xref: /titanic_50/usr/src/uts/i86pc/os/cpuid.c (revision f6517e58b2a51b48b9bb30aa3be64f6df58a31fc)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Various routines to handle identification
30  * and classification of x86 processors.
31  */
32 
33 #include <sys/types.h>
34 #include <sys/archsystm.h>
35 #include <sys/x86_archext.h>
36 #include <sys/kmem.h>
37 #include <sys/systm.h>
38 #include <sys/cmn_err.h>
39 #include <sys/sunddi.h>
40 #include <sys/sunndi.h>
41 #include <sys/cpuvar.h>
42 #include <sys/processor.h>
43 #include <sys/sysmacros.h>
44 #include <sys/pg.h>
45 #include <sys/fp.h>
46 #include <sys/controlregs.h>
47 #include <sys/auxv_386.h>
48 #include <sys/bitmap.h>
49 #include <sys/memnode.h>
50 
51 /*
52  * Pass 0 of cpuid feature analysis happens in locore. It contains special code
53  * to recognize Cyrix processors that are not cpuid-compliant, and to deal with
54  * them accordingly. For most modern processors, feature detection occurs here
55  * in pass 1.
56  *
57  * Pass 1 of cpuid feature analysis happens just at the beginning of mlsetup()
58  * for the boot CPU and does the basic analysis that the early kernel needs.
59  * x86_feature is set based on the return value of cpuid_pass1() of the boot
60  * CPU.
61  *
62  * Pass 1 includes:
63  *
64  *	o Determining vendor/model/family/stepping and setting x86_type and
65  *	  x86_vendor accordingly.
66  *	o Processing the feature flags returned by the cpuid instruction while
67  *	  applying any workarounds or tricks for the specific processor.
68  *	o Mapping the feature flags into Solaris feature bits (X86_*).
69  *	o Processing extended feature flags if supported by the processor,
70  *	  again while applying specific processor knowledge.
71  *	o Determining the CMT characteristics of the system.
72  *
73  * Pass 1 is done on non-boot CPUs during their initialization and the results
74  * are used only as a meager attempt at ensuring that all processors within the
75  * system support the same features.
76  *
77  * Pass 2 of cpuid feature analysis happens just at the beginning
78  * of startup().  It just copies in and corrects the remainder
79  * of the cpuid data we depend on: standard cpuid functions that we didn't
80  * need for pass1 feature analysis, and extended cpuid functions beyond the
81  * simple feature processing done in pass1.
82  *
83  * Pass 3 of cpuid analysis is invoked after basic kernel services; in
84  * particular kernel memory allocation has been made available. It creates a
85  * readable brand string based on the data collected in the first two passes.
86  *
87  * Pass 4 of cpuid analysis is invoked after post_startup() when all
88  * the support infrastructure for various hardware features has been
89  * initialized. It determines which processor features will be reported
90  * to userland via the aux vector.
91  *
92  * All passes are executed on all CPUs, but only the boot CPU determines what
93  * features the kernel will use.
94  *
95  * Much of the worst junk in this file is for the support of processors
96  * that didn't really implement the cpuid instruction properly.
97  *
98  * NOTE: The accessor functions (cpuid_get*) are aware of, and ASSERT upon,
99  * the pass numbers.  Accordingly, changes to the pass code may require changes
100  * to the accessor code.
101  */
102 
103 uint_t x86_feature = 0;
104 uint_t x86_vendor = X86_VENDOR_IntelClone;
105 uint_t x86_type = X86_TYPE_OTHER;
106 
107 uint_t pentiumpro_bug4046376;
108 uint_t pentiumpro_bug4064495;
109 
110 uint_t enable486;
111 
112 /*
113  * This set of strings are for processors rumored to support the cpuid
114  * instruction, and is used by locore.s to figure out how to set x86_vendor
115  */
116 const char CyrixInstead[] = "CyrixInstead";
117 
118 /*
119  * monitor/mwait info.
120  *
121  * size_actual and buf_actual are the real address and size allocated to get
122  * proper mwait_buf alignement.  buf_actual and size_actual should be passed
123  * to kmem_free().  Currently kmem_alloc() and mwait happen to both use
124  * processor cache-line alignment, but this is not guarantied in the furture.
125  */
126 struct mwait_info {
127 	size_t		mon_min;	/* min size to avoid missed wakeups */
128 	size_t		mon_max;	/* size to avoid false wakeups */
129 	size_t		size_actual;	/* size actually allocated */
130 	void		*buf_actual;	/* memory actually allocated */
131 	uint32_t	support;	/* processor support of monitor/mwait */
132 };
133 
134 /*
135  * These constants determine how many of the elements of the
136  * cpuid we cache in the cpuid_info data structure; the
137  * remaining elements are accessible via the cpuid instruction.
138  */
139 
140 #define	NMAX_CPI_STD	6		/* eax = 0 .. 5 */
141 #define	NMAX_CPI_EXTD	9		/* eax = 0x80000000 .. 0x80000008 */
142 
143 struct cpuid_info {
144 	uint_t cpi_pass;		/* last pass completed */
145 	/*
146 	 * standard function information
147 	 */
148 	uint_t cpi_maxeax;		/* fn 0: %eax */
149 	char cpi_vendorstr[13];		/* fn 0: %ebx:%ecx:%edx */
150 	uint_t cpi_vendor;		/* enum of cpi_vendorstr */
151 
152 	uint_t cpi_family;		/* fn 1: extended family */
153 	uint_t cpi_model;		/* fn 1: extended model */
154 	uint_t cpi_step;		/* fn 1: stepping */
155 	chipid_t cpi_chipid;		/* fn 1: %ebx: chip # on ht cpus */
156 	uint_t cpi_brandid;		/* fn 1: %ebx: brand ID */
157 	int cpi_clogid;			/* fn 1: %ebx: thread # */
158 	uint_t cpi_ncpu_per_chip;	/* fn 1: %ebx: logical cpu count */
159 	uint8_t cpi_cacheinfo[16];	/* fn 2: intel-style cache desc */
160 	uint_t cpi_ncache;		/* fn 2: number of elements */
161 	uint_t cpi_ncpu_shr_last_cache;	/* fn 4: %eax: ncpus sharing cache */
162 	id_t cpi_last_lvl_cacheid;	/* fn 4: %eax: derived cache id */
163 	uint_t cpi_std_4_size;		/* fn 4: number of fn 4 elements */
164 	struct cpuid_regs **cpi_std_4;	/* fn 4: %ecx == 0 .. fn4_size */
165 	struct cpuid_regs cpi_std[NMAX_CPI_STD];	/* 0 .. 5 */
166 	/*
167 	 * extended function information
168 	 */
169 	uint_t cpi_xmaxeax;		/* fn 0x80000000: %eax */
170 	char cpi_brandstr[49];		/* fn 0x8000000[234] */
171 	uint8_t cpi_pabits;		/* fn 0x80000006: %eax */
172 	uint8_t cpi_vabits;		/* fn 0x80000006: %eax */
173 	struct cpuid_regs cpi_extd[NMAX_CPI_EXTD]; /* 0x8000000[0-8] */
174 	id_t cpi_coreid;
175 	uint_t cpi_ncore_per_chip;	/* AMD: fn 0x80000008: %ecx[7-0] */
176 					/* Intel: fn 4: %eax[31-26] */
177 	/*
178 	 * supported feature information
179 	 */
180 	uint32_t cpi_support[5];
181 #define	STD_EDX_FEATURES	0
182 #define	AMD_EDX_FEATURES	1
183 #define	TM_EDX_FEATURES		2
184 #define	STD_ECX_FEATURES	3
185 #define	AMD_ECX_FEATURES	4
186 	/*
187 	 * Synthesized information, where known.
188 	 */
189 	uint32_t cpi_chiprev;		/* See X86_CHIPREV_* in x86_archext.h */
190 	const char *cpi_chiprevstr;	/* May be NULL if chiprev unknown */
191 	uint32_t cpi_socket;		/* Chip package/socket type */
192 
193 	struct mwait_info cpi_mwait;	/* fn 5: monitor/mwait info */
194 };
195 
196 
197 static struct cpuid_info cpuid_info0;
198 
199 /*
200  * These bit fields are defined by the Intel Application Note AP-485
201  * "Intel Processor Identification and the CPUID Instruction"
202  */
203 #define	CPI_FAMILY_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 27, 20)
204 #define	CPI_MODEL_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 19, 16)
205 #define	CPI_TYPE(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 13, 12)
206 #define	CPI_FAMILY(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 11, 8)
207 #define	CPI_STEP(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 3, 0)
208 #define	CPI_MODEL(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 7, 4)
209 
210 #define	CPI_FEATURES_EDX(cpi)		((cpi)->cpi_std[1].cp_edx)
211 #define	CPI_FEATURES_ECX(cpi)		((cpi)->cpi_std[1].cp_ecx)
212 #define	CPI_FEATURES_XTD_EDX(cpi)	((cpi)->cpi_extd[1].cp_edx)
213 #define	CPI_FEATURES_XTD_ECX(cpi)	((cpi)->cpi_extd[1].cp_ecx)
214 
215 #define	CPI_BRANDID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 7, 0)
216 #define	CPI_CHUNKS(cpi)		BITX((cpi)->cpi_std[1].cp_ebx, 15, 7)
217 #define	CPI_CPU_COUNT(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 23, 16)
218 #define	CPI_APIC_ID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 31, 24)
219 
220 #define	CPI_MAXEAX_MAX		0x100		/* sanity control */
221 #define	CPI_XMAXEAX_MAX		0x80000100
222 #define	CPI_FN4_ECX_MAX		0x20		/* sanity: max fn 4 levels */
223 
224 /*
225  * Function 4 (Deterministic Cache Parameters) macros
226  * Defined by Intel Application Note AP-485
227  */
228 #define	CPI_NUM_CORES(regs)		BITX((regs)->cp_eax, 31, 26)
229 #define	CPI_NTHR_SHR_CACHE(regs)	BITX((regs)->cp_eax, 25, 14)
230 #define	CPI_FULL_ASSOC_CACHE(regs)	BITX((regs)->cp_eax, 9, 9)
231 #define	CPI_SELF_INIT_CACHE(regs)	BITX((regs)->cp_eax, 8, 8)
232 #define	CPI_CACHE_LVL(regs)		BITX((regs)->cp_eax, 7, 5)
233 #define	CPI_CACHE_TYPE(regs)		BITX((regs)->cp_eax, 4, 0)
234 
235 #define	CPI_CACHE_WAYS(regs)		BITX((regs)->cp_ebx, 31, 22)
236 #define	CPI_CACHE_PARTS(regs)		BITX((regs)->cp_ebx, 21, 12)
237 #define	CPI_CACHE_COH_LN_SZ(regs)	BITX((regs)->cp_ebx, 11, 0)
238 
239 #define	CPI_CACHE_SETS(regs)		BITX((regs)->cp_ecx, 31, 0)
240 
241 #define	CPI_PREFCH_STRIDE(regs)		BITX((regs)->cp_edx, 9, 0)
242 
243 
244 /*
245  * A couple of shorthand macros to identify "later" P6-family chips
246  * like the Pentium M and Core.  First, the "older" P6-based stuff
247  * (loosely defined as "pre-Pentium-4"):
248  * P6, PII, Mobile PII, PII Xeon, PIII, Mobile PIII, PIII Xeon
249  */
250 
251 #define	IS_LEGACY_P6(cpi) (			\
252 	cpi->cpi_family == 6 && 		\
253 		(cpi->cpi_model == 1 ||		\
254 		cpi->cpi_model == 3 ||		\
255 		cpi->cpi_model == 5 ||		\
256 		cpi->cpi_model == 6 ||		\
257 		cpi->cpi_model == 7 ||		\
258 		cpi->cpi_model == 8 ||		\
259 		cpi->cpi_model == 0xA ||	\
260 		cpi->cpi_model == 0xB)		\
261 )
262 
263 /* A "new F6" is everything with family 6 that's not the above */
264 #define	IS_NEW_F6(cpi) ((cpi->cpi_family == 6) && !IS_LEGACY_P6(cpi))
265 
266 /* Extended family/model support */
267 #define	IS_EXTENDED_MODEL_INTEL(cpi) (cpi->cpi_family == 0x6 || \
268 	cpi->cpi_family >= 0xf)
269 
270 /*
271  * AMD family 0xf and family 0x10 socket types.
272  * First index :
273  *		0 for family 0xf, revs B thru E
274  *		1 for family 0xf, revs F and G
275  *		2 for family 0x10, rev B
276  * Second index by (model & 0x3)
277  */
278 static uint32_t amd_skts[3][4] = {
279 	/*
280 	 * Family 0xf revisions B through E
281 	 */
282 #define	A_SKTS_0			0
283 	{
284 		X86_SOCKET_754,		/* 0b00 */
285 		X86_SOCKET_940,		/* 0b01 */
286 		X86_SOCKET_754,		/* 0b10 */
287 		X86_SOCKET_939		/* 0b11 */
288 	},
289 	/*
290 	 * Family 0xf revisions F and G
291 	 */
292 #define	A_SKTS_1			1
293 	{
294 		X86_SOCKET_S1g1,	/* 0b00 */
295 		X86_SOCKET_F1207,	/* 0b01 */
296 		X86_SOCKET_UNKNOWN,	/* 0b10 */
297 		X86_SOCKET_AM2		/* 0b11 */
298 	},
299 	/*
300 	 * Family 0x10 revisions A and B
301 	 * It is not clear whether, as new sockets release, that
302 	 * model & 0x3 will id socket for this family
303 	 */
304 #define	A_SKTS_2			2
305 	{
306 		X86_SOCKET_F1207,	/* 0b00 */
307 		X86_SOCKET_F1207,	/* 0b01 */
308 		X86_SOCKET_F1207,	/* 0b10 */
309 		X86_SOCKET_F1207,	/* 0b11 */
310 	}
311 };
312 
313 /*
314  * Table for mapping AMD Family 0xf and AMD Family 0x10 model/stepping
315  * combination to chip "revision" and socket type.
316  *
317  * The first member of this array that matches a given family, extended model
318  * plus model range, and stepping range will be considered a match.
319  */
320 static const struct amd_rev_mapent {
321 	uint_t rm_family;
322 	uint_t rm_modello;
323 	uint_t rm_modelhi;
324 	uint_t rm_steplo;
325 	uint_t rm_stephi;
326 	uint32_t rm_chiprev;
327 	const char *rm_chiprevstr;
328 	int rm_sktidx;
329 } amd_revmap[] = {
330 	/*
331 	 * =============== AuthenticAMD Family 0xf ===============
332 	 */
333 
334 	/*
335 	 * Rev B includes model 0x4 stepping 0 and model 0x5 stepping 0 and 1.
336 	 */
337 	{ 0xf, 0x04, 0x04, 0x0, 0x0, X86_CHIPREV_AMD_F_REV_B, "B", A_SKTS_0 },
338 	{ 0xf, 0x05, 0x05, 0x0, 0x1, X86_CHIPREV_AMD_F_REV_B, "B", A_SKTS_0 },
339 	/*
340 	 * Rev C0 includes model 0x4 stepping 8 and model 0x5 stepping 8
341 	 */
342 	{ 0xf, 0x04, 0x05, 0x8, 0x8, X86_CHIPREV_AMD_F_REV_C0, "C0", A_SKTS_0 },
343 	/*
344 	 * Rev CG is the rest of extended model 0x0 - i.e., everything
345 	 * but the rev B and C0 combinations covered above.
346 	 */
347 	{ 0xf, 0x00, 0x0f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_CG, "CG", A_SKTS_0 },
348 	/*
349 	 * Rev D has extended model 0x1.
350 	 */
351 	{ 0xf, 0x10, 0x1f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_D, "D", A_SKTS_0 },
352 	/*
353 	 * Rev E has extended model 0x2.
354 	 * Extended model 0x3 is unused but available to grow into.
355 	 */
356 	{ 0xf, 0x20, 0x3f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_E, "E", A_SKTS_0 },
357 	/*
358 	 * Rev F has extended models 0x4 and 0x5.
359 	 */
360 	{ 0xf, 0x40, 0x5f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_F, "F", A_SKTS_1 },
361 	/*
362 	 * Rev G has extended model 0x6.
363 	 */
364 	{ 0xf, 0x60, 0x6f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_G, "G", A_SKTS_1 },
365 
366 	/*
367 	 * =============== AuthenticAMD Family 0x10 ===============
368 	 */
369 
370 	/*
371 	 * Rev A has model 0 and stepping 0/1/2 for DR-{A0,A1,A2}.
372 	 * Give all of model 0 stepping range to rev A.
373 	 */
374 	{ 0x10, 0x00, 0x00, 0x0, 0x2, X86_CHIPREV_AMD_10_REV_A, "A", A_SKTS_2 },
375 
376 	/*
377 	 * Rev B has model 2 and steppings 0/1/0xa/2 for DR-{B0,B1,BA,B2}.
378 	 * Give all of model 2 stepping range to rev B.
379 	 */
380 	{ 0x10, 0x02, 0x02, 0x0, 0xf, X86_CHIPREV_AMD_10_REV_B, "B", A_SKTS_2 },
381 };
382 
383 /*
384  * Info for monitor/mwait idle loop.
385  *
386  * See cpuid section of "Intel 64 and IA-32 Architectures Software Developer's
387  * Manual Volume 2A: Instruction Set Reference, A-M" #25366-022US, November
388  * 2006.
389  * See MONITOR/MWAIT section of "AMD64 Architecture Programmer's Manual
390  * Documentation Updates" #33633, Rev 2.05, December 2006.
391  */
392 #define	MWAIT_SUPPORT		(0x00000001)	/* mwait supported */
393 #define	MWAIT_EXTENSIONS	(0x00000002)	/* extenstion supported */
394 #define	MWAIT_ECX_INT_ENABLE	(0x00000004)	/* ecx 1 extension supported */
395 #define	MWAIT_SUPPORTED(cpi)	((cpi)->cpi_std[1].cp_ecx & CPUID_INTC_ECX_MON)
396 #define	MWAIT_INT_ENABLE(cpi)	((cpi)->cpi_std[5].cp_ecx & 0x2)
397 #define	MWAIT_EXTENSION(cpi)	((cpi)->cpi_std[5].cp_ecx & 0x1)
398 #define	MWAIT_SIZE_MIN(cpi)	BITX((cpi)->cpi_std[5].cp_eax, 15, 0)
399 #define	MWAIT_SIZE_MAX(cpi)	BITX((cpi)->cpi_std[5].cp_ebx, 15, 0)
400 /*
401  * Number of sub-cstates for a given c-state.
402  */
403 #define	MWAIT_NUM_SUBC_STATES(cpi, c_state)			\
404 	BITX((cpi)->cpi_std[5].cp_edx, c_state + 3, c_state)
405 
406 static void intel_cpuid_4_cache_info(void *, struct cpuid_info *);
407 
408 static void
409 synth_amd_info(struct cpuid_info *cpi)
410 {
411 	const struct amd_rev_mapent *rmp;
412 	uint_t family, model, step;
413 	int i;
414 
415 	/*
416 	 * Currently only AMD family 0xf and family 0x10 use these fields.
417 	 */
418 	if (cpi->cpi_family != 0xf && cpi->cpi_family != 0x10)
419 		return;
420 
421 	family = cpi->cpi_family;
422 	model = cpi->cpi_model;
423 	step = cpi->cpi_step;
424 
425 	for (i = 0, rmp = amd_revmap; i < sizeof (amd_revmap) / sizeof (*rmp);
426 	    i++, rmp++) {
427 		if (family == rmp->rm_family &&
428 		    model >= rmp->rm_modello && model <= rmp->rm_modelhi &&
429 		    step >= rmp->rm_steplo && step <= rmp->rm_stephi) {
430 			cpi->cpi_chiprev = rmp->rm_chiprev;
431 			cpi->cpi_chiprevstr = rmp->rm_chiprevstr;
432 			cpi->cpi_socket = amd_skts[rmp->rm_sktidx][model & 0x3];
433 			return;
434 		}
435 	}
436 }
437 
438 static void
439 synth_info(struct cpuid_info *cpi)
440 {
441 	cpi->cpi_chiprev = X86_CHIPREV_UNKNOWN;
442 	cpi->cpi_chiprevstr = "Unknown";
443 	cpi->cpi_socket = X86_SOCKET_UNKNOWN;
444 
445 	switch (cpi->cpi_vendor) {
446 	case X86_VENDOR_AMD:
447 		synth_amd_info(cpi);
448 		break;
449 
450 	default:
451 		break;
452 
453 	}
454 }
455 
456 /*
457  * Apply up various platform-dependent restrictions where the
458  * underlying platform restrictions mean the CPU can be marked
459  * as less capable than its cpuid instruction would imply.
460  */
461 #if defined(__xpv)
462 static void
463 platform_cpuid_mangle(uint_t vendor, uint32_t eax, struct cpuid_regs *cp)
464 {
465 	switch (eax) {
466 	case 1:
467 		cp->cp_edx &=
468 		    ~(CPUID_INTC_EDX_PSE |
469 		    CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE |
470 		    CPUID_INTC_EDX_MCA |	/* XXPV true on dom0? */
471 		    CPUID_INTC_EDX_SEP | CPUID_INTC_EDX_MTRR |
472 		    CPUID_INTC_EDX_PGE | CPUID_INTC_EDX_PAT |
473 		    CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP |
474 		    CPUID_INTC_EDX_PSE36 | CPUID_INTC_EDX_HTT);
475 		break;
476 
477 	case 0x80000001:
478 		cp->cp_edx &=
479 		    ~(CPUID_AMD_EDX_PSE |
480 		    CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE |
481 		    CPUID_AMD_EDX_MTRR | CPUID_AMD_EDX_PGE |
482 		    CPUID_AMD_EDX_PAT | CPUID_AMD_EDX_PSE36 |
483 		    CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP |
484 		    CPUID_AMD_EDX_TSCP);
485 		cp->cp_ecx &= ~CPUID_AMD_ECX_CMP_LGCY;
486 		break;
487 	default:
488 		break;
489 	}
490 
491 	switch (vendor) {
492 	case X86_VENDOR_Intel:
493 		switch (eax) {
494 		case 4:
495 			/*
496 			 * Zero out the (ncores-per-chip - 1) field
497 			 */
498 			cp->cp_eax &= 0x03fffffff;
499 			break;
500 		default:
501 			break;
502 		}
503 		break;
504 	case X86_VENDOR_AMD:
505 		switch (eax) {
506 		case 0x80000008:
507 			/*
508 			 * Zero out the (ncores-per-chip - 1) field
509 			 */
510 			cp->cp_ecx &= 0xffffff00;
511 			break;
512 		default:
513 			break;
514 		}
515 		break;
516 	default:
517 		break;
518 	}
519 }
520 #else
521 #define	platform_cpuid_mangle(vendor, eax, cp)	/* nothing */
522 #endif
523 
524 /*
525  *  Some undocumented ways of patching the results of the cpuid
526  *  instruction to permit running Solaris 10 on future cpus that
527  *  we don't currently support.  Could be set to non-zero values
528  *  via settings in eeprom.
529  */
530 
531 uint32_t cpuid_feature_ecx_include;
532 uint32_t cpuid_feature_ecx_exclude;
533 uint32_t cpuid_feature_edx_include;
534 uint32_t cpuid_feature_edx_exclude;
535 
536 void
537 cpuid_alloc_space(cpu_t *cpu)
538 {
539 	/*
540 	 * By convention, cpu0 is the boot cpu, which is set up
541 	 * before memory allocation is available.  All other cpus get
542 	 * their cpuid_info struct allocated here.
543 	 */
544 	ASSERT(cpu->cpu_id != 0);
545 	cpu->cpu_m.mcpu_cpi =
546 	    kmem_zalloc(sizeof (*cpu->cpu_m.mcpu_cpi), KM_SLEEP);
547 }
548 
549 void
550 cpuid_free_space(cpu_t *cpu)
551 {
552 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
553 	int i;
554 
555 	ASSERT(cpu->cpu_id != 0);
556 
557 	/*
558 	 * Free up any function 4 related dynamic storage
559 	 */
560 	for (i = 1; i < cpi->cpi_std_4_size; i++)
561 		kmem_free(cpi->cpi_std_4[i], sizeof (struct cpuid_regs));
562 	if (cpi->cpi_std_4_size > 0)
563 		kmem_free(cpi->cpi_std_4,
564 		    cpi->cpi_std_4_size * sizeof (struct cpuid_regs *));
565 
566 	kmem_free(cpu->cpu_m.mcpu_cpi, sizeof (*cpu->cpu_m.mcpu_cpi));
567 }
568 
569 uint_t
570 cpuid_pass1(cpu_t *cpu)
571 {
572 	uint32_t mask_ecx, mask_edx;
573 	uint_t feature = X86_CPUID;
574 	struct cpuid_info *cpi;
575 	struct cpuid_regs *cp;
576 	int xcpuid;
577 #if !defined(__xpv)
578 	extern int idle_cpu_prefer_mwait;
579 #endif
580 
581 	/*
582 	 * Space statically allocated for cpu0, ensure pointer is set
583 	 */
584 	if (cpu->cpu_id == 0)
585 		cpu->cpu_m.mcpu_cpi = &cpuid_info0;
586 	cpi = cpu->cpu_m.mcpu_cpi;
587 	ASSERT(cpi != NULL);
588 	cp = &cpi->cpi_std[0];
589 	cp->cp_eax = 0;
590 	cpi->cpi_maxeax = __cpuid_insn(cp);
591 	{
592 		uint32_t *iptr = (uint32_t *)cpi->cpi_vendorstr;
593 		*iptr++ = cp->cp_ebx;
594 		*iptr++ = cp->cp_edx;
595 		*iptr++ = cp->cp_ecx;
596 		*(char *)&cpi->cpi_vendorstr[12] = '\0';
597 	}
598 
599 	/*
600 	 * Map the vendor string to a type code
601 	 */
602 	if (strcmp(cpi->cpi_vendorstr, "GenuineIntel") == 0)
603 		cpi->cpi_vendor = X86_VENDOR_Intel;
604 	else if (strcmp(cpi->cpi_vendorstr, "AuthenticAMD") == 0)
605 		cpi->cpi_vendor = X86_VENDOR_AMD;
606 	else if (strcmp(cpi->cpi_vendorstr, "GenuineTMx86") == 0)
607 		cpi->cpi_vendor = X86_VENDOR_TM;
608 	else if (strcmp(cpi->cpi_vendorstr, CyrixInstead) == 0)
609 		/*
610 		 * CyrixInstead is a variable used by the Cyrix detection code
611 		 * in locore.
612 		 */
613 		cpi->cpi_vendor = X86_VENDOR_Cyrix;
614 	else if (strcmp(cpi->cpi_vendorstr, "UMC UMC UMC ") == 0)
615 		cpi->cpi_vendor = X86_VENDOR_UMC;
616 	else if (strcmp(cpi->cpi_vendorstr, "NexGenDriven") == 0)
617 		cpi->cpi_vendor = X86_VENDOR_NexGen;
618 	else if (strcmp(cpi->cpi_vendorstr, "CentaurHauls") == 0)
619 		cpi->cpi_vendor = X86_VENDOR_Centaur;
620 	else if (strcmp(cpi->cpi_vendorstr, "RiseRiseRise") == 0)
621 		cpi->cpi_vendor = X86_VENDOR_Rise;
622 	else if (strcmp(cpi->cpi_vendorstr, "SiS SiS SiS ") == 0)
623 		cpi->cpi_vendor = X86_VENDOR_SiS;
624 	else if (strcmp(cpi->cpi_vendorstr, "Geode by NSC") == 0)
625 		cpi->cpi_vendor = X86_VENDOR_NSC;
626 	else
627 		cpi->cpi_vendor = X86_VENDOR_IntelClone;
628 
629 	x86_vendor = cpi->cpi_vendor; /* for compatibility */
630 
631 	/*
632 	 * Limit the range in case of weird hardware
633 	 */
634 	if (cpi->cpi_maxeax > CPI_MAXEAX_MAX)
635 		cpi->cpi_maxeax = CPI_MAXEAX_MAX;
636 	if (cpi->cpi_maxeax < 1)
637 		goto pass1_done;
638 
639 	cp = &cpi->cpi_std[1];
640 	cp->cp_eax = 1;
641 	(void) __cpuid_insn(cp);
642 
643 	/*
644 	 * Extract identifying constants for easy access.
645 	 */
646 	cpi->cpi_model = CPI_MODEL(cpi);
647 	cpi->cpi_family = CPI_FAMILY(cpi);
648 
649 	if (cpi->cpi_family == 0xf)
650 		cpi->cpi_family += CPI_FAMILY_XTD(cpi);
651 
652 	/*
653 	 * Beware: AMD uses "extended model" iff base *FAMILY* == 0xf.
654 	 * Intel, and presumably everyone else, uses model == 0xf, as
655 	 * one would expect (max value means possible overflow).  Sigh.
656 	 */
657 
658 	switch (cpi->cpi_vendor) {
659 	case X86_VENDOR_Intel:
660 		if (IS_EXTENDED_MODEL_INTEL(cpi))
661 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
662 		break;
663 	case X86_VENDOR_AMD:
664 		if (CPI_FAMILY(cpi) == 0xf)
665 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
666 		break;
667 	default:
668 		if (cpi->cpi_model == 0xf)
669 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
670 		break;
671 	}
672 
673 	cpi->cpi_step = CPI_STEP(cpi);
674 	cpi->cpi_brandid = CPI_BRANDID(cpi);
675 
676 	/*
677 	 * *default* assumptions:
678 	 * - believe %edx feature word
679 	 * - ignore %ecx feature word
680 	 * - 32-bit virtual and physical addressing
681 	 */
682 	mask_edx = 0xffffffff;
683 	mask_ecx = 0;
684 
685 	cpi->cpi_pabits = cpi->cpi_vabits = 32;
686 
687 	switch (cpi->cpi_vendor) {
688 	case X86_VENDOR_Intel:
689 		if (cpi->cpi_family == 5)
690 			x86_type = X86_TYPE_P5;
691 		else if (IS_LEGACY_P6(cpi)) {
692 			x86_type = X86_TYPE_P6;
693 			pentiumpro_bug4046376 = 1;
694 			pentiumpro_bug4064495 = 1;
695 			/*
696 			 * Clear the SEP bit when it was set erroneously
697 			 */
698 			if (cpi->cpi_model < 3 && cpi->cpi_step < 3)
699 				cp->cp_edx &= ~CPUID_INTC_EDX_SEP;
700 		} else if (IS_NEW_F6(cpi) || cpi->cpi_family == 0xf) {
701 			x86_type = X86_TYPE_P4;
702 			/*
703 			 * We don't currently depend on any of the %ecx
704 			 * features until Prescott, so we'll only check
705 			 * this from P4 onwards.  We might want to revisit
706 			 * that idea later.
707 			 */
708 			mask_ecx = 0xffffffff;
709 		} else if (cpi->cpi_family > 0xf)
710 			mask_ecx = 0xffffffff;
711 		/*
712 		 * We don't support MONITOR/MWAIT if leaf 5 is not available
713 		 * to obtain the monitor linesize.
714 		 */
715 		if (cpi->cpi_maxeax < 5)
716 			mask_ecx &= ~CPUID_INTC_ECX_MON;
717 		break;
718 	case X86_VENDOR_IntelClone:
719 	default:
720 		break;
721 	case X86_VENDOR_AMD:
722 #if defined(OPTERON_ERRATUM_108)
723 		if (cpi->cpi_family == 0xf && cpi->cpi_model == 0xe) {
724 			cp->cp_eax = (0xf0f & cp->cp_eax) | 0xc0;
725 			cpi->cpi_model = 0xc;
726 		} else
727 #endif
728 		if (cpi->cpi_family == 5) {
729 			/*
730 			 * AMD K5 and K6
731 			 *
732 			 * These CPUs have an incomplete implementation
733 			 * of MCA/MCE which we mask away.
734 			 */
735 			mask_edx &= ~(CPUID_INTC_EDX_MCE | CPUID_INTC_EDX_MCA);
736 
737 			/*
738 			 * Model 0 uses the wrong (APIC) bit
739 			 * to indicate PGE.  Fix it here.
740 			 */
741 			if (cpi->cpi_model == 0) {
742 				if (cp->cp_edx & 0x200) {
743 					cp->cp_edx &= ~0x200;
744 					cp->cp_edx |= CPUID_INTC_EDX_PGE;
745 				}
746 			}
747 
748 			/*
749 			 * Early models had problems w/ MMX; disable.
750 			 */
751 			if (cpi->cpi_model < 6)
752 				mask_edx &= ~CPUID_INTC_EDX_MMX;
753 		}
754 
755 		/*
756 		 * For newer families, SSE3 and CX16, at least, are valid;
757 		 * enable all
758 		 */
759 		if (cpi->cpi_family >= 0xf)
760 			mask_ecx = 0xffffffff;
761 		/*
762 		 * We don't support MONITOR/MWAIT if leaf 5 is not available
763 		 * to obtain the monitor linesize.
764 		 */
765 		if (cpi->cpi_maxeax < 5)
766 			mask_ecx &= ~CPUID_INTC_ECX_MON;
767 
768 #if !defined(__xpv)
769 		/*
770 		 * Do not use MONITOR/MWAIT to halt in the idle loop on any AMD
771 		 * processors.  AMD does not intend MWAIT to be used in the cpu
772 		 * idle loop on current and future processors.  10h and future
773 		 * AMD processors use more power in MWAIT than HLT.
774 		 * Pre-family-10h Opterons do not have the MWAIT instruction.
775 		 */
776 		idle_cpu_prefer_mwait = 0;
777 #endif
778 
779 		break;
780 	case X86_VENDOR_TM:
781 		/*
782 		 * workaround the NT workaround in CMS 4.1
783 		 */
784 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4 &&
785 		    (cpi->cpi_step == 2 || cpi->cpi_step == 3))
786 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
787 		break;
788 	case X86_VENDOR_Centaur:
789 		/*
790 		 * workaround the NT workarounds again
791 		 */
792 		if (cpi->cpi_family == 6)
793 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
794 		break;
795 	case X86_VENDOR_Cyrix:
796 		/*
797 		 * We rely heavily on the probing in locore
798 		 * to actually figure out what parts, if any,
799 		 * of the Cyrix cpuid instruction to believe.
800 		 */
801 		switch (x86_type) {
802 		case X86_TYPE_CYRIX_486:
803 			mask_edx = 0;
804 			break;
805 		case X86_TYPE_CYRIX_6x86:
806 			mask_edx = 0;
807 			break;
808 		case X86_TYPE_CYRIX_6x86L:
809 			mask_edx =
810 			    CPUID_INTC_EDX_DE |
811 			    CPUID_INTC_EDX_CX8;
812 			break;
813 		case X86_TYPE_CYRIX_6x86MX:
814 			mask_edx =
815 			    CPUID_INTC_EDX_DE |
816 			    CPUID_INTC_EDX_MSR |
817 			    CPUID_INTC_EDX_CX8 |
818 			    CPUID_INTC_EDX_PGE |
819 			    CPUID_INTC_EDX_CMOV |
820 			    CPUID_INTC_EDX_MMX;
821 			break;
822 		case X86_TYPE_CYRIX_GXm:
823 			mask_edx =
824 			    CPUID_INTC_EDX_MSR |
825 			    CPUID_INTC_EDX_CX8 |
826 			    CPUID_INTC_EDX_CMOV |
827 			    CPUID_INTC_EDX_MMX;
828 			break;
829 		case X86_TYPE_CYRIX_MediaGX:
830 			break;
831 		case X86_TYPE_CYRIX_MII:
832 		case X86_TYPE_VIA_CYRIX_III:
833 			mask_edx =
834 			    CPUID_INTC_EDX_DE |
835 			    CPUID_INTC_EDX_TSC |
836 			    CPUID_INTC_EDX_MSR |
837 			    CPUID_INTC_EDX_CX8 |
838 			    CPUID_INTC_EDX_PGE |
839 			    CPUID_INTC_EDX_CMOV |
840 			    CPUID_INTC_EDX_MMX;
841 			break;
842 		default:
843 			break;
844 		}
845 		break;
846 	}
847 
848 #if defined(__xpv)
849 	/*
850 	 * Do not support MONITOR/MWAIT under a hypervisor
851 	 */
852 	mask_ecx &= ~CPUID_INTC_ECX_MON;
853 #endif	/* __xpv */
854 
855 	/*
856 	 * Now we've figured out the masks that determine
857 	 * which bits we choose to believe, apply the masks
858 	 * to the feature words, then map the kernel's view
859 	 * of these feature words into its feature word.
860 	 */
861 	cp->cp_edx &= mask_edx;
862 	cp->cp_ecx &= mask_ecx;
863 
864 	/*
865 	 * apply any platform restrictions (we don't call this
866 	 * immediately after __cpuid_insn here, because we need the
867 	 * workarounds applied above first)
868 	 */
869 	platform_cpuid_mangle(cpi->cpi_vendor, 1, cp);
870 
871 	/*
872 	 * fold in overrides from the "eeprom" mechanism
873 	 */
874 	cp->cp_edx |= cpuid_feature_edx_include;
875 	cp->cp_edx &= ~cpuid_feature_edx_exclude;
876 
877 	cp->cp_ecx |= cpuid_feature_ecx_include;
878 	cp->cp_ecx &= ~cpuid_feature_ecx_exclude;
879 
880 	if (cp->cp_edx & CPUID_INTC_EDX_PSE)
881 		feature |= X86_LARGEPAGE;
882 	if (cp->cp_edx & CPUID_INTC_EDX_TSC)
883 		feature |= X86_TSC;
884 	if (cp->cp_edx & CPUID_INTC_EDX_MSR)
885 		feature |= X86_MSR;
886 	if (cp->cp_edx & CPUID_INTC_EDX_MTRR)
887 		feature |= X86_MTRR;
888 	if (cp->cp_edx & CPUID_INTC_EDX_PGE)
889 		feature |= X86_PGE;
890 	if (cp->cp_edx & CPUID_INTC_EDX_CMOV)
891 		feature |= X86_CMOV;
892 	if (cp->cp_edx & CPUID_INTC_EDX_MMX)
893 		feature |= X86_MMX;
894 	if ((cp->cp_edx & CPUID_INTC_EDX_MCE) != 0 &&
895 	    (cp->cp_edx & CPUID_INTC_EDX_MCA) != 0)
896 		feature |= X86_MCA;
897 	if (cp->cp_edx & CPUID_INTC_EDX_PAE)
898 		feature |= X86_PAE;
899 	if (cp->cp_edx & CPUID_INTC_EDX_CX8)
900 		feature |= X86_CX8;
901 	if (cp->cp_ecx & CPUID_INTC_ECX_CX16)
902 		feature |= X86_CX16;
903 	if (cp->cp_edx & CPUID_INTC_EDX_PAT)
904 		feature |= X86_PAT;
905 	if (cp->cp_edx & CPUID_INTC_EDX_SEP)
906 		feature |= X86_SEP;
907 	if (cp->cp_edx & CPUID_INTC_EDX_FXSR) {
908 		/*
909 		 * In our implementation, fxsave/fxrstor
910 		 * are prerequisites before we'll even
911 		 * try and do SSE things.
912 		 */
913 		if (cp->cp_edx & CPUID_INTC_EDX_SSE)
914 			feature |= X86_SSE;
915 		if (cp->cp_edx & CPUID_INTC_EDX_SSE2)
916 			feature |= X86_SSE2;
917 		if (cp->cp_ecx & CPUID_INTC_ECX_SSE3)
918 			feature |= X86_SSE3;
919 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
920 			if (cp->cp_ecx & CPUID_INTC_ECX_SSSE3)
921 				feature |= X86_SSSE3;
922 			if (cp->cp_ecx & CPUID_INTC_ECX_SSE4_1)
923 				feature |= X86_SSE4_1;
924 			if (cp->cp_ecx & CPUID_INTC_ECX_SSE4_2)
925 				feature |= X86_SSE4_2;
926 		}
927 	}
928 	if (cp->cp_edx & CPUID_INTC_EDX_DE)
929 		feature |= X86_DE;
930 	if (cp->cp_ecx & CPUID_INTC_ECX_MON) {
931 		cpi->cpi_mwait.support |= MWAIT_SUPPORT;
932 		feature |= X86_MWAIT;
933 	}
934 
935 	if (feature & X86_PAE)
936 		cpi->cpi_pabits = 36;
937 
938 	/*
939 	 * Hyperthreading configuration is slightly tricky on Intel
940 	 * and pure clones, and even trickier on AMD.
941 	 *
942 	 * (AMD chose to set the HTT bit on their CMP processors,
943 	 * even though they're not actually hyperthreaded.  Thus it
944 	 * takes a bit more work to figure out what's really going
945 	 * on ... see the handling of the CMP_LGCY bit below)
946 	 */
947 	if (cp->cp_edx & CPUID_INTC_EDX_HTT) {
948 		cpi->cpi_ncpu_per_chip = CPI_CPU_COUNT(cpi);
949 		if (cpi->cpi_ncpu_per_chip > 1)
950 			feature |= X86_HTT;
951 	} else {
952 		cpi->cpi_ncpu_per_chip = 1;
953 	}
954 
955 	/*
956 	 * Work on the "extended" feature information, doing
957 	 * some basic initialization for cpuid_pass2()
958 	 */
959 	xcpuid = 0;
960 	switch (cpi->cpi_vendor) {
961 	case X86_VENDOR_Intel:
962 		if (IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf)
963 			xcpuid++;
964 		break;
965 	case X86_VENDOR_AMD:
966 		if (cpi->cpi_family > 5 ||
967 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
968 			xcpuid++;
969 		break;
970 	case X86_VENDOR_Cyrix:
971 		/*
972 		 * Only these Cyrix CPUs are -known- to support
973 		 * extended cpuid operations.
974 		 */
975 		if (x86_type == X86_TYPE_VIA_CYRIX_III ||
976 		    x86_type == X86_TYPE_CYRIX_GXm)
977 			xcpuid++;
978 		break;
979 	case X86_VENDOR_Centaur:
980 	case X86_VENDOR_TM:
981 	default:
982 		xcpuid++;
983 		break;
984 	}
985 
986 	if (xcpuid) {
987 		cp = &cpi->cpi_extd[0];
988 		cp->cp_eax = 0x80000000;
989 		cpi->cpi_xmaxeax = __cpuid_insn(cp);
990 	}
991 
992 	if (cpi->cpi_xmaxeax & 0x80000000) {
993 
994 		if (cpi->cpi_xmaxeax > CPI_XMAXEAX_MAX)
995 			cpi->cpi_xmaxeax = CPI_XMAXEAX_MAX;
996 
997 		switch (cpi->cpi_vendor) {
998 		case X86_VENDOR_Intel:
999 		case X86_VENDOR_AMD:
1000 			if (cpi->cpi_xmaxeax < 0x80000001)
1001 				break;
1002 			cp = &cpi->cpi_extd[1];
1003 			cp->cp_eax = 0x80000001;
1004 			(void) __cpuid_insn(cp);
1005 
1006 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
1007 			    cpi->cpi_family == 5 &&
1008 			    cpi->cpi_model == 6 &&
1009 			    cpi->cpi_step == 6) {
1010 				/*
1011 				 * K6 model 6 uses bit 10 to indicate SYSC
1012 				 * Later models use bit 11. Fix it here.
1013 				 */
1014 				if (cp->cp_edx & 0x400) {
1015 					cp->cp_edx &= ~0x400;
1016 					cp->cp_edx |= CPUID_AMD_EDX_SYSC;
1017 				}
1018 			}
1019 
1020 			platform_cpuid_mangle(cpi->cpi_vendor, 0x80000001, cp);
1021 
1022 			/*
1023 			 * Compute the additions to the kernel's feature word.
1024 			 */
1025 			if (cp->cp_edx & CPUID_AMD_EDX_NX)
1026 				feature |= X86_NX;
1027 
1028 			if ((cpi->cpi_vendor == X86_VENDOR_AMD) &&
1029 			    (cpi->cpi_std[1].cp_edx & CPUID_INTC_EDX_FXSR) &&
1030 			    (cp->cp_ecx & CPUID_AMD_ECX_SSE4A))
1031 				feature |= X86_SSE4A;
1032 
1033 			/*
1034 			 * If both the HTT and CMP_LGCY bits are set,
1035 			 * then we're not actually HyperThreaded.  Read
1036 			 * "AMD CPUID Specification" for more details.
1037 			 */
1038 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
1039 			    (feature & X86_HTT) &&
1040 			    (cp->cp_ecx & CPUID_AMD_ECX_CMP_LGCY)) {
1041 				feature &= ~X86_HTT;
1042 				feature |= X86_CMP;
1043 			}
1044 #if defined(__amd64)
1045 			/*
1046 			 * It's really tricky to support syscall/sysret in
1047 			 * the i386 kernel; we rely on sysenter/sysexit
1048 			 * instead.  In the amd64 kernel, things are -way-
1049 			 * better.
1050 			 */
1051 			if (cp->cp_edx & CPUID_AMD_EDX_SYSC)
1052 				feature |= X86_ASYSC;
1053 
1054 			/*
1055 			 * While we're thinking about system calls, note
1056 			 * that AMD processors don't support sysenter
1057 			 * in long mode at all, so don't try to program them.
1058 			 */
1059 			if (x86_vendor == X86_VENDOR_AMD)
1060 				feature &= ~X86_SEP;
1061 #endif
1062 			if (cp->cp_edx & CPUID_AMD_EDX_TSCP)
1063 				feature |= X86_TSCP;
1064 			break;
1065 		default:
1066 			break;
1067 		}
1068 
1069 		/*
1070 		 * Get CPUID data about processor cores and hyperthreads.
1071 		 */
1072 		switch (cpi->cpi_vendor) {
1073 		case X86_VENDOR_Intel:
1074 			if (cpi->cpi_maxeax >= 4) {
1075 				cp = &cpi->cpi_std[4];
1076 				cp->cp_eax = 4;
1077 				cp->cp_ecx = 0;
1078 				(void) __cpuid_insn(cp);
1079 				platform_cpuid_mangle(cpi->cpi_vendor, 4, cp);
1080 			}
1081 			/*FALLTHROUGH*/
1082 		case X86_VENDOR_AMD:
1083 			if (cpi->cpi_xmaxeax < 0x80000008)
1084 				break;
1085 			cp = &cpi->cpi_extd[8];
1086 			cp->cp_eax = 0x80000008;
1087 			(void) __cpuid_insn(cp);
1088 			platform_cpuid_mangle(cpi->cpi_vendor, 0x80000008, cp);
1089 
1090 			/*
1091 			 * Virtual and physical address limits from
1092 			 * cpuid override previously guessed values.
1093 			 */
1094 			cpi->cpi_pabits = BITX(cp->cp_eax, 7, 0);
1095 			cpi->cpi_vabits = BITX(cp->cp_eax, 15, 8);
1096 			break;
1097 		default:
1098 			break;
1099 		}
1100 
1101 		/*
1102 		 * Derive the number of cores per chip
1103 		 */
1104 		switch (cpi->cpi_vendor) {
1105 		case X86_VENDOR_Intel:
1106 			if (cpi->cpi_maxeax < 4) {
1107 				cpi->cpi_ncore_per_chip = 1;
1108 				break;
1109 			} else {
1110 				cpi->cpi_ncore_per_chip =
1111 				    BITX((cpi)->cpi_std[4].cp_eax, 31, 26) + 1;
1112 			}
1113 			break;
1114 		case X86_VENDOR_AMD:
1115 			if (cpi->cpi_xmaxeax < 0x80000008) {
1116 				cpi->cpi_ncore_per_chip = 1;
1117 				break;
1118 			} else {
1119 				cpi->cpi_ncore_per_chip =
1120 				    BITX((cpi)->cpi_extd[8].cp_ecx, 7, 0) + 1;
1121 			}
1122 			break;
1123 		default:
1124 			cpi->cpi_ncore_per_chip = 1;
1125 			break;
1126 		}
1127 	} else {
1128 		cpi->cpi_ncore_per_chip = 1;
1129 	}
1130 
1131 	/*
1132 	 * If more than one core, then this processor is CMP.
1133 	 */
1134 	if (cpi->cpi_ncore_per_chip > 1)
1135 		feature |= X86_CMP;
1136 
1137 	/*
1138 	 * If the number of cores is the same as the number
1139 	 * of CPUs, then we cannot have HyperThreading.
1140 	 */
1141 	if (cpi->cpi_ncpu_per_chip == cpi->cpi_ncore_per_chip)
1142 		feature &= ~X86_HTT;
1143 
1144 	if ((feature & (X86_HTT | X86_CMP)) == 0) {
1145 		/*
1146 		 * Single-core single-threaded processors.
1147 		 */
1148 		cpi->cpi_chipid = -1;
1149 		cpi->cpi_clogid = 0;
1150 		cpi->cpi_coreid = cpu->cpu_id;
1151 	} else if (cpi->cpi_ncpu_per_chip > 1) {
1152 		uint_t i;
1153 		uint_t chipid_shift = 0;
1154 		uint_t coreid_shift = 0;
1155 		uint_t apic_id = CPI_APIC_ID(cpi);
1156 
1157 		for (i = 1; i < cpi->cpi_ncpu_per_chip; i <<= 1)
1158 			chipid_shift++;
1159 		cpi->cpi_chipid = apic_id >> chipid_shift;
1160 		cpi->cpi_clogid = apic_id & ((1 << chipid_shift) - 1);
1161 
1162 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
1163 			if (feature & X86_CMP) {
1164 				/*
1165 				 * Multi-core (and possibly multi-threaded)
1166 				 * processors.
1167 				 */
1168 				uint_t ncpu_per_core;
1169 				if (cpi->cpi_ncore_per_chip == 1)
1170 					ncpu_per_core = cpi->cpi_ncpu_per_chip;
1171 				else if (cpi->cpi_ncore_per_chip > 1)
1172 					ncpu_per_core = cpi->cpi_ncpu_per_chip /
1173 					    cpi->cpi_ncore_per_chip;
1174 				/*
1175 				 * 8bit APIC IDs on dual core Pentiums
1176 				 * look like this:
1177 				 *
1178 				 * +-----------------------+------+------+
1179 				 * | Physical Package ID   |  MC  |  HT  |
1180 				 * +-----------------------+------+------+
1181 				 * <------- chipid -------->
1182 				 * <------- coreid --------------->
1183 				 *			   <--- clogid -->
1184 				 *
1185 				 * Where the number of bits necessary to
1186 				 * represent MC and HT fields together equals
1187 				 * to the minimum number of bits necessary to
1188 				 * store the value of cpi->cpi_ncpu_per_chip.
1189 				 * Of those bits, the MC part uses the number
1190 				 * of bits necessary to store the value of
1191 				 * cpi->cpi_ncore_per_chip.
1192 				 */
1193 				for (i = 1; i < ncpu_per_core; i <<= 1)
1194 					coreid_shift++;
1195 				cpi->cpi_coreid = apic_id >> coreid_shift;
1196 			} else if (feature & X86_HTT) {
1197 				/*
1198 				 * Single-core multi-threaded processors.
1199 				 */
1200 				cpi->cpi_coreid = cpi->cpi_chipid;
1201 			}
1202 		} else if (cpi->cpi_vendor == X86_VENDOR_AMD) {
1203 			/*
1204 			 * AMD currently only has dual-core processors with
1205 			 * single-threaded cores.  If they ever release
1206 			 * multi-threaded processors, then this code
1207 			 * will have to be updated.
1208 			 */
1209 			cpi->cpi_coreid = cpu->cpu_id;
1210 		} else {
1211 			/*
1212 			 * All other processors are currently
1213 			 * assumed to have single cores.
1214 			 */
1215 			cpi->cpi_coreid = cpi->cpi_chipid;
1216 		}
1217 	}
1218 
1219 	/*
1220 	 * Synthesize chip "revision" and socket type
1221 	 */
1222 	synth_info(cpi);
1223 
1224 pass1_done:
1225 	cpi->cpi_pass = 1;
1226 	return (feature);
1227 }
1228 
1229 /*
1230  * Make copies of the cpuid table entries we depend on, in
1231  * part for ease of parsing now, in part so that we have only
1232  * one place to correct any of it, in part for ease of
1233  * later export to userland, and in part so we can look at
1234  * this stuff in a crash dump.
1235  */
1236 
1237 /*ARGSUSED*/
1238 void
1239 cpuid_pass2(cpu_t *cpu)
1240 {
1241 	uint_t n, nmax;
1242 	int i;
1243 	struct cpuid_regs *cp;
1244 	uint8_t *dp;
1245 	uint32_t *iptr;
1246 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1247 
1248 	ASSERT(cpi->cpi_pass == 1);
1249 
1250 	if (cpi->cpi_maxeax < 1)
1251 		goto pass2_done;
1252 
1253 	if ((nmax = cpi->cpi_maxeax + 1) > NMAX_CPI_STD)
1254 		nmax = NMAX_CPI_STD;
1255 	/*
1256 	 * (We already handled n == 0 and n == 1 in pass 1)
1257 	 */
1258 	for (n = 2, cp = &cpi->cpi_std[2]; n < nmax; n++, cp++) {
1259 		cp->cp_eax = n;
1260 
1261 		/*
1262 		 * CPUID function 4 expects %ecx to be initialized
1263 		 * with an index which indicates which cache to return
1264 		 * information about. The OS is expected to call function 4
1265 		 * with %ecx set to 0, 1, 2, ... until it returns with
1266 		 * EAX[4:0] set to 0, which indicates there are no more
1267 		 * caches.
1268 		 *
1269 		 * Here, populate cpi_std[4] with the information returned by
1270 		 * function 4 when %ecx == 0, and do the rest in cpuid_pass3()
1271 		 * when dynamic memory allocation becomes available.
1272 		 *
1273 		 * Note: we need to explicitly initialize %ecx here, since
1274 		 * function 4 may have been previously invoked.
1275 		 */
1276 		if (n == 4)
1277 			cp->cp_ecx = 0;
1278 
1279 		(void) __cpuid_insn(cp);
1280 		platform_cpuid_mangle(cpi->cpi_vendor, n, cp);
1281 		switch (n) {
1282 		case 2:
1283 			/*
1284 			 * "the lower 8 bits of the %eax register
1285 			 * contain a value that identifies the number
1286 			 * of times the cpuid [instruction] has to be
1287 			 * executed to obtain a complete image of the
1288 			 * processor's caching systems."
1289 			 *
1290 			 * How *do* they make this stuff up?
1291 			 */
1292 			cpi->cpi_ncache = sizeof (*cp) *
1293 			    BITX(cp->cp_eax, 7, 0);
1294 			if (cpi->cpi_ncache == 0)
1295 				break;
1296 			cpi->cpi_ncache--;	/* skip count byte */
1297 
1298 			/*
1299 			 * Well, for now, rather than attempt to implement
1300 			 * this slightly dubious algorithm, we just look
1301 			 * at the first 15 ..
1302 			 */
1303 			if (cpi->cpi_ncache > (sizeof (*cp) - 1))
1304 				cpi->cpi_ncache = sizeof (*cp) - 1;
1305 
1306 			dp = cpi->cpi_cacheinfo;
1307 			if (BITX(cp->cp_eax, 31, 31) == 0) {
1308 				uint8_t *p = (void *)&cp->cp_eax;
1309 				for (i = 1; i < 3; i++)
1310 					if (p[i] != 0)
1311 						*dp++ = p[i];
1312 			}
1313 			if (BITX(cp->cp_ebx, 31, 31) == 0) {
1314 				uint8_t *p = (void *)&cp->cp_ebx;
1315 				for (i = 0; i < 4; i++)
1316 					if (p[i] != 0)
1317 						*dp++ = p[i];
1318 			}
1319 			if (BITX(cp->cp_ecx, 31, 31) == 0) {
1320 				uint8_t *p = (void *)&cp->cp_ecx;
1321 				for (i = 0; i < 4; i++)
1322 					if (p[i] != 0)
1323 						*dp++ = p[i];
1324 			}
1325 			if (BITX(cp->cp_edx, 31, 31) == 0) {
1326 				uint8_t *p = (void *)&cp->cp_edx;
1327 				for (i = 0; i < 4; i++)
1328 					if (p[i] != 0)
1329 						*dp++ = p[i];
1330 			}
1331 			break;
1332 
1333 		case 3:	/* Processor serial number, if PSN supported */
1334 			break;
1335 
1336 		case 4:	/* Deterministic cache parameters */
1337 			break;
1338 
1339 		case 5:	/* Monitor/Mwait parameters */
1340 		{
1341 			size_t mwait_size;
1342 
1343 			/*
1344 			 * check cpi_mwait.support which was set in cpuid_pass1
1345 			 */
1346 			if (!(cpi->cpi_mwait.support & MWAIT_SUPPORT))
1347 				break;
1348 
1349 			/*
1350 			 * Protect ourself from insane mwait line size.
1351 			 * Workaround for incomplete hardware emulator(s).
1352 			 */
1353 			mwait_size = (size_t)MWAIT_SIZE_MAX(cpi);
1354 			if (mwait_size < sizeof (uint32_t) ||
1355 			    !ISP2(mwait_size)) {
1356 #if DEBUG
1357 				cmn_err(CE_NOTE, "Cannot handle cpu %d mwait "
1358 				    "size %ld",
1359 				    cpu->cpu_id, (long)mwait_size);
1360 #endif
1361 				break;
1362 			}
1363 
1364 			cpi->cpi_mwait.mon_min = (size_t)MWAIT_SIZE_MIN(cpi);
1365 			cpi->cpi_mwait.mon_max = mwait_size;
1366 			if (MWAIT_EXTENSION(cpi)) {
1367 				cpi->cpi_mwait.support |= MWAIT_EXTENSIONS;
1368 				if (MWAIT_INT_ENABLE(cpi))
1369 					cpi->cpi_mwait.support |=
1370 					    MWAIT_ECX_INT_ENABLE;
1371 			}
1372 			break;
1373 		}
1374 		default:
1375 			break;
1376 		}
1377 	}
1378 
1379 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0)
1380 		goto pass2_done;
1381 
1382 	if ((nmax = cpi->cpi_xmaxeax - 0x80000000 + 1) > NMAX_CPI_EXTD)
1383 		nmax = NMAX_CPI_EXTD;
1384 	/*
1385 	 * Copy the extended properties, fixing them as we go.
1386 	 * (We already handled n == 0 and n == 1 in pass 1)
1387 	 */
1388 	iptr = (void *)cpi->cpi_brandstr;
1389 	for (n = 2, cp = &cpi->cpi_extd[2]; n < nmax; cp++, n++) {
1390 		cp->cp_eax = 0x80000000 + n;
1391 		(void) __cpuid_insn(cp);
1392 		platform_cpuid_mangle(cpi->cpi_vendor, 0x80000000 + n, cp);
1393 		switch (n) {
1394 		case 2:
1395 		case 3:
1396 		case 4:
1397 			/*
1398 			 * Extract the brand string
1399 			 */
1400 			*iptr++ = cp->cp_eax;
1401 			*iptr++ = cp->cp_ebx;
1402 			*iptr++ = cp->cp_ecx;
1403 			*iptr++ = cp->cp_edx;
1404 			break;
1405 		case 5:
1406 			switch (cpi->cpi_vendor) {
1407 			case X86_VENDOR_AMD:
1408 				/*
1409 				 * The Athlon and Duron were the first
1410 				 * parts to report the sizes of the
1411 				 * TLB for large pages. Before then,
1412 				 * we don't trust the data.
1413 				 */
1414 				if (cpi->cpi_family < 6 ||
1415 				    (cpi->cpi_family == 6 &&
1416 				    cpi->cpi_model < 1))
1417 					cp->cp_eax = 0;
1418 				break;
1419 			default:
1420 				break;
1421 			}
1422 			break;
1423 		case 6:
1424 			switch (cpi->cpi_vendor) {
1425 			case X86_VENDOR_AMD:
1426 				/*
1427 				 * The Athlon and Duron were the first
1428 				 * AMD parts with L2 TLB's.
1429 				 * Before then, don't trust the data.
1430 				 */
1431 				if (cpi->cpi_family < 6 ||
1432 				    cpi->cpi_family == 6 &&
1433 				    cpi->cpi_model < 1)
1434 					cp->cp_eax = cp->cp_ebx = 0;
1435 				/*
1436 				 * AMD Duron rev A0 reports L2
1437 				 * cache size incorrectly as 1K
1438 				 * when it is really 64K
1439 				 */
1440 				if (cpi->cpi_family == 6 &&
1441 				    cpi->cpi_model == 3 &&
1442 				    cpi->cpi_step == 0) {
1443 					cp->cp_ecx &= 0xffff;
1444 					cp->cp_ecx |= 0x400000;
1445 				}
1446 				break;
1447 			case X86_VENDOR_Cyrix:	/* VIA C3 */
1448 				/*
1449 				 * VIA C3 processors are a bit messed
1450 				 * up w.r.t. encoding cache sizes in %ecx
1451 				 */
1452 				if (cpi->cpi_family != 6)
1453 					break;
1454 				/*
1455 				 * model 7 and 8 were incorrectly encoded
1456 				 *
1457 				 * xxx is model 8 really broken?
1458 				 */
1459 				if (cpi->cpi_model == 7 ||
1460 				    cpi->cpi_model == 8)
1461 					cp->cp_ecx =
1462 					    BITX(cp->cp_ecx, 31, 24) << 16 |
1463 					    BITX(cp->cp_ecx, 23, 16) << 12 |
1464 					    BITX(cp->cp_ecx, 15, 8) << 8 |
1465 					    BITX(cp->cp_ecx, 7, 0);
1466 				/*
1467 				 * model 9 stepping 1 has wrong associativity
1468 				 */
1469 				if (cpi->cpi_model == 9 && cpi->cpi_step == 1)
1470 					cp->cp_ecx |= 8 << 12;
1471 				break;
1472 			case X86_VENDOR_Intel:
1473 				/*
1474 				 * Extended L2 Cache features function.
1475 				 * First appeared on Prescott.
1476 				 */
1477 			default:
1478 				break;
1479 			}
1480 			break;
1481 		default:
1482 			break;
1483 		}
1484 	}
1485 
1486 pass2_done:
1487 	cpi->cpi_pass = 2;
1488 }
1489 
1490 static const char *
1491 intel_cpubrand(const struct cpuid_info *cpi)
1492 {
1493 	int i;
1494 
1495 	if ((x86_feature & X86_CPUID) == 0 ||
1496 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1497 		return ("i486");
1498 
1499 	switch (cpi->cpi_family) {
1500 	case 5:
1501 		return ("Intel Pentium(r)");
1502 	case 6:
1503 		switch (cpi->cpi_model) {
1504 			uint_t celeron, xeon;
1505 			const struct cpuid_regs *cp;
1506 		case 0:
1507 		case 1:
1508 		case 2:
1509 			return ("Intel Pentium(r) Pro");
1510 		case 3:
1511 		case 4:
1512 			return ("Intel Pentium(r) II");
1513 		case 6:
1514 			return ("Intel Celeron(r)");
1515 		case 5:
1516 		case 7:
1517 			celeron = xeon = 0;
1518 			cp = &cpi->cpi_std[2];	/* cache info */
1519 
1520 			for (i = 1; i < 3; i++) {
1521 				uint_t tmp;
1522 
1523 				tmp = (cp->cp_eax >> (8 * i)) & 0xff;
1524 				if (tmp == 0x40)
1525 					celeron++;
1526 				if (tmp >= 0x44 && tmp <= 0x45)
1527 					xeon++;
1528 			}
1529 
1530 			for (i = 0; i < 2; i++) {
1531 				uint_t tmp;
1532 
1533 				tmp = (cp->cp_ebx >> (8 * i)) & 0xff;
1534 				if (tmp == 0x40)
1535 					celeron++;
1536 				else if (tmp >= 0x44 && tmp <= 0x45)
1537 					xeon++;
1538 			}
1539 
1540 			for (i = 0; i < 4; i++) {
1541 				uint_t tmp;
1542 
1543 				tmp = (cp->cp_ecx >> (8 * i)) & 0xff;
1544 				if (tmp == 0x40)
1545 					celeron++;
1546 				else if (tmp >= 0x44 && tmp <= 0x45)
1547 					xeon++;
1548 			}
1549 
1550 			for (i = 0; i < 4; i++) {
1551 				uint_t tmp;
1552 
1553 				tmp = (cp->cp_edx >> (8 * i)) & 0xff;
1554 				if (tmp == 0x40)
1555 					celeron++;
1556 				else if (tmp >= 0x44 && tmp <= 0x45)
1557 					xeon++;
1558 			}
1559 
1560 			if (celeron)
1561 				return ("Intel Celeron(r)");
1562 			if (xeon)
1563 				return (cpi->cpi_model == 5 ?
1564 				    "Intel Pentium(r) II Xeon(tm)" :
1565 				    "Intel Pentium(r) III Xeon(tm)");
1566 			return (cpi->cpi_model == 5 ?
1567 			    "Intel Pentium(r) II or Pentium(r) II Xeon(tm)" :
1568 			    "Intel Pentium(r) III or Pentium(r) III Xeon(tm)");
1569 		default:
1570 			break;
1571 		}
1572 	default:
1573 		break;
1574 	}
1575 
1576 	/* BrandID is present if the field is nonzero */
1577 	if (cpi->cpi_brandid != 0) {
1578 		static const struct {
1579 			uint_t bt_bid;
1580 			const char *bt_str;
1581 		} brand_tbl[] = {
1582 			{ 0x1,	"Intel(r) Celeron(r)" },
1583 			{ 0x2,	"Intel(r) Pentium(r) III" },
1584 			{ 0x3,	"Intel(r) Pentium(r) III Xeon(tm)" },
1585 			{ 0x4,	"Intel(r) Pentium(r) III" },
1586 			{ 0x6,	"Mobile Intel(r) Pentium(r) III" },
1587 			{ 0x7,	"Mobile Intel(r) Celeron(r)" },
1588 			{ 0x8,	"Intel(r) Pentium(r) 4" },
1589 			{ 0x9,	"Intel(r) Pentium(r) 4" },
1590 			{ 0xa,	"Intel(r) Celeron(r)" },
1591 			{ 0xb,	"Intel(r) Xeon(tm)" },
1592 			{ 0xc,	"Intel(r) Xeon(tm) MP" },
1593 			{ 0xe,	"Mobile Intel(r) Pentium(r) 4" },
1594 			{ 0xf,	"Mobile Intel(r) Celeron(r)" },
1595 			{ 0x11, "Mobile Genuine Intel(r)" },
1596 			{ 0x12, "Intel(r) Celeron(r) M" },
1597 			{ 0x13, "Mobile Intel(r) Celeron(r)" },
1598 			{ 0x14, "Intel(r) Celeron(r)" },
1599 			{ 0x15, "Mobile Genuine Intel(r)" },
1600 			{ 0x16,	"Intel(r) Pentium(r) M" },
1601 			{ 0x17, "Mobile Intel(r) Celeron(r)" }
1602 		};
1603 		uint_t btblmax = sizeof (brand_tbl) / sizeof (brand_tbl[0]);
1604 		uint_t sgn;
1605 
1606 		sgn = (cpi->cpi_family << 8) |
1607 		    (cpi->cpi_model << 4) | cpi->cpi_step;
1608 
1609 		for (i = 0; i < btblmax; i++)
1610 			if (brand_tbl[i].bt_bid == cpi->cpi_brandid)
1611 				break;
1612 		if (i < btblmax) {
1613 			if (sgn == 0x6b1 && cpi->cpi_brandid == 3)
1614 				return ("Intel(r) Celeron(r)");
1615 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xb)
1616 				return ("Intel(r) Xeon(tm) MP");
1617 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xe)
1618 				return ("Intel(r) Xeon(tm)");
1619 			return (brand_tbl[i].bt_str);
1620 		}
1621 	}
1622 
1623 	return (NULL);
1624 }
1625 
1626 static const char *
1627 amd_cpubrand(const struct cpuid_info *cpi)
1628 {
1629 	if ((x86_feature & X86_CPUID) == 0 ||
1630 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1631 		return ("i486 compatible");
1632 
1633 	switch (cpi->cpi_family) {
1634 	case 5:
1635 		switch (cpi->cpi_model) {
1636 		case 0:
1637 		case 1:
1638 		case 2:
1639 		case 3:
1640 		case 4:
1641 		case 5:
1642 			return ("AMD-K5(r)");
1643 		case 6:
1644 		case 7:
1645 			return ("AMD-K6(r)");
1646 		case 8:
1647 			return ("AMD-K6(r)-2");
1648 		case 9:
1649 			return ("AMD-K6(r)-III");
1650 		default:
1651 			return ("AMD (family 5)");
1652 		}
1653 	case 6:
1654 		switch (cpi->cpi_model) {
1655 		case 1:
1656 			return ("AMD-K7(tm)");
1657 		case 0:
1658 		case 2:
1659 		case 4:
1660 			return ("AMD Athlon(tm)");
1661 		case 3:
1662 		case 7:
1663 			return ("AMD Duron(tm)");
1664 		case 6:
1665 		case 8:
1666 		case 10:
1667 			/*
1668 			 * Use the L2 cache size to distinguish
1669 			 */
1670 			return ((cpi->cpi_extd[6].cp_ecx >> 16) >= 256 ?
1671 			    "AMD Athlon(tm)" : "AMD Duron(tm)");
1672 		default:
1673 			return ("AMD (family 6)");
1674 		}
1675 	default:
1676 		break;
1677 	}
1678 
1679 	if (cpi->cpi_family == 0xf && cpi->cpi_model == 5 &&
1680 	    cpi->cpi_brandid != 0) {
1681 		switch (BITX(cpi->cpi_brandid, 7, 5)) {
1682 		case 3:
1683 			return ("AMD Opteron(tm) UP 1xx");
1684 		case 4:
1685 			return ("AMD Opteron(tm) DP 2xx");
1686 		case 5:
1687 			return ("AMD Opteron(tm) MP 8xx");
1688 		default:
1689 			return ("AMD Opteron(tm)");
1690 		}
1691 	}
1692 
1693 	return (NULL);
1694 }
1695 
1696 static const char *
1697 cyrix_cpubrand(struct cpuid_info *cpi, uint_t type)
1698 {
1699 	if ((x86_feature & X86_CPUID) == 0 ||
1700 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5 ||
1701 	    type == X86_TYPE_CYRIX_486)
1702 		return ("i486 compatible");
1703 
1704 	switch (type) {
1705 	case X86_TYPE_CYRIX_6x86:
1706 		return ("Cyrix 6x86");
1707 	case X86_TYPE_CYRIX_6x86L:
1708 		return ("Cyrix 6x86L");
1709 	case X86_TYPE_CYRIX_6x86MX:
1710 		return ("Cyrix 6x86MX");
1711 	case X86_TYPE_CYRIX_GXm:
1712 		return ("Cyrix GXm");
1713 	case X86_TYPE_CYRIX_MediaGX:
1714 		return ("Cyrix MediaGX");
1715 	case X86_TYPE_CYRIX_MII:
1716 		return ("Cyrix M2");
1717 	case X86_TYPE_VIA_CYRIX_III:
1718 		return ("VIA Cyrix M3");
1719 	default:
1720 		/*
1721 		 * Have another wild guess ..
1722 		 */
1723 		if (cpi->cpi_family == 4 && cpi->cpi_model == 9)
1724 			return ("Cyrix 5x86");
1725 		else if (cpi->cpi_family == 5) {
1726 			switch (cpi->cpi_model) {
1727 			case 2:
1728 				return ("Cyrix 6x86");	/* Cyrix M1 */
1729 			case 4:
1730 				return ("Cyrix MediaGX");
1731 			default:
1732 				break;
1733 			}
1734 		} else if (cpi->cpi_family == 6) {
1735 			switch (cpi->cpi_model) {
1736 			case 0:
1737 				return ("Cyrix 6x86MX"); /* Cyrix M2? */
1738 			case 5:
1739 			case 6:
1740 			case 7:
1741 			case 8:
1742 			case 9:
1743 				return ("VIA C3");
1744 			default:
1745 				break;
1746 			}
1747 		}
1748 		break;
1749 	}
1750 	return (NULL);
1751 }
1752 
1753 /*
1754  * This only gets called in the case that the CPU extended
1755  * feature brand string (0x80000002, 0x80000003, 0x80000004)
1756  * aren't available, or contain null bytes for some reason.
1757  */
1758 static void
1759 fabricate_brandstr(struct cpuid_info *cpi)
1760 {
1761 	const char *brand = NULL;
1762 
1763 	switch (cpi->cpi_vendor) {
1764 	case X86_VENDOR_Intel:
1765 		brand = intel_cpubrand(cpi);
1766 		break;
1767 	case X86_VENDOR_AMD:
1768 		brand = amd_cpubrand(cpi);
1769 		break;
1770 	case X86_VENDOR_Cyrix:
1771 		brand = cyrix_cpubrand(cpi, x86_type);
1772 		break;
1773 	case X86_VENDOR_NexGen:
1774 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1775 			brand = "NexGen Nx586";
1776 		break;
1777 	case X86_VENDOR_Centaur:
1778 		if (cpi->cpi_family == 5)
1779 			switch (cpi->cpi_model) {
1780 			case 4:
1781 				brand = "Centaur C6";
1782 				break;
1783 			case 8:
1784 				brand = "Centaur C2";
1785 				break;
1786 			case 9:
1787 				brand = "Centaur C3";
1788 				break;
1789 			default:
1790 				break;
1791 			}
1792 		break;
1793 	case X86_VENDOR_Rise:
1794 		if (cpi->cpi_family == 5 &&
1795 		    (cpi->cpi_model == 0 || cpi->cpi_model == 2))
1796 			brand = "Rise mP6";
1797 		break;
1798 	case X86_VENDOR_SiS:
1799 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1800 			brand = "SiS 55x";
1801 		break;
1802 	case X86_VENDOR_TM:
1803 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4)
1804 			brand = "Transmeta Crusoe TM3x00 or TM5x00";
1805 		break;
1806 	case X86_VENDOR_NSC:
1807 	case X86_VENDOR_UMC:
1808 	default:
1809 		break;
1810 	}
1811 	if (brand) {
1812 		(void) strcpy((char *)cpi->cpi_brandstr, brand);
1813 		return;
1814 	}
1815 
1816 	/*
1817 	 * If all else fails ...
1818 	 */
1819 	(void) snprintf(cpi->cpi_brandstr, sizeof (cpi->cpi_brandstr),
1820 	    "%s %d.%d.%d", cpi->cpi_vendorstr, cpi->cpi_family,
1821 	    cpi->cpi_model, cpi->cpi_step);
1822 }
1823 
1824 /*
1825  * This routine is called just after kernel memory allocation
1826  * becomes available on cpu0, and as part of mp_startup() on
1827  * the other cpus.
1828  *
1829  * Fixup the brand string, and collect any information from cpuid
1830  * that requires dynamicically allocated storage to represent.
1831  */
1832 /*ARGSUSED*/
1833 void
1834 cpuid_pass3(cpu_t *cpu)
1835 {
1836 	int	i, max, shft, level, size;
1837 	struct cpuid_regs regs;
1838 	struct cpuid_regs *cp;
1839 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1840 
1841 	ASSERT(cpi->cpi_pass == 2);
1842 
1843 	/*
1844 	 * Function 4: Deterministic cache parameters
1845 	 *
1846 	 * Take this opportunity to detect the number of threads
1847 	 * sharing the last level cache, and construct a corresponding
1848 	 * cache id. The respective cpuid_info members are initialized
1849 	 * to the default case of "no last level cache sharing".
1850 	 */
1851 	cpi->cpi_ncpu_shr_last_cache = 1;
1852 	cpi->cpi_last_lvl_cacheid = cpu->cpu_id;
1853 
1854 	if (cpi->cpi_maxeax >= 4 && cpi->cpi_vendor == X86_VENDOR_Intel) {
1855 
1856 		/*
1857 		 * Find the # of elements (size) returned by fn 4, and along
1858 		 * the way detect last level cache sharing details.
1859 		 */
1860 		bzero(&regs, sizeof (regs));
1861 		cp = &regs;
1862 		for (i = 0, max = 0; i < CPI_FN4_ECX_MAX; i++) {
1863 			cp->cp_eax = 4;
1864 			cp->cp_ecx = i;
1865 
1866 			(void) __cpuid_insn(cp);
1867 
1868 			if (CPI_CACHE_TYPE(cp) == 0)
1869 				break;
1870 			level = CPI_CACHE_LVL(cp);
1871 			if (level > max) {
1872 				max = level;
1873 				cpi->cpi_ncpu_shr_last_cache =
1874 				    CPI_NTHR_SHR_CACHE(cp) + 1;
1875 			}
1876 		}
1877 		cpi->cpi_std_4_size = size = i;
1878 
1879 		/*
1880 		 * Allocate the cpi_std_4 array. The first element
1881 		 * references the regs for fn 4, %ecx == 0, which
1882 		 * cpuid_pass2() stashed in cpi->cpi_std[4].
1883 		 */
1884 		if (size > 0) {
1885 			cpi->cpi_std_4 =
1886 			    kmem_alloc(size * sizeof (cp), KM_SLEEP);
1887 			cpi->cpi_std_4[0] = &cpi->cpi_std[4];
1888 
1889 			/*
1890 			 * Allocate storage to hold the additional regs
1891 			 * for function 4, %ecx == 1 .. cpi_std_4_size.
1892 			 *
1893 			 * The regs for fn 4, %ecx == 0 has already
1894 			 * been allocated as indicated above.
1895 			 */
1896 			for (i = 1; i < size; i++) {
1897 				cp = cpi->cpi_std_4[i] =
1898 				    kmem_zalloc(sizeof (regs), KM_SLEEP);
1899 				cp->cp_eax = 4;
1900 				cp->cp_ecx = i;
1901 
1902 				(void) __cpuid_insn(cp);
1903 			}
1904 		}
1905 		/*
1906 		 * Determine the number of bits needed to represent
1907 		 * the number of CPUs sharing the last level cache.
1908 		 *
1909 		 * Shift off that number of bits from the APIC id to
1910 		 * derive the cache id.
1911 		 */
1912 		shft = 0;
1913 		for (i = 1; i < cpi->cpi_ncpu_shr_last_cache; i <<= 1)
1914 			shft++;
1915 		cpi->cpi_last_lvl_cacheid = CPI_APIC_ID(cpi) >> shft;
1916 	}
1917 
1918 	/*
1919 	 * Now fixup the brand string
1920 	 */
1921 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0) {
1922 		fabricate_brandstr(cpi);
1923 	} else {
1924 
1925 		/*
1926 		 * If we successfully extracted a brand string from the cpuid
1927 		 * instruction, clean it up by removing leading spaces and
1928 		 * similar junk.
1929 		 */
1930 		if (cpi->cpi_brandstr[0]) {
1931 			size_t maxlen = sizeof (cpi->cpi_brandstr);
1932 			char *src, *dst;
1933 
1934 			dst = src = (char *)cpi->cpi_brandstr;
1935 			src[maxlen - 1] = '\0';
1936 			/*
1937 			 * strip leading spaces
1938 			 */
1939 			while (*src == ' ')
1940 				src++;
1941 			/*
1942 			 * Remove any 'Genuine' or "Authentic" prefixes
1943 			 */
1944 			if (strncmp(src, "Genuine ", 8) == 0)
1945 				src += 8;
1946 			if (strncmp(src, "Authentic ", 10) == 0)
1947 				src += 10;
1948 
1949 			/*
1950 			 * Now do an in-place copy.
1951 			 * Map (R) to (r) and (TM) to (tm).
1952 			 * The era of teletypes is long gone, and there's
1953 			 * -really- no need to shout.
1954 			 */
1955 			while (*src != '\0') {
1956 				if (src[0] == '(') {
1957 					if (strncmp(src + 1, "R)", 2) == 0) {
1958 						(void) strncpy(dst, "(r)", 3);
1959 						src += 3;
1960 						dst += 3;
1961 						continue;
1962 					}
1963 					if (strncmp(src + 1, "TM)", 3) == 0) {
1964 						(void) strncpy(dst, "(tm)", 4);
1965 						src += 4;
1966 						dst += 4;
1967 						continue;
1968 					}
1969 				}
1970 				*dst++ = *src++;
1971 			}
1972 			*dst = '\0';
1973 
1974 			/*
1975 			 * Finally, remove any trailing spaces
1976 			 */
1977 			while (--dst > cpi->cpi_brandstr)
1978 				if (*dst == ' ')
1979 					*dst = '\0';
1980 				else
1981 					break;
1982 		} else
1983 			fabricate_brandstr(cpi);
1984 	}
1985 	cpi->cpi_pass = 3;
1986 }
1987 
1988 /*
1989  * This routine is called out of bind_hwcap() much later in the life
1990  * of the kernel (post_startup()).  The job of this routine is to resolve
1991  * the hardware feature support and kernel support for those features into
1992  * what we're actually going to tell applications via the aux vector.
1993  */
1994 uint_t
1995 cpuid_pass4(cpu_t *cpu)
1996 {
1997 	struct cpuid_info *cpi;
1998 	uint_t hwcap_flags = 0;
1999 
2000 	if (cpu == NULL)
2001 		cpu = CPU;
2002 	cpi = cpu->cpu_m.mcpu_cpi;
2003 
2004 	ASSERT(cpi->cpi_pass == 3);
2005 
2006 	if (cpi->cpi_maxeax >= 1) {
2007 		uint32_t *edx = &cpi->cpi_support[STD_EDX_FEATURES];
2008 		uint32_t *ecx = &cpi->cpi_support[STD_ECX_FEATURES];
2009 
2010 		*edx = CPI_FEATURES_EDX(cpi);
2011 		*ecx = CPI_FEATURES_ECX(cpi);
2012 
2013 		/*
2014 		 * [these require explicit kernel support]
2015 		 */
2016 		if ((x86_feature & X86_SEP) == 0)
2017 			*edx &= ~CPUID_INTC_EDX_SEP;
2018 
2019 		if ((x86_feature & X86_SSE) == 0)
2020 			*edx &= ~(CPUID_INTC_EDX_FXSR|CPUID_INTC_EDX_SSE);
2021 		if ((x86_feature & X86_SSE2) == 0)
2022 			*edx &= ~CPUID_INTC_EDX_SSE2;
2023 
2024 		if ((x86_feature & X86_HTT) == 0)
2025 			*edx &= ~CPUID_INTC_EDX_HTT;
2026 
2027 		if ((x86_feature & X86_SSE3) == 0)
2028 			*ecx &= ~CPUID_INTC_ECX_SSE3;
2029 
2030 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
2031 			if ((x86_feature & X86_SSSE3) == 0)
2032 				*ecx &= ~CPUID_INTC_ECX_SSSE3;
2033 			if ((x86_feature & X86_SSE4_1) == 0)
2034 				*ecx &= ~CPUID_INTC_ECX_SSE4_1;
2035 			if ((x86_feature & X86_SSE4_2) == 0)
2036 				*ecx &= ~CPUID_INTC_ECX_SSE4_2;
2037 		}
2038 
2039 		/*
2040 		 * [no explicit support required beyond x87 fp context]
2041 		 */
2042 		if (!fpu_exists)
2043 			*edx &= ~(CPUID_INTC_EDX_FPU | CPUID_INTC_EDX_MMX);
2044 
2045 		/*
2046 		 * Now map the supported feature vector to things that we
2047 		 * think userland will care about.
2048 		 */
2049 		if (*edx & CPUID_INTC_EDX_SEP)
2050 			hwcap_flags |= AV_386_SEP;
2051 		if (*edx & CPUID_INTC_EDX_SSE)
2052 			hwcap_flags |= AV_386_FXSR | AV_386_SSE;
2053 		if (*edx & CPUID_INTC_EDX_SSE2)
2054 			hwcap_flags |= AV_386_SSE2;
2055 		if (*ecx & CPUID_INTC_ECX_SSE3)
2056 			hwcap_flags |= AV_386_SSE3;
2057 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
2058 			if (*ecx & CPUID_INTC_ECX_SSSE3)
2059 				hwcap_flags |= AV_386_SSSE3;
2060 			if (*ecx & CPUID_INTC_ECX_SSE4_1)
2061 				hwcap_flags |= AV_386_SSE4_1;
2062 			if (*ecx & CPUID_INTC_ECX_SSE4_2)
2063 				hwcap_flags |= AV_386_SSE4_2;
2064 		}
2065 		if (*ecx & CPUID_INTC_ECX_POPCNT)
2066 			hwcap_flags |= AV_386_POPCNT;
2067 		if (*edx & CPUID_INTC_EDX_FPU)
2068 			hwcap_flags |= AV_386_FPU;
2069 		if (*edx & CPUID_INTC_EDX_MMX)
2070 			hwcap_flags |= AV_386_MMX;
2071 
2072 		if (*edx & CPUID_INTC_EDX_TSC)
2073 			hwcap_flags |= AV_386_TSC;
2074 		if (*edx & CPUID_INTC_EDX_CX8)
2075 			hwcap_flags |= AV_386_CX8;
2076 		if (*edx & CPUID_INTC_EDX_CMOV)
2077 			hwcap_flags |= AV_386_CMOV;
2078 		if (*ecx & CPUID_INTC_ECX_MON)
2079 			hwcap_flags |= AV_386_MON;
2080 		if (*ecx & CPUID_INTC_ECX_CX16)
2081 			hwcap_flags |= AV_386_CX16;
2082 	}
2083 
2084 	if (x86_feature & X86_HTT)
2085 		hwcap_flags |= AV_386_PAUSE;
2086 
2087 	if (cpi->cpi_xmaxeax < 0x80000001)
2088 		goto pass4_done;
2089 
2090 	switch (cpi->cpi_vendor) {
2091 		struct cpuid_regs cp;
2092 		uint32_t *edx, *ecx;
2093 
2094 	case X86_VENDOR_Intel:
2095 		/*
2096 		 * Seems like Intel duplicated what we necessary
2097 		 * here to make the initial crop of 64-bit OS's work.
2098 		 * Hopefully, those are the only "extended" bits
2099 		 * they'll add.
2100 		 */
2101 		/*FALLTHROUGH*/
2102 
2103 	case X86_VENDOR_AMD:
2104 		edx = &cpi->cpi_support[AMD_EDX_FEATURES];
2105 		ecx = &cpi->cpi_support[AMD_ECX_FEATURES];
2106 
2107 		*edx = CPI_FEATURES_XTD_EDX(cpi);
2108 		*ecx = CPI_FEATURES_XTD_ECX(cpi);
2109 
2110 		/*
2111 		 * [these features require explicit kernel support]
2112 		 */
2113 		switch (cpi->cpi_vendor) {
2114 		case X86_VENDOR_Intel:
2115 			break;
2116 
2117 		case X86_VENDOR_AMD:
2118 			if ((x86_feature & X86_TSCP) == 0)
2119 				*edx &= ~CPUID_AMD_EDX_TSCP;
2120 			if ((x86_feature & X86_SSE4A) == 0)
2121 				*ecx &= ~CPUID_AMD_ECX_SSE4A;
2122 			break;
2123 
2124 		default:
2125 			break;
2126 		}
2127 
2128 		/*
2129 		 * [no explicit support required beyond
2130 		 * x87 fp context and exception handlers]
2131 		 */
2132 		if (!fpu_exists)
2133 			*edx &= ~(CPUID_AMD_EDX_MMXamd |
2134 			    CPUID_AMD_EDX_3DNow | CPUID_AMD_EDX_3DNowx);
2135 
2136 		if ((x86_feature & X86_NX) == 0)
2137 			*edx &= ~CPUID_AMD_EDX_NX;
2138 #if !defined(__amd64)
2139 		*edx &= ~CPUID_AMD_EDX_LM;
2140 #endif
2141 		/*
2142 		 * Now map the supported feature vector to
2143 		 * things that we think userland will care about.
2144 		 */
2145 #if defined(__amd64)
2146 		if (*edx & CPUID_AMD_EDX_SYSC)
2147 			hwcap_flags |= AV_386_AMD_SYSC;
2148 #endif
2149 		if (*edx & CPUID_AMD_EDX_MMXamd)
2150 			hwcap_flags |= AV_386_AMD_MMX;
2151 		if (*edx & CPUID_AMD_EDX_3DNow)
2152 			hwcap_flags |= AV_386_AMD_3DNow;
2153 		if (*edx & CPUID_AMD_EDX_3DNowx)
2154 			hwcap_flags |= AV_386_AMD_3DNowx;
2155 
2156 		switch (cpi->cpi_vendor) {
2157 		case X86_VENDOR_AMD:
2158 			if (*edx & CPUID_AMD_EDX_TSCP)
2159 				hwcap_flags |= AV_386_TSCP;
2160 			if (*ecx & CPUID_AMD_ECX_AHF64)
2161 				hwcap_flags |= AV_386_AHF;
2162 			if (*ecx & CPUID_AMD_ECX_SSE4A)
2163 				hwcap_flags |= AV_386_AMD_SSE4A;
2164 			if (*ecx & CPUID_AMD_ECX_LZCNT)
2165 				hwcap_flags |= AV_386_AMD_LZCNT;
2166 			break;
2167 
2168 		case X86_VENDOR_Intel:
2169 			/*
2170 			 * Aarrgh.
2171 			 * Intel uses a different bit in the same word.
2172 			 */
2173 			if (*ecx & CPUID_INTC_ECX_AHF64)
2174 				hwcap_flags |= AV_386_AHF;
2175 			break;
2176 
2177 		default:
2178 			break;
2179 		}
2180 		break;
2181 
2182 	case X86_VENDOR_TM:
2183 		cp.cp_eax = 0x80860001;
2184 		(void) __cpuid_insn(&cp);
2185 		cpi->cpi_support[TM_EDX_FEATURES] = cp.cp_edx;
2186 		break;
2187 
2188 	default:
2189 		break;
2190 	}
2191 
2192 pass4_done:
2193 	cpi->cpi_pass = 4;
2194 	return (hwcap_flags);
2195 }
2196 
2197 
2198 /*
2199  * Simulate the cpuid instruction using the data we previously
2200  * captured about this CPU.  We try our best to return the truth
2201  * about the hardware, independently of kernel support.
2202  */
2203 uint32_t
2204 cpuid_insn(cpu_t *cpu, struct cpuid_regs *cp)
2205 {
2206 	struct cpuid_info *cpi;
2207 	struct cpuid_regs *xcp;
2208 
2209 	if (cpu == NULL)
2210 		cpu = CPU;
2211 	cpi = cpu->cpu_m.mcpu_cpi;
2212 
2213 	ASSERT(cpuid_checkpass(cpu, 3));
2214 
2215 	/*
2216 	 * CPUID data is cached in two separate places: cpi_std for standard
2217 	 * CPUID functions, and cpi_extd for extended CPUID functions.
2218 	 */
2219 	if (cp->cp_eax <= cpi->cpi_maxeax && cp->cp_eax < NMAX_CPI_STD)
2220 		xcp = &cpi->cpi_std[cp->cp_eax];
2221 	else if (cp->cp_eax >= 0x80000000 && cp->cp_eax <= cpi->cpi_xmaxeax &&
2222 	    cp->cp_eax < 0x80000000 + NMAX_CPI_EXTD)
2223 		xcp = &cpi->cpi_extd[cp->cp_eax - 0x80000000];
2224 	else
2225 		/*
2226 		 * The caller is asking for data from an input parameter which
2227 		 * the kernel has not cached.  In this case we go fetch from
2228 		 * the hardware and return the data directly to the user.
2229 		 */
2230 		return (__cpuid_insn(cp));
2231 
2232 	cp->cp_eax = xcp->cp_eax;
2233 	cp->cp_ebx = xcp->cp_ebx;
2234 	cp->cp_ecx = xcp->cp_ecx;
2235 	cp->cp_edx = xcp->cp_edx;
2236 	return (cp->cp_eax);
2237 }
2238 
2239 int
2240 cpuid_checkpass(cpu_t *cpu, int pass)
2241 {
2242 	return (cpu != NULL && cpu->cpu_m.mcpu_cpi != NULL &&
2243 	    cpu->cpu_m.mcpu_cpi->cpi_pass >= pass);
2244 }
2245 
2246 int
2247 cpuid_getbrandstr(cpu_t *cpu, char *s, size_t n)
2248 {
2249 	ASSERT(cpuid_checkpass(cpu, 3));
2250 
2251 	return (snprintf(s, n, "%s", cpu->cpu_m.mcpu_cpi->cpi_brandstr));
2252 }
2253 
2254 int
2255 cpuid_is_cmt(cpu_t *cpu)
2256 {
2257 	if (cpu == NULL)
2258 		cpu = CPU;
2259 
2260 	ASSERT(cpuid_checkpass(cpu, 1));
2261 
2262 	return (cpu->cpu_m.mcpu_cpi->cpi_chipid >= 0);
2263 }
2264 
2265 /*
2266  * AMD and Intel both implement the 64-bit variant of the syscall
2267  * instruction (syscallq), so if there's -any- support for syscall,
2268  * cpuid currently says "yes, we support this".
2269  *
2270  * However, Intel decided to -not- implement the 32-bit variant of the
2271  * syscall instruction, so we provide a predicate to allow our caller
2272  * to test that subtlety here.
2273  *
2274  * XXPV	Currently, 32-bit syscall instructions don't work via the hypervisor,
2275  *	even in the case where the hardware would in fact support it.
2276  */
2277 /*ARGSUSED*/
2278 int
2279 cpuid_syscall32_insn(cpu_t *cpu)
2280 {
2281 	ASSERT(cpuid_checkpass((cpu == NULL ? CPU : cpu), 1));
2282 
2283 #if !defined(__xpv)
2284 	if (cpu == NULL)
2285 		cpu = CPU;
2286 
2287 	/*CSTYLED*/
2288 	{
2289 		struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2290 
2291 		if (cpi->cpi_vendor == X86_VENDOR_AMD &&
2292 		    cpi->cpi_xmaxeax >= 0x80000001 &&
2293 		    (CPI_FEATURES_XTD_EDX(cpi) & CPUID_AMD_EDX_SYSC))
2294 			return (1);
2295 	}
2296 #endif
2297 	return (0);
2298 }
2299 
2300 int
2301 cpuid_getidstr(cpu_t *cpu, char *s, size_t n)
2302 {
2303 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2304 
2305 	static const char fmt[] =
2306 	    "x86 (%s %X family %d model %d step %d clock %d MHz)";
2307 	static const char fmt_ht[] =
2308 	    "x86 (chipid 0x%x %s %X family %d model %d step %d clock %d MHz)";
2309 
2310 	ASSERT(cpuid_checkpass(cpu, 1));
2311 
2312 	if (cpuid_is_cmt(cpu))
2313 		return (snprintf(s, n, fmt_ht, cpi->cpi_chipid,
2314 		    cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
2315 		    cpi->cpi_family, cpi->cpi_model,
2316 		    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
2317 	return (snprintf(s, n, fmt,
2318 	    cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
2319 	    cpi->cpi_family, cpi->cpi_model,
2320 	    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
2321 }
2322 
2323 const char *
2324 cpuid_getvendorstr(cpu_t *cpu)
2325 {
2326 	ASSERT(cpuid_checkpass(cpu, 1));
2327 	return ((const char *)cpu->cpu_m.mcpu_cpi->cpi_vendorstr);
2328 }
2329 
2330 uint_t
2331 cpuid_getvendor(cpu_t *cpu)
2332 {
2333 	ASSERT(cpuid_checkpass(cpu, 1));
2334 	return (cpu->cpu_m.mcpu_cpi->cpi_vendor);
2335 }
2336 
2337 uint_t
2338 cpuid_getfamily(cpu_t *cpu)
2339 {
2340 	ASSERT(cpuid_checkpass(cpu, 1));
2341 	return (cpu->cpu_m.mcpu_cpi->cpi_family);
2342 }
2343 
2344 uint_t
2345 cpuid_getmodel(cpu_t *cpu)
2346 {
2347 	ASSERT(cpuid_checkpass(cpu, 1));
2348 	return (cpu->cpu_m.mcpu_cpi->cpi_model);
2349 }
2350 
2351 uint_t
2352 cpuid_get_ncpu_per_chip(cpu_t *cpu)
2353 {
2354 	ASSERT(cpuid_checkpass(cpu, 1));
2355 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_per_chip);
2356 }
2357 
2358 uint_t
2359 cpuid_get_ncore_per_chip(cpu_t *cpu)
2360 {
2361 	ASSERT(cpuid_checkpass(cpu, 1));
2362 	return (cpu->cpu_m.mcpu_cpi->cpi_ncore_per_chip);
2363 }
2364 
2365 uint_t
2366 cpuid_get_ncpu_sharing_last_cache(cpu_t *cpu)
2367 {
2368 	ASSERT(cpuid_checkpass(cpu, 2));
2369 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_shr_last_cache);
2370 }
2371 
2372 id_t
2373 cpuid_get_last_lvl_cacheid(cpu_t *cpu)
2374 {
2375 	ASSERT(cpuid_checkpass(cpu, 2));
2376 	return (cpu->cpu_m.mcpu_cpi->cpi_last_lvl_cacheid);
2377 }
2378 
2379 uint_t
2380 cpuid_getstep(cpu_t *cpu)
2381 {
2382 	ASSERT(cpuid_checkpass(cpu, 1));
2383 	return (cpu->cpu_m.mcpu_cpi->cpi_step);
2384 }
2385 
2386 uint_t
2387 cpuid_getsig(struct cpu *cpu)
2388 {
2389 	ASSERT(cpuid_checkpass(cpu, 1));
2390 	return (cpu->cpu_m.mcpu_cpi->cpi_std[1].cp_eax);
2391 }
2392 
2393 uint32_t
2394 cpuid_getchiprev(struct cpu *cpu)
2395 {
2396 	ASSERT(cpuid_checkpass(cpu, 1));
2397 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprev);
2398 }
2399 
2400 const char *
2401 cpuid_getchiprevstr(struct cpu *cpu)
2402 {
2403 	ASSERT(cpuid_checkpass(cpu, 1));
2404 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprevstr);
2405 }
2406 
2407 uint32_t
2408 cpuid_getsockettype(struct cpu *cpu)
2409 {
2410 	ASSERT(cpuid_checkpass(cpu, 1));
2411 	return (cpu->cpu_m.mcpu_cpi->cpi_socket);
2412 }
2413 
2414 int
2415 cpuid_get_chipid(cpu_t *cpu)
2416 {
2417 	ASSERT(cpuid_checkpass(cpu, 1));
2418 
2419 	if (cpuid_is_cmt(cpu))
2420 		return (cpu->cpu_m.mcpu_cpi->cpi_chipid);
2421 	return (cpu->cpu_id);
2422 }
2423 
2424 id_t
2425 cpuid_get_coreid(cpu_t *cpu)
2426 {
2427 	ASSERT(cpuid_checkpass(cpu, 1));
2428 	return (cpu->cpu_m.mcpu_cpi->cpi_coreid);
2429 }
2430 
2431 int
2432 cpuid_get_clogid(cpu_t *cpu)
2433 {
2434 	ASSERT(cpuid_checkpass(cpu, 1));
2435 	return (cpu->cpu_m.mcpu_cpi->cpi_clogid);
2436 }
2437 
2438 void
2439 cpuid_get_addrsize(cpu_t *cpu, uint_t *pabits, uint_t *vabits)
2440 {
2441 	struct cpuid_info *cpi;
2442 
2443 	if (cpu == NULL)
2444 		cpu = CPU;
2445 	cpi = cpu->cpu_m.mcpu_cpi;
2446 
2447 	ASSERT(cpuid_checkpass(cpu, 1));
2448 
2449 	if (pabits)
2450 		*pabits = cpi->cpi_pabits;
2451 	if (vabits)
2452 		*vabits = cpi->cpi_vabits;
2453 }
2454 
2455 /*
2456  * Returns the number of data TLB entries for a corresponding
2457  * pagesize.  If it can't be computed, or isn't known, the
2458  * routine returns zero.  If you ask about an architecturally
2459  * impossible pagesize, the routine will panic (so that the
2460  * hat implementor knows that things are inconsistent.)
2461  */
2462 uint_t
2463 cpuid_get_dtlb_nent(cpu_t *cpu, size_t pagesize)
2464 {
2465 	struct cpuid_info *cpi;
2466 	uint_t dtlb_nent = 0;
2467 
2468 	if (cpu == NULL)
2469 		cpu = CPU;
2470 	cpi = cpu->cpu_m.mcpu_cpi;
2471 
2472 	ASSERT(cpuid_checkpass(cpu, 1));
2473 
2474 	/*
2475 	 * Check the L2 TLB info
2476 	 */
2477 	if (cpi->cpi_xmaxeax >= 0x80000006) {
2478 		struct cpuid_regs *cp = &cpi->cpi_extd[6];
2479 
2480 		switch (pagesize) {
2481 
2482 		case 4 * 1024:
2483 			/*
2484 			 * All zero in the top 16 bits of the register
2485 			 * indicates a unified TLB. Size is in low 16 bits.
2486 			 */
2487 			if ((cp->cp_ebx & 0xffff0000) == 0)
2488 				dtlb_nent = cp->cp_ebx & 0x0000ffff;
2489 			else
2490 				dtlb_nent = BITX(cp->cp_ebx, 27, 16);
2491 			break;
2492 
2493 		case 2 * 1024 * 1024:
2494 			if ((cp->cp_eax & 0xffff0000) == 0)
2495 				dtlb_nent = cp->cp_eax & 0x0000ffff;
2496 			else
2497 				dtlb_nent = BITX(cp->cp_eax, 27, 16);
2498 			break;
2499 
2500 		default:
2501 			panic("unknown L2 pagesize");
2502 			/*NOTREACHED*/
2503 		}
2504 	}
2505 
2506 	if (dtlb_nent != 0)
2507 		return (dtlb_nent);
2508 
2509 	/*
2510 	 * No L2 TLB support for this size, try L1.
2511 	 */
2512 	if (cpi->cpi_xmaxeax >= 0x80000005) {
2513 		struct cpuid_regs *cp = &cpi->cpi_extd[5];
2514 
2515 		switch (pagesize) {
2516 		case 4 * 1024:
2517 			dtlb_nent = BITX(cp->cp_ebx, 23, 16);
2518 			break;
2519 		case 2 * 1024 * 1024:
2520 			dtlb_nent = BITX(cp->cp_eax, 23, 16);
2521 			break;
2522 		default:
2523 			panic("unknown L1 d-TLB pagesize");
2524 			/*NOTREACHED*/
2525 		}
2526 	}
2527 
2528 	return (dtlb_nent);
2529 }
2530 
2531 /*
2532  * Return 0 if the erratum is not present or not applicable, positive
2533  * if it is, and negative if the status of the erratum is unknown.
2534  *
2535  * See "Revision Guide for AMD Athlon(tm) 64 and AMD Opteron(tm)
2536  * Processors" #25759, Rev 3.57, August 2005
2537  */
2538 int
2539 cpuid_opteron_erratum(cpu_t *cpu, uint_t erratum)
2540 {
2541 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2542 	uint_t eax;
2543 
2544 	/*
2545 	 * Bail out if this CPU isn't an AMD CPU, or if it's
2546 	 * a legacy (32-bit) AMD CPU.
2547 	 */
2548 	if (cpi->cpi_vendor != X86_VENDOR_AMD ||
2549 	    cpi->cpi_family == 4 || cpi->cpi_family == 5 ||
2550 	    cpi->cpi_family == 6)
2551 
2552 		return (0);
2553 
2554 	eax = cpi->cpi_std[1].cp_eax;
2555 
2556 #define	SH_B0(eax)	(eax == 0xf40 || eax == 0xf50)
2557 #define	SH_B3(eax) 	(eax == 0xf51)
2558 #define	B(eax)		(SH_B0(eax) || SH_B3(eax))
2559 
2560 #define	SH_C0(eax)	(eax == 0xf48 || eax == 0xf58)
2561 
2562 #define	SH_CG(eax)	(eax == 0xf4a || eax == 0xf5a || eax == 0xf7a)
2563 #define	DH_CG(eax)	(eax == 0xfc0 || eax == 0xfe0 || eax == 0xff0)
2564 #define	CH_CG(eax)	(eax == 0xf82 || eax == 0xfb2)
2565 #define	CG(eax)		(SH_CG(eax) || DH_CG(eax) || CH_CG(eax))
2566 
2567 #define	SH_D0(eax)	(eax == 0x10f40 || eax == 0x10f50 || eax == 0x10f70)
2568 #define	DH_D0(eax)	(eax == 0x10fc0 || eax == 0x10ff0)
2569 #define	CH_D0(eax)	(eax == 0x10f80 || eax == 0x10fb0)
2570 #define	D0(eax)		(SH_D0(eax) || DH_D0(eax) || CH_D0(eax))
2571 
2572 #define	SH_E0(eax)	(eax == 0x20f50 || eax == 0x20f40 || eax == 0x20f70)
2573 #define	JH_E1(eax)	(eax == 0x20f10)	/* JH8_E0 had 0x20f30 */
2574 #define	DH_E3(eax)	(eax == 0x20fc0 || eax == 0x20ff0)
2575 #define	SH_E4(eax)	(eax == 0x20f51 || eax == 0x20f71)
2576 #define	BH_E4(eax)	(eax == 0x20fb1)
2577 #define	SH_E5(eax)	(eax == 0x20f42)
2578 #define	DH_E6(eax)	(eax == 0x20ff2 || eax == 0x20fc2)
2579 #define	JH_E6(eax)	(eax == 0x20f12 || eax == 0x20f32)
2580 #define	EX(eax)		(SH_E0(eax) || JH_E1(eax) || DH_E3(eax) || \
2581 			    SH_E4(eax) || BH_E4(eax) || SH_E5(eax) || \
2582 			    DH_E6(eax) || JH_E6(eax))
2583 
2584 	switch (erratum) {
2585 	case 1:
2586 		return (cpi->cpi_family < 0x10);
2587 	case 51:	/* what does the asterisk mean? */
2588 		return (B(eax) || SH_C0(eax) || CG(eax));
2589 	case 52:
2590 		return (B(eax));
2591 	case 57:
2592 		return (cpi->cpi_family <= 0x10);
2593 	case 58:
2594 		return (B(eax));
2595 	case 60:
2596 		return (cpi->cpi_family <= 0x10);
2597 	case 61:
2598 	case 62:
2599 	case 63:
2600 	case 64:
2601 	case 65:
2602 	case 66:
2603 	case 68:
2604 	case 69:
2605 	case 70:
2606 	case 71:
2607 		return (B(eax));
2608 	case 72:
2609 		return (SH_B0(eax));
2610 	case 74:
2611 		return (B(eax));
2612 	case 75:
2613 		return (cpi->cpi_family < 0x10);
2614 	case 76:
2615 		return (B(eax));
2616 	case 77:
2617 		return (cpi->cpi_family <= 0x10);
2618 	case 78:
2619 		return (B(eax) || SH_C0(eax));
2620 	case 79:
2621 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2622 	case 80:
2623 	case 81:
2624 	case 82:
2625 		return (B(eax));
2626 	case 83:
2627 		return (B(eax) || SH_C0(eax) || CG(eax));
2628 	case 85:
2629 		return (cpi->cpi_family < 0x10);
2630 	case 86:
2631 		return (SH_C0(eax) || CG(eax));
2632 	case 88:
2633 #if !defined(__amd64)
2634 		return (0);
2635 #else
2636 		return (B(eax) || SH_C0(eax));
2637 #endif
2638 	case 89:
2639 		return (cpi->cpi_family < 0x10);
2640 	case 90:
2641 		return (B(eax) || SH_C0(eax) || CG(eax));
2642 	case 91:
2643 	case 92:
2644 		return (B(eax) || SH_C0(eax));
2645 	case 93:
2646 		return (SH_C0(eax));
2647 	case 94:
2648 		return (B(eax) || SH_C0(eax) || CG(eax));
2649 	case 95:
2650 #if !defined(__amd64)
2651 		return (0);
2652 #else
2653 		return (B(eax) || SH_C0(eax));
2654 #endif
2655 	case 96:
2656 		return (B(eax) || SH_C0(eax) || CG(eax));
2657 	case 97:
2658 	case 98:
2659 		return (SH_C0(eax) || CG(eax));
2660 	case 99:
2661 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2662 	case 100:
2663 		return (B(eax) || SH_C0(eax));
2664 	case 101:
2665 	case 103:
2666 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2667 	case 104:
2668 		return (SH_C0(eax) || CG(eax) || D0(eax));
2669 	case 105:
2670 	case 106:
2671 	case 107:
2672 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2673 	case 108:
2674 		return (DH_CG(eax));
2675 	case 109:
2676 		return (SH_C0(eax) || CG(eax) || D0(eax));
2677 	case 110:
2678 		return (D0(eax) || EX(eax));
2679 	case 111:
2680 		return (CG(eax));
2681 	case 112:
2682 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2683 	case 113:
2684 		return (eax == 0x20fc0);
2685 	case 114:
2686 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
2687 	case 115:
2688 		return (SH_E0(eax) || JH_E1(eax));
2689 	case 116:
2690 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
2691 	case 117:
2692 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2693 	case 118:
2694 		return (SH_E0(eax) || JH_E1(eax) || SH_E4(eax) || BH_E4(eax) ||
2695 		    JH_E6(eax));
2696 	case 121:
2697 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2698 	case 122:
2699 		return (cpi->cpi_family < 0x10);
2700 	case 123:
2701 		return (JH_E1(eax) || BH_E4(eax) || JH_E6(eax));
2702 	case 131:
2703 		return (cpi->cpi_family < 0x10);
2704 	case 6336786:
2705 		/*
2706 		 * Test for AdvPowerMgmtInfo.TscPStateInvariant
2707 		 * if this is a K8 family or newer processor
2708 		 */
2709 		if (CPI_FAMILY(cpi) == 0xf) {
2710 			struct cpuid_regs regs;
2711 			regs.cp_eax = 0x80000007;
2712 			(void) __cpuid_insn(&regs);
2713 			return (!(regs.cp_edx & 0x100));
2714 		}
2715 		return (0);
2716 	case 6323525:
2717 		return (((((eax >> 12) & 0xff00) + (eax & 0xf00)) |
2718 		    (((eax >> 4) & 0xf) | ((eax >> 12) & 0xf0))) < 0xf40);
2719 
2720 	default:
2721 		return (-1);
2722 	}
2723 }
2724 
2725 static const char assoc_str[] = "associativity";
2726 static const char line_str[] = "line-size";
2727 static const char size_str[] = "size";
2728 
2729 static void
2730 add_cache_prop(dev_info_t *devi, const char *label, const char *type,
2731     uint32_t val)
2732 {
2733 	char buf[128];
2734 
2735 	/*
2736 	 * ndi_prop_update_int() is used because it is desirable for
2737 	 * DDI_PROP_HW_DEF and DDI_PROP_DONTSLEEP to be set.
2738 	 */
2739 	if (snprintf(buf, sizeof (buf), "%s-%s", label, type) < sizeof (buf))
2740 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, buf, val);
2741 }
2742 
2743 /*
2744  * Intel-style cache/tlb description
2745  *
2746  * Standard cpuid level 2 gives a randomly ordered
2747  * selection of tags that index into a table that describes
2748  * cache and tlb properties.
2749  */
2750 
2751 static const char l1_icache_str[] = "l1-icache";
2752 static const char l1_dcache_str[] = "l1-dcache";
2753 static const char l2_cache_str[] = "l2-cache";
2754 static const char l3_cache_str[] = "l3-cache";
2755 static const char itlb4k_str[] = "itlb-4K";
2756 static const char dtlb4k_str[] = "dtlb-4K";
2757 static const char itlb4M_str[] = "itlb-4M";
2758 static const char dtlb4M_str[] = "dtlb-4M";
2759 static const char itlb424_str[] = "itlb-4K-2M-4M";
2760 static const char dtlb44_str[] = "dtlb-4K-4M";
2761 static const char sl1_dcache_str[] = "sectored-l1-dcache";
2762 static const char sl2_cache_str[] = "sectored-l2-cache";
2763 static const char itrace_str[] = "itrace-cache";
2764 static const char sl3_cache_str[] = "sectored-l3-cache";
2765 
2766 static const struct cachetab {
2767 	uint8_t 	ct_code;
2768 	uint8_t		ct_assoc;
2769 	uint16_t 	ct_line_size;
2770 	size_t		ct_size;
2771 	const char	*ct_label;
2772 } intel_ctab[] = {
2773 	/* maintain descending order! */
2774 	{ 0xb4, 4, 0, 256, dtlb4k_str },
2775 	{ 0xb3, 4, 0, 128, dtlb4k_str },
2776 	{ 0xb0, 4, 0, 128, itlb4k_str },
2777 	{ 0x87, 8, 64, 1024*1024, l2_cache_str},
2778 	{ 0x86, 4, 64, 512*1024, l2_cache_str},
2779 	{ 0x85, 8, 32, 2*1024*1024, l2_cache_str},
2780 	{ 0x84, 8, 32, 1024*1024, l2_cache_str},
2781 	{ 0x83, 8, 32, 512*1024, l2_cache_str},
2782 	{ 0x82, 8, 32, 256*1024, l2_cache_str},
2783 	{ 0x7f, 2, 64, 512*1024, l2_cache_str},
2784 	{ 0x7d, 8, 64, 2*1024*1024, sl2_cache_str},
2785 	{ 0x7c, 8, 64, 1024*1024, sl2_cache_str},
2786 	{ 0x7b, 8, 64, 512*1024, sl2_cache_str},
2787 	{ 0x7a, 8, 64, 256*1024, sl2_cache_str},
2788 	{ 0x79, 8, 64, 128*1024, sl2_cache_str},
2789 	{ 0x78, 8, 64, 1024*1024, l2_cache_str},
2790 	{ 0x73, 8, 0, 64*1024, itrace_str},
2791 	{ 0x72, 8, 0, 32*1024, itrace_str},
2792 	{ 0x71, 8, 0, 16*1024, itrace_str},
2793 	{ 0x70, 8, 0, 12*1024, itrace_str},
2794 	{ 0x68, 4, 64, 32*1024, sl1_dcache_str},
2795 	{ 0x67, 4, 64, 16*1024, sl1_dcache_str},
2796 	{ 0x66, 4, 64, 8*1024, sl1_dcache_str},
2797 	{ 0x60, 8, 64, 16*1024, sl1_dcache_str},
2798 	{ 0x5d, 0, 0, 256, dtlb44_str},
2799 	{ 0x5c, 0, 0, 128, dtlb44_str},
2800 	{ 0x5b, 0, 0, 64, dtlb44_str},
2801 	{ 0x52, 0, 0, 256, itlb424_str},
2802 	{ 0x51, 0, 0, 128, itlb424_str},
2803 	{ 0x50, 0, 0, 64, itlb424_str},
2804 	{ 0x4d, 16, 64, 16*1024*1024, l3_cache_str},
2805 	{ 0x4c, 12, 64, 12*1024*1024, l3_cache_str},
2806 	{ 0x4b, 16, 64, 8*1024*1024, l3_cache_str},
2807 	{ 0x4a, 12, 64, 6*1024*1024, l3_cache_str},
2808 	{ 0x49, 16, 64, 4*1024*1024, l3_cache_str},
2809 	{ 0x47, 8, 64, 8*1024*1024, l3_cache_str},
2810 	{ 0x46, 4, 64, 4*1024*1024, l3_cache_str},
2811 	{ 0x45, 4, 32, 2*1024*1024, l2_cache_str},
2812 	{ 0x44, 4, 32, 1024*1024, l2_cache_str},
2813 	{ 0x43, 4, 32, 512*1024, l2_cache_str},
2814 	{ 0x42, 4, 32, 256*1024, l2_cache_str},
2815 	{ 0x41, 4, 32, 128*1024, l2_cache_str},
2816 	{ 0x3e, 4, 64, 512*1024, sl2_cache_str},
2817 	{ 0x3d, 6, 64, 384*1024, sl2_cache_str},
2818 	{ 0x3c, 4, 64, 256*1024, sl2_cache_str},
2819 	{ 0x3b, 2, 64, 128*1024, sl2_cache_str},
2820 	{ 0x3a, 6, 64, 192*1024, sl2_cache_str},
2821 	{ 0x39, 4, 64, 128*1024, sl2_cache_str},
2822 	{ 0x30, 8, 64, 32*1024, l1_icache_str},
2823 	{ 0x2c, 8, 64, 32*1024, l1_dcache_str},
2824 	{ 0x29, 8, 64, 4096*1024, sl3_cache_str},
2825 	{ 0x25, 8, 64, 2048*1024, sl3_cache_str},
2826 	{ 0x23, 8, 64, 1024*1024, sl3_cache_str},
2827 	{ 0x22, 4, 64, 512*1024, sl3_cache_str},
2828 	{ 0x0c, 4, 32, 16*1024, l1_dcache_str},
2829 	{ 0x0b, 4, 0, 4, itlb4M_str},
2830 	{ 0x0a, 2, 32, 8*1024, l1_dcache_str},
2831 	{ 0x08, 4, 32, 16*1024, l1_icache_str},
2832 	{ 0x06, 4, 32, 8*1024, l1_icache_str},
2833 	{ 0x04, 4, 0, 8, dtlb4M_str},
2834 	{ 0x03, 4, 0, 64, dtlb4k_str},
2835 	{ 0x02, 4, 0, 2, itlb4M_str},
2836 	{ 0x01, 4, 0, 32, itlb4k_str},
2837 	{ 0 }
2838 };
2839 
2840 static const struct cachetab cyrix_ctab[] = {
2841 	{ 0x70, 4, 0, 32, "tlb-4K" },
2842 	{ 0x80, 4, 16, 16*1024, "l1-cache" },
2843 	{ 0 }
2844 };
2845 
2846 /*
2847  * Search a cache table for a matching entry
2848  */
2849 static const struct cachetab *
2850 find_cacheent(const struct cachetab *ct, uint_t code)
2851 {
2852 	if (code != 0) {
2853 		for (; ct->ct_code != 0; ct++)
2854 			if (ct->ct_code <= code)
2855 				break;
2856 		if (ct->ct_code == code)
2857 			return (ct);
2858 	}
2859 	return (NULL);
2860 }
2861 
2862 /*
2863  * Walk the cacheinfo descriptor, applying 'func' to every valid element
2864  * The walk is terminated if the walker returns non-zero.
2865  */
2866 static void
2867 intel_walk_cacheinfo(struct cpuid_info *cpi,
2868     void *arg, int (*func)(void *, const struct cachetab *))
2869 {
2870 	const struct cachetab *ct;
2871 	uint8_t *dp;
2872 	int i;
2873 
2874 	if ((dp = cpi->cpi_cacheinfo) == NULL)
2875 		return;
2876 	for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
2877 		/*
2878 		 * For overloaded descriptor 0x49 we use cpuid function 4
2879 		 * if supported by the current processor, to update
2880 		 * cache information.
2881 		 */
2882 		if (*dp == 0x49 && cpi->cpi_maxeax >= 0x4) {
2883 			intel_cpuid_4_cache_info(arg, cpi);
2884 			continue;
2885 		}
2886 
2887 		if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) {
2888 			if (func(arg, ct) != 0)
2889 				break;
2890 		}
2891 	}
2892 }
2893 
2894 /*
2895  * (Like the Intel one, except for Cyrix CPUs)
2896  */
2897 static void
2898 cyrix_walk_cacheinfo(struct cpuid_info *cpi,
2899     void *arg, int (*func)(void *, const struct cachetab *))
2900 {
2901 	const struct cachetab *ct;
2902 	uint8_t *dp;
2903 	int i;
2904 
2905 	if ((dp = cpi->cpi_cacheinfo) == NULL)
2906 		return;
2907 	for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
2908 		/*
2909 		 * Search Cyrix-specific descriptor table first ..
2910 		 */
2911 		if ((ct = find_cacheent(cyrix_ctab, *dp)) != NULL) {
2912 			if (func(arg, ct) != 0)
2913 				break;
2914 			continue;
2915 		}
2916 		/*
2917 		 * .. else fall back to the Intel one
2918 		 */
2919 		if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) {
2920 			if (func(arg, ct) != 0)
2921 				break;
2922 			continue;
2923 		}
2924 	}
2925 }
2926 
2927 /*
2928  * A cacheinfo walker that adds associativity, line-size, and size properties
2929  * to the devinfo node it is passed as an argument.
2930  */
2931 static int
2932 add_cacheent_props(void *arg, const struct cachetab *ct)
2933 {
2934 	dev_info_t *devi = arg;
2935 
2936 	add_cache_prop(devi, ct->ct_label, assoc_str, ct->ct_assoc);
2937 	if (ct->ct_line_size != 0)
2938 		add_cache_prop(devi, ct->ct_label, line_str,
2939 		    ct->ct_line_size);
2940 	add_cache_prop(devi, ct->ct_label, size_str, ct->ct_size);
2941 	return (0);
2942 }
2943 
2944 /*
2945  * Add L2 or L3 cache-information using cpuid function 4. This
2946  * function is called from intel_walk_cacheinfo() when descriptor
2947  * 0x49 is encountered.
2948  */
2949 static void
2950 intel_cpuid_4_cache_info(void *arg, struct cpuid_info *cpi)
2951 {
2952 	uint32_t level, i;
2953 
2954 	struct cachetab ct;
2955 
2956 	for (i = 0; i < cpi->cpi_std_4_size; i++) {
2957 		level = CPI_CACHE_LVL(cpi->cpi_std_4[i]);
2958 
2959 		if (level == 2 || level == 3) {
2960 			ct.ct_assoc = CPI_CACHE_WAYS(cpi->cpi_std_4[i]) + 1;
2961 			ct.ct_line_size =
2962 			    CPI_CACHE_COH_LN_SZ(cpi->cpi_std_4[i]) + 1;
2963 			ct.ct_size = ct.ct_assoc *
2964 			    (CPI_CACHE_PARTS(cpi->cpi_std_4[i]) + 1) *
2965 			    ct.ct_line_size *
2966 			    (cpi->cpi_std_4[i]->cp_ecx + 1);
2967 
2968 			if (level == 2) {
2969 				ct.ct_label = l2_cache_str;
2970 			} else if (level == 3) {
2971 				ct.ct_label = l3_cache_str;
2972 			}
2973 
2974 			(void) add_cacheent_props(arg,
2975 			    (const struct cachetab *) (&ct));
2976 		}
2977 	}
2978 }
2979 
2980 static const char fully_assoc[] = "fully-associative?";
2981 
2982 /*
2983  * AMD style cache/tlb description
2984  *
2985  * Extended functions 5 and 6 directly describe properties of
2986  * tlbs and various cache levels.
2987  */
2988 static void
2989 add_amd_assoc(dev_info_t *devi, const char *label, uint_t assoc)
2990 {
2991 	switch (assoc) {
2992 	case 0:	/* reserved; ignore */
2993 		break;
2994 	default:
2995 		add_cache_prop(devi, label, assoc_str, assoc);
2996 		break;
2997 	case 0xff:
2998 		add_cache_prop(devi, label, fully_assoc, 1);
2999 		break;
3000 	}
3001 }
3002 
3003 static void
3004 add_amd_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
3005 {
3006 	if (size == 0)
3007 		return;
3008 	add_cache_prop(devi, label, size_str, size);
3009 	add_amd_assoc(devi, label, assoc);
3010 }
3011 
3012 static void
3013 add_amd_cache(dev_info_t *devi, const char *label,
3014     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
3015 {
3016 	if (size == 0 || line_size == 0)
3017 		return;
3018 	add_amd_assoc(devi, label, assoc);
3019 	/*
3020 	 * Most AMD parts have a sectored cache. Multiple cache lines are
3021 	 * associated with each tag. A sector consists of all cache lines
3022 	 * associated with a tag. For example, the AMD K6-III has a sector
3023 	 * size of 2 cache lines per tag.
3024 	 */
3025 	if (lines_per_tag != 0)
3026 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
3027 	add_cache_prop(devi, label, line_str, line_size);
3028 	add_cache_prop(devi, label, size_str, size * 1024);
3029 }
3030 
3031 static void
3032 add_amd_l2_assoc(dev_info_t *devi, const char *label, uint_t assoc)
3033 {
3034 	switch (assoc) {
3035 	case 0:	/* off */
3036 		break;
3037 	case 1:
3038 	case 2:
3039 	case 4:
3040 		add_cache_prop(devi, label, assoc_str, assoc);
3041 		break;
3042 	case 6:
3043 		add_cache_prop(devi, label, assoc_str, 8);
3044 		break;
3045 	case 8:
3046 		add_cache_prop(devi, label, assoc_str, 16);
3047 		break;
3048 	case 0xf:
3049 		add_cache_prop(devi, label, fully_assoc, 1);
3050 		break;
3051 	default: /* reserved; ignore */
3052 		break;
3053 	}
3054 }
3055 
3056 static void
3057 add_amd_l2_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
3058 {
3059 	if (size == 0 || assoc == 0)
3060 		return;
3061 	add_amd_l2_assoc(devi, label, assoc);
3062 	add_cache_prop(devi, label, size_str, size);
3063 }
3064 
3065 static void
3066 add_amd_l2_cache(dev_info_t *devi, const char *label,
3067     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
3068 {
3069 	if (size == 0 || assoc == 0 || line_size == 0)
3070 		return;
3071 	add_amd_l2_assoc(devi, label, assoc);
3072 	if (lines_per_tag != 0)
3073 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
3074 	add_cache_prop(devi, label, line_str, line_size);
3075 	add_cache_prop(devi, label, size_str, size * 1024);
3076 }
3077 
3078 static void
3079 amd_cache_info(struct cpuid_info *cpi, dev_info_t *devi)
3080 {
3081 	struct cpuid_regs *cp;
3082 
3083 	if (cpi->cpi_xmaxeax < 0x80000005)
3084 		return;
3085 	cp = &cpi->cpi_extd[5];
3086 
3087 	/*
3088 	 * 4M/2M L1 TLB configuration
3089 	 *
3090 	 * We report the size for 2M pages because AMD uses two
3091 	 * TLB entries for one 4M page.
3092 	 */
3093 	add_amd_tlb(devi, "dtlb-2M",
3094 	    BITX(cp->cp_eax, 31, 24), BITX(cp->cp_eax, 23, 16));
3095 	add_amd_tlb(devi, "itlb-2M",
3096 	    BITX(cp->cp_eax, 15, 8), BITX(cp->cp_eax, 7, 0));
3097 
3098 	/*
3099 	 * 4K L1 TLB configuration
3100 	 */
3101 
3102 	switch (cpi->cpi_vendor) {
3103 		uint_t nentries;
3104 	case X86_VENDOR_TM:
3105 		if (cpi->cpi_family >= 5) {
3106 			/*
3107 			 * Crusoe processors have 256 TLB entries, but
3108 			 * cpuid data format constrains them to only
3109 			 * reporting 255 of them.
3110 			 */
3111 			if ((nentries = BITX(cp->cp_ebx, 23, 16)) == 255)
3112 				nentries = 256;
3113 			/*
3114 			 * Crusoe processors also have a unified TLB
3115 			 */
3116 			add_amd_tlb(devi, "tlb-4K", BITX(cp->cp_ebx, 31, 24),
3117 			    nentries);
3118 			break;
3119 		}
3120 		/*FALLTHROUGH*/
3121 	default:
3122 		add_amd_tlb(devi, itlb4k_str,
3123 		    BITX(cp->cp_ebx, 31, 24), BITX(cp->cp_ebx, 23, 16));
3124 		add_amd_tlb(devi, dtlb4k_str,
3125 		    BITX(cp->cp_ebx, 15, 8), BITX(cp->cp_ebx, 7, 0));
3126 		break;
3127 	}
3128 
3129 	/*
3130 	 * data L1 cache configuration
3131 	 */
3132 
3133 	add_amd_cache(devi, l1_dcache_str,
3134 	    BITX(cp->cp_ecx, 31, 24), BITX(cp->cp_ecx, 23, 16),
3135 	    BITX(cp->cp_ecx, 15, 8), BITX(cp->cp_ecx, 7, 0));
3136 
3137 	/*
3138 	 * code L1 cache configuration
3139 	 */
3140 
3141 	add_amd_cache(devi, l1_icache_str,
3142 	    BITX(cp->cp_edx, 31, 24), BITX(cp->cp_edx, 23, 16),
3143 	    BITX(cp->cp_edx, 15, 8), BITX(cp->cp_edx, 7, 0));
3144 
3145 	if (cpi->cpi_xmaxeax < 0x80000006)
3146 		return;
3147 	cp = &cpi->cpi_extd[6];
3148 
3149 	/* Check for a unified L2 TLB for large pages */
3150 
3151 	if (BITX(cp->cp_eax, 31, 16) == 0)
3152 		add_amd_l2_tlb(devi, "l2-tlb-2M",
3153 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3154 	else {
3155 		add_amd_l2_tlb(devi, "l2-dtlb-2M",
3156 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
3157 		add_amd_l2_tlb(devi, "l2-itlb-2M",
3158 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3159 	}
3160 
3161 	/* Check for a unified L2 TLB for 4K pages */
3162 
3163 	if (BITX(cp->cp_ebx, 31, 16) == 0) {
3164 		add_amd_l2_tlb(devi, "l2-tlb-4K",
3165 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3166 	} else {
3167 		add_amd_l2_tlb(devi, "l2-dtlb-4K",
3168 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
3169 		add_amd_l2_tlb(devi, "l2-itlb-4K",
3170 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3171 	}
3172 
3173 	add_amd_l2_cache(devi, l2_cache_str,
3174 	    BITX(cp->cp_ecx, 31, 16), BITX(cp->cp_ecx, 15, 12),
3175 	    BITX(cp->cp_ecx, 11, 8), BITX(cp->cp_ecx, 7, 0));
3176 }
3177 
3178 /*
3179  * There are two basic ways that the x86 world describes it cache
3180  * and tlb architecture - Intel's way and AMD's way.
3181  *
3182  * Return which flavor of cache architecture we should use
3183  */
3184 static int
3185 x86_which_cacheinfo(struct cpuid_info *cpi)
3186 {
3187 	switch (cpi->cpi_vendor) {
3188 	case X86_VENDOR_Intel:
3189 		if (cpi->cpi_maxeax >= 2)
3190 			return (X86_VENDOR_Intel);
3191 		break;
3192 	case X86_VENDOR_AMD:
3193 		/*
3194 		 * The K5 model 1 was the first part from AMD that reported
3195 		 * cache sizes via extended cpuid functions.
3196 		 */
3197 		if (cpi->cpi_family > 5 ||
3198 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
3199 			return (X86_VENDOR_AMD);
3200 		break;
3201 	case X86_VENDOR_TM:
3202 		if (cpi->cpi_family >= 5)
3203 			return (X86_VENDOR_AMD);
3204 		/*FALLTHROUGH*/
3205 	default:
3206 		/*
3207 		 * If they have extended CPU data for 0x80000005
3208 		 * then we assume they have AMD-format cache
3209 		 * information.
3210 		 *
3211 		 * If not, and the vendor happens to be Cyrix,
3212 		 * then try our-Cyrix specific handler.
3213 		 *
3214 		 * If we're not Cyrix, then assume we're using Intel's
3215 		 * table-driven format instead.
3216 		 */
3217 		if (cpi->cpi_xmaxeax >= 0x80000005)
3218 			return (X86_VENDOR_AMD);
3219 		else if (cpi->cpi_vendor == X86_VENDOR_Cyrix)
3220 			return (X86_VENDOR_Cyrix);
3221 		else if (cpi->cpi_maxeax >= 2)
3222 			return (X86_VENDOR_Intel);
3223 		break;
3224 	}
3225 	return (-1);
3226 }
3227 
3228 /*
3229  * create a node for the given cpu under the prom root node.
3230  * Also, create a cpu node in the device tree.
3231  */
3232 static dev_info_t *cpu_nex_devi = NULL;
3233 static kmutex_t cpu_node_lock;
3234 
3235 /*
3236  * Called from post_startup() and mp_startup()
3237  */
3238 void
3239 add_cpunode2devtree(processorid_t cpu_id, struct cpuid_info *cpi)
3240 {
3241 	dev_info_t *cpu_devi;
3242 	int create;
3243 
3244 	mutex_enter(&cpu_node_lock);
3245 
3246 	/*
3247 	 * create a nexus node for all cpus identified as 'cpu_id' under
3248 	 * the root node.
3249 	 */
3250 	if (cpu_nex_devi == NULL) {
3251 		if (ndi_devi_alloc(ddi_root_node(), "cpus",
3252 		    (pnode_t)DEVI_SID_NODEID, &cpu_nex_devi) != NDI_SUCCESS) {
3253 			mutex_exit(&cpu_node_lock);
3254 			return;
3255 		}
3256 		(void) ndi_devi_online(cpu_nex_devi, 0);
3257 	}
3258 
3259 	/*
3260 	 * create a child node for cpu identified as 'cpu_id'
3261 	 */
3262 	cpu_devi = ddi_add_child(cpu_nex_devi, "cpu", DEVI_SID_NODEID,
3263 	    cpu_id);
3264 	if (cpu_devi == NULL) {
3265 		mutex_exit(&cpu_node_lock);
3266 		return;
3267 	}
3268 
3269 	/* device_type */
3270 
3271 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3272 	    "device_type", "cpu");
3273 
3274 	/* reg */
3275 
3276 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3277 	    "reg", cpu_id);
3278 
3279 	/* cpu-mhz, and clock-frequency */
3280 
3281 	if (cpu_freq > 0) {
3282 		long long mul;
3283 
3284 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3285 		    "cpu-mhz", cpu_freq);
3286 
3287 		if ((mul = cpu_freq * 1000000LL) <= INT_MAX)
3288 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3289 			    "clock-frequency", (int)mul);
3290 	}
3291 
3292 	(void) ndi_devi_online(cpu_devi, 0);
3293 
3294 	if ((x86_feature & X86_CPUID) == 0) {
3295 		mutex_exit(&cpu_node_lock);
3296 		return;
3297 	}
3298 
3299 	/* vendor-id */
3300 
3301 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3302 	    "vendor-id", cpi->cpi_vendorstr);
3303 
3304 	if (cpi->cpi_maxeax == 0) {
3305 		mutex_exit(&cpu_node_lock);
3306 		return;
3307 	}
3308 
3309 	/*
3310 	 * family, model, and step
3311 	 */
3312 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3313 	    "family", CPI_FAMILY(cpi));
3314 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3315 	    "cpu-model", CPI_MODEL(cpi));
3316 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3317 	    "stepping-id", CPI_STEP(cpi));
3318 
3319 	/* type */
3320 
3321 	switch (cpi->cpi_vendor) {
3322 	case X86_VENDOR_Intel:
3323 		create = 1;
3324 		break;
3325 	default:
3326 		create = 0;
3327 		break;
3328 	}
3329 	if (create)
3330 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3331 		    "type", CPI_TYPE(cpi));
3332 
3333 	/* ext-family */
3334 
3335 	switch (cpi->cpi_vendor) {
3336 	case X86_VENDOR_Intel:
3337 	case X86_VENDOR_AMD:
3338 		create = cpi->cpi_family >= 0xf;
3339 		break;
3340 	default:
3341 		create = 0;
3342 		break;
3343 	}
3344 	if (create)
3345 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3346 		    "ext-family", CPI_FAMILY_XTD(cpi));
3347 
3348 	/* ext-model */
3349 
3350 	switch (cpi->cpi_vendor) {
3351 	case X86_VENDOR_Intel:
3352 		create = CPI_MODEL(cpi) == 0xf;
3353 		break;
3354 	case X86_VENDOR_AMD:
3355 		create = CPI_FAMILY(cpi) == 0xf;
3356 		break;
3357 	default:
3358 		create = 0;
3359 		break;
3360 	}
3361 	if (create)
3362 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3363 		    "ext-model", CPI_MODEL_XTD(cpi));
3364 
3365 	/* generation */
3366 
3367 	switch (cpi->cpi_vendor) {
3368 	case X86_VENDOR_AMD:
3369 		/*
3370 		 * AMD K5 model 1 was the first part to support this
3371 		 */
3372 		create = cpi->cpi_xmaxeax >= 0x80000001;
3373 		break;
3374 	default:
3375 		create = 0;
3376 		break;
3377 	}
3378 	if (create)
3379 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3380 		    "generation", BITX((cpi)->cpi_extd[1].cp_eax, 11, 8));
3381 
3382 	/* brand-id */
3383 
3384 	switch (cpi->cpi_vendor) {
3385 	case X86_VENDOR_Intel:
3386 		/*
3387 		 * brand id first appeared on Pentium III Xeon model 8,
3388 		 * and Celeron model 8 processors and Opteron
3389 		 */
3390 		create = cpi->cpi_family > 6 ||
3391 		    (cpi->cpi_family == 6 && cpi->cpi_model >= 8);
3392 		break;
3393 	case X86_VENDOR_AMD:
3394 		create = cpi->cpi_family >= 0xf;
3395 		break;
3396 	default:
3397 		create = 0;
3398 		break;
3399 	}
3400 	if (create && cpi->cpi_brandid != 0) {
3401 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3402 		    "brand-id", cpi->cpi_brandid);
3403 	}
3404 
3405 	/* chunks, and apic-id */
3406 
3407 	switch (cpi->cpi_vendor) {
3408 		/*
3409 		 * first available on Pentium IV and Opteron (K8)
3410 		 */
3411 	case X86_VENDOR_Intel:
3412 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
3413 		break;
3414 	case X86_VENDOR_AMD:
3415 		create = cpi->cpi_family >= 0xf;
3416 		break;
3417 	default:
3418 		create = 0;
3419 		break;
3420 	}
3421 	if (create) {
3422 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3423 		    "chunks", CPI_CHUNKS(cpi));
3424 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3425 		    "apic-id", CPI_APIC_ID(cpi));
3426 		if (cpi->cpi_chipid >= 0) {
3427 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3428 			    "chip#", cpi->cpi_chipid);
3429 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3430 			    "clog#", cpi->cpi_clogid);
3431 		}
3432 	}
3433 
3434 	/* cpuid-features */
3435 
3436 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3437 	    "cpuid-features", CPI_FEATURES_EDX(cpi));
3438 
3439 
3440 	/* cpuid-features-ecx */
3441 
3442 	switch (cpi->cpi_vendor) {
3443 	case X86_VENDOR_Intel:
3444 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
3445 		break;
3446 	default:
3447 		create = 0;
3448 		break;
3449 	}
3450 	if (create)
3451 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3452 		    "cpuid-features-ecx", CPI_FEATURES_ECX(cpi));
3453 
3454 	/* ext-cpuid-features */
3455 
3456 	switch (cpi->cpi_vendor) {
3457 	case X86_VENDOR_Intel:
3458 	case X86_VENDOR_AMD:
3459 	case X86_VENDOR_Cyrix:
3460 	case X86_VENDOR_TM:
3461 	case X86_VENDOR_Centaur:
3462 		create = cpi->cpi_xmaxeax >= 0x80000001;
3463 		break;
3464 	default:
3465 		create = 0;
3466 		break;
3467 	}
3468 	if (create) {
3469 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3470 		    "ext-cpuid-features", CPI_FEATURES_XTD_EDX(cpi));
3471 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3472 		    "ext-cpuid-features-ecx", CPI_FEATURES_XTD_ECX(cpi));
3473 	}
3474 
3475 	/*
3476 	 * Brand String first appeared in Intel Pentium IV, AMD K5
3477 	 * model 1, and Cyrix GXm.  On earlier models we try and
3478 	 * simulate something similar .. so this string should always
3479 	 * same -something- about the processor, however lame.
3480 	 */
3481 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3482 	    "brand-string", cpi->cpi_brandstr);
3483 
3484 	/*
3485 	 * Finally, cache and tlb information
3486 	 */
3487 	switch (x86_which_cacheinfo(cpi)) {
3488 	case X86_VENDOR_Intel:
3489 		intel_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
3490 		break;
3491 	case X86_VENDOR_Cyrix:
3492 		cyrix_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
3493 		break;
3494 	case X86_VENDOR_AMD:
3495 		amd_cache_info(cpi, cpu_devi);
3496 		break;
3497 	default:
3498 		break;
3499 	}
3500 
3501 	mutex_exit(&cpu_node_lock);
3502 }
3503 
3504 struct l2info {
3505 	int *l2i_csz;
3506 	int *l2i_lsz;
3507 	int *l2i_assoc;
3508 	int l2i_ret;
3509 };
3510 
3511 /*
3512  * A cacheinfo walker that fetches the size, line-size and associativity
3513  * of the L2 cache
3514  */
3515 static int
3516 intel_l2cinfo(void *arg, const struct cachetab *ct)
3517 {
3518 	struct l2info *l2i = arg;
3519 	int *ip;
3520 
3521 	if (ct->ct_label != l2_cache_str &&
3522 	    ct->ct_label != sl2_cache_str)
3523 		return (0);	/* not an L2 -- keep walking */
3524 
3525 	if ((ip = l2i->l2i_csz) != NULL)
3526 		*ip = ct->ct_size;
3527 	if ((ip = l2i->l2i_lsz) != NULL)
3528 		*ip = ct->ct_line_size;
3529 	if ((ip = l2i->l2i_assoc) != NULL)
3530 		*ip = ct->ct_assoc;
3531 	l2i->l2i_ret = ct->ct_size;
3532 	return (1);		/* was an L2 -- terminate walk */
3533 }
3534 
3535 /*
3536  * AMD L2/L3 Cache and TLB Associativity Field Definition:
3537  *
3538  *	Unlike the associativity for the L1 cache and tlb where the 8 bit
3539  *	value is the associativity, the associativity for the L2 cache and
3540  *	tlb is encoded in the following table. The 4 bit L2 value serves as
3541  *	an index into the amd_afd[] array to determine the associativity.
3542  *	-1 is undefined. 0 is fully associative.
3543  */
3544 
3545 static int amd_afd[] =
3546 	{-1, 1, 2, -1, 4, -1, 8, -1, 16, -1, 32, 48, 64, 96, 128, 0};
3547 
3548 static void
3549 amd_l2cacheinfo(struct cpuid_info *cpi, struct l2info *l2i)
3550 {
3551 	struct cpuid_regs *cp;
3552 	uint_t size, assoc;
3553 	int i;
3554 	int *ip;
3555 
3556 	if (cpi->cpi_xmaxeax < 0x80000006)
3557 		return;
3558 	cp = &cpi->cpi_extd[6];
3559 
3560 	if ((i = BITX(cp->cp_ecx, 15, 12)) != 0 &&
3561 	    (size = BITX(cp->cp_ecx, 31, 16)) != 0) {
3562 		uint_t cachesz = size * 1024;
3563 		assoc = amd_afd[i];
3564 
3565 		ASSERT(assoc != -1);
3566 
3567 		if ((ip = l2i->l2i_csz) != NULL)
3568 			*ip = cachesz;
3569 		if ((ip = l2i->l2i_lsz) != NULL)
3570 			*ip = BITX(cp->cp_ecx, 7, 0);
3571 		if ((ip = l2i->l2i_assoc) != NULL)
3572 			*ip = assoc;
3573 		l2i->l2i_ret = cachesz;
3574 	}
3575 }
3576 
3577 int
3578 getl2cacheinfo(cpu_t *cpu, int *csz, int *lsz, int *assoc)
3579 {
3580 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
3581 	struct l2info __l2info, *l2i = &__l2info;
3582 
3583 	l2i->l2i_csz = csz;
3584 	l2i->l2i_lsz = lsz;
3585 	l2i->l2i_assoc = assoc;
3586 	l2i->l2i_ret = -1;
3587 
3588 	switch (x86_which_cacheinfo(cpi)) {
3589 	case X86_VENDOR_Intel:
3590 		intel_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
3591 		break;
3592 	case X86_VENDOR_Cyrix:
3593 		cyrix_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
3594 		break;
3595 	case X86_VENDOR_AMD:
3596 		amd_l2cacheinfo(cpi, l2i);
3597 		break;
3598 	default:
3599 		break;
3600 	}
3601 	return (l2i->l2i_ret);
3602 }
3603 
3604 #if !defined(__xpv)
3605 
3606 uint32_t *
3607 cpuid_mwait_alloc(cpu_t *cpu)
3608 {
3609 	uint32_t	*ret;
3610 	size_t		mwait_size;
3611 
3612 	ASSERT(cpuid_checkpass(cpu, 2));
3613 
3614 	mwait_size = cpu->cpu_m.mcpu_cpi->cpi_mwait.mon_max;
3615 	if (mwait_size == 0)
3616 		return (NULL);
3617 
3618 	/*
3619 	 * kmem_alloc() returns cache line size aligned data for mwait_size
3620 	 * allocations.  mwait_size is currently cache line sized.  Neither
3621 	 * of these implementation details are guarantied to be true in the
3622 	 * future.
3623 	 *
3624 	 * First try allocating mwait_size as kmem_alloc() currently returns
3625 	 * correctly aligned memory.  If kmem_alloc() does not return
3626 	 * mwait_size aligned memory, then use mwait_size ROUNDUP.
3627 	 *
3628 	 * Set cpi_mwait.buf_actual and cpi_mwait.size_actual in case we
3629 	 * decide to free this memory.
3630 	 */
3631 	ret = kmem_zalloc(mwait_size, KM_SLEEP);
3632 	if (ret == (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size)) {
3633 		cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret;
3634 		cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size;
3635 		*ret = MWAIT_RUNNING;
3636 		return (ret);
3637 	} else {
3638 		kmem_free(ret, mwait_size);
3639 		ret = kmem_zalloc(mwait_size * 2, KM_SLEEP);
3640 		cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret;
3641 		cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size * 2;
3642 		ret = (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size);
3643 		*ret = MWAIT_RUNNING;
3644 		return (ret);
3645 	}
3646 }
3647 
3648 void
3649 cpuid_mwait_free(cpu_t *cpu)
3650 {
3651 	ASSERT(cpuid_checkpass(cpu, 2));
3652 
3653 	if (cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual != NULL &&
3654 	    cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual > 0) {
3655 		kmem_free(cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual,
3656 		    cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual);
3657 	}
3658 
3659 	cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = NULL;
3660 	cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = 0;
3661 }
3662 
3663 #endif	/* !__xpv */
3664