xref: /titanic_50/usr/src/uts/i86pc/os/cpuid.c (revision f8919bdadda3ebb97bd55cc14a16e0271ed57615)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Various routines to handle identification
30  * and classification of x86 processors.
31  */
32 
33 #include <sys/types.h>
34 #include <sys/archsystm.h>
35 #include <sys/x86_archext.h>
36 #include <sys/kmem.h>
37 #include <sys/systm.h>
38 #include <sys/cmn_err.h>
39 #include <sys/sunddi.h>
40 #include <sys/sunndi.h>
41 #include <sys/cpuvar.h>
42 #include <sys/processor.h>
43 #include <sys/sysmacros.h>
44 #include <sys/pg.h>
45 #include <sys/fp.h>
46 #include <sys/controlregs.h>
47 #include <sys/auxv_386.h>
48 #include <sys/bitmap.h>
49 #include <sys/memnode.h>
50 
51 /*
52  * Pass 0 of cpuid feature analysis happens in locore. It contains special code
53  * to recognize Cyrix processors that are not cpuid-compliant, and to deal with
54  * them accordingly. For most modern processors, feature detection occurs here
55  * in pass 1.
56  *
57  * Pass 1 of cpuid feature analysis happens just at the beginning of mlsetup()
58  * for the boot CPU and does the basic analysis that the early kernel needs.
59  * x86_feature is set based on the return value of cpuid_pass1() of the boot
60  * CPU.
61  *
62  * Pass 1 includes:
63  *
64  *	o Determining vendor/model/family/stepping and setting x86_type and
65  *	  x86_vendor accordingly.
66  *	o Processing the feature flags returned by the cpuid instruction while
67  *	  applying any workarounds or tricks for the specific processor.
68  *	o Mapping the feature flags into Solaris feature bits (X86_*).
69  *	o Processing extended feature flags if supported by the processor,
70  *	  again while applying specific processor knowledge.
71  *	o Determining the CMT characteristics of the system.
72  *
73  * Pass 1 is done on non-boot CPUs during their initialization and the results
74  * are used only as a meager attempt at ensuring that all processors within the
75  * system support the same features.
76  *
77  * Pass 2 of cpuid feature analysis happens just at the beginning
78  * of startup().  It just copies in and corrects the remainder
79  * of the cpuid data we depend on: standard cpuid functions that we didn't
80  * need for pass1 feature analysis, and extended cpuid functions beyond the
81  * simple feature processing done in pass1.
82  *
83  * Pass 3 of cpuid analysis is invoked after basic kernel services; in
84  * particular kernel memory allocation has been made available. It creates a
85  * readable brand string based on the data collected in the first two passes.
86  *
87  * Pass 4 of cpuid analysis is invoked after post_startup() when all
88  * the support infrastructure for various hardware features has been
89  * initialized. It determines which processor features will be reported
90  * to userland via the aux vector.
91  *
92  * All passes are executed on all CPUs, but only the boot CPU determines what
93  * features the kernel will use.
94  *
95  * Much of the worst junk in this file is for the support of processors
96  * that didn't really implement the cpuid instruction properly.
97  *
98  * NOTE: The accessor functions (cpuid_get*) are aware of, and ASSERT upon,
99  * the pass numbers.  Accordingly, changes to the pass code may require changes
100  * to the accessor code.
101  */
102 
103 uint_t x86_feature = 0;
104 uint_t x86_vendor = X86_VENDOR_IntelClone;
105 uint_t x86_type = X86_TYPE_OTHER;
106 
107 uint_t pentiumpro_bug4046376;
108 uint_t pentiumpro_bug4064495;
109 
110 uint_t enable486;
111 
112 /*
113  * This set of strings are for processors rumored to support the cpuid
114  * instruction, and is used by locore.s to figure out how to set x86_vendor
115  */
116 const char CyrixInstead[] = "CyrixInstead";
117 
118 /*
119  * monitor/mwait info.
120  *
121  * size_actual and buf_actual are the real address and size allocated to get
122  * proper mwait_buf alignement.  buf_actual and size_actual should be passed
123  * to kmem_free().  Currently kmem_alloc() and mwait happen to both use
124  * processor cache-line alignment, but this is not guarantied in the furture.
125  */
126 struct mwait_info {
127 	size_t		mon_min;	/* min size to avoid missed wakeups */
128 	size_t		mon_max;	/* size to avoid false wakeups */
129 	size_t		size_actual;	/* size actually allocated */
130 	void		*buf_actual;	/* memory actually allocated */
131 	uint32_t	support;	/* processor support of monitor/mwait */
132 };
133 
134 /*
135  * These constants determine how many of the elements of the
136  * cpuid we cache in the cpuid_info data structure; the
137  * remaining elements are accessible via the cpuid instruction.
138  */
139 
140 #define	NMAX_CPI_STD	6		/* eax = 0 .. 5 */
141 #define	NMAX_CPI_EXTD	9		/* eax = 0x80000000 .. 0x80000008 */
142 
143 struct cpuid_info {
144 	uint_t cpi_pass;		/* last pass completed */
145 	/*
146 	 * standard function information
147 	 */
148 	uint_t cpi_maxeax;		/* fn 0: %eax */
149 	char cpi_vendorstr[13];		/* fn 0: %ebx:%ecx:%edx */
150 	uint_t cpi_vendor;		/* enum of cpi_vendorstr */
151 
152 	uint_t cpi_family;		/* fn 1: extended family */
153 	uint_t cpi_model;		/* fn 1: extended model */
154 	uint_t cpi_step;		/* fn 1: stepping */
155 	chipid_t cpi_chipid;		/* fn 1: %ebx: chip # on ht cpus */
156 	uint_t cpi_brandid;		/* fn 1: %ebx: brand ID */
157 	int cpi_clogid;			/* fn 1: %ebx: thread # */
158 	uint_t cpi_ncpu_per_chip;	/* fn 1: %ebx: logical cpu count */
159 	uint8_t cpi_cacheinfo[16];	/* fn 2: intel-style cache desc */
160 	uint_t cpi_ncache;		/* fn 2: number of elements */
161 	uint_t cpi_ncpu_shr_last_cache;	/* fn 4: %eax: ncpus sharing cache */
162 	id_t cpi_last_lvl_cacheid;	/* fn 4: %eax: derived cache id */
163 	uint_t cpi_std_4_size;		/* fn 4: number of fn 4 elements */
164 	struct cpuid_regs **cpi_std_4;	/* fn 4: %ecx == 0 .. fn4_size */
165 	struct cpuid_regs cpi_std[NMAX_CPI_STD];	/* 0 .. 5 */
166 	/*
167 	 * extended function information
168 	 */
169 	uint_t cpi_xmaxeax;		/* fn 0x80000000: %eax */
170 	char cpi_brandstr[49];		/* fn 0x8000000[234] */
171 	uint8_t cpi_pabits;		/* fn 0x80000006: %eax */
172 	uint8_t cpi_vabits;		/* fn 0x80000006: %eax */
173 	struct cpuid_regs cpi_extd[NMAX_CPI_EXTD]; /* 0x8000000[0-8] */
174 	id_t cpi_coreid;
175 	uint_t cpi_ncore_per_chip;	/* AMD: fn 0x80000008: %ecx[7-0] */
176 					/* Intel: fn 4: %eax[31-26] */
177 	/*
178 	 * supported feature information
179 	 */
180 	uint32_t cpi_support[5];
181 #define	STD_EDX_FEATURES	0
182 #define	AMD_EDX_FEATURES	1
183 #define	TM_EDX_FEATURES		2
184 #define	STD_ECX_FEATURES	3
185 #define	AMD_ECX_FEATURES	4
186 	/*
187 	 * Synthesized information, where known.
188 	 */
189 	uint32_t cpi_chiprev;		/* See X86_CHIPREV_* in x86_archext.h */
190 	const char *cpi_chiprevstr;	/* May be NULL if chiprev unknown */
191 	uint32_t cpi_socket;		/* Chip package/socket type */
192 
193 	struct mwait_info cpi_mwait;	/* fn 5: monitor/mwait info */
194 };
195 
196 
197 static struct cpuid_info cpuid_info0;
198 
199 /*
200  * These bit fields are defined by the Intel Application Note AP-485
201  * "Intel Processor Identification and the CPUID Instruction"
202  */
203 #define	CPI_FAMILY_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 27, 20)
204 #define	CPI_MODEL_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 19, 16)
205 #define	CPI_TYPE(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 13, 12)
206 #define	CPI_FAMILY(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 11, 8)
207 #define	CPI_STEP(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 3, 0)
208 #define	CPI_MODEL(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 7, 4)
209 
210 #define	CPI_FEATURES_EDX(cpi)		((cpi)->cpi_std[1].cp_edx)
211 #define	CPI_FEATURES_ECX(cpi)		((cpi)->cpi_std[1].cp_ecx)
212 #define	CPI_FEATURES_XTD_EDX(cpi)	((cpi)->cpi_extd[1].cp_edx)
213 #define	CPI_FEATURES_XTD_ECX(cpi)	((cpi)->cpi_extd[1].cp_ecx)
214 
215 #define	CPI_BRANDID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 7, 0)
216 #define	CPI_CHUNKS(cpi)		BITX((cpi)->cpi_std[1].cp_ebx, 15, 7)
217 #define	CPI_CPU_COUNT(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 23, 16)
218 #define	CPI_APIC_ID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 31, 24)
219 
220 #define	CPI_MAXEAX_MAX		0x100		/* sanity control */
221 #define	CPI_XMAXEAX_MAX		0x80000100
222 #define	CPI_FN4_ECX_MAX		0x20		/* sanity: max fn 4 levels */
223 
224 /*
225  * Function 4 (Deterministic Cache Parameters) macros
226  * Defined by Intel Application Note AP-485
227  */
228 #define	CPI_NUM_CORES(regs)		BITX((regs)->cp_eax, 31, 26)
229 #define	CPI_NTHR_SHR_CACHE(regs)	BITX((regs)->cp_eax, 25, 14)
230 #define	CPI_FULL_ASSOC_CACHE(regs)	BITX((regs)->cp_eax, 9, 9)
231 #define	CPI_SELF_INIT_CACHE(regs)	BITX((regs)->cp_eax, 8, 8)
232 #define	CPI_CACHE_LVL(regs)		BITX((regs)->cp_eax, 7, 5)
233 #define	CPI_CACHE_TYPE(regs)		BITX((regs)->cp_eax, 4, 0)
234 
235 #define	CPI_CACHE_WAYS(regs)		BITX((regs)->cp_ebx, 31, 22)
236 #define	CPI_CACHE_PARTS(regs)		BITX((regs)->cp_ebx, 21, 12)
237 #define	CPI_CACHE_COH_LN_SZ(regs)	BITX((regs)->cp_ebx, 11, 0)
238 
239 #define	CPI_CACHE_SETS(regs)		BITX((regs)->cp_ecx, 31, 0)
240 
241 #define	CPI_PREFCH_STRIDE(regs)		BITX((regs)->cp_edx, 9, 0)
242 
243 
244 /*
245  * A couple of shorthand macros to identify "later" P6-family chips
246  * like the Pentium M and Core.  First, the "older" P6-based stuff
247  * (loosely defined as "pre-Pentium-4"):
248  * P6, PII, Mobile PII, PII Xeon, PIII, Mobile PIII, PIII Xeon
249  */
250 
251 #define	IS_LEGACY_P6(cpi) (			\
252 	cpi->cpi_family == 6 && 		\
253 		(cpi->cpi_model == 1 ||		\
254 		cpi->cpi_model == 3 ||		\
255 		cpi->cpi_model == 5 ||		\
256 		cpi->cpi_model == 6 ||		\
257 		cpi->cpi_model == 7 ||		\
258 		cpi->cpi_model == 8 ||		\
259 		cpi->cpi_model == 0xA ||	\
260 		cpi->cpi_model == 0xB)		\
261 )
262 
263 /* A "new F6" is everything with family 6 that's not the above */
264 #define	IS_NEW_F6(cpi) ((cpi->cpi_family == 6) && !IS_LEGACY_P6(cpi))
265 
266 /* Extended family/model support */
267 #define	IS_EXTENDED_MODEL_INTEL(cpi) (cpi->cpi_family == 0x6 || \
268 	cpi->cpi_family >= 0xf)
269 
270 /*
271  * AMD family 0xf and family 0x10 socket types.
272  * First index :
273  *		0 for family 0xf, revs B thru E
274  *		1 for family 0xf, revs F and G
275  *		2 for family 0x10, rev B
276  * Second index by (model & 0x3)
277  */
278 static uint32_t amd_skts[3][4] = {
279 	/*
280 	 * Family 0xf revisions B through E
281 	 */
282 #define	A_SKTS_0			0
283 	{
284 		X86_SOCKET_754,		/* 0b00 */
285 		X86_SOCKET_940,		/* 0b01 */
286 		X86_SOCKET_754,		/* 0b10 */
287 		X86_SOCKET_939		/* 0b11 */
288 	},
289 	/*
290 	 * Family 0xf revisions F and G
291 	 */
292 #define	A_SKTS_1			1
293 	{
294 		X86_SOCKET_S1g1,	/* 0b00 */
295 		X86_SOCKET_F1207,	/* 0b01 */
296 		X86_SOCKET_UNKNOWN,	/* 0b10 */
297 		X86_SOCKET_AM2		/* 0b11 */
298 	},
299 	/*
300 	 * Family 0x10 revisions A and B
301 	 * It is not clear whether, as new sockets release, that
302 	 * model & 0x3 will id socket for this family
303 	 */
304 #define	A_SKTS_2			2
305 	{
306 		X86_SOCKET_F1207,	/* 0b00 */
307 		X86_SOCKET_F1207,	/* 0b01 */
308 		X86_SOCKET_F1207,	/* 0b10 */
309 		X86_SOCKET_F1207,	/* 0b11 */
310 	}
311 };
312 
313 /*
314  * Table for mapping AMD Family 0xf and AMD Family 0x10 model/stepping
315  * combination to chip "revision" and socket type.
316  *
317  * The first member of this array that matches a given family, extended model
318  * plus model range, and stepping range will be considered a match.
319  */
320 static const struct amd_rev_mapent {
321 	uint_t rm_family;
322 	uint_t rm_modello;
323 	uint_t rm_modelhi;
324 	uint_t rm_steplo;
325 	uint_t rm_stephi;
326 	uint32_t rm_chiprev;
327 	const char *rm_chiprevstr;
328 	int rm_sktidx;
329 } amd_revmap[] = {
330 	/*
331 	 * =============== AuthenticAMD Family 0xf ===============
332 	 */
333 
334 	/*
335 	 * Rev B includes model 0x4 stepping 0 and model 0x5 stepping 0 and 1.
336 	 */
337 	{ 0xf, 0x04, 0x04, 0x0, 0x0, X86_CHIPREV_AMD_F_REV_B, "B", A_SKTS_0 },
338 	{ 0xf, 0x05, 0x05, 0x0, 0x1, X86_CHIPREV_AMD_F_REV_B, "B", A_SKTS_0 },
339 	/*
340 	 * Rev C0 includes model 0x4 stepping 8 and model 0x5 stepping 8
341 	 */
342 	{ 0xf, 0x04, 0x05, 0x8, 0x8, X86_CHIPREV_AMD_F_REV_C0, "C0", A_SKTS_0 },
343 	/*
344 	 * Rev CG is the rest of extended model 0x0 - i.e., everything
345 	 * but the rev B and C0 combinations covered above.
346 	 */
347 	{ 0xf, 0x00, 0x0f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_CG, "CG", A_SKTS_0 },
348 	/*
349 	 * Rev D has extended model 0x1.
350 	 */
351 	{ 0xf, 0x10, 0x1f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_D, "D", A_SKTS_0 },
352 	/*
353 	 * Rev E has extended model 0x2.
354 	 * Extended model 0x3 is unused but available to grow into.
355 	 */
356 	{ 0xf, 0x20, 0x3f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_E, "E", A_SKTS_0 },
357 	/*
358 	 * Rev F has extended models 0x4 and 0x5.
359 	 */
360 	{ 0xf, 0x40, 0x5f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_F, "F", A_SKTS_1 },
361 	/*
362 	 * Rev G has extended model 0x6.
363 	 */
364 	{ 0xf, 0x60, 0x6f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_G, "G", A_SKTS_1 },
365 
366 	/*
367 	 * =============== AuthenticAMD Family 0x10 ===============
368 	 */
369 
370 	/*
371 	 * Rev A has model 0 and stepping 0/1/2 for DR-{A0,A1,A2}.
372 	 * Give all of model 0 stepping range to rev A.
373 	 */
374 	{ 0x10, 0x00, 0x00, 0x0, 0x2, X86_CHIPREV_AMD_10_REV_A, "A", A_SKTS_2 },
375 
376 	/*
377 	 * Rev B has model 2 and steppings 0/1/0xa/2 for DR-{B0,B1,BA,B2}.
378 	 * Give all of model 2 stepping range to rev B.
379 	 */
380 	{ 0x10, 0x02, 0x02, 0x0, 0xf, X86_CHIPREV_AMD_10_REV_B, "B", A_SKTS_2 },
381 };
382 
383 /*
384  * Info for monitor/mwait idle loop.
385  *
386  * See cpuid section of "Intel 64 and IA-32 Architectures Software Developer's
387  * Manual Volume 2A: Instruction Set Reference, A-M" #25366-022US, November
388  * 2006.
389  * See MONITOR/MWAIT section of "AMD64 Architecture Programmer's Manual
390  * Documentation Updates" #33633, Rev 2.05, December 2006.
391  */
392 #define	MWAIT_SUPPORT		(0x00000001)	/* mwait supported */
393 #define	MWAIT_EXTENSIONS	(0x00000002)	/* extenstion supported */
394 #define	MWAIT_ECX_INT_ENABLE	(0x00000004)	/* ecx 1 extension supported */
395 #define	MWAIT_SUPPORTED(cpi)	((cpi)->cpi_std[1].cp_ecx & CPUID_INTC_ECX_MON)
396 #define	MWAIT_INT_ENABLE(cpi)	((cpi)->cpi_std[5].cp_ecx & 0x2)
397 #define	MWAIT_EXTENSION(cpi)	((cpi)->cpi_std[5].cp_ecx & 0x1)
398 #define	MWAIT_SIZE_MIN(cpi)	BITX((cpi)->cpi_std[5].cp_eax, 15, 0)
399 #define	MWAIT_SIZE_MAX(cpi)	BITX((cpi)->cpi_std[5].cp_ebx, 15, 0)
400 /*
401  * Number of sub-cstates for a given c-state.
402  */
403 #define	MWAIT_NUM_SUBC_STATES(cpi, c_state)			\
404 	BITX((cpi)->cpi_std[5].cp_edx, c_state + 3, c_state)
405 
406 static void
407 synth_amd_info(struct cpuid_info *cpi)
408 {
409 	const struct amd_rev_mapent *rmp;
410 	uint_t family, model, step;
411 	int i;
412 
413 	/*
414 	 * Currently only AMD family 0xf and family 0x10 use these fields.
415 	 */
416 	if (cpi->cpi_family != 0xf && cpi->cpi_family != 0x10)
417 		return;
418 
419 	family = cpi->cpi_family;
420 	model = cpi->cpi_model;
421 	step = cpi->cpi_step;
422 
423 	for (i = 0, rmp = amd_revmap; i < sizeof (amd_revmap) / sizeof (*rmp);
424 	    i++, rmp++) {
425 		if (family == rmp->rm_family &&
426 		    model >= rmp->rm_modello && model <= rmp->rm_modelhi &&
427 		    step >= rmp->rm_steplo && step <= rmp->rm_stephi) {
428 			cpi->cpi_chiprev = rmp->rm_chiprev;
429 			cpi->cpi_chiprevstr = rmp->rm_chiprevstr;
430 			cpi->cpi_socket = amd_skts[rmp->rm_sktidx][model & 0x3];
431 			return;
432 		}
433 	}
434 }
435 
436 static void
437 synth_info(struct cpuid_info *cpi)
438 {
439 	cpi->cpi_chiprev = X86_CHIPREV_UNKNOWN;
440 	cpi->cpi_chiprevstr = "Unknown";
441 	cpi->cpi_socket = X86_SOCKET_UNKNOWN;
442 
443 	switch (cpi->cpi_vendor) {
444 	case X86_VENDOR_AMD:
445 		synth_amd_info(cpi);
446 		break;
447 
448 	default:
449 		break;
450 
451 	}
452 }
453 
454 /*
455  * Apply up various platform-dependent restrictions where the
456  * underlying platform restrictions mean the CPU can be marked
457  * as less capable than its cpuid instruction would imply.
458  */
459 #if defined(__xpv)
460 static void
461 platform_cpuid_mangle(uint_t vendor, uint32_t eax, struct cpuid_regs *cp)
462 {
463 	switch (eax) {
464 	case 1:
465 		cp->cp_edx &=
466 		    ~(CPUID_INTC_EDX_PSE |
467 		    CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE |
468 		    CPUID_INTC_EDX_MCA |	/* XXPV true on dom0? */
469 		    CPUID_INTC_EDX_SEP | CPUID_INTC_EDX_MTRR |
470 		    CPUID_INTC_EDX_PGE | CPUID_INTC_EDX_PAT |
471 		    CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP |
472 		    CPUID_INTC_EDX_PSE36 | CPUID_INTC_EDX_HTT);
473 		break;
474 
475 	case 0x80000001:
476 		cp->cp_edx &=
477 		    ~(CPUID_AMD_EDX_PSE |
478 		    CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE |
479 		    CPUID_AMD_EDX_MTRR | CPUID_AMD_EDX_PGE |
480 		    CPUID_AMD_EDX_PAT | CPUID_AMD_EDX_PSE36 |
481 		    CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP |
482 		    CPUID_AMD_EDX_TSCP);
483 		cp->cp_ecx &= ~CPUID_AMD_ECX_CMP_LGCY;
484 		break;
485 	default:
486 		break;
487 	}
488 
489 	switch (vendor) {
490 	case X86_VENDOR_Intel:
491 		switch (eax) {
492 		case 4:
493 			/*
494 			 * Zero out the (ncores-per-chip - 1) field
495 			 */
496 			cp->cp_eax &= 0x03fffffff;
497 			break;
498 		default:
499 			break;
500 		}
501 		break;
502 	case X86_VENDOR_AMD:
503 		switch (eax) {
504 		case 0x80000008:
505 			/*
506 			 * Zero out the (ncores-per-chip - 1) field
507 			 */
508 			cp->cp_ecx &= 0xffffff00;
509 			break;
510 		default:
511 			break;
512 		}
513 		break;
514 	default:
515 		break;
516 	}
517 }
518 #else
519 #define	platform_cpuid_mangle(vendor, eax, cp)	/* nothing */
520 #endif
521 
522 /*
523  *  Some undocumented ways of patching the results of the cpuid
524  *  instruction to permit running Solaris 10 on future cpus that
525  *  we don't currently support.  Could be set to non-zero values
526  *  via settings in eeprom.
527  */
528 
529 uint32_t cpuid_feature_ecx_include;
530 uint32_t cpuid_feature_ecx_exclude;
531 uint32_t cpuid_feature_edx_include;
532 uint32_t cpuid_feature_edx_exclude;
533 
534 void
535 cpuid_alloc_space(cpu_t *cpu)
536 {
537 	/*
538 	 * By convention, cpu0 is the boot cpu, which is set up
539 	 * before memory allocation is available.  All other cpus get
540 	 * their cpuid_info struct allocated here.
541 	 */
542 	ASSERT(cpu->cpu_id != 0);
543 	cpu->cpu_m.mcpu_cpi =
544 	    kmem_zalloc(sizeof (*cpu->cpu_m.mcpu_cpi), KM_SLEEP);
545 }
546 
547 void
548 cpuid_free_space(cpu_t *cpu)
549 {
550 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
551 	int i;
552 
553 	ASSERT(cpu->cpu_id != 0);
554 
555 	/*
556 	 * Free up any function 4 related dynamic storage
557 	 */
558 	for (i = 1; i < cpi->cpi_std_4_size; i++)
559 		kmem_free(cpi->cpi_std_4[i], sizeof (struct cpuid_regs));
560 	if (cpi->cpi_std_4_size > 0)
561 		kmem_free(cpi->cpi_std_4,
562 		    cpi->cpi_std_4_size * sizeof (struct cpuid_regs *));
563 
564 	kmem_free(cpu->cpu_m.mcpu_cpi, sizeof (*cpu->cpu_m.mcpu_cpi));
565 }
566 
567 #if !defined(__xpv)
568 
569 static void
570 check_for_hvm()
571 {
572 	struct cpuid_regs cp;
573 	char *xen_str;
574 	uint32_t xen_signature[4];
575 	extern int xpv_is_hvm;
576 
577 	/*
578 	 * In a fully virtualized domain, Xen's pseudo-cpuid function
579 	 * 0x40000000 returns a string representing the Xen signature in
580 	 * %ebx, %ecx, and %edx.  %eax contains the maximum supported cpuid
581 	 * function.
582 	 */
583 	cp.cp_eax = 0x40000000;
584 	(void) __cpuid_insn(&cp);
585 	xen_signature[0] = cp.cp_ebx;
586 	xen_signature[1] = cp.cp_ecx;
587 	xen_signature[2] = cp.cp_edx;
588 	xen_signature[3] = 0;
589 	xen_str = (char *)xen_signature;
590 	if (strcmp("XenVMMXenVMM", xen_str) == 0 && cp.cp_eax <= 0x40000002)
591 		xpv_is_hvm = 1;
592 }
593 #endif	/* __xpv */
594 
595 uint_t
596 cpuid_pass1(cpu_t *cpu)
597 {
598 	uint32_t mask_ecx, mask_edx;
599 	uint_t feature = X86_CPUID;
600 	struct cpuid_info *cpi;
601 	struct cpuid_regs *cp;
602 	int xcpuid;
603 #if !defined(__xpv)
604 	extern int idle_cpu_prefer_mwait;
605 #endif
606 
607 	/*
608 	 * Space statically allocated for cpu0, ensure pointer is set
609 	 */
610 	if (cpu->cpu_id == 0)
611 		cpu->cpu_m.mcpu_cpi = &cpuid_info0;
612 	cpi = cpu->cpu_m.mcpu_cpi;
613 	ASSERT(cpi != NULL);
614 	cp = &cpi->cpi_std[0];
615 	cp->cp_eax = 0;
616 	cpi->cpi_maxeax = __cpuid_insn(cp);
617 	{
618 		uint32_t *iptr = (uint32_t *)cpi->cpi_vendorstr;
619 		*iptr++ = cp->cp_ebx;
620 		*iptr++ = cp->cp_edx;
621 		*iptr++ = cp->cp_ecx;
622 		*(char *)&cpi->cpi_vendorstr[12] = '\0';
623 	}
624 
625 	/*
626 	 * Map the vendor string to a type code
627 	 */
628 	if (strcmp(cpi->cpi_vendorstr, "GenuineIntel") == 0)
629 		cpi->cpi_vendor = X86_VENDOR_Intel;
630 	else if (strcmp(cpi->cpi_vendorstr, "AuthenticAMD") == 0)
631 		cpi->cpi_vendor = X86_VENDOR_AMD;
632 	else if (strcmp(cpi->cpi_vendorstr, "GenuineTMx86") == 0)
633 		cpi->cpi_vendor = X86_VENDOR_TM;
634 	else if (strcmp(cpi->cpi_vendorstr, CyrixInstead) == 0)
635 		/*
636 		 * CyrixInstead is a variable used by the Cyrix detection code
637 		 * in locore.
638 		 */
639 		cpi->cpi_vendor = X86_VENDOR_Cyrix;
640 	else if (strcmp(cpi->cpi_vendorstr, "UMC UMC UMC ") == 0)
641 		cpi->cpi_vendor = X86_VENDOR_UMC;
642 	else if (strcmp(cpi->cpi_vendorstr, "NexGenDriven") == 0)
643 		cpi->cpi_vendor = X86_VENDOR_NexGen;
644 	else if (strcmp(cpi->cpi_vendorstr, "CentaurHauls") == 0)
645 		cpi->cpi_vendor = X86_VENDOR_Centaur;
646 	else if (strcmp(cpi->cpi_vendorstr, "RiseRiseRise") == 0)
647 		cpi->cpi_vendor = X86_VENDOR_Rise;
648 	else if (strcmp(cpi->cpi_vendorstr, "SiS SiS SiS ") == 0)
649 		cpi->cpi_vendor = X86_VENDOR_SiS;
650 	else if (strcmp(cpi->cpi_vendorstr, "Geode by NSC") == 0)
651 		cpi->cpi_vendor = X86_VENDOR_NSC;
652 	else
653 		cpi->cpi_vendor = X86_VENDOR_IntelClone;
654 
655 	x86_vendor = cpi->cpi_vendor; /* for compatibility */
656 
657 	/*
658 	 * Limit the range in case of weird hardware
659 	 */
660 	if (cpi->cpi_maxeax > CPI_MAXEAX_MAX)
661 		cpi->cpi_maxeax = CPI_MAXEAX_MAX;
662 	if (cpi->cpi_maxeax < 1)
663 		goto pass1_done;
664 
665 	cp = &cpi->cpi_std[1];
666 	cp->cp_eax = 1;
667 	(void) __cpuid_insn(cp);
668 
669 	/*
670 	 * Extract identifying constants for easy access.
671 	 */
672 	cpi->cpi_model = CPI_MODEL(cpi);
673 	cpi->cpi_family = CPI_FAMILY(cpi);
674 
675 	if (cpi->cpi_family == 0xf)
676 		cpi->cpi_family += CPI_FAMILY_XTD(cpi);
677 
678 	/*
679 	 * Beware: AMD uses "extended model" iff base *FAMILY* == 0xf.
680 	 * Intel, and presumably everyone else, uses model == 0xf, as
681 	 * one would expect (max value means possible overflow).  Sigh.
682 	 */
683 
684 	switch (cpi->cpi_vendor) {
685 	case X86_VENDOR_Intel:
686 		if (IS_EXTENDED_MODEL_INTEL(cpi))
687 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
688 		break;
689 	case X86_VENDOR_AMD:
690 		if (CPI_FAMILY(cpi) == 0xf)
691 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
692 		break;
693 	default:
694 		if (cpi->cpi_model == 0xf)
695 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
696 		break;
697 	}
698 
699 	cpi->cpi_step = CPI_STEP(cpi);
700 	cpi->cpi_brandid = CPI_BRANDID(cpi);
701 
702 	/*
703 	 * *default* assumptions:
704 	 * - believe %edx feature word
705 	 * - ignore %ecx feature word
706 	 * - 32-bit virtual and physical addressing
707 	 */
708 	mask_edx = 0xffffffff;
709 	mask_ecx = 0;
710 
711 	cpi->cpi_pabits = cpi->cpi_vabits = 32;
712 
713 	switch (cpi->cpi_vendor) {
714 	case X86_VENDOR_Intel:
715 		if (cpi->cpi_family == 5)
716 			x86_type = X86_TYPE_P5;
717 		else if (IS_LEGACY_P6(cpi)) {
718 			x86_type = X86_TYPE_P6;
719 			pentiumpro_bug4046376 = 1;
720 			pentiumpro_bug4064495 = 1;
721 			/*
722 			 * Clear the SEP bit when it was set erroneously
723 			 */
724 			if (cpi->cpi_model < 3 && cpi->cpi_step < 3)
725 				cp->cp_edx &= ~CPUID_INTC_EDX_SEP;
726 		} else if (IS_NEW_F6(cpi) || cpi->cpi_family == 0xf) {
727 			x86_type = X86_TYPE_P4;
728 			/*
729 			 * We don't currently depend on any of the %ecx
730 			 * features until Prescott, so we'll only check
731 			 * this from P4 onwards.  We might want to revisit
732 			 * that idea later.
733 			 */
734 			mask_ecx = 0xffffffff;
735 		} else if (cpi->cpi_family > 0xf)
736 			mask_ecx = 0xffffffff;
737 		/*
738 		 * We don't support MONITOR/MWAIT if leaf 5 is not available
739 		 * to obtain the monitor linesize.
740 		 */
741 		if (cpi->cpi_maxeax < 5)
742 			mask_ecx &= ~CPUID_INTC_ECX_MON;
743 		break;
744 	case X86_VENDOR_IntelClone:
745 	default:
746 		break;
747 	case X86_VENDOR_AMD:
748 #if defined(OPTERON_ERRATUM_108)
749 		if (cpi->cpi_family == 0xf && cpi->cpi_model == 0xe) {
750 			cp->cp_eax = (0xf0f & cp->cp_eax) | 0xc0;
751 			cpi->cpi_model = 0xc;
752 		} else
753 #endif
754 		if (cpi->cpi_family == 5) {
755 			/*
756 			 * AMD K5 and K6
757 			 *
758 			 * These CPUs have an incomplete implementation
759 			 * of MCA/MCE which we mask away.
760 			 */
761 			mask_edx &= ~(CPUID_INTC_EDX_MCE | CPUID_INTC_EDX_MCA);
762 
763 			/*
764 			 * Model 0 uses the wrong (APIC) bit
765 			 * to indicate PGE.  Fix it here.
766 			 */
767 			if (cpi->cpi_model == 0) {
768 				if (cp->cp_edx & 0x200) {
769 					cp->cp_edx &= ~0x200;
770 					cp->cp_edx |= CPUID_INTC_EDX_PGE;
771 				}
772 			}
773 
774 			/*
775 			 * Early models had problems w/ MMX; disable.
776 			 */
777 			if (cpi->cpi_model < 6)
778 				mask_edx &= ~CPUID_INTC_EDX_MMX;
779 		}
780 
781 		/*
782 		 * For newer families, SSE3 and CX16, at least, are valid;
783 		 * enable all
784 		 */
785 		if (cpi->cpi_family >= 0xf)
786 			mask_ecx = 0xffffffff;
787 		/*
788 		 * We don't support MONITOR/MWAIT if leaf 5 is not available
789 		 * to obtain the monitor linesize.
790 		 */
791 		if (cpi->cpi_maxeax < 5)
792 			mask_ecx &= ~CPUID_INTC_ECX_MON;
793 
794 #if !defined(__xpv)
795 		/*
796 		 * Do not use MONITOR/MWAIT to halt in the idle loop on any AMD
797 		 * processors.  AMD does not intend MWAIT to be used in the cpu
798 		 * idle loop on current and future processors.  10h and future
799 		 * AMD processors use more power in MWAIT than HLT.
800 		 * Pre-family-10h Opterons do not have the MWAIT instruction.
801 		 */
802 		idle_cpu_prefer_mwait = 0;
803 #endif
804 
805 		break;
806 	case X86_VENDOR_TM:
807 		/*
808 		 * workaround the NT workaround in CMS 4.1
809 		 */
810 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4 &&
811 		    (cpi->cpi_step == 2 || cpi->cpi_step == 3))
812 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
813 		break;
814 	case X86_VENDOR_Centaur:
815 		/*
816 		 * workaround the NT workarounds again
817 		 */
818 		if (cpi->cpi_family == 6)
819 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
820 		break;
821 	case X86_VENDOR_Cyrix:
822 		/*
823 		 * We rely heavily on the probing in locore
824 		 * to actually figure out what parts, if any,
825 		 * of the Cyrix cpuid instruction to believe.
826 		 */
827 		switch (x86_type) {
828 		case X86_TYPE_CYRIX_486:
829 			mask_edx = 0;
830 			break;
831 		case X86_TYPE_CYRIX_6x86:
832 			mask_edx = 0;
833 			break;
834 		case X86_TYPE_CYRIX_6x86L:
835 			mask_edx =
836 			    CPUID_INTC_EDX_DE |
837 			    CPUID_INTC_EDX_CX8;
838 			break;
839 		case X86_TYPE_CYRIX_6x86MX:
840 			mask_edx =
841 			    CPUID_INTC_EDX_DE |
842 			    CPUID_INTC_EDX_MSR |
843 			    CPUID_INTC_EDX_CX8 |
844 			    CPUID_INTC_EDX_PGE |
845 			    CPUID_INTC_EDX_CMOV |
846 			    CPUID_INTC_EDX_MMX;
847 			break;
848 		case X86_TYPE_CYRIX_GXm:
849 			mask_edx =
850 			    CPUID_INTC_EDX_MSR |
851 			    CPUID_INTC_EDX_CX8 |
852 			    CPUID_INTC_EDX_CMOV |
853 			    CPUID_INTC_EDX_MMX;
854 			break;
855 		case X86_TYPE_CYRIX_MediaGX:
856 			break;
857 		case X86_TYPE_CYRIX_MII:
858 		case X86_TYPE_VIA_CYRIX_III:
859 			mask_edx =
860 			    CPUID_INTC_EDX_DE |
861 			    CPUID_INTC_EDX_TSC |
862 			    CPUID_INTC_EDX_MSR |
863 			    CPUID_INTC_EDX_CX8 |
864 			    CPUID_INTC_EDX_PGE |
865 			    CPUID_INTC_EDX_CMOV |
866 			    CPUID_INTC_EDX_MMX;
867 			break;
868 		default:
869 			break;
870 		}
871 		break;
872 	}
873 
874 #if defined(__xpv)
875 	/*
876 	 * Do not support MONITOR/MWAIT under a hypervisor
877 	 */
878 	mask_ecx &= ~CPUID_INTC_ECX_MON;
879 #endif	/* __xpv */
880 
881 	/*
882 	 * Now we've figured out the masks that determine
883 	 * which bits we choose to believe, apply the masks
884 	 * to the feature words, then map the kernel's view
885 	 * of these feature words into its feature word.
886 	 */
887 	cp->cp_edx &= mask_edx;
888 	cp->cp_ecx &= mask_ecx;
889 
890 	/*
891 	 * apply any platform restrictions (we don't call this
892 	 * immediately after __cpuid_insn here, because we need the
893 	 * workarounds applied above first)
894 	 */
895 	platform_cpuid_mangle(cpi->cpi_vendor, 1, cp);
896 
897 	/*
898 	 * fold in overrides from the "eeprom" mechanism
899 	 */
900 	cp->cp_edx |= cpuid_feature_edx_include;
901 	cp->cp_edx &= ~cpuid_feature_edx_exclude;
902 
903 	cp->cp_ecx |= cpuid_feature_ecx_include;
904 	cp->cp_ecx &= ~cpuid_feature_ecx_exclude;
905 
906 	if (cp->cp_edx & CPUID_INTC_EDX_PSE)
907 		feature |= X86_LARGEPAGE;
908 	if (cp->cp_edx & CPUID_INTC_EDX_TSC)
909 		feature |= X86_TSC;
910 	if (cp->cp_edx & CPUID_INTC_EDX_MSR)
911 		feature |= X86_MSR;
912 	if (cp->cp_edx & CPUID_INTC_EDX_MTRR)
913 		feature |= X86_MTRR;
914 	if (cp->cp_edx & CPUID_INTC_EDX_PGE)
915 		feature |= X86_PGE;
916 	if (cp->cp_edx & CPUID_INTC_EDX_CMOV)
917 		feature |= X86_CMOV;
918 	if (cp->cp_edx & CPUID_INTC_EDX_MMX)
919 		feature |= X86_MMX;
920 	if ((cp->cp_edx & CPUID_INTC_EDX_MCE) != 0 &&
921 	    (cp->cp_edx & CPUID_INTC_EDX_MCA) != 0)
922 		feature |= X86_MCA;
923 	if (cp->cp_edx & CPUID_INTC_EDX_PAE)
924 		feature |= X86_PAE;
925 	if (cp->cp_edx & CPUID_INTC_EDX_CX8)
926 		feature |= X86_CX8;
927 	if (cp->cp_ecx & CPUID_INTC_ECX_CX16)
928 		feature |= X86_CX16;
929 	if (cp->cp_edx & CPUID_INTC_EDX_PAT)
930 		feature |= X86_PAT;
931 	if (cp->cp_edx & CPUID_INTC_EDX_SEP)
932 		feature |= X86_SEP;
933 	if (cp->cp_edx & CPUID_INTC_EDX_FXSR) {
934 		/*
935 		 * In our implementation, fxsave/fxrstor
936 		 * are prerequisites before we'll even
937 		 * try and do SSE things.
938 		 */
939 		if (cp->cp_edx & CPUID_INTC_EDX_SSE)
940 			feature |= X86_SSE;
941 		if (cp->cp_edx & CPUID_INTC_EDX_SSE2)
942 			feature |= X86_SSE2;
943 		if (cp->cp_ecx & CPUID_INTC_ECX_SSE3)
944 			feature |= X86_SSE3;
945 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
946 			if (cp->cp_ecx & CPUID_INTC_ECX_SSSE3)
947 				feature |= X86_SSSE3;
948 			if (cp->cp_ecx & CPUID_INTC_ECX_SSE4_1)
949 				feature |= X86_SSE4_1;
950 			if (cp->cp_ecx & CPUID_INTC_ECX_SSE4_2)
951 				feature |= X86_SSE4_2;
952 		}
953 	}
954 	if (cp->cp_edx & CPUID_INTC_EDX_DE)
955 		feature |= X86_DE;
956 	if (cp->cp_ecx & CPUID_INTC_ECX_MON) {
957 		cpi->cpi_mwait.support |= MWAIT_SUPPORT;
958 		feature |= X86_MWAIT;
959 	}
960 
961 	if (feature & X86_PAE)
962 		cpi->cpi_pabits = 36;
963 
964 	/*
965 	 * Hyperthreading configuration is slightly tricky on Intel
966 	 * and pure clones, and even trickier on AMD.
967 	 *
968 	 * (AMD chose to set the HTT bit on their CMP processors,
969 	 * even though they're not actually hyperthreaded.  Thus it
970 	 * takes a bit more work to figure out what's really going
971 	 * on ... see the handling of the CMP_LGCY bit below)
972 	 */
973 	if (cp->cp_edx & CPUID_INTC_EDX_HTT) {
974 		cpi->cpi_ncpu_per_chip = CPI_CPU_COUNT(cpi);
975 		if (cpi->cpi_ncpu_per_chip > 1)
976 			feature |= X86_HTT;
977 	} else {
978 		cpi->cpi_ncpu_per_chip = 1;
979 	}
980 
981 	/*
982 	 * Work on the "extended" feature information, doing
983 	 * some basic initialization for cpuid_pass2()
984 	 */
985 	xcpuid = 0;
986 	switch (cpi->cpi_vendor) {
987 	case X86_VENDOR_Intel:
988 		if (IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf)
989 			xcpuid++;
990 		break;
991 	case X86_VENDOR_AMD:
992 		if (cpi->cpi_family > 5 ||
993 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
994 			xcpuid++;
995 		break;
996 	case X86_VENDOR_Cyrix:
997 		/*
998 		 * Only these Cyrix CPUs are -known- to support
999 		 * extended cpuid operations.
1000 		 */
1001 		if (x86_type == X86_TYPE_VIA_CYRIX_III ||
1002 		    x86_type == X86_TYPE_CYRIX_GXm)
1003 			xcpuid++;
1004 		break;
1005 	case X86_VENDOR_Centaur:
1006 	case X86_VENDOR_TM:
1007 	default:
1008 		xcpuid++;
1009 		break;
1010 	}
1011 
1012 	if (xcpuid) {
1013 		cp = &cpi->cpi_extd[0];
1014 		cp->cp_eax = 0x80000000;
1015 		cpi->cpi_xmaxeax = __cpuid_insn(cp);
1016 	}
1017 
1018 	if (cpi->cpi_xmaxeax & 0x80000000) {
1019 
1020 		if (cpi->cpi_xmaxeax > CPI_XMAXEAX_MAX)
1021 			cpi->cpi_xmaxeax = CPI_XMAXEAX_MAX;
1022 
1023 		switch (cpi->cpi_vendor) {
1024 		case X86_VENDOR_Intel:
1025 		case X86_VENDOR_AMD:
1026 			if (cpi->cpi_xmaxeax < 0x80000001)
1027 				break;
1028 			cp = &cpi->cpi_extd[1];
1029 			cp->cp_eax = 0x80000001;
1030 			(void) __cpuid_insn(cp);
1031 
1032 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
1033 			    cpi->cpi_family == 5 &&
1034 			    cpi->cpi_model == 6 &&
1035 			    cpi->cpi_step == 6) {
1036 				/*
1037 				 * K6 model 6 uses bit 10 to indicate SYSC
1038 				 * Later models use bit 11. Fix it here.
1039 				 */
1040 				if (cp->cp_edx & 0x400) {
1041 					cp->cp_edx &= ~0x400;
1042 					cp->cp_edx |= CPUID_AMD_EDX_SYSC;
1043 				}
1044 			}
1045 
1046 			platform_cpuid_mangle(cpi->cpi_vendor, 0x80000001, cp);
1047 
1048 			/*
1049 			 * Compute the additions to the kernel's feature word.
1050 			 */
1051 			if (cp->cp_edx & CPUID_AMD_EDX_NX)
1052 				feature |= X86_NX;
1053 
1054 #if defined(__amd64)
1055 			/* 1 GB large page - enable only for 64 bit kernel */
1056 			if (cp->cp_edx & CPUID_AMD_EDX_1GPG)
1057 				feature |= X86_1GPG;
1058 #endif
1059 
1060 			if ((cpi->cpi_vendor == X86_VENDOR_AMD) &&
1061 			    (cpi->cpi_std[1].cp_edx & CPUID_INTC_EDX_FXSR) &&
1062 			    (cp->cp_ecx & CPUID_AMD_ECX_SSE4A))
1063 				feature |= X86_SSE4A;
1064 
1065 			/*
1066 			 * If both the HTT and CMP_LGCY bits are set,
1067 			 * then we're not actually HyperThreaded.  Read
1068 			 * "AMD CPUID Specification" for more details.
1069 			 */
1070 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
1071 			    (feature & X86_HTT) &&
1072 			    (cp->cp_ecx & CPUID_AMD_ECX_CMP_LGCY)) {
1073 				feature &= ~X86_HTT;
1074 				feature |= X86_CMP;
1075 			}
1076 #if defined(__amd64)
1077 			/*
1078 			 * It's really tricky to support syscall/sysret in
1079 			 * the i386 kernel; we rely on sysenter/sysexit
1080 			 * instead.  In the amd64 kernel, things are -way-
1081 			 * better.
1082 			 */
1083 			if (cp->cp_edx & CPUID_AMD_EDX_SYSC)
1084 				feature |= X86_ASYSC;
1085 
1086 			/*
1087 			 * While we're thinking about system calls, note
1088 			 * that AMD processors don't support sysenter
1089 			 * in long mode at all, so don't try to program them.
1090 			 */
1091 			if (x86_vendor == X86_VENDOR_AMD)
1092 				feature &= ~X86_SEP;
1093 #endif
1094 			if (x86_vendor == X86_VENDOR_AMD &&
1095 			    cp->cp_edx & CPUID_AMD_EDX_TSCP)
1096 				feature |= X86_TSCP;
1097 			break;
1098 		default:
1099 			break;
1100 		}
1101 
1102 		/*
1103 		 * Get CPUID data about processor cores and hyperthreads.
1104 		 */
1105 		switch (cpi->cpi_vendor) {
1106 		case X86_VENDOR_Intel:
1107 			if (cpi->cpi_maxeax >= 4) {
1108 				cp = &cpi->cpi_std[4];
1109 				cp->cp_eax = 4;
1110 				cp->cp_ecx = 0;
1111 				(void) __cpuid_insn(cp);
1112 				platform_cpuid_mangle(cpi->cpi_vendor, 4, cp);
1113 			}
1114 			/*FALLTHROUGH*/
1115 		case X86_VENDOR_AMD:
1116 			if (cpi->cpi_xmaxeax < 0x80000008)
1117 				break;
1118 			cp = &cpi->cpi_extd[8];
1119 			cp->cp_eax = 0x80000008;
1120 			(void) __cpuid_insn(cp);
1121 			platform_cpuid_mangle(cpi->cpi_vendor, 0x80000008, cp);
1122 
1123 			/*
1124 			 * Virtual and physical address limits from
1125 			 * cpuid override previously guessed values.
1126 			 */
1127 			cpi->cpi_pabits = BITX(cp->cp_eax, 7, 0);
1128 			cpi->cpi_vabits = BITX(cp->cp_eax, 15, 8);
1129 			break;
1130 		default:
1131 			break;
1132 		}
1133 
1134 		/*
1135 		 * Derive the number of cores per chip
1136 		 */
1137 		switch (cpi->cpi_vendor) {
1138 		case X86_VENDOR_Intel:
1139 			if (cpi->cpi_maxeax < 4) {
1140 				cpi->cpi_ncore_per_chip = 1;
1141 				break;
1142 			} else {
1143 				cpi->cpi_ncore_per_chip =
1144 				    BITX((cpi)->cpi_std[4].cp_eax, 31, 26) + 1;
1145 			}
1146 			break;
1147 		case X86_VENDOR_AMD:
1148 			if (cpi->cpi_xmaxeax < 0x80000008) {
1149 				cpi->cpi_ncore_per_chip = 1;
1150 				break;
1151 			} else {
1152 				cpi->cpi_ncore_per_chip =
1153 				    BITX((cpi)->cpi_extd[8].cp_ecx, 7, 0) + 1;
1154 			}
1155 			break;
1156 		default:
1157 			cpi->cpi_ncore_per_chip = 1;
1158 			break;
1159 		}
1160 	} else {
1161 		cpi->cpi_ncore_per_chip = 1;
1162 	}
1163 
1164 	/*
1165 	 * If more than one core, then this processor is CMP.
1166 	 */
1167 	if (cpi->cpi_ncore_per_chip > 1)
1168 		feature |= X86_CMP;
1169 
1170 	/*
1171 	 * If the number of cores is the same as the number
1172 	 * of CPUs, then we cannot have HyperThreading.
1173 	 */
1174 	if (cpi->cpi_ncpu_per_chip == cpi->cpi_ncore_per_chip)
1175 		feature &= ~X86_HTT;
1176 
1177 	if ((feature & (X86_HTT | X86_CMP)) == 0) {
1178 		/*
1179 		 * Single-core single-threaded processors.
1180 		 */
1181 		cpi->cpi_chipid = -1;
1182 		cpi->cpi_clogid = 0;
1183 		cpi->cpi_coreid = cpu->cpu_id;
1184 	} else if (cpi->cpi_ncpu_per_chip > 1) {
1185 		uint_t i;
1186 		uint_t chipid_shift = 0;
1187 		uint_t coreid_shift = 0;
1188 		uint_t apic_id = CPI_APIC_ID(cpi);
1189 
1190 		for (i = 1; i < cpi->cpi_ncpu_per_chip; i <<= 1)
1191 			chipid_shift++;
1192 		cpi->cpi_chipid = apic_id >> chipid_shift;
1193 		cpi->cpi_clogid = apic_id & ((1 << chipid_shift) - 1);
1194 
1195 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
1196 			if (feature & X86_CMP) {
1197 				/*
1198 				 * Multi-core (and possibly multi-threaded)
1199 				 * processors.
1200 				 */
1201 				uint_t ncpu_per_core;
1202 				if (cpi->cpi_ncore_per_chip == 1)
1203 					ncpu_per_core = cpi->cpi_ncpu_per_chip;
1204 				else if (cpi->cpi_ncore_per_chip > 1)
1205 					ncpu_per_core = cpi->cpi_ncpu_per_chip /
1206 					    cpi->cpi_ncore_per_chip;
1207 				/*
1208 				 * 8bit APIC IDs on dual core Pentiums
1209 				 * look like this:
1210 				 *
1211 				 * +-----------------------+------+------+
1212 				 * | Physical Package ID   |  MC  |  HT  |
1213 				 * +-----------------------+------+------+
1214 				 * <------- chipid -------->
1215 				 * <------- coreid --------------->
1216 				 *			   <--- clogid -->
1217 				 *
1218 				 * Where the number of bits necessary to
1219 				 * represent MC and HT fields together equals
1220 				 * to the minimum number of bits necessary to
1221 				 * store the value of cpi->cpi_ncpu_per_chip.
1222 				 * Of those bits, the MC part uses the number
1223 				 * of bits necessary to store the value of
1224 				 * cpi->cpi_ncore_per_chip.
1225 				 */
1226 				for (i = 1; i < ncpu_per_core; i <<= 1)
1227 					coreid_shift++;
1228 				cpi->cpi_coreid = apic_id >> coreid_shift;
1229 			} else if (feature & X86_HTT) {
1230 				/*
1231 				 * Single-core multi-threaded processors.
1232 				 */
1233 				cpi->cpi_coreid = cpi->cpi_chipid;
1234 			}
1235 		} else if (cpi->cpi_vendor == X86_VENDOR_AMD) {
1236 			/*
1237 			 * AMD currently only has dual-core processors with
1238 			 * single-threaded cores.  If they ever release
1239 			 * multi-threaded processors, then this code
1240 			 * will have to be updated.
1241 			 */
1242 			cpi->cpi_coreid = cpu->cpu_id;
1243 		} else {
1244 			/*
1245 			 * All other processors are currently
1246 			 * assumed to have single cores.
1247 			 */
1248 			cpi->cpi_coreid = cpi->cpi_chipid;
1249 		}
1250 	}
1251 
1252 	/*
1253 	 * Synthesize chip "revision" and socket type
1254 	 */
1255 	synth_info(cpi);
1256 
1257 pass1_done:
1258 #if !defined(__xpv)
1259 	check_for_hvm();
1260 #endif
1261 	cpi->cpi_pass = 1;
1262 	return (feature);
1263 }
1264 
1265 /*
1266  * Make copies of the cpuid table entries we depend on, in
1267  * part for ease of parsing now, in part so that we have only
1268  * one place to correct any of it, in part for ease of
1269  * later export to userland, and in part so we can look at
1270  * this stuff in a crash dump.
1271  */
1272 
1273 /*ARGSUSED*/
1274 void
1275 cpuid_pass2(cpu_t *cpu)
1276 {
1277 	uint_t n, nmax;
1278 	int i;
1279 	struct cpuid_regs *cp;
1280 	uint8_t *dp;
1281 	uint32_t *iptr;
1282 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1283 
1284 	ASSERT(cpi->cpi_pass == 1);
1285 
1286 	if (cpi->cpi_maxeax < 1)
1287 		goto pass2_done;
1288 
1289 	if ((nmax = cpi->cpi_maxeax + 1) > NMAX_CPI_STD)
1290 		nmax = NMAX_CPI_STD;
1291 	/*
1292 	 * (We already handled n == 0 and n == 1 in pass 1)
1293 	 */
1294 	for (n = 2, cp = &cpi->cpi_std[2]; n < nmax; n++, cp++) {
1295 		cp->cp_eax = n;
1296 
1297 		/*
1298 		 * CPUID function 4 expects %ecx to be initialized
1299 		 * with an index which indicates which cache to return
1300 		 * information about. The OS is expected to call function 4
1301 		 * with %ecx set to 0, 1, 2, ... until it returns with
1302 		 * EAX[4:0] set to 0, which indicates there are no more
1303 		 * caches.
1304 		 *
1305 		 * Here, populate cpi_std[4] with the information returned by
1306 		 * function 4 when %ecx == 0, and do the rest in cpuid_pass3()
1307 		 * when dynamic memory allocation becomes available.
1308 		 *
1309 		 * Note: we need to explicitly initialize %ecx here, since
1310 		 * function 4 may have been previously invoked.
1311 		 */
1312 		if (n == 4)
1313 			cp->cp_ecx = 0;
1314 
1315 		(void) __cpuid_insn(cp);
1316 		platform_cpuid_mangle(cpi->cpi_vendor, n, cp);
1317 		switch (n) {
1318 		case 2:
1319 			/*
1320 			 * "the lower 8 bits of the %eax register
1321 			 * contain a value that identifies the number
1322 			 * of times the cpuid [instruction] has to be
1323 			 * executed to obtain a complete image of the
1324 			 * processor's caching systems."
1325 			 *
1326 			 * How *do* they make this stuff up?
1327 			 */
1328 			cpi->cpi_ncache = sizeof (*cp) *
1329 			    BITX(cp->cp_eax, 7, 0);
1330 			if (cpi->cpi_ncache == 0)
1331 				break;
1332 			cpi->cpi_ncache--;	/* skip count byte */
1333 
1334 			/*
1335 			 * Well, for now, rather than attempt to implement
1336 			 * this slightly dubious algorithm, we just look
1337 			 * at the first 15 ..
1338 			 */
1339 			if (cpi->cpi_ncache > (sizeof (*cp) - 1))
1340 				cpi->cpi_ncache = sizeof (*cp) - 1;
1341 
1342 			dp = cpi->cpi_cacheinfo;
1343 			if (BITX(cp->cp_eax, 31, 31) == 0) {
1344 				uint8_t *p = (void *)&cp->cp_eax;
1345 				for (i = 1; i < 3; i++)
1346 					if (p[i] != 0)
1347 						*dp++ = p[i];
1348 			}
1349 			if (BITX(cp->cp_ebx, 31, 31) == 0) {
1350 				uint8_t *p = (void *)&cp->cp_ebx;
1351 				for (i = 0; i < 4; i++)
1352 					if (p[i] != 0)
1353 						*dp++ = p[i];
1354 			}
1355 			if (BITX(cp->cp_ecx, 31, 31) == 0) {
1356 				uint8_t *p = (void *)&cp->cp_ecx;
1357 				for (i = 0; i < 4; i++)
1358 					if (p[i] != 0)
1359 						*dp++ = p[i];
1360 			}
1361 			if (BITX(cp->cp_edx, 31, 31) == 0) {
1362 				uint8_t *p = (void *)&cp->cp_edx;
1363 				for (i = 0; i < 4; i++)
1364 					if (p[i] != 0)
1365 						*dp++ = p[i];
1366 			}
1367 			break;
1368 
1369 		case 3:	/* Processor serial number, if PSN supported */
1370 			break;
1371 
1372 		case 4:	/* Deterministic cache parameters */
1373 			break;
1374 
1375 		case 5:	/* Monitor/Mwait parameters */
1376 		{
1377 			size_t mwait_size;
1378 
1379 			/*
1380 			 * check cpi_mwait.support which was set in cpuid_pass1
1381 			 */
1382 			if (!(cpi->cpi_mwait.support & MWAIT_SUPPORT))
1383 				break;
1384 
1385 			/*
1386 			 * Protect ourself from insane mwait line size.
1387 			 * Workaround for incomplete hardware emulator(s).
1388 			 */
1389 			mwait_size = (size_t)MWAIT_SIZE_MAX(cpi);
1390 			if (mwait_size < sizeof (uint32_t) ||
1391 			    !ISP2(mwait_size)) {
1392 #if DEBUG
1393 				cmn_err(CE_NOTE, "Cannot handle cpu %d mwait "
1394 				    "size %ld",
1395 				    cpu->cpu_id, (long)mwait_size);
1396 #endif
1397 				break;
1398 			}
1399 
1400 			cpi->cpi_mwait.mon_min = (size_t)MWAIT_SIZE_MIN(cpi);
1401 			cpi->cpi_mwait.mon_max = mwait_size;
1402 			if (MWAIT_EXTENSION(cpi)) {
1403 				cpi->cpi_mwait.support |= MWAIT_EXTENSIONS;
1404 				if (MWAIT_INT_ENABLE(cpi))
1405 					cpi->cpi_mwait.support |=
1406 					    MWAIT_ECX_INT_ENABLE;
1407 			}
1408 			break;
1409 		}
1410 		default:
1411 			break;
1412 		}
1413 	}
1414 
1415 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0)
1416 		goto pass2_done;
1417 
1418 	if ((nmax = cpi->cpi_xmaxeax - 0x80000000 + 1) > NMAX_CPI_EXTD)
1419 		nmax = NMAX_CPI_EXTD;
1420 	/*
1421 	 * Copy the extended properties, fixing them as we go.
1422 	 * (We already handled n == 0 and n == 1 in pass 1)
1423 	 */
1424 	iptr = (void *)cpi->cpi_brandstr;
1425 	for (n = 2, cp = &cpi->cpi_extd[2]; n < nmax; cp++, n++) {
1426 		cp->cp_eax = 0x80000000 + n;
1427 		(void) __cpuid_insn(cp);
1428 		platform_cpuid_mangle(cpi->cpi_vendor, 0x80000000 + n, cp);
1429 		switch (n) {
1430 		case 2:
1431 		case 3:
1432 		case 4:
1433 			/*
1434 			 * Extract the brand string
1435 			 */
1436 			*iptr++ = cp->cp_eax;
1437 			*iptr++ = cp->cp_ebx;
1438 			*iptr++ = cp->cp_ecx;
1439 			*iptr++ = cp->cp_edx;
1440 			break;
1441 		case 5:
1442 			switch (cpi->cpi_vendor) {
1443 			case X86_VENDOR_AMD:
1444 				/*
1445 				 * The Athlon and Duron were the first
1446 				 * parts to report the sizes of the
1447 				 * TLB for large pages. Before then,
1448 				 * we don't trust the data.
1449 				 */
1450 				if (cpi->cpi_family < 6 ||
1451 				    (cpi->cpi_family == 6 &&
1452 				    cpi->cpi_model < 1))
1453 					cp->cp_eax = 0;
1454 				break;
1455 			default:
1456 				break;
1457 			}
1458 			break;
1459 		case 6:
1460 			switch (cpi->cpi_vendor) {
1461 			case X86_VENDOR_AMD:
1462 				/*
1463 				 * The Athlon and Duron were the first
1464 				 * AMD parts with L2 TLB's.
1465 				 * Before then, don't trust the data.
1466 				 */
1467 				if (cpi->cpi_family < 6 ||
1468 				    cpi->cpi_family == 6 &&
1469 				    cpi->cpi_model < 1)
1470 					cp->cp_eax = cp->cp_ebx = 0;
1471 				/*
1472 				 * AMD Duron rev A0 reports L2
1473 				 * cache size incorrectly as 1K
1474 				 * when it is really 64K
1475 				 */
1476 				if (cpi->cpi_family == 6 &&
1477 				    cpi->cpi_model == 3 &&
1478 				    cpi->cpi_step == 0) {
1479 					cp->cp_ecx &= 0xffff;
1480 					cp->cp_ecx |= 0x400000;
1481 				}
1482 				break;
1483 			case X86_VENDOR_Cyrix:	/* VIA C3 */
1484 				/*
1485 				 * VIA C3 processors are a bit messed
1486 				 * up w.r.t. encoding cache sizes in %ecx
1487 				 */
1488 				if (cpi->cpi_family != 6)
1489 					break;
1490 				/*
1491 				 * model 7 and 8 were incorrectly encoded
1492 				 *
1493 				 * xxx is model 8 really broken?
1494 				 */
1495 				if (cpi->cpi_model == 7 ||
1496 				    cpi->cpi_model == 8)
1497 					cp->cp_ecx =
1498 					    BITX(cp->cp_ecx, 31, 24) << 16 |
1499 					    BITX(cp->cp_ecx, 23, 16) << 12 |
1500 					    BITX(cp->cp_ecx, 15, 8) << 8 |
1501 					    BITX(cp->cp_ecx, 7, 0);
1502 				/*
1503 				 * model 9 stepping 1 has wrong associativity
1504 				 */
1505 				if (cpi->cpi_model == 9 && cpi->cpi_step == 1)
1506 					cp->cp_ecx |= 8 << 12;
1507 				break;
1508 			case X86_VENDOR_Intel:
1509 				/*
1510 				 * Extended L2 Cache features function.
1511 				 * First appeared on Prescott.
1512 				 */
1513 			default:
1514 				break;
1515 			}
1516 			break;
1517 		default:
1518 			break;
1519 		}
1520 	}
1521 
1522 pass2_done:
1523 	cpi->cpi_pass = 2;
1524 }
1525 
1526 static const char *
1527 intel_cpubrand(const struct cpuid_info *cpi)
1528 {
1529 	int i;
1530 
1531 	if ((x86_feature & X86_CPUID) == 0 ||
1532 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1533 		return ("i486");
1534 
1535 	switch (cpi->cpi_family) {
1536 	case 5:
1537 		return ("Intel Pentium(r)");
1538 	case 6:
1539 		switch (cpi->cpi_model) {
1540 			uint_t celeron, xeon;
1541 			const struct cpuid_regs *cp;
1542 		case 0:
1543 		case 1:
1544 		case 2:
1545 			return ("Intel Pentium(r) Pro");
1546 		case 3:
1547 		case 4:
1548 			return ("Intel Pentium(r) II");
1549 		case 6:
1550 			return ("Intel Celeron(r)");
1551 		case 5:
1552 		case 7:
1553 			celeron = xeon = 0;
1554 			cp = &cpi->cpi_std[2];	/* cache info */
1555 
1556 			for (i = 1; i < 3; i++) {
1557 				uint_t tmp;
1558 
1559 				tmp = (cp->cp_eax >> (8 * i)) & 0xff;
1560 				if (tmp == 0x40)
1561 					celeron++;
1562 				if (tmp >= 0x44 && tmp <= 0x45)
1563 					xeon++;
1564 			}
1565 
1566 			for (i = 0; i < 2; i++) {
1567 				uint_t tmp;
1568 
1569 				tmp = (cp->cp_ebx >> (8 * i)) & 0xff;
1570 				if (tmp == 0x40)
1571 					celeron++;
1572 				else if (tmp >= 0x44 && tmp <= 0x45)
1573 					xeon++;
1574 			}
1575 
1576 			for (i = 0; i < 4; i++) {
1577 				uint_t tmp;
1578 
1579 				tmp = (cp->cp_ecx >> (8 * i)) & 0xff;
1580 				if (tmp == 0x40)
1581 					celeron++;
1582 				else if (tmp >= 0x44 && tmp <= 0x45)
1583 					xeon++;
1584 			}
1585 
1586 			for (i = 0; i < 4; i++) {
1587 				uint_t tmp;
1588 
1589 				tmp = (cp->cp_edx >> (8 * i)) & 0xff;
1590 				if (tmp == 0x40)
1591 					celeron++;
1592 				else if (tmp >= 0x44 && tmp <= 0x45)
1593 					xeon++;
1594 			}
1595 
1596 			if (celeron)
1597 				return ("Intel Celeron(r)");
1598 			if (xeon)
1599 				return (cpi->cpi_model == 5 ?
1600 				    "Intel Pentium(r) II Xeon(tm)" :
1601 				    "Intel Pentium(r) III Xeon(tm)");
1602 			return (cpi->cpi_model == 5 ?
1603 			    "Intel Pentium(r) II or Pentium(r) II Xeon(tm)" :
1604 			    "Intel Pentium(r) III or Pentium(r) III Xeon(tm)");
1605 		default:
1606 			break;
1607 		}
1608 	default:
1609 		break;
1610 	}
1611 
1612 	/* BrandID is present if the field is nonzero */
1613 	if (cpi->cpi_brandid != 0) {
1614 		static const struct {
1615 			uint_t bt_bid;
1616 			const char *bt_str;
1617 		} brand_tbl[] = {
1618 			{ 0x1,	"Intel(r) Celeron(r)" },
1619 			{ 0x2,	"Intel(r) Pentium(r) III" },
1620 			{ 0x3,	"Intel(r) Pentium(r) III Xeon(tm)" },
1621 			{ 0x4,	"Intel(r) Pentium(r) III" },
1622 			{ 0x6,	"Mobile Intel(r) Pentium(r) III" },
1623 			{ 0x7,	"Mobile Intel(r) Celeron(r)" },
1624 			{ 0x8,	"Intel(r) Pentium(r) 4" },
1625 			{ 0x9,	"Intel(r) Pentium(r) 4" },
1626 			{ 0xa,	"Intel(r) Celeron(r)" },
1627 			{ 0xb,	"Intel(r) Xeon(tm)" },
1628 			{ 0xc,	"Intel(r) Xeon(tm) MP" },
1629 			{ 0xe,	"Mobile Intel(r) Pentium(r) 4" },
1630 			{ 0xf,	"Mobile Intel(r) Celeron(r)" },
1631 			{ 0x11, "Mobile Genuine Intel(r)" },
1632 			{ 0x12, "Intel(r) Celeron(r) M" },
1633 			{ 0x13, "Mobile Intel(r) Celeron(r)" },
1634 			{ 0x14, "Intel(r) Celeron(r)" },
1635 			{ 0x15, "Mobile Genuine Intel(r)" },
1636 			{ 0x16,	"Intel(r) Pentium(r) M" },
1637 			{ 0x17, "Mobile Intel(r) Celeron(r)" }
1638 		};
1639 		uint_t btblmax = sizeof (brand_tbl) / sizeof (brand_tbl[0]);
1640 		uint_t sgn;
1641 
1642 		sgn = (cpi->cpi_family << 8) |
1643 		    (cpi->cpi_model << 4) | cpi->cpi_step;
1644 
1645 		for (i = 0; i < btblmax; i++)
1646 			if (brand_tbl[i].bt_bid == cpi->cpi_brandid)
1647 				break;
1648 		if (i < btblmax) {
1649 			if (sgn == 0x6b1 && cpi->cpi_brandid == 3)
1650 				return ("Intel(r) Celeron(r)");
1651 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xb)
1652 				return ("Intel(r) Xeon(tm) MP");
1653 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xe)
1654 				return ("Intel(r) Xeon(tm)");
1655 			return (brand_tbl[i].bt_str);
1656 		}
1657 	}
1658 
1659 	return (NULL);
1660 }
1661 
1662 static const char *
1663 amd_cpubrand(const struct cpuid_info *cpi)
1664 {
1665 	if ((x86_feature & X86_CPUID) == 0 ||
1666 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1667 		return ("i486 compatible");
1668 
1669 	switch (cpi->cpi_family) {
1670 	case 5:
1671 		switch (cpi->cpi_model) {
1672 		case 0:
1673 		case 1:
1674 		case 2:
1675 		case 3:
1676 		case 4:
1677 		case 5:
1678 			return ("AMD-K5(r)");
1679 		case 6:
1680 		case 7:
1681 			return ("AMD-K6(r)");
1682 		case 8:
1683 			return ("AMD-K6(r)-2");
1684 		case 9:
1685 			return ("AMD-K6(r)-III");
1686 		default:
1687 			return ("AMD (family 5)");
1688 		}
1689 	case 6:
1690 		switch (cpi->cpi_model) {
1691 		case 1:
1692 			return ("AMD-K7(tm)");
1693 		case 0:
1694 		case 2:
1695 		case 4:
1696 			return ("AMD Athlon(tm)");
1697 		case 3:
1698 		case 7:
1699 			return ("AMD Duron(tm)");
1700 		case 6:
1701 		case 8:
1702 		case 10:
1703 			/*
1704 			 * Use the L2 cache size to distinguish
1705 			 */
1706 			return ((cpi->cpi_extd[6].cp_ecx >> 16) >= 256 ?
1707 			    "AMD Athlon(tm)" : "AMD Duron(tm)");
1708 		default:
1709 			return ("AMD (family 6)");
1710 		}
1711 	default:
1712 		break;
1713 	}
1714 
1715 	if (cpi->cpi_family == 0xf && cpi->cpi_model == 5 &&
1716 	    cpi->cpi_brandid != 0) {
1717 		switch (BITX(cpi->cpi_brandid, 7, 5)) {
1718 		case 3:
1719 			return ("AMD Opteron(tm) UP 1xx");
1720 		case 4:
1721 			return ("AMD Opteron(tm) DP 2xx");
1722 		case 5:
1723 			return ("AMD Opteron(tm) MP 8xx");
1724 		default:
1725 			return ("AMD Opteron(tm)");
1726 		}
1727 	}
1728 
1729 	return (NULL);
1730 }
1731 
1732 static const char *
1733 cyrix_cpubrand(struct cpuid_info *cpi, uint_t type)
1734 {
1735 	if ((x86_feature & X86_CPUID) == 0 ||
1736 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5 ||
1737 	    type == X86_TYPE_CYRIX_486)
1738 		return ("i486 compatible");
1739 
1740 	switch (type) {
1741 	case X86_TYPE_CYRIX_6x86:
1742 		return ("Cyrix 6x86");
1743 	case X86_TYPE_CYRIX_6x86L:
1744 		return ("Cyrix 6x86L");
1745 	case X86_TYPE_CYRIX_6x86MX:
1746 		return ("Cyrix 6x86MX");
1747 	case X86_TYPE_CYRIX_GXm:
1748 		return ("Cyrix GXm");
1749 	case X86_TYPE_CYRIX_MediaGX:
1750 		return ("Cyrix MediaGX");
1751 	case X86_TYPE_CYRIX_MII:
1752 		return ("Cyrix M2");
1753 	case X86_TYPE_VIA_CYRIX_III:
1754 		return ("VIA Cyrix M3");
1755 	default:
1756 		/*
1757 		 * Have another wild guess ..
1758 		 */
1759 		if (cpi->cpi_family == 4 && cpi->cpi_model == 9)
1760 			return ("Cyrix 5x86");
1761 		else if (cpi->cpi_family == 5) {
1762 			switch (cpi->cpi_model) {
1763 			case 2:
1764 				return ("Cyrix 6x86");	/* Cyrix M1 */
1765 			case 4:
1766 				return ("Cyrix MediaGX");
1767 			default:
1768 				break;
1769 			}
1770 		} else if (cpi->cpi_family == 6) {
1771 			switch (cpi->cpi_model) {
1772 			case 0:
1773 				return ("Cyrix 6x86MX"); /* Cyrix M2? */
1774 			case 5:
1775 			case 6:
1776 			case 7:
1777 			case 8:
1778 			case 9:
1779 				return ("VIA C3");
1780 			default:
1781 				break;
1782 			}
1783 		}
1784 		break;
1785 	}
1786 	return (NULL);
1787 }
1788 
1789 /*
1790  * This only gets called in the case that the CPU extended
1791  * feature brand string (0x80000002, 0x80000003, 0x80000004)
1792  * aren't available, or contain null bytes for some reason.
1793  */
1794 static void
1795 fabricate_brandstr(struct cpuid_info *cpi)
1796 {
1797 	const char *brand = NULL;
1798 
1799 	switch (cpi->cpi_vendor) {
1800 	case X86_VENDOR_Intel:
1801 		brand = intel_cpubrand(cpi);
1802 		break;
1803 	case X86_VENDOR_AMD:
1804 		brand = amd_cpubrand(cpi);
1805 		break;
1806 	case X86_VENDOR_Cyrix:
1807 		brand = cyrix_cpubrand(cpi, x86_type);
1808 		break;
1809 	case X86_VENDOR_NexGen:
1810 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1811 			brand = "NexGen Nx586";
1812 		break;
1813 	case X86_VENDOR_Centaur:
1814 		if (cpi->cpi_family == 5)
1815 			switch (cpi->cpi_model) {
1816 			case 4:
1817 				brand = "Centaur C6";
1818 				break;
1819 			case 8:
1820 				brand = "Centaur C2";
1821 				break;
1822 			case 9:
1823 				brand = "Centaur C3";
1824 				break;
1825 			default:
1826 				break;
1827 			}
1828 		break;
1829 	case X86_VENDOR_Rise:
1830 		if (cpi->cpi_family == 5 &&
1831 		    (cpi->cpi_model == 0 || cpi->cpi_model == 2))
1832 			brand = "Rise mP6";
1833 		break;
1834 	case X86_VENDOR_SiS:
1835 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1836 			brand = "SiS 55x";
1837 		break;
1838 	case X86_VENDOR_TM:
1839 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4)
1840 			brand = "Transmeta Crusoe TM3x00 or TM5x00";
1841 		break;
1842 	case X86_VENDOR_NSC:
1843 	case X86_VENDOR_UMC:
1844 	default:
1845 		break;
1846 	}
1847 	if (brand) {
1848 		(void) strcpy((char *)cpi->cpi_brandstr, brand);
1849 		return;
1850 	}
1851 
1852 	/*
1853 	 * If all else fails ...
1854 	 */
1855 	(void) snprintf(cpi->cpi_brandstr, sizeof (cpi->cpi_brandstr),
1856 	    "%s %d.%d.%d", cpi->cpi_vendorstr, cpi->cpi_family,
1857 	    cpi->cpi_model, cpi->cpi_step);
1858 }
1859 
1860 /*
1861  * This routine is called just after kernel memory allocation
1862  * becomes available on cpu0, and as part of mp_startup() on
1863  * the other cpus.
1864  *
1865  * Fixup the brand string, and collect any information from cpuid
1866  * that requires dynamicically allocated storage to represent.
1867  */
1868 /*ARGSUSED*/
1869 void
1870 cpuid_pass3(cpu_t *cpu)
1871 {
1872 	int	i, max, shft, level, size;
1873 	struct cpuid_regs regs;
1874 	struct cpuid_regs *cp;
1875 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1876 
1877 	ASSERT(cpi->cpi_pass == 2);
1878 
1879 	/*
1880 	 * Function 4: Deterministic cache parameters
1881 	 *
1882 	 * Take this opportunity to detect the number of threads
1883 	 * sharing the last level cache, and construct a corresponding
1884 	 * cache id. The respective cpuid_info members are initialized
1885 	 * to the default case of "no last level cache sharing".
1886 	 */
1887 	cpi->cpi_ncpu_shr_last_cache = 1;
1888 	cpi->cpi_last_lvl_cacheid = cpu->cpu_id;
1889 
1890 	if (cpi->cpi_maxeax >= 4 && cpi->cpi_vendor == X86_VENDOR_Intel) {
1891 
1892 		/*
1893 		 * Find the # of elements (size) returned by fn 4, and along
1894 		 * the way detect last level cache sharing details.
1895 		 */
1896 		bzero(&regs, sizeof (regs));
1897 		cp = &regs;
1898 		for (i = 0, max = 0; i < CPI_FN4_ECX_MAX; i++) {
1899 			cp->cp_eax = 4;
1900 			cp->cp_ecx = i;
1901 
1902 			(void) __cpuid_insn(cp);
1903 
1904 			if (CPI_CACHE_TYPE(cp) == 0)
1905 				break;
1906 			level = CPI_CACHE_LVL(cp);
1907 			if (level > max) {
1908 				max = level;
1909 				cpi->cpi_ncpu_shr_last_cache =
1910 				    CPI_NTHR_SHR_CACHE(cp) + 1;
1911 			}
1912 		}
1913 		cpi->cpi_std_4_size = size = i;
1914 
1915 		/*
1916 		 * Allocate the cpi_std_4 array. The first element
1917 		 * references the regs for fn 4, %ecx == 0, which
1918 		 * cpuid_pass2() stashed in cpi->cpi_std[4].
1919 		 */
1920 		if (size > 0) {
1921 			cpi->cpi_std_4 =
1922 			    kmem_alloc(size * sizeof (cp), KM_SLEEP);
1923 			cpi->cpi_std_4[0] = &cpi->cpi_std[4];
1924 
1925 			/*
1926 			 * Allocate storage to hold the additional regs
1927 			 * for function 4, %ecx == 1 .. cpi_std_4_size.
1928 			 *
1929 			 * The regs for fn 4, %ecx == 0 has already
1930 			 * been allocated as indicated above.
1931 			 */
1932 			for (i = 1; i < size; i++) {
1933 				cp = cpi->cpi_std_4[i] =
1934 				    kmem_zalloc(sizeof (regs), KM_SLEEP);
1935 				cp->cp_eax = 4;
1936 				cp->cp_ecx = i;
1937 
1938 				(void) __cpuid_insn(cp);
1939 			}
1940 		}
1941 		/*
1942 		 * Determine the number of bits needed to represent
1943 		 * the number of CPUs sharing the last level cache.
1944 		 *
1945 		 * Shift off that number of bits from the APIC id to
1946 		 * derive the cache id.
1947 		 */
1948 		shft = 0;
1949 		for (i = 1; i < cpi->cpi_ncpu_shr_last_cache; i <<= 1)
1950 			shft++;
1951 		cpi->cpi_last_lvl_cacheid = CPI_APIC_ID(cpi) >> shft;
1952 	}
1953 
1954 	/*
1955 	 * Now fixup the brand string
1956 	 */
1957 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0) {
1958 		fabricate_brandstr(cpi);
1959 	} else {
1960 
1961 		/*
1962 		 * If we successfully extracted a brand string from the cpuid
1963 		 * instruction, clean it up by removing leading spaces and
1964 		 * similar junk.
1965 		 */
1966 		if (cpi->cpi_brandstr[0]) {
1967 			size_t maxlen = sizeof (cpi->cpi_brandstr);
1968 			char *src, *dst;
1969 
1970 			dst = src = (char *)cpi->cpi_brandstr;
1971 			src[maxlen - 1] = '\0';
1972 			/*
1973 			 * strip leading spaces
1974 			 */
1975 			while (*src == ' ')
1976 				src++;
1977 			/*
1978 			 * Remove any 'Genuine' or "Authentic" prefixes
1979 			 */
1980 			if (strncmp(src, "Genuine ", 8) == 0)
1981 				src += 8;
1982 			if (strncmp(src, "Authentic ", 10) == 0)
1983 				src += 10;
1984 
1985 			/*
1986 			 * Now do an in-place copy.
1987 			 * Map (R) to (r) and (TM) to (tm).
1988 			 * The era of teletypes is long gone, and there's
1989 			 * -really- no need to shout.
1990 			 */
1991 			while (*src != '\0') {
1992 				if (src[0] == '(') {
1993 					if (strncmp(src + 1, "R)", 2) == 0) {
1994 						(void) strncpy(dst, "(r)", 3);
1995 						src += 3;
1996 						dst += 3;
1997 						continue;
1998 					}
1999 					if (strncmp(src + 1, "TM)", 3) == 0) {
2000 						(void) strncpy(dst, "(tm)", 4);
2001 						src += 4;
2002 						dst += 4;
2003 						continue;
2004 					}
2005 				}
2006 				*dst++ = *src++;
2007 			}
2008 			*dst = '\0';
2009 
2010 			/*
2011 			 * Finally, remove any trailing spaces
2012 			 */
2013 			while (--dst > cpi->cpi_brandstr)
2014 				if (*dst == ' ')
2015 					*dst = '\0';
2016 				else
2017 					break;
2018 		} else
2019 			fabricate_brandstr(cpi);
2020 	}
2021 	cpi->cpi_pass = 3;
2022 }
2023 
2024 /*
2025  * This routine is called out of bind_hwcap() much later in the life
2026  * of the kernel (post_startup()).  The job of this routine is to resolve
2027  * the hardware feature support and kernel support for those features into
2028  * what we're actually going to tell applications via the aux vector.
2029  */
2030 uint_t
2031 cpuid_pass4(cpu_t *cpu)
2032 {
2033 	struct cpuid_info *cpi;
2034 	uint_t hwcap_flags = 0;
2035 
2036 	if (cpu == NULL)
2037 		cpu = CPU;
2038 	cpi = cpu->cpu_m.mcpu_cpi;
2039 
2040 	ASSERT(cpi->cpi_pass == 3);
2041 
2042 	if (cpi->cpi_maxeax >= 1) {
2043 		uint32_t *edx = &cpi->cpi_support[STD_EDX_FEATURES];
2044 		uint32_t *ecx = &cpi->cpi_support[STD_ECX_FEATURES];
2045 
2046 		*edx = CPI_FEATURES_EDX(cpi);
2047 		*ecx = CPI_FEATURES_ECX(cpi);
2048 
2049 		/*
2050 		 * [these require explicit kernel support]
2051 		 */
2052 		if ((x86_feature & X86_SEP) == 0)
2053 			*edx &= ~CPUID_INTC_EDX_SEP;
2054 
2055 		if ((x86_feature & X86_SSE) == 0)
2056 			*edx &= ~(CPUID_INTC_EDX_FXSR|CPUID_INTC_EDX_SSE);
2057 		if ((x86_feature & X86_SSE2) == 0)
2058 			*edx &= ~CPUID_INTC_EDX_SSE2;
2059 
2060 		if ((x86_feature & X86_HTT) == 0)
2061 			*edx &= ~CPUID_INTC_EDX_HTT;
2062 
2063 		if ((x86_feature & X86_SSE3) == 0)
2064 			*ecx &= ~CPUID_INTC_ECX_SSE3;
2065 
2066 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
2067 			if ((x86_feature & X86_SSSE3) == 0)
2068 				*ecx &= ~CPUID_INTC_ECX_SSSE3;
2069 			if ((x86_feature & X86_SSE4_1) == 0)
2070 				*ecx &= ~CPUID_INTC_ECX_SSE4_1;
2071 			if ((x86_feature & X86_SSE4_2) == 0)
2072 				*ecx &= ~CPUID_INTC_ECX_SSE4_2;
2073 		}
2074 
2075 		/*
2076 		 * [no explicit support required beyond x87 fp context]
2077 		 */
2078 		if (!fpu_exists)
2079 			*edx &= ~(CPUID_INTC_EDX_FPU | CPUID_INTC_EDX_MMX);
2080 
2081 		/*
2082 		 * Now map the supported feature vector to things that we
2083 		 * think userland will care about.
2084 		 */
2085 		if (*edx & CPUID_INTC_EDX_SEP)
2086 			hwcap_flags |= AV_386_SEP;
2087 		if (*edx & CPUID_INTC_EDX_SSE)
2088 			hwcap_flags |= AV_386_FXSR | AV_386_SSE;
2089 		if (*edx & CPUID_INTC_EDX_SSE2)
2090 			hwcap_flags |= AV_386_SSE2;
2091 		if (*ecx & CPUID_INTC_ECX_SSE3)
2092 			hwcap_flags |= AV_386_SSE3;
2093 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
2094 			if (*ecx & CPUID_INTC_ECX_SSSE3)
2095 				hwcap_flags |= AV_386_SSSE3;
2096 			if (*ecx & CPUID_INTC_ECX_SSE4_1)
2097 				hwcap_flags |= AV_386_SSE4_1;
2098 			if (*ecx & CPUID_INTC_ECX_SSE4_2)
2099 				hwcap_flags |= AV_386_SSE4_2;
2100 		}
2101 		if (*ecx & CPUID_INTC_ECX_POPCNT)
2102 			hwcap_flags |= AV_386_POPCNT;
2103 		if (*edx & CPUID_INTC_EDX_FPU)
2104 			hwcap_flags |= AV_386_FPU;
2105 		if (*edx & CPUID_INTC_EDX_MMX)
2106 			hwcap_flags |= AV_386_MMX;
2107 
2108 		if (*edx & CPUID_INTC_EDX_TSC)
2109 			hwcap_flags |= AV_386_TSC;
2110 		if (*edx & CPUID_INTC_EDX_CX8)
2111 			hwcap_flags |= AV_386_CX8;
2112 		if (*edx & CPUID_INTC_EDX_CMOV)
2113 			hwcap_flags |= AV_386_CMOV;
2114 		if (*ecx & CPUID_INTC_ECX_MON)
2115 			hwcap_flags |= AV_386_MON;
2116 		if (*ecx & CPUID_INTC_ECX_CX16)
2117 			hwcap_flags |= AV_386_CX16;
2118 	}
2119 
2120 	if (x86_feature & X86_HTT)
2121 		hwcap_flags |= AV_386_PAUSE;
2122 
2123 	if (cpi->cpi_xmaxeax < 0x80000001)
2124 		goto pass4_done;
2125 
2126 	switch (cpi->cpi_vendor) {
2127 		struct cpuid_regs cp;
2128 		uint32_t *edx, *ecx;
2129 
2130 	case X86_VENDOR_Intel:
2131 		/*
2132 		 * Seems like Intel duplicated what we necessary
2133 		 * here to make the initial crop of 64-bit OS's work.
2134 		 * Hopefully, those are the only "extended" bits
2135 		 * they'll add.
2136 		 */
2137 		/*FALLTHROUGH*/
2138 
2139 	case X86_VENDOR_AMD:
2140 		edx = &cpi->cpi_support[AMD_EDX_FEATURES];
2141 		ecx = &cpi->cpi_support[AMD_ECX_FEATURES];
2142 
2143 		*edx = CPI_FEATURES_XTD_EDX(cpi);
2144 		*ecx = CPI_FEATURES_XTD_ECX(cpi);
2145 
2146 		/*
2147 		 * [these features require explicit kernel support]
2148 		 */
2149 		switch (cpi->cpi_vendor) {
2150 		case X86_VENDOR_Intel:
2151 			break;
2152 
2153 		case X86_VENDOR_AMD:
2154 			if ((x86_feature & X86_TSCP) == 0)
2155 				*edx &= ~CPUID_AMD_EDX_TSCP;
2156 			if ((x86_feature & X86_SSE4A) == 0)
2157 				*ecx &= ~CPUID_AMD_ECX_SSE4A;
2158 			break;
2159 
2160 		default:
2161 			break;
2162 		}
2163 
2164 		/*
2165 		 * [no explicit support required beyond
2166 		 * x87 fp context and exception handlers]
2167 		 */
2168 		if (!fpu_exists)
2169 			*edx &= ~(CPUID_AMD_EDX_MMXamd |
2170 			    CPUID_AMD_EDX_3DNow | CPUID_AMD_EDX_3DNowx);
2171 
2172 		if ((x86_feature & X86_NX) == 0)
2173 			*edx &= ~CPUID_AMD_EDX_NX;
2174 #if !defined(__amd64)
2175 		*edx &= ~CPUID_AMD_EDX_LM;
2176 #endif
2177 		/*
2178 		 * Now map the supported feature vector to
2179 		 * things that we think userland will care about.
2180 		 */
2181 #if defined(__amd64)
2182 		if (*edx & CPUID_AMD_EDX_SYSC)
2183 			hwcap_flags |= AV_386_AMD_SYSC;
2184 #endif
2185 		if (*edx & CPUID_AMD_EDX_MMXamd)
2186 			hwcap_flags |= AV_386_AMD_MMX;
2187 		if (*edx & CPUID_AMD_EDX_3DNow)
2188 			hwcap_flags |= AV_386_AMD_3DNow;
2189 		if (*edx & CPUID_AMD_EDX_3DNowx)
2190 			hwcap_flags |= AV_386_AMD_3DNowx;
2191 
2192 		switch (cpi->cpi_vendor) {
2193 		case X86_VENDOR_AMD:
2194 			if (*edx & CPUID_AMD_EDX_TSCP)
2195 				hwcap_flags |= AV_386_TSCP;
2196 			if (*ecx & CPUID_AMD_ECX_AHF64)
2197 				hwcap_flags |= AV_386_AHF;
2198 			if (*ecx & CPUID_AMD_ECX_SSE4A)
2199 				hwcap_flags |= AV_386_AMD_SSE4A;
2200 			if (*ecx & CPUID_AMD_ECX_LZCNT)
2201 				hwcap_flags |= AV_386_AMD_LZCNT;
2202 			break;
2203 
2204 		case X86_VENDOR_Intel:
2205 			/*
2206 			 * Aarrgh.
2207 			 * Intel uses a different bit in the same word.
2208 			 */
2209 			if (*ecx & CPUID_INTC_ECX_AHF64)
2210 				hwcap_flags |= AV_386_AHF;
2211 			break;
2212 
2213 		default:
2214 			break;
2215 		}
2216 		break;
2217 
2218 	case X86_VENDOR_TM:
2219 		cp.cp_eax = 0x80860001;
2220 		(void) __cpuid_insn(&cp);
2221 		cpi->cpi_support[TM_EDX_FEATURES] = cp.cp_edx;
2222 		break;
2223 
2224 	default:
2225 		break;
2226 	}
2227 
2228 pass4_done:
2229 	cpi->cpi_pass = 4;
2230 	return (hwcap_flags);
2231 }
2232 
2233 
2234 /*
2235  * Simulate the cpuid instruction using the data we previously
2236  * captured about this CPU.  We try our best to return the truth
2237  * about the hardware, independently of kernel support.
2238  */
2239 uint32_t
2240 cpuid_insn(cpu_t *cpu, struct cpuid_regs *cp)
2241 {
2242 	struct cpuid_info *cpi;
2243 	struct cpuid_regs *xcp;
2244 
2245 	if (cpu == NULL)
2246 		cpu = CPU;
2247 	cpi = cpu->cpu_m.mcpu_cpi;
2248 
2249 	ASSERT(cpuid_checkpass(cpu, 3));
2250 
2251 	/*
2252 	 * CPUID data is cached in two separate places: cpi_std for standard
2253 	 * CPUID functions, and cpi_extd for extended CPUID functions.
2254 	 */
2255 	if (cp->cp_eax <= cpi->cpi_maxeax && cp->cp_eax < NMAX_CPI_STD)
2256 		xcp = &cpi->cpi_std[cp->cp_eax];
2257 	else if (cp->cp_eax >= 0x80000000 && cp->cp_eax <= cpi->cpi_xmaxeax &&
2258 	    cp->cp_eax < 0x80000000 + NMAX_CPI_EXTD)
2259 		xcp = &cpi->cpi_extd[cp->cp_eax - 0x80000000];
2260 	else
2261 		/*
2262 		 * The caller is asking for data from an input parameter which
2263 		 * the kernel has not cached.  In this case we go fetch from
2264 		 * the hardware and return the data directly to the user.
2265 		 */
2266 		return (__cpuid_insn(cp));
2267 
2268 	cp->cp_eax = xcp->cp_eax;
2269 	cp->cp_ebx = xcp->cp_ebx;
2270 	cp->cp_ecx = xcp->cp_ecx;
2271 	cp->cp_edx = xcp->cp_edx;
2272 	return (cp->cp_eax);
2273 }
2274 
2275 int
2276 cpuid_checkpass(cpu_t *cpu, int pass)
2277 {
2278 	return (cpu != NULL && cpu->cpu_m.mcpu_cpi != NULL &&
2279 	    cpu->cpu_m.mcpu_cpi->cpi_pass >= pass);
2280 }
2281 
2282 int
2283 cpuid_getbrandstr(cpu_t *cpu, char *s, size_t n)
2284 {
2285 	ASSERT(cpuid_checkpass(cpu, 3));
2286 
2287 	return (snprintf(s, n, "%s", cpu->cpu_m.mcpu_cpi->cpi_brandstr));
2288 }
2289 
2290 int
2291 cpuid_is_cmt(cpu_t *cpu)
2292 {
2293 	if (cpu == NULL)
2294 		cpu = CPU;
2295 
2296 	ASSERT(cpuid_checkpass(cpu, 1));
2297 
2298 	return (cpu->cpu_m.mcpu_cpi->cpi_chipid >= 0);
2299 }
2300 
2301 /*
2302  * AMD and Intel both implement the 64-bit variant of the syscall
2303  * instruction (syscallq), so if there's -any- support for syscall,
2304  * cpuid currently says "yes, we support this".
2305  *
2306  * However, Intel decided to -not- implement the 32-bit variant of the
2307  * syscall instruction, so we provide a predicate to allow our caller
2308  * to test that subtlety here.
2309  *
2310  * XXPV	Currently, 32-bit syscall instructions don't work via the hypervisor,
2311  *	even in the case where the hardware would in fact support it.
2312  */
2313 /*ARGSUSED*/
2314 int
2315 cpuid_syscall32_insn(cpu_t *cpu)
2316 {
2317 	ASSERT(cpuid_checkpass((cpu == NULL ? CPU : cpu), 1));
2318 
2319 #if !defined(__xpv)
2320 	if (cpu == NULL)
2321 		cpu = CPU;
2322 
2323 	/*CSTYLED*/
2324 	{
2325 		struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2326 
2327 		if (cpi->cpi_vendor == X86_VENDOR_AMD &&
2328 		    cpi->cpi_xmaxeax >= 0x80000001 &&
2329 		    (CPI_FEATURES_XTD_EDX(cpi) & CPUID_AMD_EDX_SYSC))
2330 			return (1);
2331 	}
2332 #endif
2333 	return (0);
2334 }
2335 
2336 int
2337 cpuid_getidstr(cpu_t *cpu, char *s, size_t n)
2338 {
2339 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2340 
2341 	static const char fmt[] =
2342 	    "x86 (%s %X family %d model %d step %d clock %d MHz)";
2343 	static const char fmt_ht[] =
2344 	    "x86 (chipid 0x%x %s %X family %d model %d step %d clock %d MHz)";
2345 
2346 	ASSERT(cpuid_checkpass(cpu, 1));
2347 
2348 	if (cpuid_is_cmt(cpu))
2349 		return (snprintf(s, n, fmt_ht, cpi->cpi_chipid,
2350 		    cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
2351 		    cpi->cpi_family, cpi->cpi_model,
2352 		    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
2353 	return (snprintf(s, n, fmt,
2354 	    cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
2355 	    cpi->cpi_family, cpi->cpi_model,
2356 	    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
2357 }
2358 
2359 const char *
2360 cpuid_getvendorstr(cpu_t *cpu)
2361 {
2362 	ASSERT(cpuid_checkpass(cpu, 1));
2363 	return ((const char *)cpu->cpu_m.mcpu_cpi->cpi_vendorstr);
2364 }
2365 
2366 uint_t
2367 cpuid_getvendor(cpu_t *cpu)
2368 {
2369 	ASSERT(cpuid_checkpass(cpu, 1));
2370 	return (cpu->cpu_m.mcpu_cpi->cpi_vendor);
2371 }
2372 
2373 uint_t
2374 cpuid_getfamily(cpu_t *cpu)
2375 {
2376 	ASSERT(cpuid_checkpass(cpu, 1));
2377 	return (cpu->cpu_m.mcpu_cpi->cpi_family);
2378 }
2379 
2380 uint_t
2381 cpuid_getmodel(cpu_t *cpu)
2382 {
2383 	ASSERT(cpuid_checkpass(cpu, 1));
2384 	return (cpu->cpu_m.mcpu_cpi->cpi_model);
2385 }
2386 
2387 uint_t
2388 cpuid_get_ncpu_per_chip(cpu_t *cpu)
2389 {
2390 	ASSERT(cpuid_checkpass(cpu, 1));
2391 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_per_chip);
2392 }
2393 
2394 uint_t
2395 cpuid_get_ncore_per_chip(cpu_t *cpu)
2396 {
2397 	ASSERT(cpuid_checkpass(cpu, 1));
2398 	return (cpu->cpu_m.mcpu_cpi->cpi_ncore_per_chip);
2399 }
2400 
2401 uint_t
2402 cpuid_get_ncpu_sharing_last_cache(cpu_t *cpu)
2403 {
2404 	ASSERT(cpuid_checkpass(cpu, 2));
2405 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_shr_last_cache);
2406 }
2407 
2408 id_t
2409 cpuid_get_last_lvl_cacheid(cpu_t *cpu)
2410 {
2411 	ASSERT(cpuid_checkpass(cpu, 2));
2412 	return (cpu->cpu_m.mcpu_cpi->cpi_last_lvl_cacheid);
2413 }
2414 
2415 uint_t
2416 cpuid_getstep(cpu_t *cpu)
2417 {
2418 	ASSERT(cpuid_checkpass(cpu, 1));
2419 	return (cpu->cpu_m.mcpu_cpi->cpi_step);
2420 }
2421 
2422 uint_t
2423 cpuid_getsig(struct cpu *cpu)
2424 {
2425 	ASSERT(cpuid_checkpass(cpu, 1));
2426 	return (cpu->cpu_m.mcpu_cpi->cpi_std[1].cp_eax);
2427 }
2428 
2429 uint32_t
2430 cpuid_getchiprev(struct cpu *cpu)
2431 {
2432 	ASSERT(cpuid_checkpass(cpu, 1));
2433 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprev);
2434 }
2435 
2436 const char *
2437 cpuid_getchiprevstr(struct cpu *cpu)
2438 {
2439 	ASSERT(cpuid_checkpass(cpu, 1));
2440 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprevstr);
2441 }
2442 
2443 uint32_t
2444 cpuid_getsockettype(struct cpu *cpu)
2445 {
2446 	ASSERT(cpuid_checkpass(cpu, 1));
2447 	return (cpu->cpu_m.mcpu_cpi->cpi_socket);
2448 }
2449 
2450 int
2451 cpuid_get_chipid(cpu_t *cpu)
2452 {
2453 	ASSERT(cpuid_checkpass(cpu, 1));
2454 
2455 	if (cpuid_is_cmt(cpu))
2456 		return (cpu->cpu_m.mcpu_cpi->cpi_chipid);
2457 	return (cpu->cpu_id);
2458 }
2459 
2460 id_t
2461 cpuid_get_coreid(cpu_t *cpu)
2462 {
2463 	ASSERT(cpuid_checkpass(cpu, 1));
2464 	return (cpu->cpu_m.mcpu_cpi->cpi_coreid);
2465 }
2466 
2467 int
2468 cpuid_get_clogid(cpu_t *cpu)
2469 {
2470 	ASSERT(cpuid_checkpass(cpu, 1));
2471 	return (cpu->cpu_m.mcpu_cpi->cpi_clogid);
2472 }
2473 
2474 void
2475 cpuid_get_addrsize(cpu_t *cpu, uint_t *pabits, uint_t *vabits)
2476 {
2477 	struct cpuid_info *cpi;
2478 
2479 	if (cpu == NULL)
2480 		cpu = CPU;
2481 	cpi = cpu->cpu_m.mcpu_cpi;
2482 
2483 	ASSERT(cpuid_checkpass(cpu, 1));
2484 
2485 	if (pabits)
2486 		*pabits = cpi->cpi_pabits;
2487 	if (vabits)
2488 		*vabits = cpi->cpi_vabits;
2489 }
2490 
2491 /*
2492  * Returns the number of data TLB entries for a corresponding
2493  * pagesize.  If it can't be computed, or isn't known, the
2494  * routine returns zero.  If you ask about an architecturally
2495  * impossible pagesize, the routine will panic (so that the
2496  * hat implementor knows that things are inconsistent.)
2497  */
2498 uint_t
2499 cpuid_get_dtlb_nent(cpu_t *cpu, size_t pagesize)
2500 {
2501 	struct cpuid_info *cpi;
2502 	uint_t dtlb_nent = 0;
2503 
2504 	if (cpu == NULL)
2505 		cpu = CPU;
2506 	cpi = cpu->cpu_m.mcpu_cpi;
2507 
2508 	ASSERT(cpuid_checkpass(cpu, 1));
2509 
2510 	/*
2511 	 * Check the L2 TLB info
2512 	 */
2513 	if (cpi->cpi_xmaxeax >= 0x80000006) {
2514 		struct cpuid_regs *cp = &cpi->cpi_extd[6];
2515 
2516 		switch (pagesize) {
2517 
2518 		case 4 * 1024:
2519 			/*
2520 			 * All zero in the top 16 bits of the register
2521 			 * indicates a unified TLB. Size is in low 16 bits.
2522 			 */
2523 			if ((cp->cp_ebx & 0xffff0000) == 0)
2524 				dtlb_nent = cp->cp_ebx & 0x0000ffff;
2525 			else
2526 				dtlb_nent = BITX(cp->cp_ebx, 27, 16);
2527 			break;
2528 
2529 		case 2 * 1024 * 1024:
2530 			if ((cp->cp_eax & 0xffff0000) == 0)
2531 				dtlb_nent = cp->cp_eax & 0x0000ffff;
2532 			else
2533 				dtlb_nent = BITX(cp->cp_eax, 27, 16);
2534 			break;
2535 
2536 		default:
2537 			panic("unknown L2 pagesize");
2538 			/*NOTREACHED*/
2539 		}
2540 	}
2541 
2542 	if (dtlb_nent != 0)
2543 		return (dtlb_nent);
2544 
2545 	/*
2546 	 * No L2 TLB support for this size, try L1.
2547 	 */
2548 	if (cpi->cpi_xmaxeax >= 0x80000005) {
2549 		struct cpuid_regs *cp = &cpi->cpi_extd[5];
2550 
2551 		switch (pagesize) {
2552 		case 4 * 1024:
2553 			dtlb_nent = BITX(cp->cp_ebx, 23, 16);
2554 			break;
2555 		case 2 * 1024 * 1024:
2556 			dtlb_nent = BITX(cp->cp_eax, 23, 16);
2557 			break;
2558 		default:
2559 			panic("unknown L1 d-TLB pagesize");
2560 			/*NOTREACHED*/
2561 		}
2562 	}
2563 
2564 	return (dtlb_nent);
2565 }
2566 
2567 /*
2568  * Return 0 if the erratum is not present or not applicable, positive
2569  * if it is, and negative if the status of the erratum is unknown.
2570  *
2571  * See "Revision Guide for AMD Athlon(tm) 64 and AMD Opteron(tm)
2572  * Processors" #25759, Rev 3.57, August 2005
2573  */
2574 int
2575 cpuid_opteron_erratum(cpu_t *cpu, uint_t erratum)
2576 {
2577 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2578 	uint_t eax;
2579 
2580 	/*
2581 	 * Bail out if this CPU isn't an AMD CPU, or if it's
2582 	 * a legacy (32-bit) AMD CPU.
2583 	 */
2584 	if (cpi->cpi_vendor != X86_VENDOR_AMD ||
2585 	    cpi->cpi_family == 4 || cpi->cpi_family == 5 ||
2586 	    cpi->cpi_family == 6)
2587 
2588 		return (0);
2589 
2590 	eax = cpi->cpi_std[1].cp_eax;
2591 
2592 #define	SH_B0(eax)	(eax == 0xf40 || eax == 0xf50)
2593 #define	SH_B3(eax) 	(eax == 0xf51)
2594 #define	B(eax)		(SH_B0(eax) || SH_B3(eax))
2595 
2596 #define	SH_C0(eax)	(eax == 0xf48 || eax == 0xf58)
2597 
2598 #define	SH_CG(eax)	(eax == 0xf4a || eax == 0xf5a || eax == 0xf7a)
2599 #define	DH_CG(eax)	(eax == 0xfc0 || eax == 0xfe0 || eax == 0xff0)
2600 #define	CH_CG(eax)	(eax == 0xf82 || eax == 0xfb2)
2601 #define	CG(eax)		(SH_CG(eax) || DH_CG(eax) || CH_CG(eax))
2602 
2603 #define	SH_D0(eax)	(eax == 0x10f40 || eax == 0x10f50 || eax == 0x10f70)
2604 #define	DH_D0(eax)	(eax == 0x10fc0 || eax == 0x10ff0)
2605 #define	CH_D0(eax)	(eax == 0x10f80 || eax == 0x10fb0)
2606 #define	D0(eax)		(SH_D0(eax) || DH_D0(eax) || CH_D0(eax))
2607 
2608 #define	SH_E0(eax)	(eax == 0x20f50 || eax == 0x20f40 || eax == 0x20f70)
2609 #define	JH_E1(eax)	(eax == 0x20f10)	/* JH8_E0 had 0x20f30 */
2610 #define	DH_E3(eax)	(eax == 0x20fc0 || eax == 0x20ff0)
2611 #define	SH_E4(eax)	(eax == 0x20f51 || eax == 0x20f71)
2612 #define	BH_E4(eax)	(eax == 0x20fb1)
2613 #define	SH_E5(eax)	(eax == 0x20f42)
2614 #define	DH_E6(eax)	(eax == 0x20ff2 || eax == 0x20fc2)
2615 #define	JH_E6(eax)	(eax == 0x20f12 || eax == 0x20f32)
2616 #define	EX(eax)		(SH_E0(eax) || JH_E1(eax) || DH_E3(eax) || \
2617 			    SH_E4(eax) || BH_E4(eax) || SH_E5(eax) || \
2618 			    DH_E6(eax) || JH_E6(eax))
2619 
2620 	switch (erratum) {
2621 	case 1:
2622 		return (cpi->cpi_family < 0x10);
2623 	case 51:	/* what does the asterisk mean? */
2624 		return (B(eax) || SH_C0(eax) || CG(eax));
2625 	case 52:
2626 		return (B(eax));
2627 	case 57:
2628 		return (cpi->cpi_family <= 0x10);
2629 	case 58:
2630 		return (B(eax));
2631 	case 60:
2632 		return (cpi->cpi_family <= 0x10);
2633 	case 61:
2634 	case 62:
2635 	case 63:
2636 	case 64:
2637 	case 65:
2638 	case 66:
2639 	case 68:
2640 	case 69:
2641 	case 70:
2642 	case 71:
2643 		return (B(eax));
2644 	case 72:
2645 		return (SH_B0(eax));
2646 	case 74:
2647 		return (B(eax));
2648 	case 75:
2649 		return (cpi->cpi_family < 0x10);
2650 	case 76:
2651 		return (B(eax));
2652 	case 77:
2653 		return (cpi->cpi_family <= 0x10);
2654 	case 78:
2655 		return (B(eax) || SH_C0(eax));
2656 	case 79:
2657 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2658 	case 80:
2659 	case 81:
2660 	case 82:
2661 		return (B(eax));
2662 	case 83:
2663 		return (B(eax) || SH_C0(eax) || CG(eax));
2664 	case 85:
2665 		return (cpi->cpi_family < 0x10);
2666 	case 86:
2667 		return (SH_C0(eax) || CG(eax));
2668 	case 88:
2669 #if !defined(__amd64)
2670 		return (0);
2671 #else
2672 		return (B(eax) || SH_C0(eax));
2673 #endif
2674 	case 89:
2675 		return (cpi->cpi_family < 0x10);
2676 	case 90:
2677 		return (B(eax) || SH_C0(eax) || CG(eax));
2678 	case 91:
2679 	case 92:
2680 		return (B(eax) || SH_C0(eax));
2681 	case 93:
2682 		return (SH_C0(eax));
2683 	case 94:
2684 		return (B(eax) || SH_C0(eax) || CG(eax));
2685 	case 95:
2686 #if !defined(__amd64)
2687 		return (0);
2688 #else
2689 		return (B(eax) || SH_C0(eax));
2690 #endif
2691 	case 96:
2692 		return (B(eax) || SH_C0(eax) || CG(eax));
2693 	case 97:
2694 	case 98:
2695 		return (SH_C0(eax) || CG(eax));
2696 	case 99:
2697 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2698 	case 100:
2699 		return (B(eax) || SH_C0(eax));
2700 	case 101:
2701 	case 103:
2702 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2703 	case 104:
2704 		return (SH_C0(eax) || CG(eax) || D0(eax));
2705 	case 105:
2706 	case 106:
2707 	case 107:
2708 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2709 	case 108:
2710 		return (DH_CG(eax));
2711 	case 109:
2712 		return (SH_C0(eax) || CG(eax) || D0(eax));
2713 	case 110:
2714 		return (D0(eax) || EX(eax));
2715 	case 111:
2716 		return (CG(eax));
2717 	case 112:
2718 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2719 	case 113:
2720 		return (eax == 0x20fc0);
2721 	case 114:
2722 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
2723 	case 115:
2724 		return (SH_E0(eax) || JH_E1(eax));
2725 	case 116:
2726 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
2727 	case 117:
2728 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2729 	case 118:
2730 		return (SH_E0(eax) || JH_E1(eax) || SH_E4(eax) || BH_E4(eax) ||
2731 		    JH_E6(eax));
2732 	case 121:
2733 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2734 	case 122:
2735 		return (cpi->cpi_family < 0x10);
2736 	case 123:
2737 		return (JH_E1(eax) || BH_E4(eax) || JH_E6(eax));
2738 	case 131:
2739 		return (cpi->cpi_family < 0x10);
2740 	case 6336786:
2741 		/*
2742 		 * Test for AdvPowerMgmtInfo.TscPStateInvariant
2743 		 * if this is a K8 family or newer processor
2744 		 */
2745 		if (CPI_FAMILY(cpi) == 0xf) {
2746 			struct cpuid_regs regs;
2747 			regs.cp_eax = 0x80000007;
2748 			(void) __cpuid_insn(&regs);
2749 			return (!(regs.cp_edx & 0x100));
2750 		}
2751 		return (0);
2752 	case 6323525:
2753 		return (((((eax >> 12) & 0xff00) + (eax & 0xf00)) |
2754 		    (((eax >> 4) & 0xf) | ((eax >> 12) & 0xf0))) < 0xf40);
2755 
2756 	default:
2757 		return (-1);
2758 	}
2759 }
2760 
2761 static const char assoc_str[] = "associativity";
2762 static const char line_str[] = "line-size";
2763 static const char size_str[] = "size";
2764 
2765 static void
2766 add_cache_prop(dev_info_t *devi, const char *label, const char *type,
2767     uint32_t val)
2768 {
2769 	char buf[128];
2770 
2771 	/*
2772 	 * ndi_prop_update_int() is used because it is desirable for
2773 	 * DDI_PROP_HW_DEF and DDI_PROP_DONTSLEEP to be set.
2774 	 */
2775 	if (snprintf(buf, sizeof (buf), "%s-%s", label, type) < sizeof (buf))
2776 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, buf, val);
2777 }
2778 
2779 /*
2780  * Intel-style cache/tlb description
2781  *
2782  * Standard cpuid level 2 gives a randomly ordered
2783  * selection of tags that index into a table that describes
2784  * cache and tlb properties.
2785  */
2786 
2787 static const char l1_icache_str[] = "l1-icache";
2788 static const char l1_dcache_str[] = "l1-dcache";
2789 static const char l2_cache_str[] = "l2-cache";
2790 static const char l3_cache_str[] = "l3-cache";
2791 static const char itlb4k_str[] = "itlb-4K";
2792 static const char dtlb4k_str[] = "dtlb-4K";
2793 static const char itlb4M_str[] = "itlb-4M";
2794 static const char dtlb4M_str[] = "dtlb-4M";
2795 static const char itlb424_str[] = "itlb-4K-2M-4M";
2796 static const char dtlb44_str[] = "dtlb-4K-4M";
2797 static const char sl1_dcache_str[] = "sectored-l1-dcache";
2798 static const char sl2_cache_str[] = "sectored-l2-cache";
2799 static const char itrace_str[] = "itrace-cache";
2800 static const char sl3_cache_str[] = "sectored-l3-cache";
2801 
2802 static const struct cachetab {
2803 	uint8_t 	ct_code;
2804 	uint8_t		ct_assoc;
2805 	uint16_t 	ct_line_size;
2806 	size_t		ct_size;
2807 	const char	*ct_label;
2808 } intel_ctab[] = {
2809 	/* maintain descending order! */
2810 	{ 0xb4, 4, 0, 256, dtlb4k_str },
2811 	{ 0xb3, 4, 0, 128, dtlb4k_str },
2812 	{ 0xb0, 4, 0, 128, itlb4k_str },
2813 	{ 0x87, 8, 64, 1024*1024, l2_cache_str},
2814 	{ 0x86, 4, 64, 512*1024, l2_cache_str},
2815 	{ 0x85, 8, 32, 2*1024*1024, l2_cache_str},
2816 	{ 0x84, 8, 32, 1024*1024, l2_cache_str},
2817 	{ 0x83, 8, 32, 512*1024, l2_cache_str},
2818 	{ 0x82, 8, 32, 256*1024, l2_cache_str},
2819 	{ 0x7f, 2, 64, 512*1024, l2_cache_str},
2820 	{ 0x7d, 8, 64, 2*1024*1024, sl2_cache_str},
2821 	{ 0x7c, 8, 64, 1024*1024, sl2_cache_str},
2822 	{ 0x7b, 8, 64, 512*1024, sl2_cache_str},
2823 	{ 0x7a, 8, 64, 256*1024, sl2_cache_str},
2824 	{ 0x79, 8, 64, 128*1024, sl2_cache_str},
2825 	{ 0x78, 8, 64, 1024*1024, l2_cache_str},
2826 	{ 0x73, 8, 0, 64*1024, itrace_str},
2827 	{ 0x72, 8, 0, 32*1024, itrace_str},
2828 	{ 0x71, 8, 0, 16*1024, itrace_str},
2829 	{ 0x70, 8, 0, 12*1024, itrace_str},
2830 	{ 0x68, 4, 64, 32*1024, sl1_dcache_str},
2831 	{ 0x67, 4, 64, 16*1024, sl1_dcache_str},
2832 	{ 0x66, 4, 64, 8*1024, sl1_dcache_str},
2833 	{ 0x60, 8, 64, 16*1024, sl1_dcache_str},
2834 	{ 0x5d, 0, 0, 256, dtlb44_str},
2835 	{ 0x5c, 0, 0, 128, dtlb44_str},
2836 	{ 0x5b, 0, 0, 64, dtlb44_str},
2837 	{ 0x52, 0, 0, 256, itlb424_str},
2838 	{ 0x51, 0, 0, 128, itlb424_str},
2839 	{ 0x50, 0, 0, 64, itlb424_str},
2840 	{ 0x4d, 16, 64, 16*1024*1024, l3_cache_str},
2841 	{ 0x4c, 12, 64, 12*1024*1024, l3_cache_str},
2842 	{ 0x4b, 16, 64, 8*1024*1024, l3_cache_str},
2843 	{ 0x4a, 12, 64, 6*1024*1024, l3_cache_str},
2844 	{ 0x49, 16, 64, 4*1024*1024, l3_cache_str},
2845 	{ 0x47, 8, 64, 8*1024*1024, l3_cache_str},
2846 	{ 0x46, 4, 64, 4*1024*1024, l3_cache_str},
2847 	{ 0x45, 4, 32, 2*1024*1024, l2_cache_str},
2848 	{ 0x44, 4, 32, 1024*1024, l2_cache_str},
2849 	{ 0x43, 4, 32, 512*1024, l2_cache_str},
2850 	{ 0x42, 4, 32, 256*1024, l2_cache_str},
2851 	{ 0x41, 4, 32, 128*1024, l2_cache_str},
2852 	{ 0x3e, 4, 64, 512*1024, sl2_cache_str},
2853 	{ 0x3d, 6, 64, 384*1024, sl2_cache_str},
2854 	{ 0x3c, 4, 64, 256*1024, sl2_cache_str},
2855 	{ 0x3b, 2, 64, 128*1024, sl2_cache_str},
2856 	{ 0x3a, 6, 64, 192*1024, sl2_cache_str},
2857 	{ 0x39, 4, 64, 128*1024, sl2_cache_str},
2858 	{ 0x30, 8, 64, 32*1024, l1_icache_str},
2859 	{ 0x2c, 8, 64, 32*1024, l1_dcache_str},
2860 	{ 0x29, 8, 64, 4096*1024, sl3_cache_str},
2861 	{ 0x25, 8, 64, 2048*1024, sl3_cache_str},
2862 	{ 0x23, 8, 64, 1024*1024, sl3_cache_str},
2863 	{ 0x22, 4, 64, 512*1024, sl3_cache_str},
2864 	{ 0x0c, 4, 32, 16*1024, l1_dcache_str},
2865 	{ 0x0b, 4, 0, 4, itlb4M_str},
2866 	{ 0x0a, 2, 32, 8*1024, l1_dcache_str},
2867 	{ 0x08, 4, 32, 16*1024, l1_icache_str},
2868 	{ 0x06, 4, 32, 8*1024, l1_icache_str},
2869 	{ 0x04, 4, 0, 8, dtlb4M_str},
2870 	{ 0x03, 4, 0, 64, dtlb4k_str},
2871 	{ 0x02, 4, 0, 2, itlb4M_str},
2872 	{ 0x01, 4, 0, 32, itlb4k_str},
2873 	{ 0 }
2874 };
2875 
2876 static const struct cachetab cyrix_ctab[] = {
2877 	{ 0x70, 4, 0, 32, "tlb-4K" },
2878 	{ 0x80, 4, 16, 16*1024, "l1-cache" },
2879 	{ 0 }
2880 };
2881 
2882 /*
2883  * Search a cache table for a matching entry
2884  */
2885 static const struct cachetab *
2886 find_cacheent(const struct cachetab *ct, uint_t code)
2887 {
2888 	if (code != 0) {
2889 		for (; ct->ct_code != 0; ct++)
2890 			if (ct->ct_code <= code)
2891 				break;
2892 		if (ct->ct_code == code)
2893 			return (ct);
2894 	}
2895 	return (NULL);
2896 }
2897 
2898 /*
2899  * Populate cachetab entry with L2 or L3 cache-information using
2900  * cpuid function 4. This function is called from intel_walk_cacheinfo()
2901  * when descriptor 0x49 is encountered. It returns 0 if no such cache
2902  * information is found.
2903  */
2904 static int
2905 intel_cpuid_4_cache_info(struct cachetab *ct, struct cpuid_info *cpi)
2906 {
2907 	uint32_t level, i;
2908 	int ret = 0;
2909 
2910 	for (i = 0; i < cpi->cpi_std_4_size; i++) {
2911 		level = CPI_CACHE_LVL(cpi->cpi_std_4[i]);
2912 
2913 		if (level == 2 || level == 3) {
2914 			ct->ct_assoc = CPI_CACHE_WAYS(cpi->cpi_std_4[i]) + 1;
2915 			ct->ct_line_size =
2916 			    CPI_CACHE_COH_LN_SZ(cpi->cpi_std_4[i]) + 1;
2917 			ct->ct_size = ct->ct_assoc *
2918 			    (CPI_CACHE_PARTS(cpi->cpi_std_4[i]) + 1) *
2919 			    ct->ct_line_size *
2920 			    (cpi->cpi_std_4[i]->cp_ecx + 1);
2921 
2922 			if (level == 2) {
2923 				ct->ct_label = l2_cache_str;
2924 			} else if (level == 3) {
2925 				ct->ct_label = l3_cache_str;
2926 			}
2927 			ret = 1;
2928 		}
2929 	}
2930 
2931 	return (ret);
2932 }
2933 
2934 /*
2935  * Walk the cacheinfo descriptor, applying 'func' to every valid element
2936  * The walk is terminated if the walker returns non-zero.
2937  */
2938 static void
2939 intel_walk_cacheinfo(struct cpuid_info *cpi,
2940     void *arg, int (*func)(void *, const struct cachetab *))
2941 {
2942 	const struct cachetab *ct;
2943 	struct cachetab des_49_ct;
2944 	uint8_t *dp;
2945 	int i;
2946 
2947 	if ((dp = cpi->cpi_cacheinfo) == NULL)
2948 		return;
2949 	for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
2950 		/*
2951 		 * For overloaded descriptor 0x49 we use cpuid function 4
2952 		 * if supported by the current processor, to create
2953 		 * cache information.
2954 		 */
2955 		if (*dp == 0x49 && cpi->cpi_maxeax >= 0x4 &&
2956 		    intel_cpuid_4_cache_info(&des_49_ct, cpi) == 1) {
2957 				ct = &des_49_ct;
2958 		} else {
2959 			if ((ct = find_cacheent(intel_ctab, *dp)) == NULL) {
2960 				continue;
2961 			}
2962 		}
2963 
2964 		if (func(arg, ct) != 0) {
2965 			break;
2966 		}
2967 	}
2968 }
2969 
2970 /*
2971  * (Like the Intel one, except for Cyrix CPUs)
2972  */
2973 static void
2974 cyrix_walk_cacheinfo(struct cpuid_info *cpi,
2975     void *arg, int (*func)(void *, const struct cachetab *))
2976 {
2977 	const struct cachetab *ct;
2978 	uint8_t *dp;
2979 	int i;
2980 
2981 	if ((dp = cpi->cpi_cacheinfo) == NULL)
2982 		return;
2983 	for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
2984 		/*
2985 		 * Search Cyrix-specific descriptor table first ..
2986 		 */
2987 		if ((ct = find_cacheent(cyrix_ctab, *dp)) != NULL) {
2988 			if (func(arg, ct) != 0)
2989 				break;
2990 			continue;
2991 		}
2992 		/*
2993 		 * .. else fall back to the Intel one
2994 		 */
2995 		if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) {
2996 			if (func(arg, ct) != 0)
2997 				break;
2998 			continue;
2999 		}
3000 	}
3001 }
3002 
3003 /*
3004  * A cacheinfo walker that adds associativity, line-size, and size properties
3005  * to the devinfo node it is passed as an argument.
3006  */
3007 static int
3008 add_cacheent_props(void *arg, const struct cachetab *ct)
3009 {
3010 	dev_info_t *devi = arg;
3011 
3012 	add_cache_prop(devi, ct->ct_label, assoc_str, ct->ct_assoc);
3013 	if (ct->ct_line_size != 0)
3014 		add_cache_prop(devi, ct->ct_label, line_str,
3015 		    ct->ct_line_size);
3016 	add_cache_prop(devi, ct->ct_label, size_str, ct->ct_size);
3017 	return (0);
3018 }
3019 
3020 
3021 static const char fully_assoc[] = "fully-associative?";
3022 
3023 /*
3024  * AMD style cache/tlb description
3025  *
3026  * Extended functions 5 and 6 directly describe properties of
3027  * tlbs and various cache levels.
3028  */
3029 static void
3030 add_amd_assoc(dev_info_t *devi, const char *label, uint_t assoc)
3031 {
3032 	switch (assoc) {
3033 	case 0:	/* reserved; ignore */
3034 		break;
3035 	default:
3036 		add_cache_prop(devi, label, assoc_str, assoc);
3037 		break;
3038 	case 0xff:
3039 		add_cache_prop(devi, label, fully_assoc, 1);
3040 		break;
3041 	}
3042 }
3043 
3044 static void
3045 add_amd_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
3046 {
3047 	if (size == 0)
3048 		return;
3049 	add_cache_prop(devi, label, size_str, size);
3050 	add_amd_assoc(devi, label, assoc);
3051 }
3052 
3053 static void
3054 add_amd_cache(dev_info_t *devi, const char *label,
3055     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
3056 {
3057 	if (size == 0 || line_size == 0)
3058 		return;
3059 	add_amd_assoc(devi, label, assoc);
3060 	/*
3061 	 * Most AMD parts have a sectored cache. Multiple cache lines are
3062 	 * associated with each tag. A sector consists of all cache lines
3063 	 * associated with a tag. For example, the AMD K6-III has a sector
3064 	 * size of 2 cache lines per tag.
3065 	 */
3066 	if (lines_per_tag != 0)
3067 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
3068 	add_cache_prop(devi, label, line_str, line_size);
3069 	add_cache_prop(devi, label, size_str, size * 1024);
3070 }
3071 
3072 static void
3073 add_amd_l2_assoc(dev_info_t *devi, const char *label, uint_t assoc)
3074 {
3075 	switch (assoc) {
3076 	case 0:	/* off */
3077 		break;
3078 	case 1:
3079 	case 2:
3080 	case 4:
3081 		add_cache_prop(devi, label, assoc_str, assoc);
3082 		break;
3083 	case 6:
3084 		add_cache_prop(devi, label, assoc_str, 8);
3085 		break;
3086 	case 8:
3087 		add_cache_prop(devi, label, assoc_str, 16);
3088 		break;
3089 	case 0xf:
3090 		add_cache_prop(devi, label, fully_assoc, 1);
3091 		break;
3092 	default: /* reserved; ignore */
3093 		break;
3094 	}
3095 }
3096 
3097 static void
3098 add_amd_l2_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
3099 {
3100 	if (size == 0 || assoc == 0)
3101 		return;
3102 	add_amd_l2_assoc(devi, label, assoc);
3103 	add_cache_prop(devi, label, size_str, size);
3104 }
3105 
3106 static void
3107 add_amd_l2_cache(dev_info_t *devi, const char *label,
3108     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
3109 {
3110 	if (size == 0 || assoc == 0 || line_size == 0)
3111 		return;
3112 	add_amd_l2_assoc(devi, label, assoc);
3113 	if (lines_per_tag != 0)
3114 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
3115 	add_cache_prop(devi, label, line_str, line_size);
3116 	add_cache_prop(devi, label, size_str, size * 1024);
3117 }
3118 
3119 static void
3120 amd_cache_info(struct cpuid_info *cpi, dev_info_t *devi)
3121 {
3122 	struct cpuid_regs *cp;
3123 
3124 	if (cpi->cpi_xmaxeax < 0x80000005)
3125 		return;
3126 	cp = &cpi->cpi_extd[5];
3127 
3128 	/*
3129 	 * 4M/2M L1 TLB configuration
3130 	 *
3131 	 * We report the size for 2M pages because AMD uses two
3132 	 * TLB entries for one 4M page.
3133 	 */
3134 	add_amd_tlb(devi, "dtlb-2M",
3135 	    BITX(cp->cp_eax, 31, 24), BITX(cp->cp_eax, 23, 16));
3136 	add_amd_tlb(devi, "itlb-2M",
3137 	    BITX(cp->cp_eax, 15, 8), BITX(cp->cp_eax, 7, 0));
3138 
3139 	/*
3140 	 * 4K L1 TLB configuration
3141 	 */
3142 
3143 	switch (cpi->cpi_vendor) {
3144 		uint_t nentries;
3145 	case X86_VENDOR_TM:
3146 		if (cpi->cpi_family >= 5) {
3147 			/*
3148 			 * Crusoe processors have 256 TLB entries, but
3149 			 * cpuid data format constrains them to only
3150 			 * reporting 255 of them.
3151 			 */
3152 			if ((nentries = BITX(cp->cp_ebx, 23, 16)) == 255)
3153 				nentries = 256;
3154 			/*
3155 			 * Crusoe processors also have a unified TLB
3156 			 */
3157 			add_amd_tlb(devi, "tlb-4K", BITX(cp->cp_ebx, 31, 24),
3158 			    nentries);
3159 			break;
3160 		}
3161 		/*FALLTHROUGH*/
3162 	default:
3163 		add_amd_tlb(devi, itlb4k_str,
3164 		    BITX(cp->cp_ebx, 31, 24), BITX(cp->cp_ebx, 23, 16));
3165 		add_amd_tlb(devi, dtlb4k_str,
3166 		    BITX(cp->cp_ebx, 15, 8), BITX(cp->cp_ebx, 7, 0));
3167 		break;
3168 	}
3169 
3170 	/*
3171 	 * data L1 cache configuration
3172 	 */
3173 
3174 	add_amd_cache(devi, l1_dcache_str,
3175 	    BITX(cp->cp_ecx, 31, 24), BITX(cp->cp_ecx, 23, 16),
3176 	    BITX(cp->cp_ecx, 15, 8), BITX(cp->cp_ecx, 7, 0));
3177 
3178 	/*
3179 	 * code L1 cache configuration
3180 	 */
3181 
3182 	add_amd_cache(devi, l1_icache_str,
3183 	    BITX(cp->cp_edx, 31, 24), BITX(cp->cp_edx, 23, 16),
3184 	    BITX(cp->cp_edx, 15, 8), BITX(cp->cp_edx, 7, 0));
3185 
3186 	if (cpi->cpi_xmaxeax < 0x80000006)
3187 		return;
3188 	cp = &cpi->cpi_extd[6];
3189 
3190 	/* Check for a unified L2 TLB for large pages */
3191 
3192 	if (BITX(cp->cp_eax, 31, 16) == 0)
3193 		add_amd_l2_tlb(devi, "l2-tlb-2M",
3194 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3195 	else {
3196 		add_amd_l2_tlb(devi, "l2-dtlb-2M",
3197 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
3198 		add_amd_l2_tlb(devi, "l2-itlb-2M",
3199 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3200 	}
3201 
3202 	/* Check for a unified L2 TLB for 4K pages */
3203 
3204 	if (BITX(cp->cp_ebx, 31, 16) == 0) {
3205 		add_amd_l2_tlb(devi, "l2-tlb-4K",
3206 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3207 	} else {
3208 		add_amd_l2_tlb(devi, "l2-dtlb-4K",
3209 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
3210 		add_amd_l2_tlb(devi, "l2-itlb-4K",
3211 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3212 	}
3213 
3214 	add_amd_l2_cache(devi, l2_cache_str,
3215 	    BITX(cp->cp_ecx, 31, 16), BITX(cp->cp_ecx, 15, 12),
3216 	    BITX(cp->cp_ecx, 11, 8), BITX(cp->cp_ecx, 7, 0));
3217 }
3218 
3219 /*
3220  * There are two basic ways that the x86 world describes it cache
3221  * and tlb architecture - Intel's way and AMD's way.
3222  *
3223  * Return which flavor of cache architecture we should use
3224  */
3225 static int
3226 x86_which_cacheinfo(struct cpuid_info *cpi)
3227 {
3228 	switch (cpi->cpi_vendor) {
3229 	case X86_VENDOR_Intel:
3230 		if (cpi->cpi_maxeax >= 2)
3231 			return (X86_VENDOR_Intel);
3232 		break;
3233 	case X86_VENDOR_AMD:
3234 		/*
3235 		 * The K5 model 1 was the first part from AMD that reported
3236 		 * cache sizes via extended cpuid functions.
3237 		 */
3238 		if (cpi->cpi_family > 5 ||
3239 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
3240 			return (X86_VENDOR_AMD);
3241 		break;
3242 	case X86_VENDOR_TM:
3243 		if (cpi->cpi_family >= 5)
3244 			return (X86_VENDOR_AMD);
3245 		/*FALLTHROUGH*/
3246 	default:
3247 		/*
3248 		 * If they have extended CPU data for 0x80000005
3249 		 * then we assume they have AMD-format cache
3250 		 * information.
3251 		 *
3252 		 * If not, and the vendor happens to be Cyrix,
3253 		 * then try our-Cyrix specific handler.
3254 		 *
3255 		 * If we're not Cyrix, then assume we're using Intel's
3256 		 * table-driven format instead.
3257 		 */
3258 		if (cpi->cpi_xmaxeax >= 0x80000005)
3259 			return (X86_VENDOR_AMD);
3260 		else if (cpi->cpi_vendor == X86_VENDOR_Cyrix)
3261 			return (X86_VENDOR_Cyrix);
3262 		else if (cpi->cpi_maxeax >= 2)
3263 			return (X86_VENDOR_Intel);
3264 		break;
3265 	}
3266 	return (-1);
3267 }
3268 
3269 /*
3270  * create a node for the given cpu under the prom root node.
3271  * Also, create a cpu node in the device tree.
3272  */
3273 static dev_info_t *cpu_nex_devi = NULL;
3274 static kmutex_t cpu_node_lock;
3275 
3276 /*
3277  * Called from post_startup() and mp_startup()
3278  */
3279 void
3280 add_cpunode2devtree(processorid_t cpu_id, struct cpuid_info *cpi)
3281 {
3282 	dev_info_t *cpu_devi;
3283 	int create;
3284 
3285 	mutex_enter(&cpu_node_lock);
3286 
3287 	/*
3288 	 * create a nexus node for all cpus identified as 'cpu_id' under
3289 	 * the root node.
3290 	 */
3291 	if (cpu_nex_devi == NULL) {
3292 		if (ndi_devi_alloc(ddi_root_node(), "cpus",
3293 		    (pnode_t)DEVI_SID_NODEID, &cpu_nex_devi) != NDI_SUCCESS) {
3294 			mutex_exit(&cpu_node_lock);
3295 			return;
3296 		}
3297 		(void) ndi_devi_online(cpu_nex_devi, 0);
3298 	}
3299 
3300 	/*
3301 	 * create a child node for cpu identified as 'cpu_id'
3302 	 */
3303 	cpu_devi = ddi_add_child(cpu_nex_devi, "cpu", DEVI_SID_NODEID,
3304 	    cpu_id);
3305 	if (cpu_devi == NULL) {
3306 		mutex_exit(&cpu_node_lock);
3307 		return;
3308 	}
3309 
3310 	/* device_type */
3311 
3312 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3313 	    "device_type", "cpu");
3314 
3315 	/* reg */
3316 
3317 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3318 	    "reg", cpu_id);
3319 
3320 	/* cpu-mhz, and clock-frequency */
3321 
3322 	if (cpu_freq > 0) {
3323 		long long mul;
3324 
3325 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3326 		    "cpu-mhz", cpu_freq);
3327 
3328 		if ((mul = cpu_freq * 1000000LL) <= INT_MAX)
3329 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3330 			    "clock-frequency", (int)mul);
3331 	}
3332 
3333 	(void) ndi_devi_online(cpu_devi, 0);
3334 
3335 	if ((x86_feature & X86_CPUID) == 0) {
3336 		mutex_exit(&cpu_node_lock);
3337 		return;
3338 	}
3339 
3340 	/* vendor-id */
3341 
3342 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3343 	    "vendor-id", cpi->cpi_vendorstr);
3344 
3345 	if (cpi->cpi_maxeax == 0) {
3346 		mutex_exit(&cpu_node_lock);
3347 		return;
3348 	}
3349 
3350 	/*
3351 	 * family, model, and step
3352 	 */
3353 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3354 	    "family", CPI_FAMILY(cpi));
3355 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3356 	    "cpu-model", CPI_MODEL(cpi));
3357 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3358 	    "stepping-id", CPI_STEP(cpi));
3359 
3360 	/* type */
3361 
3362 	switch (cpi->cpi_vendor) {
3363 	case X86_VENDOR_Intel:
3364 		create = 1;
3365 		break;
3366 	default:
3367 		create = 0;
3368 		break;
3369 	}
3370 	if (create)
3371 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3372 		    "type", CPI_TYPE(cpi));
3373 
3374 	/* ext-family */
3375 
3376 	switch (cpi->cpi_vendor) {
3377 	case X86_VENDOR_Intel:
3378 	case X86_VENDOR_AMD:
3379 		create = cpi->cpi_family >= 0xf;
3380 		break;
3381 	default:
3382 		create = 0;
3383 		break;
3384 	}
3385 	if (create)
3386 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3387 		    "ext-family", CPI_FAMILY_XTD(cpi));
3388 
3389 	/* ext-model */
3390 
3391 	switch (cpi->cpi_vendor) {
3392 	case X86_VENDOR_Intel:
3393 		create = CPI_MODEL(cpi) == 0xf;
3394 		break;
3395 	case X86_VENDOR_AMD:
3396 		create = CPI_FAMILY(cpi) == 0xf;
3397 		break;
3398 	default:
3399 		create = 0;
3400 		break;
3401 	}
3402 	if (create)
3403 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3404 		    "ext-model", CPI_MODEL_XTD(cpi));
3405 
3406 	/* generation */
3407 
3408 	switch (cpi->cpi_vendor) {
3409 	case X86_VENDOR_AMD:
3410 		/*
3411 		 * AMD K5 model 1 was the first part to support this
3412 		 */
3413 		create = cpi->cpi_xmaxeax >= 0x80000001;
3414 		break;
3415 	default:
3416 		create = 0;
3417 		break;
3418 	}
3419 	if (create)
3420 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3421 		    "generation", BITX((cpi)->cpi_extd[1].cp_eax, 11, 8));
3422 
3423 	/* brand-id */
3424 
3425 	switch (cpi->cpi_vendor) {
3426 	case X86_VENDOR_Intel:
3427 		/*
3428 		 * brand id first appeared on Pentium III Xeon model 8,
3429 		 * and Celeron model 8 processors and Opteron
3430 		 */
3431 		create = cpi->cpi_family > 6 ||
3432 		    (cpi->cpi_family == 6 && cpi->cpi_model >= 8);
3433 		break;
3434 	case X86_VENDOR_AMD:
3435 		create = cpi->cpi_family >= 0xf;
3436 		break;
3437 	default:
3438 		create = 0;
3439 		break;
3440 	}
3441 	if (create && cpi->cpi_brandid != 0) {
3442 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3443 		    "brand-id", cpi->cpi_brandid);
3444 	}
3445 
3446 	/* chunks, and apic-id */
3447 
3448 	switch (cpi->cpi_vendor) {
3449 		/*
3450 		 * first available on Pentium IV and Opteron (K8)
3451 		 */
3452 	case X86_VENDOR_Intel:
3453 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
3454 		break;
3455 	case X86_VENDOR_AMD:
3456 		create = cpi->cpi_family >= 0xf;
3457 		break;
3458 	default:
3459 		create = 0;
3460 		break;
3461 	}
3462 	if (create) {
3463 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3464 		    "chunks", CPI_CHUNKS(cpi));
3465 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3466 		    "apic-id", CPI_APIC_ID(cpi));
3467 		if (cpi->cpi_chipid >= 0) {
3468 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3469 			    "chip#", cpi->cpi_chipid);
3470 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3471 			    "clog#", cpi->cpi_clogid);
3472 		}
3473 	}
3474 
3475 	/* cpuid-features */
3476 
3477 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3478 	    "cpuid-features", CPI_FEATURES_EDX(cpi));
3479 
3480 
3481 	/* cpuid-features-ecx */
3482 
3483 	switch (cpi->cpi_vendor) {
3484 	case X86_VENDOR_Intel:
3485 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
3486 		break;
3487 	default:
3488 		create = 0;
3489 		break;
3490 	}
3491 	if (create)
3492 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3493 		    "cpuid-features-ecx", CPI_FEATURES_ECX(cpi));
3494 
3495 	/* ext-cpuid-features */
3496 
3497 	switch (cpi->cpi_vendor) {
3498 	case X86_VENDOR_Intel:
3499 	case X86_VENDOR_AMD:
3500 	case X86_VENDOR_Cyrix:
3501 	case X86_VENDOR_TM:
3502 	case X86_VENDOR_Centaur:
3503 		create = cpi->cpi_xmaxeax >= 0x80000001;
3504 		break;
3505 	default:
3506 		create = 0;
3507 		break;
3508 	}
3509 	if (create) {
3510 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3511 		    "ext-cpuid-features", CPI_FEATURES_XTD_EDX(cpi));
3512 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3513 		    "ext-cpuid-features-ecx", CPI_FEATURES_XTD_ECX(cpi));
3514 	}
3515 
3516 	/*
3517 	 * Brand String first appeared in Intel Pentium IV, AMD K5
3518 	 * model 1, and Cyrix GXm.  On earlier models we try and
3519 	 * simulate something similar .. so this string should always
3520 	 * same -something- about the processor, however lame.
3521 	 */
3522 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3523 	    "brand-string", cpi->cpi_brandstr);
3524 
3525 	/*
3526 	 * Finally, cache and tlb information
3527 	 */
3528 	switch (x86_which_cacheinfo(cpi)) {
3529 	case X86_VENDOR_Intel:
3530 		intel_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
3531 		break;
3532 	case X86_VENDOR_Cyrix:
3533 		cyrix_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
3534 		break;
3535 	case X86_VENDOR_AMD:
3536 		amd_cache_info(cpi, cpu_devi);
3537 		break;
3538 	default:
3539 		break;
3540 	}
3541 
3542 	mutex_exit(&cpu_node_lock);
3543 }
3544 
3545 struct l2info {
3546 	int *l2i_csz;
3547 	int *l2i_lsz;
3548 	int *l2i_assoc;
3549 	int l2i_ret;
3550 };
3551 
3552 /*
3553  * A cacheinfo walker that fetches the size, line-size and associativity
3554  * of the L2 cache
3555  */
3556 static int
3557 intel_l2cinfo(void *arg, const struct cachetab *ct)
3558 {
3559 	struct l2info *l2i = arg;
3560 	int *ip;
3561 
3562 	if (ct->ct_label != l2_cache_str &&
3563 	    ct->ct_label != sl2_cache_str)
3564 		return (0);	/* not an L2 -- keep walking */
3565 
3566 	if ((ip = l2i->l2i_csz) != NULL)
3567 		*ip = ct->ct_size;
3568 	if ((ip = l2i->l2i_lsz) != NULL)
3569 		*ip = ct->ct_line_size;
3570 	if ((ip = l2i->l2i_assoc) != NULL)
3571 		*ip = ct->ct_assoc;
3572 	l2i->l2i_ret = ct->ct_size;
3573 	return (1);		/* was an L2 -- terminate walk */
3574 }
3575 
3576 /*
3577  * AMD L2/L3 Cache and TLB Associativity Field Definition:
3578  *
3579  *	Unlike the associativity for the L1 cache and tlb where the 8 bit
3580  *	value is the associativity, the associativity for the L2 cache and
3581  *	tlb is encoded in the following table. The 4 bit L2 value serves as
3582  *	an index into the amd_afd[] array to determine the associativity.
3583  *	-1 is undefined. 0 is fully associative.
3584  */
3585 
3586 static int amd_afd[] =
3587 	{-1, 1, 2, -1, 4, -1, 8, -1, 16, -1, 32, 48, 64, 96, 128, 0};
3588 
3589 static void
3590 amd_l2cacheinfo(struct cpuid_info *cpi, struct l2info *l2i)
3591 {
3592 	struct cpuid_regs *cp;
3593 	uint_t size, assoc;
3594 	int i;
3595 	int *ip;
3596 
3597 	if (cpi->cpi_xmaxeax < 0x80000006)
3598 		return;
3599 	cp = &cpi->cpi_extd[6];
3600 
3601 	if ((i = BITX(cp->cp_ecx, 15, 12)) != 0 &&
3602 	    (size = BITX(cp->cp_ecx, 31, 16)) != 0) {
3603 		uint_t cachesz = size * 1024;
3604 		assoc = amd_afd[i];
3605 
3606 		ASSERT(assoc != -1);
3607 
3608 		if ((ip = l2i->l2i_csz) != NULL)
3609 			*ip = cachesz;
3610 		if ((ip = l2i->l2i_lsz) != NULL)
3611 			*ip = BITX(cp->cp_ecx, 7, 0);
3612 		if ((ip = l2i->l2i_assoc) != NULL)
3613 			*ip = assoc;
3614 		l2i->l2i_ret = cachesz;
3615 	}
3616 }
3617 
3618 int
3619 getl2cacheinfo(cpu_t *cpu, int *csz, int *lsz, int *assoc)
3620 {
3621 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
3622 	struct l2info __l2info, *l2i = &__l2info;
3623 
3624 	l2i->l2i_csz = csz;
3625 	l2i->l2i_lsz = lsz;
3626 	l2i->l2i_assoc = assoc;
3627 	l2i->l2i_ret = -1;
3628 
3629 	switch (x86_which_cacheinfo(cpi)) {
3630 	case X86_VENDOR_Intel:
3631 		intel_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
3632 		break;
3633 	case X86_VENDOR_Cyrix:
3634 		cyrix_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
3635 		break;
3636 	case X86_VENDOR_AMD:
3637 		amd_l2cacheinfo(cpi, l2i);
3638 		break;
3639 	default:
3640 		break;
3641 	}
3642 	return (l2i->l2i_ret);
3643 }
3644 
3645 #if !defined(__xpv)
3646 
3647 uint32_t *
3648 cpuid_mwait_alloc(cpu_t *cpu)
3649 {
3650 	uint32_t	*ret;
3651 	size_t		mwait_size;
3652 
3653 	ASSERT(cpuid_checkpass(cpu, 2));
3654 
3655 	mwait_size = cpu->cpu_m.mcpu_cpi->cpi_mwait.mon_max;
3656 	if (mwait_size == 0)
3657 		return (NULL);
3658 
3659 	/*
3660 	 * kmem_alloc() returns cache line size aligned data for mwait_size
3661 	 * allocations.  mwait_size is currently cache line sized.  Neither
3662 	 * of these implementation details are guarantied to be true in the
3663 	 * future.
3664 	 *
3665 	 * First try allocating mwait_size as kmem_alloc() currently returns
3666 	 * correctly aligned memory.  If kmem_alloc() does not return
3667 	 * mwait_size aligned memory, then use mwait_size ROUNDUP.
3668 	 *
3669 	 * Set cpi_mwait.buf_actual and cpi_mwait.size_actual in case we
3670 	 * decide to free this memory.
3671 	 */
3672 	ret = kmem_zalloc(mwait_size, KM_SLEEP);
3673 	if (ret == (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size)) {
3674 		cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret;
3675 		cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size;
3676 		*ret = MWAIT_RUNNING;
3677 		return (ret);
3678 	} else {
3679 		kmem_free(ret, mwait_size);
3680 		ret = kmem_zalloc(mwait_size * 2, KM_SLEEP);
3681 		cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret;
3682 		cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size * 2;
3683 		ret = (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size);
3684 		*ret = MWAIT_RUNNING;
3685 		return (ret);
3686 	}
3687 }
3688 
3689 void
3690 cpuid_mwait_free(cpu_t *cpu)
3691 {
3692 	ASSERT(cpuid_checkpass(cpu, 2));
3693 
3694 	if (cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual != NULL &&
3695 	    cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual > 0) {
3696 		kmem_free(cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual,
3697 		    cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual);
3698 	}
3699 
3700 	cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = NULL;
3701 	cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = 0;
3702 }
3703 
3704 void
3705 patch_tsc_read(int flag)
3706 {
3707 	size_t cnt;
3708 	switch (flag) {
3709 	case X86_NO_TSC:
3710 		cnt = &_no_rdtsc_end - &_no_rdtsc_start;
3711 		(void) memcpy((void *)tsc_read, (void *)&_no_rdtsc_start, cnt);
3712 		break;
3713 	case X86_HAVE_TSCP:
3714 		cnt = &_tscp_end - &_tscp_start;
3715 		(void) memcpy((void *)tsc_read, (void *)&_tscp_start, cnt);
3716 		break;
3717 	case X86_TSC_MFENCE:
3718 		cnt = &_tsc_mfence_end - &_tsc_mfence_start;
3719 		(void) memcpy((void *)tsc_read,
3720 		    (void *)&_tsc_mfence_start, cnt);
3721 		break;
3722 	default:
3723 		break;
3724 	}
3725 }
3726 
3727 #endif	/* !__xpv */
3728