xref: /titanic_50/usr/src/uts/i86pc/os/cpuid.c (revision ce0bfb39c0479ba97372eb0e5bf2ef4275d0876e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright (c) 2009, Intel Corporation.
27  * All rights reserved.
28  */
29 
30 /*
31  * Various routines to handle identification
32  * and classification of x86 processors.
33  */
34 
35 #include <sys/types.h>
36 #include <sys/archsystm.h>
37 #include <sys/x86_archext.h>
38 #include <sys/kmem.h>
39 #include <sys/systm.h>
40 #include <sys/cmn_err.h>
41 #include <sys/sunddi.h>
42 #include <sys/sunndi.h>
43 #include <sys/cpuvar.h>
44 #include <sys/processor.h>
45 #include <sys/sysmacros.h>
46 #include <sys/pg.h>
47 #include <sys/fp.h>
48 #include <sys/controlregs.h>
49 #include <sys/auxv_386.h>
50 #include <sys/bitmap.h>
51 #include <sys/memnode.h>
52 
53 #ifdef __xpv
54 #include <sys/hypervisor.h>
55 #else
56 #include <sys/ontrap.h>
57 #endif
58 
59 /*
60  * Pass 0 of cpuid feature analysis happens in locore. It contains special code
61  * to recognize Cyrix processors that are not cpuid-compliant, and to deal with
62  * them accordingly. For most modern processors, feature detection occurs here
63  * in pass 1.
64  *
65  * Pass 1 of cpuid feature analysis happens just at the beginning of mlsetup()
66  * for the boot CPU and does the basic analysis that the early kernel needs.
67  * x86_feature is set based on the return value of cpuid_pass1() of the boot
68  * CPU.
69  *
70  * Pass 1 includes:
71  *
72  *	o Determining vendor/model/family/stepping and setting x86_type and
73  *	  x86_vendor accordingly.
74  *	o Processing the feature flags returned by the cpuid instruction while
75  *	  applying any workarounds or tricks for the specific processor.
76  *	o Mapping the feature flags into Solaris feature bits (X86_*).
77  *	o Processing extended feature flags if supported by the processor,
78  *	  again while applying specific processor knowledge.
79  *	o Determining the CMT characteristics of the system.
80  *
81  * Pass 1 is done on non-boot CPUs during their initialization and the results
82  * are used only as a meager attempt at ensuring that all processors within the
83  * system support the same features.
84  *
85  * Pass 2 of cpuid feature analysis happens just at the beginning
86  * of startup().  It just copies in and corrects the remainder
87  * of the cpuid data we depend on: standard cpuid functions that we didn't
88  * need for pass1 feature analysis, and extended cpuid functions beyond the
89  * simple feature processing done in pass1.
90  *
91  * Pass 3 of cpuid analysis is invoked after basic kernel services; in
92  * particular kernel memory allocation has been made available. It creates a
93  * readable brand string based on the data collected in the first two passes.
94  *
95  * Pass 4 of cpuid analysis is invoked after post_startup() when all
96  * the support infrastructure for various hardware features has been
97  * initialized. It determines which processor features will be reported
98  * to userland via the aux vector.
99  *
100  * All passes are executed on all CPUs, but only the boot CPU determines what
101  * features the kernel will use.
102  *
103  * Much of the worst junk in this file is for the support of processors
104  * that didn't really implement the cpuid instruction properly.
105  *
106  * NOTE: The accessor functions (cpuid_get*) are aware of, and ASSERT upon,
107  * the pass numbers.  Accordingly, changes to the pass code may require changes
108  * to the accessor code.
109  */
110 
111 uint_t x86_feature = 0;
112 uint_t x86_vendor = X86_VENDOR_IntelClone;
113 uint_t x86_type = X86_TYPE_OTHER;
114 uint_t x86_clflush_size = 0;
115 
116 uint_t pentiumpro_bug4046376;
117 uint_t pentiumpro_bug4064495;
118 
119 uint_t enable486;
120 /*
121  * This is set to platform type Solaris is running on.
122  */
123 static int platform_type = HW_NATIVE;
124 
125 /*
126  * monitor/mwait info.
127  *
128  * size_actual and buf_actual are the real address and size allocated to get
129  * proper mwait_buf alignement.  buf_actual and size_actual should be passed
130  * to kmem_free().  Currently kmem_alloc() and mwait happen to both use
131  * processor cache-line alignment, but this is not guarantied in the furture.
132  */
133 struct mwait_info {
134 	size_t		mon_min;	/* min size to avoid missed wakeups */
135 	size_t		mon_max;	/* size to avoid false wakeups */
136 	size_t		size_actual;	/* size actually allocated */
137 	void		*buf_actual;	/* memory actually allocated */
138 	uint32_t	support;	/* processor support of monitor/mwait */
139 };
140 
141 /*
142  * These constants determine how many of the elements of the
143  * cpuid we cache in the cpuid_info data structure; the
144  * remaining elements are accessible via the cpuid instruction.
145  */
146 
147 #define	NMAX_CPI_STD	6		/* eax = 0 .. 5 */
148 #define	NMAX_CPI_EXTD	9		/* eax = 0x80000000 .. 0x80000008 */
149 
150 struct cpuid_info {
151 	uint_t cpi_pass;		/* last pass completed */
152 	/*
153 	 * standard function information
154 	 */
155 	uint_t cpi_maxeax;		/* fn 0: %eax */
156 	char cpi_vendorstr[13];		/* fn 0: %ebx:%ecx:%edx */
157 	uint_t cpi_vendor;		/* enum of cpi_vendorstr */
158 
159 	uint_t cpi_family;		/* fn 1: extended family */
160 	uint_t cpi_model;		/* fn 1: extended model */
161 	uint_t cpi_step;		/* fn 1: stepping */
162 	chipid_t cpi_chipid;		/* fn 1: %ebx: chip # on ht cpus */
163 	uint_t cpi_brandid;		/* fn 1: %ebx: brand ID */
164 	int cpi_clogid;			/* fn 1: %ebx: thread # */
165 	uint_t cpi_ncpu_per_chip;	/* fn 1: %ebx: logical cpu count */
166 	uint8_t cpi_cacheinfo[16];	/* fn 2: intel-style cache desc */
167 	uint_t cpi_ncache;		/* fn 2: number of elements */
168 	uint_t cpi_ncpu_shr_last_cache;	/* fn 4: %eax: ncpus sharing cache */
169 	id_t cpi_last_lvl_cacheid;	/* fn 4: %eax: derived cache id */
170 	uint_t cpi_std_4_size;		/* fn 4: number of fn 4 elements */
171 	struct cpuid_regs **cpi_std_4;	/* fn 4: %ecx == 0 .. fn4_size */
172 	struct cpuid_regs cpi_std[NMAX_CPI_STD];	/* 0 .. 5 */
173 	/*
174 	 * extended function information
175 	 */
176 	uint_t cpi_xmaxeax;		/* fn 0x80000000: %eax */
177 	char cpi_brandstr[49];		/* fn 0x8000000[234] */
178 	uint8_t cpi_pabits;		/* fn 0x80000006: %eax */
179 	uint8_t cpi_vabits;		/* fn 0x80000006: %eax */
180 	struct cpuid_regs cpi_extd[NMAX_CPI_EXTD]; /* 0x8000000[0-8] */
181 	id_t cpi_coreid;		/* same coreid => strands share core */
182 	int cpi_pkgcoreid;		/* core number within single package */
183 	uint_t cpi_ncore_per_chip;	/* AMD: fn 0x80000008: %ecx[7-0] */
184 					/* Intel: fn 4: %eax[31-26] */
185 	/*
186 	 * supported feature information
187 	 */
188 	uint32_t cpi_support[5];
189 #define	STD_EDX_FEATURES	0
190 #define	AMD_EDX_FEATURES	1
191 #define	TM_EDX_FEATURES		2
192 #define	STD_ECX_FEATURES	3
193 #define	AMD_ECX_FEATURES	4
194 	/*
195 	 * Synthesized information, where known.
196 	 */
197 	uint32_t cpi_chiprev;		/* See X86_CHIPREV_* in x86_archext.h */
198 	const char *cpi_chiprevstr;	/* May be NULL if chiprev unknown */
199 	uint32_t cpi_socket;		/* Chip package/socket type */
200 
201 	struct mwait_info cpi_mwait;	/* fn 5: monitor/mwait info */
202 	uint32_t cpi_apicid;
203 };
204 
205 
206 static struct cpuid_info cpuid_info0;
207 
208 /*
209  * These bit fields are defined by the Intel Application Note AP-485
210  * "Intel Processor Identification and the CPUID Instruction"
211  */
212 #define	CPI_FAMILY_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 27, 20)
213 #define	CPI_MODEL_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 19, 16)
214 #define	CPI_TYPE(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 13, 12)
215 #define	CPI_FAMILY(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 11, 8)
216 #define	CPI_STEP(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 3, 0)
217 #define	CPI_MODEL(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 7, 4)
218 
219 #define	CPI_FEATURES_EDX(cpi)		((cpi)->cpi_std[1].cp_edx)
220 #define	CPI_FEATURES_ECX(cpi)		((cpi)->cpi_std[1].cp_ecx)
221 #define	CPI_FEATURES_XTD_EDX(cpi)	((cpi)->cpi_extd[1].cp_edx)
222 #define	CPI_FEATURES_XTD_ECX(cpi)	((cpi)->cpi_extd[1].cp_ecx)
223 
224 #define	CPI_BRANDID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 7, 0)
225 #define	CPI_CHUNKS(cpi)		BITX((cpi)->cpi_std[1].cp_ebx, 15, 7)
226 #define	CPI_CPU_COUNT(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 23, 16)
227 #define	CPI_APIC_ID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 31, 24)
228 
229 #define	CPI_MAXEAX_MAX		0x100		/* sanity control */
230 #define	CPI_XMAXEAX_MAX		0x80000100
231 #define	CPI_FN4_ECX_MAX		0x20		/* sanity: max fn 4 levels */
232 #define	CPI_FNB_ECX_MAX		0x20		/* sanity: max fn B levels */
233 
234 /*
235  * Function 4 (Deterministic Cache Parameters) macros
236  * Defined by Intel Application Note AP-485
237  */
238 #define	CPI_NUM_CORES(regs)		BITX((regs)->cp_eax, 31, 26)
239 #define	CPI_NTHR_SHR_CACHE(regs)	BITX((regs)->cp_eax, 25, 14)
240 #define	CPI_FULL_ASSOC_CACHE(regs)	BITX((regs)->cp_eax, 9, 9)
241 #define	CPI_SELF_INIT_CACHE(regs)	BITX((regs)->cp_eax, 8, 8)
242 #define	CPI_CACHE_LVL(regs)		BITX((regs)->cp_eax, 7, 5)
243 #define	CPI_CACHE_TYPE(regs)		BITX((regs)->cp_eax, 4, 0)
244 #define	CPI_CPU_LEVEL_TYPE(regs)	BITX((regs)->cp_ecx, 15, 8)
245 
246 #define	CPI_CACHE_WAYS(regs)		BITX((regs)->cp_ebx, 31, 22)
247 #define	CPI_CACHE_PARTS(regs)		BITX((regs)->cp_ebx, 21, 12)
248 #define	CPI_CACHE_COH_LN_SZ(regs)	BITX((regs)->cp_ebx, 11, 0)
249 
250 #define	CPI_CACHE_SETS(regs)		BITX((regs)->cp_ecx, 31, 0)
251 
252 #define	CPI_PREFCH_STRIDE(regs)		BITX((regs)->cp_edx, 9, 0)
253 
254 
255 /*
256  * A couple of shorthand macros to identify "later" P6-family chips
257  * like the Pentium M and Core.  First, the "older" P6-based stuff
258  * (loosely defined as "pre-Pentium-4"):
259  * P6, PII, Mobile PII, PII Xeon, PIII, Mobile PIII, PIII Xeon
260  */
261 
262 #define	IS_LEGACY_P6(cpi) (			\
263 	cpi->cpi_family == 6 && 		\
264 		(cpi->cpi_model == 1 ||		\
265 		cpi->cpi_model == 3 ||		\
266 		cpi->cpi_model == 5 ||		\
267 		cpi->cpi_model == 6 ||		\
268 		cpi->cpi_model == 7 ||		\
269 		cpi->cpi_model == 8 ||		\
270 		cpi->cpi_model == 0xA ||	\
271 		cpi->cpi_model == 0xB)		\
272 )
273 
274 /* A "new F6" is everything with family 6 that's not the above */
275 #define	IS_NEW_F6(cpi) ((cpi->cpi_family == 6) && !IS_LEGACY_P6(cpi))
276 
277 /* Extended family/model support */
278 #define	IS_EXTENDED_MODEL_INTEL(cpi) (cpi->cpi_family == 0x6 || \
279 	cpi->cpi_family >= 0xf)
280 
281 /*
282  * Info for monitor/mwait idle loop.
283  *
284  * See cpuid section of "Intel 64 and IA-32 Architectures Software Developer's
285  * Manual Volume 2A: Instruction Set Reference, A-M" #25366-022US, November
286  * 2006.
287  * See MONITOR/MWAIT section of "AMD64 Architecture Programmer's Manual
288  * Documentation Updates" #33633, Rev 2.05, December 2006.
289  */
290 #define	MWAIT_SUPPORT		(0x00000001)	/* mwait supported */
291 #define	MWAIT_EXTENSIONS	(0x00000002)	/* extenstion supported */
292 #define	MWAIT_ECX_INT_ENABLE	(0x00000004)	/* ecx 1 extension supported */
293 #define	MWAIT_SUPPORTED(cpi)	((cpi)->cpi_std[1].cp_ecx & CPUID_INTC_ECX_MON)
294 #define	MWAIT_INT_ENABLE(cpi)	((cpi)->cpi_std[5].cp_ecx & 0x2)
295 #define	MWAIT_EXTENSION(cpi)	((cpi)->cpi_std[5].cp_ecx & 0x1)
296 #define	MWAIT_SIZE_MIN(cpi)	BITX((cpi)->cpi_std[5].cp_eax, 15, 0)
297 #define	MWAIT_SIZE_MAX(cpi)	BITX((cpi)->cpi_std[5].cp_ebx, 15, 0)
298 /*
299  * Number of sub-cstates for a given c-state.
300  */
301 #define	MWAIT_NUM_SUBC_STATES(cpi, c_state)			\
302 	BITX((cpi)->cpi_std[5].cp_edx, c_state + 3, c_state)
303 
304 /*
305  * Functions we consune from cpuid_subr.c;  don't publish these in a header
306  * file to try and keep people using the expected cpuid_* interfaces.
307  */
308 extern uint32_t _cpuid_skt(uint_t, uint_t, uint_t, uint_t);
309 extern const char *_cpuid_sktstr(uint_t, uint_t, uint_t, uint_t);
310 extern uint32_t _cpuid_chiprev(uint_t, uint_t, uint_t, uint_t);
311 extern const char *_cpuid_chiprevstr(uint_t, uint_t, uint_t, uint_t);
312 extern uint_t _cpuid_vendorstr_to_vendorcode(char *);
313 
314 /*
315  * Apply up various platform-dependent restrictions where the
316  * underlying platform restrictions mean the CPU can be marked
317  * as less capable than its cpuid instruction would imply.
318  */
319 #if defined(__xpv)
320 static void
321 platform_cpuid_mangle(uint_t vendor, uint32_t eax, struct cpuid_regs *cp)
322 {
323 	switch (eax) {
324 	case 1: {
325 		uint32_t mcamask = DOMAIN_IS_INITDOMAIN(xen_info) ?
326 		    0 : CPUID_INTC_EDX_MCA;
327 		cp->cp_edx &=
328 		    ~(mcamask |
329 		    CPUID_INTC_EDX_PSE |
330 		    CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE |
331 		    CPUID_INTC_EDX_SEP | CPUID_INTC_EDX_MTRR |
332 		    CPUID_INTC_EDX_PGE | CPUID_INTC_EDX_PAT |
333 		    CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP |
334 		    CPUID_INTC_EDX_PSE36 | CPUID_INTC_EDX_HTT);
335 		break;
336 	}
337 
338 	case 0x80000001:
339 		cp->cp_edx &=
340 		    ~(CPUID_AMD_EDX_PSE |
341 		    CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE |
342 		    CPUID_AMD_EDX_MTRR | CPUID_AMD_EDX_PGE |
343 		    CPUID_AMD_EDX_PAT | CPUID_AMD_EDX_PSE36 |
344 		    CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP |
345 		    CPUID_AMD_EDX_TSCP);
346 		cp->cp_ecx &= ~CPUID_AMD_ECX_CMP_LGCY;
347 		break;
348 	default:
349 		break;
350 	}
351 
352 	switch (vendor) {
353 	case X86_VENDOR_Intel:
354 		switch (eax) {
355 		case 4:
356 			/*
357 			 * Zero out the (ncores-per-chip - 1) field
358 			 */
359 			cp->cp_eax &= 0x03fffffff;
360 			break;
361 		default:
362 			break;
363 		}
364 		break;
365 	case X86_VENDOR_AMD:
366 		switch (eax) {
367 
368 		case 0x80000001:
369 			cp->cp_ecx &= ~CPUID_AMD_ECX_CR8D;
370 			break;
371 
372 		case 0x80000008:
373 			/*
374 			 * Zero out the (ncores-per-chip - 1) field
375 			 */
376 			cp->cp_ecx &= 0xffffff00;
377 			break;
378 		default:
379 			break;
380 		}
381 		break;
382 	default:
383 		break;
384 	}
385 }
386 #else
387 #define	platform_cpuid_mangle(vendor, eax, cp)	/* nothing */
388 #endif
389 
390 /*
391  *  Some undocumented ways of patching the results of the cpuid
392  *  instruction to permit running Solaris 10 on future cpus that
393  *  we don't currently support.  Could be set to non-zero values
394  *  via settings in eeprom.
395  */
396 
397 uint32_t cpuid_feature_ecx_include;
398 uint32_t cpuid_feature_ecx_exclude;
399 uint32_t cpuid_feature_edx_include;
400 uint32_t cpuid_feature_edx_exclude;
401 
402 void
403 cpuid_alloc_space(cpu_t *cpu)
404 {
405 	/*
406 	 * By convention, cpu0 is the boot cpu, which is set up
407 	 * before memory allocation is available.  All other cpus get
408 	 * their cpuid_info struct allocated here.
409 	 */
410 	ASSERT(cpu->cpu_id != 0);
411 	cpu->cpu_m.mcpu_cpi =
412 	    kmem_zalloc(sizeof (*cpu->cpu_m.mcpu_cpi), KM_SLEEP);
413 }
414 
415 void
416 cpuid_free_space(cpu_t *cpu)
417 {
418 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
419 	int i;
420 
421 	ASSERT(cpu->cpu_id != 0);
422 
423 	/*
424 	 * Free up any function 4 related dynamic storage
425 	 */
426 	for (i = 1; i < cpi->cpi_std_4_size; i++)
427 		kmem_free(cpi->cpi_std_4[i], sizeof (struct cpuid_regs));
428 	if (cpi->cpi_std_4_size > 0)
429 		kmem_free(cpi->cpi_std_4,
430 		    cpi->cpi_std_4_size * sizeof (struct cpuid_regs *));
431 
432 	kmem_free(cpu->cpu_m.mcpu_cpi, sizeof (*cpu->cpu_m.mcpu_cpi));
433 }
434 
435 #if !defined(__xpv)
436 
437 static void
438 determine_platform()
439 {
440 	struct cpuid_regs cp;
441 	char *xen_str;
442 	uint32_t xen_signature[4];
443 
444 	/*
445 	 * In a fully virtualized domain, Xen's pseudo-cpuid function
446 	 * 0x40000000 returns a string representing the Xen signature in
447 	 * %ebx, %ecx, and %edx.  %eax contains the maximum supported cpuid
448 	 * function.
449 	 */
450 	cp.cp_eax = 0x40000000;
451 	(void) __cpuid_insn(&cp);
452 	xen_signature[0] = cp.cp_ebx;
453 	xen_signature[1] = cp.cp_ecx;
454 	xen_signature[2] = cp.cp_edx;
455 	xen_signature[3] = 0;
456 	xen_str = (char *)xen_signature;
457 	if (strcmp("XenVMMXenVMM", xen_str) == 0 && cp.cp_eax <= 0x40000002) {
458 		platform_type = HW_XEN_HVM;
459 	} else if (vmware_platform()) { /* running under vmware hypervisor? */
460 		platform_type = HW_VMWARE;
461 	}
462 }
463 
464 int
465 get_hwenv(void)
466 {
467 	return (platform_type);
468 }
469 
470 int
471 is_controldom(void)
472 {
473 	return (0);
474 }
475 
476 #else
477 
478 int
479 get_hwenv(void)
480 {
481 	return (HW_XEN_PV);
482 }
483 
484 int
485 is_controldom(void)
486 {
487 	return (DOMAIN_IS_INITDOMAIN(xen_info));
488 }
489 
490 #endif	/* __xpv */
491 
492 uint_t
493 cpuid_pass1(cpu_t *cpu)
494 {
495 	uint32_t mask_ecx, mask_edx;
496 	uint_t feature = X86_CPUID;
497 	struct cpuid_info *cpi;
498 	struct cpuid_regs *cp;
499 	int xcpuid;
500 #if !defined(__xpv)
501 	extern int idle_cpu_prefer_mwait;
502 #endif
503 
504 
505 #if !defined(__xpv)
506 	determine_platform();
507 #endif
508 	/*
509 	 * Space statically allocated for cpu0, ensure pointer is set
510 	 */
511 	if (cpu->cpu_id == 0)
512 		cpu->cpu_m.mcpu_cpi = &cpuid_info0;
513 	cpi = cpu->cpu_m.mcpu_cpi;
514 	ASSERT(cpi != NULL);
515 	cp = &cpi->cpi_std[0];
516 	cp->cp_eax = 0;
517 	cpi->cpi_maxeax = __cpuid_insn(cp);
518 	{
519 		uint32_t *iptr = (uint32_t *)cpi->cpi_vendorstr;
520 		*iptr++ = cp->cp_ebx;
521 		*iptr++ = cp->cp_edx;
522 		*iptr++ = cp->cp_ecx;
523 		*(char *)&cpi->cpi_vendorstr[12] = '\0';
524 	}
525 
526 	cpi->cpi_vendor = _cpuid_vendorstr_to_vendorcode(cpi->cpi_vendorstr);
527 	x86_vendor = cpi->cpi_vendor; /* for compatibility */
528 
529 	/*
530 	 * Limit the range in case of weird hardware
531 	 */
532 	if (cpi->cpi_maxeax > CPI_MAXEAX_MAX)
533 		cpi->cpi_maxeax = CPI_MAXEAX_MAX;
534 	if (cpi->cpi_maxeax < 1)
535 		goto pass1_done;
536 
537 	cp = &cpi->cpi_std[1];
538 	cp->cp_eax = 1;
539 	(void) __cpuid_insn(cp);
540 
541 	/*
542 	 * Extract identifying constants for easy access.
543 	 */
544 	cpi->cpi_model = CPI_MODEL(cpi);
545 	cpi->cpi_family = CPI_FAMILY(cpi);
546 
547 	if (cpi->cpi_family == 0xf)
548 		cpi->cpi_family += CPI_FAMILY_XTD(cpi);
549 
550 	/*
551 	 * Beware: AMD uses "extended model" iff base *FAMILY* == 0xf.
552 	 * Intel, and presumably everyone else, uses model == 0xf, as
553 	 * one would expect (max value means possible overflow).  Sigh.
554 	 */
555 
556 	switch (cpi->cpi_vendor) {
557 	case X86_VENDOR_Intel:
558 		if (IS_EXTENDED_MODEL_INTEL(cpi))
559 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
560 		break;
561 	case X86_VENDOR_AMD:
562 		if (CPI_FAMILY(cpi) == 0xf)
563 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
564 		break;
565 	default:
566 		if (cpi->cpi_model == 0xf)
567 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
568 		break;
569 	}
570 
571 	cpi->cpi_step = CPI_STEP(cpi);
572 	cpi->cpi_brandid = CPI_BRANDID(cpi);
573 
574 	/*
575 	 * *default* assumptions:
576 	 * - believe %edx feature word
577 	 * - ignore %ecx feature word
578 	 * - 32-bit virtual and physical addressing
579 	 */
580 	mask_edx = 0xffffffff;
581 	mask_ecx = 0;
582 
583 	cpi->cpi_pabits = cpi->cpi_vabits = 32;
584 
585 	switch (cpi->cpi_vendor) {
586 	case X86_VENDOR_Intel:
587 		if (cpi->cpi_family == 5)
588 			x86_type = X86_TYPE_P5;
589 		else if (IS_LEGACY_P6(cpi)) {
590 			x86_type = X86_TYPE_P6;
591 			pentiumpro_bug4046376 = 1;
592 			pentiumpro_bug4064495 = 1;
593 			/*
594 			 * Clear the SEP bit when it was set erroneously
595 			 */
596 			if (cpi->cpi_model < 3 && cpi->cpi_step < 3)
597 				cp->cp_edx &= ~CPUID_INTC_EDX_SEP;
598 		} else if (IS_NEW_F6(cpi) || cpi->cpi_family == 0xf) {
599 			x86_type = X86_TYPE_P4;
600 			/*
601 			 * We don't currently depend on any of the %ecx
602 			 * features until Prescott, so we'll only check
603 			 * this from P4 onwards.  We might want to revisit
604 			 * that idea later.
605 			 */
606 			mask_ecx = 0xffffffff;
607 		} else if (cpi->cpi_family > 0xf)
608 			mask_ecx = 0xffffffff;
609 		/*
610 		 * We don't support MONITOR/MWAIT if leaf 5 is not available
611 		 * to obtain the monitor linesize.
612 		 */
613 		if (cpi->cpi_maxeax < 5)
614 			mask_ecx &= ~CPUID_INTC_ECX_MON;
615 		break;
616 	case X86_VENDOR_IntelClone:
617 	default:
618 		break;
619 	case X86_VENDOR_AMD:
620 #if defined(OPTERON_ERRATUM_108)
621 		if (cpi->cpi_family == 0xf && cpi->cpi_model == 0xe) {
622 			cp->cp_eax = (0xf0f & cp->cp_eax) | 0xc0;
623 			cpi->cpi_model = 0xc;
624 		} else
625 #endif
626 		if (cpi->cpi_family == 5) {
627 			/*
628 			 * AMD K5 and K6
629 			 *
630 			 * These CPUs have an incomplete implementation
631 			 * of MCA/MCE which we mask away.
632 			 */
633 			mask_edx &= ~(CPUID_INTC_EDX_MCE | CPUID_INTC_EDX_MCA);
634 
635 			/*
636 			 * Model 0 uses the wrong (APIC) bit
637 			 * to indicate PGE.  Fix it here.
638 			 */
639 			if (cpi->cpi_model == 0) {
640 				if (cp->cp_edx & 0x200) {
641 					cp->cp_edx &= ~0x200;
642 					cp->cp_edx |= CPUID_INTC_EDX_PGE;
643 				}
644 			}
645 
646 			/*
647 			 * Early models had problems w/ MMX; disable.
648 			 */
649 			if (cpi->cpi_model < 6)
650 				mask_edx &= ~CPUID_INTC_EDX_MMX;
651 		}
652 
653 		/*
654 		 * For newer families, SSE3 and CX16, at least, are valid;
655 		 * enable all
656 		 */
657 		if (cpi->cpi_family >= 0xf)
658 			mask_ecx = 0xffffffff;
659 		/*
660 		 * We don't support MONITOR/MWAIT if leaf 5 is not available
661 		 * to obtain the monitor linesize.
662 		 */
663 		if (cpi->cpi_maxeax < 5)
664 			mask_ecx &= ~CPUID_INTC_ECX_MON;
665 
666 #if !defined(__xpv)
667 		/*
668 		 * Do not use MONITOR/MWAIT to halt in the idle loop on any AMD
669 		 * processors.  AMD does not intend MWAIT to be used in the cpu
670 		 * idle loop on current and future processors.  10h and future
671 		 * AMD processors use more power in MWAIT than HLT.
672 		 * Pre-family-10h Opterons do not have the MWAIT instruction.
673 		 */
674 		idle_cpu_prefer_mwait = 0;
675 #endif
676 
677 		break;
678 	case X86_VENDOR_TM:
679 		/*
680 		 * workaround the NT workaround in CMS 4.1
681 		 */
682 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4 &&
683 		    (cpi->cpi_step == 2 || cpi->cpi_step == 3))
684 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
685 		break;
686 	case X86_VENDOR_Centaur:
687 		/*
688 		 * workaround the NT workarounds again
689 		 */
690 		if (cpi->cpi_family == 6)
691 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
692 		break;
693 	case X86_VENDOR_Cyrix:
694 		/*
695 		 * We rely heavily on the probing in locore
696 		 * to actually figure out what parts, if any,
697 		 * of the Cyrix cpuid instruction to believe.
698 		 */
699 		switch (x86_type) {
700 		case X86_TYPE_CYRIX_486:
701 			mask_edx = 0;
702 			break;
703 		case X86_TYPE_CYRIX_6x86:
704 			mask_edx = 0;
705 			break;
706 		case X86_TYPE_CYRIX_6x86L:
707 			mask_edx =
708 			    CPUID_INTC_EDX_DE |
709 			    CPUID_INTC_EDX_CX8;
710 			break;
711 		case X86_TYPE_CYRIX_6x86MX:
712 			mask_edx =
713 			    CPUID_INTC_EDX_DE |
714 			    CPUID_INTC_EDX_MSR |
715 			    CPUID_INTC_EDX_CX8 |
716 			    CPUID_INTC_EDX_PGE |
717 			    CPUID_INTC_EDX_CMOV |
718 			    CPUID_INTC_EDX_MMX;
719 			break;
720 		case X86_TYPE_CYRIX_GXm:
721 			mask_edx =
722 			    CPUID_INTC_EDX_MSR |
723 			    CPUID_INTC_EDX_CX8 |
724 			    CPUID_INTC_EDX_CMOV |
725 			    CPUID_INTC_EDX_MMX;
726 			break;
727 		case X86_TYPE_CYRIX_MediaGX:
728 			break;
729 		case X86_TYPE_CYRIX_MII:
730 		case X86_TYPE_VIA_CYRIX_III:
731 			mask_edx =
732 			    CPUID_INTC_EDX_DE |
733 			    CPUID_INTC_EDX_TSC |
734 			    CPUID_INTC_EDX_MSR |
735 			    CPUID_INTC_EDX_CX8 |
736 			    CPUID_INTC_EDX_PGE |
737 			    CPUID_INTC_EDX_CMOV |
738 			    CPUID_INTC_EDX_MMX;
739 			break;
740 		default:
741 			break;
742 		}
743 		break;
744 	}
745 
746 #if defined(__xpv)
747 	/*
748 	 * Do not support MONITOR/MWAIT under a hypervisor
749 	 */
750 	mask_ecx &= ~CPUID_INTC_ECX_MON;
751 #endif	/* __xpv */
752 
753 	/*
754 	 * Now we've figured out the masks that determine
755 	 * which bits we choose to believe, apply the masks
756 	 * to the feature words, then map the kernel's view
757 	 * of these feature words into its feature word.
758 	 */
759 	cp->cp_edx &= mask_edx;
760 	cp->cp_ecx &= mask_ecx;
761 
762 	/*
763 	 * apply any platform restrictions (we don't call this
764 	 * immediately after __cpuid_insn here, because we need the
765 	 * workarounds applied above first)
766 	 */
767 	platform_cpuid_mangle(cpi->cpi_vendor, 1, cp);
768 
769 	/*
770 	 * fold in overrides from the "eeprom" mechanism
771 	 */
772 	cp->cp_edx |= cpuid_feature_edx_include;
773 	cp->cp_edx &= ~cpuid_feature_edx_exclude;
774 
775 	cp->cp_ecx |= cpuid_feature_ecx_include;
776 	cp->cp_ecx &= ~cpuid_feature_ecx_exclude;
777 
778 	if (cp->cp_edx & CPUID_INTC_EDX_PSE)
779 		feature |= X86_LARGEPAGE;
780 	if (cp->cp_edx & CPUID_INTC_EDX_TSC)
781 		feature |= X86_TSC;
782 	if (cp->cp_edx & CPUID_INTC_EDX_MSR)
783 		feature |= X86_MSR;
784 	if (cp->cp_edx & CPUID_INTC_EDX_MTRR)
785 		feature |= X86_MTRR;
786 	if (cp->cp_edx & CPUID_INTC_EDX_PGE)
787 		feature |= X86_PGE;
788 	if (cp->cp_edx & CPUID_INTC_EDX_CMOV)
789 		feature |= X86_CMOV;
790 	if (cp->cp_edx & CPUID_INTC_EDX_MMX)
791 		feature |= X86_MMX;
792 	if ((cp->cp_edx & CPUID_INTC_EDX_MCE) != 0 &&
793 	    (cp->cp_edx & CPUID_INTC_EDX_MCA) != 0)
794 		feature |= X86_MCA;
795 	if (cp->cp_edx & CPUID_INTC_EDX_PAE)
796 		feature |= X86_PAE;
797 	if (cp->cp_edx & CPUID_INTC_EDX_CX8)
798 		feature |= X86_CX8;
799 	if (cp->cp_ecx & CPUID_INTC_ECX_CX16)
800 		feature |= X86_CX16;
801 	if (cp->cp_edx & CPUID_INTC_EDX_PAT)
802 		feature |= X86_PAT;
803 	if (cp->cp_edx & CPUID_INTC_EDX_SEP)
804 		feature |= X86_SEP;
805 	if (cp->cp_edx & CPUID_INTC_EDX_FXSR) {
806 		/*
807 		 * In our implementation, fxsave/fxrstor
808 		 * are prerequisites before we'll even
809 		 * try and do SSE things.
810 		 */
811 		if (cp->cp_edx & CPUID_INTC_EDX_SSE)
812 			feature |= X86_SSE;
813 		if (cp->cp_edx & CPUID_INTC_EDX_SSE2)
814 			feature |= X86_SSE2;
815 		if (cp->cp_ecx & CPUID_INTC_ECX_SSE3)
816 			feature |= X86_SSE3;
817 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
818 			if (cp->cp_ecx & CPUID_INTC_ECX_SSSE3)
819 				feature |= X86_SSSE3;
820 			if (cp->cp_ecx & CPUID_INTC_ECX_SSE4_1)
821 				feature |= X86_SSE4_1;
822 			if (cp->cp_ecx & CPUID_INTC_ECX_SSE4_2)
823 				feature |= X86_SSE4_2;
824 			if (cp->cp_ecx & CPUID_INTC_ECX_AES)
825 				feature |= X86_AES;
826 		}
827 	}
828 	if (cp->cp_edx & CPUID_INTC_EDX_DE)
829 		feature |= X86_DE;
830 #if !defined(__xpv)
831 	if (cp->cp_ecx & CPUID_INTC_ECX_MON) {
832 
833 		/*
834 		 * We require the CLFLUSH instruction for erratum workaround
835 		 * to use MONITOR/MWAIT.
836 		 */
837 		if (cp->cp_edx & CPUID_INTC_EDX_CLFSH) {
838 			cpi->cpi_mwait.support |= MWAIT_SUPPORT;
839 			feature |= X86_MWAIT;
840 		} else {
841 			extern int idle_cpu_assert_cflush_monitor;
842 
843 			/*
844 			 * All processors we are aware of which have
845 			 * MONITOR/MWAIT also have CLFLUSH.
846 			 */
847 			if (idle_cpu_assert_cflush_monitor) {
848 				ASSERT((cp->cp_ecx & CPUID_INTC_ECX_MON) &&
849 				    (cp->cp_edx & CPUID_INTC_EDX_CLFSH));
850 			}
851 		}
852 	}
853 #endif	/* __xpv */
854 
855 	/*
856 	 * Only need it first time, rest of the cpus would follow suite.
857 	 * we only capture this for the bootcpu.
858 	 */
859 	if (cp->cp_edx & CPUID_INTC_EDX_CLFSH) {
860 		feature |= X86_CLFSH;
861 		x86_clflush_size = (BITX(cp->cp_ebx, 15, 8) * 8);
862 	}
863 
864 	if (feature & X86_PAE)
865 		cpi->cpi_pabits = 36;
866 
867 	/*
868 	 * Hyperthreading configuration is slightly tricky on Intel
869 	 * and pure clones, and even trickier on AMD.
870 	 *
871 	 * (AMD chose to set the HTT bit on their CMP processors,
872 	 * even though they're not actually hyperthreaded.  Thus it
873 	 * takes a bit more work to figure out what's really going
874 	 * on ... see the handling of the CMP_LGCY bit below)
875 	 */
876 	if (cp->cp_edx & CPUID_INTC_EDX_HTT) {
877 		cpi->cpi_ncpu_per_chip = CPI_CPU_COUNT(cpi);
878 		if (cpi->cpi_ncpu_per_chip > 1)
879 			feature |= X86_HTT;
880 	} else {
881 		cpi->cpi_ncpu_per_chip = 1;
882 	}
883 
884 	/*
885 	 * Work on the "extended" feature information, doing
886 	 * some basic initialization for cpuid_pass2()
887 	 */
888 	xcpuid = 0;
889 	switch (cpi->cpi_vendor) {
890 	case X86_VENDOR_Intel:
891 		if (IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf)
892 			xcpuid++;
893 		break;
894 	case X86_VENDOR_AMD:
895 		if (cpi->cpi_family > 5 ||
896 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
897 			xcpuid++;
898 		break;
899 	case X86_VENDOR_Cyrix:
900 		/*
901 		 * Only these Cyrix CPUs are -known- to support
902 		 * extended cpuid operations.
903 		 */
904 		if (x86_type == X86_TYPE_VIA_CYRIX_III ||
905 		    x86_type == X86_TYPE_CYRIX_GXm)
906 			xcpuid++;
907 		break;
908 	case X86_VENDOR_Centaur:
909 	case X86_VENDOR_TM:
910 	default:
911 		xcpuid++;
912 		break;
913 	}
914 
915 	if (xcpuid) {
916 		cp = &cpi->cpi_extd[0];
917 		cp->cp_eax = 0x80000000;
918 		cpi->cpi_xmaxeax = __cpuid_insn(cp);
919 	}
920 
921 	if (cpi->cpi_xmaxeax & 0x80000000) {
922 
923 		if (cpi->cpi_xmaxeax > CPI_XMAXEAX_MAX)
924 			cpi->cpi_xmaxeax = CPI_XMAXEAX_MAX;
925 
926 		switch (cpi->cpi_vendor) {
927 		case X86_VENDOR_Intel:
928 		case X86_VENDOR_AMD:
929 			if (cpi->cpi_xmaxeax < 0x80000001)
930 				break;
931 			cp = &cpi->cpi_extd[1];
932 			cp->cp_eax = 0x80000001;
933 			(void) __cpuid_insn(cp);
934 
935 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
936 			    cpi->cpi_family == 5 &&
937 			    cpi->cpi_model == 6 &&
938 			    cpi->cpi_step == 6) {
939 				/*
940 				 * K6 model 6 uses bit 10 to indicate SYSC
941 				 * Later models use bit 11. Fix it here.
942 				 */
943 				if (cp->cp_edx & 0x400) {
944 					cp->cp_edx &= ~0x400;
945 					cp->cp_edx |= CPUID_AMD_EDX_SYSC;
946 				}
947 			}
948 
949 			platform_cpuid_mangle(cpi->cpi_vendor, 0x80000001, cp);
950 
951 			/*
952 			 * Compute the additions to the kernel's feature word.
953 			 */
954 			if (cp->cp_edx & CPUID_AMD_EDX_NX)
955 				feature |= X86_NX;
956 
957 			/*
958 			 * Regardless whether or not we boot 64-bit,
959 			 * we should have a way to identify whether
960 			 * the CPU is capable of running 64-bit.
961 			 */
962 			if (cp->cp_edx & CPUID_AMD_EDX_LM)
963 				feature |= X86_64;
964 
965 #if defined(__amd64)
966 			/* 1 GB large page - enable only for 64 bit kernel */
967 			if (cp->cp_edx & CPUID_AMD_EDX_1GPG)
968 				feature |= X86_1GPG;
969 #endif
970 
971 			if ((cpi->cpi_vendor == X86_VENDOR_AMD) &&
972 			    (cpi->cpi_std[1].cp_edx & CPUID_INTC_EDX_FXSR) &&
973 			    (cp->cp_ecx & CPUID_AMD_ECX_SSE4A))
974 				feature |= X86_SSE4A;
975 
976 			/*
977 			 * If both the HTT and CMP_LGCY bits are set,
978 			 * then we're not actually HyperThreaded.  Read
979 			 * "AMD CPUID Specification" for more details.
980 			 */
981 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
982 			    (feature & X86_HTT) &&
983 			    (cp->cp_ecx & CPUID_AMD_ECX_CMP_LGCY)) {
984 				feature &= ~X86_HTT;
985 				feature |= X86_CMP;
986 			}
987 #if defined(__amd64)
988 			/*
989 			 * It's really tricky to support syscall/sysret in
990 			 * the i386 kernel; we rely on sysenter/sysexit
991 			 * instead.  In the amd64 kernel, things are -way-
992 			 * better.
993 			 */
994 			if (cp->cp_edx & CPUID_AMD_EDX_SYSC)
995 				feature |= X86_ASYSC;
996 
997 			/*
998 			 * While we're thinking about system calls, note
999 			 * that AMD processors don't support sysenter
1000 			 * in long mode at all, so don't try to program them.
1001 			 */
1002 			if (x86_vendor == X86_VENDOR_AMD)
1003 				feature &= ~X86_SEP;
1004 #endif
1005 			if (cp->cp_edx & CPUID_AMD_EDX_TSCP)
1006 				feature |= X86_TSCP;
1007 			break;
1008 		default:
1009 			break;
1010 		}
1011 
1012 		/*
1013 		 * Get CPUID data about processor cores and hyperthreads.
1014 		 */
1015 		switch (cpi->cpi_vendor) {
1016 		case X86_VENDOR_Intel:
1017 			if (cpi->cpi_maxeax >= 4) {
1018 				cp = &cpi->cpi_std[4];
1019 				cp->cp_eax = 4;
1020 				cp->cp_ecx = 0;
1021 				(void) __cpuid_insn(cp);
1022 				platform_cpuid_mangle(cpi->cpi_vendor, 4, cp);
1023 			}
1024 			/*FALLTHROUGH*/
1025 		case X86_VENDOR_AMD:
1026 			if (cpi->cpi_xmaxeax < 0x80000008)
1027 				break;
1028 			cp = &cpi->cpi_extd[8];
1029 			cp->cp_eax = 0x80000008;
1030 			(void) __cpuid_insn(cp);
1031 			platform_cpuid_mangle(cpi->cpi_vendor, 0x80000008, cp);
1032 
1033 			/*
1034 			 * Virtual and physical address limits from
1035 			 * cpuid override previously guessed values.
1036 			 */
1037 			cpi->cpi_pabits = BITX(cp->cp_eax, 7, 0);
1038 			cpi->cpi_vabits = BITX(cp->cp_eax, 15, 8);
1039 			break;
1040 		default:
1041 			break;
1042 		}
1043 
1044 		/*
1045 		 * Derive the number of cores per chip
1046 		 */
1047 		switch (cpi->cpi_vendor) {
1048 		case X86_VENDOR_Intel:
1049 			if (cpi->cpi_maxeax < 4) {
1050 				cpi->cpi_ncore_per_chip = 1;
1051 				break;
1052 			} else {
1053 				cpi->cpi_ncore_per_chip =
1054 				    BITX((cpi)->cpi_std[4].cp_eax, 31, 26) + 1;
1055 			}
1056 			break;
1057 		case X86_VENDOR_AMD:
1058 			if (cpi->cpi_xmaxeax < 0x80000008) {
1059 				cpi->cpi_ncore_per_chip = 1;
1060 				break;
1061 			} else {
1062 				/*
1063 				 * On family 0xf cpuid fn 2 ECX[7:0] "NC" is
1064 				 * 1 less than the number of physical cores on
1065 				 * the chip.  In family 0x10 this value can
1066 				 * be affected by "downcoring" - it reflects
1067 				 * 1 less than the number of cores actually
1068 				 * enabled on this node.
1069 				 */
1070 				cpi->cpi_ncore_per_chip =
1071 				    BITX((cpi)->cpi_extd[8].cp_ecx, 7, 0) + 1;
1072 			}
1073 			break;
1074 		default:
1075 			cpi->cpi_ncore_per_chip = 1;
1076 			break;
1077 		}
1078 
1079 		/*
1080 		 * Get CPUID data about TSC Invariance in Deep C-State.
1081 		 */
1082 		switch (cpi->cpi_vendor) {
1083 		case X86_VENDOR_Intel:
1084 			if (cpi->cpi_maxeax >= 7) {
1085 				cp = &cpi->cpi_extd[7];
1086 				cp->cp_eax = 0x80000007;
1087 				cp->cp_ecx = 0;
1088 				(void) __cpuid_insn(cp);
1089 			}
1090 			break;
1091 		default:
1092 			break;
1093 		}
1094 	} else {
1095 		cpi->cpi_ncore_per_chip = 1;
1096 	}
1097 
1098 	/*
1099 	 * If more than one core, then this processor is CMP.
1100 	 */
1101 	if (cpi->cpi_ncore_per_chip > 1)
1102 		feature |= X86_CMP;
1103 
1104 	/*
1105 	 * If the number of cores is the same as the number
1106 	 * of CPUs, then we cannot have HyperThreading.
1107 	 */
1108 	if (cpi->cpi_ncpu_per_chip == cpi->cpi_ncore_per_chip)
1109 		feature &= ~X86_HTT;
1110 
1111 	if ((feature & (X86_HTT | X86_CMP)) == 0) {
1112 		/*
1113 		 * Single-core single-threaded processors.
1114 		 */
1115 		cpi->cpi_chipid = -1;
1116 		cpi->cpi_clogid = 0;
1117 		cpi->cpi_coreid = cpu->cpu_id;
1118 		cpi->cpi_pkgcoreid = 0;
1119 	} else if (cpi->cpi_ncpu_per_chip > 1) {
1120 		uint_t i;
1121 		uint_t chipid_shift = 0;
1122 		uint_t coreid_shift = 0;
1123 		uint_t apic_id = CPI_APIC_ID(cpi);
1124 
1125 		for (i = 1; i < cpi->cpi_ncpu_per_chip; i <<= 1)
1126 			chipid_shift++;
1127 		cpi->cpi_chipid = apic_id >> chipid_shift;
1128 		cpi->cpi_clogid = apic_id & ((1 << chipid_shift) - 1);
1129 
1130 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
1131 			if (feature & X86_CMP) {
1132 				/*
1133 				 * Multi-core (and possibly multi-threaded)
1134 				 * processors.
1135 				 */
1136 				uint_t ncpu_per_core;
1137 				if (cpi->cpi_ncore_per_chip == 1)
1138 					ncpu_per_core = cpi->cpi_ncpu_per_chip;
1139 				else if (cpi->cpi_ncore_per_chip > 1)
1140 					ncpu_per_core = cpi->cpi_ncpu_per_chip /
1141 					    cpi->cpi_ncore_per_chip;
1142 				/*
1143 				 * 8bit APIC IDs on dual core Pentiums
1144 				 * look like this:
1145 				 *
1146 				 * +-----------------------+------+------+
1147 				 * | Physical Package ID   |  MC  |  HT  |
1148 				 * +-----------------------+------+------+
1149 				 * <------- chipid -------->
1150 				 * <------- coreid --------------->
1151 				 *			   <--- clogid -->
1152 				 *			   <------>
1153 				 *			   pkgcoreid
1154 				 *
1155 				 * Where the number of bits necessary to
1156 				 * represent MC and HT fields together equals
1157 				 * to the minimum number of bits necessary to
1158 				 * store the value of cpi->cpi_ncpu_per_chip.
1159 				 * Of those bits, the MC part uses the number
1160 				 * of bits necessary to store the value of
1161 				 * cpi->cpi_ncore_per_chip.
1162 				 */
1163 				for (i = 1; i < ncpu_per_core; i <<= 1)
1164 					coreid_shift++;
1165 				cpi->cpi_coreid = apic_id >> coreid_shift;
1166 				cpi->cpi_pkgcoreid = cpi->cpi_clogid >>
1167 				    coreid_shift;
1168 			} else if (feature & X86_HTT) {
1169 				/*
1170 				 * Single-core multi-threaded processors.
1171 				 */
1172 				cpi->cpi_coreid = cpi->cpi_chipid;
1173 				cpi->cpi_pkgcoreid = 0;
1174 			}
1175 		} else if (cpi->cpi_vendor == X86_VENDOR_AMD) {
1176 			/*
1177 			 * AMD CMP chips currently have a single thread per
1178 			 * core, with 2 cores on family 0xf and 2, 3 or 4
1179 			 * cores on family 0x10.
1180 			 *
1181 			 * Since no two cpus share a core we must assign a
1182 			 * distinct coreid per cpu, and we do this by using
1183 			 * the cpu_id.  This scheme does not, however,
1184 			 * guarantee that sibling cores of a chip will have
1185 			 * sequential coreids starting at a multiple of the
1186 			 * number of cores per chip - that is usually the
1187 			 * case, but if the ACPI MADT table is presented
1188 			 * in a different order then we need to perform a
1189 			 * few more gymnastics for the pkgcoreid.
1190 			 *
1191 			 * In family 0xf CMPs there are 2 cores on all nodes
1192 			 * present - no mixing of single and dual core parts.
1193 			 *
1194 			 * In family 0x10 CMPs cpuid fn 2 ECX[15:12]
1195 			 * "ApicIdCoreIdSize[3:0]" tells us how
1196 			 * many least-significant bits in the ApicId
1197 			 * are used to represent the core number
1198 			 * within the node.  Cores are always
1199 			 * numbered sequentially from 0 regardless
1200 			 * of how many or which are disabled, and
1201 			 * there seems to be no way to discover the
1202 			 * real core id when some are disabled.
1203 			 */
1204 			cpi->cpi_coreid = cpu->cpu_id;
1205 
1206 			if (cpi->cpi_family == 0x10 &&
1207 			    cpi->cpi_xmaxeax >= 0x80000008) {
1208 				int coreidsz =
1209 				    BITX((cpi)->cpi_extd[8].cp_ecx, 15, 12);
1210 
1211 				cpi->cpi_pkgcoreid =
1212 				    apic_id & ((1 << coreidsz) - 1);
1213 			} else {
1214 				cpi->cpi_pkgcoreid = cpi->cpi_clogid;
1215 			}
1216 		} else {
1217 			/*
1218 			 * All other processors are currently
1219 			 * assumed to have single cores.
1220 			 */
1221 			cpi->cpi_coreid = cpi->cpi_chipid;
1222 			cpi->cpi_pkgcoreid = 0;
1223 		}
1224 	}
1225 
1226 	cpi->cpi_apicid = CPI_APIC_ID(cpi);
1227 
1228 	/*
1229 	 * Synthesize chip "revision" and socket type
1230 	 */
1231 	cpi->cpi_chiprev = _cpuid_chiprev(cpi->cpi_vendor, cpi->cpi_family,
1232 	    cpi->cpi_model, cpi->cpi_step);
1233 	cpi->cpi_chiprevstr = _cpuid_chiprevstr(cpi->cpi_vendor,
1234 	    cpi->cpi_family, cpi->cpi_model, cpi->cpi_step);
1235 	cpi->cpi_socket = _cpuid_skt(cpi->cpi_vendor, cpi->cpi_family,
1236 	    cpi->cpi_model, cpi->cpi_step);
1237 
1238 pass1_done:
1239 	cpi->cpi_pass = 1;
1240 	return (feature);
1241 }
1242 
1243 /*
1244  * Make copies of the cpuid table entries we depend on, in
1245  * part for ease of parsing now, in part so that we have only
1246  * one place to correct any of it, in part for ease of
1247  * later export to userland, and in part so we can look at
1248  * this stuff in a crash dump.
1249  */
1250 
1251 /*ARGSUSED*/
1252 void
1253 cpuid_pass2(cpu_t *cpu)
1254 {
1255 	uint_t n, nmax;
1256 	int i;
1257 	struct cpuid_regs *cp;
1258 	uint8_t *dp;
1259 	uint32_t *iptr;
1260 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1261 
1262 	ASSERT(cpi->cpi_pass == 1);
1263 
1264 	if (cpi->cpi_maxeax < 1)
1265 		goto pass2_done;
1266 
1267 	if ((nmax = cpi->cpi_maxeax + 1) > NMAX_CPI_STD)
1268 		nmax = NMAX_CPI_STD;
1269 	/*
1270 	 * (We already handled n == 0 and n == 1 in pass 1)
1271 	 */
1272 	for (n = 2, cp = &cpi->cpi_std[2]; n < nmax; n++, cp++) {
1273 		cp->cp_eax = n;
1274 
1275 		/*
1276 		 * CPUID function 4 expects %ecx to be initialized
1277 		 * with an index which indicates which cache to return
1278 		 * information about. The OS is expected to call function 4
1279 		 * with %ecx set to 0, 1, 2, ... until it returns with
1280 		 * EAX[4:0] set to 0, which indicates there are no more
1281 		 * caches.
1282 		 *
1283 		 * Here, populate cpi_std[4] with the information returned by
1284 		 * function 4 when %ecx == 0, and do the rest in cpuid_pass3()
1285 		 * when dynamic memory allocation becomes available.
1286 		 *
1287 		 * Note: we need to explicitly initialize %ecx here, since
1288 		 * function 4 may have been previously invoked.
1289 		 */
1290 		if (n == 4)
1291 			cp->cp_ecx = 0;
1292 
1293 		(void) __cpuid_insn(cp);
1294 		platform_cpuid_mangle(cpi->cpi_vendor, n, cp);
1295 		switch (n) {
1296 		case 2:
1297 			/*
1298 			 * "the lower 8 bits of the %eax register
1299 			 * contain a value that identifies the number
1300 			 * of times the cpuid [instruction] has to be
1301 			 * executed to obtain a complete image of the
1302 			 * processor's caching systems."
1303 			 *
1304 			 * How *do* they make this stuff up?
1305 			 */
1306 			cpi->cpi_ncache = sizeof (*cp) *
1307 			    BITX(cp->cp_eax, 7, 0);
1308 			if (cpi->cpi_ncache == 0)
1309 				break;
1310 			cpi->cpi_ncache--;	/* skip count byte */
1311 
1312 			/*
1313 			 * Well, for now, rather than attempt to implement
1314 			 * this slightly dubious algorithm, we just look
1315 			 * at the first 15 ..
1316 			 */
1317 			if (cpi->cpi_ncache > (sizeof (*cp) - 1))
1318 				cpi->cpi_ncache = sizeof (*cp) - 1;
1319 
1320 			dp = cpi->cpi_cacheinfo;
1321 			if (BITX(cp->cp_eax, 31, 31) == 0) {
1322 				uint8_t *p = (void *)&cp->cp_eax;
1323 				for (i = 1; i < 4; i++)
1324 					if (p[i] != 0)
1325 						*dp++ = p[i];
1326 			}
1327 			if (BITX(cp->cp_ebx, 31, 31) == 0) {
1328 				uint8_t *p = (void *)&cp->cp_ebx;
1329 				for (i = 0; i < 4; i++)
1330 					if (p[i] != 0)
1331 						*dp++ = p[i];
1332 			}
1333 			if (BITX(cp->cp_ecx, 31, 31) == 0) {
1334 				uint8_t *p = (void *)&cp->cp_ecx;
1335 				for (i = 0; i < 4; i++)
1336 					if (p[i] != 0)
1337 						*dp++ = p[i];
1338 			}
1339 			if (BITX(cp->cp_edx, 31, 31) == 0) {
1340 				uint8_t *p = (void *)&cp->cp_edx;
1341 				for (i = 0; i < 4; i++)
1342 					if (p[i] != 0)
1343 						*dp++ = p[i];
1344 			}
1345 			break;
1346 
1347 		case 3:	/* Processor serial number, if PSN supported */
1348 			break;
1349 
1350 		case 4:	/* Deterministic cache parameters */
1351 			break;
1352 
1353 		case 5:	/* Monitor/Mwait parameters */
1354 		{
1355 			size_t mwait_size;
1356 
1357 			/*
1358 			 * check cpi_mwait.support which was set in cpuid_pass1
1359 			 */
1360 			if (!(cpi->cpi_mwait.support & MWAIT_SUPPORT))
1361 				break;
1362 
1363 			/*
1364 			 * Protect ourself from insane mwait line size.
1365 			 * Workaround for incomplete hardware emulator(s).
1366 			 */
1367 			mwait_size = (size_t)MWAIT_SIZE_MAX(cpi);
1368 			if (mwait_size < sizeof (uint32_t) ||
1369 			    !ISP2(mwait_size)) {
1370 #if DEBUG
1371 				cmn_err(CE_NOTE, "Cannot handle cpu %d mwait "
1372 				    "size %ld", cpu->cpu_id, (long)mwait_size);
1373 #endif
1374 				break;
1375 			}
1376 
1377 			cpi->cpi_mwait.mon_min = (size_t)MWAIT_SIZE_MIN(cpi);
1378 			cpi->cpi_mwait.mon_max = mwait_size;
1379 			if (MWAIT_EXTENSION(cpi)) {
1380 				cpi->cpi_mwait.support |= MWAIT_EXTENSIONS;
1381 				if (MWAIT_INT_ENABLE(cpi))
1382 					cpi->cpi_mwait.support |=
1383 					    MWAIT_ECX_INT_ENABLE;
1384 			}
1385 			break;
1386 		}
1387 		default:
1388 			break;
1389 		}
1390 	}
1391 
1392 	if (cpi->cpi_maxeax >= 0xB && cpi->cpi_vendor == X86_VENDOR_Intel) {
1393 		struct cpuid_regs regs;
1394 
1395 		cp = &regs;
1396 		cp->cp_eax = 0xB;
1397 		cp->cp_edx = cp->cp_ebx = cp->cp_ecx = 0;
1398 
1399 		(void) __cpuid_insn(cp);
1400 
1401 		/*
1402 		 * Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero, which
1403 		 * indicates that the extended topology enumeration leaf is
1404 		 * available.
1405 		 */
1406 		if (cp->cp_ebx) {
1407 			uint32_t x2apic_id;
1408 			uint_t coreid_shift = 0;
1409 			uint_t ncpu_per_core = 1;
1410 			uint_t chipid_shift = 0;
1411 			uint_t ncpu_per_chip = 1;
1412 			uint_t i;
1413 			uint_t level;
1414 
1415 			for (i = 0; i < CPI_FNB_ECX_MAX; i++) {
1416 				cp->cp_eax = 0xB;
1417 				cp->cp_ecx = i;
1418 
1419 				(void) __cpuid_insn(cp);
1420 				level = CPI_CPU_LEVEL_TYPE(cp);
1421 
1422 				if (level == 1) {
1423 					x2apic_id = cp->cp_edx;
1424 					coreid_shift = BITX(cp->cp_eax, 4, 0);
1425 					ncpu_per_core = BITX(cp->cp_ebx, 15, 0);
1426 				} else if (level == 2) {
1427 					x2apic_id = cp->cp_edx;
1428 					chipid_shift = BITX(cp->cp_eax, 4, 0);
1429 					ncpu_per_chip = BITX(cp->cp_ebx, 15, 0);
1430 				}
1431 			}
1432 
1433 			cpi->cpi_apicid = x2apic_id;
1434 			cpi->cpi_ncpu_per_chip = ncpu_per_chip;
1435 			cpi->cpi_ncore_per_chip = ncpu_per_chip /
1436 			    ncpu_per_core;
1437 			cpi->cpi_chipid = x2apic_id >> chipid_shift;
1438 			cpi->cpi_clogid = x2apic_id & ((1 << chipid_shift) - 1);
1439 			cpi->cpi_coreid = x2apic_id >> coreid_shift;
1440 			cpi->cpi_pkgcoreid = cpi->cpi_clogid >> coreid_shift;
1441 		}
1442 
1443 		/* Make cp NULL so that we don't stumble on others */
1444 		cp = NULL;
1445 	}
1446 
1447 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0)
1448 		goto pass2_done;
1449 
1450 	if ((nmax = cpi->cpi_xmaxeax - 0x80000000 + 1) > NMAX_CPI_EXTD)
1451 		nmax = NMAX_CPI_EXTD;
1452 	/*
1453 	 * Copy the extended properties, fixing them as we go.
1454 	 * (We already handled n == 0 and n == 1 in pass 1)
1455 	 */
1456 	iptr = (void *)cpi->cpi_brandstr;
1457 	for (n = 2, cp = &cpi->cpi_extd[2]; n < nmax; cp++, n++) {
1458 		cp->cp_eax = 0x80000000 + n;
1459 		(void) __cpuid_insn(cp);
1460 		platform_cpuid_mangle(cpi->cpi_vendor, 0x80000000 + n, cp);
1461 		switch (n) {
1462 		case 2:
1463 		case 3:
1464 		case 4:
1465 			/*
1466 			 * Extract the brand string
1467 			 */
1468 			*iptr++ = cp->cp_eax;
1469 			*iptr++ = cp->cp_ebx;
1470 			*iptr++ = cp->cp_ecx;
1471 			*iptr++ = cp->cp_edx;
1472 			break;
1473 		case 5:
1474 			switch (cpi->cpi_vendor) {
1475 			case X86_VENDOR_AMD:
1476 				/*
1477 				 * The Athlon and Duron were the first
1478 				 * parts to report the sizes of the
1479 				 * TLB for large pages. Before then,
1480 				 * we don't trust the data.
1481 				 */
1482 				if (cpi->cpi_family < 6 ||
1483 				    (cpi->cpi_family == 6 &&
1484 				    cpi->cpi_model < 1))
1485 					cp->cp_eax = 0;
1486 				break;
1487 			default:
1488 				break;
1489 			}
1490 			break;
1491 		case 6:
1492 			switch (cpi->cpi_vendor) {
1493 			case X86_VENDOR_AMD:
1494 				/*
1495 				 * The Athlon and Duron were the first
1496 				 * AMD parts with L2 TLB's.
1497 				 * Before then, don't trust the data.
1498 				 */
1499 				if (cpi->cpi_family < 6 ||
1500 				    cpi->cpi_family == 6 &&
1501 				    cpi->cpi_model < 1)
1502 					cp->cp_eax = cp->cp_ebx = 0;
1503 				/*
1504 				 * AMD Duron rev A0 reports L2
1505 				 * cache size incorrectly as 1K
1506 				 * when it is really 64K
1507 				 */
1508 				if (cpi->cpi_family == 6 &&
1509 				    cpi->cpi_model == 3 &&
1510 				    cpi->cpi_step == 0) {
1511 					cp->cp_ecx &= 0xffff;
1512 					cp->cp_ecx |= 0x400000;
1513 				}
1514 				break;
1515 			case X86_VENDOR_Cyrix:	/* VIA C3 */
1516 				/*
1517 				 * VIA C3 processors are a bit messed
1518 				 * up w.r.t. encoding cache sizes in %ecx
1519 				 */
1520 				if (cpi->cpi_family != 6)
1521 					break;
1522 				/*
1523 				 * model 7 and 8 were incorrectly encoded
1524 				 *
1525 				 * xxx is model 8 really broken?
1526 				 */
1527 				if (cpi->cpi_model == 7 ||
1528 				    cpi->cpi_model == 8)
1529 					cp->cp_ecx =
1530 					    BITX(cp->cp_ecx, 31, 24) << 16 |
1531 					    BITX(cp->cp_ecx, 23, 16) << 12 |
1532 					    BITX(cp->cp_ecx, 15, 8) << 8 |
1533 					    BITX(cp->cp_ecx, 7, 0);
1534 				/*
1535 				 * model 9 stepping 1 has wrong associativity
1536 				 */
1537 				if (cpi->cpi_model == 9 && cpi->cpi_step == 1)
1538 					cp->cp_ecx |= 8 << 12;
1539 				break;
1540 			case X86_VENDOR_Intel:
1541 				/*
1542 				 * Extended L2 Cache features function.
1543 				 * First appeared on Prescott.
1544 				 */
1545 			default:
1546 				break;
1547 			}
1548 			break;
1549 		default:
1550 			break;
1551 		}
1552 	}
1553 
1554 pass2_done:
1555 	cpi->cpi_pass = 2;
1556 }
1557 
1558 static const char *
1559 intel_cpubrand(const struct cpuid_info *cpi)
1560 {
1561 	int i;
1562 
1563 	if ((x86_feature & X86_CPUID) == 0 ||
1564 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1565 		return ("i486");
1566 
1567 	switch (cpi->cpi_family) {
1568 	case 5:
1569 		return ("Intel Pentium(r)");
1570 	case 6:
1571 		switch (cpi->cpi_model) {
1572 			uint_t celeron, xeon;
1573 			const struct cpuid_regs *cp;
1574 		case 0:
1575 		case 1:
1576 		case 2:
1577 			return ("Intel Pentium(r) Pro");
1578 		case 3:
1579 		case 4:
1580 			return ("Intel Pentium(r) II");
1581 		case 6:
1582 			return ("Intel Celeron(r)");
1583 		case 5:
1584 		case 7:
1585 			celeron = xeon = 0;
1586 			cp = &cpi->cpi_std[2];	/* cache info */
1587 
1588 			for (i = 1; i < 4; i++) {
1589 				uint_t tmp;
1590 
1591 				tmp = (cp->cp_eax >> (8 * i)) & 0xff;
1592 				if (tmp == 0x40)
1593 					celeron++;
1594 				if (tmp >= 0x44 && tmp <= 0x45)
1595 					xeon++;
1596 			}
1597 
1598 			for (i = 0; i < 2; i++) {
1599 				uint_t tmp;
1600 
1601 				tmp = (cp->cp_ebx >> (8 * i)) & 0xff;
1602 				if (tmp == 0x40)
1603 					celeron++;
1604 				else if (tmp >= 0x44 && tmp <= 0x45)
1605 					xeon++;
1606 			}
1607 
1608 			for (i = 0; i < 4; i++) {
1609 				uint_t tmp;
1610 
1611 				tmp = (cp->cp_ecx >> (8 * i)) & 0xff;
1612 				if (tmp == 0x40)
1613 					celeron++;
1614 				else if (tmp >= 0x44 && tmp <= 0x45)
1615 					xeon++;
1616 			}
1617 
1618 			for (i = 0; i < 4; i++) {
1619 				uint_t tmp;
1620 
1621 				tmp = (cp->cp_edx >> (8 * i)) & 0xff;
1622 				if (tmp == 0x40)
1623 					celeron++;
1624 				else if (tmp >= 0x44 && tmp <= 0x45)
1625 					xeon++;
1626 			}
1627 
1628 			if (celeron)
1629 				return ("Intel Celeron(r)");
1630 			if (xeon)
1631 				return (cpi->cpi_model == 5 ?
1632 				    "Intel Pentium(r) II Xeon(tm)" :
1633 				    "Intel Pentium(r) III Xeon(tm)");
1634 			return (cpi->cpi_model == 5 ?
1635 			    "Intel Pentium(r) II or Pentium(r) II Xeon(tm)" :
1636 			    "Intel Pentium(r) III or Pentium(r) III Xeon(tm)");
1637 		default:
1638 			break;
1639 		}
1640 	default:
1641 		break;
1642 	}
1643 
1644 	/* BrandID is present if the field is nonzero */
1645 	if (cpi->cpi_brandid != 0) {
1646 		static const struct {
1647 			uint_t bt_bid;
1648 			const char *bt_str;
1649 		} brand_tbl[] = {
1650 			{ 0x1,	"Intel(r) Celeron(r)" },
1651 			{ 0x2,	"Intel(r) Pentium(r) III" },
1652 			{ 0x3,	"Intel(r) Pentium(r) III Xeon(tm)" },
1653 			{ 0x4,	"Intel(r) Pentium(r) III" },
1654 			{ 0x6,	"Mobile Intel(r) Pentium(r) III" },
1655 			{ 0x7,	"Mobile Intel(r) Celeron(r)" },
1656 			{ 0x8,	"Intel(r) Pentium(r) 4" },
1657 			{ 0x9,	"Intel(r) Pentium(r) 4" },
1658 			{ 0xa,	"Intel(r) Celeron(r)" },
1659 			{ 0xb,	"Intel(r) Xeon(tm)" },
1660 			{ 0xc,	"Intel(r) Xeon(tm) MP" },
1661 			{ 0xe,	"Mobile Intel(r) Pentium(r) 4" },
1662 			{ 0xf,	"Mobile Intel(r) Celeron(r)" },
1663 			{ 0x11, "Mobile Genuine Intel(r)" },
1664 			{ 0x12, "Intel(r) Celeron(r) M" },
1665 			{ 0x13, "Mobile Intel(r) Celeron(r)" },
1666 			{ 0x14, "Intel(r) Celeron(r)" },
1667 			{ 0x15, "Mobile Genuine Intel(r)" },
1668 			{ 0x16,	"Intel(r) Pentium(r) M" },
1669 			{ 0x17, "Mobile Intel(r) Celeron(r)" }
1670 		};
1671 		uint_t btblmax = sizeof (brand_tbl) / sizeof (brand_tbl[0]);
1672 		uint_t sgn;
1673 
1674 		sgn = (cpi->cpi_family << 8) |
1675 		    (cpi->cpi_model << 4) | cpi->cpi_step;
1676 
1677 		for (i = 0; i < btblmax; i++)
1678 			if (brand_tbl[i].bt_bid == cpi->cpi_brandid)
1679 				break;
1680 		if (i < btblmax) {
1681 			if (sgn == 0x6b1 && cpi->cpi_brandid == 3)
1682 				return ("Intel(r) Celeron(r)");
1683 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xb)
1684 				return ("Intel(r) Xeon(tm) MP");
1685 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xe)
1686 				return ("Intel(r) Xeon(tm)");
1687 			return (brand_tbl[i].bt_str);
1688 		}
1689 	}
1690 
1691 	return (NULL);
1692 }
1693 
1694 static const char *
1695 amd_cpubrand(const struct cpuid_info *cpi)
1696 {
1697 	if ((x86_feature & X86_CPUID) == 0 ||
1698 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1699 		return ("i486 compatible");
1700 
1701 	switch (cpi->cpi_family) {
1702 	case 5:
1703 		switch (cpi->cpi_model) {
1704 		case 0:
1705 		case 1:
1706 		case 2:
1707 		case 3:
1708 		case 4:
1709 		case 5:
1710 			return ("AMD-K5(r)");
1711 		case 6:
1712 		case 7:
1713 			return ("AMD-K6(r)");
1714 		case 8:
1715 			return ("AMD-K6(r)-2");
1716 		case 9:
1717 			return ("AMD-K6(r)-III");
1718 		default:
1719 			return ("AMD (family 5)");
1720 		}
1721 	case 6:
1722 		switch (cpi->cpi_model) {
1723 		case 1:
1724 			return ("AMD-K7(tm)");
1725 		case 0:
1726 		case 2:
1727 		case 4:
1728 			return ("AMD Athlon(tm)");
1729 		case 3:
1730 		case 7:
1731 			return ("AMD Duron(tm)");
1732 		case 6:
1733 		case 8:
1734 		case 10:
1735 			/*
1736 			 * Use the L2 cache size to distinguish
1737 			 */
1738 			return ((cpi->cpi_extd[6].cp_ecx >> 16) >= 256 ?
1739 			    "AMD Athlon(tm)" : "AMD Duron(tm)");
1740 		default:
1741 			return ("AMD (family 6)");
1742 		}
1743 	default:
1744 		break;
1745 	}
1746 
1747 	if (cpi->cpi_family == 0xf && cpi->cpi_model == 5 &&
1748 	    cpi->cpi_brandid != 0) {
1749 		switch (BITX(cpi->cpi_brandid, 7, 5)) {
1750 		case 3:
1751 			return ("AMD Opteron(tm) UP 1xx");
1752 		case 4:
1753 			return ("AMD Opteron(tm) DP 2xx");
1754 		case 5:
1755 			return ("AMD Opteron(tm) MP 8xx");
1756 		default:
1757 			return ("AMD Opteron(tm)");
1758 		}
1759 	}
1760 
1761 	return (NULL);
1762 }
1763 
1764 static const char *
1765 cyrix_cpubrand(struct cpuid_info *cpi, uint_t type)
1766 {
1767 	if ((x86_feature & X86_CPUID) == 0 ||
1768 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5 ||
1769 	    type == X86_TYPE_CYRIX_486)
1770 		return ("i486 compatible");
1771 
1772 	switch (type) {
1773 	case X86_TYPE_CYRIX_6x86:
1774 		return ("Cyrix 6x86");
1775 	case X86_TYPE_CYRIX_6x86L:
1776 		return ("Cyrix 6x86L");
1777 	case X86_TYPE_CYRIX_6x86MX:
1778 		return ("Cyrix 6x86MX");
1779 	case X86_TYPE_CYRIX_GXm:
1780 		return ("Cyrix GXm");
1781 	case X86_TYPE_CYRIX_MediaGX:
1782 		return ("Cyrix MediaGX");
1783 	case X86_TYPE_CYRIX_MII:
1784 		return ("Cyrix M2");
1785 	case X86_TYPE_VIA_CYRIX_III:
1786 		return ("VIA Cyrix M3");
1787 	default:
1788 		/*
1789 		 * Have another wild guess ..
1790 		 */
1791 		if (cpi->cpi_family == 4 && cpi->cpi_model == 9)
1792 			return ("Cyrix 5x86");
1793 		else if (cpi->cpi_family == 5) {
1794 			switch (cpi->cpi_model) {
1795 			case 2:
1796 				return ("Cyrix 6x86");	/* Cyrix M1 */
1797 			case 4:
1798 				return ("Cyrix MediaGX");
1799 			default:
1800 				break;
1801 			}
1802 		} else if (cpi->cpi_family == 6) {
1803 			switch (cpi->cpi_model) {
1804 			case 0:
1805 				return ("Cyrix 6x86MX"); /* Cyrix M2? */
1806 			case 5:
1807 			case 6:
1808 			case 7:
1809 			case 8:
1810 			case 9:
1811 				return ("VIA C3");
1812 			default:
1813 				break;
1814 			}
1815 		}
1816 		break;
1817 	}
1818 	return (NULL);
1819 }
1820 
1821 /*
1822  * This only gets called in the case that the CPU extended
1823  * feature brand string (0x80000002, 0x80000003, 0x80000004)
1824  * aren't available, or contain null bytes for some reason.
1825  */
1826 static void
1827 fabricate_brandstr(struct cpuid_info *cpi)
1828 {
1829 	const char *brand = NULL;
1830 
1831 	switch (cpi->cpi_vendor) {
1832 	case X86_VENDOR_Intel:
1833 		brand = intel_cpubrand(cpi);
1834 		break;
1835 	case X86_VENDOR_AMD:
1836 		brand = amd_cpubrand(cpi);
1837 		break;
1838 	case X86_VENDOR_Cyrix:
1839 		brand = cyrix_cpubrand(cpi, x86_type);
1840 		break;
1841 	case X86_VENDOR_NexGen:
1842 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1843 			brand = "NexGen Nx586";
1844 		break;
1845 	case X86_VENDOR_Centaur:
1846 		if (cpi->cpi_family == 5)
1847 			switch (cpi->cpi_model) {
1848 			case 4:
1849 				brand = "Centaur C6";
1850 				break;
1851 			case 8:
1852 				brand = "Centaur C2";
1853 				break;
1854 			case 9:
1855 				brand = "Centaur C3";
1856 				break;
1857 			default:
1858 				break;
1859 			}
1860 		break;
1861 	case X86_VENDOR_Rise:
1862 		if (cpi->cpi_family == 5 &&
1863 		    (cpi->cpi_model == 0 || cpi->cpi_model == 2))
1864 			brand = "Rise mP6";
1865 		break;
1866 	case X86_VENDOR_SiS:
1867 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1868 			brand = "SiS 55x";
1869 		break;
1870 	case X86_VENDOR_TM:
1871 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4)
1872 			brand = "Transmeta Crusoe TM3x00 or TM5x00";
1873 		break;
1874 	case X86_VENDOR_NSC:
1875 	case X86_VENDOR_UMC:
1876 	default:
1877 		break;
1878 	}
1879 	if (brand) {
1880 		(void) strcpy((char *)cpi->cpi_brandstr, brand);
1881 		return;
1882 	}
1883 
1884 	/*
1885 	 * If all else fails ...
1886 	 */
1887 	(void) snprintf(cpi->cpi_brandstr, sizeof (cpi->cpi_brandstr),
1888 	    "%s %d.%d.%d", cpi->cpi_vendorstr, cpi->cpi_family,
1889 	    cpi->cpi_model, cpi->cpi_step);
1890 }
1891 
1892 /*
1893  * This routine is called just after kernel memory allocation
1894  * becomes available on cpu0, and as part of mp_startup() on
1895  * the other cpus.
1896  *
1897  * Fixup the brand string, and collect any information from cpuid
1898  * that requires dynamicically allocated storage to represent.
1899  */
1900 /*ARGSUSED*/
1901 void
1902 cpuid_pass3(cpu_t *cpu)
1903 {
1904 	int	i, max, shft, level, size;
1905 	struct cpuid_regs regs;
1906 	struct cpuid_regs *cp;
1907 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1908 
1909 	ASSERT(cpi->cpi_pass == 2);
1910 
1911 	/*
1912 	 * Function 4: Deterministic cache parameters
1913 	 *
1914 	 * Take this opportunity to detect the number of threads
1915 	 * sharing the last level cache, and construct a corresponding
1916 	 * cache id. The respective cpuid_info members are initialized
1917 	 * to the default case of "no last level cache sharing".
1918 	 */
1919 	cpi->cpi_ncpu_shr_last_cache = 1;
1920 	cpi->cpi_last_lvl_cacheid = cpu->cpu_id;
1921 
1922 	if (cpi->cpi_maxeax >= 4 && cpi->cpi_vendor == X86_VENDOR_Intel) {
1923 
1924 		/*
1925 		 * Find the # of elements (size) returned by fn 4, and along
1926 		 * the way detect last level cache sharing details.
1927 		 */
1928 		bzero(&regs, sizeof (regs));
1929 		cp = &regs;
1930 		for (i = 0, max = 0; i < CPI_FN4_ECX_MAX; i++) {
1931 			cp->cp_eax = 4;
1932 			cp->cp_ecx = i;
1933 
1934 			(void) __cpuid_insn(cp);
1935 
1936 			if (CPI_CACHE_TYPE(cp) == 0)
1937 				break;
1938 			level = CPI_CACHE_LVL(cp);
1939 			if (level > max) {
1940 				max = level;
1941 				cpi->cpi_ncpu_shr_last_cache =
1942 				    CPI_NTHR_SHR_CACHE(cp) + 1;
1943 			}
1944 		}
1945 		cpi->cpi_std_4_size = size = i;
1946 
1947 		/*
1948 		 * Allocate the cpi_std_4 array. The first element
1949 		 * references the regs for fn 4, %ecx == 0, which
1950 		 * cpuid_pass2() stashed in cpi->cpi_std[4].
1951 		 */
1952 		if (size > 0) {
1953 			cpi->cpi_std_4 =
1954 			    kmem_alloc(size * sizeof (cp), KM_SLEEP);
1955 			cpi->cpi_std_4[0] = &cpi->cpi_std[4];
1956 
1957 			/*
1958 			 * Allocate storage to hold the additional regs
1959 			 * for function 4, %ecx == 1 .. cpi_std_4_size.
1960 			 *
1961 			 * The regs for fn 4, %ecx == 0 has already
1962 			 * been allocated as indicated above.
1963 			 */
1964 			for (i = 1; i < size; i++) {
1965 				cp = cpi->cpi_std_4[i] =
1966 				    kmem_zalloc(sizeof (regs), KM_SLEEP);
1967 				cp->cp_eax = 4;
1968 				cp->cp_ecx = i;
1969 
1970 				(void) __cpuid_insn(cp);
1971 			}
1972 		}
1973 		/*
1974 		 * Determine the number of bits needed to represent
1975 		 * the number of CPUs sharing the last level cache.
1976 		 *
1977 		 * Shift off that number of bits from the APIC id to
1978 		 * derive the cache id.
1979 		 */
1980 		shft = 0;
1981 		for (i = 1; i < cpi->cpi_ncpu_shr_last_cache; i <<= 1)
1982 			shft++;
1983 		cpi->cpi_last_lvl_cacheid = cpi->cpi_apicid >> shft;
1984 	}
1985 
1986 	/*
1987 	 * Now fixup the brand string
1988 	 */
1989 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0) {
1990 		fabricate_brandstr(cpi);
1991 	} else {
1992 
1993 		/*
1994 		 * If we successfully extracted a brand string from the cpuid
1995 		 * instruction, clean it up by removing leading spaces and
1996 		 * similar junk.
1997 		 */
1998 		if (cpi->cpi_brandstr[0]) {
1999 			size_t maxlen = sizeof (cpi->cpi_brandstr);
2000 			char *src, *dst;
2001 
2002 			dst = src = (char *)cpi->cpi_brandstr;
2003 			src[maxlen - 1] = '\0';
2004 			/*
2005 			 * strip leading spaces
2006 			 */
2007 			while (*src == ' ')
2008 				src++;
2009 			/*
2010 			 * Remove any 'Genuine' or "Authentic" prefixes
2011 			 */
2012 			if (strncmp(src, "Genuine ", 8) == 0)
2013 				src += 8;
2014 			if (strncmp(src, "Authentic ", 10) == 0)
2015 				src += 10;
2016 
2017 			/*
2018 			 * Now do an in-place copy.
2019 			 * Map (R) to (r) and (TM) to (tm).
2020 			 * The era of teletypes is long gone, and there's
2021 			 * -really- no need to shout.
2022 			 */
2023 			while (*src != '\0') {
2024 				if (src[0] == '(') {
2025 					if (strncmp(src + 1, "R)", 2) == 0) {
2026 						(void) strncpy(dst, "(r)", 3);
2027 						src += 3;
2028 						dst += 3;
2029 						continue;
2030 					}
2031 					if (strncmp(src + 1, "TM)", 3) == 0) {
2032 						(void) strncpy(dst, "(tm)", 4);
2033 						src += 4;
2034 						dst += 4;
2035 						continue;
2036 					}
2037 				}
2038 				*dst++ = *src++;
2039 			}
2040 			*dst = '\0';
2041 
2042 			/*
2043 			 * Finally, remove any trailing spaces
2044 			 */
2045 			while (--dst > cpi->cpi_brandstr)
2046 				if (*dst == ' ')
2047 					*dst = '\0';
2048 				else
2049 					break;
2050 		} else
2051 			fabricate_brandstr(cpi);
2052 	}
2053 	cpi->cpi_pass = 3;
2054 }
2055 
2056 /*
2057  * This routine is called out of bind_hwcap() much later in the life
2058  * of the kernel (post_startup()).  The job of this routine is to resolve
2059  * the hardware feature support and kernel support for those features into
2060  * what we're actually going to tell applications via the aux vector.
2061  */
2062 uint_t
2063 cpuid_pass4(cpu_t *cpu)
2064 {
2065 	struct cpuid_info *cpi;
2066 	uint_t hwcap_flags = 0;
2067 
2068 	if (cpu == NULL)
2069 		cpu = CPU;
2070 	cpi = cpu->cpu_m.mcpu_cpi;
2071 
2072 	ASSERT(cpi->cpi_pass == 3);
2073 
2074 	if (cpi->cpi_maxeax >= 1) {
2075 		uint32_t *edx = &cpi->cpi_support[STD_EDX_FEATURES];
2076 		uint32_t *ecx = &cpi->cpi_support[STD_ECX_FEATURES];
2077 
2078 		*edx = CPI_FEATURES_EDX(cpi);
2079 		*ecx = CPI_FEATURES_ECX(cpi);
2080 
2081 		/*
2082 		 * [these require explicit kernel support]
2083 		 */
2084 		if ((x86_feature & X86_SEP) == 0)
2085 			*edx &= ~CPUID_INTC_EDX_SEP;
2086 
2087 		if ((x86_feature & X86_SSE) == 0)
2088 			*edx &= ~(CPUID_INTC_EDX_FXSR|CPUID_INTC_EDX_SSE);
2089 		if ((x86_feature & X86_SSE2) == 0)
2090 			*edx &= ~CPUID_INTC_EDX_SSE2;
2091 
2092 		if ((x86_feature & X86_HTT) == 0)
2093 			*edx &= ~CPUID_INTC_EDX_HTT;
2094 
2095 		if ((x86_feature & X86_SSE3) == 0)
2096 			*ecx &= ~CPUID_INTC_ECX_SSE3;
2097 
2098 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
2099 			if ((x86_feature & X86_SSSE3) == 0)
2100 				*ecx &= ~CPUID_INTC_ECX_SSSE3;
2101 			if ((x86_feature & X86_SSE4_1) == 0)
2102 				*ecx &= ~CPUID_INTC_ECX_SSE4_1;
2103 			if ((x86_feature & X86_SSE4_2) == 0)
2104 				*ecx &= ~CPUID_INTC_ECX_SSE4_2;
2105 			if ((x86_feature & X86_AES) == 0)
2106 				*ecx &= ~CPUID_INTC_ECX_AES;
2107 		}
2108 
2109 		/*
2110 		 * [no explicit support required beyond x87 fp context]
2111 		 */
2112 		if (!fpu_exists)
2113 			*edx &= ~(CPUID_INTC_EDX_FPU | CPUID_INTC_EDX_MMX);
2114 
2115 		/*
2116 		 * Now map the supported feature vector to things that we
2117 		 * think userland will care about.
2118 		 */
2119 		if (*edx & CPUID_INTC_EDX_SEP)
2120 			hwcap_flags |= AV_386_SEP;
2121 		if (*edx & CPUID_INTC_EDX_SSE)
2122 			hwcap_flags |= AV_386_FXSR | AV_386_SSE;
2123 		if (*edx & CPUID_INTC_EDX_SSE2)
2124 			hwcap_flags |= AV_386_SSE2;
2125 		if (*ecx & CPUID_INTC_ECX_SSE3)
2126 			hwcap_flags |= AV_386_SSE3;
2127 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
2128 			if (*ecx & CPUID_INTC_ECX_SSSE3)
2129 				hwcap_flags |= AV_386_SSSE3;
2130 			if (*ecx & CPUID_INTC_ECX_SSE4_1)
2131 				hwcap_flags |= AV_386_SSE4_1;
2132 			if (*ecx & CPUID_INTC_ECX_SSE4_2)
2133 				hwcap_flags |= AV_386_SSE4_2;
2134 			if (*ecx & CPUID_INTC_ECX_MOVBE)
2135 				hwcap_flags |= AV_386_MOVBE;
2136 			if (*ecx & CPUID_INTC_ECX_AES)
2137 				hwcap_flags |= AV_386_AES;
2138 			if (*ecx & CPUID_INTC_ECX_PCLMULQDQ)
2139 				hwcap_flags |= AV_386_PCLMULQDQ;
2140 		}
2141 		if (*ecx & CPUID_INTC_ECX_POPCNT)
2142 			hwcap_flags |= AV_386_POPCNT;
2143 		if (*edx & CPUID_INTC_EDX_FPU)
2144 			hwcap_flags |= AV_386_FPU;
2145 		if (*edx & CPUID_INTC_EDX_MMX)
2146 			hwcap_flags |= AV_386_MMX;
2147 
2148 		if (*edx & CPUID_INTC_EDX_TSC)
2149 			hwcap_flags |= AV_386_TSC;
2150 		if (*edx & CPUID_INTC_EDX_CX8)
2151 			hwcap_flags |= AV_386_CX8;
2152 		if (*edx & CPUID_INTC_EDX_CMOV)
2153 			hwcap_flags |= AV_386_CMOV;
2154 		if (*ecx & CPUID_INTC_ECX_MON)
2155 			hwcap_flags |= AV_386_MON;
2156 		if (*ecx & CPUID_INTC_ECX_CX16)
2157 			hwcap_flags |= AV_386_CX16;
2158 	}
2159 
2160 	if (x86_feature & X86_HTT)
2161 		hwcap_flags |= AV_386_PAUSE;
2162 
2163 	if (cpi->cpi_xmaxeax < 0x80000001)
2164 		goto pass4_done;
2165 
2166 	switch (cpi->cpi_vendor) {
2167 		struct cpuid_regs cp;
2168 		uint32_t *edx, *ecx;
2169 
2170 	case X86_VENDOR_Intel:
2171 		/*
2172 		 * Seems like Intel duplicated what we necessary
2173 		 * here to make the initial crop of 64-bit OS's work.
2174 		 * Hopefully, those are the only "extended" bits
2175 		 * they'll add.
2176 		 */
2177 		/*FALLTHROUGH*/
2178 
2179 	case X86_VENDOR_AMD:
2180 		edx = &cpi->cpi_support[AMD_EDX_FEATURES];
2181 		ecx = &cpi->cpi_support[AMD_ECX_FEATURES];
2182 
2183 		*edx = CPI_FEATURES_XTD_EDX(cpi);
2184 		*ecx = CPI_FEATURES_XTD_ECX(cpi);
2185 
2186 		/*
2187 		 * [these features require explicit kernel support]
2188 		 */
2189 		switch (cpi->cpi_vendor) {
2190 		case X86_VENDOR_Intel:
2191 			if ((x86_feature & X86_TSCP) == 0)
2192 				*edx &= ~CPUID_AMD_EDX_TSCP;
2193 			break;
2194 
2195 		case X86_VENDOR_AMD:
2196 			if ((x86_feature & X86_TSCP) == 0)
2197 				*edx &= ~CPUID_AMD_EDX_TSCP;
2198 			if ((x86_feature & X86_SSE4A) == 0)
2199 				*ecx &= ~CPUID_AMD_ECX_SSE4A;
2200 			break;
2201 
2202 		default:
2203 			break;
2204 		}
2205 
2206 		/*
2207 		 * [no explicit support required beyond
2208 		 * x87 fp context and exception handlers]
2209 		 */
2210 		if (!fpu_exists)
2211 			*edx &= ~(CPUID_AMD_EDX_MMXamd |
2212 			    CPUID_AMD_EDX_3DNow | CPUID_AMD_EDX_3DNowx);
2213 
2214 		if ((x86_feature & X86_NX) == 0)
2215 			*edx &= ~CPUID_AMD_EDX_NX;
2216 #if !defined(__amd64)
2217 		*edx &= ~CPUID_AMD_EDX_LM;
2218 #endif
2219 		/*
2220 		 * Now map the supported feature vector to
2221 		 * things that we think userland will care about.
2222 		 */
2223 #if defined(__amd64)
2224 		if (*edx & CPUID_AMD_EDX_SYSC)
2225 			hwcap_flags |= AV_386_AMD_SYSC;
2226 #endif
2227 		if (*edx & CPUID_AMD_EDX_MMXamd)
2228 			hwcap_flags |= AV_386_AMD_MMX;
2229 		if (*edx & CPUID_AMD_EDX_3DNow)
2230 			hwcap_flags |= AV_386_AMD_3DNow;
2231 		if (*edx & CPUID_AMD_EDX_3DNowx)
2232 			hwcap_flags |= AV_386_AMD_3DNowx;
2233 
2234 		switch (cpi->cpi_vendor) {
2235 		case X86_VENDOR_AMD:
2236 			if (*edx & CPUID_AMD_EDX_TSCP)
2237 				hwcap_flags |= AV_386_TSCP;
2238 			if (*ecx & CPUID_AMD_ECX_AHF64)
2239 				hwcap_flags |= AV_386_AHF;
2240 			if (*ecx & CPUID_AMD_ECX_SSE4A)
2241 				hwcap_flags |= AV_386_AMD_SSE4A;
2242 			if (*ecx & CPUID_AMD_ECX_LZCNT)
2243 				hwcap_flags |= AV_386_AMD_LZCNT;
2244 			break;
2245 
2246 		case X86_VENDOR_Intel:
2247 			if (*edx & CPUID_AMD_EDX_TSCP)
2248 				hwcap_flags |= AV_386_TSCP;
2249 			/*
2250 			 * Aarrgh.
2251 			 * Intel uses a different bit in the same word.
2252 			 */
2253 			if (*ecx & CPUID_INTC_ECX_AHF64)
2254 				hwcap_flags |= AV_386_AHF;
2255 			break;
2256 
2257 		default:
2258 			break;
2259 		}
2260 		break;
2261 
2262 	case X86_VENDOR_TM:
2263 		cp.cp_eax = 0x80860001;
2264 		(void) __cpuid_insn(&cp);
2265 		cpi->cpi_support[TM_EDX_FEATURES] = cp.cp_edx;
2266 		break;
2267 
2268 	default:
2269 		break;
2270 	}
2271 
2272 pass4_done:
2273 	cpi->cpi_pass = 4;
2274 	return (hwcap_flags);
2275 }
2276 
2277 
2278 /*
2279  * Simulate the cpuid instruction using the data we previously
2280  * captured about this CPU.  We try our best to return the truth
2281  * about the hardware, independently of kernel support.
2282  */
2283 uint32_t
2284 cpuid_insn(cpu_t *cpu, struct cpuid_regs *cp)
2285 {
2286 	struct cpuid_info *cpi;
2287 	struct cpuid_regs *xcp;
2288 
2289 	if (cpu == NULL)
2290 		cpu = CPU;
2291 	cpi = cpu->cpu_m.mcpu_cpi;
2292 
2293 	ASSERT(cpuid_checkpass(cpu, 3));
2294 
2295 	/*
2296 	 * CPUID data is cached in two separate places: cpi_std for standard
2297 	 * CPUID functions, and cpi_extd for extended CPUID functions.
2298 	 */
2299 	if (cp->cp_eax <= cpi->cpi_maxeax && cp->cp_eax < NMAX_CPI_STD)
2300 		xcp = &cpi->cpi_std[cp->cp_eax];
2301 	else if (cp->cp_eax >= 0x80000000 && cp->cp_eax <= cpi->cpi_xmaxeax &&
2302 	    cp->cp_eax < 0x80000000 + NMAX_CPI_EXTD)
2303 		xcp = &cpi->cpi_extd[cp->cp_eax - 0x80000000];
2304 	else
2305 		/*
2306 		 * The caller is asking for data from an input parameter which
2307 		 * the kernel has not cached.  In this case we go fetch from
2308 		 * the hardware and return the data directly to the user.
2309 		 */
2310 		return (__cpuid_insn(cp));
2311 
2312 	cp->cp_eax = xcp->cp_eax;
2313 	cp->cp_ebx = xcp->cp_ebx;
2314 	cp->cp_ecx = xcp->cp_ecx;
2315 	cp->cp_edx = xcp->cp_edx;
2316 	return (cp->cp_eax);
2317 }
2318 
2319 int
2320 cpuid_checkpass(cpu_t *cpu, int pass)
2321 {
2322 	return (cpu != NULL && cpu->cpu_m.mcpu_cpi != NULL &&
2323 	    cpu->cpu_m.mcpu_cpi->cpi_pass >= pass);
2324 }
2325 
2326 int
2327 cpuid_getbrandstr(cpu_t *cpu, char *s, size_t n)
2328 {
2329 	ASSERT(cpuid_checkpass(cpu, 3));
2330 
2331 	return (snprintf(s, n, "%s", cpu->cpu_m.mcpu_cpi->cpi_brandstr));
2332 }
2333 
2334 int
2335 cpuid_is_cmt(cpu_t *cpu)
2336 {
2337 	if (cpu == NULL)
2338 		cpu = CPU;
2339 
2340 	ASSERT(cpuid_checkpass(cpu, 1));
2341 
2342 	return (cpu->cpu_m.mcpu_cpi->cpi_chipid >= 0);
2343 }
2344 
2345 /*
2346  * AMD and Intel both implement the 64-bit variant of the syscall
2347  * instruction (syscallq), so if there's -any- support for syscall,
2348  * cpuid currently says "yes, we support this".
2349  *
2350  * However, Intel decided to -not- implement the 32-bit variant of the
2351  * syscall instruction, so we provide a predicate to allow our caller
2352  * to test that subtlety here.
2353  *
2354  * XXPV	Currently, 32-bit syscall instructions don't work via the hypervisor,
2355  *	even in the case where the hardware would in fact support it.
2356  */
2357 /*ARGSUSED*/
2358 int
2359 cpuid_syscall32_insn(cpu_t *cpu)
2360 {
2361 	ASSERT(cpuid_checkpass((cpu == NULL ? CPU : cpu), 1));
2362 
2363 #if !defined(__xpv)
2364 	if (cpu == NULL)
2365 		cpu = CPU;
2366 
2367 	/*CSTYLED*/
2368 	{
2369 		struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2370 
2371 		if (cpi->cpi_vendor == X86_VENDOR_AMD &&
2372 		    cpi->cpi_xmaxeax >= 0x80000001 &&
2373 		    (CPI_FEATURES_XTD_EDX(cpi) & CPUID_AMD_EDX_SYSC))
2374 			return (1);
2375 	}
2376 #endif
2377 	return (0);
2378 }
2379 
2380 int
2381 cpuid_getidstr(cpu_t *cpu, char *s, size_t n)
2382 {
2383 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2384 
2385 	static const char fmt[] =
2386 	    "x86 (%s %X family %d model %d step %d clock %d MHz)";
2387 	static const char fmt_ht[] =
2388 	    "x86 (chipid 0x%x %s %X family %d model %d step %d clock %d MHz)";
2389 
2390 	ASSERT(cpuid_checkpass(cpu, 1));
2391 
2392 	if (cpuid_is_cmt(cpu))
2393 		return (snprintf(s, n, fmt_ht, cpi->cpi_chipid,
2394 		    cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
2395 		    cpi->cpi_family, cpi->cpi_model,
2396 		    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
2397 	return (snprintf(s, n, fmt,
2398 	    cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
2399 	    cpi->cpi_family, cpi->cpi_model,
2400 	    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
2401 }
2402 
2403 const char *
2404 cpuid_getvendorstr(cpu_t *cpu)
2405 {
2406 	ASSERT(cpuid_checkpass(cpu, 1));
2407 	return ((const char *)cpu->cpu_m.mcpu_cpi->cpi_vendorstr);
2408 }
2409 
2410 uint_t
2411 cpuid_getvendor(cpu_t *cpu)
2412 {
2413 	ASSERT(cpuid_checkpass(cpu, 1));
2414 	return (cpu->cpu_m.mcpu_cpi->cpi_vendor);
2415 }
2416 
2417 uint_t
2418 cpuid_getfamily(cpu_t *cpu)
2419 {
2420 	ASSERT(cpuid_checkpass(cpu, 1));
2421 	return (cpu->cpu_m.mcpu_cpi->cpi_family);
2422 }
2423 
2424 uint_t
2425 cpuid_getmodel(cpu_t *cpu)
2426 {
2427 	ASSERT(cpuid_checkpass(cpu, 1));
2428 	return (cpu->cpu_m.mcpu_cpi->cpi_model);
2429 }
2430 
2431 uint_t
2432 cpuid_get_ncpu_per_chip(cpu_t *cpu)
2433 {
2434 	ASSERT(cpuid_checkpass(cpu, 1));
2435 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_per_chip);
2436 }
2437 
2438 uint_t
2439 cpuid_get_ncore_per_chip(cpu_t *cpu)
2440 {
2441 	ASSERT(cpuid_checkpass(cpu, 1));
2442 	return (cpu->cpu_m.mcpu_cpi->cpi_ncore_per_chip);
2443 }
2444 
2445 uint_t
2446 cpuid_get_ncpu_sharing_last_cache(cpu_t *cpu)
2447 {
2448 	ASSERT(cpuid_checkpass(cpu, 2));
2449 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_shr_last_cache);
2450 }
2451 
2452 id_t
2453 cpuid_get_last_lvl_cacheid(cpu_t *cpu)
2454 {
2455 	ASSERT(cpuid_checkpass(cpu, 2));
2456 	return (cpu->cpu_m.mcpu_cpi->cpi_last_lvl_cacheid);
2457 }
2458 
2459 uint_t
2460 cpuid_getstep(cpu_t *cpu)
2461 {
2462 	ASSERT(cpuid_checkpass(cpu, 1));
2463 	return (cpu->cpu_m.mcpu_cpi->cpi_step);
2464 }
2465 
2466 uint_t
2467 cpuid_getsig(struct cpu *cpu)
2468 {
2469 	ASSERT(cpuid_checkpass(cpu, 1));
2470 	return (cpu->cpu_m.mcpu_cpi->cpi_std[1].cp_eax);
2471 }
2472 
2473 uint32_t
2474 cpuid_getchiprev(struct cpu *cpu)
2475 {
2476 	ASSERT(cpuid_checkpass(cpu, 1));
2477 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprev);
2478 }
2479 
2480 const char *
2481 cpuid_getchiprevstr(struct cpu *cpu)
2482 {
2483 	ASSERT(cpuid_checkpass(cpu, 1));
2484 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprevstr);
2485 }
2486 
2487 uint32_t
2488 cpuid_getsockettype(struct cpu *cpu)
2489 {
2490 	ASSERT(cpuid_checkpass(cpu, 1));
2491 	return (cpu->cpu_m.mcpu_cpi->cpi_socket);
2492 }
2493 
2494 const char *
2495 cpuid_getsocketstr(cpu_t *cpu)
2496 {
2497 	static const char *socketstr = NULL;
2498 	struct cpuid_info *cpi;
2499 
2500 	ASSERT(cpuid_checkpass(cpu, 1));
2501 	cpi = cpu->cpu_m.mcpu_cpi;
2502 
2503 	/* Assume that socket types are the same across the system */
2504 	if (socketstr == NULL)
2505 		socketstr = _cpuid_sktstr(cpi->cpi_vendor, cpi->cpi_family,
2506 		    cpi->cpi_model, cpi->cpi_step);
2507 
2508 
2509 	return (socketstr);
2510 }
2511 
2512 int
2513 cpuid_get_chipid(cpu_t *cpu)
2514 {
2515 	ASSERT(cpuid_checkpass(cpu, 1));
2516 
2517 	if (cpuid_is_cmt(cpu))
2518 		return (cpu->cpu_m.mcpu_cpi->cpi_chipid);
2519 	return (cpu->cpu_id);
2520 }
2521 
2522 id_t
2523 cpuid_get_coreid(cpu_t *cpu)
2524 {
2525 	ASSERT(cpuid_checkpass(cpu, 1));
2526 	return (cpu->cpu_m.mcpu_cpi->cpi_coreid);
2527 }
2528 
2529 int
2530 cpuid_get_pkgcoreid(cpu_t *cpu)
2531 {
2532 	ASSERT(cpuid_checkpass(cpu, 1));
2533 	return (cpu->cpu_m.mcpu_cpi->cpi_pkgcoreid);
2534 }
2535 
2536 int
2537 cpuid_get_clogid(cpu_t *cpu)
2538 {
2539 	ASSERT(cpuid_checkpass(cpu, 1));
2540 	return (cpu->cpu_m.mcpu_cpi->cpi_clogid);
2541 }
2542 
2543 /*ARGSUSED*/
2544 int
2545 cpuid_have_cr8access(cpu_t *cpu)
2546 {
2547 #if defined(__amd64)
2548 	return (1);
2549 #else
2550 	struct cpuid_info *cpi;
2551 
2552 	ASSERT(cpu != NULL);
2553 	cpi = cpu->cpu_m.mcpu_cpi;
2554 	if (cpi->cpi_vendor == X86_VENDOR_AMD && cpi->cpi_maxeax >= 1 &&
2555 	    (CPI_FEATURES_XTD_ECX(cpi) & CPUID_AMD_ECX_CR8D) != 0)
2556 		return (1);
2557 	return (0);
2558 #endif
2559 }
2560 
2561 uint32_t
2562 cpuid_get_apicid(cpu_t *cpu)
2563 {
2564 	ASSERT(cpuid_checkpass(cpu, 1));
2565 	if (cpu->cpu_m.mcpu_cpi->cpi_maxeax < 1) {
2566 		return (UINT32_MAX);
2567 	} else {
2568 		return (cpu->cpu_m.mcpu_cpi->cpi_apicid);
2569 	}
2570 }
2571 
2572 void
2573 cpuid_get_addrsize(cpu_t *cpu, uint_t *pabits, uint_t *vabits)
2574 {
2575 	struct cpuid_info *cpi;
2576 
2577 	if (cpu == NULL)
2578 		cpu = CPU;
2579 	cpi = cpu->cpu_m.mcpu_cpi;
2580 
2581 	ASSERT(cpuid_checkpass(cpu, 1));
2582 
2583 	if (pabits)
2584 		*pabits = cpi->cpi_pabits;
2585 	if (vabits)
2586 		*vabits = cpi->cpi_vabits;
2587 }
2588 
2589 /*
2590  * Returns the number of data TLB entries for a corresponding
2591  * pagesize.  If it can't be computed, or isn't known, the
2592  * routine returns zero.  If you ask about an architecturally
2593  * impossible pagesize, the routine will panic (so that the
2594  * hat implementor knows that things are inconsistent.)
2595  */
2596 uint_t
2597 cpuid_get_dtlb_nent(cpu_t *cpu, size_t pagesize)
2598 {
2599 	struct cpuid_info *cpi;
2600 	uint_t dtlb_nent = 0;
2601 
2602 	if (cpu == NULL)
2603 		cpu = CPU;
2604 	cpi = cpu->cpu_m.mcpu_cpi;
2605 
2606 	ASSERT(cpuid_checkpass(cpu, 1));
2607 
2608 	/*
2609 	 * Check the L2 TLB info
2610 	 */
2611 	if (cpi->cpi_xmaxeax >= 0x80000006) {
2612 		struct cpuid_regs *cp = &cpi->cpi_extd[6];
2613 
2614 		switch (pagesize) {
2615 
2616 		case 4 * 1024:
2617 			/*
2618 			 * All zero in the top 16 bits of the register
2619 			 * indicates a unified TLB. Size is in low 16 bits.
2620 			 */
2621 			if ((cp->cp_ebx & 0xffff0000) == 0)
2622 				dtlb_nent = cp->cp_ebx & 0x0000ffff;
2623 			else
2624 				dtlb_nent = BITX(cp->cp_ebx, 27, 16);
2625 			break;
2626 
2627 		case 2 * 1024 * 1024:
2628 			if ((cp->cp_eax & 0xffff0000) == 0)
2629 				dtlb_nent = cp->cp_eax & 0x0000ffff;
2630 			else
2631 				dtlb_nent = BITX(cp->cp_eax, 27, 16);
2632 			break;
2633 
2634 		default:
2635 			panic("unknown L2 pagesize");
2636 			/*NOTREACHED*/
2637 		}
2638 	}
2639 
2640 	if (dtlb_nent != 0)
2641 		return (dtlb_nent);
2642 
2643 	/*
2644 	 * No L2 TLB support for this size, try L1.
2645 	 */
2646 	if (cpi->cpi_xmaxeax >= 0x80000005) {
2647 		struct cpuid_regs *cp = &cpi->cpi_extd[5];
2648 
2649 		switch (pagesize) {
2650 		case 4 * 1024:
2651 			dtlb_nent = BITX(cp->cp_ebx, 23, 16);
2652 			break;
2653 		case 2 * 1024 * 1024:
2654 			dtlb_nent = BITX(cp->cp_eax, 23, 16);
2655 			break;
2656 		default:
2657 			panic("unknown L1 d-TLB pagesize");
2658 			/*NOTREACHED*/
2659 		}
2660 	}
2661 
2662 	return (dtlb_nent);
2663 }
2664 
2665 /*
2666  * Return 0 if the erratum is not present or not applicable, positive
2667  * if it is, and negative if the status of the erratum is unknown.
2668  *
2669  * See "Revision Guide for AMD Athlon(tm) 64 and AMD Opteron(tm)
2670  * Processors" #25759, Rev 3.57, August 2005
2671  */
2672 int
2673 cpuid_opteron_erratum(cpu_t *cpu, uint_t erratum)
2674 {
2675 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2676 	uint_t eax;
2677 
2678 	/*
2679 	 * Bail out if this CPU isn't an AMD CPU, or if it's
2680 	 * a legacy (32-bit) AMD CPU.
2681 	 */
2682 	if (cpi->cpi_vendor != X86_VENDOR_AMD ||
2683 	    cpi->cpi_family == 4 || cpi->cpi_family == 5 ||
2684 	    cpi->cpi_family == 6)
2685 
2686 		return (0);
2687 
2688 	eax = cpi->cpi_std[1].cp_eax;
2689 
2690 #define	SH_B0(eax)	(eax == 0xf40 || eax == 0xf50)
2691 #define	SH_B3(eax) 	(eax == 0xf51)
2692 #define	B(eax)		(SH_B0(eax) || SH_B3(eax))
2693 
2694 #define	SH_C0(eax)	(eax == 0xf48 || eax == 0xf58)
2695 
2696 #define	SH_CG(eax)	(eax == 0xf4a || eax == 0xf5a || eax == 0xf7a)
2697 #define	DH_CG(eax)	(eax == 0xfc0 || eax == 0xfe0 || eax == 0xff0)
2698 #define	CH_CG(eax)	(eax == 0xf82 || eax == 0xfb2)
2699 #define	CG(eax)		(SH_CG(eax) || DH_CG(eax) || CH_CG(eax))
2700 
2701 #define	SH_D0(eax)	(eax == 0x10f40 || eax == 0x10f50 || eax == 0x10f70)
2702 #define	DH_D0(eax)	(eax == 0x10fc0 || eax == 0x10ff0)
2703 #define	CH_D0(eax)	(eax == 0x10f80 || eax == 0x10fb0)
2704 #define	D0(eax)		(SH_D0(eax) || DH_D0(eax) || CH_D0(eax))
2705 
2706 #define	SH_E0(eax)	(eax == 0x20f50 || eax == 0x20f40 || eax == 0x20f70)
2707 #define	JH_E1(eax)	(eax == 0x20f10)	/* JH8_E0 had 0x20f30 */
2708 #define	DH_E3(eax)	(eax == 0x20fc0 || eax == 0x20ff0)
2709 #define	SH_E4(eax)	(eax == 0x20f51 || eax == 0x20f71)
2710 #define	BH_E4(eax)	(eax == 0x20fb1)
2711 #define	SH_E5(eax)	(eax == 0x20f42)
2712 #define	DH_E6(eax)	(eax == 0x20ff2 || eax == 0x20fc2)
2713 #define	JH_E6(eax)	(eax == 0x20f12 || eax == 0x20f32)
2714 #define	EX(eax)		(SH_E0(eax) || JH_E1(eax) || DH_E3(eax) || \
2715 			    SH_E4(eax) || BH_E4(eax) || SH_E5(eax) || \
2716 			    DH_E6(eax) || JH_E6(eax))
2717 
2718 #define	DR_AX(eax)	(eax == 0x100f00 || eax == 0x100f01 || eax == 0x100f02)
2719 #define	DR_B0(eax)	(eax == 0x100f20)
2720 #define	DR_B1(eax)	(eax == 0x100f21)
2721 #define	DR_BA(eax)	(eax == 0x100f2a)
2722 #define	DR_B2(eax)	(eax == 0x100f22)
2723 #define	DR_B3(eax)	(eax == 0x100f23)
2724 #define	RB_C0(eax)	(eax == 0x100f40)
2725 
2726 	switch (erratum) {
2727 	case 1:
2728 		return (cpi->cpi_family < 0x10);
2729 	case 51:	/* what does the asterisk mean? */
2730 		return (B(eax) || SH_C0(eax) || CG(eax));
2731 	case 52:
2732 		return (B(eax));
2733 	case 57:
2734 		return (cpi->cpi_family <= 0x11);
2735 	case 58:
2736 		return (B(eax));
2737 	case 60:
2738 		return (cpi->cpi_family <= 0x11);
2739 	case 61:
2740 	case 62:
2741 	case 63:
2742 	case 64:
2743 	case 65:
2744 	case 66:
2745 	case 68:
2746 	case 69:
2747 	case 70:
2748 	case 71:
2749 		return (B(eax));
2750 	case 72:
2751 		return (SH_B0(eax));
2752 	case 74:
2753 		return (B(eax));
2754 	case 75:
2755 		return (cpi->cpi_family < 0x10);
2756 	case 76:
2757 		return (B(eax));
2758 	case 77:
2759 		return (cpi->cpi_family <= 0x11);
2760 	case 78:
2761 		return (B(eax) || SH_C0(eax));
2762 	case 79:
2763 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2764 	case 80:
2765 	case 81:
2766 	case 82:
2767 		return (B(eax));
2768 	case 83:
2769 		return (B(eax) || SH_C0(eax) || CG(eax));
2770 	case 85:
2771 		return (cpi->cpi_family < 0x10);
2772 	case 86:
2773 		return (SH_C0(eax) || CG(eax));
2774 	case 88:
2775 #if !defined(__amd64)
2776 		return (0);
2777 #else
2778 		return (B(eax) || SH_C0(eax));
2779 #endif
2780 	case 89:
2781 		return (cpi->cpi_family < 0x10);
2782 	case 90:
2783 		return (B(eax) || SH_C0(eax) || CG(eax));
2784 	case 91:
2785 	case 92:
2786 		return (B(eax) || SH_C0(eax));
2787 	case 93:
2788 		return (SH_C0(eax));
2789 	case 94:
2790 		return (B(eax) || SH_C0(eax) || CG(eax));
2791 	case 95:
2792 #if !defined(__amd64)
2793 		return (0);
2794 #else
2795 		return (B(eax) || SH_C0(eax));
2796 #endif
2797 	case 96:
2798 		return (B(eax) || SH_C0(eax) || CG(eax));
2799 	case 97:
2800 	case 98:
2801 		return (SH_C0(eax) || CG(eax));
2802 	case 99:
2803 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2804 	case 100:
2805 		return (B(eax) || SH_C0(eax));
2806 	case 101:
2807 	case 103:
2808 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2809 	case 104:
2810 		return (SH_C0(eax) || CG(eax) || D0(eax));
2811 	case 105:
2812 	case 106:
2813 	case 107:
2814 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2815 	case 108:
2816 		return (DH_CG(eax));
2817 	case 109:
2818 		return (SH_C0(eax) || CG(eax) || D0(eax));
2819 	case 110:
2820 		return (D0(eax) || EX(eax));
2821 	case 111:
2822 		return (CG(eax));
2823 	case 112:
2824 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2825 	case 113:
2826 		return (eax == 0x20fc0);
2827 	case 114:
2828 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
2829 	case 115:
2830 		return (SH_E0(eax) || JH_E1(eax));
2831 	case 116:
2832 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
2833 	case 117:
2834 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2835 	case 118:
2836 		return (SH_E0(eax) || JH_E1(eax) || SH_E4(eax) || BH_E4(eax) ||
2837 		    JH_E6(eax));
2838 	case 121:
2839 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2840 	case 122:
2841 		return (cpi->cpi_family < 0x10 || cpi->cpi_family == 0x11);
2842 	case 123:
2843 		return (JH_E1(eax) || BH_E4(eax) || JH_E6(eax));
2844 	case 131:
2845 		return (cpi->cpi_family < 0x10);
2846 	case 6336786:
2847 		/*
2848 		 * Test for AdvPowerMgmtInfo.TscPStateInvariant
2849 		 * if this is a K8 family or newer processor
2850 		 */
2851 		if (CPI_FAMILY(cpi) == 0xf) {
2852 			struct cpuid_regs regs;
2853 			regs.cp_eax = 0x80000007;
2854 			(void) __cpuid_insn(&regs);
2855 			return (!(regs.cp_edx & 0x100));
2856 		}
2857 		return (0);
2858 	case 6323525:
2859 		return (((((eax >> 12) & 0xff00) + (eax & 0xf00)) |
2860 		    (((eax >> 4) & 0xf) | ((eax >> 12) & 0xf0))) < 0xf40);
2861 
2862 	case 6671130:
2863 		/*
2864 		 * check for processors (pre-Shanghai) that do not provide
2865 		 * optimal management of 1gb ptes in its tlb.
2866 		 */
2867 		return (cpi->cpi_family == 0x10 && cpi->cpi_model < 4);
2868 
2869 	case 298:
2870 		return (DR_AX(eax) || DR_B0(eax) || DR_B1(eax) || DR_BA(eax) ||
2871 		    DR_B2(eax) || RB_C0(eax));
2872 
2873 	default:
2874 		return (-1);
2875 
2876 	}
2877 }
2878 
2879 /*
2880  * Determine if specified erratum is present via OSVW (OS Visible Workaround).
2881  * Return 1 if erratum is present, 0 if not present and -1 if indeterminate.
2882  */
2883 int
2884 osvw_opteron_erratum(cpu_t *cpu, uint_t erratum)
2885 {
2886 	struct cpuid_info	*cpi;
2887 	uint_t			osvwid;
2888 	static int		osvwfeature = -1;
2889 	uint64_t		osvwlength;
2890 
2891 
2892 	cpi = cpu->cpu_m.mcpu_cpi;
2893 
2894 	/* confirm OSVW supported */
2895 	if (osvwfeature == -1) {
2896 		osvwfeature = cpi->cpi_extd[1].cp_ecx & CPUID_AMD_ECX_OSVW;
2897 	} else {
2898 		/* assert that osvw feature setting is consistent on all cpus */
2899 		ASSERT(osvwfeature ==
2900 		    (cpi->cpi_extd[1].cp_ecx & CPUID_AMD_ECX_OSVW));
2901 	}
2902 	if (!osvwfeature)
2903 		return (-1);
2904 
2905 	osvwlength = rdmsr(MSR_AMD_OSVW_ID_LEN) & OSVW_ID_LEN_MASK;
2906 
2907 	switch (erratum) {
2908 	case 298:	/* osvwid is 0 */
2909 		osvwid = 0;
2910 		if (osvwlength <= (uint64_t)osvwid) {
2911 			/* osvwid 0 is unknown */
2912 			return (-1);
2913 		}
2914 
2915 		/*
2916 		 * Check the OSVW STATUS MSR to determine the state
2917 		 * of the erratum where:
2918 		 *   0 - fixed by HW
2919 		 *   1 - BIOS has applied the workaround when BIOS
2920 		 *   workaround is available. (Or for other errata,
2921 		 *   OS workaround is required.)
2922 		 * For a value of 1, caller will confirm that the
2923 		 * erratum 298 workaround has indeed been applied by BIOS.
2924 		 *
2925 		 * A 1 may be set in cpus that have a HW fix
2926 		 * in a mixed cpu system. Regarding erratum 298:
2927 		 *   In a multiprocessor platform, the workaround above
2928 		 *   should be applied to all processors regardless of
2929 		 *   silicon revision when an affected processor is
2930 		 *   present.
2931 		 */
2932 
2933 		return (rdmsr(MSR_AMD_OSVW_STATUS +
2934 		    (osvwid / OSVW_ID_CNT_PER_MSR)) &
2935 		    (1ULL << (osvwid % OSVW_ID_CNT_PER_MSR)));
2936 
2937 	default:
2938 		return (-1);
2939 	}
2940 }
2941 
2942 static const char assoc_str[] = "associativity";
2943 static const char line_str[] = "line-size";
2944 static const char size_str[] = "size";
2945 
2946 static void
2947 add_cache_prop(dev_info_t *devi, const char *label, const char *type,
2948     uint32_t val)
2949 {
2950 	char buf[128];
2951 
2952 	/*
2953 	 * ndi_prop_update_int() is used because it is desirable for
2954 	 * DDI_PROP_HW_DEF and DDI_PROP_DONTSLEEP to be set.
2955 	 */
2956 	if (snprintf(buf, sizeof (buf), "%s-%s", label, type) < sizeof (buf))
2957 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, buf, val);
2958 }
2959 
2960 /*
2961  * Intel-style cache/tlb description
2962  *
2963  * Standard cpuid level 2 gives a randomly ordered
2964  * selection of tags that index into a table that describes
2965  * cache and tlb properties.
2966  */
2967 
2968 static const char l1_icache_str[] = "l1-icache";
2969 static const char l1_dcache_str[] = "l1-dcache";
2970 static const char l2_cache_str[] = "l2-cache";
2971 static const char l3_cache_str[] = "l3-cache";
2972 static const char itlb4k_str[] = "itlb-4K";
2973 static const char dtlb4k_str[] = "dtlb-4K";
2974 static const char itlb2M_str[] = "itlb-2M";
2975 static const char itlb4M_str[] = "itlb-4M";
2976 static const char dtlb4M_str[] = "dtlb-4M";
2977 static const char dtlb24_str[] = "dtlb0-2M-4M";
2978 static const char itlb424_str[] = "itlb-4K-2M-4M";
2979 static const char itlb24_str[] = "itlb-2M-4M";
2980 static const char dtlb44_str[] = "dtlb-4K-4M";
2981 static const char sl1_dcache_str[] = "sectored-l1-dcache";
2982 static const char sl2_cache_str[] = "sectored-l2-cache";
2983 static const char itrace_str[] = "itrace-cache";
2984 static const char sl3_cache_str[] = "sectored-l3-cache";
2985 static const char sh_l2_tlb4k_str[] = "shared-l2-tlb-4k";
2986 
2987 static const struct cachetab {
2988 	uint8_t 	ct_code;
2989 	uint8_t		ct_assoc;
2990 	uint16_t 	ct_line_size;
2991 	size_t		ct_size;
2992 	const char	*ct_label;
2993 } intel_ctab[] = {
2994 	/*
2995 	 * maintain descending order!
2996 	 *
2997 	 * Codes ignored - Reason
2998 	 * ----------------------
2999 	 * 40H - intel_cpuid_4_cache_info() disambiguates l2/l3 cache
3000 	 * f0H/f1H - Currently we do not interpret prefetch size by design
3001 	 */
3002 	{ 0xe4, 16, 64, 8*1024*1024, l3_cache_str},
3003 	{ 0xe3, 16, 64, 4*1024*1024, l3_cache_str},
3004 	{ 0xe2, 16, 64, 2*1024*1024, l3_cache_str},
3005 	{ 0xde, 12, 64, 6*1024*1024, l3_cache_str},
3006 	{ 0xdd, 12, 64, 3*1024*1024, l3_cache_str},
3007 	{ 0xdc, 12, 64, ((1*1024*1024)+(512*1024)), l3_cache_str},
3008 	{ 0xd8, 8, 64, 4*1024*1024, l3_cache_str},
3009 	{ 0xd7, 8, 64, 2*1024*1024, l3_cache_str},
3010 	{ 0xd6, 8, 64, 1*1024*1024, l3_cache_str},
3011 	{ 0xd2, 4, 64, 2*1024*1024, l3_cache_str},
3012 	{ 0xd1, 4, 64, 1*1024*1024, l3_cache_str},
3013 	{ 0xd0, 4, 64, 512*1024, l3_cache_str},
3014 	{ 0xca, 4, 0, 512, sh_l2_tlb4k_str},
3015 	{ 0xc0, 4, 0, 8, dtlb44_str },
3016 	{ 0xba, 4, 0, 64, dtlb4k_str },
3017 	{ 0xb4, 4, 0, 256, dtlb4k_str },
3018 	{ 0xb3, 4, 0, 128, dtlb4k_str },
3019 	{ 0xb2, 4, 0, 64, itlb4k_str },
3020 	{ 0xb0, 4, 0, 128, itlb4k_str },
3021 	{ 0x87, 8, 64, 1024*1024, l2_cache_str},
3022 	{ 0x86, 4, 64, 512*1024, l2_cache_str},
3023 	{ 0x85, 8, 32, 2*1024*1024, l2_cache_str},
3024 	{ 0x84, 8, 32, 1024*1024, l2_cache_str},
3025 	{ 0x83, 8, 32, 512*1024, l2_cache_str},
3026 	{ 0x82, 8, 32, 256*1024, l2_cache_str},
3027 	{ 0x80, 8, 64, 512*1024, l2_cache_str},
3028 	{ 0x7f, 2, 64, 512*1024, l2_cache_str},
3029 	{ 0x7d, 8, 64, 2*1024*1024, sl2_cache_str},
3030 	{ 0x7c, 8, 64, 1024*1024, sl2_cache_str},
3031 	{ 0x7b, 8, 64, 512*1024, sl2_cache_str},
3032 	{ 0x7a, 8, 64, 256*1024, sl2_cache_str},
3033 	{ 0x79, 8, 64, 128*1024, sl2_cache_str},
3034 	{ 0x78, 8, 64, 1024*1024, l2_cache_str},
3035 	{ 0x73, 8, 0, 64*1024, itrace_str},
3036 	{ 0x72, 8, 0, 32*1024, itrace_str},
3037 	{ 0x71, 8, 0, 16*1024, itrace_str},
3038 	{ 0x70, 8, 0, 12*1024, itrace_str},
3039 	{ 0x68, 4, 64, 32*1024, sl1_dcache_str},
3040 	{ 0x67, 4, 64, 16*1024, sl1_dcache_str},
3041 	{ 0x66, 4, 64, 8*1024, sl1_dcache_str},
3042 	{ 0x60, 8, 64, 16*1024, sl1_dcache_str},
3043 	{ 0x5d, 0, 0, 256, dtlb44_str},
3044 	{ 0x5c, 0, 0, 128, dtlb44_str},
3045 	{ 0x5b, 0, 0, 64, dtlb44_str},
3046 	{ 0x5a, 4, 0, 32, dtlb24_str},
3047 	{ 0x59, 0, 0, 16, dtlb4k_str},
3048 	{ 0x57, 4, 0, 16, dtlb4k_str},
3049 	{ 0x56, 4, 0, 16, dtlb4M_str},
3050 	{ 0x55, 0, 0, 7, itlb24_str},
3051 	{ 0x52, 0, 0, 256, itlb424_str},
3052 	{ 0x51, 0, 0, 128, itlb424_str},
3053 	{ 0x50, 0, 0, 64, itlb424_str},
3054 	{ 0x4f, 0, 0, 32, itlb4k_str},
3055 	{ 0x4e, 24, 64, 6*1024*1024, l2_cache_str},
3056 	{ 0x4d, 16, 64, 16*1024*1024, l3_cache_str},
3057 	{ 0x4c, 12, 64, 12*1024*1024, l3_cache_str},
3058 	{ 0x4b, 16, 64, 8*1024*1024, l3_cache_str},
3059 	{ 0x4a, 12, 64, 6*1024*1024, l3_cache_str},
3060 	{ 0x49, 16, 64, 4*1024*1024, l3_cache_str},
3061 	{ 0x48, 12, 64, 3*1024*1024, l2_cache_str},
3062 	{ 0x47, 8, 64, 8*1024*1024, l3_cache_str},
3063 	{ 0x46, 4, 64, 4*1024*1024, l3_cache_str},
3064 	{ 0x45, 4, 32, 2*1024*1024, l2_cache_str},
3065 	{ 0x44, 4, 32, 1024*1024, l2_cache_str},
3066 	{ 0x43, 4, 32, 512*1024, l2_cache_str},
3067 	{ 0x42, 4, 32, 256*1024, l2_cache_str},
3068 	{ 0x41, 4, 32, 128*1024, l2_cache_str},
3069 	{ 0x3e, 4, 64, 512*1024, sl2_cache_str},
3070 	{ 0x3d, 6, 64, 384*1024, sl2_cache_str},
3071 	{ 0x3c, 4, 64, 256*1024, sl2_cache_str},
3072 	{ 0x3b, 2, 64, 128*1024, sl2_cache_str},
3073 	{ 0x3a, 6, 64, 192*1024, sl2_cache_str},
3074 	{ 0x39, 4, 64, 128*1024, sl2_cache_str},
3075 	{ 0x30, 8, 64, 32*1024, l1_icache_str},
3076 	{ 0x2c, 8, 64, 32*1024, l1_dcache_str},
3077 	{ 0x29, 8, 64, 4096*1024, sl3_cache_str},
3078 	{ 0x25, 8, 64, 2048*1024, sl3_cache_str},
3079 	{ 0x23, 8, 64, 1024*1024, sl3_cache_str},
3080 	{ 0x22, 4, 64, 512*1024, sl3_cache_str},
3081 	{ 0x0e, 6, 64, 24*1024, l1_dcache_str},
3082 	{ 0x0d, 4, 32, 16*1024, l1_dcache_str},
3083 	{ 0x0c, 4, 32, 16*1024, l1_dcache_str},
3084 	{ 0x0b, 4, 0, 4, itlb4M_str},
3085 	{ 0x0a, 2, 32, 8*1024, l1_dcache_str},
3086 	{ 0x08, 4, 32, 16*1024, l1_icache_str},
3087 	{ 0x06, 4, 32, 8*1024, l1_icache_str},
3088 	{ 0x05, 4, 0, 32, dtlb4M_str},
3089 	{ 0x04, 4, 0, 8, dtlb4M_str},
3090 	{ 0x03, 4, 0, 64, dtlb4k_str},
3091 	{ 0x02, 4, 0, 2, itlb4M_str},
3092 	{ 0x01, 4, 0, 32, itlb4k_str},
3093 	{ 0 }
3094 };
3095 
3096 static const struct cachetab cyrix_ctab[] = {
3097 	{ 0x70, 4, 0, 32, "tlb-4K" },
3098 	{ 0x80, 4, 16, 16*1024, "l1-cache" },
3099 	{ 0 }
3100 };
3101 
3102 /*
3103  * Search a cache table for a matching entry
3104  */
3105 static const struct cachetab *
3106 find_cacheent(const struct cachetab *ct, uint_t code)
3107 {
3108 	if (code != 0) {
3109 		for (; ct->ct_code != 0; ct++)
3110 			if (ct->ct_code <= code)
3111 				break;
3112 		if (ct->ct_code == code)
3113 			return (ct);
3114 	}
3115 	return (NULL);
3116 }
3117 
3118 /*
3119  * Populate cachetab entry with L2 or L3 cache-information using
3120  * cpuid function 4. This function is called from intel_walk_cacheinfo()
3121  * when descriptor 0x49 is encountered. It returns 0 if no such cache
3122  * information is found.
3123  */
3124 static int
3125 intel_cpuid_4_cache_info(struct cachetab *ct, struct cpuid_info *cpi)
3126 {
3127 	uint32_t level, i;
3128 	int ret = 0;
3129 
3130 	for (i = 0; i < cpi->cpi_std_4_size; i++) {
3131 		level = CPI_CACHE_LVL(cpi->cpi_std_4[i]);
3132 
3133 		if (level == 2 || level == 3) {
3134 			ct->ct_assoc = CPI_CACHE_WAYS(cpi->cpi_std_4[i]) + 1;
3135 			ct->ct_line_size =
3136 			    CPI_CACHE_COH_LN_SZ(cpi->cpi_std_4[i]) + 1;
3137 			ct->ct_size = ct->ct_assoc *
3138 			    (CPI_CACHE_PARTS(cpi->cpi_std_4[i]) + 1) *
3139 			    ct->ct_line_size *
3140 			    (cpi->cpi_std_4[i]->cp_ecx + 1);
3141 
3142 			if (level == 2) {
3143 				ct->ct_label = l2_cache_str;
3144 			} else if (level == 3) {
3145 				ct->ct_label = l3_cache_str;
3146 			}
3147 			ret = 1;
3148 		}
3149 	}
3150 
3151 	return (ret);
3152 }
3153 
3154 /*
3155  * Walk the cacheinfo descriptor, applying 'func' to every valid element
3156  * The walk is terminated if the walker returns non-zero.
3157  */
3158 static void
3159 intel_walk_cacheinfo(struct cpuid_info *cpi,
3160     void *arg, int (*func)(void *, const struct cachetab *))
3161 {
3162 	const struct cachetab *ct;
3163 	struct cachetab des_49_ct, des_b1_ct;
3164 	uint8_t *dp;
3165 	int i;
3166 
3167 	if ((dp = cpi->cpi_cacheinfo) == NULL)
3168 		return;
3169 	for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
3170 		/*
3171 		 * For overloaded descriptor 0x49 we use cpuid function 4
3172 		 * if supported by the current processor, to create
3173 		 * cache information.
3174 		 * For overloaded descriptor 0xb1 we use X86_PAE flag
3175 		 * to disambiguate the cache information.
3176 		 */
3177 		if (*dp == 0x49 && cpi->cpi_maxeax >= 0x4 &&
3178 		    intel_cpuid_4_cache_info(&des_49_ct, cpi) == 1) {
3179 				ct = &des_49_ct;
3180 		} else if (*dp == 0xb1) {
3181 			des_b1_ct.ct_code = 0xb1;
3182 			des_b1_ct.ct_assoc = 4;
3183 			des_b1_ct.ct_line_size = 0;
3184 			if (x86_feature & X86_PAE) {
3185 				des_b1_ct.ct_size = 8;
3186 				des_b1_ct.ct_label = itlb2M_str;
3187 			} else {
3188 				des_b1_ct.ct_size = 4;
3189 				des_b1_ct.ct_label = itlb4M_str;
3190 			}
3191 			ct = &des_b1_ct;
3192 		} else {
3193 			if ((ct = find_cacheent(intel_ctab, *dp)) == NULL) {
3194 				continue;
3195 			}
3196 		}
3197 
3198 		if (func(arg, ct) != 0) {
3199 			break;
3200 		}
3201 	}
3202 }
3203 
3204 /*
3205  * (Like the Intel one, except for Cyrix CPUs)
3206  */
3207 static void
3208 cyrix_walk_cacheinfo(struct cpuid_info *cpi,
3209     void *arg, int (*func)(void *, const struct cachetab *))
3210 {
3211 	const struct cachetab *ct;
3212 	uint8_t *dp;
3213 	int i;
3214 
3215 	if ((dp = cpi->cpi_cacheinfo) == NULL)
3216 		return;
3217 	for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
3218 		/*
3219 		 * Search Cyrix-specific descriptor table first ..
3220 		 */
3221 		if ((ct = find_cacheent(cyrix_ctab, *dp)) != NULL) {
3222 			if (func(arg, ct) != 0)
3223 				break;
3224 			continue;
3225 		}
3226 		/*
3227 		 * .. else fall back to the Intel one
3228 		 */
3229 		if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) {
3230 			if (func(arg, ct) != 0)
3231 				break;
3232 			continue;
3233 		}
3234 	}
3235 }
3236 
3237 /*
3238  * A cacheinfo walker that adds associativity, line-size, and size properties
3239  * to the devinfo node it is passed as an argument.
3240  */
3241 static int
3242 add_cacheent_props(void *arg, const struct cachetab *ct)
3243 {
3244 	dev_info_t *devi = arg;
3245 
3246 	add_cache_prop(devi, ct->ct_label, assoc_str, ct->ct_assoc);
3247 	if (ct->ct_line_size != 0)
3248 		add_cache_prop(devi, ct->ct_label, line_str,
3249 		    ct->ct_line_size);
3250 	add_cache_prop(devi, ct->ct_label, size_str, ct->ct_size);
3251 	return (0);
3252 }
3253 
3254 
3255 static const char fully_assoc[] = "fully-associative?";
3256 
3257 /*
3258  * AMD style cache/tlb description
3259  *
3260  * Extended functions 5 and 6 directly describe properties of
3261  * tlbs and various cache levels.
3262  */
3263 static void
3264 add_amd_assoc(dev_info_t *devi, const char *label, uint_t assoc)
3265 {
3266 	switch (assoc) {
3267 	case 0:	/* reserved; ignore */
3268 		break;
3269 	default:
3270 		add_cache_prop(devi, label, assoc_str, assoc);
3271 		break;
3272 	case 0xff:
3273 		add_cache_prop(devi, label, fully_assoc, 1);
3274 		break;
3275 	}
3276 }
3277 
3278 static void
3279 add_amd_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
3280 {
3281 	if (size == 0)
3282 		return;
3283 	add_cache_prop(devi, label, size_str, size);
3284 	add_amd_assoc(devi, label, assoc);
3285 }
3286 
3287 static void
3288 add_amd_cache(dev_info_t *devi, const char *label,
3289     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
3290 {
3291 	if (size == 0 || line_size == 0)
3292 		return;
3293 	add_amd_assoc(devi, label, assoc);
3294 	/*
3295 	 * Most AMD parts have a sectored cache. Multiple cache lines are
3296 	 * associated with each tag. A sector consists of all cache lines
3297 	 * associated with a tag. For example, the AMD K6-III has a sector
3298 	 * size of 2 cache lines per tag.
3299 	 */
3300 	if (lines_per_tag != 0)
3301 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
3302 	add_cache_prop(devi, label, line_str, line_size);
3303 	add_cache_prop(devi, label, size_str, size * 1024);
3304 }
3305 
3306 static void
3307 add_amd_l2_assoc(dev_info_t *devi, const char *label, uint_t assoc)
3308 {
3309 	switch (assoc) {
3310 	case 0:	/* off */
3311 		break;
3312 	case 1:
3313 	case 2:
3314 	case 4:
3315 		add_cache_prop(devi, label, assoc_str, assoc);
3316 		break;
3317 	case 6:
3318 		add_cache_prop(devi, label, assoc_str, 8);
3319 		break;
3320 	case 8:
3321 		add_cache_prop(devi, label, assoc_str, 16);
3322 		break;
3323 	case 0xf:
3324 		add_cache_prop(devi, label, fully_assoc, 1);
3325 		break;
3326 	default: /* reserved; ignore */
3327 		break;
3328 	}
3329 }
3330 
3331 static void
3332 add_amd_l2_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
3333 {
3334 	if (size == 0 || assoc == 0)
3335 		return;
3336 	add_amd_l2_assoc(devi, label, assoc);
3337 	add_cache_prop(devi, label, size_str, size);
3338 }
3339 
3340 static void
3341 add_amd_l2_cache(dev_info_t *devi, const char *label,
3342     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
3343 {
3344 	if (size == 0 || assoc == 0 || line_size == 0)
3345 		return;
3346 	add_amd_l2_assoc(devi, label, assoc);
3347 	if (lines_per_tag != 0)
3348 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
3349 	add_cache_prop(devi, label, line_str, line_size);
3350 	add_cache_prop(devi, label, size_str, size * 1024);
3351 }
3352 
3353 static void
3354 amd_cache_info(struct cpuid_info *cpi, dev_info_t *devi)
3355 {
3356 	struct cpuid_regs *cp;
3357 
3358 	if (cpi->cpi_xmaxeax < 0x80000005)
3359 		return;
3360 	cp = &cpi->cpi_extd[5];
3361 
3362 	/*
3363 	 * 4M/2M L1 TLB configuration
3364 	 *
3365 	 * We report the size for 2M pages because AMD uses two
3366 	 * TLB entries for one 4M page.
3367 	 */
3368 	add_amd_tlb(devi, "dtlb-2M",
3369 	    BITX(cp->cp_eax, 31, 24), BITX(cp->cp_eax, 23, 16));
3370 	add_amd_tlb(devi, "itlb-2M",
3371 	    BITX(cp->cp_eax, 15, 8), BITX(cp->cp_eax, 7, 0));
3372 
3373 	/*
3374 	 * 4K L1 TLB configuration
3375 	 */
3376 
3377 	switch (cpi->cpi_vendor) {
3378 		uint_t nentries;
3379 	case X86_VENDOR_TM:
3380 		if (cpi->cpi_family >= 5) {
3381 			/*
3382 			 * Crusoe processors have 256 TLB entries, but
3383 			 * cpuid data format constrains them to only
3384 			 * reporting 255 of them.
3385 			 */
3386 			if ((nentries = BITX(cp->cp_ebx, 23, 16)) == 255)
3387 				nentries = 256;
3388 			/*
3389 			 * Crusoe processors also have a unified TLB
3390 			 */
3391 			add_amd_tlb(devi, "tlb-4K", BITX(cp->cp_ebx, 31, 24),
3392 			    nentries);
3393 			break;
3394 		}
3395 		/*FALLTHROUGH*/
3396 	default:
3397 		add_amd_tlb(devi, itlb4k_str,
3398 		    BITX(cp->cp_ebx, 31, 24), BITX(cp->cp_ebx, 23, 16));
3399 		add_amd_tlb(devi, dtlb4k_str,
3400 		    BITX(cp->cp_ebx, 15, 8), BITX(cp->cp_ebx, 7, 0));
3401 		break;
3402 	}
3403 
3404 	/*
3405 	 * data L1 cache configuration
3406 	 */
3407 
3408 	add_amd_cache(devi, l1_dcache_str,
3409 	    BITX(cp->cp_ecx, 31, 24), BITX(cp->cp_ecx, 23, 16),
3410 	    BITX(cp->cp_ecx, 15, 8), BITX(cp->cp_ecx, 7, 0));
3411 
3412 	/*
3413 	 * code L1 cache configuration
3414 	 */
3415 
3416 	add_amd_cache(devi, l1_icache_str,
3417 	    BITX(cp->cp_edx, 31, 24), BITX(cp->cp_edx, 23, 16),
3418 	    BITX(cp->cp_edx, 15, 8), BITX(cp->cp_edx, 7, 0));
3419 
3420 	if (cpi->cpi_xmaxeax < 0x80000006)
3421 		return;
3422 	cp = &cpi->cpi_extd[6];
3423 
3424 	/* Check for a unified L2 TLB for large pages */
3425 
3426 	if (BITX(cp->cp_eax, 31, 16) == 0)
3427 		add_amd_l2_tlb(devi, "l2-tlb-2M",
3428 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3429 	else {
3430 		add_amd_l2_tlb(devi, "l2-dtlb-2M",
3431 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
3432 		add_amd_l2_tlb(devi, "l2-itlb-2M",
3433 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3434 	}
3435 
3436 	/* Check for a unified L2 TLB for 4K pages */
3437 
3438 	if (BITX(cp->cp_ebx, 31, 16) == 0) {
3439 		add_amd_l2_tlb(devi, "l2-tlb-4K",
3440 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3441 	} else {
3442 		add_amd_l2_tlb(devi, "l2-dtlb-4K",
3443 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
3444 		add_amd_l2_tlb(devi, "l2-itlb-4K",
3445 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3446 	}
3447 
3448 	add_amd_l2_cache(devi, l2_cache_str,
3449 	    BITX(cp->cp_ecx, 31, 16), BITX(cp->cp_ecx, 15, 12),
3450 	    BITX(cp->cp_ecx, 11, 8), BITX(cp->cp_ecx, 7, 0));
3451 }
3452 
3453 /*
3454  * There are two basic ways that the x86 world describes it cache
3455  * and tlb architecture - Intel's way and AMD's way.
3456  *
3457  * Return which flavor of cache architecture we should use
3458  */
3459 static int
3460 x86_which_cacheinfo(struct cpuid_info *cpi)
3461 {
3462 	switch (cpi->cpi_vendor) {
3463 	case X86_VENDOR_Intel:
3464 		if (cpi->cpi_maxeax >= 2)
3465 			return (X86_VENDOR_Intel);
3466 		break;
3467 	case X86_VENDOR_AMD:
3468 		/*
3469 		 * The K5 model 1 was the first part from AMD that reported
3470 		 * cache sizes via extended cpuid functions.
3471 		 */
3472 		if (cpi->cpi_family > 5 ||
3473 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
3474 			return (X86_VENDOR_AMD);
3475 		break;
3476 	case X86_VENDOR_TM:
3477 		if (cpi->cpi_family >= 5)
3478 			return (X86_VENDOR_AMD);
3479 		/*FALLTHROUGH*/
3480 	default:
3481 		/*
3482 		 * If they have extended CPU data for 0x80000005
3483 		 * then we assume they have AMD-format cache
3484 		 * information.
3485 		 *
3486 		 * If not, and the vendor happens to be Cyrix,
3487 		 * then try our-Cyrix specific handler.
3488 		 *
3489 		 * If we're not Cyrix, then assume we're using Intel's
3490 		 * table-driven format instead.
3491 		 */
3492 		if (cpi->cpi_xmaxeax >= 0x80000005)
3493 			return (X86_VENDOR_AMD);
3494 		else if (cpi->cpi_vendor == X86_VENDOR_Cyrix)
3495 			return (X86_VENDOR_Cyrix);
3496 		else if (cpi->cpi_maxeax >= 2)
3497 			return (X86_VENDOR_Intel);
3498 		break;
3499 	}
3500 	return (-1);
3501 }
3502 
3503 void
3504 cpuid_set_cpu_properties(void *dip, processorid_t cpu_id,
3505     struct cpuid_info *cpi)
3506 {
3507 	dev_info_t *cpu_devi;
3508 	int create;
3509 
3510 	cpu_devi = (dev_info_t *)dip;
3511 
3512 	/* device_type */
3513 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3514 	    "device_type", "cpu");
3515 
3516 	/* reg */
3517 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3518 	    "reg", cpu_id);
3519 
3520 	/* cpu-mhz, and clock-frequency */
3521 	if (cpu_freq > 0) {
3522 		long long mul;
3523 
3524 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3525 		    "cpu-mhz", cpu_freq);
3526 		if ((mul = cpu_freq * 1000000LL) <= INT_MAX)
3527 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3528 			    "clock-frequency", (int)mul);
3529 	}
3530 
3531 	if ((x86_feature & X86_CPUID) == 0) {
3532 		return;
3533 	}
3534 
3535 	/* vendor-id */
3536 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3537 	    "vendor-id", cpi->cpi_vendorstr);
3538 
3539 	if (cpi->cpi_maxeax == 0) {
3540 		return;
3541 	}
3542 
3543 	/*
3544 	 * family, model, and step
3545 	 */
3546 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3547 	    "family", CPI_FAMILY(cpi));
3548 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3549 	    "cpu-model", CPI_MODEL(cpi));
3550 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3551 	    "stepping-id", CPI_STEP(cpi));
3552 
3553 	/* type */
3554 	switch (cpi->cpi_vendor) {
3555 	case X86_VENDOR_Intel:
3556 		create = 1;
3557 		break;
3558 	default:
3559 		create = 0;
3560 		break;
3561 	}
3562 	if (create)
3563 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3564 		    "type", CPI_TYPE(cpi));
3565 
3566 	/* ext-family */
3567 	switch (cpi->cpi_vendor) {
3568 	case X86_VENDOR_Intel:
3569 	case X86_VENDOR_AMD:
3570 		create = cpi->cpi_family >= 0xf;
3571 		break;
3572 	default:
3573 		create = 0;
3574 		break;
3575 	}
3576 	if (create)
3577 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3578 		    "ext-family", CPI_FAMILY_XTD(cpi));
3579 
3580 	/* ext-model */
3581 	switch (cpi->cpi_vendor) {
3582 	case X86_VENDOR_Intel:
3583 		create = IS_EXTENDED_MODEL_INTEL(cpi);
3584 		break;
3585 	case X86_VENDOR_AMD:
3586 		create = CPI_FAMILY(cpi) == 0xf;
3587 		break;
3588 	default:
3589 		create = 0;
3590 		break;
3591 	}
3592 	if (create)
3593 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3594 		    "ext-model", CPI_MODEL_XTD(cpi));
3595 
3596 	/* generation */
3597 	switch (cpi->cpi_vendor) {
3598 	case X86_VENDOR_AMD:
3599 		/*
3600 		 * AMD K5 model 1 was the first part to support this
3601 		 */
3602 		create = cpi->cpi_xmaxeax >= 0x80000001;
3603 		break;
3604 	default:
3605 		create = 0;
3606 		break;
3607 	}
3608 	if (create)
3609 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3610 		    "generation", BITX((cpi)->cpi_extd[1].cp_eax, 11, 8));
3611 
3612 	/* brand-id */
3613 	switch (cpi->cpi_vendor) {
3614 	case X86_VENDOR_Intel:
3615 		/*
3616 		 * brand id first appeared on Pentium III Xeon model 8,
3617 		 * and Celeron model 8 processors and Opteron
3618 		 */
3619 		create = cpi->cpi_family > 6 ||
3620 		    (cpi->cpi_family == 6 && cpi->cpi_model >= 8);
3621 		break;
3622 	case X86_VENDOR_AMD:
3623 		create = cpi->cpi_family >= 0xf;
3624 		break;
3625 	default:
3626 		create = 0;
3627 		break;
3628 	}
3629 	if (create && cpi->cpi_brandid != 0) {
3630 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3631 		    "brand-id", cpi->cpi_brandid);
3632 	}
3633 
3634 	/* chunks, and apic-id */
3635 	switch (cpi->cpi_vendor) {
3636 		/*
3637 		 * first available on Pentium IV and Opteron (K8)
3638 		 */
3639 	case X86_VENDOR_Intel:
3640 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
3641 		break;
3642 	case X86_VENDOR_AMD:
3643 		create = cpi->cpi_family >= 0xf;
3644 		break;
3645 	default:
3646 		create = 0;
3647 		break;
3648 	}
3649 	if (create) {
3650 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3651 		    "chunks", CPI_CHUNKS(cpi));
3652 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3653 		    "apic-id", cpi->cpi_apicid);
3654 		if (cpi->cpi_chipid >= 0) {
3655 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3656 			    "chip#", cpi->cpi_chipid);
3657 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3658 			    "clog#", cpi->cpi_clogid);
3659 		}
3660 	}
3661 
3662 	/* cpuid-features */
3663 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3664 	    "cpuid-features", CPI_FEATURES_EDX(cpi));
3665 
3666 
3667 	/* cpuid-features-ecx */
3668 	switch (cpi->cpi_vendor) {
3669 	case X86_VENDOR_Intel:
3670 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
3671 		break;
3672 	default:
3673 		create = 0;
3674 		break;
3675 	}
3676 	if (create)
3677 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3678 		    "cpuid-features-ecx", CPI_FEATURES_ECX(cpi));
3679 
3680 	/* ext-cpuid-features */
3681 	switch (cpi->cpi_vendor) {
3682 	case X86_VENDOR_Intel:
3683 	case X86_VENDOR_AMD:
3684 	case X86_VENDOR_Cyrix:
3685 	case X86_VENDOR_TM:
3686 	case X86_VENDOR_Centaur:
3687 		create = cpi->cpi_xmaxeax >= 0x80000001;
3688 		break;
3689 	default:
3690 		create = 0;
3691 		break;
3692 	}
3693 	if (create) {
3694 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3695 		    "ext-cpuid-features", CPI_FEATURES_XTD_EDX(cpi));
3696 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3697 		    "ext-cpuid-features-ecx", CPI_FEATURES_XTD_ECX(cpi));
3698 	}
3699 
3700 	/*
3701 	 * Brand String first appeared in Intel Pentium IV, AMD K5
3702 	 * model 1, and Cyrix GXm.  On earlier models we try and
3703 	 * simulate something similar .. so this string should always
3704 	 * same -something- about the processor, however lame.
3705 	 */
3706 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3707 	    "brand-string", cpi->cpi_brandstr);
3708 
3709 	/*
3710 	 * Finally, cache and tlb information
3711 	 */
3712 	switch (x86_which_cacheinfo(cpi)) {
3713 	case X86_VENDOR_Intel:
3714 		intel_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
3715 		break;
3716 	case X86_VENDOR_Cyrix:
3717 		cyrix_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
3718 		break;
3719 	case X86_VENDOR_AMD:
3720 		amd_cache_info(cpi, cpu_devi);
3721 		break;
3722 	default:
3723 		break;
3724 	}
3725 }
3726 
3727 struct l2info {
3728 	int *l2i_csz;
3729 	int *l2i_lsz;
3730 	int *l2i_assoc;
3731 	int l2i_ret;
3732 };
3733 
3734 /*
3735  * A cacheinfo walker that fetches the size, line-size and associativity
3736  * of the L2 cache
3737  */
3738 static int
3739 intel_l2cinfo(void *arg, const struct cachetab *ct)
3740 {
3741 	struct l2info *l2i = arg;
3742 	int *ip;
3743 
3744 	if (ct->ct_label != l2_cache_str &&
3745 	    ct->ct_label != sl2_cache_str)
3746 		return (0);	/* not an L2 -- keep walking */
3747 
3748 	if ((ip = l2i->l2i_csz) != NULL)
3749 		*ip = ct->ct_size;
3750 	if ((ip = l2i->l2i_lsz) != NULL)
3751 		*ip = ct->ct_line_size;
3752 	if ((ip = l2i->l2i_assoc) != NULL)
3753 		*ip = ct->ct_assoc;
3754 	l2i->l2i_ret = ct->ct_size;
3755 	return (1);		/* was an L2 -- terminate walk */
3756 }
3757 
3758 /*
3759  * AMD L2/L3 Cache and TLB Associativity Field Definition:
3760  *
3761  *	Unlike the associativity for the L1 cache and tlb where the 8 bit
3762  *	value is the associativity, the associativity for the L2 cache and
3763  *	tlb is encoded in the following table. The 4 bit L2 value serves as
3764  *	an index into the amd_afd[] array to determine the associativity.
3765  *	-1 is undefined. 0 is fully associative.
3766  */
3767 
3768 static int amd_afd[] =
3769 	{-1, 1, 2, -1, 4, -1, 8, -1, 16, -1, 32, 48, 64, 96, 128, 0};
3770 
3771 static void
3772 amd_l2cacheinfo(struct cpuid_info *cpi, struct l2info *l2i)
3773 {
3774 	struct cpuid_regs *cp;
3775 	uint_t size, assoc;
3776 	int i;
3777 	int *ip;
3778 
3779 	if (cpi->cpi_xmaxeax < 0x80000006)
3780 		return;
3781 	cp = &cpi->cpi_extd[6];
3782 
3783 	if ((i = BITX(cp->cp_ecx, 15, 12)) != 0 &&
3784 	    (size = BITX(cp->cp_ecx, 31, 16)) != 0) {
3785 		uint_t cachesz = size * 1024;
3786 		assoc = amd_afd[i];
3787 
3788 		ASSERT(assoc != -1);
3789 
3790 		if ((ip = l2i->l2i_csz) != NULL)
3791 			*ip = cachesz;
3792 		if ((ip = l2i->l2i_lsz) != NULL)
3793 			*ip = BITX(cp->cp_ecx, 7, 0);
3794 		if ((ip = l2i->l2i_assoc) != NULL)
3795 			*ip = assoc;
3796 		l2i->l2i_ret = cachesz;
3797 	}
3798 }
3799 
3800 int
3801 getl2cacheinfo(cpu_t *cpu, int *csz, int *lsz, int *assoc)
3802 {
3803 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
3804 	struct l2info __l2info, *l2i = &__l2info;
3805 
3806 	l2i->l2i_csz = csz;
3807 	l2i->l2i_lsz = lsz;
3808 	l2i->l2i_assoc = assoc;
3809 	l2i->l2i_ret = -1;
3810 
3811 	switch (x86_which_cacheinfo(cpi)) {
3812 	case X86_VENDOR_Intel:
3813 		intel_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
3814 		break;
3815 	case X86_VENDOR_Cyrix:
3816 		cyrix_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
3817 		break;
3818 	case X86_VENDOR_AMD:
3819 		amd_l2cacheinfo(cpi, l2i);
3820 		break;
3821 	default:
3822 		break;
3823 	}
3824 	return (l2i->l2i_ret);
3825 }
3826 
3827 #if !defined(__xpv)
3828 
3829 uint32_t *
3830 cpuid_mwait_alloc(cpu_t *cpu)
3831 {
3832 	uint32_t	*ret;
3833 	size_t		mwait_size;
3834 
3835 	ASSERT(cpuid_checkpass(cpu, 2));
3836 
3837 	mwait_size = cpu->cpu_m.mcpu_cpi->cpi_mwait.mon_max;
3838 	if (mwait_size == 0)
3839 		return (NULL);
3840 
3841 	/*
3842 	 * kmem_alloc() returns cache line size aligned data for mwait_size
3843 	 * allocations.  mwait_size is currently cache line sized.  Neither
3844 	 * of these implementation details are guarantied to be true in the
3845 	 * future.
3846 	 *
3847 	 * First try allocating mwait_size as kmem_alloc() currently returns
3848 	 * correctly aligned memory.  If kmem_alloc() does not return
3849 	 * mwait_size aligned memory, then use mwait_size ROUNDUP.
3850 	 *
3851 	 * Set cpi_mwait.buf_actual and cpi_mwait.size_actual in case we
3852 	 * decide to free this memory.
3853 	 */
3854 	ret = kmem_zalloc(mwait_size, KM_SLEEP);
3855 	if (ret == (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size)) {
3856 		cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret;
3857 		cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size;
3858 		*ret = MWAIT_RUNNING;
3859 		return (ret);
3860 	} else {
3861 		kmem_free(ret, mwait_size);
3862 		ret = kmem_zalloc(mwait_size * 2, KM_SLEEP);
3863 		cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret;
3864 		cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size * 2;
3865 		ret = (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size);
3866 		*ret = MWAIT_RUNNING;
3867 		return (ret);
3868 	}
3869 }
3870 
3871 void
3872 cpuid_mwait_free(cpu_t *cpu)
3873 {
3874 	ASSERT(cpuid_checkpass(cpu, 2));
3875 
3876 	if (cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual != NULL &&
3877 	    cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual > 0) {
3878 		kmem_free(cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual,
3879 		    cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual);
3880 	}
3881 
3882 	cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = NULL;
3883 	cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = 0;
3884 }
3885 
3886 void
3887 patch_tsc_read(int flag)
3888 {
3889 	size_t cnt;
3890 
3891 	switch (flag) {
3892 	case X86_NO_TSC:
3893 		cnt = &_no_rdtsc_end - &_no_rdtsc_start;
3894 		(void) memcpy((void *)tsc_read, (void *)&_no_rdtsc_start, cnt);
3895 		break;
3896 	case X86_HAVE_TSCP:
3897 		cnt = &_tscp_end - &_tscp_start;
3898 		(void) memcpy((void *)tsc_read, (void *)&_tscp_start, cnt);
3899 		break;
3900 	case X86_TSC_MFENCE:
3901 		cnt = &_tsc_mfence_end - &_tsc_mfence_start;
3902 		(void) memcpy((void *)tsc_read,
3903 		    (void *)&_tsc_mfence_start, cnt);
3904 		break;
3905 	case X86_TSC_LFENCE:
3906 		cnt = &_tsc_lfence_end - &_tsc_lfence_start;
3907 		(void) memcpy((void *)tsc_read,
3908 		    (void *)&_tsc_lfence_start, cnt);
3909 		break;
3910 	default:
3911 		break;
3912 	}
3913 }
3914 
3915 int
3916 cpuid_deep_cstates_supported(void)
3917 {
3918 	struct cpuid_info *cpi;
3919 	struct cpuid_regs regs;
3920 
3921 	ASSERT(cpuid_checkpass(CPU, 1));
3922 
3923 	cpi = CPU->cpu_m.mcpu_cpi;
3924 
3925 	if (!(x86_feature & X86_CPUID))
3926 		return (0);
3927 
3928 	switch (cpi->cpi_vendor) {
3929 	case X86_VENDOR_Intel:
3930 		if (cpi->cpi_xmaxeax < 0x80000007)
3931 			return (0);
3932 
3933 		/*
3934 		 * TSC run at a constant rate in all ACPI C-states?
3935 		 */
3936 		regs.cp_eax = 0x80000007;
3937 		(void) __cpuid_insn(&regs);
3938 		return (regs.cp_edx & CPUID_TSC_CSTATE_INVARIANCE);
3939 
3940 	default:
3941 		return (0);
3942 	}
3943 }
3944 
3945 #endif	/* !__xpv */
3946 
3947 void
3948 post_startup_cpu_fixups(void)
3949 {
3950 #ifndef __xpv
3951 	/*
3952 	 * Some AMD processors support C1E state. Entering this state will
3953 	 * cause the local APIC timer to stop, which we can't deal with at
3954 	 * this time.
3955 	 */
3956 	if (cpuid_getvendor(CPU) == X86_VENDOR_AMD) {
3957 		on_trap_data_t otd;
3958 		uint64_t reg;
3959 
3960 		if (!on_trap(&otd, OT_DATA_ACCESS)) {
3961 			reg = rdmsr(MSR_AMD_INT_PENDING_CMP_HALT);
3962 			/* Disable C1E state if it is enabled by BIOS */
3963 			if ((reg >> AMD_ACTONCMPHALT_SHIFT) &
3964 			    AMD_ACTONCMPHALT_MASK) {
3965 				reg &= ~(AMD_ACTONCMPHALT_MASK <<
3966 				    AMD_ACTONCMPHALT_SHIFT);
3967 				wrmsr(MSR_AMD_INT_PENDING_CMP_HALT, reg);
3968 			}
3969 		}
3970 		no_trap();
3971 	}
3972 #endif	/* !__xpv */
3973 }
3974 
3975 /*
3976  * Starting with the Westmere processor the local
3977  * APIC timer will continue running in all C-states,
3978  * including the deepest C-states.
3979  */
3980 int
3981 cpuid_arat_supported(void)
3982 {
3983 	struct cpuid_info *cpi;
3984 	struct cpuid_regs regs;
3985 
3986 	ASSERT(cpuid_checkpass(CPU, 1));
3987 	ASSERT(x86_feature & X86_CPUID);
3988 
3989 	cpi = CPU->cpu_m.mcpu_cpi;
3990 
3991 	switch (cpi->cpi_vendor) {
3992 	case X86_VENDOR_Intel:
3993 		/*
3994 		 * Always-running Local APIC Timer is
3995 		 * indicated by CPUID.6.EAX[2].
3996 		 */
3997 		if (cpi->cpi_maxeax >= 6) {
3998 			regs.cp_eax = 6;
3999 			(void) cpuid_insn(NULL, &regs);
4000 			return (regs.cp_eax & CPUID_CSTATE_ARAT);
4001 		} else {
4002 			return (0);
4003 		}
4004 	default:
4005 		return (0);
4006 	}
4007 }
4008 
4009 #if defined(__amd64) && !defined(__xpv)
4010 /*
4011  * Patch in versions of bcopy for high performance Intel Nhm processors
4012  * and later...
4013  */
4014 void
4015 patch_memops(uint_t vendor)
4016 {
4017 	size_t cnt, i;
4018 	caddr_t to, from;
4019 
4020 	if ((vendor == X86_VENDOR_Intel) && ((x86_feature & X86_SSE4_2) != 0)) {
4021 		cnt = &bcopy_patch_end - &bcopy_patch_start;
4022 		to = &bcopy_ck_size;
4023 		from = &bcopy_patch_start;
4024 		for (i = 0; i < cnt; i++) {
4025 			*to++ = *from++;
4026 		}
4027 	}
4028 }
4029 #endif  /* __amd64 && !__xpv */
4030