xref: /titanic_50/usr/src/uts/i86pc/os/ddi_impl.c (revision 8eea8e29cc4374d1ee24c25a07f45af132db3499)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * PC specific DDI implementation
31  */
32 #include <sys/types.h>
33 #include <sys/autoconf.h>
34 #include <sys/avintr.h>
35 #include <sys/bootconf.h>
36 #include <sys/conf.h>
37 #include <sys/cpuvar.h>
38 #include <sys/ddi_impldefs.h>
39 #include <sys/ddi_subrdefs.h>
40 #include <sys/ethernet.h>
41 #include <sys/fp.h>
42 #include <sys/instance.h>
43 #include <sys/kmem.h>
44 #include <sys/machsystm.h>
45 #include <sys/modctl.h>
46 #include <sys/promif.h>
47 #include <sys/prom_plat.h>
48 #include <sys/sunndi.h>
49 #include <sys/ndi_impldefs.h>
50 #include <sys/ddi_impldefs.h>
51 #include <sys/sysmacros.h>
52 #include <sys/systeminfo.h>
53 #include <sys/utsname.h>
54 #include <sys/atomic.h>
55 #include <sys/spl.h>
56 #include <sys/archsystm.h>
57 #include <vm/seg_kmem.h>
58 #include <sys/ontrap.h>
59 #include <sys/ramdisk.h>
60 #include <sys/sunndi.h>
61 #include <sys/vmem.h>
62 #include <sys/pci_impl.h>
63 
64 /*
65  * DDI Boot Configuration
66  */
67 
68 /*
69  * No platform drivers on this platform
70  */
71 char *platform_module_list[] = {
72 	(char *)0
73 };
74 
75 /* pci bus resource maps */
76 struct pci_bus_resource *pci_bus_res;
77 
78 extern int root_is_svm;
79 uint64_t ramdisk_start, ramdisk_end;
80 
81 /*
82  * Forward declarations
83  */
84 static int getlongprop_buf();
85 static void get_boot_properties(void);
86 static void impl_bus_initialprobe(void);
87 static void impl_bus_reprobe(void);
88 
89 static int poke_mem(peekpoke_ctlops_t *in_args);
90 static int peek_mem(peekpoke_ctlops_t *in_args);
91 
92 #define	CTGENTRIES	15
93 
94 static struct ctgas {
95 	struct ctgas	*ctg_next;
96 	int		ctg_index;
97 	void		*ctg_addr[CTGENTRIES];
98 	size_t		ctg_size[CTGENTRIES];
99 } ctglist;
100 
101 static kmutex_t		ctgmutex;
102 #define	CTGLOCK()	mutex_enter(&ctgmutex)
103 #define	CTGUNLOCK()	mutex_exit(&ctgmutex)
104 
105 /*
106  * Minimum pfn value of page_t's put on the free list.  This is to simplify
107  * support of ddi dma memory requests which specify small, non-zero addr_lo
108  * values.
109  *
110  * The default value of 2, which corresponds to the only known non-zero addr_lo
111  * value used, means a single page will be sacrificed (pfn typically starts
112  * at 1).  ddiphysmin can be set to 0 to disable. It cannot be set above 0x100
113  * otherwise mp startup panics.
114  */
115 pfn_t	ddiphysmin = 2;
116 
117 static void
118 check_driver_disable(void)
119 {
120 	int proplen = 128;
121 	char *prop_name;
122 	char *drv_name, *propval;
123 	major_t major;
124 
125 	prop_name = kmem_alloc(proplen, KM_SLEEP);
126 	for (major = 0; major < devcnt; major++) {
127 		drv_name = ddi_major_to_name(major);
128 		if (drv_name == NULL)
129 			continue;
130 		(void) snprintf(prop_name, proplen, "disable-%s", drv_name);
131 		if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
132 		    DDI_PROP_DONTPASS, prop_name, &propval) == DDI_SUCCESS) {
133 			if (strcmp(propval, "true") == 0) {
134 				devnamesp[major].dn_flags |= DN_DRIVER_REMOVED;
135 				cmn_err(CE_NOTE, "driver %s disabled",
136 				    drv_name);
137 			}
138 			ddi_prop_free(propval);
139 		}
140 	}
141 	kmem_free(prop_name, proplen);
142 }
143 
144 
145 /*
146  * Configure the hardware on the system.
147  * Called before the rootfs is mounted
148  */
149 void
150 configure(void)
151 {
152 	extern void i_ddi_init_root();
153 
154 #if defined(__i386)
155 	extern int fpu_pentium_fdivbug;
156 #endif	/* __i386 */
157 	extern int fpu_ignored;
158 
159 	/*
160 	 * Determine if an FPU is attached
161 	 */
162 
163 	fpu_probe();
164 
165 #if defined(__i386)
166 	if (fpu_pentium_fdivbug) {
167 		printf("\
168 FP hardware exhibits Pentium floating point divide problem\n");
169 	}
170 #endif	/* __i386 */
171 
172 	if (fpu_ignored) {
173 		printf("FP hardware will not be used\n");
174 	} else if (!fpu_exists) {
175 		printf("No FPU in configuration\n");
176 	}
177 
178 	/*
179 	 * Initialize devices on the machine.
180 	 * Uses configuration tree built by the PROMs to determine what
181 	 * is present, and builds a tree of prototype dev_info nodes
182 	 * corresponding to the hardware which identified itself.
183 	 */
184 #if !defined(SAS) && !defined(MPSAS)
185 	/*
186 	 * Check for disabled drivers and initialize root node.
187 	 */
188 	check_driver_disable();
189 	i_ddi_init_root();
190 
191 	/*
192 	 * attach the isa nexus to get ACPI resource usage
193 	 * isa is "kind of" a pseudo node
194 	 */
195 	(void) i_ddi_attach_pseudo_node("isa");
196 
197 	/* reprogram devices not set up by firmware (BIOS) */
198 	impl_bus_reprobe();
199 #endif	/* !SAS && !MPSAS */
200 }
201 
202 /*
203  * The "status" property indicates the operational status of a device.
204  * If this property is present, the value is a string indicating the
205  * status of the device as follows:
206  *
207  *	"okay"		operational.
208  *	"disabled"	not operational, but might become operational.
209  *	"fail"		not operational because a fault has been detected,
210  *			and it is unlikely that the device will become
211  *			operational without repair. no additional details
212  *			are available.
213  *	"fail-xxx"	not operational because a fault has been detected,
214  *			and it is unlikely that the device will become
215  *			operational without repair. "xxx" is additional
216  *			human-readable information about the particular
217  *			fault condition that was detected.
218  *
219  * The absence of this property means that the operational status is
220  * unknown or okay.
221  *
222  * This routine checks the status property of the specified device node
223  * and returns 0 if the operational status indicates failure, and 1 otherwise.
224  *
225  * The property may exist on plug-in cards the existed before IEEE 1275-1994.
226  * And, in that case, the property may not even be a string. So we carefully
227  * check for the value "fail", in the beginning of the string, noting
228  * the property length.
229  */
230 int
231 status_okay(int id, char *buf, int buflen)
232 {
233 	char status_buf[OBP_MAXPROPNAME];
234 	char *bufp = buf;
235 	int len = buflen;
236 	int proplen;
237 	static const char *status = "status";
238 	static const char *fail = "fail";
239 	int fail_len = (int)strlen(fail);
240 
241 	/*
242 	 * Get the proplen ... if it's smaller than "fail",
243 	 * or doesn't exist ... then we don't care, since
244 	 * the value can't begin with the char string "fail".
245 	 *
246 	 * NB: proplen, if it's a string, includes the NULL in the
247 	 * the size of the property, and fail_len does not.
248 	 */
249 	proplen = prom_getproplen((dnode_t)id, (caddr_t)status);
250 	if (proplen <= fail_len)	/* nonexistant or uninteresting len */
251 		return (1);
252 
253 	/*
254 	 * if a buffer was provided, use it
255 	 */
256 	if ((buf == (char *)NULL) || (buflen <= 0)) {
257 		bufp = status_buf;
258 		len = sizeof (status_buf);
259 	}
260 	*bufp = (char)0;
261 
262 	/*
263 	 * Get the property into the buffer, to the extent of the buffer,
264 	 * and in case the buffer is smaller than the property size,
265 	 * NULL terminate the buffer. (This handles the case where
266 	 * a buffer was passed in and the caller wants to print the
267 	 * value, but the buffer was too small).
268 	 */
269 	(void) prom_bounded_getprop((dnode_t)id, (caddr_t)status,
270 	    (caddr_t)bufp, len);
271 	*(bufp + len - 1) = (char)0;
272 
273 	/*
274 	 * If the value begins with the char string "fail",
275 	 * then it means the node is failed. We don't care
276 	 * about any other values. We assume the node is ok
277 	 * although it might be 'disabled'.
278 	 */
279 	if (strncmp(bufp, fail, fail_len) == 0)
280 		return (0);
281 
282 	return (1);
283 }
284 
285 /*
286  * Check the status of the device node passed as an argument.
287  *
288  *	if ((status is OKAY) || (status is DISABLED))
289  *		return DDI_SUCCESS
290  *	else
291  *		print a warning and return DDI_FAILURE
292  */
293 /*ARGSUSED1*/
294 int
295 check_status(int id, char *name, dev_info_t *parent)
296 {
297 	char status_buf[64];
298 	char devtype_buf[OBP_MAXPROPNAME];
299 	int retval = DDI_FAILURE;
300 
301 	/*
302 	 * is the status okay?
303 	 */
304 	if (status_okay(id, status_buf, sizeof (status_buf)))
305 		return (DDI_SUCCESS);
306 
307 	/*
308 	 * a status property indicating bad memory will be associated
309 	 * with a node which has a "device_type" property with a value of
310 	 * "memory-controller". in this situation, return DDI_SUCCESS
311 	 */
312 	if (getlongprop_buf(id, OBP_DEVICETYPE, devtype_buf,
313 	    sizeof (devtype_buf)) > 0) {
314 		if (strcmp(devtype_buf, "memory-controller") == 0)
315 			retval = DDI_SUCCESS;
316 	}
317 
318 	/*
319 	 * print the status property information
320 	 */
321 	cmn_err(CE_WARN, "status '%s' for '%s'", status_buf, name);
322 	return (retval);
323 }
324 
325 /*ARGSUSED*/
326 uint_t
327 softlevel1(caddr_t arg1, caddr_t arg2)
328 {
329 	softint();
330 	return (1);
331 }
332 
333 /*
334  * Allow for implementation specific correction of PROM property values.
335  */
336 
337 /*ARGSUSED*/
338 void
339 impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len,
340     caddr_t buffer)
341 {
342 	/*
343 	 * There are no adjustments needed in this implementation.
344 	 */
345 }
346 
347 static int
348 getlongprop_buf(int id, char *name, char *buf, int maxlen)
349 {
350 	int size;
351 
352 	size = prom_getproplen((dnode_t)id, name);
353 	if (size <= 0 || (size > maxlen - 1))
354 		return (-1);
355 
356 	if (-1 == prom_getprop((dnode_t)id, name, buf))
357 		return (-1);
358 
359 	if (strcmp("name", name) == 0) {
360 		if (buf[size - 1] != '\0') {
361 			buf[size] = '\0';
362 			size += 1;
363 		}
364 	}
365 
366 	return (size);
367 }
368 
369 static int
370 get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen)
371 {
372 	int ret;
373 
374 	if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di,
375 	    DDI_PROP_DONTPASS, pname, pval, plen))
376 	    == DDI_PROP_SUCCESS) {
377 		*plen = (*plen) * (sizeof (int));
378 	}
379 	return (ret);
380 }
381 
382 
383 /*
384  * Node Configuration
385  */
386 
387 struct prop_ispec {
388 	uint_t	pri, vec;
389 };
390 
391 /*
392  * Create a ddi_parent_private_data structure from the ddi properties of
393  * the dev_info node.
394  *
395  * The "reg" and either an "intr" or "interrupts" properties are required
396  * if the driver wishes to create mappings or field interrupts on behalf
397  * of the device.
398  *
399  * The "reg" property is assumed to be a list of at least one triple
400  *
401  *	<bustype, address, size>*1
402  *
403  * The "intr" property is assumed to be a list of at least one duple
404  *
405  *	<SPARC ipl, vector#>*1
406  *
407  * The "interrupts" property is assumed to be a list of at least one
408  * n-tuples that describes the interrupt capabilities of the bus the device
409  * is connected to.  For SBus, this looks like
410  *
411  *	<SBus-level>*1
412  *
413  * (This property obsoletes the 'intr' property).
414  *
415  * The "ranges" property is optional.
416  */
417 void
418 make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd)
419 {
420 	struct ddi_parent_private_data *pdptr;
421 	int n;
422 	int *reg_prop, *rng_prop, *intr_prop, *irupts_prop;
423 	uint_t reg_len, rng_len, intr_len, irupts_len;
424 
425 	*ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP);
426 
427 	/*
428 	 * Handle the 'reg' property.
429 	 */
430 	if ((get_prop_int_array(child, "reg", &reg_prop, &reg_len) ==
431 	    DDI_PROP_SUCCESS) && (reg_len != 0)) {
432 		pdptr->par_nreg = reg_len / (int)sizeof (struct regspec);
433 		pdptr->par_reg = (struct regspec *)reg_prop;
434 	}
435 
436 	/*
437 	 * See if I have a range (adding one where needed - this
438 	 * means to add one for sbus node in sun4c, when romvec > 0,
439 	 * if no range is already defined in the PROM node.
440 	 * (Currently no sun4c PROMS define range properties,
441 	 * but they should and may in the future.)  For the SBus
442 	 * node, the range is defined by the SBus reg property.
443 	 */
444 	if (get_prop_int_array(child, "ranges", &rng_prop, &rng_len)
445 	    == DDI_PROP_SUCCESS) {
446 		pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec));
447 		pdptr->par_rng = (struct rangespec *)rng_prop;
448 	}
449 
450 	/*
451 	 * Handle the 'intr' and 'interrupts' properties
452 	 */
453 
454 	/*
455 	 * For backwards compatibility
456 	 * we first look for the 'intr' property for the device.
457 	 */
458 	if (get_prop_int_array(child, "intr", &intr_prop, &intr_len)
459 	    != DDI_PROP_SUCCESS) {
460 		intr_len = 0;
461 	}
462 
463 	/*
464 	 * If we're to support bus adapters and future platforms cleanly,
465 	 * we need to support the generalized 'interrupts' property.
466 	 */
467 	if (get_prop_int_array(child, "interrupts", &irupts_prop,
468 	    &irupts_len) != DDI_PROP_SUCCESS) {
469 		irupts_len = 0;
470 	} else if (intr_len != 0) {
471 		/*
472 		 * If both 'intr' and 'interrupts' are defined,
473 		 * then 'interrupts' wins and we toss the 'intr' away.
474 		 */
475 		ddi_prop_free((void *)intr_prop);
476 		intr_len = 0;
477 	}
478 
479 	if (intr_len != 0) {
480 
481 		/*
482 		 * Translate the 'intr' property into an array
483 		 * an array of struct intrspec's.  There's not really
484 		 * very much to do here except copy what's out there.
485 		 */
486 
487 		struct intrspec *new;
488 		struct prop_ispec *l;
489 
490 		n = pdptr->par_nintr =
491 			intr_len / sizeof (struct prop_ispec);
492 		l = (struct prop_ispec *)intr_prop;
493 		pdptr->par_intr =
494 		    new = kmem_zalloc(n * sizeof (struct intrspec), KM_SLEEP);
495 		while (n--) {
496 			new->intrspec_pri = l->pri;
497 			new->intrspec_vec = l->vec;
498 			new++;
499 			l++;
500 		}
501 		ddi_prop_free((void *)intr_prop);
502 
503 	} else if ((n = irupts_len) != 0) {
504 		size_t size;
505 		int *out;
506 
507 		/*
508 		 * Translate the 'interrupts' property into an array
509 		 * of intrspecs for the rest of the DDI framework to
510 		 * toy with.  Only our ancestors really know how to
511 		 * do this, so ask 'em.  We massage the 'interrupts'
512 		 * property so that it is pre-pended by a count of
513 		 * the number of integers in the argument.
514 		 */
515 		size = sizeof (int) + n;
516 		out = kmem_alloc(size, KM_SLEEP);
517 		*out = n / sizeof (int);
518 		bcopy(irupts_prop, out + 1, (size_t)n);
519 		ddi_prop_free((void *)irupts_prop);
520 		if (ddi_ctlops(child, child, DDI_CTLOPS_XLATE_INTRS,
521 		    out, pdptr) != DDI_SUCCESS) {
522 			cmn_err(CE_CONT,
523 			    "Unable to translate 'interrupts' for %s%d\n",
524 			    DEVI(child)->devi_binding_name,
525 			    DEVI(child)->devi_instance);
526 		}
527 		kmem_free(out, size);
528 	}
529 }
530 
531 /*
532  * Name a child
533  */
534 static int
535 impl_sunbus_name_child(dev_info_t *child, char *name, int namelen)
536 {
537 	/*
538 	 * Fill in parent-private data and this function returns to us
539 	 * an indication if it used "registers" to fill in the data.
540 	 */
541 	if (ddi_get_parent_data(child) == NULL) {
542 		struct ddi_parent_private_data *pdptr;
543 		make_ddi_ppd(child, &pdptr);
544 		ddi_set_parent_data(child, pdptr);
545 	}
546 
547 	name[0] = '\0';
548 	if (sparc_pd_getnreg(child) > 0) {
549 		(void) snprintf(name, namelen, "%x,%x",
550 		    (uint_t)sparc_pd_getreg(child, 0)->regspec_bustype,
551 		    (uint_t)sparc_pd_getreg(child, 0)->regspec_addr);
552 	}
553 
554 	return (DDI_SUCCESS);
555 }
556 
557 /*
558  * Called from the bus_ctl op of sunbus (sbus, obio, etc) nexus drivers
559  * to implement the DDI_CTLOPS_INITCHILD operation.  That is, it names
560  * the children of sun busses based on the reg spec.
561  *
562  * Handles the following properties (in make_ddi_ppd):
563  *	Property		value
564  *	  Name			type
565  *	reg		register spec
566  *	intr		old-form interrupt spec
567  *	interrupts	new (bus-oriented) interrupt spec
568  *	ranges		range spec
569  */
570 int
571 impl_ddi_sunbus_initchild(dev_info_t *child)
572 {
573 	char name[MAXNAMELEN];
574 	void impl_ddi_sunbus_removechild(dev_info_t *);
575 
576 	/*
577 	 * Name the child, also makes parent private data
578 	 */
579 	(void) impl_sunbus_name_child(child, name, MAXNAMELEN);
580 	ddi_set_name_addr(child, name);
581 
582 	/*
583 	 * Attempt to merge a .conf node; if successful, remove the
584 	 * .conf node.
585 	 */
586 	if ((ndi_dev_is_persistent_node(child) == 0) &&
587 	    (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) {
588 		/*
589 		 * Return failure to remove node
590 		 */
591 		impl_ddi_sunbus_removechild(child);
592 		return (DDI_FAILURE);
593 	}
594 	return (DDI_SUCCESS);
595 }
596 
597 void
598 impl_free_ddi_ppd(dev_info_t *dip)
599 {
600 	struct ddi_parent_private_data *pdptr;
601 	size_t n;
602 
603 	if ((pdptr = ddi_get_parent_data(dip)) == NULL)
604 		return;
605 
606 	if ((n = (size_t)pdptr->par_nintr) != 0)
607 		/*
608 		 * Note that kmem_free is used here (instead of
609 		 * ddi_prop_free) because the contents of the
610 		 * property were placed into a separate buffer and
611 		 * mucked with a bit before being stored in par_intr.
612 		 * The actual return value from the prop lookup
613 		 * was freed with ddi_prop_free previously.
614 		 */
615 		kmem_free(pdptr->par_intr, n * sizeof (struct intrspec));
616 
617 	if ((n = (size_t)pdptr->par_nrng) != 0)
618 		ddi_prop_free((void *)pdptr->par_rng);
619 
620 	if ((n = pdptr->par_nreg) != 0)
621 		ddi_prop_free((void *)pdptr->par_reg);
622 
623 	kmem_free(pdptr, sizeof (*pdptr));
624 	ddi_set_parent_data(dip, NULL);
625 }
626 
627 void
628 impl_ddi_sunbus_removechild(dev_info_t *dip)
629 {
630 	impl_free_ddi_ppd(dip);
631 	ddi_set_name_addr(dip, NULL);
632 	/*
633 	 * Strip the node to properly convert it back to prototype form
634 	 */
635 	impl_rem_dev_props(dip);
636 }
637 
638 /*
639  * DDI Interrupt
640  */
641 
642 /*
643  * turn this on to force isa, eisa, and mca device to ignore the new
644  * hardware nodes in the device tree (normally turned on only for
645  * drivers that need it by setting the property "ignore-hardware-nodes"
646  * in their driver.conf file).
647  *
648  * 7/31/96 -- Turned off globally.  Leaving variable in for the moment
649  *		as safety valve.
650  */
651 int ignore_hardware_nodes = 0;
652 
653 /*
654  * Local data
655  */
656 static struct impl_bus_promops *impl_busp;
657 
658 
659 /*
660  * New DDI interrupt framework
661  */
662 
663 /*
664  * i_ddi_handle_intr_ops:
665  */
666 int
667 i_ddi_handle_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op,
668     ddi_intr_handle_impl_t *hdlp, void * result)
669 {
670 	return (i_ddi_intr_ops(dip, rdip, op, hdlp, result));
671 }
672 
673 /*
674  * i_ddi_intr_ops:
675  *
676  * This is the interrupt operator function wrapper for the bus function
677  * bus_intr_op.
678  */
679 int
680 i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op,
681     ddi_intr_handle_impl_t *hdlp, void * result)
682 {
683 	dev_info_t	*pdip = (dev_info_t *)DEVI(dip)->devi_parent;
684 	int		ret = DDI_FAILURE;
685 
686 	/* request parent to process this interrupt op */
687 	if (NEXUS_HAS_INTR_OP(pdip))
688 		ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops->bus_intr_op))(
689 		    pdip, rdip, op, hdlp, result);
690 	else
691 		cmn_err(CE_WARN, "Failed to process interrupt "
692 		    "for %s%d due to down-rev nexus driver %s%d",
693 		    ddi_get_name(rdip), ddi_get_instance(rdip),
694 		    ddi_get_name(pdip), ddi_get_instance(pdip));
695 	return (ret);
696 }
697 
698 /*
699  * i_ddi_add_softint - allocate and add a soft interrupt to the system
700  */
701 int
702 i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp)
703 {
704 	int ret;
705 
706 	/* add soft interrupt handler */
707 	ret = add_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func,
708 	    DEVI(hdlp->ih_dip)->devi_name, hdlp->ih_cb_arg1, hdlp->ih_cb_arg2);
709 	return (ret ? DDI_SUCCESS : DDI_FAILURE);
710 }
711 
712 
713 void
714 i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp)
715 {
716 	(void) rem_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func);
717 }
718 
719 
720 extern void (*setsoftint)(int);
721 
722 int
723 i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp)
724 {
725 	if (!hdlp->ih_pending) {
726 		update_avsoftintr_args((void *)hdlp,
727 		    hdlp->ih_pri, hdlp->ih_cb_arg2);
728 		hdlp->ih_pending = 1;
729 	}
730 	(*setsoftint)(hdlp->ih_pri);
731 	return (DDI_SUCCESS);
732 }
733 
734 /*
735  * i_ddi_set_softint_pri:
736  *
737  * The way this works is that it first tries to add a softint vector
738  * at the new priority in hdlp. If that succeeds; then it removes the
739  * existing softint vector at the old priority.
740  */
741 int
742 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri)
743 {
744 	/*
745 	 * If a softint is pending at the old priority then fail the request.
746 	 * 	OR
747 	 * If we failed to add a softint vector with the new priority; then
748 	 * fail the request with a DDI_FAILURE
749 	 */
750 	if (hdlp->ih_pending || i_ddi_add_softint(hdlp) != DDI_SUCCESS)
751 		return (DDI_FAILURE);
752 
753 	/* Now, remove the softint at the old priority */
754 	(void) rem_avsoftintr((void *)hdlp, old_pri, hdlp->ih_cb_func);
755 	return (DDI_SUCCESS);
756 }
757 
758 /*
759  * DDI Memory/DMA
760  */
761 
762 /*
763  * Support for allocating DMAable memory to implement
764  * ddi_dma_mem_alloc(9F) interface.
765  */
766 
767 #define	KA_ALIGN_SHIFT	7
768 #define	KA_ALIGN	(1 << KA_ALIGN_SHIFT)
769 #define	KA_NCACHE	(PAGESHIFT + 1 - KA_ALIGN_SHIFT)
770 
771 /*
772  * Dummy DMA attribute template for kmem_io[].kmem_io_attr.  We only
773  * care about addr_lo, addr_hi, and align.  addr_hi will be dynamically set.
774  */
775 
776 static ddi_dma_attr_t kmem_io_attr = {
777 	DMA_ATTR_V0,
778 	0x0000000000000000ULL,		/* dma_attr_addr_lo */
779 	0x0000000000000000ULL,		/* dma_attr_addr_hi */
780 	0x00ffffff,
781 	0x1000,				/* dma_attr_align */
782 	1, 1, 0xffffffffULL, 0xffffffffULL, 0x1, 1, 0
783 };
784 
785 /* kmem io memory ranges and indices */
786 enum {
787 	IO_4P, IO_64G, IO_4G, IO_2G, IO_1G, IO_512M,
788 	IO_256M, IO_128M, IO_64M, IO_32M, IO_16M, MAX_MEM_RANGES
789 };
790 
791 static struct {
792 	vmem_t		*kmem_io_arena;
793 	kmem_cache_t	*kmem_io_cache[KA_NCACHE];
794 	ddi_dma_attr_t	kmem_io_attr;
795 } kmem_io[MAX_MEM_RANGES];
796 
797 static int kmem_io_idx;		/* index of first populated kmem_io[] */
798 
799 static page_t *
800 page_create_io_wrapper(void *addr, size_t len, int vmflag, void *arg)
801 {
802 	extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t,
803 	    uint_t, struct as *, caddr_t, ddi_dma_attr_t *);
804 
805 	return (page_create_io(&kvp, (u_offset_t)(uintptr_t)addr, len,
806 	    PG_EXCL | ((vmflag & VM_NOSLEEP) ? 0 : PG_WAIT), &kas, addr, arg));
807 }
808 
809 static void *
810 segkmem_alloc_io_4P(vmem_t *vmp, size_t size, int vmflag)
811 {
812 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
813 	    page_create_io_wrapper, &kmem_io[IO_4P].kmem_io_attr));
814 }
815 
816 static void *
817 segkmem_alloc_io_64G(vmem_t *vmp, size_t size, int vmflag)
818 {
819 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
820 	    page_create_io_wrapper, &kmem_io[IO_64G].kmem_io_attr));
821 }
822 
823 static void *
824 segkmem_alloc_io_4G(vmem_t *vmp, size_t size, int vmflag)
825 {
826 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
827 	    page_create_io_wrapper, &kmem_io[IO_4G].kmem_io_attr));
828 }
829 
830 static void *
831 segkmem_alloc_io_2G(vmem_t *vmp, size_t size, int vmflag)
832 {
833 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
834 	    page_create_io_wrapper, &kmem_io[IO_2G].kmem_io_attr));
835 }
836 
837 static void *
838 segkmem_alloc_io_1G(vmem_t *vmp, size_t size, int vmflag)
839 {
840 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
841 	    page_create_io_wrapper, &kmem_io[IO_1G].kmem_io_attr));
842 }
843 
844 static void *
845 segkmem_alloc_io_512M(vmem_t *vmp, size_t size, int vmflag)
846 {
847 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
848 	    page_create_io_wrapper, &kmem_io[IO_512M].kmem_io_attr));
849 }
850 
851 static void *
852 segkmem_alloc_io_256M(vmem_t *vmp, size_t size, int vmflag)
853 {
854 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
855 	    page_create_io_wrapper, &kmem_io[IO_256M].kmem_io_attr));
856 }
857 
858 static void *
859 segkmem_alloc_io_128M(vmem_t *vmp, size_t size, int vmflag)
860 {
861 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
862 	    page_create_io_wrapper, &kmem_io[IO_128M].kmem_io_attr));
863 }
864 
865 static void *
866 segkmem_alloc_io_64M(vmem_t *vmp, size_t size, int vmflag)
867 {
868 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
869 	    page_create_io_wrapper, &kmem_io[IO_64M].kmem_io_attr));
870 }
871 
872 static void *
873 segkmem_alloc_io_32M(vmem_t *vmp, size_t size, int vmflag)
874 {
875 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
876 	    page_create_io_wrapper, &kmem_io[IO_32M].kmem_io_attr));
877 }
878 
879 static void *
880 segkmem_alloc_io_16M(vmem_t *vmp, size_t size, int vmflag)
881 {
882 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
883 	    page_create_io_wrapper, &kmem_io[IO_16M].kmem_io_attr));
884 }
885 
886 struct {
887 	uint64_t	io_limit;
888 	char		*io_name;
889 	void		*(*io_alloc)(vmem_t *, size_t, int);
890 	int		io_initial;	/* kmem_io_init during startup */
891 } io_arena_params[MAX_MEM_RANGES] = {
892 	{0x000fffffffffffffULL,	"kmem_io_4P",	segkmem_alloc_io_4P,	1},
893 	{0x0000000fffffffffULL,	"kmem_io_64G",	segkmem_alloc_io_64G,	0},
894 	{0x00000000ffffffffULL,	"kmem_io_4G",	segkmem_alloc_io_4G,	1},
895 	{0x000000007fffffffULL,	"kmem_io_2G",	segkmem_alloc_io_2G,	1},
896 	{0x000000003fffffffULL,	"kmem_io_1G",	segkmem_alloc_io_1G,	0},
897 	{0x000000001fffffffULL,	"kmem_io_512M",	segkmem_alloc_io_512M,	0},
898 	{0x000000000fffffffULL,	"kmem_io_256M",	segkmem_alloc_io_256M,	0},
899 	{0x0000000007ffffffULL,	"kmem_io_128M",	segkmem_alloc_io_128M,	0},
900 	{0x0000000003ffffffULL,	"kmem_io_64M",	segkmem_alloc_io_64M,	0},
901 	{0x0000000001ffffffULL,	"kmem_io_32M",	segkmem_alloc_io_32M,	0},
902 	{0x0000000000ffffffULL,	"kmem_io_16M",	segkmem_alloc_io_16M,	1}
903 };
904 
905 void
906 kmem_io_init(int a)
907 {
908 	int	c;
909 	char name[40];
910 
911 	kmem_io[a].kmem_io_arena = vmem_create(io_arena_params[a].io_name,
912 	    NULL, 0, PAGESIZE, io_arena_params[a].io_alloc,
913 	    segkmem_free, heap_arena, 0, VM_SLEEP);
914 	for (c = 0; c < KA_NCACHE; c++) {
915 		size_t size = KA_ALIGN << c;
916 		(void) sprintf(name, "%s_%lu",
917 		    io_arena_params[a].io_name, size);
918 		kmem_io[a].kmem_io_cache[c] = kmem_cache_create(name,
919 		    size, size, NULL, NULL, NULL, NULL,
920 		    kmem_io[a].kmem_io_arena, 0);
921 	}
922 }
923 
924 /*
925  * Return the index of the highest memory range for addr.
926  */
927 static int
928 kmem_io_index(uint64_t addr)
929 {
930 	int n;
931 
932 	for (n = kmem_io_idx; n < MAX_MEM_RANGES; n++) {
933 		if (kmem_io[n].kmem_io_attr.dma_attr_addr_hi <= addr) {
934 			if (kmem_io[n].kmem_io_arena == NULL)
935 				kmem_io_init(n);
936 			return (n);
937 		}
938 	}
939 	panic("kmem_io_index: invalid addr - must be at least 16m");
940 
941 	/*NOTREACHED*/
942 }
943 
944 /*
945  * Return the index of the next kmem_io populated memory range
946  * after curindex.
947  */
948 static int
949 kmem_io_index_next(int curindex)
950 {
951 	int n;
952 
953 	for (n = curindex + 1; n < MAX_MEM_RANGES; n++) {
954 		if (kmem_io[n].kmem_io_arena)
955 			return (n);
956 	}
957 	return (-1);
958 }
959 
960 void
961 ka_init(void)
962 {
963 	int a;
964 	extern pfn_t physmax;
965 	uint64_t maxphysaddr = mmu_ptob((uint64_t)physmax + 1) - 1;
966 
967 	ASSERT(maxphysaddr <= io_arena_params[0].io_limit);
968 
969 	for (a = 0; a < MAX_MEM_RANGES; a++) {
970 		if (maxphysaddr >= io_arena_params[a + 1].io_limit) {
971 			if (maxphysaddr > io_arena_params[a + 1].io_limit)
972 				io_arena_params[a].io_limit = maxphysaddr;
973 			else
974 				a++;
975 			break;
976 		}
977 	}
978 	kmem_io_idx = a;
979 
980 	for (; a < MAX_MEM_RANGES; a++) {
981 		kmem_io[a].kmem_io_attr = kmem_io_attr;
982 		kmem_io[a].kmem_io_attr.dma_attr_addr_hi =
983 		    io_arena_params[a].io_limit;
984 		/*
985 		 * initialize kmem_io[] arena/cache corresponding to
986 		 * maxphysaddr and to the "common" io memory ranges that
987 		 * have io_initial set to a non-zero value.
988 		 */
989 		if (io_arena_params[a].io_initial || a == kmem_io_idx)
990 			kmem_io_init(a);
991 	}
992 }
993 
994 /*
995  * put contig address/size
996  */
997 static void *
998 putctgas(void *addr, size_t size)
999 {
1000 	struct ctgas	*ctgp = &ctglist;
1001 	int		i;
1002 
1003 	CTGLOCK();
1004 	do {
1005 		if ((i = ctgp->ctg_index) < CTGENTRIES) {
1006 			ctgp->ctg_addr[i] = addr;
1007 			ctgp->ctg_size[i] = size;
1008 			ctgp->ctg_index++;
1009 			break;
1010 		}
1011 		if (!ctgp->ctg_next)
1012 			ctgp->ctg_next = kmem_zalloc(sizeof (struct ctgas),
1013 			    KM_NOSLEEP);
1014 		ctgp = ctgp->ctg_next;
1015 	} while (ctgp);
1016 
1017 	CTGUNLOCK();
1018 	return (ctgp);
1019 }
1020 
1021 /*
1022  * get contig size by addr
1023  */
1024 static size_t
1025 getctgsz(void *addr)
1026 {
1027 	struct ctgas	*ctgp = &ctglist;
1028 	int		i, j;
1029 	size_t		sz;
1030 
1031 	ASSERT(addr);
1032 	CTGLOCK();
1033 
1034 	while (ctgp) {
1035 		for (i = 0; i < ctgp->ctg_index; i++) {
1036 			if (addr != ctgp->ctg_addr[i])
1037 				continue;
1038 
1039 			sz = ctgp->ctg_size[i];
1040 			j = --ctgp->ctg_index;
1041 			if (i != j) {
1042 				ctgp->ctg_size[i] = ctgp->ctg_size[j];
1043 				ctgp->ctg_addr[i] = ctgp->ctg_addr[j];
1044 			}
1045 			CTGUNLOCK();
1046 			return (sz);
1047 		}
1048 		ctgp = ctgp->ctg_next;
1049 	}
1050 
1051 	CTGUNLOCK();
1052 	return (0);
1053 }
1054 
1055 /*
1056  * contig_alloc:
1057  *
1058  *	allocates contiguous memory to satisfy the 'size' and dma attributes
1059  *	specified in 'attr'.
1060  *
1061  *	Not all of memory need to be physically contiguous if the
1062  *	scatter-gather list length is greater than 1.
1063  */
1064 
1065 /*ARGSUSED*/
1066 void *
1067 contig_alloc(size_t size, ddi_dma_attr_t *attr, uintptr_t align, int cansleep)
1068 {
1069 	pgcnt_t		pgcnt = btopr(size);
1070 	size_t		asize = pgcnt * PAGESIZE;
1071 	page_t		*ppl;
1072 	int		pflag;
1073 	void		*addr;
1074 
1075 	extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t,
1076 	    uint_t, struct as *, caddr_t, ddi_dma_attr_t *);
1077 
1078 	/* segkmem_xalloc */
1079 
1080 	if (align <= PAGESIZE)
1081 		addr = vmem_alloc(heap_arena, asize,
1082 		    (cansleep) ? VM_SLEEP : VM_NOSLEEP);
1083 	else
1084 		addr = vmem_xalloc(heap_arena, asize, align, 0, 0, NULL, NULL,
1085 		    (cansleep) ? VM_SLEEP : VM_NOSLEEP);
1086 	if (addr) {
1087 		ASSERT(!((uintptr_t)addr & (align - 1)));
1088 
1089 		if (page_resv(pgcnt,
1090 			(cansleep) ? KM_SLEEP : KM_NOSLEEP) == 0) {
1091 
1092 			vmem_free(heap_arena, addr, asize);
1093 			return (NULL);
1094 		}
1095 		pflag = PG_EXCL;
1096 
1097 		if (cansleep)
1098 			pflag |= PG_WAIT;
1099 
1100 		/* 4k req gets from freelists rather than pfn search */
1101 		if (pgcnt > 1 || align > PAGESIZE)
1102 			pflag |= PG_PHYSCONTIG;
1103 
1104 		ppl = page_create_io(&kvp, (u_offset_t)(uintptr_t)addr,
1105 			asize, pflag, &kas, (caddr_t)addr, attr);
1106 
1107 		if (!ppl) {
1108 			vmem_free(heap_arena, addr, asize);
1109 			page_unresv(pgcnt);
1110 			return (NULL);
1111 		}
1112 
1113 		while (ppl != NULL) {
1114 			page_t	*pp = ppl;
1115 			page_sub(&ppl, pp);
1116 			ASSERT(page_iolock_assert(pp));
1117 			page_io_unlock(pp);
1118 			page_downgrade(pp);
1119 			hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset,
1120 				pp, (PROT_ALL & ~PROT_USER) |
1121 				HAT_NOSYNC, HAT_LOAD_LOCK);
1122 		}
1123 	}
1124 	return (addr);
1125 }
1126 
1127 static void
1128 contig_free(void *addr, size_t size)
1129 {
1130 	pgcnt_t	pgcnt = btopr(size);
1131 	size_t	asize = pgcnt * PAGESIZE;
1132 	caddr_t	a, ea;
1133 	page_t	*pp;
1134 
1135 	hat_unload(kas.a_hat, addr, asize, HAT_UNLOAD_UNLOCK);
1136 
1137 	for (a = addr, ea = a + asize; a < ea; a += PAGESIZE) {
1138 		pp = page_find(&kvp,
1139 				(u_offset_t)(uintptr_t)a);
1140 		if (!pp)
1141 			panic("contig_free: contig pp not found");
1142 
1143 		if (!page_tryupgrade(pp)) {
1144 			page_unlock(pp);
1145 			pp = page_lookup(&kvp,
1146 				(u_offset_t)(uintptr_t)a, SE_EXCL);
1147 			if (pp == NULL)
1148 				panic("contig_free: page freed");
1149 		}
1150 		page_destroy(pp, 0);
1151 	}
1152 
1153 	page_unresv(pgcnt);
1154 	vmem_free(heap_arena, addr, asize);
1155 }
1156 
1157 /*
1158  * Allocate from the system, aligned on a specific boundary.
1159  * The alignment, if non-zero, must be a power of 2.
1160  */
1161 static void *
1162 kalloca(size_t size, size_t align, int cansleep, int physcontig,
1163 	ddi_dma_attr_t *attr)
1164 {
1165 	size_t *addr, *raddr, rsize;
1166 	size_t hdrsize = 4 * sizeof (size_t);	/* must be power of 2 */
1167 	int a, i, c;
1168 	vmem_t *vmp;
1169 	kmem_cache_t *cp = NULL;
1170 
1171 	align = MAX(align, hdrsize);
1172 	ASSERT((align & (align - 1)) == 0);
1173 
1174 	/*
1175 	 * All of our allocators guarantee 16-byte alignment, so we don't
1176 	 * need to reserve additional space for the header.
1177 	 * To simplify picking the correct kmem_io_cache, we round up to
1178 	 * a multiple of KA_ALIGN.
1179 	 */
1180 	rsize = P2ROUNDUP_TYPED(size + align, KA_ALIGN, size_t);
1181 
1182 	if (physcontig && rsize > PAGESIZE) {
1183 		if (addr = contig_alloc(size, attr, align, cansleep)) {
1184 			if (!putctgas(addr, size))
1185 				contig_free(addr, size);
1186 			else
1187 				return (addr);
1188 		}
1189 		return (NULL);
1190 	}
1191 
1192 	ASSERT(attr->dma_attr_addr_lo <= mmu_ptob((uint64_t)ddiphysmin));
1193 
1194 	a = kmem_io_index(attr->dma_attr_addr_hi);
1195 
1196 	if (rsize > PAGESIZE) {
1197 		vmp = kmem_io[a].kmem_io_arena;
1198 		raddr = vmem_alloc(vmp, rsize,
1199 		    (cansleep) ? VM_SLEEP : VM_NOSLEEP);
1200 	} else {
1201 		c = highbit((rsize >> KA_ALIGN_SHIFT) - 1);
1202 		cp = kmem_io[a].kmem_io_cache[c];
1203 		raddr = kmem_cache_alloc(cp, (cansleep) ? KM_SLEEP :
1204 		    KM_NOSLEEP);
1205 	}
1206 
1207 	if (raddr == NULL) {
1208 		int	na;
1209 
1210 		ASSERT(cansleep == 0);
1211 		if (rsize > PAGESIZE)
1212 			return (NULL);
1213 		/*
1214 		 * System does not have memory in the requested range.
1215 		 * Try smaller kmem io ranges and larger cache sizes
1216 		 * to see if there might be memory available in
1217 		 * these other caches.
1218 		 */
1219 
1220 		for (na = kmem_io_index_next(a); na >= 0;
1221 		    na = kmem_io_index_next(na)) {
1222 			ASSERT(kmem_io[na].kmem_io_arena);
1223 			cp = kmem_io[na].kmem_io_cache[c];
1224 			raddr = kmem_cache_alloc(cp, KM_NOSLEEP);
1225 			if (raddr)
1226 				goto kallocdone;
1227 		}
1228 		/* now try the larger kmem io cache sizes */
1229 		for (na = a; na >= 0; na = kmem_io_index_next(na)) {
1230 			for (i = c + 1; i < KA_NCACHE; i++) {
1231 				cp = kmem_io[na].kmem_io_cache[i];
1232 				raddr = kmem_cache_alloc(cp, KM_NOSLEEP);
1233 				if (raddr)
1234 					goto kallocdone;
1235 			}
1236 		}
1237 		return (NULL);
1238 	}
1239 
1240 kallocdone:
1241 	ASSERT(!P2CROSS((uintptr_t)raddr, (uintptr_t)raddr + rsize - 1,
1242 	    PAGESIZE) || rsize > PAGESIZE);
1243 
1244 	addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align);
1245 	ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize);
1246 
1247 	addr[-4] = (size_t)cp;
1248 	addr[-3] = (size_t)vmp;
1249 	addr[-2] = (size_t)raddr;
1250 	addr[-1] = rsize;
1251 
1252 	return (addr);
1253 }
1254 
1255 static void
1256 kfreea(void *addr)
1257 {
1258 	size_t		size;
1259 
1260 	if (!((uintptr_t)addr & PAGEOFFSET) && (size = getctgsz(addr))) {
1261 		contig_free(addr, size);
1262 	} else {
1263 		size_t	*saddr = addr;
1264 		if (saddr[-4] == 0)
1265 			vmem_free((vmem_t *)saddr[-3], (void *)saddr[-2],
1266 				saddr[-1]);
1267 		else
1268 			kmem_cache_free((kmem_cache_t *)saddr[-4],
1269 				(void *)saddr[-2]);
1270 	}
1271 }
1272 
1273 /*
1274  * This should actually be called i_ddi_dma_mem_alloc. There should
1275  * also be an i_ddi_pio_mem_alloc. i_ddi_dma_mem_alloc should call
1276  * through the device tree with the DDI_CTLOPS_DMA_ALIGN ctl ops to
1277  * get alignment requirements for DMA memory. i_ddi_pio_mem_alloc
1278  * should use DDI_CTLOPS_PIO_ALIGN. Since we only have i_ddi_mem_alloc
1279  * so far which is used for both, DMA and PIO, we have to use the DMA
1280  * ctl ops to make everybody happy.
1281  */
1282 /*ARGSUSED*/
1283 int
1284 i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr,
1285 	size_t length, int cansleep, int streaming,
1286 	ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp,
1287 	size_t *real_length, ddi_acc_hdl_t *ap)
1288 {
1289 	caddr_t a;
1290 	int iomin;
1291 	ddi_acc_impl_t *iap;
1292 	int physcontig = 0;
1293 	pgcnt_t npages;
1294 	pgcnt_t minctg;
1295 
1296 	/*
1297 	 * Check legality of arguments
1298 	 */
1299 	if (length == 0 || kaddrp == NULL || attr == NULL) {
1300 		return (DDI_FAILURE);
1301 	}
1302 	if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 ||
1303 		(attr->dma_attr_align & (attr->dma_attr_align - 1)) ||
1304 		(attr->dma_attr_minxfer & (attr->dma_attr_minxfer - 1))) {
1305 			return (DDI_FAILURE);
1306 	}
1307 
1308 	/*
1309 	 * figure out most restrictive alignment requirement
1310 	 */
1311 	iomin = attr->dma_attr_minxfer;
1312 	iomin = maxbit(iomin, attr->dma_attr_align);
1313 	if (iomin == 0)
1314 		return (DDI_FAILURE);
1315 
1316 	ASSERT((iomin & (iomin - 1)) == 0);
1317 
1318 
1319 	/*
1320 	 * Determine if we need to satisfy the request for physically
1321 	 * contiguous memory or alignments larger than pagesize.
1322 	 */
1323 	npages = btopr(length + attr->dma_attr_align);
1324 	minctg = howmany(npages, attr->dma_attr_sgllen);
1325 
1326 	if (minctg > 1) {
1327 		uint64_t pfnseg = attr->dma_attr_seg >> PAGESHIFT;
1328 		/*
1329 		 * verify that the minimum contig requirement for the
1330 		 * actual length does not cross segment boundary.
1331 		 */
1332 		length = P2ROUNDUP_TYPED(length, attr->dma_attr_minxfer,
1333 		    size_t);
1334 		npages = btopr(length);
1335 		minctg = howmany(npages, attr->dma_attr_sgllen);
1336 		if (minctg > pfnseg + 1)
1337 			return (DDI_FAILURE);
1338 		physcontig = 1;
1339 	} else {
1340 		length = P2ROUNDUP_TYPED(length, iomin, size_t);
1341 	}
1342 
1343 	/*
1344 	 * Allocate the requested amount from the system.
1345 	 */
1346 	a = kalloca(length, iomin, cansleep, physcontig, attr);
1347 
1348 	if ((*kaddrp = a) == NULL)
1349 		return (DDI_FAILURE);
1350 
1351 	if (real_length) {
1352 		*real_length = length;
1353 	}
1354 	if (ap) {
1355 		/*
1356 		 * initialize access handle
1357 		 */
1358 		iap = (ddi_acc_impl_t *)ap->ah_platform_private;
1359 		iap->ahi_acc_attr |= DDI_ACCATTR_CPU_VADDR;
1360 		impl_acc_hdl_init(ap);
1361 	}
1362 	return (DDI_SUCCESS);
1363 }
1364 
1365 /*
1366  * covert old DMA limits structure to DMA attribute structure
1367  * and continue
1368  */
1369 int
1370 i_ddi_mem_alloc_lim(dev_info_t *dip, ddi_dma_lim_t *limits,
1371 	size_t length, int cansleep, int streaming,
1372 	ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp,
1373 	uint_t *real_length, ddi_acc_hdl_t *ap)
1374 {
1375 	ddi_dma_attr_t dma_attr, *attrp;
1376 	size_t rlen;
1377 	int ret;
1378 
1379 	if (limits == NULL) {
1380 		return (DDI_FAILURE);
1381 	}
1382 
1383 	/*
1384 	 * set up DMA attribute structure to pass to i_ddi_mem_alloc()
1385 	 */
1386 	attrp = &dma_attr;
1387 	attrp->dma_attr_version = DMA_ATTR_V0;
1388 	attrp->dma_attr_addr_lo = (uint64_t)limits->dlim_addr_lo;
1389 	attrp->dma_attr_addr_hi = (uint64_t)limits->dlim_addr_hi;
1390 	attrp->dma_attr_count_max = (uint64_t)limits->dlim_ctreg_max;
1391 	attrp->dma_attr_align = 1;
1392 	attrp->dma_attr_burstsizes = (uint_t)limits->dlim_burstsizes;
1393 	attrp->dma_attr_minxfer = (uint32_t)limits->dlim_minxfer;
1394 	attrp->dma_attr_maxxfer = (uint64_t)limits->dlim_reqsize;
1395 	attrp->dma_attr_seg = (uint64_t)limits->dlim_adreg_max;
1396 	attrp->dma_attr_sgllen = limits->dlim_sgllen;
1397 	attrp->dma_attr_granular = (uint32_t)limits->dlim_granular;
1398 	attrp->dma_attr_flags = 0;
1399 
1400 	ret = i_ddi_mem_alloc(dip, attrp, length, cansleep, streaming,
1401 			accattrp, kaddrp, &rlen, ap);
1402 	if (ret == DDI_SUCCESS) {
1403 		if (real_length)
1404 			*real_length = (uint_t)rlen;
1405 	}
1406 	return (ret);
1407 }
1408 
1409 /* ARGSUSED */
1410 void
1411 i_ddi_mem_free(caddr_t kaddr, int stream)
1412 {
1413 	kfreea(kaddr);
1414 }
1415 
1416 /*
1417  * Access Barriers
1418  *
1419  */
1420 /*ARGSUSED*/
1421 int
1422 i_ddi_ontrap(ddi_acc_handle_t hp)
1423 {
1424 	return (DDI_FAILURE);
1425 }
1426 
1427 /*ARGSUSED*/
1428 void
1429 i_ddi_notrap(ddi_acc_handle_t hp)
1430 {
1431 }
1432 
1433 
1434 /*
1435  * Misc Functions
1436  */
1437 
1438 /*
1439  * Implementation instance override functions
1440  *
1441  * No override on i86pc
1442  */
1443 /*ARGSUSED*/
1444 uint_t
1445 impl_assign_instance(dev_info_t *dip)
1446 {
1447 	return ((uint_t)-1);
1448 }
1449 
1450 /*ARGSUSED*/
1451 int
1452 impl_keep_instance(dev_info_t *dip)
1453 {
1454 	return (DDI_FAILURE);
1455 }
1456 
1457 /*ARGSUSED*/
1458 int
1459 impl_free_instance(dev_info_t *dip)
1460 {
1461 	return (DDI_FAILURE);
1462 }
1463 
1464 /*ARGSUSED*/
1465 int
1466 impl_check_cpu(dev_info_t *devi)
1467 {
1468 	return (DDI_SUCCESS);
1469 }
1470 
1471 /*
1472  * Referenced in common/cpr_driver.c: Power off machine.
1473  * Don't know how to power off i86pc.
1474  */
1475 void
1476 arch_power_down()
1477 {}
1478 
1479 /*
1480  * Copy name to property_name, since name
1481  * is in the low address range below kernelbase.
1482  */
1483 static void
1484 copy_boot_str(const char *boot_str, char *kern_str, int len)
1485 {
1486 	int i = 0;
1487 
1488 	while (i < len - 1 && boot_str[i] != '\0') {
1489 		kern_str[i] = boot_str[i];
1490 		i++;
1491 	}
1492 
1493 	kern_str[i] = 0;	/* null terminate */
1494 	if (boot_str[i] != '\0')
1495 		cmn_err(CE_WARN,
1496 		    "boot property string is truncated to %s", kern_str);
1497 }
1498 
1499 static void
1500 get_boot_properties(void)
1501 {
1502 	extern char hw_provider[];
1503 	dev_info_t *devi;
1504 	char *name;
1505 	int length;
1506 	char property_name[50], property_val[50];
1507 	void *bop_staging_area;
1508 
1509 	bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP);
1510 
1511 	/*
1512 	 * Import "root" properties from the boot.
1513 	 *
1514 	 * We do this by invoking BOP_NEXTPROP until the list
1515 	 * is completely copied in.
1516 	 */
1517 
1518 	devi = ddi_root_node();
1519 	for (name = BOP_NEXTPROP(bootops, "");		/* get first */
1520 	    name;					/* NULL => DONE */
1521 	    name = BOP_NEXTPROP(bootops, name)) {	/* get next */
1522 
1523 		/* copy string to memory above kernelbase */
1524 		copy_boot_str(name, property_name, 50);
1525 
1526 		/*
1527 		 * Skip vga properties. They will be picked up later
1528 		 * by get_vga_properties.
1529 		 */
1530 		if (strcmp(property_name, "display-edif-block") == 0 ||
1531 		    strcmp(property_name, "display-edif-id") == 0) {
1532 			continue;
1533 		}
1534 
1535 		length = BOP_GETPROPLEN(bootops, property_name);
1536 		if (length == 0)
1537 			continue;
1538 		if (length > MMU_PAGESIZE) {
1539 			cmn_err(CE_NOTE,
1540 			    "boot property %s longer than 0x%x, ignored\n",
1541 			    property_name, MMU_PAGESIZE);
1542 			continue;
1543 		}
1544 		BOP_GETPROP(bootops, property_name, bop_staging_area);
1545 
1546 		/*
1547 		 * special properties:
1548 		 * si-machine, si-hw-provider
1549 		 *	goes to kernel data structures.
1550 		 * bios-boot-device and stdout
1551 		 *	goes to hardware property list so it may show up
1552 		 *	in the prtconf -vp output. This is needed by
1553 		 *	Install/Upgrade. Once we fix install upgrade,
1554 		 *	this can be taken out.
1555 		 */
1556 		if (strcmp(name, "si-machine") == 0) {
1557 			(void) strncpy(utsname.machine, bop_staging_area,
1558 			    SYS_NMLN);
1559 			utsname.machine[SYS_NMLN - 1] = (char)NULL;
1560 		} else if (strcmp(name, "si-hw-provider") == 0) {
1561 			(void) strncpy(hw_provider, bop_staging_area, SYS_NMLN);
1562 			hw_provider[SYS_NMLN - 1] = (char)NULL;
1563 		} else if (strcmp(name, "bios-boot-device") == 0) {
1564 			copy_boot_str(bop_staging_area, property_val, 50);
1565 			(void) ndi_prop_update_string(DDI_DEV_T_NONE, devi,
1566 			    property_name, property_val);
1567 		} else if (strcmp(name, "stdout") == 0) {
1568 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, devi,
1569 			    property_name, *((int *)bop_staging_area));
1570 		} else {
1571 			/* Property type unknown, use old prop interface */
1572 			(void) e_ddi_prop_create(DDI_DEV_T_NONE, devi,
1573 			    DDI_PROP_CANSLEEP, property_name, bop_staging_area,
1574 			    length);
1575 		}
1576 	}
1577 
1578 	kmem_free(bop_staging_area, MMU_PAGESIZE);
1579 }
1580 
1581 static void
1582 get_vga_properties(void)
1583 {
1584 	dev_info_t *devi;
1585 	major_t major;
1586 	char *name;
1587 	int length;
1588 	char property_val[50];
1589 	void *bop_staging_area;
1590 
1591 	major = ddi_name_to_major("vgatext");
1592 	if (major == (major_t)-1)
1593 		return;
1594 	devi = devnamesp[major].dn_head;
1595 	if (devi == NULL)
1596 		return;
1597 
1598 	bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
1599 
1600 	/*
1601 	 * Import "vga" properties from the boot.
1602 	 */
1603 	name = "display-edif-block";
1604 	length = BOP_GETPROPLEN(bootops, name);
1605 	if (length > 0 && length < MMU_PAGESIZE) {
1606 		BOP_GETPROP(bootops, name, bop_staging_area);
1607 		(void) ndi_prop_update_byte_array(DDI_DEV_T_NONE,
1608 		    devi, name, bop_staging_area, length);
1609 	}
1610 
1611 	/*
1612 	 * kdmconfig is also looking for display-type and
1613 	 * video-adapter-type. We default to color and svga.
1614 	 *
1615 	 * Could it be "monochrome", "vga"?
1616 	 * Nah, you've got to come to the 21st century...
1617 	 * And you can set monitor type manually in kdmconfig
1618 	 * if you are really an old junky.
1619 	 */
1620 	(void) ndi_prop_update_string(DDI_DEV_T_NONE,
1621 	    devi, "display-type", "color");
1622 	(void) ndi_prop_update_string(DDI_DEV_T_NONE,
1623 	    devi, "video-adapter-type", "svga");
1624 
1625 	name = "display-edif-id";
1626 	length = BOP_GETPROPLEN(bootops, name);
1627 	if (length > 0 && length < MMU_PAGESIZE) {
1628 		BOP_GETPROP(bootops, name, bop_staging_area);
1629 		copy_boot_str(bop_staging_area, property_val, length);
1630 		(void) ndi_prop_update_string(DDI_DEV_T_NONE,
1631 		    devi, name, property_val);
1632 	}
1633 
1634 	kmem_free(bop_staging_area, MMU_PAGESIZE);
1635 }
1636 
1637 
1638 /*
1639  * This is temporary, but absolutely necessary.  If we are being
1640  * booted with a device tree created by the DevConf project's bootconf
1641  * program, then we have device information nodes that reflect
1642  * reality.  At this point in time in the Solaris release schedule, the
1643  * kernel drivers aren't prepared for reality.  They still depend on their
1644  * own ad-hoc interpretations of the properties created when their .conf
1645  * files were interpreted. These drivers use an "ignore-hardware-nodes"
1646  * property to prevent them from using the nodes passed up from the bootconf
1647  * device tree.
1648  *
1649  * Trying to assemble root file system drivers as we are booting from
1650  * devconf will fail if the kernel driver is basing its name_addr's on the
1651  * psuedo-node device info while the bootpath passed up from bootconf is using
1652  * reality-based name_addrs.  We help the boot along in this case by
1653  * looking at the pre-bootconf bootpath and determining if we would have
1654  * successfully matched if that had been the bootpath we had chosen.
1655  *
1656  * Note that we only even perform this extra check if we've booted
1657  * using bootconf's 1275 compliant bootpath, this is the boot device, and
1658  * we're trying to match the name_addr specified in the 1275 bootpath.
1659  */
1660 
1661 #define	MAXCOMPONENTLEN	32
1662 
1663 int
1664 x86_old_bootpath_name_addr_match(dev_info_t *cdip, char *caddr, char *naddr)
1665 {
1666 	/*
1667 	 *  There are multiple criteria to be met before we can even
1668 	 *  consider allowing a name_addr match here.
1669 	 *
1670 	 *  1) We must have been booted such that the bootconf program
1671 	 *	created device tree nodes and properties.  This can be
1672 	 *	determined by examining the 'bootpath' property.  This
1673 	 *	property will be a non-null string iff bootconf was
1674 	 *	involved in the boot.
1675 	 *
1676 	 *  2) The module that we want to match must be the boot device.
1677 	 *
1678 	 *  3) The instance of the module we are thinking of letting be
1679 	 *	our match must be ignoring hardware nodes.
1680 	 *
1681 	 *  4) The name_addr we want to match must be the name_addr
1682 	 *	specified in the 1275 bootpath.
1683 	 */
1684 	static char bootdev_module[MAXCOMPONENTLEN];
1685 	static char bootdev_oldmod[MAXCOMPONENTLEN];
1686 	static char bootdev_newaddr[MAXCOMPONENTLEN];
1687 	static char bootdev_oldaddr[MAXCOMPONENTLEN];
1688 	static int  quickexit;
1689 
1690 	char *daddr;
1691 	int dlen;
1692 
1693 	char	*lkupname;
1694 	int	rv = DDI_FAILURE;
1695 
1696 	if ((ddi_getlongprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
1697 		"devconf-addr", (caddr_t)&daddr, &dlen) == DDI_PROP_SUCCESS) &&
1698 	    (ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
1699 		"ignore-hardware-nodes", -1) != -1)) {
1700 		if (strcmp(daddr, caddr) == 0) {
1701 			return (DDI_SUCCESS);
1702 		}
1703 	}
1704 
1705 	if (quickexit)
1706 		return (rv);
1707 
1708 	if (bootdev_module[0] == '\0') {
1709 		char *addrp, *eoaddrp;
1710 		char *busp, *modp, *atp;
1711 		char *bp1275, *bp;
1712 		int  bp1275len, bplen;
1713 
1714 		bp1275 = bp = addrp = eoaddrp = busp = modp = atp = NULL;
1715 
1716 		if (ddi_getlongprop(DDI_DEV_T_ANY,
1717 		    ddi_root_node(), 0, "bootpath",
1718 		    (caddr_t)&bp1275, &bp1275len) != DDI_PROP_SUCCESS ||
1719 		    bp1275len <= 1) {
1720 			/*
1721 			 * We didn't boot from bootconf so we never need to
1722 			 * do any special matches.
1723 			 */
1724 			quickexit = 1;
1725 			if (bp1275)
1726 				kmem_free(bp1275, bp1275len);
1727 			return (rv);
1728 		}
1729 
1730 		if (ddi_getlongprop(DDI_DEV_T_ANY,
1731 		    ddi_root_node(), 0, "boot-path",
1732 		    (caddr_t)&bp, &bplen) != DDI_PROP_SUCCESS || bplen <= 1) {
1733 			/*
1734 			 * No fallback position for matching. This is
1735 			 * certainly unexpected, but we'll handle it
1736 			 * just in case.
1737 			 */
1738 			quickexit = 1;
1739 			kmem_free(bp1275, bp1275len);
1740 			if (bp)
1741 				kmem_free(bp, bplen);
1742 			return (rv);
1743 		}
1744 
1745 		/*
1746 		 *  Determine boot device module and 1275 name_addr
1747 		 *
1748 		 *  bootpath assumed to be of the form /bus/module@name_addr
1749 		 */
1750 		if (busp = strchr(bp1275, '/')) {
1751 			if (modp = strchr(busp + 1, '/')) {
1752 				if (atp = strchr(modp + 1, '@')) {
1753 					*atp = '\0';
1754 					addrp = atp + 1;
1755 					if (eoaddrp = strchr(addrp, '/'))
1756 						*eoaddrp = '\0';
1757 				}
1758 			}
1759 		}
1760 
1761 		if (modp && addrp) {
1762 			(void) strncpy(bootdev_module, modp + 1,
1763 			    MAXCOMPONENTLEN);
1764 			bootdev_module[MAXCOMPONENTLEN - 1] = '\0';
1765 
1766 			(void) strncpy(bootdev_newaddr, addrp, MAXCOMPONENTLEN);
1767 			bootdev_newaddr[MAXCOMPONENTLEN - 1] = '\0';
1768 		} else {
1769 			quickexit = 1;
1770 			kmem_free(bp1275, bp1275len);
1771 			kmem_free(bp, bplen);
1772 			return (rv);
1773 		}
1774 
1775 		/*
1776 		 *  Determine fallback name_addr
1777 		 *
1778 		 *  10/3/96 - Also save fallback module name because it
1779 		 *  might actually be different than the current module
1780 		 *  name.  E.G., ISA pnp drivers have new names.
1781 		 *
1782 		 *  bootpath assumed to be of the form /bus/module@name_addr
1783 		 */
1784 		addrp = NULL;
1785 		if (busp = strchr(bp, '/')) {
1786 			if (modp = strchr(busp + 1, '/')) {
1787 				if (atp = strchr(modp + 1, '@')) {
1788 					*atp = '\0';
1789 					addrp = atp + 1;
1790 					if (eoaddrp = strchr(addrp, '/'))
1791 						*eoaddrp = '\0';
1792 				}
1793 			}
1794 		}
1795 
1796 		if (modp && addrp) {
1797 			(void) strncpy(bootdev_oldmod, modp + 1,
1798 			    MAXCOMPONENTLEN);
1799 			bootdev_module[MAXCOMPONENTLEN - 1] = '\0';
1800 
1801 			(void) strncpy(bootdev_oldaddr, addrp, MAXCOMPONENTLEN);
1802 			bootdev_oldaddr[MAXCOMPONENTLEN - 1] = '\0';
1803 		}
1804 
1805 		/* Free up the bootpath storage now that we're done with it. */
1806 		kmem_free(bp1275, bp1275len);
1807 		kmem_free(bp, bplen);
1808 
1809 		if (bootdev_oldaddr[0] == '\0') {
1810 			quickexit = 1;
1811 			return (rv);
1812 		}
1813 	}
1814 
1815 	if (((lkupname = ddi_get_name(cdip)) != NULL) &&
1816 	    (strcmp(bootdev_module, lkupname) == 0 ||
1817 	    strcmp(bootdev_oldmod, lkupname) == 0) &&
1818 	    ((ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
1819 		"ignore-hardware-nodes", -1) != -1) ||
1820 		ignore_hardware_nodes) &&
1821 	    strcmp(bootdev_newaddr, caddr) == 0 &&
1822 	    strcmp(bootdev_oldaddr, naddr) == 0) {
1823 		rv = DDI_SUCCESS;
1824 	}
1825 
1826 	return (rv);
1827 }
1828 
1829 /*
1830  * Perform a copy from a memory mapped device (whose devinfo pointer is devi)
1831  * separately mapped at devaddr in the kernel to a kernel buffer at kaddr.
1832  */
1833 /*ARGSUSED*/
1834 int
1835 e_ddi_copyfromdev(dev_info_t *devi,
1836     off_t off, const void *devaddr, void *kaddr, size_t len)
1837 {
1838 	bcopy(devaddr, kaddr, len);
1839 	return (0);
1840 }
1841 
1842 /*
1843  * Perform a copy to a memory mapped device (whose devinfo pointer is devi)
1844  * separately mapped at devaddr in the kernel from a kernel buffer at kaddr.
1845  */
1846 /*ARGSUSED*/
1847 int
1848 e_ddi_copytodev(dev_info_t *devi,
1849     off_t off, const void *kaddr, void *devaddr, size_t len)
1850 {
1851 	bcopy(kaddr, devaddr, len);
1852 	return (0);
1853 }
1854 
1855 
1856 static int
1857 poke_mem(peekpoke_ctlops_t *in_args)
1858 {
1859 	int err = DDI_SUCCESS;
1860 	on_trap_data_t otd;
1861 
1862 	/* Set up protected environment. */
1863 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
1864 		switch (in_args->size) {
1865 		case sizeof (uint8_t):
1866 			*(uint8_t *)(in_args->dev_addr) =
1867 			    *(uint8_t *)in_args->host_addr;
1868 			break;
1869 
1870 		case sizeof (uint16_t):
1871 			*(uint16_t *)(in_args->dev_addr) =
1872 			    *(uint16_t *)in_args->host_addr;
1873 			break;
1874 
1875 		case sizeof (uint32_t):
1876 			*(uint32_t *)(in_args->dev_addr) =
1877 			    *(uint32_t *)in_args->host_addr;
1878 			break;
1879 
1880 		case sizeof (uint64_t):
1881 			*(uint64_t *)(in_args->dev_addr) =
1882 			    *(uint64_t *)in_args->host_addr;
1883 			break;
1884 
1885 		default:
1886 			err = DDI_FAILURE;
1887 			break;
1888 		}
1889 	} else
1890 		err = DDI_FAILURE;
1891 
1892 	/* Take down protected environment. */
1893 	no_trap();
1894 
1895 	return (err);
1896 }
1897 
1898 
1899 static int
1900 peek_mem(peekpoke_ctlops_t *in_args)
1901 {
1902 	int err = DDI_SUCCESS;
1903 	on_trap_data_t otd;
1904 
1905 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
1906 		switch (in_args->size) {
1907 		case sizeof (uint8_t):
1908 			*(uint8_t *)in_args->host_addr =
1909 			    *(uint8_t *)in_args->dev_addr;
1910 			break;
1911 
1912 		case sizeof (uint16_t):
1913 			*(uint16_t *)in_args->host_addr =
1914 			    *(uint16_t *)in_args->dev_addr;
1915 			break;
1916 
1917 		case sizeof (uint32_t):
1918 			*(uint32_t *)in_args->host_addr =
1919 			    *(uint32_t *)in_args->dev_addr;
1920 			break;
1921 
1922 		case sizeof (uint64_t):
1923 			*(uint64_t *)in_args->host_addr =
1924 			    *(uint64_t *)in_args->dev_addr;
1925 			break;
1926 
1927 		default:
1928 			err = DDI_FAILURE;
1929 			break;
1930 		}
1931 	} else
1932 		err = DDI_FAILURE;
1933 
1934 	no_trap();
1935 	return (err);
1936 }
1937 
1938 
1939 /*
1940  * This is called only to process peek/poke when the DIP is NULL.
1941  * Assume that this is for memory, as nexi take care of device safe accesses.
1942  */
1943 int
1944 peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args)
1945 {
1946 	return (cmd == DDI_CTLOPS_PEEK ? peek_mem(in_args) : poke_mem(in_args));
1947 }
1948 
1949 void
1950 impl_setup_ddi(void)
1951 {
1952 	dev_info_t *xdip, *isa_dip;
1953 	rd_existing_t rd_mem_prop;
1954 	int err;
1955 
1956 	ndi_devi_alloc_sleep(ddi_root_node(), "ramdisk",
1957 	    (dnode_t)DEVI_SID_NODEID, &xdip);
1958 
1959 	(void) BOP_GETPROP(bootops,
1960 	    "ramdisk_start", (void *)&ramdisk_start);
1961 	(void) BOP_GETPROP(bootops,
1962 	    "ramdisk_end", (void *)&ramdisk_end);
1963 
1964 	rd_mem_prop.phys = ramdisk_start;
1965 	rd_mem_prop.size = ramdisk_end - ramdisk_start + 1;
1966 
1967 	(void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, xdip,
1968 	    RD_EXISTING_PROP_NAME, (uchar_t *)&rd_mem_prop,
1969 	    sizeof (rd_mem_prop));
1970 	err = ndi_devi_bind_driver(xdip, 0);
1971 	ASSERT(err == 0);
1972 
1973 	/* isa node */
1974 	ndi_devi_alloc_sleep(ddi_root_node(), "isa",
1975 	    (dnode_t)DEVI_SID_NODEID, &isa_dip);
1976 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip,
1977 	    "device_type", "isa");
1978 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip,
1979 	    "bus-type", "isa");
1980 	(void) ndi_devi_bind_driver(isa_dip, 0);
1981 
1982 	/*
1983 	 * Read in the properties from the boot.
1984 	 */
1985 	get_boot_properties();
1986 
1987 	/* do bus dependent probes. */
1988 	impl_bus_initialprobe();
1989 
1990 	/* not framebuffer should be enumerated, if present */
1991 	get_vga_properties();
1992 }
1993 
1994 dev_t
1995 getrootdev(void)
1996 {
1997 	/*
1998 	 * Precedence given to rootdev if set in /etc/system
1999 	 */
2000 	if (root_is_svm) {
2001 		return (ddi_pathname_to_dev_t(svm_bootpath));
2002 	}
2003 
2004 	/*
2005 	 * Usually rootfs.bo_name is initialized by the
2006 	 * the bootpath property from bootenv.rc, but
2007 	 * defaults to "/ramdisk:a" otherwise.
2008 	 */
2009 	return (ddi_pathname_to_dev_t(rootfs.bo_name));
2010 }
2011 
2012 static struct bus_probe {
2013 	struct bus_probe *next;
2014 	void (*probe)(int);
2015 } *bus_probes;
2016 
2017 void
2018 impl_bus_add_probe(void (*func)(int))
2019 {
2020 	struct bus_probe *probe;
2021 
2022 	probe = kmem_alloc(sizeof (*probe), KM_SLEEP);
2023 	probe->next = bus_probes;
2024 	probe->probe = func;
2025 	bus_probes = probe;
2026 }
2027 
2028 /*ARGSUSED*/
2029 void
2030 impl_bus_delete_probe(void (*func)(int))
2031 {
2032 	struct bus_probe *prev = NULL;
2033 	struct bus_probe *probe = bus_probes;
2034 
2035 	while (probe) {
2036 		if (probe->probe == func)
2037 			break;
2038 		prev = probe;
2039 		probe = probe->next;
2040 	}
2041 
2042 	if (probe == NULL)
2043 		return;
2044 
2045 	if (prev)
2046 		prev->next = probe->next;
2047 	else
2048 		bus_probes = probe->next;
2049 
2050 	kmem_free(probe, sizeof (struct bus_probe));
2051 }
2052 
2053 /*
2054  * impl_bus_initialprobe
2055  *	Modload the prom simulator, then let it probe to verify existence
2056  *	and type of PCI support.
2057  */
2058 static void
2059 impl_bus_initialprobe(void)
2060 {
2061 	struct bus_probe *probe;
2062 
2063 	/* load modules to install bus probes */
2064 	if (modload("misc", "pci_autoconfig") < 0) {
2065 		cmn_err(CE_PANIC, "failed to load misc/pci_autoconfig");
2066 	}
2067 
2068 	probe = bus_probes;
2069 	while (probe) {
2070 		/* run the probe function */
2071 		(*probe->probe)(0);
2072 		probe = probe->next;
2073 	}
2074 }
2075 
2076 /*
2077  * impl_bus_reprobe
2078  *	Reprogram devices not set up by firmware.
2079  */
2080 static void
2081 impl_bus_reprobe(void)
2082 {
2083 	struct bus_probe *probe;
2084 
2085 	probe = bus_probes;
2086 	while (probe) {
2087 		/* run the probe function */
2088 		(*probe->probe)(1);
2089 		probe = probe->next;
2090 	}
2091 }
2092