xref: /titanic_50/usr/src/uts/i86pc/os/cpuid.c (revision fea9cb91bd8e12d84069b4dab1268363668b4bff)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Various routines to handle identification
31  * and classification of x86 processors.
32  */
33 
34 #include <sys/types.h>
35 #include <sys/archsystm.h>
36 #include <sys/x86_archext.h>
37 #include <sys/kmem.h>
38 #include <sys/systm.h>
39 #include <sys/cmn_err.h>
40 #include <sys/sunddi.h>
41 #include <sys/sunndi.h>
42 #include <sys/cpuvar.h>
43 #include <sys/processor.h>
44 #include <sys/chip.h>
45 #include <sys/fp.h>
46 #include <sys/controlregs.h>
47 #include <sys/auxv_386.h>
48 #include <sys/bitmap.h>
49 #include <sys/controlregs.h>
50 #include <sys/memnode.h>
51 
52 /*
53  * Pass 0 of cpuid feature analysis happens in locore. It contains special code
54  * to recognize Cyrix processors that are not cpuid-compliant, and to deal with
55  * them accordingly. For most modern processors, feature detection occurs here
56  * in pass 1.
57  *
58  * Pass 1 of cpuid feature analysis happens just at the beginning of mlsetup()
59  * for the boot CPU and does the basic analysis that the early kernel needs.
60  * x86_feature is set based on the return value of cpuid_pass1() of the boot
61  * CPU.
62  *
63  * Pass 1 includes:
64  *
65  *	o Determining vendor/model/family/stepping and setting x86_type and
66  *	  x86_vendor accordingly.
67  *	o Processing the feature flags returned by the cpuid instruction while
68  *	  applying any workarounds or tricks for the specific processor.
69  *	o Mapping the feature flags into Solaris feature bits (X86_*).
70  *	o Processing extended feature flags if supported by the processor,
71  *	  again while applying specific processor knowledge.
72  *	o Determining the CMT characteristics of the system.
73  *
74  * Pass 1 is done on non-boot CPUs during their initialization and the results
75  * are used only as a meager attempt at ensuring that all processors within the
76  * system support the same features.
77  *
78  * Pass 2 of cpuid feature analysis happens just at the beginning
79  * of startup().  It just copies in and corrects the remainder
80  * of the cpuid data we depend on: standard cpuid functions that we didn't
81  * need for pass1 feature analysis, and extended cpuid functions beyond the
82  * simple feature processing done in pass1.
83  *
84  * Pass 3 of cpuid analysis is invoked after basic kernel services; in
85  * particular kernel memory allocation has been made available. It creates a
86  * readable brand string based on the data collected in the first two passes.
87  *
88  * Pass 4 of cpuid analysis is invoked after post_startup() when all
89  * the support infrastructure for various hardware features has been
90  * initialized. It determines which processor features will be reported
91  * to userland via the aux vector.
92  *
93  * All passes are executed on all CPUs, but only the boot CPU determines what
94  * features the kernel will use.
95  *
96  * Much of the worst junk in this file is for the support of processors
97  * that didn't really implement the cpuid instruction properly.
98  *
99  * NOTE: The accessor functions (cpuid_get*) are aware of, and ASSERT upon,
100  * the pass numbers.  Accordingly, changes to the pass code may require changes
101  * to the accessor code.
102  */
103 
104 uint_t x86_feature = 0;
105 uint_t x86_vendor = X86_VENDOR_IntelClone;
106 uint_t x86_type = X86_TYPE_OTHER;
107 
108 ulong_t cr4_value;
109 uint_t pentiumpro_bug4046376;
110 uint_t pentiumpro_bug4064495;
111 
112 uint_t enable486;
113 
114 /*
115  * This set of strings are for processors rumored to support the cpuid
116  * instruction, and is used by locore.s to figure out how to set x86_vendor
117  */
118 const char CyrixInstead[] = "CyrixInstead";
119 
120 /*
121  * These constants determine how many of the elements of the
122  * cpuid we cache in the cpuid_info data structure; the
123  * remaining elements are accessible via the cpuid instruction.
124  */
125 
126 #define	NMAX_CPI_STD	6		/* eax = 0 .. 5 */
127 #define	NMAX_CPI_EXTD	9		/* eax = 0x80000000 .. 0x80000008 */
128 
129 struct cpuid_info {
130 	uint_t cpi_pass;		/* last pass completed */
131 	/*
132 	 * standard function information
133 	 */
134 	uint_t cpi_maxeax;		/* fn 0: %eax */
135 	char cpi_vendorstr[13];		/* fn 0: %ebx:%ecx:%edx */
136 	uint_t cpi_vendor;		/* enum of cpi_vendorstr */
137 
138 	uint_t cpi_family;		/* fn 1: extended family */
139 	uint_t cpi_model;		/* fn 1: extended model */
140 	uint_t cpi_step;		/* fn 1: stepping */
141 	chipid_t cpi_chipid;		/* fn 1: %ebx: chip # on ht cpus */
142 	uint_t cpi_brandid;		/* fn 1: %ebx: brand ID */
143 	int cpi_clogid;			/* fn 1: %ebx: thread # */
144 	uint_t cpi_ncpu_per_chip;	/* fn 1: %ebx: logical cpu count */
145 	uint8_t cpi_cacheinfo[16];	/* fn 2: intel-style cache desc */
146 	uint_t cpi_ncache;		/* fn 2: number of elements */
147 	struct cpuid_regs cpi_std[NMAX_CPI_STD];	/* 0 .. 5 */
148 	/*
149 	 * extended function information
150 	 */
151 	uint_t cpi_xmaxeax;		/* fn 0x80000000: %eax */
152 	char cpi_brandstr[49];		/* fn 0x8000000[234] */
153 	uint8_t cpi_pabits;		/* fn 0x80000006: %eax */
154 	uint8_t cpi_vabits;		/* fn 0x80000006: %eax */
155 	struct cpuid_regs cpi_extd[NMAX_CPI_EXTD]; /* 0x8000000[0-8] */
156 	id_t cpi_coreid;
157 	uint_t cpi_ncore_per_chip;	/* AMD: fn 0x80000008: %ecx[7-0] */
158 					/* Intel: fn 4: %eax[31-26] */
159 	/*
160 	 * supported feature information
161 	 */
162 	uint32_t cpi_support[4];
163 #define	STD_EDX_FEATURES	0
164 #define	AMD_EDX_FEATURES	1
165 #define	TM_EDX_FEATURES		2
166 #define	STD_ECX_FEATURES	3
167 
168 };
169 
170 
171 static struct cpuid_info cpuid_info0;
172 
173 /*
174  * These bit fields are defined by the Intel Application Note AP-485
175  * "Intel Processor Identification and the CPUID Instruction"
176  */
177 #define	CPI_FAMILY_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 27, 20)
178 #define	CPI_MODEL_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 19, 16)
179 #define	CPI_TYPE(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 13, 12)
180 #define	CPI_FAMILY(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 11, 8)
181 #define	CPI_STEP(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 3, 0)
182 #define	CPI_MODEL(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 7, 4)
183 
184 #define	CPI_FEATURES_EDX(cpi)		((cpi)->cpi_std[1].cp_edx)
185 #define	CPI_FEATURES_ECX(cpi)		((cpi)->cpi_std[1].cp_ecx)
186 #define	CPI_FEATURES_XTD_EDX(cpi)	((cpi)->cpi_extd[1].cp_edx)
187 #define	CPI_FEATURES_XTD_ECX(cpi)	((cpi)->cpi_extd[1].cp_ecx)
188 
189 #define	CPI_BRANDID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 7, 0)
190 #define	CPI_CHUNKS(cpi)		BITX((cpi)->cpi_std[1].cp_ebx, 15, 7)
191 #define	CPI_CPU_COUNT(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 23, 16)
192 #define	CPI_APIC_ID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 31, 24)
193 
194 #define	CPI_MAXEAX_MAX		0x100		/* sanity control */
195 #define	CPI_XMAXEAX_MAX		0x80000100
196 
197 /*
198  *  Some undocumented ways of patching the results of the cpuid
199  *  instruction to permit running Solaris 10 on future cpus that
200  *  we don't currently support.  Could be set to non-zero values
201  *  via settings in eeprom.
202  */
203 
204 uint32_t cpuid_feature_ecx_include;
205 uint32_t cpuid_feature_ecx_exclude;
206 uint32_t cpuid_feature_edx_include;
207 uint32_t cpuid_feature_edx_exclude;
208 
209 uint_t
210 cpuid_pass1(cpu_t *cpu)
211 {
212 	uint32_t mask_ecx, mask_edx;
213 	uint_t feature = X86_CPUID;
214 	struct cpuid_info *cpi;
215 	struct cpuid_regs *cp;
216 	int xcpuid;
217 
218 	/*
219 	 * By convention, cpu0 is the boot cpu, which is called
220 	 * before memory allocation is available.  Other cpus are
221 	 * initialized when memory becomes available.
222 	 */
223 	if (cpu->cpu_id == 0)
224 		cpu->cpu_m.mcpu_cpi = cpi = &cpuid_info0;
225 	else
226 		cpu->cpu_m.mcpu_cpi = cpi =
227 		    kmem_zalloc(sizeof (*cpi), KM_SLEEP);
228 
229 	cp = &cpi->cpi_std[0];
230 	cp->cp_eax = 0;
231 	cpi->cpi_maxeax = __cpuid_insn(cp);
232 	{
233 		uint32_t *iptr = (uint32_t *)cpi->cpi_vendorstr;
234 		*iptr++ = cp->cp_ebx;
235 		*iptr++ = cp->cp_edx;
236 		*iptr++ = cp->cp_ecx;
237 		*(char *)&cpi->cpi_vendorstr[12] = '\0';
238 	}
239 
240 	/*
241 	 * Map the vendor string to a type code
242 	 */
243 	if (strcmp(cpi->cpi_vendorstr, "GenuineIntel") == 0)
244 		cpi->cpi_vendor = X86_VENDOR_Intel;
245 	else if (strcmp(cpi->cpi_vendorstr, "AuthenticAMD") == 0)
246 		cpi->cpi_vendor = X86_VENDOR_AMD;
247 	else if (strcmp(cpi->cpi_vendorstr, "GenuineTMx86") == 0)
248 		cpi->cpi_vendor = X86_VENDOR_TM;
249 	else if (strcmp(cpi->cpi_vendorstr, CyrixInstead) == 0)
250 		/*
251 		 * CyrixInstead is a variable used by the Cyrix detection code
252 		 * in locore.
253 		 */
254 		cpi->cpi_vendor = X86_VENDOR_Cyrix;
255 	else if (strcmp(cpi->cpi_vendorstr, "UMC UMC UMC ") == 0)
256 		cpi->cpi_vendor = X86_VENDOR_UMC;
257 	else if (strcmp(cpi->cpi_vendorstr, "NexGenDriven") == 0)
258 		cpi->cpi_vendor = X86_VENDOR_NexGen;
259 	else if (strcmp(cpi->cpi_vendorstr, "CentaurHauls") == 0)
260 		cpi->cpi_vendor = X86_VENDOR_Centaur;
261 	else if (strcmp(cpi->cpi_vendorstr, "RiseRiseRise") == 0)
262 		cpi->cpi_vendor = X86_VENDOR_Rise;
263 	else if (strcmp(cpi->cpi_vendorstr, "SiS SiS SiS ") == 0)
264 		cpi->cpi_vendor = X86_VENDOR_SiS;
265 	else if (strcmp(cpi->cpi_vendorstr, "Geode by NSC") == 0)
266 		cpi->cpi_vendor = X86_VENDOR_NSC;
267 	else
268 		cpi->cpi_vendor = X86_VENDOR_IntelClone;
269 
270 	x86_vendor = cpi->cpi_vendor; /* for compatibility */
271 
272 	/*
273 	 * Limit the range in case of weird hardware
274 	 */
275 	if (cpi->cpi_maxeax > CPI_MAXEAX_MAX)
276 		cpi->cpi_maxeax = CPI_MAXEAX_MAX;
277 	if (cpi->cpi_maxeax < 1)
278 		goto pass1_done;
279 
280 	cp = &cpi->cpi_std[1];
281 	cp->cp_eax = 1;
282 	(void) __cpuid_insn(cp);
283 
284 	/*
285 	 * Extract identifying constants for easy access.
286 	 */
287 	cpi->cpi_model = CPI_MODEL(cpi);
288 	cpi->cpi_family = CPI_FAMILY(cpi);
289 
290 	if (cpi->cpi_family == 0xf) {
291 		cpi->cpi_family += CPI_FAMILY_XTD(cpi);
292 		cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
293 	}
294 
295 	cpi->cpi_step = CPI_STEP(cpi);
296 	cpi->cpi_brandid = CPI_BRANDID(cpi);
297 
298 	/*
299 	 * *default* assumptions:
300 	 * - believe %edx feature word
301 	 * - ignore %ecx feature word
302 	 * - 32-bit virtual and physical addressing
303 	 */
304 	mask_edx = 0xffffffff;
305 	mask_ecx = 0;
306 
307 	cpi->cpi_pabits = cpi->cpi_vabits = 32;
308 
309 	switch (cpi->cpi_vendor) {
310 	case X86_VENDOR_Intel:
311 		if (cpi->cpi_family == 5)
312 			x86_type = X86_TYPE_P5;
313 		else if (cpi->cpi_family == 6) {
314 			x86_type = X86_TYPE_P6;
315 			pentiumpro_bug4046376 = 1;
316 			pentiumpro_bug4064495 = 1;
317 			/*
318 			 * Clear the SEP bit when it was set erroneously
319 			 */
320 			if (cpi->cpi_model < 3 && cpi->cpi_step < 3)
321 				cp->cp_edx &= ~CPUID_INTC_EDX_SEP;
322 		} else if (cpi->cpi_family == 0xf) {
323 			x86_type = X86_TYPE_P4;
324 			/*
325 			 * We don't currently depend on any of the %ecx
326 			 * features until Prescott, so we'll only check
327 			 * this from P4 onwards.  We might want to revisit
328 			 * that idea later.
329 			 */
330 			mask_ecx = 0xffffffff;
331 		} else if (cpi->cpi_family > 0xf)
332 			mask_ecx = 0xffffffff;
333 		break;
334 	case X86_VENDOR_IntelClone:
335 	default:
336 		break;
337 	case X86_VENDOR_AMD:
338 #if defined(OPTERON_ERRATUM_108)
339 		if (cpi->cpi_family == 0xf && cpi->cpi_model == 0xe) {
340 			cp->cp_eax = (0xf0f & cp->cp_eax) | 0xc0;
341 			cpi->cpi_model = 0xc;
342 		} else
343 #endif
344 		if (cpi->cpi_family == 5) {
345 			/*
346 			 * AMD K5 and K6
347 			 *
348 			 * These CPUs have an incomplete implementation
349 			 * of MCA/MCE which we mask away.
350 			 */
351 			mask_edx &= ~(CPUID_INTC_EDX_MCE | CPUID_INTC_EDX_MCA);
352 
353 			/*
354 			 * Model 0 uses the wrong (APIC) bit
355 			 * to indicate PGE.  Fix it here.
356 			 */
357 			if (cpi->cpi_model == 0) {
358 				if (cp->cp_edx & 0x200) {
359 					cp->cp_edx &= ~0x200;
360 					cp->cp_edx |= CPUID_INTC_EDX_PGE;
361 				}
362 			}
363 
364 			/*
365 			 * Early models had problems w/ MMX; disable.
366 			 */
367 			if (cpi->cpi_model < 6)
368 				mask_edx &= ~CPUID_INTC_EDX_MMX;
369 		}
370 
371 		/*
372 		 * For newer families, SSE3 and CX16, at least, are valid;
373 		 * enable all
374 		 */
375 		if (cpi->cpi_family >= 0xf)
376 			mask_ecx = 0xffffffff;
377 		break;
378 	case X86_VENDOR_TM:
379 		/*
380 		 * workaround the NT workaround in CMS 4.1
381 		 */
382 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4 &&
383 		    (cpi->cpi_step == 2 || cpi->cpi_step == 3))
384 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
385 		break;
386 	case X86_VENDOR_Centaur:
387 		/*
388 		 * workaround the NT workarounds again
389 		 */
390 		if (cpi->cpi_family == 6)
391 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
392 		break;
393 	case X86_VENDOR_Cyrix:
394 		/*
395 		 * We rely heavily on the probing in locore
396 		 * to actually figure out what parts, if any,
397 		 * of the Cyrix cpuid instruction to believe.
398 		 */
399 		switch (x86_type) {
400 		case X86_TYPE_CYRIX_486:
401 			mask_edx = 0;
402 			break;
403 		case X86_TYPE_CYRIX_6x86:
404 			mask_edx = 0;
405 			break;
406 		case X86_TYPE_CYRIX_6x86L:
407 			mask_edx =
408 			    CPUID_INTC_EDX_DE |
409 			    CPUID_INTC_EDX_CX8;
410 			break;
411 		case X86_TYPE_CYRIX_6x86MX:
412 			mask_edx =
413 			    CPUID_INTC_EDX_DE |
414 			    CPUID_INTC_EDX_MSR |
415 			    CPUID_INTC_EDX_CX8 |
416 			    CPUID_INTC_EDX_PGE |
417 			    CPUID_INTC_EDX_CMOV |
418 			    CPUID_INTC_EDX_MMX;
419 			break;
420 		case X86_TYPE_CYRIX_GXm:
421 			mask_edx =
422 			    CPUID_INTC_EDX_MSR |
423 			    CPUID_INTC_EDX_CX8 |
424 			    CPUID_INTC_EDX_CMOV |
425 			    CPUID_INTC_EDX_MMX;
426 			break;
427 		case X86_TYPE_CYRIX_MediaGX:
428 			break;
429 		case X86_TYPE_CYRIX_MII:
430 		case X86_TYPE_VIA_CYRIX_III:
431 			mask_edx =
432 			    CPUID_INTC_EDX_DE |
433 			    CPUID_INTC_EDX_TSC |
434 			    CPUID_INTC_EDX_MSR |
435 			    CPUID_INTC_EDX_CX8 |
436 			    CPUID_INTC_EDX_PGE |
437 			    CPUID_INTC_EDX_CMOV |
438 			    CPUID_INTC_EDX_MMX;
439 			break;
440 		default:
441 			break;
442 		}
443 		break;
444 	}
445 
446 	/*
447 	 * Now we've figured out the masks that determine
448 	 * which bits we choose to believe, apply the masks
449 	 * to the feature words, then map the kernel's view
450 	 * of these feature words into its feature word.
451 	 */
452 	cp->cp_edx &= mask_edx;
453 	cp->cp_ecx &= mask_ecx;
454 
455 	/*
456 	 * fold in fix ups
457 	 */
458 
459 	cp->cp_edx |= cpuid_feature_edx_include;
460 	cp->cp_edx &= ~cpuid_feature_edx_exclude;
461 
462 
463 	cp->cp_ecx |= cpuid_feature_ecx_include;
464 	cp->cp_ecx &= ~cpuid_feature_ecx_exclude;
465 
466 	if (cp->cp_edx & CPUID_INTC_EDX_PSE)
467 		feature |= X86_LARGEPAGE;
468 	if (cp->cp_edx & CPUID_INTC_EDX_TSC)
469 		feature |= X86_TSC;
470 	if (cp->cp_edx & CPUID_INTC_EDX_MSR)
471 		feature |= X86_MSR;
472 	if (cp->cp_edx & CPUID_INTC_EDX_MTRR)
473 		feature |= X86_MTRR;
474 	if (cp->cp_edx & CPUID_INTC_EDX_PGE)
475 		feature |= X86_PGE;
476 	if (cp->cp_edx & CPUID_INTC_EDX_CMOV)
477 		feature |= X86_CMOV;
478 	if (cp->cp_edx & CPUID_INTC_EDX_MMX)
479 		feature |= X86_MMX;
480 	if ((cp->cp_edx & CPUID_INTC_EDX_MCE) != 0 &&
481 	    (cp->cp_edx & CPUID_INTC_EDX_MCA) != 0)
482 		feature |= X86_MCA;
483 	if (cp->cp_edx & CPUID_INTC_EDX_PAE)
484 		feature |= X86_PAE;
485 	if (cp->cp_edx & CPUID_INTC_EDX_CX8)
486 		feature |= X86_CX8;
487 	/*
488 	 * Once this bit was thought questionable, but it looks like it's
489 	 * back, as of Application Note 485 March 2005 (24161829.pdf)
490 	 */
491 	if (cp->cp_ecx & CPUID_INTC_ECX_CX16)
492 		feature |= X86_CX16;
493 	if (cp->cp_edx & CPUID_INTC_EDX_PAT)
494 		feature |= X86_PAT;
495 	if (cp->cp_edx & CPUID_INTC_EDX_SEP)
496 		feature |= X86_SEP;
497 	if (cp->cp_edx & CPUID_INTC_EDX_FXSR) {
498 		/*
499 		 * In our implementation, fxsave/fxrstor
500 		 * are prerequisites before we'll even
501 		 * try and do SSE things.
502 		 */
503 		if (cp->cp_edx & CPUID_INTC_EDX_SSE)
504 			feature |= X86_SSE;
505 		if (cp->cp_edx & CPUID_INTC_EDX_SSE2)
506 			feature |= X86_SSE2;
507 		if (cp->cp_ecx & CPUID_INTC_ECX_SSE3)
508 			feature |= X86_SSE3;
509 	}
510 	if (cp->cp_edx & CPUID_INTC_EDX_DE)
511 		cr4_value |= CR4_DE;
512 
513 	if (feature & X86_PAE)
514 		cpi->cpi_pabits = 36;
515 
516 	/*
517 	 * Hyperthreading configuration is slightly tricky on Intel
518 	 * and pure clones, and even trickier on AMD.
519 	 *
520 	 * (AMD chose to set the HTT bit on their CMP processors,
521 	 * even though they're not actually hyperthreaded.  Thus it
522 	 * takes a bit more work to figure out what's really going
523 	 * on ... see the handling of the CMP_LEGACY bit below)
524 	 */
525 	if (cp->cp_edx & CPUID_INTC_EDX_HTT) {
526 		cpi->cpi_ncpu_per_chip = CPI_CPU_COUNT(cpi);
527 		if (cpi->cpi_ncpu_per_chip > 1)
528 			feature |= X86_HTT;
529 	} else {
530 		cpi->cpi_ncpu_per_chip = 1;
531 	}
532 
533 	/*
534 	 * Work on the "extended" feature information, doing
535 	 * some basic initialization for cpuid_pass2()
536 	 */
537 	xcpuid = 0;
538 	switch (cpi->cpi_vendor) {
539 	case X86_VENDOR_Intel:
540 		if (cpi->cpi_family >= 0xf)
541 			xcpuid++;
542 		break;
543 	case X86_VENDOR_AMD:
544 		if (cpi->cpi_family > 5 ||
545 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
546 			xcpuid++;
547 		break;
548 	case X86_VENDOR_Cyrix:
549 		/*
550 		 * Only these Cyrix CPUs are -known- to support
551 		 * extended cpuid operations.
552 		 */
553 		if (x86_type == X86_TYPE_VIA_CYRIX_III ||
554 		    x86_type == X86_TYPE_CYRIX_GXm)
555 			xcpuid++;
556 		break;
557 	case X86_VENDOR_Centaur:
558 	case X86_VENDOR_TM:
559 	default:
560 		xcpuid++;
561 		break;
562 	}
563 
564 	if (xcpuid) {
565 		cp = &cpi->cpi_extd[0];
566 		cp->cp_eax = 0x80000000;
567 		cpi->cpi_xmaxeax = __cpuid_insn(cp);
568 	}
569 
570 	if (cpi->cpi_xmaxeax & 0x80000000) {
571 
572 		if (cpi->cpi_xmaxeax > CPI_XMAXEAX_MAX)
573 			cpi->cpi_xmaxeax = CPI_XMAXEAX_MAX;
574 
575 		switch (cpi->cpi_vendor) {
576 		case X86_VENDOR_Intel:
577 		case X86_VENDOR_AMD:
578 			if (cpi->cpi_xmaxeax < 0x80000001)
579 				break;
580 			cp = &cpi->cpi_extd[1];
581 			cp->cp_eax = 0x80000001;
582 			(void) __cpuid_insn(cp);
583 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
584 			    cpi->cpi_family == 5 &&
585 			    cpi->cpi_model == 6 &&
586 			    cpi->cpi_step == 6) {
587 				/*
588 				 * K6 model 6 uses bit 10 to indicate SYSC
589 				 * Later models use bit 11. Fix it here.
590 				 */
591 				if (cp->cp_edx & 0x400) {
592 					cp->cp_edx &= ~0x400;
593 					cp->cp_edx |= CPUID_AMD_EDX_SYSC;
594 				}
595 			}
596 
597 			/*
598 			 * Compute the additions to the kernel's feature word.
599 			 */
600 			if (cp->cp_edx & CPUID_AMD_EDX_NX)
601 				feature |= X86_NX;
602 
603 			/*
604 			 * If both the HTT and CMP_LEGACY bits are set,
605 			 * then we're not actually HyperThreaded.  Read
606 			 * "AMD CPUID Specification" for more details.
607 			 */
608 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
609 			    (feature & X86_HTT) &&
610 			    (cp->cp_ecx & CPUID_AMD_ECX_CMP_LEGACY)) {
611 				feature &= ~X86_HTT;
612 				feature |= X86_CMP;
613 			}
614 #if defined(_LP64)
615 			/*
616 			 * It's really tricky to support syscall/sysret in
617 			 * the i386 kernel; we rely on sysenter/sysexit
618 			 * instead.  In the amd64 kernel, things are -way-
619 			 * better.
620 			 */
621 			if (cp->cp_edx & CPUID_AMD_EDX_SYSC)
622 				feature |= X86_ASYSC;
623 
624 			/*
625 			 * While we're thinking about system calls, note
626 			 * that AMD processors don't support sysenter
627 			 * in long mode at all, so don't try to program them.
628 			 */
629 			if (x86_vendor == X86_VENDOR_AMD)
630 				feature &= ~X86_SEP;
631 #endif
632 			break;
633 		default:
634 			break;
635 		}
636 
637 		/*
638 		 * Get CPUID data about processor cores and hyperthreads.
639 		 */
640 		switch (cpi->cpi_vendor) {
641 		case X86_VENDOR_Intel:
642 			if (cpi->cpi_maxeax >= 4) {
643 				cp = &cpi->cpi_std[4];
644 				cp->cp_eax = 4;
645 				cp->cp_ecx = 0;
646 				(void) __cpuid_insn(cp);
647 			}
648 			/*FALLTHROUGH*/
649 		case X86_VENDOR_AMD:
650 			if (cpi->cpi_xmaxeax < 0x80000008)
651 				break;
652 			cp = &cpi->cpi_extd[8];
653 			cp->cp_eax = 0x80000008;
654 			(void) __cpuid_insn(cp);
655 			/*
656 			 * Virtual and physical address limits from
657 			 * cpuid override previously guessed values.
658 			 */
659 			cpi->cpi_pabits = BITX(cp->cp_eax, 7, 0);
660 			cpi->cpi_vabits = BITX(cp->cp_eax, 15, 8);
661 			break;
662 		default:
663 			break;
664 		}
665 
666 		switch (cpi->cpi_vendor) {
667 		case X86_VENDOR_Intel:
668 			if (cpi->cpi_maxeax < 4) {
669 				cpi->cpi_ncore_per_chip = 1;
670 				break;
671 			} else {
672 				cpi->cpi_ncore_per_chip =
673 				    BITX((cpi)->cpi_std[4].cp_eax, 31, 26) + 1;
674 			}
675 			break;
676 		case X86_VENDOR_AMD:
677 			if (cpi->cpi_xmaxeax < 0x80000008) {
678 				cpi->cpi_ncore_per_chip = 1;
679 				break;
680 			} else {
681 				cpi->cpi_ncore_per_chip =
682 				    BITX((cpi)->cpi_extd[8].cp_ecx, 7, 0) + 1;
683 			}
684 			break;
685 		default:
686 			cpi->cpi_ncore_per_chip = 1;
687 			break;
688 		}
689 
690 	}
691 
692 	/*
693 	 * If more than one core, then this processor is CMP.
694 	 */
695 	if (cpi->cpi_ncore_per_chip > 1)
696 		feature |= X86_CMP;
697 	/*
698 	 * If the number of cores is the same as the number
699 	 * of CPUs, then we cannot have HyperThreading.
700 	 */
701 	if (cpi->cpi_ncpu_per_chip == cpi->cpi_ncore_per_chip)
702 		feature &= ~X86_HTT;
703 
704 	if ((feature & (X86_HTT | X86_CMP)) == 0) {
705 		/*
706 		 * Single-core single-threaded processors.
707 		 */
708 		cpi->cpi_chipid = -1;
709 		cpi->cpi_clogid = 0;
710 		cpi->cpi_coreid = cpu->cpu_id;
711 	} else if (cpi->cpi_ncpu_per_chip > 1) {
712 		uint_t i;
713 		uint_t chipid_shift = 0;
714 		uint_t coreid_shift = 0;
715 		uint_t apic_id = CPI_APIC_ID(cpi);
716 
717 		for (i = 1; i < cpi->cpi_ncpu_per_chip; i <<= 1)
718 			chipid_shift++;
719 		cpi->cpi_chipid = apic_id >> chipid_shift;
720 		cpi->cpi_clogid = apic_id & ((1 << chipid_shift) - 1);
721 
722 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
723 			if (feature & X86_CMP) {
724 				/*
725 				 * Multi-core (and possibly multi-threaded)
726 				 * processors.
727 				 */
728 				uint_t ncpu_per_core;
729 				if (cpi->cpi_ncore_per_chip == 1)
730 					ncpu_per_core = cpi->cpi_ncpu_per_chip;
731 				else if (cpi->cpi_ncore_per_chip > 1)
732 					ncpu_per_core = cpi->cpi_ncpu_per_chip /
733 					    cpi->cpi_ncore_per_chip;
734 				/*
735 				 * 8bit APIC IDs on dual core Pentiums
736 				 * look like this:
737 				 *
738 				 * +-----------------------+------+------+
739 				 * | Physical Package ID   |  MC  |  HT  |
740 				 * +-----------------------+------+------+
741 				 * <------- chipid -------->
742 				 * <------- coreid --------------->
743 				 *			   <--- clogid -->
744 				 *
745 				 * Where the number of bits necessary to
746 				 * represent MC and HT fields together equals
747 				 * to the minimum number of bits necessary to
748 				 * store the value of cpi->cpi_ncpu_per_chip.
749 				 * Of those bits, the MC part uses the number
750 				 * of bits necessary to store the value of
751 				 * cpi->cpi_ncore_per_chip.
752 				 */
753 				for (i = 1; i < ncpu_per_core; i <<= 1)
754 					coreid_shift++;
755 				cpi->cpi_coreid =
756 				    apic_id & ((1 << coreid_shift) - 1);
757 			} else if (feature & X86_HTT) {
758 				/*
759 				 * Single-core multi-threaded processors.
760 				 */
761 				cpi->cpi_coreid = cpi->cpi_chipid;
762 			}
763 		} else if (cpi->cpi_vendor == X86_VENDOR_AMD) {
764 			/*
765 			 * AMD currently only has dual-core processors with
766 			 * single-threaded cores.  If they ever release
767 			 * multi-threaded processors, then this code
768 			 * will have to be updated.
769 			 */
770 			cpi->cpi_coreid = cpu->cpu_id;
771 		} else {
772 			/*
773 			 * All other processors are currently
774 			 * assumed to have single cores.
775 			 */
776 			cpi->cpi_coreid = cpi->cpi_chipid;
777 		}
778 	}
779 
780 pass1_done:
781 	cpi->cpi_pass = 1;
782 	return (feature);
783 }
784 
785 /*
786  * Make copies of the cpuid table entries we depend on, in
787  * part for ease of parsing now, in part so that we have only
788  * one place to correct any of it, in part for ease of
789  * later export to userland, and in part so we can look at
790  * this stuff in a crash dump.
791  */
792 
793 /*ARGSUSED*/
794 void
795 cpuid_pass2(cpu_t *cpu)
796 {
797 	uint_t n, nmax;
798 	int i;
799 	struct cpuid_regs *cp;
800 	uint8_t *dp;
801 	uint32_t *iptr;
802 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
803 
804 	ASSERT(cpi->cpi_pass == 1);
805 
806 	if (cpi->cpi_maxeax < 1)
807 		goto pass2_done;
808 
809 	if ((nmax = cpi->cpi_maxeax + 1) > NMAX_CPI_STD)
810 		nmax = NMAX_CPI_STD;
811 	/*
812 	 * (We already handled n == 0 and n == 1 in pass 1)
813 	 */
814 	for (n = 2, cp = &cpi->cpi_std[2]; n < nmax; n++, cp++) {
815 		cp->cp_eax = n;
816 		(void) __cpuid_insn(cp);
817 		switch (n) {
818 		case 2:
819 			/*
820 			 * "the lower 8 bits of the %eax register
821 			 * contain a value that identifies the number
822 			 * of times the cpuid [instruction] has to be
823 			 * executed to obtain a complete image of the
824 			 * processor's caching systems."
825 			 *
826 			 * How *do* they make this stuff up?
827 			 */
828 			cpi->cpi_ncache = sizeof (*cp) *
829 			    BITX(cp->cp_eax, 7, 0);
830 			if (cpi->cpi_ncache == 0)
831 				break;
832 			cpi->cpi_ncache--;	/* skip count byte */
833 
834 			/*
835 			 * Well, for now, rather than attempt to implement
836 			 * this slightly dubious algorithm, we just look
837 			 * at the first 15 ..
838 			 */
839 			if (cpi->cpi_ncache > (sizeof (*cp) - 1))
840 				cpi->cpi_ncache = sizeof (*cp) - 1;
841 
842 			dp = cpi->cpi_cacheinfo;
843 			if (BITX(cp->cp_eax, 31, 31) == 0) {
844 				uint8_t *p = (void *)&cp->cp_eax;
845 				for (i = 1; i < 3; i++)
846 					if (p[i] != 0)
847 						*dp++ = p[i];
848 			}
849 			if (BITX(cp->cp_ebx, 31, 31) == 0) {
850 				uint8_t *p = (void *)&cp->cp_ebx;
851 				for (i = 0; i < 4; i++)
852 					if (p[i] != 0)
853 						*dp++ = p[i];
854 			}
855 			if (BITX(cp->cp_ecx, 31, 31) == 0) {
856 				uint8_t *p = (void *)&cp->cp_ecx;
857 				for (i = 0; i < 4; i++)
858 					if (p[i] != 0)
859 						*dp++ = p[i];
860 			}
861 			if (BITX(cp->cp_edx, 31, 31) == 0) {
862 				uint8_t *p = (void *)&cp->cp_edx;
863 				for (i = 0; i < 4; i++)
864 					if (p[i] != 0)
865 						*dp++ = p[i];
866 			}
867 			break;
868 		case 3:	/* Processor serial number, if PSN supported */
869 		case 4:	/* Deterministic cache parameters */
870 		case 5:	/* Monitor/Mwait parameters */
871 		default:
872 			break;
873 		}
874 	}
875 
876 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0)
877 		goto pass2_done;
878 
879 	if ((nmax = cpi->cpi_xmaxeax - 0x80000000 + 1) > NMAX_CPI_EXTD)
880 		nmax = NMAX_CPI_EXTD;
881 	/*
882 	 * Copy the extended properties, fixing them as we go.
883 	 * (We already handled n == 0 and n == 1 in pass 1)
884 	 */
885 	iptr = (void *)cpi->cpi_brandstr;
886 	for (n = 2, cp = &cpi->cpi_extd[2]; n < nmax; cp++, n++) {
887 		cp->cp_eax = 0x80000000 + n;
888 		(void) __cpuid_insn(cp);
889 		switch (n) {
890 		case 2:
891 		case 3:
892 		case 4:
893 			/*
894 			 * Extract the brand string
895 			 */
896 			*iptr++ = cp->cp_eax;
897 			*iptr++ = cp->cp_ebx;
898 			*iptr++ = cp->cp_ecx;
899 			*iptr++ = cp->cp_edx;
900 			break;
901 		case 5:
902 			switch (cpi->cpi_vendor) {
903 			case X86_VENDOR_AMD:
904 				/*
905 				 * The Athlon and Duron were the first
906 				 * parts to report the sizes of the
907 				 * TLB for large pages. Before then,
908 				 * we don't trust the data.
909 				 */
910 				if (cpi->cpi_family < 6 ||
911 				    (cpi->cpi_family == 6 &&
912 				    cpi->cpi_model < 1))
913 					cp->cp_eax = 0;
914 				break;
915 			default:
916 				break;
917 			}
918 			break;
919 		case 6:
920 			switch (cpi->cpi_vendor) {
921 			case X86_VENDOR_AMD:
922 				/*
923 				 * The Athlon and Duron were the first
924 				 * AMD parts with L2 TLB's.
925 				 * Before then, don't trust the data.
926 				 */
927 				if (cpi->cpi_family < 6 ||
928 				    cpi->cpi_family == 6 &&
929 				    cpi->cpi_model < 1)
930 					cp->cp_eax = cp->cp_ebx = 0;
931 				/*
932 				 * AMD Duron rev A0 reports L2
933 				 * cache size incorrectly as 1K
934 				 * when it is really 64K
935 				 */
936 				if (cpi->cpi_family == 6 &&
937 				    cpi->cpi_model == 3 &&
938 				    cpi->cpi_step == 0) {
939 					cp->cp_ecx &= 0xffff;
940 					cp->cp_ecx |= 0x400000;
941 				}
942 				break;
943 			case X86_VENDOR_Cyrix:	/* VIA C3 */
944 				/*
945 				 * VIA C3 processors are a bit messed
946 				 * up w.r.t. encoding cache sizes in %ecx
947 				 */
948 				if (cpi->cpi_family != 6)
949 					break;
950 				/*
951 				 * model 7 and 8 were incorrectly encoded
952 				 *
953 				 * xxx is model 8 really broken?
954 				 */
955 				if (cpi->cpi_model == 7 ||
956 				    cpi->cpi_model == 8)
957 					cp->cp_ecx =
958 					    BITX(cp->cp_ecx, 31, 24) << 16 |
959 					    BITX(cp->cp_ecx, 23, 16) << 12 |
960 					    BITX(cp->cp_ecx, 15, 8) << 8 |
961 					    BITX(cp->cp_ecx, 7, 0);
962 				/*
963 				 * model 9 stepping 1 has wrong associativity
964 				 */
965 				if (cpi->cpi_model == 9 && cpi->cpi_step == 1)
966 					cp->cp_ecx |= 8 << 12;
967 				break;
968 			case X86_VENDOR_Intel:
969 				/*
970 				 * Extended L2 Cache features function.
971 				 * First appeared on Prescott.
972 				 */
973 			default:
974 				break;
975 			}
976 			break;
977 		default:
978 			break;
979 		}
980 	}
981 
982 pass2_done:
983 	cpi->cpi_pass = 2;
984 }
985 
986 static const char *
987 intel_cpubrand(const struct cpuid_info *cpi)
988 {
989 	int i;
990 
991 	if ((x86_feature & X86_CPUID) == 0 ||
992 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
993 		return ("i486");
994 
995 	switch (cpi->cpi_family) {
996 	case 5:
997 		return ("Intel Pentium(r)");
998 	case 6:
999 		switch (cpi->cpi_model) {
1000 			uint_t celeron, xeon;
1001 			const struct cpuid_regs *cp;
1002 		case 0:
1003 		case 1:
1004 		case 2:
1005 			return ("Intel Pentium(r) Pro");
1006 		case 3:
1007 		case 4:
1008 			return ("Intel Pentium(r) II");
1009 		case 6:
1010 			return ("Intel Celeron(r)");
1011 		case 5:
1012 		case 7:
1013 			celeron = xeon = 0;
1014 			cp = &cpi->cpi_std[2];	/* cache info */
1015 
1016 			for (i = 1; i < 3; i++) {
1017 				uint_t tmp;
1018 
1019 				tmp = (cp->cp_eax >> (8 * i)) & 0xff;
1020 				if (tmp == 0x40)
1021 					celeron++;
1022 				if (tmp >= 0x44 && tmp <= 0x45)
1023 					xeon++;
1024 			}
1025 
1026 			for (i = 0; i < 2; i++) {
1027 				uint_t tmp;
1028 
1029 				tmp = (cp->cp_ebx >> (8 * i)) & 0xff;
1030 				if (tmp == 0x40)
1031 					celeron++;
1032 				else if (tmp >= 0x44 && tmp <= 0x45)
1033 					xeon++;
1034 			}
1035 
1036 			for (i = 0; i < 4; i++) {
1037 				uint_t tmp;
1038 
1039 				tmp = (cp->cp_ecx >> (8 * i)) & 0xff;
1040 				if (tmp == 0x40)
1041 					celeron++;
1042 				else if (tmp >= 0x44 && tmp <= 0x45)
1043 					xeon++;
1044 			}
1045 
1046 			for (i = 0; i < 4; i++) {
1047 				uint_t tmp;
1048 
1049 				tmp = (cp->cp_edx >> (8 * i)) & 0xff;
1050 				if (tmp == 0x40)
1051 					celeron++;
1052 				else if (tmp >= 0x44 && tmp <= 0x45)
1053 					xeon++;
1054 			}
1055 
1056 			if (celeron)
1057 				return ("Intel Celeron(r)");
1058 			if (xeon)
1059 				return (cpi->cpi_model == 5 ?
1060 				    "Intel Pentium(r) II Xeon(tm)" :
1061 				    "Intel Pentium(r) III Xeon(tm)");
1062 			return (cpi->cpi_model == 5 ?
1063 			    "Intel Pentium(r) II or Pentium(r) II Xeon(tm)" :
1064 			    "Intel Pentium(r) III or Pentium(r) III Xeon(tm)");
1065 		default:
1066 			break;
1067 		}
1068 	default:
1069 		break;
1070 	}
1071 
1072 	if (cpi->cpi_family <= 0xf && cpi->cpi_model <= 0xf &&
1073 	    cpi->cpi_brandid != 0) {
1074 		static const struct {
1075 			uint_t bt_bid;
1076 			const char *bt_str;
1077 		} brand_tbl[] = {
1078 			{ 0x1,	"Intel(r) Celeron(r)" },
1079 			{ 0x2,	"Intel(r) Pentium(r) III" },
1080 			{ 0x3,	"Intel(r) Pentium(r) III Xeon(tm)" },
1081 			{ 0x4,	"Intel(r) Pentium(r) III" },
1082 			{ 0x6,	"Mobile Intel(r) Pentium(r) III" },
1083 			{ 0x7,	"Mobile Intel(r) Celeron(r)" },
1084 			{ 0x8,	"Intel(r) Pentium(r) 4" },
1085 			{ 0x9,	"Intel(r) Pentium(r) 4" },
1086 			{ 0xa,	"Intel(r) Celeron(r)" },
1087 			{ 0xb,	"Intel(r) Xeon(tm)" },
1088 			{ 0xc,	"Intel(r) Xeon(tm) MP" },
1089 			{ 0xe,	"Mobile Intel(r) Pentium(r) 4" },
1090 			{ 0xf,	"Mobile Intel(r) Celeron(r)" }
1091 		};
1092 		uint_t btblmax = sizeof (brand_tbl) / sizeof (brand_tbl[0]);
1093 		uint_t sgn;
1094 
1095 		sgn = (cpi->cpi_family << 8) |
1096 		    (cpi->cpi_model << 4) | cpi->cpi_step;
1097 
1098 		for (i = 0; i < btblmax; i++)
1099 			if (brand_tbl[i].bt_bid == cpi->cpi_brandid)
1100 				break;
1101 		if (i < btblmax) {
1102 			if (sgn == 0x6b1 && cpi->cpi_brandid == 3)
1103 				return ("Intel(r) Celeron(r)");
1104 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xb)
1105 				return ("Intel(r) Xeon(tm) MP");
1106 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xe)
1107 				return ("Intel(r) Xeon(tm)");
1108 			return (brand_tbl[i].bt_str);
1109 		}
1110 	}
1111 
1112 	return (NULL);
1113 }
1114 
1115 static const char *
1116 amd_cpubrand(const struct cpuid_info *cpi)
1117 {
1118 	if ((x86_feature & X86_CPUID) == 0 ||
1119 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1120 		return ("i486 compatible");
1121 
1122 	switch (cpi->cpi_family) {
1123 	case 5:
1124 		switch (cpi->cpi_model) {
1125 		case 0:
1126 		case 1:
1127 		case 2:
1128 		case 3:
1129 		case 4:
1130 		case 5:
1131 			return ("AMD-K5(r)");
1132 		case 6:
1133 		case 7:
1134 			return ("AMD-K6(r)");
1135 		case 8:
1136 			return ("AMD-K6(r)-2");
1137 		case 9:
1138 			return ("AMD-K6(r)-III");
1139 		default:
1140 			return ("AMD (family 5)");
1141 		}
1142 	case 6:
1143 		switch (cpi->cpi_model) {
1144 		case 1:
1145 			return ("AMD-K7(tm)");
1146 		case 0:
1147 		case 2:
1148 		case 4:
1149 			return ("AMD Athlon(tm)");
1150 		case 3:
1151 		case 7:
1152 			return ("AMD Duron(tm)");
1153 		case 6:
1154 		case 8:
1155 		case 10:
1156 			/*
1157 			 * Use the L2 cache size to distinguish
1158 			 */
1159 			return ((cpi->cpi_extd[6].cp_ecx >> 16) >= 256 ?
1160 			    "AMD Athlon(tm)" : "AMD Duron(tm)");
1161 		default:
1162 			return ("AMD (family 6)");
1163 		}
1164 	default:
1165 		break;
1166 	}
1167 
1168 	if (cpi->cpi_family == 0xf && cpi->cpi_model == 5 &&
1169 	    cpi->cpi_brandid != 0) {
1170 		switch (BITX(cpi->cpi_brandid, 7, 5)) {
1171 		case 3:
1172 			return ("AMD Opteron(tm) UP 1xx");
1173 		case 4:
1174 			return ("AMD Opteron(tm) DP 2xx");
1175 		case 5:
1176 			return ("AMD Opteron(tm) MP 8xx");
1177 		default:
1178 			return ("AMD Opteron(tm)");
1179 		}
1180 	}
1181 
1182 	return (NULL);
1183 }
1184 
1185 static const char *
1186 cyrix_cpubrand(struct cpuid_info *cpi, uint_t type)
1187 {
1188 	if ((x86_feature & X86_CPUID) == 0 ||
1189 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5 ||
1190 	    type == X86_TYPE_CYRIX_486)
1191 		return ("i486 compatible");
1192 
1193 	switch (type) {
1194 	case X86_TYPE_CYRIX_6x86:
1195 		return ("Cyrix 6x86");
1196 	case X86_TYPE_CYRIX_6x86L:
1197 		return ("Cyrix 6x86L");
1198 	case X86_TYPE_CYRIX_6x86MX:
1199 		return ("Cyrix 6x86MX");
1200 	case X86_TYPE_CYRIX_GXm:
1201 		return ("Cyrix GXm");
1202 	case X86_TYPE_CYRIX_MediaGX:
1203 		return ("Cyrix MediaGX");
1204 	case X86_TYPE_CYRIX_MII:
1205 		return ("Cyrix M2");
1206 	case X86_TYPE_VIA_CYRIX_III:
1207 		return ("VIA Cyrix M3");
1208 	default:
1209 		/*
1210 		 * Have another wild guess ..
1211 		 */
1212 		if (cpi->cpi_family == 4 && cpi->cpi_model == 9)
1213 			return ("Cyrix 5x86");
1214 		else if (cpi->cpi_family == 5) {
1215 			switch (cpi->cpi_model) {
1216 			case 2:
1217 				return ("Cyrix 6x86");	/* Cyrix M1 */
1218 			case 4:
1219 				return ("Cyrix MediaGX");
1220 			default:
1221 				break;
1222 			}
1223 		} else if (cpi->cpi_family == 6) {
1224 			switch (cpi->cpi_model) {
1225 			case 0:
1226 				return ("Cyrix 6x86MX"); /* Cyrix M2? */
1227 			case 5:
1228 			case 6:
1229 			case 7:
1230 			case 8:
1231 			case 9:
1232 				return ("VIA C3");
1233 			default:
1234 				break;
1235 			}
1236 		}
1237 		break;
1238 	}
1239 	return (NULL);
1240 }
1241 
1242 /*
1243  * This only gets called in the case that the CPU extended
1244  * feature brand string (0x80000002, 0x80000003, 0x80000004)
1245  * aren't available, or contain null bytes for some reason.
1246  */
1247 static void
1248 fabricate_brandstr(struct cpuid_info *cpi)
1249 {
1250 	const char *brand = NULL;
1251 
1252 	switch (cpi->cpi_vendor) {
1253 	case X86_VENDOR_Intel:
1254 		brand = intel_cpubrand(cpi);
1255 		break;
1256 	case X86_VENDOR_AMD:
1257 		brand = amd_cpubrand(cpi);
1258 		break;
1259 	case X86_VENDOR_Cyrix:
1260 		brand = cyrix_cpubrand(cpi, x86_type);
1261 		break;
1262 	case X86_VENDOR_NexGen:
1263 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1264 			brand = "NexGen Nx586";
1265 		break;
1266 	case X86_VENDOR_Centaur:
1267 		if (cpi->cpi_family == 5)
1268 			switch (cpi->cpi_model) {
1269 			case 4:
1270 				brand = "Centaur C6";
1271 				break;
1272 			case 8:
1273 				brand = "Centaur C2";
1274 				break;
1275 			case 9:
1276 				brand = "Centaur C3";
1277 				break;
1278 			default:
1279 				break;
1280 			}
1281 		break;
1282 	case X86_VENDOR_Rise:
1283 		if (cpi->cpi_family == 5 &&
1284 		    (cpi->cpi_model == 0 || cpi->cpi_model == 2))
1285 			brand = "Rise mP6";
1286 		break;
1287 	case X86_VENDOR_SiS:
1288 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1289 			brand = "SiS 55x";
1290 		break;
1291 	case X86_VENDOR_TM:
1292 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4)
1293 			brand = "Transmeta Crusoe TM3x00 or TM5x00";
1294 		break;
1295 	case X86_VENDOR_NSC:
1296 	case X86_VENDOR_UMC:
1297 	default:
1298 		break;
1299 	}
1300 	if (brand) {
1301 		(void) strcpy((char *)cpi->cpi_brandstr, brand);
1302 		return;
1303 	}
1304 
1305 	/*
1306 	 * If all else fails ...
1307 	 */
1308 	(void) snprintf(cpi->cpi_brandstr, sizeof (cpi->cpi_brandstr),
1309 	    "%s %d.%d.%d", cpi->cpi_vendorstr, cpi->cpi_family,
1310 	    cpi->cpi_model, cpi->cpi_step);
1311 }
1312 
1313 /*
1314  * This routine is called just after kernel memory allocation
1315  * becomes available on cpu0, and as part of mp_startup() on
1316  * the other cpus.
1317  *
1318  * Fixup the brand string.
1319  */
1320 /*ARGSUSED*/
1321 void
1322 cpuid_pass3(cpu_t *cpu)
1323 {
1324 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1325 
1326 	ASSERT(cpi->cpi_pass == 2);
1327 
1328 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0) {
1329 		fabricate_brandstr(cpi);
1330 		goto pass3_done;
1331 	}
1332 
1333 	/*
1334 	 * If we successfully extracted a brand string from the cpuid
1335 	 * instruction, clean it up by removing leading spaces and
1336 	 * similar junk.
1337 	 */
1338 	if (cpi->cpi_brandstr[0]) {
1339 		size_t maxlen = sizeof (cpi->cpi_brandstr);
1340 		char *src, *dst;
1341 
1342 		dst = src = (char *)cpi->cpi_brandstr;
1343 		src[maxlen - 1] = '\0';
1344 		/*
1345 		 * strip leading spaces
1346 		 */
1347 		while (*src == ' ')
1348 			src++;
1349 		/*
1350 		 * Remove any 'Genuine' or "Authentic" prefixes
1351 		 */
1352 		if (strncmp(src, "Genuine ", 8) == 0)
1353 			src += 8;
1354 		if (strncmp(src, "Authentic ", 10) == 0)
1355 			src += 10;
1356 
1357 		/*
1358 		 * Now do an in-place copy.
1359 		 * Map (R) to (r) and (TM) to (tm).
1360 		 * The era of teletypes is long gone, and there's
1361 		 * -really- no need to shout.
1362 		 */
1363 		while (*src != '\0') {
1364 			if (src[0] == '(') {
1365 				if (strncmp(src + 1, "R)", 2) == 0) {
1366 					(void) strncpy(dst, "(r)", 3);
1367 					src += 3;
1368 					dst += 3;
1369 					continue;
1370 				}
1371 				if (strncmp(src + 1, "TM)", 3) == 0) {
1372 					(void) strncpy(dst, "(tm)", 4);
1373 					src += 4;
1374 					dst += 4;
1375 					continue;
1376 				}
1377 			}
1378 			*dst++ = *src++;
1379 		}
1380 		*dst = '\0';
1381 
1382 		/*
1383 		 * Finally, remove any trailing spaces
1384 		 */
1385 		while (--dst > cpi->cpi_brandstr)
1386 			if (*dst == ' ')
1387 				*dst = '\0';
1388 			else
1389 				break;
1390 	} else
1391 		fabricate_brandstr(cpi);
1392 
1393 pass3_done:
1394 	cpi->cpi_pass = 3;
1395 }
1396 
1397 /*
1398  * This routine is called out of bind_hwcap() much later in the life
1399  * of the kernel (post_startup()).  The job of this routine is to resolve
1400  * the hardware feature support and kernel support for those features into
1401  * what we're actually going to tell applications via the aux vector.
1402  */
1403 uint_t
1404 cpuid_pass4(cpu_t *cpu)
1405 {
1406 	struct cpuid_info *cpi;
1407 	uint_t hwcap_flags = 0;
1408 
1409 	if (cpu == NULL)
1410 		cpu = CPU;
1411 	cpi = cpu->cpu_m.mcpu_cpi;
1412 
1413 	ASSERT(cpi->cpi_pass == 3);
1414 
1415 	if (cpi->cpi_maxeax >= 1) {
1416 		uint32_t *edx = &cpi->cpi_support[STD_EDX_FEATURES];
1417 		uint32_t *ecx = &cpi->cpi_support[STD_ECX_FEATURES];
1418 
1419 		*edx = CPI_FEATURES_EDX(cpi);
1420 		*ecx = CPI_FEATURES_ECX(cpi);
1421 
1422 		/*
1423 		 * [these require explicit kernel support]
1424 		 */
1425 		if ((x86_feature & X86_SEP) == 0)
1426 			*edx &= ~CPUID_INTC_EDX_SEP;
1427 
1428 		if ((x86_feature & X86_SSE) == 0)
1429 			*edx &= ~(CPUID_INTC_EDX_FXSR|CPUID_INTC_EDX_SSE);
1430 		if ((x86_feature & X86_SSE2) == 0)
1431 			*edx &= ~CPUID_INTC_EDX_SSE2;
1432 
1433 		if ((x86_feature & X86_HTT) == 0)
1434 			*edx &= ~CPUID_INTC_EDX_HTT;
1435 
1436 		if ((x86_feature & X86_SSE3) == 0)
1437 			*ecx &= ~CPUID_INTC_ECX_SSE3;
1438 
1439 		/*
1440 		 * [no explicit support required beyond x87 fp context]
1441 		 */
1442 		if (!fpu_exists)
1443 			*edx &= ~(CPUID_INTC_EDX_FPU | CPUID_INTC_EDX_MMX);
1444 
1445 		/*
1446 		 * Now map the supported feature vector to things that we
1447 		 * think userland will care about.
1448 		 */
1449 		if (*edx & CPUID_INTC_EDX_SEP)
1450 			hwcap_flags |= AV_386_SEP;
1451 		if (*edx & CPUID_INTC_EDX_SSE)
1452 			hwcap_flags |= AV_386_FXSR | AV_386_SSE;
1453 		if (*edx & CPUID_INTC_EDX_SSE2)
1454 			hwcap_flags |= AV_386_SSE2;
1455 		if (*ecx & CPUID_INTC_ECX_SSE3)
1456 			hwcap_flags |= AV_386_SSE3;
1457 
1458 		if (*edx & CPUID_INTC_EDX_FPU)
1459 			hwcap_flags |= AV_386_FPU;
1460 		if (*edx & CPUID_INTC_EDX_MMX)
1461 			hwcap_flags |= AV_386_MMX;
1462 
1463 		if (*edx & CPUID_INTC_EDX_TSC)
1464 			hwcap_flags |= AV_386_TSC;
1465 		if (*edx & CPUID_INTC_EDX_CX8)
1466 			hwcap_flags |= AV_386_CX8;
1467 		if (*edx & CPUID_INTC_EDX_CMOV)
1468 			hwcap_flags |= AV_386_CMOV;
1469 		if (*ecx & CPUID_INTC_ECX_MON)
1470 			hwcap_flags |= AV_386_MON;
1471 #if defined(CPUID_INTC_ECX_CX16)
1472 		if (*ecx & CPUID_INTC_ECX_CX16)
1473 			hwcap_flags |= AV_386_CX16;
1474 #endif
1475 	}
1476 
1477 	if (x86_feature & X86_HTT)
1478 		hwcap_flags |= AV_386_PAUSE;
1479 
1480 	if (cpi->cpi_xmaxeax < 0x80000001)
1481 		goto pass4_done;
1482 
1483 	switch (cpi->cpi_vendor) {
1484 		struct cpuid_regs cp;
1485 		uint32_t *edx;
1486 
1487 	case X86_VENDOR_Intel:	/* sigh */
1488 	case X86_VENDOR_AMD:
1489 		edx = &cpi->cpi_support[AMD_EDX_FEATURES];
1490 
1491 		*edx = CPI_FEATURES_XTD_EDX(cpi);
1492 
1493 		/*
1494 		 * [no explicit support required beyond
1495 		 * x87 fp context and exception handlers]
1496 		 */
1497 		if (!fpu_exists)
1498 			*edx &= ~(CPUID_AMD_EDX_MMXamd |
1499 			    CPUID_AMD_EDX_3DNow | CPUID_AMD_EDX_3DNowx);
1500 
1501 		if ((x86_feature & X86_ASYSC) == 0)
1502 			*edx &= ~CPUID_AMD_EDX_SYSC;
1503 		if ((x86_feature & X86_NX) == 0)
1504 			*edx &= ~CPUID_AMD_EDX_NX;
1505 #if !defined(_LP64)
1506 		*edx &= ~CPUID_AMD_EDX_LM;
1507 #endif
1508 		/*
1509 		 * Now map the supported feature vector to
1510 		 * things that we think userland will care about.
1511 		 */
1512 		if (*edx & CPUID_AMD_EDX_SYSC)
1513 			hwcap_flags |= AV_386_AMD_SYSC;
1514 		if (*edx & CPUID_AMD_EDX_MMXamd)
1515 			hwcap_flags |= AV_386_AMD_MMX;
1516 		if (*edx & CPUID_AMD_EDX_3DNow)
1517 			hwcap_flags |= AV_386_AMD_3DNow;
1518 		if (*edx & CPUID_AMD_EDX_3DNowx)
1519 			hwcap_flags |= AV_386_AMD_3DNowx;
1520 		break;
1521 
1522 	case X86_VENDOR_TM:
1523 		cp.cp_eax = 0x80860001;
1524 		(void) __cpuid_insn(&cp);
1525 		cpi->cpi_support[TM_EDX_FEATURES] = cp.cp_edx;
1526 		break;
1527 
1528 	default:
1529 		break;
1530 	}
1531 
1532 pass4_done:
1533 	cpi->cpi_pass = 4;
1534 	return (hwcap_flags);
1535 }
1536 
1537 
1538 /*
1539  * Simulate the cpuid instruction using the data we previously
1540  * captured about this CPU.  We try our best to return the truth
1541  * about the hardware, independently of kernel support.
1542  */
1543 uint32_t
1544 cpuid_insn(cpu_t *cpu, struct cpuid_regs *cp)
1545 {
1546 	struct cpuid_info *cpi;
1547 	struct cpuid_regs *xcp;
1548 
1549 	if (cpu == NULL)
1550 		cpu = CPU;
1551 	cpi = cpu->cpu_m.mcpu_cpi;
1552 
1553 	ASSERT(cpuid_checkpass(cpu, 3));
1554 
1555 	/*
1556 	 * CPUID data is cached in two separate places: cpi_std for standard
1557 	 * CPUID functions, and cpi_extd for extended CPUID functions.
1558 	 */
1559 	if (cp->cp_eax <= cpi->cpi_maxeax && cp->cp_eax < NMAX_CPI_STD)
1560 		xcp = &cpi->cpi_std[cp->cp_eax];
1561 	else if (cp->cp_eax >= 0x80000000 && cp->cp_eax <= cpi->cpi_xmaxeax &&
1562 	    cp->cp_eax < 0x80000000 + NMAX_CPI_EXTD)
1563 		xcp = &cpi->cpi_extd[cp->cp_eax - 0x80000000];
1564 	else
1565 		/*
1566 		 * The caller is asking for data from an input parameter which
1567 		 * the kernel has not cached.  In this case we go fetch from
1568 		 * the hardware and return the data directly to the user.
1569 		 */
1570 		return (__cpuid_insn(cp));
1571 
1572 	cp->cp_eax = xcp->cp_eax;
1573 	cp->cp_ebx = xcp->cp_ebx;
1574 	cp->cp_ecx = xcp->cp_ecx;
1575 	cp->cp_edx = xcp->cp_edx;
1576 	return (cp->cp_eax);
1577 }
1578 
1579 int
1580 cpuid_checkpass(cpu_t *cpu, int pass)
1581 {
1582 	return (cpu != NULL && cpu->cpu_m.mcpu_cpi != NULL &&
1583 	    cpu->cpu_m.mcpu_cpi->cpi_pass >= pass);
1584 }
1585 
1586 int
1587 cpuid_getbrandstr(cpu_t *cpu, char *s, size_t n)
1588 {
1589 	ASSERT(cpuid_checkpass(cpu, 3));
1590 
1591 	return (snprintf(s, n, "%s", cpu->cpu_m.mcpu_cpi->cpi_brandstr));
1592 }
1593 
1594 int
1595 cpuid_is_cmt(cpu_t *cpu)
1596 {
1597 	if (cpu == NULL)
1598 		cpu = CPU;
1599 
1600 	ASSERT(cpuid_checkpass(cpu, 1));
1601 
1602 	return (cpu->cpu_m.mcpu_cpi->cpi_chipid >= 0);
1603 }
1604 
1605 /*
1606  * AMD and Intel both implement the 64-bit variant of the syscall
1607  * instruction (syscallq), so if there's -any- support for syscall,
1608  * cpuid currently says "yes, we support this".
1609  *
1610  * However, Intel decided to -not- implement the 32-bit variant of the
1611  * syscall instruction, so we provide a predicate to allow our caller
1612  * to test that subtlety here.
1613  */
1614 /*ARGSUSED*/
1615 int
1616 cpuid_syscall32_insn(cpu_t *cpu)
1617 {
1618 	ASSERT(cpuid_checkpass((cpu == NULL ? CPU : cpu), 1));
1619 
1620 	if (x86_feature & X86_ASYSC)
1621 		return (x86_vendor != X86_VENDOR_Intel);
1622 	return (0);
1623 }
1624 
1625 int
1626 cpuid_getidstr(cpu_t *cpu, char *s, size_t n)
1627 {
1628 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1629 
1630 	static const char fmt[] =
1631 	    "x86 (%s family %d model %d step %d clock %d MHz)";
1632 	static const char fmt_ht[] =
1633 	    "x86 (chipid 0x%x %s family %d model %d step %d clock %d MHz)";
1634 
1635 	ASSERT(cpuid_checkpass(cpu, 1));
1636 
1637 	if (cpuid_is_cmt(cpu))
1638 		return (snprintf(s, n, fmt_ht, cpi->cpi_chipid,
1639 		    cpi->cpi_vendorstr, cpi->cpi_family, cpi->cpi_model,
1640 		    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
1641 	return (snprintf(s, n, fmt,
1642 	    cpi->cpi_vendorstr, cpi->cpi_family, cpi->cpi_model,
1643 	    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
1644 }
1645 
1646 const char *
1647 cpuid_getvendorstr(cpu_t *cpu)
1648 {
1649 	ASSERT(cpuid_checkpass(cpu, 1));
1650 	return ((const char *)cpu->cpu_m.mcpu_cpi->cpi_vendorstr);
1651 }
1652 
1653 uint_t
1654 cpuid_getvendor(cpu_t *cpu)
1655 {
1656 	ASSERT(cpuid_checkpass(cpu, 1));
1657 	return (cpu->cpu_m.mcpu_cpi->cpi_vendor);
1658 }
1659 
1660 uint_t
1661 cpuid_getfamily(cpu_t *cpu)
1662 {
1663 	ASSERT(cpuid_checkpass(cpu, 1));
1664 	return (cpu->cpu_m.mcpu_cpi->cpi_family);
1665 }
1666 
1667 uint_t
1668 cpuid_getmodel(cpu_t *cpu)
1669 {
1670 	ASSERT(cpuid_checkpass(cpu, 1));
1671 	return (cpu->cpu_m.mcpu_cpi->cpi_model);
1672 }
1673 
1674 uint_t
1675 cpuid_get_ncpu_per_chip(cpu_t *cpu)
1676 {
1677 	ASSERT(cpuid_checkpass(cpu, 1));
1678 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_per_chip);
1679 }
1680 
1681 uint_t
1682 cpuid_get_ncore_per_chip(cpu_t *cpu)
1683 {
1684 	ASSERT(cpuid_checkpass(cpu, 1));
1685 	return (cpu->cpu_m.mcpu_cpi->cpi_ncore_per_chip);
1686 }
1687 
1688 uint_t
1689 cpuid_getstep(cpu_t *cpu)
1690 {
1691 	ASSERT(cpuid_checkpass(cpu, 1));
1692 	return (cpu->cpu_m.mcpu_cpi->cpi_step);
1693 }
1694 
1695 chipid_t
1696 chip_plat_get_chipid(cpu_t *cpu)
1697 {
1698 	ASSERT(cpuid_checkpass(cpu, 1));
1699 
1700 	if (cpuid_is_cmt(cpu))
1701 		return (cpu->cpu_m.mcpu_cpi->cpi_chipid);
1702 	return (cpu->cpu_id);
1703 }
1704 
1705 id_t
1706 chip_plat_get_coreid(cpu_t *cpu)
1707 {
1708 	ASSERT(cpuid_checkpass(cpu, 1));
1709 	return (cpu->cpu_m.mcpu_cpi->cpi_coreid);
1710 }
1711 
1712 int
1713 chip_plat_get_clogid(cpu_t *cpu)
1714 {
1715 	ASSERT(cpuid_checkpass(cpu, 1));
1716 	return (cpu->cpu_m.mcpu_cpi->cpi_clogid);
1717 }
1718 
1719 void
1720 cpuid_get_addrsize(cpu_t *cpu, uint_t *pabits, uint_t *vabits)
1721 {
1722 	struct cpuid_info *cpi;
1723 
1724 	if (cpu == NULL)
1725 		cpu = CPU;
1726 	cpi = cpu->cpu_m.mcpu_cpi;
1727 
1728 	ASSERT(cpuid_checkpass(cpu, 1));
1729 
1730 	if (pabits)
1731 		*pabits = cpi->cpi_pabits;
1732 	if (vabits)
1733 		*vabits = cpi->cpi_vabits;
1734 }
1735 
1736 /*
1737  * Returns the number of data TLB entries for a corresponding
1738  * pagesize.  If it can't be computed, or isn't known, the
1739  * routine returns zero.  If you ask about an architecturally
1740  * impossible pagesize, the routine will panic (so that the
1741  * hat implementor knows that things are inconsistent.)
1742  */
1743 uint_t
1744 cpuid_get_dtlb_nent(cpu_t *cpu, size_t pagesize)
1745 {
1746 	struct cpuid_info *cpi;
1747 	uint_t dtlb_nent = 0;
1748 
1749 	if (cpu == NULL)
1750 		cpu = CPU;
1751 	cpi = cpu->cpu_m.mcpu_cpi;
1752 
1753 	ASSERT(cpuid_checkpass(cpu, 1));
1754 
1755 	/*
1756 	 * Check the L2 TLB info
1757 	 */
1758 	if (cpi->cpi_xmaxeax >= 0x80000006) {
1759 		struct cpuid_regs *cp = &cpi->cpi_extd[6];
1760 
1761 		switch (pagesize) {
1762 
1763 		case 4 * 1024:
1764 			/*
1765 			 * All zero in the top 16 bits of the register
1766 			 * indicates a unified TLB. Size is in low 16 bits.
1767 			 */
1768 			if ((cp->cp_ebx & 0xffff0000) == 0)
1769 				dtlb_nent = cp->cp_ebx & 0x0000ffff;
1770 			else
1771 				dtlb_nent = BITX(cp->cp_ebx, 27, 16);
1772 			break;
1773 
1774 		case 2 * 1024 * 1024:
1775 			if ((cp->cp_eax & 0xffff0000) == 0)
1776 				dtlb_nent = cp->cp_eax & 0x0000ffff;
1777 			else
1778 				dtlb_nent = BITX(cp->cp_eax, 27, 16);
1779 			break;
1780 
1781 		default:
1782 			panic("unknown L2 pagesize");
1783 			/*NOTREACHED*/
1784 		}
1785 	}
1786 
1787 	if (dtlb_nent != 0)
1788 		return (dtlb_nent);
1789 
1790 	/*
1791 	 * No L2 TLB support for this size, try L1.
1792 	 */
1793 	if (cpi->cpi_xmaxeax >= 0x80000005) {
1794 		struct cpuid_regs *cp = &cpi->cpi_extd[5];
1795 
1796 		switch (pagesize) {
1797 		case 4 * 1024:
1798 			dtlb_nent = BITX(cp->cp_ebx, 23, 16);
1799 			break;
1800 		case 2 * 1024 * 1024:
1801 			dtlb_nent = BITX(cp->cp_eax, 23, 16);
1802 			break;
1803 		default:
1804 			panic("unknown L1 d-TLB pagesize");
1805 			/*NOTREACHED*/
1806 		}
1807 	}
1808 
1809 	return (dtlb_nent);
1810 }
1811 
1812 /*
1813  * Return 0 if the erratum is not present or not applicable, positive
1814  * if it is, and negative if the status of the erratum is unknown.
1815  *
1816  * See "Revision Guide for AMD Athlon(tm) 64 and AMD Opteron(tm)
1817  * Processors" #25759, Rev 3.57, August 2005
1818  */
1819 int
1820 cpuid_opteron_erratum(cpu_t *cpu, uint_t erratum)
1821 {
1822 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1823 	uint_t eax;
1824 
1825 	if (cpi->cpi_vendor != X86_VENDOR_AMD)
1826 		return (0);
1827 
1828 	eax = cpi->cpi_std[1].cp_eax;
1829 
1830 #define	SH_B0(eax)	(eax == 0xf40 || eax == 0xf50)
1831 #define	SH_B3(eax) 	(eax == 0xf51)
1832 #define	B(eax)		(SH_B0(eax) | SH_B3(eax))
1833 
1834 #define	SH_C0(eax)	(eax == 0xf48 || eax == 0xf58)
1835 
1836 #define	SH_CG(eax)	(eax == 0xf4a || eax == 0xf5a || eax == 0xf7a)
1837 #define	DH_CG(eax)	(eax == 0xfc0 || eax == 0xfe0 || eax == 0xff0)
1838 #define	CH_CG(eax)	(eax == 0xf82 || eax == 0xfb2)
1839 #define	CG(eax)		(SH_CG(eax) | DH_CG(eax) | CH_CG(eax))
1840 
1841 #define	SH_D0(eax)	(eax == 0x10f40 || eax == 0x10f50 || eax == 0x10f70)
1842 #define	DH_D0(eax)	(eax == 0x10fc0 || eax == 0x10ff0)
1843 #define	CH_D0(eax)	(eax == 0x10f80 || eax == 0x10fb0)
1844 #define	D0(eax)		(SH_D0(eax) | DH_D0(eax) | CH_D0(eax))
1845 
1846 #define	SH_E0(eax)	(eax == 0x20f50 || eax == 0x20f40 || eax == 0x20f70)
1847 #define	JH_E1(eax)	(eax == 0x20f10)	/* JH8_E0 had 0x20f30 */
1848 #define	DH_E3(eax)	(eax == 0x20fc0 || eax == 0x20ff0)
1849 #define	SH_E4(eax)	(eax == 0x20f51 || eax == 0x20f71)
1850 #define	BH_E4(eax)	(eax == 0x20fb1)
1851 #define	SH_E5(eax)	(eax == 0x20f42)
1852 #define	DH_E6(eax)	(eax == 0x20ff2 || eax == 0x20fc2)
1853 #define	JH_E6(eax)	(eax == 0x20f12 || eax == 0x20f32)
1854 #define	EX(eax)		(SH_E0(eax) | JH_E1(eax) | DH_E3(eax) | SH_E4(eax) | \
1855 			    BH_E4(eax) | SH_E5(eax) | DH_E6(eax) | JH_E6(eax))
1856 
1857 	switch (erratum) {
1858 	case 1:
1859 		return (1);
1860 	case 51:	/* what does the asterisk mean? */
1861 		return (B(eax) || SH_C0(eax) || CG(eax));
1862 	case 52:
1863 		return (B(eax));
1864 	case 57:
1865 		return (1);
1866 	case 58:
1867 		return (B(eax));
1868 	case 60:
1869 		return (1);
1870 	case 61:
1871 	case 62:
1872 	case 63:
1873 	case 64:
1874 	case 65:
1875 	case 66:
1876 	case 68:
1877 	case 69:
1878 	case 70:
1879 	case 71:
1880 		return (B(eax));
1881 	case 72:
1882 		return (SH_B0(eax));
1883 	case 74:
1884 		return (B(eax));
1885 	case 75:
1886 		return (1);
1887 	case 76:
1888 		return (B(eax));
1889 	case 77:
1890 		return (1);
1891 	case 78:
1892 		return (B(eax) || SH_C0(eax));
1893 	case 79:
1894 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
1895 	case 80:
1896 	case 81:
1897 	case 82:
1898 		return (B(eax));
1899 	case 83:
1900 		return (B(eax) || SH_C0(eax) || CG(eax));
1901 	case 85:
1902 		return (1);
1903 	case 86:
1904 		return (SH_C0(eax) || CG(eax));
1905 	case 88:
1906 #if !defined(__amd64)
1907 		return (0);
1908 #else
1909 		return (B(eax) || SH_C0(eax));
1910 #endif
1911 	case 89:
1912 		return (1);
1913 	case 90:
1914 		return (B(eax) || SH_C0(eax) || CG(eax));
1915 	case 91:
1916 	case 92:
1917 		return (B(eax) || SH_C0(eax));
1918 	case 93:
1919 		return (SH_C0(eax));
1920 	case 94:
1921 		return (B(eax) || SH_C0(eax) || CG(eax));
1922 	case 95:
1923 #if !defined(__amd64)
1924 		return (0);
1925 #else
1926 		return (B(eax) || SH_C0(eax));
1927 #endif
1928 	case 96:
1929 		return (B(eax) || SH_C0(eax) || CG(eax));
1930 	case 97:
1931 	case 98:
1932 		return (SH_C0(eax) || CG(eax));
1933 	case 99:
1934 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
1935 	case 100:
1936 		return (B(eax) || SH_C0(eax));
1937 	case 101:
1938 	case 103:
1939 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
1940 	case 104:
1941 		return (SH_C0(eax) || CG(eax) || D0(eax));
1942 	case 105:
1943 	case 106:
1944 	case 107:
1945 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
1946 	case 108:
1947 		return (DH_CG(eax));
1948 	case 109:
1949 		return (SH_C0(eax) || CG(eax) || D0(eax));
1950 	case 110:
1951 		return (D0(eax) || EX(eax));
1952 	case 111:
1953 		return (CG(eax));
1954 	case 112:
1955 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
1956 	case 113:
1957 		return (eax == 0x20fc0);
1958 	case 114:
1959 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
1960 	case 115:
1961 		return (SH_E0(eax) || JH_E1(eax));
1962 	case 116:
1963 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
1964 	case 117:
1965 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
1966 	case 118:
1967 		return (SH_E0(eax) || JH_E1(eax) || SH_E4(eax) || BH_E4(eax) ||
1968 		    JH_E6(eax));
1969 	case 121:
1970 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
1971 	case 122:
1972 		return (SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
1973 	case 123:
1974 		return (JH_E1(eax) || BH_E4(eax) || JH_E6(eax));
1975 	case 131:
1976 		return (1);
1977 	case 6336786:
1978 		/*
1979 		 * Test for AdvPowerMgmtInfo.TscPStateInvariant
1980 		 * if this is a K8 family processor
1981 		 */
1982 		if (CPI_FAMILY(cpi) == 0xf) {
1983 			struct cpuid_regs regs;
1984 			regs.cp_eax = 0x80000007;
1985 			(void) __cpuid_insn(&regs);
1986 			return (!(regs.cp_edx & 0x100));
1987 		}
1988 		return (0);
1989 	default:
1990 		return (-1);
1991 	}
1992 }
1993 
1994 static const char assoc_str[] = "associativity";
1995 static const char line_str[] = "line-size";
1996 static const char size_str[] = "size";
1997 
1998 static void
1999 add_cache_prop(dev_info_t *devi, const char *label, const char *type,
2000     uint32_t val)
2001 {
2002 	char buf[128];
2003 
2004 	/*
2005 	 * ndi_prop_update_int() is used because it is desirable for
2006 	 * DDI_PROP_HW_DEF and DDI_PROP_DONTSLEEP to be set.
2007 	 */
2008 	if (snprintf(buf, sizeof (buf), "%s-%s", label, type) < sizeof (buf))
2009 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, buf, val);
2010 }
2011 
2012 /*
2013  * Intel-style cache/tlb description
2014  *
2015  * Standard cpuid level 2 gives a randomly ordered
2016  * selection of tags that index into a table that describes
2017  * cache and tlb properties.
2018  */
2019 
2020 static const char l1_icache_str[] = "l1-icache";
2021 static const char l1_dcache_str[] = "l1-dcache";
2022 static const char l2_cache_str[] = "l2-cache";
2023 static const char itlb4k_str[] = "itlb-4K";
2024 static const char dtlb4k_str[] = "dtlb-4K";
2025 static const char itlb4M_str[] = "itlb-4M";
2026 static const char dtlb4M_str[] = "dtlb-4M";
2027 static const char itlb424_str[] = "itlb-4K-2M-4M";
2028 static const char dtlb44_str[] = "dtlb-4K-4M";
2029 static const char sl1_dcache_str[] = "sectored-l1-dcache";
2030 static const char sl2_cache_str[] = "sectored-l2-cache";
2031 static const char itrace_str[] = "itrace-cache";
2032 static const char sl3_cache_str[] = "sectored-l3-cache";
2033 
2034 static const struct cachetab {
2035 	uint8_t 	ct_code;
2036 	uint8_t		ct_assoc;
2037 	uint16_t 	ct_line_size;
2038 	size_t		ct_size;
2039 	const char	*ct_label;
2040 } intel_ctab[] = {
2041 	/* maintain descending order! */
2042 	{ 0xb3, 4, 0, 128, dtlb4k_str },
2043 	{ 0xb0, 4, 0, 128, itlb4k_str },
2044 	{ 0x87, 8, 64, 1024*1024, l2_cache_str},
2045 	{ 0x86, 4, 64, 512*1024, l2_cache_str},
2046 	{ 0x85, 8, 32, 2*1024*1024, l2_cache_str},
2047 	{ 0x84, 8, 32, 1024*1024, l2_cache_str},
2048 	{ 0x83, 8, 32, 512*1024, l2_cache_str},
2049 	{ 0x82, 8, 32, 256*1024, l2_cache_str},
2050 	{ 0x81, 8, 32, 128*1024, l2_cache_str},		/* suspect! */
2051 	{ 0x7f, 2, 64, 512*1024, l2_cache_str},
2052 	{ 0x7d, 8, 64, 2*1024*1024, sl2_cache_str},
2053 	{ 0x7c, 8, 64, 1024*1024, sl2_cache_str},
2054 	{ 0x7b, 8, 64, 512*1024, sl2_cache_str},
2055 	{ 0x7a, 8, 64, 256*1024, sl2_cache_str},
2056 	{ 0x79, 8, 64, 128*1024, sl2_cache_str},
2057 	{ 0x78, 8, 64, 1024*1024, l2_cache_str},
2058 	{ 0x72, 8, 0, 32*1024, itrace_str},
2059 	{ 0x71, 8, 0, 16*1024, itrace_str},
2060 	{ 0x70, 8, 0, 12*1024, itrace_str},
2061 	{ 0x68, 4, 64, 32*1024, sl1_dcache_str},
2062 	{ 0x67, 4, 64, 16*1024, sl1_dcache_str},
2063 	{ 0x66, 4, 64, 8*1024, sl1_dcache_str},
2064 	{ 0x60, 8, 64, 16*1024, sl1_dcache_str},
2065 	{ 0x5d, 0, 0, 256, dtlb44_str},
2066 	{ 0x5c, 0, 0, 128, dtlb44_str},
2067 	{ 0x5b, 0, 0, 64, dtlb44_str},
2068 	{ 0x52, 0, 0, 256, itlb424_str},
2069 	{ 0x51, 0, 0, 128, itlb424_str},
2070 	{ 0x50, 0, 0, 64, itlb424_str},
2071 	{ 0x45, 4, 32, 2*1024*1024, l2_cache_str},
2072 	{ 0x44, 4, 32, 1024*1024, l2_cache_str},
2073 	{ 0x43, 4, 32, 512*1024, l2_cache_str},
2074 	{ 0x42, 4, 32, 256*1024, l2_cache_str},
2075 	{ 0x41, 4, 32, 128*1024, l2_cache_str},
2076 	{ 0x3c, 4, 64, 256*1024, sl2_cache_str},
2077 	{ 0x3b, 2, 64, 128*1024, sl2_cache_str},
2078 	{ 0x39, 4, 64, 128*1024, sl2_cache_str},
2079 	{ 0x30, 8, 64, 32*1024, l1_icache_str},
2080 	{ 0x2c, 8, 64, 32*1024, l1_dcache_str},
2081 	{ 0x29, 8, 64, 4096*1024, sl3_cache_str},
2082 	{ 0x25, 8, 64, 2048*1024, sl3_cache_str},
2083 	{ 0x23, 8, 64, 1024*1024, sl3_cache_str},
2084 	{ 0x22, 4, 64, 512*1024, sl3_cache_str},
2085 	{ 0x0c, 4, 32, 16*1024, l1_dcache_str},
2086 	{ 0x0a, 2, 32, 8*1024, l1_dcache_str},
2087 	{ 0x08, 4, 32, 16*1024, l1_icache_str},
2088 	{ 0x06, 4, 32, 8*1024, l1_icache_str},
2089 	{ 0x04, 4, 0, 8, dtlb4M_str},
2090 	{ 0x03, 4, 0, 64, dtlb4k_str},
2091 	{ 0x02, 4, 0, 2, itlb4M_str},
2092 	{ 0x01, 4, 0, 32, itlb4k_str},
2093 	{ 0 }
2094 };
2095 
2096 static const struct cachetab cyrix_ctab[] = {
2097 	{ 0x70, 4, 0, 32, "tlb-4K" },
2098 	{ 0x80, 4, 16, 16*1024, "l1-cache" },
2099 	{ 0 }
2100 };
2101 
2102 /*
2103  * Search a cache table for a matching entry
2104  */
2105 static const struct cachetab *
2106 find_cacheent(const struct cachetab *ct, uint_t code)
2107 {
2108 	if (code != 0) {
2109 		for (; ct->ct_code != 0; ct++)
2110 			if (ct->ct_code <= code)
2111 				break;
2112 		if (ct->ct_code == code)
2113 			return (ct);
2114 	}
2115 	return (NULL);
2116 }
2117 
2118 /*
2119  * Walk the cacheinfo descriptor, applying 'func' to every valid element
2120  * The walk is terminated if the walker returns non-zero.
2121  */
2122 static void
2123 intel_walk_cacheinfo(struct cpuid_info *cpi,
2124     void *arg, int (*func)(void *, const struct cachetab *))
2125 {
2126 	const struct cachetab *ct;
2127 	uint8_t *dp;
2128 	int i;
2129 
2130 	if ((dp = cpi->cpi_cacheinfo) == NULL)
2131 		return;
2132 	for (i = 0; i < cpi->cpi_ncache; i++, dp++)
2133 		if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) {
2134 			if (func(arg, ct) != 0)
2135 				break;
2136 		}
2137 }
2138 
2139 /*
2140  * (Like the Intel one, except for Cyrix CPUs)
2141  */
2142 static void
2143 cyrix_walk_cacheinfo(struct cpuid_info *cpi,
2144     void *arg, int (*func)(void *, const struct cachetab *))
2145 {
2146 	const struct cachetab *ct;
2147 	uint8_t *dp;
2148 	int i;
2149 
2150 	if ((dp = cpi->cpi_cacheinfo) == NULL)
2151 		return;
2152 	for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
2153 		/*
2154 		 * Search Cyrix-specific descriptor table first ..
2155 		 */
2156 		if ((ct = find_cacheent(cyrix_ctab, *dp)) != NULL) {
2157 			if (func(arg, ct) != 0)
2158 				break;
2159 			continue;
2160 		}
2161 		/*
2162 		 * .. else fall back to the Intel one
2163 		 */
2164 		if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) {
2165 			if (func(arg, ct) != 0)
2166 				break;
2167 			continue;
2168 		}
2169 	}
2170 }
2171 
2172 /*
2173  * A cacheinfo walker that adds associativity, line-size, and size properties
2174  * to the devinfo node it is passed as an argument.
2175  */
2176 static int
2177 add_cacheent_props(void *arg, const struct cachetab *ct)
2178 {
2179 	dev_info_t *devi = arg;
2180 
2181 	add_cache_prop(devi, ct->ct_label, assoc_str, ct->ct_assoc);
2182 	if (ct->ct_line_size != 0)
2183 		add_cache_prop(devi, ct->ct_label, line_str,
2184 		    ct->ct_line_size);
2185 	add_cache_prop(devi, ct->ct_label, size_str, ct->ct_size);
2186 	return (0);
2187 }
2188 
2189 static const char fully_assoc[] = "fully-associative?";
2190 
2191 /*
2192  * AMD style cache/tlb description
2193  *
2194  * Extended functions 5 and 6 directly describe properties of
2195  * tlbs and various cache levels.
2196  */
2197 static void
2198 add_amd_assoc(dev_info_t *devi, const char *label, uint_t assoc)
2199 {
2200 	switch (assoc) {
2201 	case 0:	/* reserved; ignore */
2202 		break;
2203 	default:
2204 		add_cache_prop(devi, label, assoc_str, assoc);
2205 		break;
2206 	case 0xff:
2207 		add_cache_prop(devi, label, fully_assoc, 1);
2208 		break;
2209 	}
2210 }
2211 
2212 static void
2213 add_amd_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
2214 {
2215 	if (size == 0)
2216 		return;
2217 	add_cache_prop(devi, label, size_str, size);
2218 	add_amd_assoc(devi, label, assoc);
2219 }
2220 
2221 static void
2222 add_amd_cache(dev_info_t *devi, const char *label,
2223     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
2224 {
2225 	if (size == 0 || line_size == 0)
2226 		return;
2227 	add_amd_assoc(devi, label, assoc);
2228 	/*
2229 	 * Most AMD parts have a sectored cache. Multiple cache lines are
2230 	 * associated with each tag. A sector consists of all cache lines
2231 	 * associated with a tag. For example, the AMD K6-III has a sector
2232 	 * size of 2 cache lines per tag.
2233 	 */
2234 	if (lines_per_tag != 0)
2235 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
2236 	add_cache_prop(devi, label, line_str, line_size);
2237 	add_cache_prop(devi, label, size_str, size * 1024);
2238 }
2239 
2240 static void
2241 add_amd_l2_assoc(dev_info_t *devi, const char *label, uint_t assoc)
2242 {
2243 	switch (assoc) {
2244 	case 0:	/* off */
2245 		break;
2246 	case 1:
2247 	case 2:
2248 	case 4:
2249 		add_cache_prop(devi, label, assoc_str, assoc);
2250 		break;
2251 	case 6:
2252 		add_cache_prop(devi, label, assoc_str, 8);
2253 		break;
2254 	case 8:
2255 		add_cache_prop(devi, label, assoc_str, 16);
2256 		break;
2257 	case 0xf:
2258 		add_cache_prop(devi, label, fully_assoc, 1);
2259 		break;
2260 	default: /* reserved; ignore */
2261 		break;
2262 	}
2263 }
2264 
2265 static void
2266 add_amd_l2_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
2267 {
2268 	if (size == 0 || assoc == 0)
2269 		return;
2270 	add_amd_l2_assoc(devi, label, assoc);
2271 	add_cache_prop(devi, label, size_str, size);
2272 }
2273 
2274 static void
2275 add_amd_l2_cache(dev_info_t *devi, const char *label,
2276     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
2277 {
2278 	if (size == 0 || assoc == 0 || line_size == 0)
2279 		return;
2280 	add_amd_l2_assoc(devi, label, assoc);
2281 	if (lines_per_tag != 0)
2282 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
2283 	add_cache_prop(devi, label, line_str, line_size);
2284 	add_cache_prop(devi, label, size_str, size * 1024);
2285 }
2286 
2287 static void
2288 amd_cache_info(struct cpuid_info *cpi, dev_info_t *devi)
2289 {
2290 	struct cpuid_regs *cp;
2291 
2292 	if (cpi->cpi_xmaxeax < 0x80000005)
2293 		return;
2294 	cp = &cpi->cpi_extd[5];
2295 
2296 	/*
2297 	 * 4M/2M L1 TLB configuration
2298 	 *
2299 	 * We report the size for 2M pages because AMD uses two
2300 	 * TLB entries for one 4M page.
2301 	 */
2302 	add_amd_tlb(devi, "dtlb-2M",
2303 	    BITX(cp->cp_eax, 31, 24), BITX(cp->cp_eax, 23, 16));
2304 	add_amd_tlb(devi, "itlb-2M",
2305 	    BITX(cp->cp_eax, 15, 8), BITX(cp->cp_eax, 7, 0));
2306 
2307 	/*
2308 	 * 4K L1 TLB configuration
2309 	 */
2310 
2311 	switch (cpi->cpi_vendor) {
2312 		uint_t nentries;
2313 	case X86_VENDOR_TM:
2314 		if (cpi->cpi_family >= 5) {
2315 			/*
2316 			 * Crusoe processors have 256 TLB entries, but
2317 			 * cpuid data format constrains them to only
2318 			 * reporting 255 of them.
2319 			 */
2320 			if ((nentries = BITX(cp->cp_ebx, 23, 16)) == 255)
2321 				nentries = 256;
2322 			/*
2323 			 * Crusoe processors also have a unified TLB
2324 			 */
2325 			add_amd_tlb(devi, "tlb-4K", BITX(cp->cp_ebx, 31, 24),
2326 			    nentries);
2327 			break;
2328 		}
2329 		/*FALLTHROUGH*/
2330 	default:
2331 		add_amd_tlb(devi, itlb4k_str,
2332 		    BITX(cp->cp_ebx, 31, 24), BITX(cp->cp_ebx, 23, 16));
2333 		add_amd_tlb(devi, dtlb4k_str,
2334 		    BITX(cp->cp_ebx, 15, 8), BITX(cp->cp_ebx, 7, 0));
2335 		break;
2336 	}
2337 
2338 	/*
2339 	 * data L1 cache configuration
2340 	 */
2341 
2342 	add_amd_cache(devi, l1_dcache_str,
2343 	    BITX(cp->cp_ecx, 31, 24), BITX(cp->cp_ecx, 23, 16),
2344 	    BITX(cp->cp_ecx, 15, 8), BITX(cp->cp_ecx, 7, 0));
2345 
2346 	/*
2347 	 * code L1 cache configuration
2348 	 */
2349 
2350 	add_amd_cache(devi, l1_icache_str,
2351 	    BITX(cp->cp_edx, 31, 24), BITX(cp->cp_edx, 23, 16),
2352 	    BITX(cp->cp_edx, 15, 8), BITX(cp->cp_edx, 7, 0));
2353 
2354 	if (cpi->cpi_xmaxeax < 0x80000006)
2355 		return;
2356 	cp = &cpi->cpi_extd[6];
2357 
2358 	/* Check for a unified L2 TLB for large pages */
2359 
2360 	if (BITX(cp->cp_eax, 31, 16) == 0)
2361 		add_amd_l2_tlb(devi, "l2-tlb-2M",
2362 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
2363 	else {
2364 		add_amd_l2_tlb(devi, "l2-dtlb-2M",
2365 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
2366 		add_amd_l2_tlb(devi, "l2-itlb-2M",
2367 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
2368 	}
2369 
2370 	/* Check for a unified L2 TLB for 4K pages */
2371 
2372 	if (BITX(cp->cp_ebx, 31, 16) == 0) {
2373 		add_amd_l2_tlb(devi, "l2-tlb-4K",
2374 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
2375 	} else {
2376 		add_amd_l2_tlb(devi, "l2-dtlb-4K",
2377 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
2378 		add_amd_l2_tlb(devi, "l2-itlb-4K",
2379 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
2380 	}
2381 
2382 	add_amd_l2_cache(devi, l2_cache_str,
2383 	    BITX(cp->cp_ecx, 31, 16), BITX(cp->cp_ecx, 15, 12),
2384 	    BITX(cp->cp_ecx, 11, 8), BITX(cp->cp_ecx, 7, 0));
2385 }
2386 
2387 /*
2388  * There are two basic ways that the x86 world describes it cache
2389  * and tlb architecture - Intel's way and AMD's way.
2390  *
2391  * Return which flavor of cache architecture we should use
2392  */
2393 static int
2394 x86_which_cacheinfo(struct cpuid_info *cpi)
2395 {
2396 	switch (cpi->cpi_vendor) {
2397 	case X86_VENDOR_Intel:
2398 		if (cpi->cpi_maxeax >= 2)
2399 			return (X86_VENDOR_Intel);
2400 		break;
2401 	case X86_VENDOR_AMD:
2402 		/*
2403 		 * The K5 model 1 was the first part from AMD that reported
2404 		 * cache sizes via extended cpuid functions.
2405 		 */
2406 		if (cpi->cpi_family > 5 ||
2407 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
2408 			return (X86_VENDOR_AMD);
2409 		break;
2410 	case X86_VENDOR_TM:
2411 		if (cpi->cpi_family >= 5)
2412 			return (X86_VENDOR_AMD);
2413 		/*FALLTHROUGH*/
2414 	default:
2415 		/*
2416 		 * If they have extended CPU data for 0x80000005
2417 		 * then we assume they have AMD-format cache
2418 		 * information.
2419 		 *
2420 		 * If not, and the vendor happens to be Cyrix,
2421 		 * then try our-Cyrix specific handler.
2422 		 *
2423 		 * If we're not Cyrix, then assume we're using Intel's
2424 		 * table-driven format instead.
2425 		 */
2426 		if (cpi->cpi_xmaxeax >= 0x80000005)
2427 			return (X86_VENDOR_AMD);
2428 		else if (cpi->cpi_vendor == X86_VENDOR_Cyrix)
2429 			return (X86_VENDOR_Cyrix);
2430 		else if (cpi->cpi_maxeax >= 2)
2431 			return (X86_VENDOR_Intel);
2432 		break;
2433 	}
2434 	return (-1);
2435 }
2436 
2437 /*
2438  * create a node for the given cpu under the prom root node.
2439  * Also, create a cpu node in the device tree.
2440  */
2441 static dev_info_t *cpu_nex_devi = NULL;
2442 static kmutex_t cpu_node_lock;
2443 
2444 /*
2445  * Called from post_startup() and mp_startup()
2446  */
2447 void
2448 add_cpunode2devtree(processorid_t cpu_id, struct cpuid_info *cpi)
2449 {
2450 	dev_info_t *cpu_devi;
2451 	int create;
2452 
2453 	mutex_enter(&cpu_node_lock);
2454 
2455 	/*
2456 	 * create a nexus node for all cpus identified as 'cpu_id' under
2457 	 * the root node.
2458 	 */
2459 	if (cpu_nex_devi == NULL) {
2460 		if (ndi_devi_alloc(ddi_root_node(), "cpus",
2461 		    (pnode_t)DEVI_SID_NODEID, &cpu_nex_devi) != NDI_SUCCESS) {
2462 			mutex_exit(&cpu_node_lock);
2463 			return;
2464 		}
2465 		(void) ndi_devi_online(cpu_nex_devi, 0);
2466 	}
2467 
2468 	/*
2469 	 * create a child node for cpu identified as 'cpu_id'
2470 	 */
2471 	cpu_devi = ddi_add_child(cpu_nex_devi, "cpu", DEVI_SID_NODEID,
2472 		cpu_id);
2473 	if (cpu_devi == NULL) {
2474 		mutex_exit(&cpu_node_lock);
2475 		return;
2476 	}
2477 
2478 	/* device_type */
2479 
2480 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
2481 	    "device_type", "cpu");
2482 
2483 	/* reg */
2484 
2485 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2486 	    "reg", cpu_id);
2487 
2488 	/* cpu-mhz, and clock-frequency */
2489 
2490 	if (cpu_freq > 0) {
2491 		long long mul;
2492 
2493 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2494 		    "cpu-mhz", cpu_freq);
2495 
2496 		if ((mul = cpu_freq * 1000000LL) <= INT_MAX)
2497 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2498 			    "clock-frequency", (int)mul);
2499 	}
2500 
2501 	(void) ndi_devi_online(cpu_devi, 0);
2502 
2503 	if ((x86_feature & X86_CPUID) == 0) {
2504 		mutex_exit(&cpu_node_lock);
2505 		return;
2506 	}
2507 
2508 	/* vendor-id */
2509 
2510 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
2511 		"vendor-id", cpi->cpi_vendorstr);
2512 
2513 	if (cpi->cpi_maxeax == 0) {
2514 		mutex_exit(&cpu_node_lock);
2515 		return;
2516 	}
2517 
2518 	/*
2519 	 * family, model, and step
2520 	 */
2521 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2522 		"family", CPI_FAMILY(cpi));
2523 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2524 		"cpu-model", CPI_MODEL(cpi));
2525 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2526 		"stepping-id", CPI_STEP(cpi));
2527 
2528 	/* type */
2529 
2530 	switch (cpi->cpi_vendor) {
2531 	case X86_VENDOR_Intel:
2532 		create = 1;
2533 		break;
2534 	default:
2535 		create = 0;
2536 		break;
2537 	}
2538 	if (create)
2539 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2540 			"type", CPI_TYPE(cpi));
2541 
2542 	/* ext-family */
2543 
2544 	switch (cpi->cpi_vendor) {
2545 	case X86_VENDOR_Intel:
2546 	case X86_VENDOR_AMD:
2547 		create = cpi->cpi_family >= 0xf;
2548 		break;
2549 	default:
2550 		create = 0;
2551 		break;
2552 	}
2553 	if (create)
2554 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2555 		    "ext-family", CPI_FAMILY_XTD(cpi));
2556 
2557 	/* ext-model */
2558 
2559 	switch (cpi->cpi_vendor) {
2560 	case X86_VENDOR_Intel:
2561 	case X86_VENDOR_AMD:
2562 		create = CPI_MODEL(cpi) == 0xf;
2563 		break;
2564 	default:
2565 		create = 0;
2566 		break;
2567 	}
2568 	if (create)
2569 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2570 			"ext-model", CPI_MODEL_XTD(cpi));
2571 
2572 	/* generation */
2573 
2574 	switch (cpi->cpi_vendor) {
2575 	case X86_VENDOR_AMD:
2576 		/*
2577 		 * AMD K5 model 1 was the first part to support this
2578 		 */
2579 		create = cpi->cpi_xmaxeax >= 0x80000001;
2580 		break;
2581 	default:
2582 		create = 0;
2583 		break;
2584 	}
2585 	if (create)
2586 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2587 		    "generation", BITX((cpi)->cpi_extd[1].cp_eax, 11, 8));
2588 
2589 	/* brand-id */
2590 
2591 	switch (cpi->cpi_vendor) {
2592 	case X86_VENDOR_Intel:
2593 		/*
2594 		 * brand id first appeared on Pentium III Xeon model 8,
2595 		 * and Celeron model 8 processors and Opteron
2596 		 */
2597 		create = cpi->cpi_family > 6 ||
2598 		    (cpi->cpi_family == 6 && cpi->cpi_model >= 8);
2599 		break;
2600 	case X86_VENDOR_AMD:
2601 		create = cpi->cpi_family >= 0xf;
2602 		break;
2603 	default:
2604 		create = 0;
2605 		break;
2606 	}
2607 	if (create && cpi->cpi_brandid != 0) {
2608 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2609 		    "brand-id", cpi->cpi_brandid);
2610 	}
2611 
2612 	/* chunks, and apic-id */
2613 
2614 	switch (cpi->cpi_vendor) {
2615 	case X86_VENDOR_Intel:
2616 	case X86_VENDOR_AMD:
2617 		/*
2618 		 * first available on Pentium IV and Opteron (K8)
2619 		 */
2620 		create = cpi->cpi_family >= 0xf;
2621 		break;
2622 	default:
2623 		create = 0;
2624 		break;
2625 	}
2626 	if (create) {
2627 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2628 			"chunks", CPI_CHUNKS(cpi));
2629 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2630 			"apic-id", CPI_APIC_ID(cpi));
2631 		if (cpi->cpi_chipid >= 0)
2632 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2633 			    "chip#", cpi->cpi_chipid);
2634 	}
2635 
2636 	/* cpuid-features */
2637 
2638 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2639 	    "cpuid-features", CPI_FEATURES_EDX(cpi));
2640 
2641 
2642 	/* cpuid-features-ecx */
2643 
2644 	switch (cpi->cpi_vendor) {
2645 	case X86_VENDOR_Intel:
2646 		create = cpi->cpi_family >= 0xf;
2647 		break;
2648 	default:
2649 		create = 0;
2650 		break;
2651 	}
2652 	if (create)
2653 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2654 		    "cpuid-features-ecx", CPI_FEATURES_ECX(cpi));
2655 
2656 	/* ext-cpuid-features */
2657 
2658 	switch (cpi->cpi_vendor) {
2659 	case X86_VENDOR_AMD:
2660 	case X86_VENDOR_Cyrix:
2661 	case X86_VENDOR_TM:
2662 	case X86_VENDOR_Centaur:
2663 		/*
2664 		 * The extended cpuid features are not relevant on
2665 		 * Intel but are available from the AMD K5 model 1
2666 		 * and most Cyrix GXm and later.
2667 		 */
2668 		create = cpi->cpi_xmaxeax >= 0x80000001;
2669 		break;
2670 	default:
2671 		create = 0;
2672 		break;
2673 	}
2674 	if (create)
2675 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2676 			"ext-cpuid-features", CPI_FEATURES_XTD_EDX(cpi));
2677 
2678 	/*
2679 	 * Brand String first appeared in Intel Pentium IV, AMD K5
2680 	 * model 1, and Cyrix GXm.  On earlier models we try and
2681 	 * simulate something similar .. so this string should always
2682 	 * same -something- about the processor, however lame.
2683 	 */
2684 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
2685 	    "brand-string", cpi->cpi_brandstr);
2686 
2687 	/*
2688 	 * Finally, cache and tlb information
2689 	 */
2690 	switch (x86_which_cacheinfo(cpi)) {
2691 	case X86_VENDOR_Intel:
2692 		intel_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
2693 		break;
2694 	case X86_VENDOR_Cyrix:
2695 		cyrix_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
2696 		break;
2697 	case X86_VENDOR_AMD:
2698 		amd_cache_info(cpi, cpu_devi);
2699 		break;
2700 	default:
2701 		break;
2702 	}
2703 
2704 	mutex_exit(&cpu_node_lock);
2705 }
2706 
2707 struct l2info {
2708 	int *l2i_csz;
2709 	int *l2i_lsz;
2710 	int *l2i_assoc;
2711 	int l2i_ret;
2712 };
2713 
2714 /*
2715  * A cacheinfo walker that fetches the size, line-size and associativity
2716  * of the L2 cache
2717  */
2718 static int
2719 intel_l2cinfo(void *arg, const struct cachetab *ct)
2720 {
2721 	struct l2info *l2i = arg;
2722 	int *ip;
2723 
2724 	if (ct->ct_label != l2_cache_str &&
2725 	    ct->ct_label != sl2_cache_str)
2726 		return (0);	/* not an L2 -- keep walking */
2727 
2728 	if ((ip = l2i->l2i_csz) != NULL)
2729 		*ip = ct->ct_size;
2730 	if ((ip = l2i->l2i_lsz) != NULL)
2731 		*ip = ct->ct_line_size;
2732 	if ((ip = l2i->l2i_assoc) != NULL)
2733 		*ip = ct->ct_assoc;
2734 	l2i->l2i_ret = ct->ct_size;
2735 	return (1);		/* was an L2 -- terminate walk */
2736 }
2737 
2738 static void
2739 amd_l2cacheinfo(struct cpuid_info *cpi, struct l2info *l2i)
2740 {
2741 	struct cpuid_regs *cp;
2742 	uint_t size, assoc;
2743 	int *ip;
2744 
2745 	if (cpi->cpi_xmaxeax < 0x80000006)
2746 		return;
2747 	cp = &cpi->cpi_extd[6];
2748 
2749 	if ((assoc = BITX(cp->cp_ecx, 15, 12)) != 0 &&
2750 	    (size = BITX(cp->cp_ecx, 31, 16)) != 0) {
2751 		uint_t cachesz = size * 1024;
2752 
2753 
2754 		if ((ip = l2i->l2i_csz) != NULL)
2755 			*ip = cachesz;
2756 		if ((ip = l2i->l2i_lsz) != NULL)
2757 			*ip = BITX(cp->cp_ecx, 7, 0);
2758 		if ((ip = l2i->l2i_assoc) != NULL)
2759 			*ip = assoc;
2760 		l2i->l2i_ret = cachesz;
2761 	}
2762 }
2763 
2764 int
2765 getl2cacheinfo(cpu_t *cpu, int *csz, int *lsz, int *assoc)
2766 {
2767 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2768 	struct l2info __l2info, *l2i = &__l2info;
2769 
2770 	l2i->l2i_csz = csz;
2771 	l2i->l2i_lsz = lsz;
2772 	l2i->l2i_assoc = assoc;
2773 	l2i->l2i_ret = -1;
2774 
2775 	switch (x86_which_cacheinfo(cpi)) {
2776 	case X86_VENDOR_Intel:
2777 		intel_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
2778 		break;
2779 	case X86_VENDOR_Cyrix:
2780 		cyrix_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
2781 		break;
2782 	case X86_VENDOR_AMD:
2783 		amd_l2cacheinfo(cpi, l2i);
2784 		break;
2785 	default:
2786 		break;
2787 	}
2788 	return (l2i->l2i_ret);
2789 }
2790