xref: /titanic_50/usr/src/uts/i86pc/os/cpupm/cpu_idle.c (revision 0bc46f0d82f5e2ab983b9daff3aa7c9abb447ff2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright (c) 2009, Intel Corporation.
27  * All rights reserved.
28  */
29 
30 #include <sys/x86_archext.h>
31 #include <sys/machsystm.h>
32 #include <sys/x_call.h>
33 #include <sys/stat.h>
34 #include <sys/acpi/acpi.h>
35 #include <sys/acpica.h>
36 #include <sys/cpu_acpi.h>
37 #include <sys/cpu_idle.h>
38 #include <sys/cpupm.h>
39 #include <sys/cpu_event.h>
40 #include <sys/hpet.h>
41 #include <sys/archsystm.h>
42 #include <vm/hat_i86.h>
43 #include <sys/dtrace.h>
44 #include <sys/sdt.h>
45 #include <sys/callb.h>
46 
47 #define	CSTATE_USING_HPET		1
48 #define	CSTATE_USING_LAT		2
49 
50 extern void cpu_idle_adaptive(void);
51 extern uint32_t cpupm_next_cstate(cma_c_state_t *cs_data,
52     cpu_acpi_cstate_t *cstates, uint32_t cs_count, hrtime_t start);
53 
54 static int cpu_idle_init(cpu_t *);
55 static void cpu_idle_fini(cpu_t *);
56 static boolean_t cpu_deep_idle_callb(void *arg, int code);
57 static boolean_t cpu_idle_cpr_callb(void *arg, int code);
58 static void acpi_cpu_cstate(cpu_acpi_cstate_t *cstate);
59 
60 static boolean_t cstate_use_timer(hrtime_t *lapic_expire, int timer);
61 
62 /*
63  * the flag of always-running local APIC timer.
64  * the flag of HPET Timer use in deep cstate.
65  */
66 static boolean_t cpu_cstate_arat = B_FALSE;
67 static boolean_t cpu_cstate_hpet = B_FALSE;
68 
69 /*
70  * Interfaces for modules implementing Intel's deep c-state.
71  */
72 cpupm_state_ops_t cpu_idle_ops = {
73 	"Generic ACPI C-state Support",
74 	cpu_idle_init,
75 	cpu_idle_fini,
76 	NULL
77 };
78 
79 static kmutex_t		cpu_idle_callb_mutex;
80 static callb_id_t	cpu_deep_idle_callb_id;
81 static callb_id_t	cpu_idle_cpr_callb_id;
82 static uint_t		cpu_idle_cfg_state;
83 
84 static kmutex_t cpu_idle_mutex;
85 
86 cpu_idle_kstat_t cpu_idle_kstat = {
87 	{ "address_space_id",	KSTAT_DATA_STRING },
88 	{ "latency",		KSTAT_DATA_UINT32 },
89 	{ "power",		KSTAT_DATA_UINT32 },
90 };
91 
92 /*
93  * kstat update function of the c-state info
94  */
95 static int
96 cpu_idle_kstat_update(kstat_t *ksp, int flag)
97 {
98 	cpu_acpi_cstate_t *cstate = ksp->ks_private;
99 
100 	if (flag == KSTAT_WRITE) {
101 		return (EACCES);
102 	}
103 
104 	if (cstate->cs_addrspace_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
105 		kstat_named_setstr(&cpu_idle_kstat.addr_space_id,
106 		"FFixedHW");
107 	} else if (cstate->cs_addrspace_id == ACPI_ADR_SPACE_SYSTEM_IO) {
108 		kstat_named_setstr(&cpu_idle_kstat.addr_space_id,
109 		"SystemIO");
110 	} else {
111 		kstat_named_setstr(&cpu_idle_kstat.addr_space_id,
112 		"Unsupported");
113 	}
114 
115 	cpu_idle_kstat.cs_latency.value.ui32 = cstate->cs_latency;
116 	cpu_idle_kstat.cs_power.value.ui32 = cstate->cs_power;
117 
118 	return (0);
119 }
120 
121 /*
122  * Used during configuration callbacks to manage implementation specific
123  * details of the hardware timer used during Deep C-state.
124  */
125 boolean_t
126 cstate_timer_callback(int code)
127 {
128 	if (cpu_cstate_arat) {
129 		return (B_TRUE);
130 	} else if (cpu_cstate_hpet) {
131 		return (hpet.callback(code));
132 	}
133 	return (B_FALSE);
134 }
135 
136 /*
137  * Some Local APIC Timers do not work during Deep C-states.
138  * The Deep C-state idle function uses this function to ensure it is using a
139  * hardware timer that works during Deep C-states.  This function also
140  * switches the timer back to the LACPI Timer after Deep C-state.
141  */
142 static boolean_t
143 cstate_use_timer(hrtime_t *lapic_expire, int timer)
144 {
145 	if (cpu_cstate_arat)
146 		return (B_TRUE);
147 
148 	/*
149 	 * We have to return B_FALSE if no arat or hpet support
150 	 */
151 	if (!cpu_cstate_hpet)
152 		return (B_FALSE);
153 
154 	switch (timer) {
155 	case CSTATE_USING_HPET:
156 		return (hpet.use_hpet_timer(lapic_expire));
157 	case CSTATE_USING_LAT:
158 		hpet.use_lapic_timer(*lapic_expire);
159 		return (B_TRUE);
160 	default:
161 		return (B_FALSE);
162 	}
163 }
164 
165 /*
166  * c-state wakeup function.
167  * Similar to cpu_wakeup and cpu_wakeup_mwait except this function deals
168  * with CPUs asleep in MWAIT, HLT, or ACPI Deep C-State.
169  */
170 void
171 cstate_wakeup(cpu_t *cp, int bound)
172 {
173 	struct machcpu	*mcpu = &(cp->cpu_m);
174 	volatile uint32_t *mcpu_mwait = mcpu->mcpu_mwait;
175 	cpupart_t	*cpu_part;
176 	uint_t		cpu_found;
177 	processorid_t	cpu_sid;
178 
179 	cpu_part = cp->cpu_part;
180 	cpu_sid = cp->cpu_seqid;
181 	/*
182 	 * Clear the halted bit for that CPU since it will be woken up
183 	 * in a moment.
184 	 */
185 	if (bitset_in_set(&cpu_part->cp_haltset, cpu_sid)) {
186 		/*
187 		 * Clear the halted bit for that CPU since it will be
188 		 * poked in a moment.
189 		 */
190 		bitset_atomic_del(&cpu_part->cp_haltset, cpu_sid);
191 
192 		/*
193 		 * We may find the current CPU present in the halted cpuset
194 		 * if we're in the context of an interrupt that occurred
195 		 * before we had a chance to clear our bit in cpu_idle().
196 		 * Waking ourself is obviously unnecessary, since if
197 		 * we're here, we're not halted.
198 		 */
199 		if (cp != CPU) {
200 			/*
201 			 * Use correct wakeup mechanism
202 			 */
203 			if ((mcpu_mwait != NULL) &&
204 			    (*mcpu_mwait == MWAIT_HALTED))
205 				MWAIT_WAKEUP(cp);
206 			else
207 				poke_cpu(cp->cpu_id);
208 		}
209 		return;
210 	} else {
211 		/*
212 		 * This cpu isn't halted, but it's idle or undergoing a
213 		 * context switch. No need to awaken anyone else.
214 		 */
215 		if (cp->cpu_thread == cp->cpu_idle_thread ||
216 		    cp->cpu_disp_flags & CPU_DISP_DONTSTEAL)
217 			return;
218 	}
219 
220 	/*
221 	 * No need to wake up other CPUs if the thread we just enqueued
222 	 * is bound.
223 	 */
224 	if (bound)
225 		return;
226 
227 
228 	/*
229 	 * See if there's any other halted CPUs. If there are, then
230 	 * select one, and awaken it.
231 	 * It's possible that after we find a CPU, somebody else
232 	 * will awaken it before we get the chance.
233 	 * In that case, look again.
234 	 */
235 	do {
236 		cpu_found = bitset_find(&cpu_part->cp_haltset);
237 		if (cpu_found == (uint_t)-1)
238 			return;
239 
240 	} while (bitset_atomic_test_and_del(&cpu_part->cp_haltset,
241 	    cpu_found) < 0);
242 
243 	/*
244 	 * Must use correct wakeup mechanism to avoid lost wakeup of
245 	 * alternate cpu.
246 	 */
247 	if (cpu_found != CPU->cpu_seqid) {
248 		mcpu_mwait = cpu[cpu_found]->cpu_m.mcpu_mwait;
249 		if ((mcpu_mwait != NULL) && (*mcpu_mwait == MWAIT_HALTED))
250 			MWAIT_WAKEUP(cpu_seq[cpu_found]);
251 		else
252 			poke_cpu(cpu_seq[cpu_found]->cpu_id);
253 	}
254 }
255 
256 /*
257  * Function called by CPU idle notification framework to check whether CPU
258  * has been awakened. It will be called with interrupt disabled.
259  * If CPU has been awakened, call cpu_idle_exit() to notify CPU idle
260  * notification framework.
261  */
262 static void
263 acpi_cpu_mwait_check_wakeup(void *arg)
264 {
265 	volatile uint32_t *mcpu_mwait = (volatile uint32_t *)arg;
266 
267 	ASSERT(arg != NULL);
268 	if (*mcpu_mwait != MWAIT_HALTED) {
269 		/*
270 		 * CPU has been awakened, notify CPU idle notification system.
271 		 */
272 		cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
273 	} else {
274 		/*
275 		 * Toggle interrupt flag to detect pending interrupts.
276 		 * If interrupt happened, do_interrupt() will notify CPU idle
277 		 * notification framework so no need to call cpu_idle_exit()
278 		 * here.
279 		 */
280 		sti();
281 		SMT_PAUSE();
282 		cli();
283 	}
284 }
285 
286 static void
287 acpi_cpu_mwait_ipi_check_wakeup(void *arg)
288 {
289 	volatile uint32_t *mcpu_mwait = (volatile uint32_t *)arg;
290 
291 	ASSERT(arg != NULL);
292 	if (*mcpu_mwait != MWAIT_WAKEUP_IPI) {
293 		/*
294 		 * CPU has been awakened, notify CPU idle notification system.
295 		 */
296 		cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
297 	} else {
298 		/*
299 		 * Toggle interrupt flag to detect pending interrupts.
300 		 * If interrupt happened, do_interrupt() will notify CPU idle
301 		 * notification framework so no need to call cpu_idle_exit()
302 		 * here.
303 		 */
304 		sti();
305 		SMT_PAUSE();
306 		cli();
307 	}
308 }
309 
310 /*ARGSUSED*/
311 static void
312 acpi_cpu_check_wakeup(void *arg)
313 {
314 	/*
315 	 * Toggle interrupt flag to detect pending interrupts.
316 	 * If interrupt happened, do_interrupt() will notify CPU idle
317 	 * notification framework so no need to call cpu_idle_exit() here.
318 	 */
319 	sti();
320 	SMT_PAUSE();
321 	cli();
322 }
323 
324 /*
325  * enter deep c-state handler
326  */
327 static void
328 acpi_cpu_cstate(cpu_acpi_cstate_t *cstate)
329 {
330 	volatile uint32_t	*mcpu_mwait = CPU->cpu_m.mcpu_mwait;
331 	cpu_t			*cpup = CPU;
332 	processorid_t		cpu_sid = cpup->cpu_seqid;
333 	cpupart_t		*cp = cpup->cpu_part;
334 	hrtime_t		lapic_expire;
335 	uint8_t			type = cstate->cs_addrspace_id;
336 	uint32_t		cs_type = cstate->cs_type;
337 	int			hset_update = 1;
338 	boolean_t		using_timer;
339 	cpu_idle_check_wakeup_t check_func = &acpi_cpu_check_wakeup;
340 
341 	/*
342 	 * Set our mcpu_mwait here, so we can tell if anyone tries to
343 	 * wake us between now and when we call mwait.  No other cpu will
344 	 * attempt to set our mcpu_mwait until we add ourself to the haltset.
345 	 */
346 	if (mcpu_mwait) {
347 		if (type == ACPI_ADR_SPACE_SYSTEM_IO) {
348 			*mcpu_mwait = MWAIT_WAKEUP_IPI;
349 			check_func = &acpi_cpu_mwait_ipi_check_wakeup;
350 		} else {
351 			*mcpu_mwait = MWAIT_HALTED;
352 			check_func = &acpi_cpu_mwait_check_wakeup;
353 		}
354 	}
355 
356 	/*
357 	 * If this CPU is online, and there are multiple CPUs
358 	 * in the system, then we should note our halting
359 	 * by adding ourselves to the partition's halted CPU
360 	 * bitmap. This allows other CPUs to find/awaken us when
361 	 * work becomes available.
362 	 */
363 	if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1)
364 		hset_update = 0;
365 
366 	/*
367 	 * Add ourselves to the partition's halted CPUs bitmask
368 	 * and set our HALTED flag, if necessary.
369 	 *
370 	 * When a thread becomes runnable, it is placed on the queue
371 	 * and then the halted cpuset is checked to determine who
372 	 * (if anyone) should be awakened. We therefore need to first
373 	 * add ourselves to the halted cpuset, and and then check if there
374 	 * is any work available.
375 	 *
376 	 * Note that memory barriers after updating the HALTED flag
377 	 * are not necessary since an atomic operation (updating the bitmap)
378 	 * immediately follows. On x86 the atomic operation acts as a
379 	 * memory barrier for the update of cpu_disp_flags.
380 	 */
381 	if (hset_update) {
382 		cpup->cpu_disp_flags |= CPU_DISP_HALTED;
383 		bitset_atomic_add(&cp->cp_haltset, cpu_sid);
384 	}
385 
386 	/*
387 	 * Check to make sure there's really nothing to do.
388 	 * Work destined for this CPU may become available after
389 	 * this check. We'll be notified through the clearing of our
390 	 * bit in the halted CPU bitmask, and a write to our mcpu_mwait.
391 	 *
392 	 * disp_anywork() checks disp_nrunnable, so we do not have to later.
393 	 */
394 	if (disp_anywork()) {
395 		if (hset_update) {
396 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
397 			bitset_atomic_del(&cp->cp_haltset, cpu_sid);
398 		}
399 		return;
400 	}
401 
402 	/*
403 	 * We're on our way to being halted.
404 	 *
405 	 * The local APIC timer can stop in ACPI C2 and deeper c-states.
406 	 * Try to program the HPET hardware to substitute for this CPU's
407 	 * LAPIC timer.
408 	 * cstate_use_timer() could disable the LAPIC Timer.  Make sure
409 	 * to start the LAPIC Timer again before leaving this function.
410 	 *
411 	 * Disable interrupts here so we will awaken immediately after halting
412 	 * if someone tries to poke us between now and the time we actually
413 	 * halt.
414 	 */
415 	cli();
416 	using_timer = cstate_use_timer(&lapic_expire, CSTATE_USING_HPET);
417 
418 	/*
419 	 * We check for the presence of our bit after disabling interrupts.
420 	 * If it's cleared, we'll return. If the bit is cleared after
421 	 * we check then the cstate_wakeup() will pop us out of the halted
422 	 * state.
423 	 *
424 	 * This means that the ordering of the cstate_wakeup() and the clearing
425 	 * of the bit by cpu_wakeup is important.
426 	 * cpu_wakeup() must clear our mc_haltset bit, and then call
427 	 * cstate_wakeup().
428 	 * acpi_cpu_cstate() must disable interrupts, then check for the bit.
429 	 */
430 	if (hset_update && bitset_in_set(&cp->cp_haltset, cpu_sid) == 0) {
431 		(void) cstate_use_timer(&lapic_expire,
432 		    CSTATE_USING_LAT);
433 		sti();
434 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
435 		return;
436 	}
437 
438 	/*
439 	 * The check for anything locally runnable is here for performance
440 	 * and isn't needed for correctness. disp_nrunnable ought to be
441 	 * in our cache still, so it's inexpensive to check, and if there
442 	 * is anything runnable we won't have to wait for the poke.
443 	 */
444 	if (cpup->cpu_disp->disp_nrunnable != 0) {
445 		(void) cstate_use_timer(&lapic_expire,
446 		    CSTATE_USING_LAT);
447 		sti();
448 		if (hset_update) {
449 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
450 			bitset_atomic_del(&cp->cp_haltset, cpu_sid);
451 		}
452 		return;
453 	}
454 
455 	if (using_timer == B_FALSE) {
456 
457 		(void) cstate_use_timer(&lapic_expire,
458 		    CSTATE_USING_LAT);
459 		sti();
460 
461 		/*
462 		 * We are currently unable to program the HPET to act as this
463 		 * CPU's proxy LAPIC timer.  This CPU cannot enter C2 or deeper
464 		 * because no timer is set to wake it up while its LAPIC timer
465 		 * stalls in deep C-States.
466 		 * Enter C1 instead.
467 		 *
468 		 * cstate_wake_cpu() will wake this CPU with an IPI which
469 		 * works with MWAIT.
470 		 */
471 		i86_monitor(mcpu_mwait, 0, 0);
472 		if ((*mcpu_mwait & ~MWAIT_WAKEUP_IPI) == MWAIT_HALTED) {
473 			if (cpu_idle_enter(IDLE_STATE_C1, 0,
474 			    check_func, (void *)mcpu_mwait) == 0) {
475 				if ((*mcpu_mwait & ~MWAIT_WAKEUP_IPI) ==
476 				    MWAIT_HALTED) {
477 					i86_mwait(0, 0);
478 				}
479 				cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
480 			}
481 		}
482 
483 		/*
484 		 * We're no longer halted
485 		 */
486 		if (hset_update) {
487 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
488 			bitset_atomic_del(&cp->cp_haltset, cpu_sid);
489 		}
490 		return;
491 	}
492 
493 	if (type == ACPI_ADR_SPACE_FIXED_HARDWARE) {
494 		/*
495 		 * We're on our way to being halted.
496 		 * To avoid a lost wakeup, arm the monitor before checking
497 		 * if another cpu wrote to mcpu_mwait to wake us up.
498 		 */
499 		i86_monitor(mcpu_mwait, 0, 0);
500 		if (*mcpu_mwait == MWAIT_HALTED) {
501 			if (cpu_idle_enter((uint_t)cs_type, 0,
502 			    check_func, (void *)mcpu_mwait) == 0) {
503 				if (*mcpu_mwait == MWAIT_HALTED) {
504 					i86_mwait(cstate->cs_address, 1);
505 				}
506 				cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
507 			}
508 		}
509 	} else if (type == ACPI_ADR_SPACE_SYSTEM_IO) {
510 		uint32_t value;
511 		ACPI_TABLE_FADT *gbl_FADT;
512 
513 		if (*mcpu_mwait == MWAIT_WAKEUP_IPI) {
514 			if (cpu_idle_enter((uint_t)cs_type, 0,
515 			    check_func, (void *)mcpu_mwait) == 0) {
516 				if (*mcpu_mwait == MWAIT_WAKEUP_IPI) {
517 					(void) cpu_acpi_read_port(
518 					    cstate->cs_address, &value, 8);
519 					acpica_get_global_FADT(&gbl_FADT);
520 					(void) cpu_acpi_read_port(
521 					    gbl_FADT->XPmTimerBlock.Address,
522 					    &value, 32);
523 				}
524 				cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
525 			}
526 		}
527 	}
528 
529 	/*
530 	 * The LAPIC timer may have stopped in deep c-state.
531 	 * Reprogram this CPU's LAPIC here before enabling interrupts.
532 	 */
533 	(void) cstate_use_timer(&lapic_expire, CSTATE_USING_LAT);
534 	sti();
535 
536 	/*
537 	 * We're no longer halted
538 	 */
539 	if (hset_update) {
540 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
541 		bitset_atomic_del(&cp->cp_haltset, cpu_sid);
542 	}
543 }
544 
545 /*
546  * Idle the present CPU, deep c-state is supported
547  */
548 void
549 cpu_acpi_idle(void)
550 {
551 	cpu_t *cp = CPU;
552 	cpu_acpi_handle_t handle;
553 	cma_c_state_t *cs_data;
554 	cpu_acpi_cstate_t *cstates;
555 	hrtime_t start, end;
556 	int cpu_max_cstates;
557 	uint32_t cs_indx;
558 	uint16_t cs_type;
559 
560 	cpupm_mach_state_t *mach_state =
561 	    (cpupm_mach_state_t *)cp->cpu_m.mcpu_pm_mach_state;
562 	handle = mach_state->ms_acpi_handle;
563 	ASSERT(CPU_ACPI_CSTATES(handle) != NULL);
564 
565 	cs_data = mach_state->ms_cstate.cma_state.cstate;
566 	cstates = (cpu_acpi_cstate_t *)CPU_ACPI_CSTATES(handle);
567 	ASSERT(cstates != NULL);
568 	cpu_max_cstates = cpu_acpi_get_max_cstates(handle);
569 	if (cpu_max_cstates > CPU_MAX_CSTATES)
570 		cpu_max_cstates = CPU_MAX_CSTATES;
571 	if (cpu_max_cstates == 1) {	/* no ACPI c-state data */
572 		(*non_deep_idle_cpu)();
573 		return;
574 	}
575 
576 	start = gethrtime_unscaled();
577 
578 	cs_indx = cpupm_next_cstate(cs_data, cstates, cpu_max_cstates, start);
579 
580 	cs_type = cstates[cs_indx].cs_type;
581 
582 	switch (cs_type) {
583 	default:
584 		/* FALLTHROUGH */
585 	case CPU_ACPI_C1:
586 		(*non_deep_idle_cpu)();
587 		break;
588 
589 	case CPU_ACPI_C2:
590 		acpi_cpu_cstate(&cstates[cs_indx]);
591 		break;
592 
593 	case CPU_ACPI_C3:
594 		/*
595 		 * All supported Intel processors maintain cache coherency
596 		 * during C3.  Currently when entering C3 processors flush
597 		 * core caches to higher level shared cache. The shared cache
598 		 * maintains state and supports probes during C3.
599 		 * Consequently there is no need to handle cache coherency
600 		 * and Bus Master activity here with the cache flush, BM_RLD
601 		 * bit, BM_STS bit, nor PM2_CNT.ARB_DIS mechanisms described
602 		 * in section 8.1.4 of the ACPI Specification 4.0.
603 		 */
604 		acpi_cpu_cstate(&cstates[cs_indx]);
605 		break;
606 	}
607 
608 	end = gethrtime_unscaled();
609 
610 	/*
611 	 * Update statistics
612 	 */
613 	cpupm_wakeup_cstate_data(cs_data, end);
614 }
615 
616 boolean_t
617 cpu_deep_cstates_supported(void)
618 {
619 	extern int	idle_cpu_no_deep_c;
620 
621 	if (idle_cpu_no_deep_c)
622 		return (B_FALSE);
623 
624 	if (!cpuid_deep_cstates_supported())
625 		return (B_FALSE);
626 
627 	if (cpuid_arat_supported()) {
628 		cpu_cstate_arat = B_TRUE;
629 		return (B_TRUE);
630 	}
631 
632 	if ((hpet.supported == HPET_FULL_SUPPORT) &&
633 	    hpet.install_proxy()) {
634 		cpu_cstate_hpet = B_TRUE;
635 		return (B_TRUE);
636 	}
637 
638 	return (B_FALSE);
639 }
640 
641 /*
642  * Validate that this processor supports deep cstate and if so,
643  * get the c-state data from ACPI and cache it.
644  */
645 static int
646 cpu_idle_init(cpu_t *cp)
647 {
648 	cpupm_mach_state_t *mach_state =
649 	    (cpupm_mach_state_t *)cp->cpu_m.mcpu_pm_mach_state;
650 	cpu_acpi_handle_t handle = mach_state->ms_acpi_handle;
651 	cpu_acpi_cstate_t *cstate;
652 	char name[KSTAT_STRLEN];
653 	int cpu_max_cstates, i;
654 	int ret;
655 
656 	/*
657 	 * Cache the C-state specific ACPI data.
658 	 */
659 	if ((ret = cpu_acpi_cache_cstate_data(handle)) != 0) {
660 		if (ret < 0)
661 			cmn_err(CE_NOTE,
662 			    "!Support for CPU deep idle states is being "
663 			    "disabled due to errors parsing ACPI C-state "
664 			    "objects exported by BIOS.");
665 		cpu_idle_fini(cp);
666 		return (-1);
667 	}
668 
669 	cstate = (cpu_acpi_cstate_t *)CPU_ACPI_CSTATES(handle);
670 
671 	cpu_max_cstates = cpu_acpi_get_max_cstates(handle);
672 
673 	for (i = CPU_ACPI_C1; i <= cpu_max_cstates; i++) {
674 		(void) snprintf(name, KSTAT_STRLEN - 1, "c%d", cstate->cs_type);
675 		/*
676 		 * Allocate, initialize and install cstate kstat
677 		 */
678 		cstate->cs_ksp = kstat_create("cstate", CPU->cpu_id,
679 		    name, "misc",
680 		    KSTAT_TYPE_NAMED,
681 		    sizeof (cpu_idle_kstat) / sizeof (kstat_named_t),
682 		    KSTAT_FLAG_VIRTUAL);
683 
684 		if (cstate->cs_ksp == NULL) {
685 			cmn_err(CE_NOTE, "kstat_create(c_state) fail");
686 		} else {
687 			cstate->cs_ksp->ks_data = &cpu_idle_kstat;
688 			cstate->cs_ksp->ks_lock = &cpu_idle_mutex;
689 			cstate->cs_ksp->ks_update = cpu_idle_kstat_update;
690 			cstate->cs_ksp->ks_data_size += MAXNAMELEN;
691 			cstate->cs_ksp->ks_private = cstate;
692 			kstat_install(cstate->cs_ksp);
693 			cstate++;
694 		}
695 	}
696 
697 	cpupm_alloc_domains(cp, CPUPM_C_STATES);
698 	cpupm_alloc_ms_cstate(cp);
699 
700 	if (cpu_deep_cstates_supported()) {
701 		uint32_t value;
702 
703 		mutex_enter(&cpu_idle_callb_mutex);
704 		if (cpu_deep_idle_callb_id == (callb_id_t)0)
705 			cpu_deep_idle_callb_id = callb_add(&cpu_deep_idle_callb,
706 			    (void *)NULL, CB_CL_CPU_DEEP_IDLE, "cpu_deep_idle");
707 		if (cpu_idle_cpr_callb_id == (callb_id_t)0)
708 			cpu_idle_cpr_callb_id = callb_add(&cpu_idle_cpr_callb,
709 			    (void *)NULL, CB_CL_CPR_PM, "cpu_idle_cpr");
710 		mutex_exit(&cpu_idle_callb_mutex);
711 
712 
713 		/*
714 		 * All supported CPUs (Nehalem and later) will remain in C3
715 		 * during Bus Master activity.
716 		 * All CPUs set ACPI_BITREG_BUS_MASTER_RLD to 0 here if it
717 		 * is not already 0 before enabling Deeper C-states.
718 		 */
719 		cpu_acpi_get_register(ACPI_BITREG_BUS_MASTER_RLD, &value);
720 		if (value & 1)
721 			cpu_acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
722 	}
723 
724 	return (0);
725 }
726 
727 /*
728  * Free resources allocated by cpu_idle_init().
729  */
730 static void
731 cpu_idle_fini(cpu_t *cp)
732 {
733 	cpupm_mach_state_t *mach_state =
734 	    (cpupm_mach_state_t *)(cp->cpu_m.mcpu_pm_mach_state);
735 	cpu_acpi_handle_t handle = mach_state->ms_acpi_handle;
736 	cpu_acpi_cstate_t *cstate;
737 	uint_t	cpu_max_cstates, i;
738 
739 	/*
740 	 * idle cpu points back to the generic one
741 	 */
742 	idle_cpu = CPU->cpu_m.mcpu_idle_cpu = non_deep_idle_cpu;
743 	disp_enq_thread = non_deep_idle_disp_enq_thread;
744 
745 	cstate = (cpu_acpi_cstate_t *)CPU_ACPI_CSTATES(handle);
746 	if (cstate) {
747 		cpu_max_cstates = cpu_acpi_get_max_cstates(handle);
748 
749 		for (i = CPU_ACPI_C1; i <= cpu_max_cstates; i++) {
750 			if (cstate->cs_ksp != NULL)
751 				kstat_delete(cstate->cs_ksp);
752 			cstate++;
753 		}
754 	}
755 
756 	cpupm_free_ms_cstate(cp);
757 	cpupm_free_domains(&cpupm_cstate_domains);
758 	cpu_acpi_free_cstate_data(handle);
759 
760 	mutex_enter(&cpu_idle_callb_mutex);
761 	if (cpu_deep_idle_callb_id != (callb_id_t)0) {
762 		(void) callb_delete(cpu_deep_idle_callb_id);
763 		cpu_deep_idle_callb_id = (callb_id_t)0;
764 	}
765 	if (cpu_idle_cpr_callb_id != (callb_id_t)0) {
766 		(void) callb_delete(cpu_idle_cpr_callb_id);
767 		cpu_idle_cpr_callb_id = (callb_id_t)0;
768 	}
769 	mutex_exit(&cpu_idle_callb_mutex);
770 }
771 
772 /*ARGSUSED*/
773 static boolean_t
774 cpu_deep_idle_callb(void *arg, int code)
775 {
776 	boolean_t rslt = B_TRUE;
777 
778 	mutex_enter(&cpu_idle_callb_mutex);
779 	switch (code) {
780 	case PM_DEFAULT_CPU_DEEP_IDLE:
781 		/*
782 		 * Default policy is same as enable
783 		 */
784 		/*FALLTHROUGH*/
785 	case PM_ENABLE_CPU_DEEP_IDLE:
786 		if ((cpu_idle_cfg_state & CPU_IDLE_DEEP_CFG) == 0)
787 			break;
788 
789 		if (cstate_timer_callback(PM_ENABLE_CPU_DEEP_IDLE)) {
790 			disp_enq_thread = cstate_wakeup;
791 			idle_cpu = cpu_idle_adaptive;
792 			cpu_idle_cfg_state &= ~CPU_IDLE_DEEP_CFG;
793 		} else {
794 			rslt = B_FALSE;
795 		}
796 		break;
797 
798 	case PM_DISABLE_CPU_DEEP_IDLE:
799 		if (cpu_idle_cfg_state & CPU_IDLE_DEEP_CFG)
800 			break;
801 
802 		idle_cpu = non_deep_idle_cpu;
803 		if (cstate_timer_callback(PM_DISABLE_CPU_DEEP_IDLE)) {
804 			disp_enq_thread = non_deep_idle_disp_enq_thread;
805 			cpu_idle_cfg_state |= CPU_IDLE_DEEP_CFG;
806 		}
807 		break;
808 
809 	default:
810 		cmn_err(CE_NOTE, "!cpu deep_idle_callb: invalid code %d\n",
811 		    code);
812 		break;
813 	}
814 	mutex_exit(&cpu_idle_callb_mutex);
815 	return (rslt);
816 }
817 
818 /*ARGSUSED*/
819 static boolean_t
820 cpu_idle_cpr_callb(void *arg, int code)
821 {
822 	boolean_t rslt = B_TRUE;
823 
824 	mutex_enter(&cpu_idle_callb_mutex);
825 	switch (code) {
826 	case CB_CODE_CPR_RESUME:
827 		if (cstate_timer_callback(CB_CODE_CPR_RESUME)) {
828 			/*
829 			 * Do not enable dispatcher hooks if disabled by user.
830 			 */
831 			if (cpu_idle_cfg_state & CPU_IDLE_DEEP_CFG)
832 				break;
833 
834 			disp_enq_thread = cstate_wakeup;
835 			idle_cpu = cpu_idle_adaptive;
836 		} else {
837 			rslt = B_FALSE;
838 		}
839 		break;
840 
841 	case CB_CODE_CPR_CHKPT:
842 		idle_cpu = non_deep_idle_cpu;
843 		disp_enq_thread = non_deep_idle_disp_enq_thread;
844 		(void) cstate_timer_callback(CB_CODE_CPR_CHKPT);
845 		break;
846 
847 	default:
848 		cmn_err(CE_NOTE, "!cpudvr cpr_callb: invalid code %d\n", code);
849 		break;
850 	}
851 	mutex_exit(&cpu_idle_callb_mutex);
852 	return (rslt);
853 }
854 
855 /*
856  * handle _CST notification
857  */
858 void
859 cpuidle_cstate_instance(cpu_t *cp)
860 {
861 #ifndef	__xpv
862 	cpupm_mach_state_t	*mach_state =
863 	    (cpupm_mach_state_t *)cp->cpu_m.mcpu_pm_mach_state;
864 	cpu_acpi_handle_t	handle;
865 	struct machcpu		*mcpu;
866 	cpuset_t 		dom_cpu_set;
867 	kmutex_t		*pm_lock;
868 	int			result = 0;
869 	processorid_t		cpu_id;
870 
871 	if (mach_state == NULL) {
872 		return;
873 	}
874 
875 	ASSERT(mach_state->ms_cstate.cma_domain != NULL);
876 	dom_cpu_set = mach_state->ms_cstate.cma_domain->pm_cpus;
877 	pm_lock = &mach_state->ms_cstate.cma_domain->pm_lock;
878 
879 	/*
880 	 * Do for all the CPU's in the domain
881 	 */
882 	mutex_enter(pm_lock);
883 	do {
884 		CPUSET_FIND(dom_cpu_set, cpu_id);
885 		if (cpu_id == CPUSET_NOTINSET)
886 			break;
887 
888 		ASSERT(cpu_id >= 0 && cpu_id < NCPU);
889 		cp = cpu[cpu_id];
890 		mach_state = (cpupm_mach_state_t *)
891 		    cp->cpu_m.mcpu_pm_mach_state;
892 		if (!(mach_state->ms_caps & CPUPM_C_STATES)) {
893 			mutex_exit(pm_lock);
894 			return;
895 		}
896 		handle = mach_state->ms_acpi_handle;
897 		ASSERT(handle != NULL);
898 
899 		/*
900 		 * re-evaluate cstate object
901 		 */
902 		if (cpu_acpi_cache_cstate_data(handle) != 0) {
903 			cmn_err(CE_WARN, "Cannot re-evaluate the cpu c-state"
904 			    " object Instance: %d", cpu_id);
905 		}
906 		mutex_enter(&cpu_lock);
907 		mcpu = &(cp->cpu_m);
908 		mcpu->max_cstates = cpu_acpi_get_max_cstates(handle);
909 		if (mcpu->max_cstates > CPU_ACPI_C1) {
910 			(void) cstate_timer_callback(
911 			    CST_EVENT_MULTIPLE_CSTATES);
912 			disp_enq_thread = cstate_wakeup;
913 			cp->cpu_m.mcpu_idle_cpu = cpu_acpi_idle;
914 		} else if (mcpu->max_cstates == CPU_ACPI_C1) {
915 			disp_enq_thread = non_deep_idle_disp_enq_thread;
916 			cp->cpu_m.mcpu_idle_cpu = non_deep_idle_cpu;
917 			(void) cstate_timer_callback(CST_EVENT_ONE_CSTATE);
918 		}
919 		mutex_exit(&cpu_lock);
920 
921 		CPUSET_ATOMIC_XDEL(dom_cpu_set, cpu_id, result);
922 		mutex_exit(pm_lock);
923 	} while (result < 0);
924 #endif
925 }
926 
927 /*
928  * handle the number or the type of available processor power states change
929  */
930 void
931 cpuidle_manage_cstates(void *ctx)
932 {
933 	cpu_t			*cp = ctx;
934 	cpupm_mach_state_t	*mach_state =
935 	    (cpupm_mach_state_t *)cp->cpu_m.mcpu_pm_mach_state;
936 	boolean_t		is_ready;
937 
938 	if (mach_state == NULL) {
939 		return;
940 	}
941 
942 	/*
943 	 * We currently refuse to power manage if the CPU is not ready to
944 	 * take cross calls (cross calls fail silently if CPU is not ready
945 	 * for it).
946 	 *
947 	 * Additionally, for x86 platforms we cannot power manage
948 	 * any one instance, until all instances have been initialized.
949 	 * That's because we don't know what the CPU domains look like
950 	 * until all instances have been initialized.
951 	 */
952 	is_ready = (cp->cpu_flags & CPU_READY) && cpupm_cstate_ready();
953 	if (!is_ready)
954 		return;
955 
956 	cpuidle_cstate_instance(cp);
957 }
958