kmem_io[a].kmem_io_cache[c];
1428 		raddr = kmem_cache_alloc(cp, (cansleep) ? KM_SLEEP :
1429 		    KM_NOSLEEP);
1430 	}
1431 
1432 	if (raddr == NULL) {
1433 		int	na;
1434 
1435 		ASSERT(cansleep == 0);
1436 		if (rsize > PAGESIZE)
1437 			return (NULL);
1438 		/*
1439 		 * System does not have memory in the requested range.
1440 		 * Try smaller kmem io ranges and larger cache sizes
1441 		 * to see if there might be memory available in
1442 		 * these other caches.
1443 		 */
1444 
1445 		for (na = kmem_io_index_next(a); na >= 0;
1446 		    na = kmem_io_index_next(na)) {
1447 			ASSERT(kmem_io[na].kmem_io_arena);
1448 			cp = kmem_io[na].kmem_io_cache[c];
1449 			raddr = kmem_cache_alloc(cp, KM_NOSLEEP);
1450 			if (raddr)
1451 				goto kallocdone;
1452 		}
1453 		/* now try the larger kmem io cache sizes */
1454 		for (na = a; na >= 0; na = kmem_io_index_next(na)) {
1455 			for (i = c + 1; i < KA_NCACHE; i++) {
1456 				cp = kmem_io[na].kmem_io_cache[i];
1457 				raddr = kmem_cache_alloc(cp, KM_NOSLEEP);
1458 				if (raddr)
1459 					goto kallocdone;
1460 			}
1461 		}
1462 		return (NULL);
1463 	}
1464 
1465 kallocdone:
1466 	ASSERT(!P2CROSS((uintptr_t)raddr, (uintptr_t)raddr + rsize - 1,
1467 	    PAGESIZE) || rsize > PAGESIZE);
1468 
1469 	addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align);
1470 	ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize);
1471 
1472 	addr[-4] = (size_t)cp;
1473 	addr[-3] = (size_t)vmp;
1474 	addr[-2] = (size_t)raddr;
1475 	addr[-1] = rsize;
1476 
1477 	return (addr);
1478 }
1479 
1480 static void
1481 kfreea(void *addr)
1482 {
1483 	size_t		size;
1484 
1485 	if (!((uintptr_t)addr & PAGEOFFSET) && (size = getctgsz(addr))) {
1486 		contig_free(addr, size);
1487 	} else {
1488 		size_t	*saddr = addr;
1489 		if (saddr[-4] == 0)
1490 			vmem_free((vmem_t *)saddr[-3], (void *)saddr[-2],
1491 			    saddr[-1]);
1492 		else
1493 			kmem_cache_free((kmem_cache_t *)saddr[-4],
1494 			    (void *)saddr[-2]);
1495 	}
1496 }
1497 
1498 /*ARGSUSED*/
1499 void
1500 i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t *devaccp, uint_t *hataccp)
1501 {
1502 }
1503 
1504 /*
1505  * Check if the specified cache attribute is supported on the platform.
1506  * This function must be called before i_ddi_cacheattr_to_hatacc().
1507  */
1508 boolean_t
1509 i_ddi_check_cache_attr(uint_t flags)
1510 {
1511 	/*
1512 	 * The cache attributes are mutually exclusive. Any combination of
1513 	 * the attributes leads to a failure.
1514 	 */
1515 	uint_t cache_attr = IOMEM_CACHE_ATTR(flags);
1516 	if ((cache_attr != 0) && ((cache_attr & (cache_attr - 1)) != 0))
1517 		return (B_FALSE);
1518 
1519 	/* All cache attributes are supported on X86/X64 */
1520 	if (cache_attr & (IOMEM_DATA_UNCACHED | IOMEM_DATA_CACHED |
1521 	    IOMEM_DATA_UC_WR_COMBINE))
1522 		return (B_TRUE);
1523 
1524 	/* undefined attributes */
1525 	return (B_FALSE);
1526 }
1527 
1528 /* set HAT cache attributes from the cache attributes */
1529 void
1530 i_ddi_cacheattr_to_hatacc(uint_t flags, uint_t *hataccp)
1531 {
1532 	uint_t cache_attr = IOMEM_CACHE_ATTR(flags);
1533 	static char *fname = "i_ddi_cacheattr_to_hatacc";
1534 
1535 	/*
1536 	 * If write-combining is not supported, then it falls back
1537 	 * to uncacheable.
1538 	 */
1539 	if (cache_attr == IOMEM_DATA_UC_WR_COMBINE && !(x86_feature & X86_PAT))
1540 		cache_attr = IOMEM_DATA_UNCACHED;
1541 
1542 	/*
1543 	 * set HAT attrs according to the cache attrs.
1544 	 */
1545 	switch (cache_attr) {
1546 	case IOMEM_DATA_UNCACHED:
1547 		*hataccp &= ~HAT_ORDER_MASK;
1548 		*hataccp |= (HAT_STRICTORDER | HAT_PLAT_NOCACHE);
1549 		break;
1550 	case IOMEM_DATA_UC_WR_COMBINE:
1551 		*hataccp &= ~HAT_ORDER_MASK;
1552 		*hataccp |= (HAT_MERGING_OK | HAT_PLAT_NOCACHE);
1553 		break;
1554 	case IOMEM_DATA_CACHED:
1555 		*hataccp &= ~HAT_ORDER_MASK;
1556 		*hataccp |= HAT_UNORDERED_OK;
1557 		break;
1558 	/*
1559 	 * This case must not occur because the cache attribute is scrutinized
1560 	 * before this function is called.
1561 	 */
1562 	default:
1563 		/*
1564 		 * set cacheable to hat attrs.
1565 		 */
1566 		*hataccp &= ~HAT_ORDER_MASK;
1567 		*hataccp |= HAT_UNORDERED_OK;
1568 		cmn_err(CE_WARN, "%s: cache_attr=0x%x is ignored.",
1569 		    fname, cache_attr);
1570 	}
1571 }
1572 
1573 /*
1574  * This should actually be called i_ddi_dma_mem_alloc. There should
1575  * also be an i_ddi_pio_mem_alloc. i_ddi_dma_mem_alloc should call
1576  * through the device tree with the DDI_CTLOPS_DMA_ALIGN ctl ops to
1577  * get alignment requirements for DMA memory. i_ddi_pio_mem_alloc
1578  * should use DDI_CTLOPS_PIO_ALIGN. Since we only have i_ddi_mem_alloc
1579  * so far which is used for both, DMA and PIO, we have to use the DMA
1580  * ctl ops to make everybody happy.
1581  */
1582 /*ARGSUSED*/
1583 int
1584 i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr,
1585 	size_t length, int cansleep, int flags,
1586 	ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp,
1587 	size_t *real_length, ddi_acc_hdl_t *ap)
1588 {
1589 	caddr_t a;
1590 	int iomin;
1591 	ddi_acc_impl_t *iap;
1592 	int physcontig = 0;
1593 	pgcnt_t npages;
1594 	pgcnt_t minctg;
1595 	uint_t order;
1596 	int e;
1597 
1598 	/*
1599 	 * Check legality of arguments
1600 	 */
1601 	if (length == 0 || kaddrp == NULL || attr == NULL) {
1602 		return (DDI_FAILURE);
1603 	}
1604 
1605 	if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 ||
1606 	    (attr->dma_attr_align & (attr->dma_attr_align - 1)) ||
1607 	    (attr->dma_attr_minxfer & (attr->dma_attr_minxfer - 1))) {
1608 			return (DDI_FAILURE);
1609 	}
1610 
1611 	/*
1612 	 * figure out most restrictive alignment requirement
1613 	 */
1614 	iomin = attr->dma_attr_minxfer;
1615 	iomin = maxbit(iomin, attr->dma_attr_align);
1616 	if (iomin == 0)
1617 		return (DDI_FAILURE);
1618 
1619 	ASSERT((iomin & (iomin - 1)) == 0);
1620 
1621 	/*
1622 	 * if we allocate memory with IOMEM_DATA_UNCACHED or
1623 	 * IOMEM_DATA_UC_WR_COMBINE, make sure we allocate a page aligned
1624 	 * memory that ends on a page boundry.
1625 	 * Don't want to have to different cache mappings to the same
1626 	 * physical page.
1627 	 */
1628 	if (OVERRIDE_CACHE_ATTR(flags)) {
1629 		iomin = (iomin + MMU_PAGEOFFSET) & MMU_PAGEMASK;
1630 		length = (length + MMU_PAGEOFFSET) & (size_t)MMU_PAGEMASK;
1631 	}
1632 
1633 	/*
1634 	 * Determine if we need to satisfy the request for physically
1635 	 * contiguous memory or alignments larger than pagesize.
1636 	 */
1637 	npages = btopr(length + attr->dma_attr_align);
1638 	minctg = howmany(npages, attr->dma_attr_sgllen);
1639 
1640 	if (minctg > 1) {
1641 		uint64_t pfnseg = attr->dma_attr_seg >> PAGESHIFT;
1642 		/*
1643 		 * verify that the minimum contig requirement for the
1644 		 * actual length does not cross segment boundary.
1645 		 */
1646 		length = P2ROUNDUP_TYPED(length, attr->dma_attr_minxfer,
1647 		    size_t);
1648 		npages = btopr(length);
1649 		minctg = howmany(npages, attr->dma_attr_sgllen);
1650 		if (minctg > pfnseg + 1)
1651 			return (DDI_FAILURE);
1652 		physcontig = 1;
1653 	} else {
1654 		length = P2ROUNDUP_TYPED(length, iomin, size_t);
1655 	}
1656 
1657 	/*
1658 	 * Allocate the requested amount from the system.
1659 	 */
1660 	a = kalloca(length, iomin, cansleep, physcontig, attr);
1661 
1662 	if ((*kaddrp = a) == NULL)
1663 		return (DDI_FAILURE);
1664 
1665 	/*
1666 	 * if we to modify the cache attributes, go back and muck with the
1667 	 * mappings.
1668 	 */
1669 	if (OVERRIDE_CACHE_ATTR(flags)) {
1670 		order = 0;
1671 		i_ddi_cacheattr_to_hatacc(flags, &order);
1672 		e = kmem_override_cache_attrs(a, length, order);
1673 		if (e != 0) {
1674 			kfreea(a);
1675 			return (DDI_FAILURE);
1676 		}
1677 	}
1678 
1679 	if (real_length) {
1680 		*real_length = length;
1681 	}
1682 	if (ap) {
1683 		/*
1684 		 * initialize access handle
1685 		 */
1686 		iap = (ddi_acc_impl_t *)ap->ah_platform_private;
1687 		iap->ahi_acc_attr |= DDI_ACCATTR_CPU_VADDR;
1688 		impl_acc_hdl_init(ap);
1689 	}
1690 
1691 	return (DDI_SUCCESS);
1692 }
1693 
1694 /*
1695  * covert old DMA limits structure to DMA attribute structure
1696  * and continue
1697  */
1698 int
1699 i_ddi_mem_alloc_lim(dev_info_t *dip, ddi_dma_lim_t *limits,
1700 	size_t length, int cansleep, int streaming,
1701 	ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp,
1702 	uint_t *real_length, ddi_acc_hdl_t *ap)
1703 {
1704 	ddi_dma_attr_t dma_attr, *attrp;
1705 	size_t rlen;
1706 	int ret;
1707 
1708 	if (limits == NULL) {
1709 		return (DDI_FAILURE);
1710 	}
1711 
1712 	/*
1713 	 * set up DMA attribute structure to pass to i_ddi_mem_alloc()
1714 	 */
1715 	attrp = &dma_attr;
1716 	attrp->dma_attr_version = DMA_ATTR_V0;
1717 	attrp->dma_attr_addr_lo = (uint64_t)limits->dlim_addr_lo;
1718 	attrp->dma_attr_addr_hi = (uint64_t)limits->dlim_addr_hi;
1719 	attrp->dma_attr_count_max = (uint64_t)limits->dlim_ctreg_max;
1720 	attrp->dma_attr_align = 1;
1721 	attrp->dma_attr_burstsizes = (uint_t)limits->dlim_burstsizes;
1722 	attrp->dma_attr_minxfer = (uint32_t)limits->dlim_minxfer;
1723 	attrp->dma_attr_maxxfer = (uint64_t)limits->dlim_reqsize;
1724 	attrp->dma_attr_seg = (uint64_t)limits->dlim_adreg_max;
1725 	attrp->dma_attr_sgllen = limits->dlim_sgllen;
1726 	attrp->dma_attr_granular = (uint32_t)limits->dlim_granular;
1727 	attrp->dma_attr_flags = 0;
1728 
1729 	ret = i_ddi_mem_alloc(dip, attrp, length, cansleep, streaming,
1730 	    accattrp, kaddrp, &rlen, ap);
1731 	if (ret == DDI_SUCCESS) {
1732 		if (real_length)
1733 			*real_length = (uint_t)rlen;
1734 	}
1735 	return (ret);
1736 }
1737 
1738 /* ARGSUSED */
1739 void
1740 i_ddi_mem_free(caddr_t kaddr, ddi_acc_hdl_t *ap)
1741 {
1742 	if (ap != NULL) {
1743 		/*
1744 		 * if we modified the cache attributes on alloc, go back and
1745 		 * fix them since this memory could be returned to the
1746 		 * general pool.
1747 		 */
1748 		if (OVERRIDE_CACHE_ATTR(ap->ah_xfermodes)) {
1749 			uint_t order = 0;
1750 			int e;
1751 			i_ddi_cacheattr_to_hatacc(IOMEM_DATA_CACHED, &order);
1752 			e = kmem_override_cache_attrs(kaddr, ap->ah_len, order);
1753 			if (e != 0) {
1754 				cmn_err(CE_WARN, "i_ddi_mem_free() failed to "
1755 				    "override cache attrs, memory leaked\n");
1756 				return;
1757 			}
1758 		}
1759 	}
1760 	kfreea(kaddr);
1761 }
1762 
1763 /*
1764  * Access Barriers
1765  *
1766  */
1767 /*ARGSUSED*/
1768 int
1769 i_ddi_ontrap(ddi_acc_handle_t hp)
1770 {
1771 	return (DDI_FAILURE);
1772 }
1773 
1774 /*ARGSUSED*/
1775 void
1776 i_ddi_notrap(ddi_acc_handle_t hp)
1777 {
1778 }
1779 
1780 
1781 /*
1782  * Misc Functions
1783  */
1784 
1785 /*
1786  * Implementation instance override functions
1787  *
1788  * No override on i86pc
1789  */
1790 /*ARGSUSED*/
1791 uint_t
1792 impl_assign_instance(dev_info_t *dip)
1793 {
1794 	return ((uint_t)-1);
1795 }
1796 
1797 /*ARGSUSED*/
1798 int
1799 impl_keep_instance(dev_info_t *dip)
1800 {
1801 
1802 #if defined(__xpv)
1803 	/*
1804 	 * Do not persist instance numbers assigned to devices in dom0
1805 	 */
1806 	dev_info_t *pdip;
1807 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1808 		if (((pdip = ddi_get_parent(dip)) != NULL) &&
1809 		    (strcmp(ddi_get_name(pdip), "xpvd") == 0))
1810 			return (DDI_SUCCESS);
1811 	}
1812 #endif
1813 	return (DDI_FAILURE);
1814 }
1815 
1816 /*ARGSUSED*/
1817 int
1818 impl_free_instance(dev_info_t *dip)
1819 {
1820 	return (DDI_FAILURE);
1821 }
1822 
1823 /*ARGSUSED*/
1824 int
1825 impl_check_cpu(dev_info_t *devi)
1826 {
1827 	return (DDI_SUCCESS);
1828 }
1829 
1830 /*
1831  * Referenced in common/cpr_driver.c: Power off machine.
1832  * Don't know how to power off i86pc.
1833  */
1834 void
1835 arch_power_down()
1836 {}
1837 
1838 /*
1839  * Copy name to property_name, since name
1840  * is in the low address range below kernelbase.
1841  */
1842 static void
1843 copy_boot_str(const char *boot_str, char *kern_str, int len)
1844 {
1845 	int i = 0;
1846 
1847 	while (i < len - 1 && boot_str[i] != '\0') {
1848 		kern_str[i] = boot_str[i];
1849 		i++;
1850 	}
1851 
1852 	kern_str[i] = 0;	/* null terminate */
1853 	if (boot_str[i] != '\0')
1854 		cmn_err(CE_WARN,
1855 		    "boot property string is truncated to %s", kern_str);
1856 }
1857 
1858 static void
1859 get_boot_properties(void)
1860 {
1861 	extern char hw_provider[];
1862 	dev_info_t *devi;
1863 	char *name;
1864 	int length;
1865 	char property_name[50], property_val[50];
1866 	void *bop_staging_area;
1867 
1868 	bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP);
1869 
1870 	/*
1871 	 * Import "root" properties from the boot.
1872 	 *
1873 	 * We do this by invoking BOP_NEXTPROP until the list
1874 	 * is completely copied in.
1875 	 */
1876 
1877 	devi = ddi_root_node();
1878 	for (name = BOP_NEXTPROP(bootops, "");		/* get first */
1879 	    name;					/* NULL => DONE */
1880 	    name = BOP_NEXTPROP(bootops, name)) {	/* get next */
1881 
1882 		/* copy string to memory above kernelbase */
1883 		copy_boot_str(name, property_name, 50);
1884 
1885 		/*
1886 		 * Skip vga properties. They will be picked up later
1887 		 * by get_vga_properties.
1888 		 */
1889 		if (strcmp(property_name, "display-edif-block") == 0 ||
1890 		    strcmp(property_name, "display-edif-id") == 0) {
1891 			continue;
1892 		}
1893 
1894 		length = BOP_GETPROPLEN(bootops, property_name);
1895 		if (length == 0)
1896 			continue;
1897 		if (length > MMU_PAGESIZE) {
1898 			cmn_err(CE_NOTE,
1899 			    "boot property %s longer than 0x%x, ignored\n",
1900 			    property_name, MMU_PAGESIZE);
1901 			continue;
1902 		}
1903 		BOP_GETPROP(bootops, property_name, bop_staging_area);
1904 
1905 		/*
1906 		 * special properties:
1907 		 * si-machine, si-hw-provider
1908 		 *	goes to kernel data structures.
1909 		 * bios-boot-device and stdout
1910 		 *	goes to hardware property list so it may show up
1911 		 *	in the prtconf -vp output. This is needed by
1912 		 *	Install/Upgrade. Once we fix install upgrade,
1913 		 *	this can be taken out.
1914 		 */
1915 		if (strcmp(name, "si-machine") == 0) {
1916 			(void) strncpy(utsname.machine, bop_staging_area,
1917 			    SYS_NMLN);
1918 			utsname.machine[SYS_NMLN - 1] = (char)NULL;
1919 		} else if (strcmp(name, "si-hw-provider") == 0) {
1920 			(void) strncpy(hw_provider, bop_staging_area, SYS_NMLN);
1921 			hw_provider[SYS_NMLN - 1] = (char)NULL;
1922 		} else if (strcmp(name, "bios-boot-device") == 0) {
1923 			copy_boot_str(bop_staging_area, property_val, 50);
1924 			(void) ndi_prop_update_string(DDI_DEV_T_NONE, devi,
1925 			    property_name, property_val);
1926 		} else if (strcmp(name, "stdout") == 0) {
1927 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, devi,
1928 			    property_name, *((int *)bop_staging_area));
1929 		} else {
1930 			/* Property type unknown, use old prop interface */
1931 			(void) e_ddi_prop_create(DDI_DEV_T_NONE, devi,
1932 			    DDI_PROP_CANSLEEP, property_name, bop_staging_area,
1933 			    length);
1934 		}
1935 	}
1936 
1937 	kmem_free(bop_staging_area, MMU_PAGESIZE);
1938 }
1939 
1940 static void
1941 get_vga_properties(void)
1942 {
1943 	dev_info_t *devi;
1944 	major_t major;
1945 	char *name;
1946 	int length;
1947 	char property_val[50];
1948 	void *bop_staging_area;
1949 
1950 	major = ddi_name_to_major("vgatext");
1951 	if (major == (major_t)-1)
1952 		return;
1953 	devi = devnamesp[major].dn_head;
1954 	if (devi == NULL)
1955 		return;
1956 
1957 	bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
1958 
1959 	/*
1960 	 * Import "vga" properties from the boot.
1961 	 */
1962 	name = "display-edif-block";
1963 	length = BOP_GETPROPLEN(bootops, name);
1964 	if (length > 0 && length < MMU_PAGESIZE) {
1965 		BOP_GETPROP(bootops, name, bop_staging_area);
1966 		(void) ndi_prop_update_byte_array(DDI_DEV_T_NONE,
1967 		    devi, name, bop_staging_area, length);
1968 	}
1969 
1970 	/*
1971 	 * kdmconfig is also looking for display-type and
1972 	 * video-adapter-type. We default to color and svga.
1973 	 *
1974 	 * Could it be "monochrome", "vga"?
1975 	 * Nah, you've got to come to the 21st century...
1976 	 * And you can set monitor type manually in kdmconfig
1977 	 * if you are really an old junky.
1978 	 */
1979 	(void) ndi_prop_update_string(DDI_DEV_T_NONE,
1980 	    devi, "display-type", "color");
1981 	(void) ndi_prop_update_string(DDI_DEV_T_NONE,
1982 	    devi, "video-adapter-type", "svga");
1983 
1984 	name = "display-edif-id";
1985 	length = BOP_GETPROPLEN(bootops, name);
1986 	if (length > 0 && length < MMU_PAGESIZE) {
1987 		BOP_GETPROP(bootops, name, bop_staging_area);
1988 		copy_boot_str(bop_staging_area, property_val, length);
1989 		(void) ndi_prop_update_string(DDI_DEV_T_NONE,
1990 		    devi, name, property_val);
1991 	}
1992 
1993 	kmem_free(bop_staging_area, MMU_PAGESIZE);
1994 }
1995 
1996 
1997 /*
1998  * This is temporary, but absolutely necessary.  If we are being
1999  * booted with a device tree created by the DevConf project's bootconf
2000  * program, then we have device information nodes that reflect
2001  * reality.  At this point in time in the Solaris release schedule, the
2002  * kernel drivers aren't prepared for reality.  They still depend on their
2003  * own ad-hoc interpretations of the properties created when their .conf
2004  * files were interpreted. These drivers use an "ignore-hardware-nodes"
2005  * property to prevent them from using the nodes passed up from the bootconf
2006  * device tree.
2007  *
2008  * Trying to assemble root file system drivers as we are booting from
2009  * devconf will fail if the kernel driver is basing its name_addr's on the
2010  * psuedo-node device info while the bootpath passed up from bootconf is using
2011  * reality-based name_addrs.  We help the boot along in this case by
2012  * looking at the pre-bootconf bootpath and determining if we would have
2013  * successfully matched if that had been the bootpath we had chosen.
2014  *
2015  * Note that we only even perform this extra check if we've booted
2016  * using bootconf's 1275 compliant bootpath, this is the boot device, and
2017  * we're trying to match the name_addr specified in the 1275 bootpath.
2018  */
2019 
2020 #define	MAXCOMPONENTLEN	32
2021 
2022 int
2023 x86_old_bootpath_name_addr_match(dev_info_t *cdip, char *caddr, char *naddr)
2024 {
2025 	/*
2026 	 *  There are multiple criteria to be met before we can even
2027 	 *  consider allowing a name_addr match here.
2028 	 *
2029 	 *  1) We must have been booted such that the bootconf program
2030 	 *	created device tree nodes and properties.  This can be
2031 	 *	determined by examining the 'bootpath' property.  This
2032 	 *	property will be a non-null string iff bootconf was
2033 	 *	involved in the boot.
2034 	 *
2035 	 *  2) The module that we want to match must be the boot device.
2036 	 *
2037 	 *  3) The instance of the module we are thinking of letting be
2038 	 *	our match must be ignoring hardware nodes.
2039 	 *
2040 	 *  4) The name_addr we want to match must be the name_addr
2041 	 *	specified in the 1275 bootpath.
2042 	 */
2043 	static char bootdev_module[MAXCOMPONENTLEN];
2044 	static char bootdev_oldmod[MAXCOMPONENTLEN];
2045 	static char bootdev_newaddr[MAXCOMPONENTLEN];
2046 	static char bootdev_oldaddr[MAXCOMPONENTLEN];
2047 	static int  quickexit;
2048 
2049 	char *daddr;
2050 	int dlen;
2051 
2052 	char	*lkupname;
2053 	int	rv = DDI_FAILURE;
2054 
2055 	if ((ddi_getlongprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
2056 	    "devconf-addr", (caddr_t)&daddr, &dlen) == DDI_PROP_SUCCESS) &&
2057 	    (ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
2058 	    "ignore-hardware-nodes", -1) != -1)) {
2059 		if (strcmp(daddr, caddr) == 0) {
2060 			return (DDI_SUCCESS);
2061 		}
2062 	}
2063 
2064 	if (quickexit)
2065 		return (rv);
2066 
2067 	if (bootdev_module[0] == '\0') {
2068 		char *addrp, *eoaddrp;
2069 		char *busp, *modp, *atp;
2070 		char *bp1275, *bp;
2071 		int  bp1275len, bplen;
2072 
2073 		bp1275 = bp = addrp = eoaddrp = busp = modp = atp = NULL;
2074 
2075 		if (ddi_getlongprop(DDI_DEV_T_ANY,
2076 		    ddi_root_node(), 0, "bootpath",
2077 		    (caddr_t)&bp1275, &bp1275len) != DDI_PROP_SUCCESS ||
2078 		    bp1275len <= 1) {
2079 			/*
2080 			 * We didn't boot from bootconf so we never need to
2081 			 * do any special matches.
2082 			 */
2083 			quickexit = 1;
2084 			if (bp1275)
2085 				kmem_free(bp1275, bp1275len);
2086 			return (rv);
2087 		}
2088 
2089 		if (ddi_getlongprop(DDI_DEV_T_ANY,
2090 		    ddi_root_node(), 0, "boot-path",
2091 		    (caddr_t)&bp, &bplen) != DDI_PROP_SUCCESS || bplen <= 1) {
2092 			/*
2093 			 * No fallback position for matching. This is
2094 			 * certainly unexpected, but we'll handle it
2095 			 * just in case.
2096 			 */
2097 			quickexit = 1;
2098 			kmem_free(bp1275, bp1275len);
2099 			if (bp)
2100 				kmem_free(bp, bplen);
2101 			return (rv);
2102 		}
2103 
2104 		/*
2105 		 *  Determine boot device module and 1275 name_addr
2106 		 *
2107 		 *  bootpath assumed to be of the form /bus/module@name_addr
2108 		 */
2109 		if (busp = strchr(bp1275, '/')) {
2110 			if (modp = strchr(busp + 1, '/')) {
2111 				if (atp = strchr(modp + 1, '@')) {
2112 					*atp = '\0';
2113 					addrp = atp + 1;
2114 					if (eoaddrp = strchr(addrp, '/'))
2115 						*eoaddrp = '\0';
2116 				}
2117 			}
2118 		}
2119 
2120 		if (modp && addrp) {
2121 			(void) strncpy(bootdev_module, modp + 1,
2122 			    MAXCOMPONENTLEN);
2123 			bootdev_module[MAXCOMPONENTLEN - 1] = '\0';
2124 
2125 			(void) strncpy(bootdev_newaddr, addrp, MAXCOMPONENTLEN);
2126 			bootdev_newaddr[MAXCOMPONENTLEN - 1] = '\0';
2127 		} else {
2128 			quickexit = 1;
2129 			kmem_free(bp1275, bp1275len);
2130 			kmem_free(bp, bplen);
2131 			return (rv);
2132 		}
2133 
2134 		/*
2135 		 *  Determine fallback name_addr
2136 		 *
2137 		 *  10/3/96 - Also save fallback module name because it
2138 		 *  might actually be different than the current module
2139 		 *  name.  E.G., ISA pnp drivers have new names.
2140 		 *
2141 		 *  bootpath assumed to be of the form /bus/module@name_addr
2142 		 */
2143 		addrp = NULL;
2144 		if (busp = strchr(bp, '/')) {
2145 			if (modp = strchr(busp + 1, '/')) {
2146 				if (atp = strchr(modp + 1, '@')) {
2147 					*atp = '\0';
2148 					addrp = atp + 1;
2149 					if (eoaddrp = strchr(addrp, '/'))
2150 						*eoaddrp = '\0';
2151 				}
2152 			}
2153 		}
2154 
2155 		if (modp && addrp) {
2156 			(void) strncpy(bootdev_oldmod, modp + 1,
2157 			    MAXCOMPONENTLEN);
2158 			bootdev_module[MAXCOMPONENTLEN - 1] = '\0';
2159 
2160 			(void) strncpy(bootdev_oldaddr, addrp, MAXCOMPONENTLEN);
2161 			bootdev_oldaddr[MAXCOMPONENTLEN - 1] = '\0';
2162 		}
2163 
2164 		/* Free up the bootpath storage now that we're done with it. */
2165 		kmem_free(bp1275, bp1275len);
2166 		kmem_free(bp, bplen);
2167 
2168 		if (bootdev_oldaddr[0] == '\0') {
2169 			quickexit = 1;
2170 			return (rv);
2171 		}
2172 	}
2173 
2174 	if (((lkupname = ddi_get_name(cdip)) != NULL) &&
2175 	    (strcmp(bootdev_module, lkupname) == 0 ||
2176 	    strcmp(bootdev_oldmod, lkupname) == 0) &&
2177 	    ((ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
2178 	    "ignore-hardware-nodes", -1) != -1) ||
2179 	    ignore_hardware_nodes) &&
2180 	    strcmp(bootdev_newaddr, caddr) == 0 &&
2181 	    strcmp(bootdev_oldaddr, naddr) == 0) {
2182 		rv = DDI_SUCCESS;
2183 	}
2184 
2185 	return (rv);
2186 }
2187 
2188 /*
2189  * Perform a copy from a memory mapped device (whose devinfo pointer is devi)
2190  * separately mapped at devaddr in the kernel to a kernel buffer at kaddr.
2191  */
2192 /*ARGSUSED*/
2193 int
2194 e_ddi_copyfromdev(dev_info_t *devi,
2195     off_t off, const void *devaddr, void *kaddr, size_t len)
2196 {
2197 	bcopy(devaddr, kaddr, len);
2198 	return (0);
2199 }
2200 
2201 /*
2202  * Perform a copy to a memory mapped device (whose devinfo pointer is devi)
2203  * separately mapped at devaddr in the kernel from a kernel buffer at kaddr.
2204  */
2205 /*ARGSUSED*/
2206 int
2207 e_ddi_copytodev(dev_info_t *devi,
2208     off_t off, const void *kaddr, void *devaddr, size_t len)
2209 {
2210 	bcopy(kaddr, devaddr, len);
2211 	return (0);
2212 }
2213 
2214 
2215 static int
2216 poke_mem(peekpoke_ctlops_t *in_args)
2217 {
2218 	int err = DDI_SUCCESS;
2219 	on_trap_data_t otd;
2220 
2221 	/* Set up protected environment. */
2222 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
2223 		switch (in_args->size) {
2224 		case sizeof (uint8_t):
2225 			*(uint8_t *)(in_args->dev_addr) =
2226 			    *(uint8_t *)in_args->host_addr;
2227 			break;
2228 
2229 		case sizeof (uint16_t):
2230 			*(uint16_t *)(in_args->dev_addr) =
2231 			    *(uint16_t *)in_args->host_addr;
2232 			break;
2233 
2234 		case sizeof (uint32_t):
2235 			*(uint32_t *)(in_args->dev_addr) =
2236 			    *(uint32_t *)in_args->host_addr;
2237 			break;
2238 
2239 		case sizeof (uint64_t):
2240 			*(uint64_t *)(in_args->dev_addr) =
2241 			    *(uint64_t *)in_args->host_addr;
2242 			break;
2243 
2244 		default:
2245 			err = DDI_FAILURE;
2246 			break;
2247 		}
2248 	} else
2249 		err = DDI_FAILURE;
2250 
2251 	/* Take down protected environment. */
2252 	no_trap();
2253 
2254 	return (err);
2255 }
2256 
2257 
2258 static int
2259 peek_mem(peekpoke_ctlops_t *in_args)
2260 {
2261 	int err = DDI_SUCCESS;
2262 	on_trap_data_t otd;
2263 
2264 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
2265 		switch (in_args->size) {
2266 		case sizeof (uint8_t):
2267 			*(uint8_t *)in_args->host_addr =
2268 			    *(uint8_t *)in_args->dev_addr;
2269 			break;
2270 
2271 		case sizeof (uint16_t):
2272 			*(uint16_t *)in_args->host_addr =
2273 			    *(uint16_t *)in_args->dev_addr;
2274 			break;
2275 
2276 		case sizeof (uint32_t):
2277 			*(uint32_t *)in_args->host_addr =
2278 			    *(uint32_t *)in_args->dev_addr;
2279 			break;
2280 
2281 		case sizeof (uint64_t):
2282 			*(uint64_t *)in_args->host_addr =
2283 			    *(uint64_t *)in_args->dev_addr;
2284 			break;
2285 
2286 		default:
2287 			err = DDI_FAILURE;
2288 			break;
2289 		}
2290 	} else
2291 		err = DDI_FAILURE;
2292 
2293 	no_trap();
2294 	return (err);
2295 }
2296 
2297 
2298 /*
2299  * This is called only to process peek/poke when the DIP is NULL.
2300  * Assume that this is for memory, as nexi take care of device safe accesses.
2301  */
2302 int
2303 peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args)
2304 {
2305 	return (cmd == DDI_CTLOPS_PEEK ? peek_mem(in_args) : poke_mem(in_args));
2306 }
2307 
2308 /*
2309  * we've just done a cautious put/get. Check if it was successful by
2310  * calling pci_ereport_post() on all puts and for any gets that return -1
2311  */
2312 static int
2313 pci_peekpoke_check_fma(dev_info_t *dip, void *arg, ddi_ctl_enum_t ctlop)
2314 {
2315 	int	rval = DDI_SUCCESS;
2316 	peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg;
2317 	ddi_fm_error_t de;
2318 	ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle;
2319 	ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle;
2320 	int check_err = 0;
2321 	int repcount = in_args->repcount;
2322 
2323 	if (ctlop == DDI_CTLOPS_POKE &&
2324 	    hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC)
2325 		return (DDI_SUCCESS);
2326 
2327 	if (ctlop == DDI_CTLOPS_PEEK &&
2328 	    hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC) {
2329 		for (; repcount; repcount--) {
2330 			switch (in_args->size) {
2331 			case sizeof (uint8_t):
2332 				if (*(uint8_t *)in_args->host_addr == 0xff)
2333 					check_err = 1;
2334 				break;
2335 			case sizeof (uint16_t):
2336 				if (*(uint16_t *)in_args->host_addr == 0xffff)
2337 					check_err = 1;
2338 				break;
2339 			case sizeof (uint32_t):
2340 				if (*(uint32_t *)in_args->host_addr ==
2341 				    0xffffffff)
2342 					check_err = 1;
2343 				break;
2344 			case sizeof (uint64_t):
2345 				if (*(uint64_t *)in_args->host_addr ==
2346 				    0xffffffffffffffff)
2347 					check_err = 1;
2348 				break;
2349 			}
2350 		}
2351 		if (check_err == 0)
2352 			return (DDI_SUCCESS);
2353 	}
2354 	/*
2355 	 * for a cautious put or get or a non-cautious get that returned -1 call
2356 	 * io framework to see if there really was an error
2357 	 */
2358 	bzero(&de, sizeof (ddi_fm_error_t));
2359 	de.fme_version = DDI_FME_VERSION;
2360 	de.fme_ena = fm_ena_generate(0, FM_ENA_FMT1);
2361 	if (hdlp->ah_acc.devacc_attr_access == DDI_CAUTIOUS_ACC) {
2362 		de.fme_flag = DDI_FM_ERR_EXPECTED;
2363 		de.fme_acc_handle = in_args->handle;
2364 	} else if (hdlp->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) {
2365 		/*
2366 		 * We only get here with DDI_DEFAULT_ACC for config space gets.
2367 		 * Non-hardened drivers may be probing the hardware and
2368 		 * expecting -1 returned. So need to treat errors on
2369 		 * DDI_DEFAULT_ACC as DDI_FM_ERR_EXPECTED.
2370 		 */
2371 		de.fme_flag = DDI_FM_ERR_EXPECTED;
2372 		de.fme_acc_handle = in_args->handle;
2373 	} else {
2374 		/*
2375 		 * Hardened driver doing protected accesses shouldn't
2376 		 * get errors unless there's a hardware problem. Treat
2377 		 * as nonfatal if there's an error, but set UNEXPECTED
2378 		 * so we raise ereports on any errors and potentially
2379 		 * fault the device
2380 		 */
2381 		de.fme_flag = DDI_FM_ERR_UNEXPECTED;
2382 	}
2383 	pci_ereport_post(dip, &de, NULL);
2384 	if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC &&
2385 	    de.fme_status != DDI_FM_OK) {
2386 		ndi_err_t *errp = (ndi_err_t *)hp->ahi_err;
2387 		rval = DDI_FAILURE;
2388 		errp->err_ena = de.fme_ena;
2389 		errp->err_expected = de.fme_flag;
2390 		errp->err_status = DDI_FM_NONFATAL;
2391 	}
2392 	return (rval);
2393 }
2394 
2395 /*
2396  * pci_peekpoke_check_nofma() is for when an error occurs on a register access
2397  * during pci_ereport_post(). We can't call pci_ereport_post() again or we'd
2398  * recurse, so assume all puts are OK and gets have failed if they return -1
2399  */
2400 static int
2401 pci_peekpoke_check_nofma(void *arg, ddi_ctl_enum_t ctlop)
2402 {
2403 	int rval = DDI_SUCCESS;
2404 	peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg;
2405 	ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle;
2406 	ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle;
2407 	int repcount = in_args->repcount;
2408 
2409 	if (ctlop == DDI_CTLOPS_POKE)
2410 		return (rval);
2411 
2412 	for (; repcount; repcount--) {
2413 		switch (in_args->size) {
2414 		case sizeof (uint8_t):
2415 			if (*(uint8_t *)in_args->host_addr == 0xff)
2416 				rval = DDI_FAILURE;
2417 			break;
2418 		case sizeof (uint16_t):
2419 			if (*(uint16_t *)in_args->host_addr == 0xffff)
2420 				rval = DDI_FAILURE;
2421 			break;
2422 		case sizeof (uint32_t):
2423 			if (*(uint32_t *)in_args->host_addr == 0xffffffff)
2424 				rval = DDI_FAILURE;
2425 			break;
2426 		case sizeof (uint64_t):
2427 			if (*(uint64_t *)in_args->host_addr ==
2428 			    0xffffffffffffffff)
2429 				rval = DDI_FAILURE;
2430 			break;
2431 		}
2432 	}
2433 	if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC &&
2434 	    rval == DDI_FAILURE) {
2435 		ndi_err_t *errp = (ndi_err_t *)hp->ahi_err;
2436 		errp->err_ena = fm_ena_generate(0, FM_ENA_FMT1);
2437 		errp->err_expected = DDI_FM_ERR_UNEXPECTED;
2438 		errp->err_status = DDI_FM_NONFATAL;
2439 	}
2440 	return (rval);
2441 }
2442 
2443 int
2444 pci_peekpoke_check(dev_info_t *dip, dev_info_t *rdip,
2445 	ddi_ctl_enum_t ctlop, void *arg, void *result,
2446 	int (*handler)(dev_info_t *, dev_info_t *, ddi_ctl_enum_t, void *,
2447 	void *), kmutex_t *err_mutexp, kmutex_t *peek_poke_mutexp)
2448 {
2449 	int rval;
2450 	peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg;
2451 	ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle;
2452 
2453 	/*
2454 	 * this function only supports cautious accesses, not peeks/pokes
2455 	 * which don't have a handle
2456 	 */
2457 	if (hp == NULL)
2458 		return (DDI_FAILURE);
2459 
2460 	if (hp->ahi_acc_attr & DDI_ACCATTR_CONFIG_SPACE) {
2461 		if (!mutex_tryenter(err_mutexp)) {
2462 			/*
2463 			 * As this may be a recursive call from within
2464 			 * pci_ereport_post() we can't wait for the mutexes.
2465 			 * Fortunately we know someone is already calling
2466 			 * pci_ereport_post() which will handle the error bits
2467 			 * for us, and as this is a config space access we can
2468 			 * just do the access and check return value for -1
2469 			 * using pci_peekpoke_check_nofma().
2470 			 */
2471 			rval = handler(dip, rdip, ctlop, arg, result);
2472 			if (rval == DDI_SUCCESS)
2473 				rval = pci_peekpoke_check_nofma(arg, ctlop);
2474 			return (rval);
2475 		}
2476 		/*
2477 		 * This can't be a recursive call. Drop the err_mutex and get
2478 		 * both mutexes in the right order. If an error hasn't already
2479 		 * been detected by the ontrap code, use pci_peekpoke_check_fma
2480 		 * which will call pci_ereport_post() to check error status.
2481 		 */
2482 		mutex_exit(err_mutexp);
2483 	}
2484 	mutex_enter(peek_poke_mutexp);
2485 	rval = handler(dip, rdip, ctlop, arg, result);
2486 	if (rval == DDI_SUCCESS) {
2487 		mutex_enter(err_mutexp);
2488 		rval = pci_peekpoke_check_fma(dip, arg, ctlop);
2489 		mutex_exit(err_mutexp);
2490 	}
2491 	mutex_exit(peek_poke_mutexp);
2492 	return (rval);
2493 }
2494 
2495 void
2496 impl_setup_ddi(void)
2497 {
2498 	dev_info_t *xdip, *isa_dip;
2499 	rd_existing_t rd_mem_prop;
2500 	int err;
2501 
2502 	ndi_devi_alloc_sleep(ddi_root_node(), "ramdisk",
2503 	    (pnode_t)DEVI_SID_NODEID, &xdip);
2504 
2505 	(void) BOP_GETPROP(bootops,
2506 	    "ramdisk_start", (void *)&ramdisk_start);
2507 	(void) BOP_GETPROP(bootops,
2508 	    "ramdisk_end", (void *)&ramdisk_end);
2509 
2510 #ifdef __xpv
2511 	ramdisk_start -= ONE_GIG;
2512 	ramdisk_end -= ONE_GIG;
2513 #endif
2514 	rd_mem_prop.phys = ramdisk_start;
2515 	rd_mem_prop.size = ramdisk_end - ramdisk_start + 1;
2516 
2517 	(void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, xdip,
2518 	    RD_EXISTING_PROP_NAME, (uchar_t *)&rd_mem_prop,
2519 	    sizeof (rd_mem_prop));
2520 	err = ndi_devi_bind_driver(xdip, 0);
2521 	ASSERT(err == 0);
2522 
2523 	/* isa node */
2524 	ndi_devi_alloc_sleep(ddi_root_node(), "isa",
2525 	    (pnode_t)DEVI_SID_NODEID, &isa_dip);
2526 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip,
2527 	    "device_type", "isa");
2528 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip,
2529 	    "bus-type", "isa");
2530 	(void) ndi_devi_bind_driver(isa_dip, 0);
2531 
2532 	/*
2533 	 * Read in the properties from the boot.
2534 	 */
2535 	get_boot_properties();
2536 
2537 	/* do bus dependent probes. */
2538 	impl_bus_initialprobe();
2539 
2540 	/* not framebuffer should be enumerated, if present */
2541 	get_vga_properties();
2542 }
2543 
2544 dev_t
2545 getrootdev(void)
2546 {
2547 	/*
2548 	 * Precedence given to rootdev if set in /etc/system
2549 	 */
2550 	if (root_is_svm) {
2551 		return (ddi_pathname_to_dev_t(svm_bootpath));
2552 	}
2553 
2554 	/*
2555 	 * Usually rootfs.bo_name is initialized by the
2556 	 * the bootpath property from bootenv.rc, but
2557 	 * defaults to "/ramdisk:a" otherwise.
2558 	 */
2559 	return (ddi_pathname_to_dev_t(rootfs.bo_name));
2560 }
2561 
2562 static struct bus_probe {
2563 	struct bus_probe *next;
2564 	void (*probe)(int);
2565 } *bus_probes;
2566 
2567 void
2568 impl_bus_add_probe(void (*func)(int))
2569 {
2570 	struct bus_probe *probe;
2571 
2572 	probe = kmem_alloc(sizeof (*probe), KM_SLEEP);
2573 	probe->next = bus_probes;
2574 	probe->probe = func;
2575 	bus_probes = probe;
2576 }
2577 
2578 /*ARGSUSED*/
2579 void
2580 impl_bus_delete_probe(void (*func)(int))
2581 {
2582 	struct bus_probe *prev = NULL;
2583 	struct bus_probe *probe = bus_probes;
2584 
2585 	while (probe) {
2586 		if (probe->probe == func)
2587 			break;
2588 		prev = probe;
2589 		probe = probe->next;
2590 	}
2591 
2592 	if (probe == NULL)
2593 		return;
2594 
2595 	if (prev)
2596 		prev->next = probe->next;
2597 	else
2598 		bus_probes = probe->next;
2599 
2600 	kmem_free(probe, sizeof (struct bus_probe));
2601 }
2602 
2603 /*
2604  * impl_bus_initialprobe
2605  *	Modload the prom simulator, then let it probe to verify existence
2606  *	and type of PCI support.
2607  */
2608 static void
2609 impl_bus_initialprobe(void)
2610 {
2611 	struct bus_probe *probe;
2612 
2613 	/* load modules to install bus probes */
2614 #if defined(__xpv)
2615 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
2616 		if (modload("misc", "pci_autoconfig") < 0) {
2617 			panic("failed to load misc/pci_autoconfig");
2618 		}
2619 	}
2620 	(void) modload("misc", "xpv_autoconfig");
2621 #else
2622 	if (modload("misc", "pci_autoconfig") < 0) {
2623 		panic("failed to load misc/pci_autoconfig");
2624 	}
2625 #endif
2626 
2627 	probe = bus_probes;
2628 	while (probe) {
2629 		/* run the probe functions */
2630 		(*probe->probe)(0);
2631 		probe = probe->next;
2632 	}
2633 }
2634 
2635 /*
2636  * impl_bus_reprobe
2637  *	Reprogram devices not set up by firmware.
2638  */
2639 static void
2640 impl_bus_reprobe(void)
2641 {
2642 	struct bus_probe *probe;
2643 
2644 	probe = bus_probes;
2645 	while (probe) {
2646 		/* run the probe function */
2647 		(*probe->probe)(1);
2648 		probe = probe->next;
2649 	}
2650 }
2651 
2652 
2653 /*
2654  * The following functions ready a cautious request to go up to the nexus
2655  * driver.  It is up to the nexus driver to decide how to process the request.
2656  * It may choose to call i_ddi_do_caut_get/put in this file, or do it
2657  * differently.
2658  */
2659 
2660 static void
2661 i_ddi_caut_getput_ctlops(ddi_acc_impl_t *hp, uint64_t host_addr,
2662     uint64_t dev_addr, size_t size, size_t repcount, uint_t flags,
2663     ddi_ctl_enum_t cmd)
2664 {
2665 	peekpoke_ctlops_t	cautacc_ctlops_arg;
2666 
2667 	cautacc_ctlops_arg.size = size;
2668 	cautacc_ctlops_arg.dev_addr = dev_addr;
2669 	cautacc_ctlops_arg.host_addr = host_addr;
2670 	cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp;
2671 	cautacc_ctlops_arg.repcount = repcount;
2672 	cautacc_ctlops_arg.flags = flags;
2673 
2674 	(void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd,
2675 	    &cautacc_ctlops_arg, NULL);
2676 }
2677 
2678 uint8_t
2679 i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr)
2680 {
2681 	uint8_t value;
2682 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2683 	    sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK);
2684 
2685 	return (value);
2686 }
2687 
2688 uint16_t
2689 i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr)
2690 {
2691 	uint16_t value;
2692 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2693 	    sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK);
2694 
2695 	return (value);
2696 }
2697 
2698 uint32_t
2699 i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr)
2700 {
2701 	uint32_t value;
2702 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2703 	    sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK);
2704 
2705 	return (value);
2706 }
2707 
2708 uint64_t
2709 i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr)
2710 {
2711 	uint64_t value;
2712 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2713 	    sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK);
2714 
2715 	return (value);
2716 }
2717 
2718 void
2719 i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value)
2720 {
2721 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2722 	    sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE);
2723 }
2724 
2725 void
2726 i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value)
2727 {
2728 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2729 	    sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE);
2730 }
2731 
2732 void
2733 i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value)
2734 {
2735 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2736 	    sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE);
2737 }
2738 
2739 void
2740 i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value)
2741 {
2742 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2743 	    sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE);
2744 }
2745 
2746 void
2747 i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
2748 	size_t repcount, uint_t flags)
2749 {
2750 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2751 	    sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK);
2752 }
2753 
2754 void
2755 i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr,
2756     uint16_t *dev_addr, size_t repcount, uint_t flags)
2757 {
2758 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2759 	    sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK);
2760 }
2761 
2762 void
2763 i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr,
2764     uint32_t *dev_addr, size_t repcount, uint_t flags)
2765 {
2766 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2767 	    sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK);
2768 }
2769 
2770 void
2771 i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr,
2772     uint64_t *dev_addr, size_t repcount, uint_t flags)
2773 {
2774 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2775 	    sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK);
2776 }
2777 
2778 void
2779 i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
2780 	size_t repcount, uint_t flags)
2781 {
2782 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2783 	    sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE);
2784 }
2785 
2786 void
2787 i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr,
2788     uint16_t *dev_addr, size_t repcount, uint_t flags)
2789 {
2790 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2791 	    sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE);
2792 }
2793 
2794 void
2795 i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr,
2796     uint32_t *dev_addr, size_t repcount, uint_t flags)
2797 {
2798 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2799 	    sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE);
2800 }
2801 
2802 void
2803 i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr,
2804     uint64_t *dev_addr, size_t repcount, uint_t flags)
2805 {
2806 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2807 	    sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE);
2808 }
2809 
2810 boolean_t
2811 i_ddi_copybuf_required(ddi_dma_attr_t *attrp)
2812 {
2813 	uint64_t hi_pa;
2814 
2815 	hi_pa = ((uint64_t)physmax + 1ull) << PAGESHIFT;
2816 	if (attrp->dma_attr_addr_hi < hi_pa) {
2817 		return (B_TRUE);
2818 	}
2819 
2820 	return (B_FALSE);
2821 }
2822 
2823 size_t
2824 i_ddi_copybuf_size()
2825 {
2826 	return (dma_max_copybuf_size);
2827 }
2828 
2829 /*
2830  * i_ddi_dma_max()
2831  *    returns the maximum DMA size which can be performed in a single DMA
2832  *    window taking into account the devices DMA contraints (attrp), the
2833  *    maximum copy buffer size (if applicable), and the worse case buffer
2834  *    fragmentation.
2835  */
2836 /*ARGSUSED*/
2837 uint32_t
2838 i_ddi_dma_max(dev_info_t *dip, ddi_dma_attr_t *attrp)
2839 {
2840 	uint64_t maxxfer;
2841 
2842 
2843 	/*
2844 	 * take the min of maxxfer and the the worse case fragementation
2845 	 * (e.g. every cookie <= 1 page)
2846 	 */
2847 	maxxfer = MIN(attrp->dma_attr_maxxfer,
2848 	    ((uint64_t)(attrp->dma_attr_sgllen - 1) << PAGESHIFT));
2849 
2850 	/*
2851 	 * If the DMA engine can't reach all off memory, we also need to take
2852 	 * the max size of the copybuf into consideration.
2853 	 */
2854 	if (i_ddi_copybuf_required(attrp)) {
2855 		maxxfer = MIN(i_ddi_copybuf_size(), maxxfer);
2856 	}
2857 
2858 	/*
2859 	 * we only return a 32-bit value. Make sure it's not -1. Round to a
2860 	 * page so it won't be mistaken for an error value during debug.
2861 	 */
2862 	if (maxxfer >= 0xFFFFFFFF) {
2863 		maxxfer = 0xFFFFF000;
2864 	}
2865 
2866 	/*
2867 	 * make sure the value we return is a whole multiple of the
2868 	 * granlarity.
2869 	 */
2870 	if (attrp->dma_attr_granular > 1) {
2871 		maxxfer = maxxfer - (maxxfer % attrp->dma_attr_granular);
2872 	}
2873 
2874 	return ((uint32_t)maxxfer);
2875 }
2876