xref: /titanic_50/usr/src/uts/i86pc/os/cpuid.c (revision 4d5451d2e1f6db64ed13dd3f5903c883f61779fe)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Various routines to handle identification
28  * and classification of x86 processors.
29  */
30 
31 #include <sys/types.h>
32 #include <sys/archsystm.h>
33 #include <sys/x86_archext.h>
34 #include <sys/kmem.h>
35 #include <sys/systm.h>
36 #include <sys/cmn_err.h>
37 #include <sys/sunddi.h>
38 #include <sys/sunndi.h>
39 #include <sys/cpuvar.h>
40 #include <sys/processor.h>
41 #include <sys/sysmacros.h>
42 #include <sys/pg.h>
43 #include <sys/fp.h>
44 #include <sys/controlregs.h>
45 #include <sys/auxv_386.h>
46 #include <sys/bitmap.h>
47 #include <sys/memnode.h>
48 
49 #ifdef __xpv
50 #include <sys/hypervisor.h>
51 #endif
52 
53 /*
54  * Pass 0 of cpuid feature analysis happens in locore. It contains special code
55  * to recognize Cyrix processors that are not cpuid-compliant, and to deal with
56  * them accordingly. For most modern processors, feature detection occurs here
57  * in pass 1.
58  *
59  * Pass 1 of cpuid feature analysis happens just at the beginning of mlsetup()
60  * for the boot CPU and does the basic analysis that the early kernel needs.
61  * x86_feature is set based on the return value of cpuid_pass1() of the boot
62  * CPU.
63  *
64  * Pass 1 includes:
65  *
66  *	o Determining vendor/model/family/stepping and setting x86_type and
67  *	  x86_vendor accordingly.
68  *	o Processing the feature flags returned by the cpuid instruction while
69  *	  applying any workarounds or tricks for the specific processor.
70  *	o Mapping the feature flags into Solaris feature bits (X86_*).
71  *	o Processing extended feature flags if supported by the processor,
72  *	  again while applying specific processor knowledge.
73  *	o Determining the CMT characteristics of the system.
74  *
75  * Pass 1 is done on non-boot CPUs during their initialization and the results
76  * are used only as a meager attempt at ensuring that all processors within the
77  * system support the same features.
78  *
79  * Pass 2 of cpuid feature analysis happens just at the beginning
80  * of startup().  It just copies in and corrects the remainder
81  * of the cpuid data we depend on: standard cpuid functions that we didn't
82  * need for pass1 feature analysis, and extended cpuid functions beyond the
83  * simple feature processing done in pass1.
84  *
85  * Pass 3 of cpuid analysis is invoked after basic kernel services; in
86  * particular kernel memory allocation has been made available. It creates a
87  * readable brand string based on the data collected in the first two passes.
88  *
89  * Pass 4 of cpuid analysis is invoked after post_startup() when all
90  * the support infrastructure for various hardware features has been
91  * initialized. It determines which processor features will be reported
92  * to userland via the aux vector.
93  *
94  * All passes are executed on all CPUs, but only the boot CPU determines what
95  * features the kernel will use.
96  *
97  * Much of the worst junk in this file is for the support of processors
98  * that didn't really implement the cpuid instruction properly.
99  *
100  * NOTE: The accessor functions (cpuid_get*) are aware of, and ASSERT upon,
101  * the pass numbers.  Accordingly, changes to the pass code may require changes
102  * to the accessor code.
103  */
104 
105 uint_t x86_feature = 0;
106 uint_t x86_vendor = X86_VENDOR_IntelClone;
107 uint_t x86_type = X86_TYPE_OTHER;
108 uint_t x86_clflush_size = 0;
109 
110 uint_t pentiumpro_bug4046376;
111 uint_t pentiumpro_bug4064495;
112 
113 uint_t enable486;
114 
115 /*
116  * monitor/mwait info.
117  *
118  * size_actual and buf_actual are the real address and size allocated to get
119  * proper mwait_buf alignement.  buf_actual and size_actual should be passed
120  * to kmem_free().  Currently kmem_alloc() and mwait happen to both use
121  * processor cache-line alignment, but this is not guarantied in the furture.
122  */
123 struct mwait_info {
124 	size_t		mon_min;	/* min size to avoid missed wakeups */
125 	size_t		mon_max;	/* size to avoid false wakeups */
126 	size_t		size_actual;	/* size actually allocated */
127 	void		*buf_actual;	/* memory actually allocated */
128 	uint32_t	support;	/* processor support of monitor/mwait */
129 };
130 
131 /*
132  * These constants determine how many of the elements of the
133  * cpuid we cache in the cpuid_info data structure; the
134  * remaining elements are accessible via the cpuid instruction.
135  */
136 
137 #define	NMAX_CPI_STD	6		/* eax = 0 .. 5 */
138 #define	NMAX_CPI_EXTD	9		/* eax = 0x80000000 .. 0x80000008 */
139 
140 struct cpuid_info {
141 	uint_t cpi_pass;		/* last pass completed */
142 	/*
143 	 * standard function information
144 	 */
145 	uint_t cpi_maxeax;		/* fn 0: %eax */
146 	char cpi_vendorstr[13];		/* fn 0: %ebx:%ecx:%edx */
147 	uint_t cpi_vendor;		/* enum of cpi_vendorstr */
148 
149 	uint_t cpi_family;		/* fn 1: extended family */
150 	uint_t cpi_model;		/* fn 1: extended model */
151 	uint_t cpi_step;		/* fn 1: stepping */
152 	chipid_t cpi_chipid;		/* fn 1: %ebx: chip # on ht cpus */
153 	uint_t cpi_brandid;		/* fn 1: %ebx: brand ID */
154 	int cpi_clogid;			/* fn 1: %ebx: thread # */
155 	uint_t cpi_ncpu_per_chip;	/* fn 1: %ebx: logical cpu count */
156 	uint8_t cpi_cacheinfo[16];	/* fn 2: intel-style cache desc */
157 	uint_t cpi_ncache;		/* fn 2: number of elements */
158 	uint_t cpi_ncpu_shr_last_cache;	/* fn 4: %eax: ncpus sharing cache */
159 	id_t cpi_last_lvl_cacheid;	/* fn 4: %eax: derived cache id */
160 	uint_t cpi_std_4_size;		/* fn 4: number of fn 4 elements */
161 	struct cpuid_regs **cpi_std_4;	/* fn 4: %ecx == 0 .. fn4_size */
162 	struct cpuid_regs cpi_std[NMAX_CPI_STD];	/* 0 .. 5 */
163 	/*
164 	 * extended function information
165 	 */
166 	uint_t cpi_xmaxeax;		/* fn 0x80000000: %eax */
167 	char cpi_brandstr[49];		/* fn 0x8000000[234] */
168 	uint8_t cpi_pabits;		/* fn 0x80000006: %eax */
169 	uint8_t cpi_vabits;		/* fn 0x80000006: %eax */
170 	struct cpuid_regs cpi_extd[NMAX_CPI_EXTD]; /* 0x8000000[0-8] */
171 	id_t cpi_coreid;		/* same coreid => strands share core */
172 	int cpi_pkgcoreid;		/* core number within single package */
173 	uint_t cpi_ncore_per_chip;	/* AMD: fn 0x80000008: %ecx[7-0] */
174 					/* Intel: fn 4: %eax[31-26] */
175 	/*
176 	 * supported feature information
177 	 */
178 	uint32_t cpi_support[5];
179 #define	STD_EDX_FEATURES	0
180 #define	AMD_EDX_FEATURES	1
181 #define	TM_EDX_FEATURES		2
182 #define	STD_ECX_FEATURES	3
183 #define	AMD_ECX_FEATURES	4
184 	/*
185 	 * Synthesized information, where known.
186 	 */
187 	uint32_t cpi_chiprev;		/* See X86_CHIPREV_* in x86_archext.h */
188 	const char *cpi_chiprevstr;	/* May be NULL if chiprev unknown */
189 	uint32_t cpi_socket;		/* Chip package/socket type */
190 
191 	struct mwait_info cpi_mwait;	/* fn 5: monitor/mwait info */
192 	uint32_t cpi_apicid;
193 };
194 
195 
196 static struct cpuid_info cpuid_info0;
197 
198 /*
199  * These bit fields are defined by the Intel Application Note AP-485
200  * "Intel Processor Identification and the CPUID Instruction"
201  */
202 #define	CPI_FAMILY_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 27, 20)
203 #define	CPI_MODEL_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 19, 16)
204 #define	CPI_TYPE(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 13, 12)
205 #define	CPI_FAMILY(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 11, 8)
206 #define	CPI_STEP(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 3, 0)
207 #define	CPI_MODEL(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 7, 4)
208 
209 #define	CPI_FEATURES_EDX(cpi)		((cpi)->cpi_std[1].cp_edx)
210 #define	CPI_FEATURES_ECX(cpi)		((cpi)->cpi_std[1].cp_ecx)
211 #define	CPI_FEATURES_XTD_EDX(cpi)	((cpi)->cpi_extd[1].cp_edx)
212 #define	CPI_FEATURES_XTD_ECX(cpi)	((cpi)->cpi_extd[1].cp_ecx)
213 
214 #define	CPI_BRANDID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 7, 0)
215 #define	CPI_CHUNKS(cpi)		BITX((cpi)->cpi_std[1].cp_ebx, 15, 7)
216 #define	CPI_CPU_COUNT(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 23, 16)
217 #define	CPI_APIC_ID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 31, 24)
218 
219 #define	CPI_MAXEAX_MAX		0x100		/* sanity control */
220 #define	CPI_XMAXEAX_MAX		0x80000100
221 #define	CPI_FN4_ECX_MAX		0x20		/* sanity: max fn 4 levels */
222 #define	CPI_FNB_ECX_MAX		0x20		/* sanity: max fn B levels */
223 
224 /*
225  * Function 4 (Deterministic Cache Parameters) macros
226  * Defined by Intel Application Note AP-485
227  */
228 #define	CPI_NUM_CORES(regs)		BITX((regs)->cp_eax, 31, 26)
229 #define	CPI_NTHR_SHR_CACHE(regs)	BITX((regs)->cp_eax, 25, 14)
230 #define	CPI_FULL_ASSOC_CACHE(regs)	BITX((regs)->cp_eax, 9, 9)
231 #define	CPI_SELF_INIT_CACHE(regs)	BITX((regs)->cp_eax, 8, 8)
232 #define	CPI_CACHE_LVL(regs)		BITX((regs)->cp_eax, 7, 5)
233 #define	CPI_CACHE_TYPE(regs)		BITX((regs)->cp_eax, 4, 0)
234 #define	CPI_CPU_LEVEL_TYPE(regs)	BITX((regs)->cp_ecx, 15, 8)
235 
236 #define	CPI_CACHE_WAYS(regs)		BITX((regs)->cp_ebx, 31, 22)
237 #define	CPI_CACHE_PARTS(regs)		BITX((regs)->cp_ebx, 21, 12)
238 #define	CPI_CACHE_COH_LN_SZ(regs)	BITX((regs)->cp_ebx, 11, 0)
239 
240 #define	CPI_CACHE_SETS(regs)		BITX((regs)->cp_ecx, 31, 0)
241 
242 #define	CPI_PREFCH_STRIDE(regs)		BITX((regs)->cp_edx, 9, 0)
243 
244 
245 /*
246  * A couple of shorthand macros to identify "later" P6-family chips
247  * like the Pentium M and Core.  First, the "older" P6-based stuff
248  * (loosely defined as "pre-Pentium-4"):
249  * P6, PII, Mobile PII, PII Xeon, PIII, Mobile PIII, PIII Xeon
250  */
251 
252 #define	IS_LEGACY_P6(cpi) (			\
253 	cpi->cpi_family == 6 && 		\
254 		(cpi->cpi_model == 1 ||		\
255 		cpi->cpi_model == 3 ||		\
256 		cpi->cpi_model == 5 ||		\
257 		cpi->cpi_model == 6 ||		\
258 		cpi->cpi_model == 7 ||		\
259 		cpi->cpi_model == 8 ||		\
260 		cpi->cpi_model == 0xA ||	\
261 		cpi->cpi_model == 0xB)		\
262 )
263 
264 /* A "new F6" is everything with family 6 that's not the above */
265 #define	IS_NEW_F6(cpi) ((cpi->cpi_family == 6) && !IS_LEGACY_P6(cpi))
266 
267 /* Extended family/model support */
268 #define	IS_EXTENDED_MODEL_INTEL(cpi) (cpi->cpi_family == 0x6 || \
269 	cpi->cpi_family >= 0xf)
270 
271 /*
272  * Info for monitor/mwait idle loop.
273  *
274  * See cpuid section of "Intel 64 and IA-32 Architectures Software Developer's
275  * Manual Volume 2A: Instruction Set Reference, A-M" #25366-022US, November
276  * 2006.
277  * See MONITOR/MWAIT section of "AMD64 Architecture Programmer's Manual
278  * Documentation Updates" #33633, Rev 2.05, December 2006.
279  */
280 #define	MWAIT_SUPPORT		(0x00000001)	/* mwait supported */
281 #define	MWAIT_EXTENSIONS	(0x00000002)	/* extenstion supported */
282 #define	MWAIT_ECX_INT_ENABLE	(0x00000004)	/* ecx 1 extension supported */
283 #define	MWAIT_SUPPORTED(cpi)	((cpi)->cpi_std[1].cp_ecx & CPUID_INTC_ECX_MON)
284 #define	MWAIT_INT_ENABLE(cpi)	((cpi)->cpi_std[5].cp_ecx & 0x2)
285 #define	MWAIT_EXTENSION(cpi)	((cpi)->cpi_std[5].cp_ecx & 0x1)
286 #define	MWAIT_SIZE_MIN(cpi)	BITX((cpi)->cpi_std[5].cp_eax, 15, 0)
287 #define	MWAIT_SIZE_MAX(cpi)	BITX((cpi)->cpi_std[5].cp_ebx, 15, 0)
288 /*
289  * Number of sub-cstates for a given c-state.
290  */
291 #define	MWAIT_NUM_SUBC_STATES(cpi, c_state)			\
292 	BITX((cpi)->cpi_std[5].cp_edx, c_state + 3, c_state)
293 
294 /*
295  * Functions we consune from cpuid_subr.c;  don't publish these in a header
296  * file to try and keep people using the expected cpuid_* interfaces.
297  */
298 extern uint32_t _cpuid_skt(uint_t, uint_t, uint_t, uint_t);
299 extern uint32_t _cpuid_chiprev(uint_t, uint_t, uint_t, uint_t);
300 extern const char *_cpuid_chiprevstr(uint_t, uint_t, uint_t, uint_t);
301 extern uint_t _cpuid_vendorstr_to_vendorcode(char *);
302 
303 /*
304  * Apply up various platform-dependent restrictions where the
305  * underlying platform restrictions mean the CPU can be marked
306  * as less capable than its cpuid instruction would imply.
307  */
308 #if defined(__xpv)
309 static void
310 platform_cpuid_mangle(uint_t vendor, uint32_t eax, struct cpuid_regs *cp)
311 {
312 	switch (eax) {
313 	case 1: {
314 		uint32_t mcamask = DOMAIN_IS_INITDOMAIN(xen_info) ?
315 		    0 : CPUID_INTC_EDX_MCA;
316 		cp->cp_edx &=
317 		    ~(mcamask |
318 		    CPUID_INTC_EDX_PSE |
319 		    CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE |
320 		    CPUID_INTC_EDX_SEP | CPUID_INTC_EDX_MTRR |
321 		    CPUID_INTC_EDX_PGE | CPUID_INTC_EDX_PAT |
322 		    CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP |
323 		    CPUID_INTC_EDX_PSE36 | CPUID_INTC_EDX_HTT);
324 		break;
325 	}
326 
327 	case 0x80000001:
328 		cp->cp_edx &=
329 		    ~(CPUID_AMD_EDX_PSE |
330 		    CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE |
331 		    CPUID_AMD_EDX_MTRR | CPUID_AMD_EDX_PGE |
332 		    CPUID_AMD_EDX_PAT | CPUID_AMD_EDX_PSE36 |
333 		    CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP |
334 		    CPUID_AMD_EDX_TSCP);
335 		cp->cp_ecx &= ~CPUID_AMD_ECX_CMP_LGCY;
336 		break;
337 	default:
338 		break;
339 	}
340 
341 	switch (vendor) {
342 	case X86_VENDOR_Intel:
343 		switch (eax) {
344 		case 4:
345 			/*
346 			 * Zero out the (ncores-per-chip - 1) field
347 			 */
348 			cp->cp_eax &= 0x03fffffff;
349 			break;
350 		default:
351 			break;
352 		}
353 		break;
354 	case X86_VENDOR_AMD:
355 		switch (eax) {
356 		case 0x80000008:
357 			/*
358 			 * Zero out the (ncores-per-chip - 1) field
359 			 */
360 			cp->cp_ecx &= 0xffffff00;
361 			break;
362 		default:
363 			break;
364 		}
365 		break;
366 	default:
367 		break;
368 	}
369 }
370 #else
371 #define	platform_cpuid_mangle(vendor, eax, cp)	/* nothing */
372 #endif
373 
374 /*
375  *  Some undocumented ways of patching the results of the cpuid
376  *  instruction to permit running Solaris 10 on future cpus that
377  *  we don't currently support.  Could be set to non-zero values
378  *  via settings in eeprom.
379  */
380 
381 uint32_t cpuid_feature_ecx_include;
382 uint32_t cpuid_feature_ecx_exclude;
383 uint32_t cpuid_feature_edx_include;
384 uint32_t cpuid_feature_edx_exclude;
385 
386 void
387 cpuid_alloc_space(cpu_t *cpu)
388 {
389 	/*
390 	 * By convention, cpu0 is the boot cpu, which is set up
391 	 * before memory allocation is available.  All other cpus get
392 	 * their cpuid_info struct allocated here.
393 	 */
394 	ASSERT(cpu->cpu_id != 0);
395 	cpu->cpu_m.mcpu_cpi =
396 	    kmem_zalloc(sizeof (*cpu->cpu_m.mcpu_cpi), KM_SLEEP);
397 }
398 
399 void
400 cpuid_free_space(cpu_t *cpu)
401 {
402 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
403 	int i;
404 
405 	ASSERT(cpu->cpu_id != 0);
406 
407 	/*
408 	 * Free up any function 4 related dynamic storage
409 	 */
410 	for (i = 1; i < cpi->cpi_std_4_size; i++)
411 		kmem_free(cpi->cpi_std_4[i], sizeof (struct cpuid_regs));
412 	if (cpi->cpi_std_4_size > 0)
413 		kmem_free(cpi->cpi_std_4,
414 		    cpi->cpi_std_4_size * sizeof (struct cpuid_regs *));
415 
416 	kmem_free(cpu->cpu_m.mcpu_cpi, sizeof (*cpu->cpu_m.mcpu_cpi));
417 }
418 
419 #if !defined(__xpv)
420 
421 static void
422 check_for_hvm()
423 {
424 	struct cpuid_regs cp;
425 	char *xen_str;
426 	uint32_t xen_signature[4];
427 	extern int xpv_is_hvm;
428 
429 	/*
430 	 * In a fully virtualized domain, Xen's pseudo-cpuid function
431 	 * 0x40000000 returns a string representing the Xen signature in
432 	 * %ebx, %ecx, and %edx.  %eax contains the maximum supported cpuid
433 	 * function.
434 	 */
435 	cp.cp_eax = 0x40000000;
436 	(void) __cpuid_insn(&cp);
437 	xen_signature[0] = cp.cp_ebx;
438 	xen_signature[1] = cp.cp_ecx;
439 	xen_signature[2] = cp.cp_edx;
440 	xen_signature[3] = 0;
441 	xen_str = (char *)xen_signature;
442 	if (strcmp("XenVMMXenVMM", xen_str) == 0 && cp.cp_eax <= 0x40000002)
443 		xpv_is_hvm = 1;
444 }
445 #endif	/* __xpv */
446 
447 uint_t
448 cpuid_pass1(cpu_t *cpu)
449 {
450 	uint32_t mask_ecx, mask_edx;
451 	uint_t feature = X86_CPUID;
452 	struct cpuid_info *cpi;
453 	struct cpuid_regs *cp;
454 	int xcpuid;
455 #if !defined(__xpv)
456 	extern int idle_cpu_prefer_mwait;
457 #endif
458 
459 	/*
460 	 * Space statically allocated for cpu0, ensure pointer is set
461 	 */
462 	if (cpu->cpu_id == 0)
463 		cpu->cpu_m.mcpu_cpi = &cpuid_info0;
464 	cpi = cpu->cpu_m.mcpu_cpi;
465 	ASSERT(cpi != NULL);
466 	cp = &cpi->cpi_std[0];
467 	cp->cp_eax = 0;
468 	cpi->cpi_maxeax = __cpuid_insn(cp);
469 	{
470 		uint32_t *iptr = (uint32_t *)cpi->cpi_vendorstr;
471 		*iptr++ = cp->cp_ebx;
472 		*iptr++ = cp->cp_edx;
473 		*iptr++ = cp->cp_ecx;
474 		*(char *)&cpi->cpi_vendorstr[12] = '\0';
475 	}
476 
477 	cpi->cpi_vendor = _cpuid_vendorstr_to_vendorcode(cpi->cpi_vendorstr);
478 	x86_vendor = cpi->cpi_vendor; /* for compatibility */
479 
480 	/*
481 	 * Limit the range in case of weird hardware
482 	 */
483 	if (cpi->cpi_maxeax > CPI_MAXEAX_MAX)
484 		cpi->cpi_maxeax = CPI_MAXEAX_MAX;
485 	if (cpi->cpi_maxeax < 1)
486 		goto pass1_done;
487 
488 	cp = &cpi->cpi_std[1];
489 	cp->cp_eax = 1;
490 	(void) __cpuid_insn(cp);
491 
492 	/*
493 	 * Extract identifying constants for easy access.
494 	 */
495 	cpi->cpi_model = CPI_MODEL(cpi);
496 	cpi->cpi_family = CPI_FAMILY(cpi);
497 
498 	if (cpi->cpi_family == 0xf)
499 		cpi->cpi_family += CPI_FAMILY_XTD(cpi);
500 
501 	/*
502 	 * Beware: AMD uses "extended model" iff base *FAMILY* == 0xf.
503 	 * Intel, and presumably everyone else, uses model == 0xf, as
504 	 * one would expect (max value means possible overflow).  Sigh.
505 	 */
506 
507 	switch (cpi->cpi_vendor) {
508 	case X86_VENDOR_Intel:
509 		if (IS_EXTENDED_MODEL_INTEL(cpi))
510 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
511 		break;
512 	case X86_VENDOR_AMD:
513 		if (CPI_FAMILY(cpi) == 0xf)
514 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
515 		break;
516 	default:
517 		if (cpi->cpi_model == 0xf)
518 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
519 		break;
520 	}
521 
522 	cpi->cpi_step = CPI_STEP(cpi);
523 	cpi->cpi_brandid = CPI_BRANDID(cpi);
524 
525 	/*
526 	 * *default* assumptions:
527 	 * - believe %edx feature word
528 	 * - ignore %ecx feature word
529 	 * - 32-bit virtual and physical addressing
530 	 */
531 	mask_edx = 0xffffffff;
532 	mask_ecx = 0;
533 
534 	cpi->cpi_pabits = cpi->cpi_vabits = 32;
535 
536 	switch (cpi->cpi_vendor) {
537 	case X86_VENDOR_Intel:
538 		if (cpi->cpi_family == 5)
539 			x86_type = X86_TYPE_P5;
540 		else if (IS_LEGACY_P6(cpi)) {
541 			x86_type = X86_TYPE_P6;
542 			pentiumpro_bug4046376 = 1;
543 			pentiumpro_bug4064495 = 1;
544 			/*
545 			 * Clear the SEP bit when it was set erroneously
546 			 */
547 			if (cpi->cpi_model < 3 && cpi->cpi_step < 3)
548 				cp->cp_edx &= ~CPUID_INTC_EDX_SEP;
549 		} else if (IS_NEW_F6(cpi) || cpi->cpi_family == 0xf) {
550 			x86_type = X86_TYPE_P4;
551 			/*
552 			 * We don't currently depend on any of the %ecx
553 			 * features until Prescott, so we'll only check
554 			 * this from P4 onwards.  We might want to revisit
555 			 * that idea later.
556 			 */
557 			mask_ecx = 0xffffffff;
558 		} else if (cpi->cpi_family > 0xf)
559 			mask_ecx = 0xffffffff;
560 		/*
561 		 * We don't support MONITOR/MWAIT if leaf 5 is not available
562 		 * to obtain the monitor linesize.
563 		 */
564 		if (cpi->cpi_maxeax < 5)
565 			mask_ecx &= ~CPUID_INTC_ECX_MON;
566 		break;
567 	case X86_VENDOR_IntelClone:
568 	default:
569 		break;
570 	case X86_VENDOR_AMD:
571 #if defined(OPTERON_ERRATUM_108)
572 		if (cpi->cpi_family == 0xf && cpi->cpi_model == 0xe) {
573 			cp->cp_eax = (0xf0f & cp->cp_eax) | 0xc0;
574 			cpi->cpi_model = 0xc;
575 		} else
576 #endif
577 		if (cpi->cpi_family == 5) {
578 			/*
579 			 * AMD K5 and K6
580 			 *
581 			 * These CPUs have an incomplete implementation
582 			 * of MCA/MCE which we mask away.
583 			 */
584 			mask_edx &= ~(CPUID_INTC_EDX_MCE | CPUID_INTC_EDX_MCA);
585 
586 			/*
587 			 * Model 0 uses the wrong (APIC) bit
588 			 * to indicate PGE.  Fix it here.
589 			 */
590 			if (cpi->cpi_model == 0) {
591 				if (cp->cp_edx & 0x200) {
592 					cp->cp_edx &= ~0x200;
593 					cp->cp_edx |= CPUID_INTC_EDX_PGE;
594 				}
595 			}
596 
597 			/*
598 			 * Early models had problems w/ MMX; disable.
599 			 */
600 			if (cpi->cpi_model < 6)
601 				mask_edx &= ~CPUID_INTC_EDX_MMX;
602 		}
603 
604 		/*
605 		 * For newer families, SSE3 and CX16, at least, are valid;
606 		 * enable all
607 		 */
608 		if (cpi->cpi_family >= 0xf)
609 			mask_ecx = 0xffffffff;
610 		/*
611 		 * We don't support MONITOR/MWAIT if leaf 5 is not available
612 		 * to obtain the monitor linesize.
613 		 */
614 		if (cpi->cpi_maxeax < 5)
615 			mask_ecx &= ~CPUID_INTC_ECX_MON;
616 
617 #if !defined(__xpv)
618 		/*
619 		 * Do not use MONITOR/MWAIT to halt in the idle loop on any AMD
620 		 * processors.  AMD does not intend MWAIT to be used in the cpu
621 		 * idle loop on current and future processors.  10h and future
622 		 * AMD processors use more power in MWAIT than HLT.
623 		 * Pre-family-10h Opterons do not have the MWAIT instruction.
624 		 */
625 		idle_cpu_prefer_mwait = 0;
626 #endif
627 
628 		break;
629 	case X86_VENDOR_TM:
630 		/*
631 		 * workaround the NT workaround in CMS 4.1
632 		 */
633 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4 &&
634 		    (cpi->cpi_step == 2 || cpi->cpi_step == 3))
635 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
636 		break;
637 	case X86_VENDOR_Centaur:
638 		/*
639 		 * workaround the NT workarounds again
640 		 */
641 		if (cpi->cpi_family == 6)
642 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
643 		break;
644 	case X86_VENDOR_Cyrix:
645 		/*
646 		 * We rely heavily on the probing in locore
647 		 * to actually figure out what parts, if any,
648 		 * of the Cyrix cpuid instruction to believe.
649 		 */
650 		switch (x86_type) {
651 		case X86_TYPE_CYRIX_486:
652 			mask_edx = 0;
653 			break;
654 		case X86_TYPE_CYRIX_6x86:
655 			mask_edx = 0;
656 			break;
657 		case X86_TYPE_CYRIX_6x86L:
658 			mask_edx =
659 			    CPUID_INTC_EDX_DE |
660 			    CPUID_INTC_EDX_CX8;
661 			break;
662 		case X86_TYPE_CYRIX_6x86MX:
663 			mask_edx =
664 			    CPUID_INTC_EDX_DE |
665 			    CPUID_INTC_EDX_MSR |
666 			    CPUID_INTC_EDX_CX8 |
667 			    CPUID_INTC_EDX_PGE |
668 			    CPUID_INTC_EDX_CMOV |
669 			    CPUID_INTC_EDX_MMX;
670 			break;
671 		case X86_TYPE_CYRIX_GXm:
672 			mask_edx =
673 			    CPUID_INTC_EDX_MSR |
674 			    CPUID_INTC_EDX_CX8 |
675 			    CPUID_INTC_EDX_CMOV |
676 			    CPUID_INTC_EDX_MMX;
677 			break;
678 		case X86_TYPE_CYRIX_MediaGX:
679 			break;
680 		case X86_TYPE_CYRIX_MII:
681 		case X86_TYPE_VIA_CYRIX_III:
682 			mask_edx =
683 			    CPUID_INTC_EDX_DE |
684 			    CPUID_INTC_EDX_TSC |
685 			    CPUID_INTC_EDX_MSR |
686 			    CPUID_INTC_EDX_CX8 |
687 			    CPUID_INTC_EDX_PGE |
688 			    CPUID_INTC_EDX_CMOV |
689 			    CPUID_INTC_EDX_MMX;
690 			break;
691 		default:
692 			break;
693 		}
694 		break;
695 	}
696 
697 #if defined(__xpv)
698 	/*
699 	 * Do not support MONITOR/MWAIT under a hypervisor
700 	 */
701 	mask_ecx &= ~CPUID_INTC_ECX_MON;
702 #endif	/* __xpv */
703 
704 	/*
705 	 * Now we've figured out the masks that determine
706 	 * which bits we choose to believe, apply the masks
707 	 * to the feature words, then map the kernel's view
708 	 * of these feature words into its feature word.
709 	 */
710 	cp->cp_edx &= mask_edx;
711 	cp->cp_ecx &= mask_ecx;
712 
713 	/*
714 	 * apply any platform restrictions (we don't call this
715 	 * immediately after __cpuid_insn here, because we need the
716 	 * workarounds applied above first)
717 	 */
718 	platform_cpuid_mangle(cpi->cpi_vendor, 1, cp);
719 
720 	/*
721 	 * fold in overrides from the "eeprom" mechanism
722 	 */
723 	cp->cp_edx |= cpuid_feature_edx_include;
724 	cp->cp_edx &= ~cpuid_feature_edx_exclude;
725 
726 	cp->cp_ecx |= cpuid_feature_ecx_include;
727 	cp->cp_ecx &= ~cpuid_feature_ecx_exclude;
728 
729 	if (cp->cp_edx & CPUID_INTC_EDX_PSE)
730 		feature |= X86_LARGEPAGE;
731 	if (cp->cp_edx & CPUID_INTC_EDX_TSC)
732 		feature |= X86_TSC;
733 	if (cp->cp_edx & CPUID_INTC_EDX_MSR)
734 		feature |= X86_MSR;
735 	if (cp->cp_edx & CPUID_INTC_EDX_MTRR)
736 		feature |= X86_MTRR;
737 	if (cp->cp_edx & CPUID_INTC_EDX_PGE)
738 		feature |= X86_PGE;
739 	if (cp->cp_edx & CPUID_INTC_EDX_CMOV)
740 		feature |= X86_CMOV;
741 	if (cp->cp_edx & CPUID_INTC_EDX_MMX)
742 		feature |= X86_MMX;
743 	if ((cp->cp_edx & CPUID_INTC_EDX_MCE) != 0 &&
744 	    (cp->cp_edx & CPUID_INTC_EDX_MCA) != 0)
745 		feature |= X86_MCA;
746 	if (cp->cp_edx & CPUID_INTC_EDX_PAE)
747 		feature |= X86_PAE;
748 	if (cp->cp_edx & CPUID_INTC_EDX_CX8)
749 		feature |= X86_CX8;
750 	if (cp->cp_ecx & CPUID_INTC_ECX_CX16)
751 		feature |= X86_CX16;
752 	if (cp->cp_edx & CPUID_INTC_EDX_PAT)
753 		feature |= X86_PAT;
754 	if (cp->cp_edx & CPUID_INTC_EDX_SEP)
755 		feature |= X86_SEP;
756 	if (cp->cp_edx & CPUID_INTC_EDX_FXSR) {
757 		/*
758 		 * In our implementation, fxsave/fxrstor
759 		 * are prerequisites before we'll even
760 		 * try and do SSE things.
761 		 */
762 		if (cp->cp_edx & CPUID_INTC_EDX_SSE)
763 			feature |= X86_SSE;
764 		if (cp->cp_edx & CPUID_INTC_EDX_SSE2)
765 			feature |= X86_SSE2;
766 		if (cp->cp_ecx & CPUID_INTC_ECX_SSE3)
767 			feature |= X86_SSE3;
768 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
769 			if (cp->cp_ecx & CPUID_INTC_ECX_SSSE3)
770 				feature |= X86_SSSE3;
771 			if (cp->cp_ecx & CPUID_INTC_ECX_SSE4_1)
772 				feature |= X86_SSE4_1;
773 			if (cp->cp_ecx & CPUID_INTC_ECX_SSE4_2)
774 				feature |= X86_SSE4_2;
775 		}
776 	}
777 	if (cp->cp_edx & CPUID_INTC_EDX_DE)
778 		feature |= X86_DE;
779 	if (cp->cp_ecx & CPUID_INTC_ECX_MON) {
780 		cpi->cpi_mwait.support |= MWAIT_SUPPORT;
781 		feature |= X86_MWAIT;
782 	}
783 
784 	/*
785 	 * Only need it first time, rest of the cpus would follow suite.
786 	 * we only capture this for the bootcpu.
787 	 */
788 	if (cp->cp_edx & CPUID_INTC_EDX_CLFSH) {
789 		feature |= X86_CLFSH;
790 		x86_clflush_size = (BITX(cp->cp_ebx, 15, 8) * 8);
791 	}
792 
793 	if (feature & X86_PAE)
794 		cpi->cpi_pabits = 36;
795 
796 	/*
797 	 * Hyperthreading configuration is slightly tricky on Intel
798 	 * and pure clones, and even trickier on AMD.
799 	 *
800 	 * (AMD chose to set the HTT bit on their CMP processors,
801 	 * even though they're not actually hyperthreaded.  Thus it
802 	 * takes a bit more work to figure out what's really going
803 	 * on ... see the handling of the CMP_LGCY bit below)
804 	 */
805 	if (cp->cp_edx & CPUID_INTC_EDX_HTT) {
806 		cpi->cpi_ncpu_per_chip = CPI_CPU_COUNT(cpi);
807 		if (cpi->cpi_ncpu_per_chip > 1)
808 			feature |= X86_HTT;
809 	} else {
810 		cpi->cpi_ncpu_per_chip = 1;
811 	}
812 
813 	/*
814 	 * Work on the "extended" feature information, doing
815 	 * some basic initialization for cpuid_pass2()
816 	 */
817 	xcpuid = 0;
818 	switch (cpi->cpi_vendor) {
819 	case X86_VENDOR_Intel:
820 		if (IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf)
821 			xcpuid++;
822 		break;
823 	case X86_VENDOR_AMD:
824 		if (cpi->cpi_family > 5 ||
825 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
826 			xcpuid++;
827 		break;
828 	case X86_VENDOR_Cyrix:
829 		/*
830 		 * Only these Cyrix CPUs are -known- to support
831 		 * extended cpuid operations.
832 		 */
833 		if (x86_type == X86_TYPE_VIA_CYRIX_III ||
834 		    x86_type == X86_TYPE_CYRIX_GXm)
835 			xcpuid++;
836 		break;
837 	case X86_VENDOR_Centaur:
838 	case X86_VENDOR_TM:
839 	default:
840 		xcpuid++;
841 		break;
842 	}
843 
844 	if (xcpuid) {
845 		cp = &cpi->cpi_extd[0];
846 		cp->cp_eax = 0x80000000;
847 		cpi->cpi_xmaxeax = __cpuid_insn(cp);
848 	}
849 
850 	if (cpi->cpi_xmaxeax & 0x80000000) {
851 
852 		if (cpi->cpi_xmaxeax > CPI_XMAXEAX_MAX)
853 			cpi->cpi_xmaxeax = CPI_XMAXEAX_MAX;
854 
855 		switch (cpi->cpi_vendor) {
856 		case X86_VENDOR_Intel:
857 		case X86_VENDOR_AMD:
858 			if (cpi->cpi_xmaxeax < 0x80000001)
859 				break;
860 			cp = &cpi->cpi_extd[1];
861 			cp->cp_eax = 0x80000001;
862 			(void) __cpuid_insn(cp);
863 
864 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
865 			    cpi->cpi_family == 5 &&
866 			    cpi->cpi_model == 6 &&
867 			    cpi->cpi_step == 6) {
868 				/*
869 				 * K6 model 6 uses bit 10 to indicate SYSC
870 				 * Later models use bit 11. Fix it here.
871 				 */
872 				if (cp->cp_edx & 0x400) {
873 					cp->cp_edx &= ~0x400;
874 					cp->cp_edx |= CPUID_AMD_EDX_SYSC;
875 				}
876 			}
877 
878 			platform_cpuid_mangle(cpi->cpi_vendor, 0x80000001, cp);
879 
880 			/*
881 			 * Compute the additions to the kernel's feature word.
882 			 */
883 			if (cp->cp_edx & CPUID_AMD_EDX_NX)
884 				feature |= X86_NX;
885 
886 #if defined(__amd64)
887 			/* 1 GB large page - enable only for 64 bit kernel */
888 			if (cp->cp_edx & CPUID_AMD_EDX_1GPG)
889 				feature |= X86_1GPG;
890 #endif
891 
892 			if ((cpi->cpi_vendor == X86_VENDOR_AMD) &&
893 			    (cpi->cpi_std[1].cp_edx & CPUID_INTC_EDX_FXSR) &&
894 			    (cp->cp_ecx & CPUID_AMD_ECX_SSE4A))
895 				feature |= X86_SSE4A;
896 
897 			/*
898 			 * If both the HTT and CMP_LGCY bits are set,
899 			 * then we're not actually HyperThreaded.  Read
900 			 * "AMD CPUID Specification" for more details.
901 			 */
902 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
903 			    (feature & X86_HTT) &&
904 			    (cp->cp_ecx & CPUID_AMD_ECX_CMP_LGCY)) {
905 				feature &= ~X86_HTT;
906 				feature |= X86_CMP;
907 			}
908 #if defined(__amd64)
909 			/*
910 			 * It's really tricky to support syscall/sysret in
911 			 * the i386 kernel; we rely on sysenter/sysexit
912 			 * instead.  In the amd64 kernel, things are -way-
913 			 * better.
914 			 */
915 			if (cp->cp_edx & CPUID_AMD_EDX_SYSC)
916 				feature |= X86_ASYSC;
917 
918 			/*
919 			 * While we're thinking about system calls, note
920 			 * that AMD processors don't support sysenter
921 			 * in long mode at all, so don't try to program them.
922 			 */
923 			if (x86_vendor == X86_VENDOR_AMD)
924 				feature &= ~X86_SEP;
925 #endif
926 			if (cp->cp_edx & CPUID_AMD_EDX_TSCP)
927 				feature |= X86_TSCP;
928 			break;
929 		default:
930 			break;
931 		}
932 
933 		/*
934 		 * Get CPUID data about processor cores and hyperthreads.
935 		 */
936 		switch (cpi->cpi_vendor) {
937 		case X86_VENDOR_Intel:
938 			if (cpi->cpi_maxeax >= 4) {
939 				cp = &cpi->cpi_std[4];
940 				cp->cp_eax = 4;
941 				cp->cp_ecx = 0;
942 				(void) __cpuid_insn(cp);
943 				platform_cpuid_mangle(cpi->cpi_vendor, 4, cp);
944 			}
945 			/*FALLTHROUGH*/
946 		case X86_VENDOR_AMD:
947 			if (cpi->cpi_xmaxeax < 0x80000008)
948 				break;
949 			cp = &cpi->cpi_extd[8];
950 			cp->cp_eax = 0x80000008;
951 			(void) __cpuid_insn(cp);
952 			platform_cpuid_mangle(cpi->cpi_vendor, 0x80000008, cp);
953 
954 			/*
955 			 * Virtual and physical address limits from
956 			 * cpuid override previously guessed values.
957 			 */
958 			cpi->cpi_pabits = BITX(cp->cp_eax, 7, 0);
959 			cpi->cpi_vabits = BITX(cp->cp_eax, 15, 8);
960 			break;
961 		default:
962 			break;
963 		}
964 
965 		/*
966 		 * Derive the number of cores per chip
967 		 */
968 		switch (cpi->cpi_vendor) {
969 		case X86_VENDOR_Intel:
970 			if (cpi->cpi_maxeax < 4) {
971 				cpi->cpi_ncore_per_chip = 1;
972 				break;
973 			} else {
974 				cpi->cpi_ncore_per_chip =
975 				    BITX((cpi)->cpi_std[4].cp_eax, 31, 26) + 1;
976 			}
977 			break;
978 		case X86_VENDOR_AMD:
979 			if (cpi->cpi_xmaxeax < 0x80000008) {
980 				cpi->cpi_ncore_per_chip = 1;
981 				break;
982 			} else {
983 				/*
984 				 * On family 0xf cpuid fn 2 ECX[7:0] "NC" is
985 				 * 1 less than the number of physical cores on
986 				 * the chip.  In family 0x10 this value can
987 				 * be affected by "downcoring" - it reflects
988 				 * 1 less than the number of cores actually
989 				 * enabled on this node.
990 				 */
991 				cpi->cpi_ncore_per_chip =
992 				    BITX((cpi)->cpi_extd[8].cp_ecx, 7, 0) + 1;
993 			}
994 			break;
995 		default:
996 			cpi->cpi_ncore_per_chip = 1;
997 			break;
998 		}
999 	} else {
1000 		cpi->cpi_ncore_per_chip = 1;
1001 	}
1002 
1003 	/*
1004 	 * If more than one core, then this processor is CMP.
1005 	 */
1006 	if (cpi->cpi_ncore_per_chip > 1)
1007 		feature |= X86_CMP;
1008 
1009 	/*
1010 	 * If the number of cores is the same as the number
1011 	 * of CPUs, then we cannot have HyperThreading.
1012 	 */
1013 	if (cpi->cpi_ncpu_per_chip == cpi->cpi_ncore_per_chip)
1014 		feature &= ~X86_HTT;
1015 
1016 	if ((feature & (X86_HTT | X86_CMP)) == 0) {
1017 		/*
1018 		 * Single-core single-threaded processors.
1019 		 */
1020 		cpi->cpi_chipid = -1;
1021 		cpi->cpi_clogid = 0;
1022 		cpi->cpi_coreid = cpu->cpu_id;
1023 		cpi->cpi_pkgcoreid = 0;
1024 	} else if (cpi->cpi_ncpu_per_chip > 1) {
1025 		uint_t i;
1026 		uint_t chipid_shift = 0;
1027 		uint_t coreid_shift = 0;
1028 		uint_t apic_id = CPI_APIC_ID(cpi);
1029 
1030 		for (i = 1; i < cpi->cpi_ncpu_per_chip; i <<= 1)
1031 			chipid_shift++;
1032 		cpi->cpi_chipid = apic_id >> chipid_shift;
1033 		cpi->cpi_clogid = apic_id & ((1 << chipid_shift) - 1);
1034 
1035 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
1036 			if (feature & X86_CMP) {
1037 				/*
1038 				 * Multi-core (and possibly multi-threaded)
1039 				 * processors.
1040 				 */
1041 				uint_t ncpu_per_core;
1042 				if (cpi->cpi_ncore_per_chip == 1)
1043 					ncpu_per_core = cpi->cpi_ncpu_per_chip;
1044 				else if (cpi->cpi_ncore_per_chip > 1)
1045 					ncpu_per_core = cpi->cpi_ncpu_per_chip /
1046 					    cpi->cpi_ncore_per_chip;
1047 				/*
1048 				 * 8bit APIC IDs on dual core Pentiums
1049 				 * look like this:
1050 				 *
1051 				 * +-----------------------+------+------+
1052 				 * | Physical Package ID   |  MC  |  HT  |
1053 				 * +-----------------------+------+------+
1054 				 * <------- chipid -------->
1055 				 * <------- coreid --------------->
1056 				 *			   <--- clogid -->
1057 				 *			   <------>
1058 				 *			   pkgcoreid
1059 				 *
1060 				 * Where the number of bits necessary to
1061 				 * represent MC and HT fields together equals
1062 				 * to the minimum number of bits necessary to
1063 				 * store the value of cpi->cpi_ncpu_per_chip.
1064 				 * Of those bits, the MC part uses the number
1065 				 * of bits necessary to store the value of
1066 				 * cpi->cpi_ncore_per_chip.
1067 				 */
1068 				for (i = 1; i < ncpu_per_core; i <<= 1)
1069 					coreid_shift++;
1070 				cpi->cpi_coreid = apic_id >> coreid_shift;
1071 				cpi->cpi_pkgcoreid = cpi->cpi_clogid >>
1072 				    coreid_shift;
1073 			} else if (feature & X86_HTT) {
1074 				/*
1075 				 * Single-core multi-threaded processors.
1076 				 */
1077 				cpi->cpi_coreid = cpi->cpi_chipid;
1078 				cpi->cpi_pkgcoreid = 0;
1079 			}
1080 		} else if (cpi->cpi_vendor == X86_VENDOR_AMD) {
1081 			/*
1082 			 * AMD CMP chips currently have a single thread per
1083 			 * core, with 2 cores on family 0xf and 2, 3 or 4
1084 			 * cores on family 0x10.
1085 			 *
1086 			 * Since no two cpus share a core we must assign a
1087 			 * distinct coreid per cpu, and we do this by using
1088 			 * the cpu_id.  This scheme does not, however,
1089 			 * guarantee that sibling cores of a chip will have
1090 			 * sequential coreids starting at a multiple of the
1091 			 * number of cores per chip - that is usually the
1092 			 * case, but if the ACPI MADT table is presented
1093 			 * in a different order then we need to perform a
1094 			 * few more gymnastics for the pkgcoreid.
1095 			 *
1096 			 * In family 0xf CMPs there are 2 cores on all nodes
1097 			 * present - no mixing of single and dual core parts.
1098 			 *
1099 			 * In family 0x10 CMPs cpuid fn 2 ECX[15:12]
1100 			 * "ApicIdCoreIdSize[3:0]" tells us how
1101 			 * many least-significant bits in the ApicId
1102 			 * are used to represent the core number
1103 			 * within the node.  Cores are always
1104 			 * numbered sequentially from 0 regardless
1105 			 * of how many or which are disabled, and
1106 			 * there seems to be no way to discover the
1107 			 * real core id when some are disabled.
1108 			 */
1109 			cpi->cpi_coreid = cpu->cpu_id;
1110 
1111 			if (cpi->cpi_family == 0x10 &&
1112 			    cpi->cpi_xmaxeax >= 0x80000008) {
1113 				int coreidsz =
1114 				    BITX((cpi)->cpi_extd[8].cp_ecx, 15, 12);
1115 
1116 				cpi->cpi_pkgcoreid =
1117 				    apic_id & ((1 << coreidsz) - 1);
1118 			} else {
1119 				cpi->cpi_pkgcoreid = cpi->cpi_clogid;
1120 			}
1121 		} else {
1122 			/*
1123 			 * All other processors are currently
1124 			 * assumed to have single cores.
1125 			 */
1126 			cpi->cpi_coreid = cpi->cpi_chipid;
1127 			cpi->cpi_pkgcoreid = 0;
1128 		}
1129 	}
1130 
1131 	cpi->cpi_apicid = CPI_APIC_ID(cpi);
1132 
1133 	/*
1134 	 * Synthesize chip "revision" and socket type
1135 	 */
1136 	cpi->cpi_chiprev = _cpuid_chiprev(cpi->cpi_vendor, cpi->cpi_family,
1137 	    cpi->cpi_model, cpi->cpi_step);
1138 	cpi->cpi_chiprevstr = _cpuid_chiprevstr(cpi->cpi_vendor,
1139 	    cpi->cpi_family, cpi->cpi_model, cpi->cpi_step);
1140 	cpi->cpi_socket = _cpuid_skt(cpi->cpi_vendor, cpi->cpi_family,
1141 	    cpi->cpi_model, cpi->cpi_step);
1142 
1143 pass1_done:
1144 #if !defined(__xpv)
1145 	check_for_hvm();
1146 #endif
1147 	cpi->cpi_pass = 1;
1148 	return (feature);
1149 }
1150 
1151 /*
1152  * Make copies of the cpuid table entries we depend on, in
1153  * part for ease of parsing now, in part so that we have only
1154  * one place to correct any of it, in part for ease of
1155  * later export to userland, and in part so we can look at
1156  * this stuff in a crash dump.
1157  */
1158 
1159 /*ARGSUSED*/
1160 void
1161 cpuid_pass2(cpu_t *cpu)
1162 {
1163 	uint_t n, nmax;
1164 	int i;
1165 	struct cpuid_regs *cp;
1166 	uint8_t *dp;
1167 	uint32_t *iptr;
1168 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1169 
1170 	ASSERT(cpi->cpi_pass == 1);
1171 
1172 	if (cpi->cpi_maxeax < 1)
1173 		goto pass2_done;
1174 
1175 	if ((nmax = cpi->cpi_maxeax + 1) > NMAX_CPI_STD)
1176 		nmax = NMAX_CPI_STD;
1177 	/*
1178 	 * (We already handled n == 0 and n == 1 in pass 1)
1179 	 */
1180 	for (n = 2, cp = &cpi->cpi_std[2]; n < nmax; n++, cp++) {
1181 		cp->cp_eax = n;
1182 
1183 		/*
1184 		 * CPUID function 4 expects %ecx to be initialized
1185 		 * with an index which indicates which cache to return
1186 		 * information about. The OS is expected to call function 4
1187 		 * with %ecx set to 0, 1, 2, ... until it returns with
1188 		 * EAX[4:0] set to 0, which indicates there are no more
1189 		 * caches.
1190 		 *
1191 		 * Here, populate cpi_std[4] with the information returned by
1192 		 * function 4 when %ecx == 0, and do the rest in cpuid_pass3()
1193 		 * when dynamic memory allocation becomes available.
1194 		 *
1195 		 * Note: we need to explicitly initialize %ecx here, since
1196 		 * function 4 may have been previously invoked.
1197 		 */
1198 		if (n == 4)
1199 			cp->cp_ecx = 0;
1200 
1201 		(void) __cpuid_insn(cp);
1202 		platform_cpuid_mangle(cpi->cpi_vendor, n, cp);
1203 		switch (n) {
1204 		case 2:
1205 			/*
1206 			 * "the lower 8 bits of the %eax register
1207 			 * contain a value that identifies the number
1208 			 * of times the cpuid [instruction] has to be
1209 			 * executed to obtain a complete image of the
1210 			 * processor's caching systems."
1211 			 *
1212 			 * How *do* they make this stuff up?
1213 			 */
1214 			cpi->cpi_ncache = sizeof (*cp) *
1215 			    BITX(cp->cp_eax, 7, 0);
1216 			if (cpi->cpi_ncache == 0)
1217 				break;
1218 			cpi->cpi_ncache--;	/* skip count byte */
1219 
1220 			/*
1221 			 * Well, for now, rather than attempt to implement
1222 			 * this slightly dubious algorithm, we just look
1223 			 * at the first 15 ..
1224 			 */
1225 			if (cpi->cpi_ncache > (sizeof (*cp) - 1))
1226 				cpi->cpi_ncache = sizeof (*cp) - 1;
1227 
1228 			dp = cpi->cpi_cacheinfo;
1229 			if (BITX(cp->cp_eax, 31, 31) == 0) {
1230 				uint8_t *p = (void *)&cp->cp_eax;
1231 				for (i = 1; i < 4; i++)
1232 					if (p[i] != 0)
1233 						*dp++ = p[i];
1234 			}
1235 			if (BITX(cp->cp_ebx, 31, 31) == 0) {
1236 				uint8_t *p = (void *)&cp->cp_ebx;
1237 				for (i = 0; i < 4; i++)
1238 					if (p[i] != 0)
1239 						*dp++ = p[i];
1240 			}
1241 			if (BITX(cp->cp_ecx, 31, 31) == 0) {
1242 				uint8_t *p = (void *)&cp->cp_ecx;
1243 				for (i = 0; i < 4; i++)
1244 					if (p[i] != 0)
1245 						*dp++ = p[i];
1246 			}
1247 			if (BITX(cp->cp_edx, 31, 31) == 0) {
1248 				uint8_t *p = (void *)&cp->cp_edx;
1249 				for (i = 0; i < 4; i++)
1250 					if (p[i] != 0)
1251 						*dp++ = p[i];
1252 			}
1253 			break;
1254 
1255 		case 3:	/* Processor serial number, if PSN supported */
1256 			break;
1257 
1258 		case 4:	/* Deterministic cache parameters */
1259 			break;
1260 
1261 		case 5:	/* Monitor/Mwait parameters */
1262 		{
1263 			size_t mwait_size;
1264 
1265 			/*
1266 			 * check cpi_mwait.support which was set in cpuid_pass1
1267 			 */
1268 			if (!(cpi->cpi_mwait.support & MWAIT_SUPPORT))
1269 				break;
1270 
1271 			/*
1272 			 * Protect ourself from insane mwait line size.
1273 			 * Workaround for incomplete hardware emulator(s).
1274 			 */
1275 			mwait_size = (size_t)MWAIT_SIZE_MAX(cpi);
1276 			if (mwait_size < sizeof (uint32_t) ||
1277 			    !ISP2(mwait_size)) {
1278 #if DEBUG
1279 				cmn_err(CE_NOTE, "Cannot handle cpu %d mwait "
1280 				    "size %ld",
1281 				    cpu->cpu_id, (long)mwait_size);
1282 #endif
1283 				break;
1284 			}
1285 
1286 			cpi->cpi_mwait.mon_min = (size_t)MWAIT_SIZE_MIN(cpi);
1287 			cpi->cpi_mwait.mon_max = mwait_size;
1288 			if (MWAIT_EXTENSION(cpi)) {
1289 				cpi->cpi_mwait.support |= MWAIT_EXTENSIONS;
1290 				if (MWAIT_INT_ENABLE(cpi))
1291 					cpi->cpi_mwait.support |=
1292 					    MWAIT_ECX_INT_ENABLE;
1293 			}
1294 			break;
1295 		}
1296 		default:
1297 			break;
1298 		}
1299 	}
1300 
1301 	if (cpi->cpi_maxeax >= 0xB && cpi->cpi_vendor == X86_VENDOR_Intel) {
1302 		cp->cp_eax = 0xB;
1303 		cp->cp_ecx = 0;
1304 
1305 		(void) __cpuid_insn(cp);
1306 
1307 		/*
1308 		 * Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero, which
1309 		 * indicates that the extended topology enumeration leaf is
1310 		 * available.
1311 		 */
1312 		if (cp->cp_ebx) {
1313 			uint32_t x2apic_id;
1314 			uint_t coreid_shift = 0;
1315 			uint_t ncpu_per_core = 1;
1316 			uint_t chipid_shift = 0;
1317 			uint_t ncpu_per_chip = 1;
1318 			uint_t i;
1319 			uint_t level;
1320 
1321 			for (i = 0; i < CPI_FNB_ECX_MAX; i++) {
1322 				cp->cp_eax = 0xB;
1323 				cp->cp_ecx = i;
1324 
1325 				(void) __cpuid_insn(cp);
1326 				level = CPI_CPU_LEVEL_TYPE(cp);
1327 
1328 				if (level == 1) {
1329 					x2apic_id = cp->cp_edx;
1330 					coreid_shift = BITX(cp->cp_eax, 4, 0);
1331 					ncpu_per_core = BITX(cp->cp_ebx, 15, 0);
1332 				} else if (level == 2) {
1333 					x2apic_id = cp->cp_edx;
1334 					chipid_shift = BITX(cp->cp_eax, 4, 0);
1335 					ncpu_per_chip = BITX(cp->cp_ebx, 15, 0);
1336 				}
1337 			}
1338 
1339 			cpi->cpi_apicid = x2apic_id;
1340 			cpi->cpi_ncpu_per_chip = ncpu_per_chip;
1341 			cpi->cpi_ncore_per_chip = ncpu_per_chip /
1342 			    ncpu_per_core;
1343 			cpi->cpi_chipid = x2apic_id >> chipid_shift;
1344 			cpi->cpi_clogid = x2apic_id & ((1 << chipid_shift) - 1);
1345 			cpi->cpi_coreid = x2apic_id >> coreid_shift;
1346 			cpi->cpi_pkgcoreid = cpi->cpi_clogid >> coreid_shift;
1347 		}
1348 	}
1349 
1350 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0)
1351 		goto pass2_done;
1352 
1353 	if ((nmax = cpi->cpi_xmaxeax - 0x80000000 + 1) > NMAX_CPI_EXTD)
1354 		nmax = NMAX_CPI_EXTD;
1355 	/*
1356 	 * Copy the extended properties, fixing them as we go.
1357 	 * (We already handled n == 0 and n == 1 in pass 1)
1358 	 */
1359 	iptr = (void *)cpi->cpi_brandstr;
1360 	for (n = 2, cp = &cpi->cpi_extd[2]; n < nmax; cp++, n++) {
1361 		cp->cp_eax = 0x80000000 + n;
1362 		(void) __cpuid_insn(cp);
1363 		platform_cpuid_mangle(cpi->cpi_vendor, 0x80000000 + n, cp);
1364 		switch (n) {
1365 		case 2:
1366 		case 3:
1367 		case 4:
1368 			/*
1369 			 * Extract the brand string
1370 			 */
1371 			*iptr++ = cp->cp_eax;
1372 			*iptr++ = cp->cp_ebx;
1373 			*iptr++ = cp->cp_ecx;
1374 			*iptr++ = cp->cp_edx;
1375 			break;
1376 		case 5:
1377 			switch (cpi->cpi_vendor) {
1378 			case X86_VENDOR_AMD:
1379 				/*
1380 				 * The Athlon and Duron were the first
1381 				 * parts to report the sizes of the
1382 				 * TLB for large pages. Before then,
1383 				 * we don't trust the data.
1384 				 */
1385 				if (cpi->cpi_family < 6 ||
1386 				    (cpi->cpi_family == 6 &&
1387 				    cpi->cpi_model < 1))
1388 					cp->cp_eax = 0;
1389 				break;
1390 			default:
1391 				break;
1392 			}
1393 			break;
1394 		case 6:
1395 			switch (cpi->cpi_vendor) {
1396 			case X86_VENDOR_AMD:
1397 				/*
1398 				 * The Athlon and Duron were the first
1399 				 * AMD parts with L2 TLB's.
1400 				 * Before then, don't trust the data.
1401 				 */
1402 				if (cpi->cpi_family < 6 ||
1403 				    cpi->cpi_family == 6 &&
1404 				    cpi->cpi_model < 1)
1405 					cp->cp_eax = cp->cp_ebx = 0;
1406 				/*
1407 				 * AMD Duron rev A0 reports L2
1408 				 * cache size incorrectly as 1K
1409 				 * when it is really 64K
1410 				 */
1411 				if (cpi->cpi_family == 6 &&
1412 				    cpi->cpi_model == 3 &&
1413 				    cpi->cpi_step == 0) {
1414 					cp->cp_ecx &= 0xffff;
1415 					cp->cp_ecx |= 0x400000;
1416 				}
1417 				break;
1418 			case X86_VENDOR_Cyrix:	/* VIA C3 */
1419 				/*
1420 				 * VIA C3 processors are a bit messed
1421 				 * up w.r.t. encoding cache sizes in %ecx
1422 				 */
1423 				if (cpi->cpi_family != 6)
1424 					break;
1425 				/*
1426 				 * model 7 and 8 were incorrectly encoded
1427 				 *
1428 				 * xxx is model 8 really broken?
1429 				 */
1430 				if (cpi->cpi_model == 7 ||
1431 				    cpi->cpi_model == 8)
1432 					cp->cp_ecx =
1433 					    BITX(cp->cp_ecx, 31, 24) << 16 |
1434 					    BITX(cp->cp_ecx, 23, 16) << 12 |
1435 					    BITX(cp->cp_ecx, 15, 8) << 8 |
1436 					    BITX(cp->cp_ecx, 7, 0);
1437 				/*
1438 				 * model 9 stepping 1 has wrong associativity
1439 				 */
1440 				if (cpi->cpi_model == 9 && cpi->cpi_step == 1)
1441 					cp->cp_ecx |= 8 << 12;
1442 				break;
1443 			case X86_VENDOR_Intel:
1444 				/*
1445 				 * Extended L2 Cache features function.
1446 				 * First appeared on Prescott.
1447 				 */
1448 			default:
1449 				break;
1450 			}
1451 			break;
1452 		default:
1453 			break;
1454 		}
1455 	}
1456 
1457 pass2_done:
1458 	cpi->cpi_pass = 2;
1459 }
1460 
1461 static const char *
1462 intel_cpubrand(const struct cpuid_info *cpi)
1463 {
1464 	int i;
1465 
1466 	if ((x86_feature & X86_CPUID) == 0 ||
1467 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1468 		return ("i486");
1469 
1470 	switch (cpi->cpi_family) {
1471 	case 5:
1472 		return ("Intel Pentium(r)");
1473 	case 6:
1474 		switch (cpi->cpi_model) {
1475 			uint_t celeron, xeon;
1476 			const struct cpuid_regs *cp;
1477 		case 0:
1478 		case 1:
1479 		case 2:
1480 			return ("Intel Pentium(r) Pro");
1481 		case 3:
1482 		case 4:
1483 			return ("Intel Pentium(r) II");
1484 		case 6:
1485 			return ("Intel Celeron(r)");
1486 		case 5:
1487 		case 7:
1488 			celeron = xeon = 0;
1489 			cp = &cpi->cpi_std[2];	/* cache info */
1490 
1491 			for (i = 1; i < 4; i++) {
1492 				uint_t tmp;
1493 
1494 				tmp = (cp->cp_eax >> (8 * i)) & 0xff;
1495 				if (tmp == 0x40)
1496 					celeron++;
1497 				if (tmp >= 0x44 && tmp <= 0x45)
1498 					xeon++;
1499 			}
1500 
1501 			for (i = 0; i < 2; i++) {
1502 				uint_t tmp;
1503 
1504 				tmp = (cp->cp_ebx >> (8 * i)) & 0xff;
1505 				if (tmp == 0x40)
1506 					celeron++;
1507 				else if (tmp >= 0x44 && tmp <= 0x45)
1508 					xeon++;
1509 			}
1510 
1511 			for (i = 0; i < 4; i++) {
1512 				uint_t tmp;
1513 
1514 				tmp = (cp->cp_ecx >> (8 * i)) & 0xff;
1515 				if (tmp == 0x40)
1516 					celeron++;
1517 				else if (tmp >= 0x44 && tmp <= 0x45)
1518 					xeon++;
1519 			}
1520 
1521 			for (i = 0; i < 4; i++) {
1522 				uint_t tmp;
1523 
1524 				tmp = (cp->cp_edx >> (8 * i)) & 0xff;
1525 				if (tmp == 0x40)
1526 					celeron++;
1527 				else if (tmp >= 0x44 && tmp <= 0x45)
1528 					xeon++;
1529 			}
1530 
1531 			if (celeron)
1532 				return ("Intel Celeron(r)");
1533 			if (xeon)
1534 				return (cpi->cpi_model == 5 ?
1535 				    "Intel Pentium(r) II Xeon(tm)" :
1536 				    "Intel Pentium(r) III Xeon(tm)");
1537 			return (cpi->cpi_model == 5 ?
1538 			    "Intel Pentium(r) II or Pentium(r) II Xeon(tm)" :
1539 			    "Intel Pentium(r) III or Pentium(r) III Xeon(tm)");
1540 		default:
1541 			break;
1542 		}
1543 	default:
1544 		break;
1545 	}
1546 
1547 	/* BrandID is present if the field is nonzero */
1548 	if (cpi->cpi_brandid != 0) {
1549 		static const struct {
1550 			uint_t bt_bid;
1551 			const char *bt_str;
1552 		} brand_tbl[] = {
1553 			{ 0x1,	"Intel(r) Celeron(r)" },
1554 			{ 0x2,	"Intel(r) Pentium(r) III" },
1555 			{ 0x3,	"Intel(r) Pentium(r) III Xeon(tm)" },
1556 			{ 0x4,	"Intel(r) Pentium(r) III" },
1557 			{ 0x6,	"Mobile Intel(r) Pentium(r) III" },
1558 			{ 0x7,	"Mobile Intel(r) Celeron(r)" },
1559 			{ 0x8,	"Intel(r) Pentium(r) 4" },
1560 			{ 0x9,	"Intel(r) Pentium(r) 4" },
1561 			{ 0xa,	"Intel(r) Celeron(r)" },
1562 			{ 0xb,	"Intel(r) Xeon(tm)" },
1563 			{ 0xc,	"Intel(r) Xeon(tm) MP" },
1564 			{ 0xe,	"Mobile Intel(r) Pentium(r) 4" },
1565 			{ 0xf,	"Mobile Intel(r) Celeron(r)" },
1566 			{ 0x11, "Mobile Genuine Intel(r)" },
1567 			{ 0x12, "Intel(r) Celeron(r) M" },
1568 			{ 0x13, "Mobile Intel(r) Celeron(r)" },
1569 			{ 0x14, "Intel(r) Celeron(r)" },
1570 			{ 0x15, "Mobile Genuine Intel(r)" },
1571 			{ 0x16,	"Intel(r) Pentium(r) M" },
1572 			{ 0x17, "Mobile Intel(r) Celeron(r)" }
1573 		};
1574 		uint_t btblmax = sizeof (brand_tbl) / sizeof (brand_tbl[0]);
1575 		uint_t sgn;
1576 
1577 		sgn = (cpi->cpi_family << 8) |
1578 		    (cpi->cpi_model << 4) | cpi->cpi_step;
1579 
1580 		for (i = 0; i < btblmax; i++)
1581 			if (brand_tbl[i].bt_bid == cpi->cpi_brandid)
1582 				break;
1583 		if (i < btblmax) {
1584 			if (sgn == 0x6b1 && cpi->cpi_brandid == 3)
1585 				return ("Intel(r) Celeron(r)");
1586 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xb)
1587 				return ("Intel(r) Xeon(tm) MP");
1588 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xe)
1589 				return ("Intel(r) Xeon(tm)");
1590 			return (brand_tbl[i].bt_str);
1591 		}
1592 	}
1593 
1594 	return (NULL);
1595 }
1596 
1597 static const char *
1598 amd_cpubrand(const struct cpuid_info *cpi)
1599 {
1600 	if ((x86_feature & X86_CPUID) == 0 ||
1601 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1602 		return ("i486 compatible");
1603 
1604 	switch (cpi->cpi_family) {
1605 	case 5:
1606 		switch (cpi->cpi_model) {
1607 		case 0:
1608 		case 1:
1609 		case 2:
1610 		case 3:
1611 		case 4:
1612 		case 5:
1613 			return ("AMD-K5(r)");
1614 		case 6:
1615 		case 7:
1616 			return ("AMD-K6(r)");
1617 		case 8:
1618 			return ("AMD-K6(r)-2");
1619 		case 9:
1620 			return ("AMD-K6(r)-III");
1621 		default:
1622 			return ("AMD (family 5)");
1623 		}
1624 	case 6:
1625 		switch (cpi->cpi_model) {
1626 		case 1:
1627 			return ("AMD-K7(tm)");
1628 		case 0:
1629 		case 2:
1630 		case 4:
1631 			return ("AMD Athlon(tm)");
1632 		case 3:
1633 		case 7:
1634 			return ("AMD Duron(tm)");
1635 		case 6:
1636 		case 8:
1637 		case 10:
1638 			/*
1639 			 * Use the L2 cache size to distinguish
1640 			 */
1641 			return ((cpi->cpi_extd[6].cp_ecx >> 16) >= 256 ?
1642 			    "AMD Athlon(tm)" : "AMD Duron(tm)");
1643 		default:
1644 			return ("AMD (family 6)");
1645 		}
1646 	default:
1647 		break;
1648 	}
1649 
1650 	if (cpi->cpi_family == 0xf && cpi->cpi_model == 5 &&
1651 	    cpi->cpi_brandid != 0) {
1652 		switch (BITX(cpi->cpi_brandid, 7, 5)) {
1653 		case 3:
1654 			return ("AMD Opteron(tm) UP 1xx");
1655 		case 4:
1656 			return ("AMD Opteron(tm) DP 2xx");
1657 		case 5:
1658 			return ("AMD Opteron(tm) MP 8xx");
1659 		default:
1660 			return ("AMD Opteron(tm)");
1661 		}
1662 	}
1663 
1664 	return (NULL);
1665 }
1666 
1667 static const char *
1668 cyrix_cpubrand(struct cpuid_info *cpi, uint_t type)
1669 {
1670 	if ((x86_feature & X86_CPUID) == 0 ||
1671 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5 ||
1672 	    type == X86_TYPE_CYRIX_486)
1673 		return ("i486 compatible");
1674 
1675 	switch (type) {
1676 	case X86_TYPE_CYRIX_6x86:
1677 		return ("Cyrix 6x86");
1678 	case X86_TYPE_CYRIX_6x86L:
1679 		return ("Cyrix 6x86L");
1680 	case X86_TYPE_CYRIX_6x86MX:
1681 		return ("Cyrix 6x86MX");
1682 	case X86_TYPE_CYRIX_GXm:
1683 		return ("Cyrix GXm");
1684 	case X86_TYPE_CYRIX_MediaGX:
1685 		return ("Cyrix MediaGX");
1686 	case X86_TYPE_CYRIX_MII:
1687 		return ("Cyrix M2");
1688 	case X86_TYPE_VIA_CYRIX_III:
1689 		return ("VIA Cyrix M3");
1690 	default:
1691 		/*
1692 		 * Have another wild guess ..
1693 		 */
1694 		if (cpi->cpi_family == 4 && cpi->cpi_model == 9)
1695 			return ("Cyrix 5x86");
1696 		else if (cpi->cpi_family == 5) {
1697 			switch (cpi->cpi_model) {
1698 			case 2:
1699 				return ("Cyrix 6x86");	/* Cyrix M1 */
1700 			case 4:
1701 				return ("Cyrix MediaGX");
1702 			default:
1703 				break;
1704 			}
1705 		} else if (cpi->cpi_family == 6) {
1706 			switch (cpi->cpi_model) {
1707 			case 0:
1708 				return ("Cyrix 6x86MX"); /* Cyrix M2? */
1709 			case 5:
1710 			case 6:
1711 			case 7:
1712 			case 8:
1713 			case 9:
1714 				return ("VIA C3");
1715 			default:
1716 				break;
1717 			}
1718 		}
1719 		break;
1720 	}
1721 	return (NULL);
1722 }
1723 
1724 /*
1725  * This only gets called in the case that the CPU extended
1726  * feature brand string (0x80000002, 0x80000003, 0x80000004)
1727  * aren't available, or contain null bytes for some reason.
1728  */
1729 static void
1730 fabricate_brandstr(struct cpuid_info *cpi)
1731 {
1732 	const char *brand = NULL;
1733 
1734 	switch (cpi->cpi_vendor) {
1735 	case X86_VENDOR_Intel:
1736 		brand = intel_cpubrand(cpi);
1737 		break;
1738 	case X86_VENDOR_AMD:
1739 		brand = amd_cpubrand(cpi);
1740 		break;
1741 	case X86_VENDOR_Cyrix:
1742 		brand = cyrix_cpubrand(cpi, x86_type);
1743 		break;
1744 	case X86_VENDOR_NexGen:
1745 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1746 			brand = "NexGen Nx586";
1747 		break;
1748 	case X86_VENDOR_Centaur:
1749 		if (cpi->cpi_family == 5)
1750 			switch (cpi->cpi_model) {
1751 			case 4:
1752 				brand = "Centaur C6";
1753 				break;
1754 			case 8:
1755 				brand = "Centaur C2";
1756 				break;
1757 			case 9:
1758 				brand = "Centaur C3";
1759 				break;
1760 			default:
1761 				break;
1762 			}
1763 		break;
1764 	case X86_VENDOR_Rise:
1765 		if (cpi->cpi_family == 5 &&
1766 		    (cpi->cpi_model == 0 || cpi->cpi_model == 2))
1767 			brand = "Rise mP6";
1768 		break;
1769 	case X86_VENDOR_SiS:
1770 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1771 			brand = "SiS 55x";
1772 		break;
1773 	case X86_VENDOR_TM:
1774 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4)
1775 			brand = "Transmeta Crusoe TM3x00 or TM5x00";
1776 		break;
1777 	case X86_VENDOR_NSC:
1778 	case X86_VENDOR_UMC:
1779 	default:
1780 		break;
1781 	}
1782 	if (brand) {
1783 		(void) strcpy((char *)cpi->cpi_brandstr, brand);
1784 		return;
1785 	}
1786 
1787 	/*
1788 	 * If all else fails ...
1789 	 */
1790 	(void) snprintf(cpi->cpi_brandstr, sizeof (cpi->cpi_brandstr),
1791 	    "%s %d.%d.%d", cpi->cpi_vendorstr, cpi->cpi_family,
1792 	    cpi->cpi_model, cpi->cpi_step);
1793 }
1794 
1795 /*
1796  * This routine is called just after kernel memory allocation
1797  * becomes available on cpu0, and as part of mp_startup() on
1798  * the other cpus.
1799  *
1800  * Fixup the brand string, and collect any information from cpuid
1801  * that requires dynamicically allocated storage to represent.
1802  */
1803 /*ARGSUSED*/
1804 void
1805 cpuid_pass3(cpu_t *cpu)
1806 {
1807 	int	i, max, shft, level, size;
1808 	struct cpuid_regs regs;
1809 	struct cpuid_regs *cp;
1810 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1811 
1812 	ASSERT(cpi->cpi_pass == 2);
1813 
1814 	/*
1815 	 * Function 4: Deterministic cache parameters
1816 	 *
1817 	 * Take this opportunity to detect the number of threads
1818 	 * sharing the last level cache, and construct a corresponding
1819 	 * cache id. The respective cpuid_info members are initialized
1820 	 * to the default case of "no last level cache sharing".
1821 	 */
1822 	cpi->cpi_ncpu_shr_last_cache = 1;
1823 	cpi->cpi_last_lvl_cacheid = cpu->cpu_id;
1824 
1825 	if (cpi->cpi_maxeax >= 4 && cpi->cpi_vendor == X86_VENDOR_Intel) {
1826 
1827 		/*
1828 		 * Find the # of elements (size) returned by fn 4, and along
1829 		 * the way detect last level cache sharing details.
1830 		 */
1831 		bzero(&regs, sizeof (regs));
1832 		cp = &regs;
1833 		for (i = 0, max = 0; i < CPI_FN4_ECX_MAX; i++) {
1834 			cp->cp_eax = 4;
1835 			cp->cp_ecx = i;
1836 
1837 			(void) __cpuid_insn(cp);
1838 
1839 			if (CPI_CACHE_TYPE(cp) == 0)
1840 				break;
1841 			level = CPI_CACHE_LVL(cp);
1842 			if (level > max) {
1843 				max = level;
1844 				cpi->cpi_ncpu_shr_last_cache =
1845 				    CPI_NTHR_SHR_CACHE(cp) + 1;
1846 			}
1847 		}
1848 		cpi->cpi_std_4_size = size = i;
1849 
1850 		/*
1851 		 * Allocate the cpi_std_4 array. The first element
1852 		 * references the regs for fn 4, %ecx == 0, which
1853 		 * cpuid_pass2() stashed in cpi->cpi_std[4].
1854 		 */
1855 		if (size > 0) {
1856 			cpi->cpi_std_4 =
1857 			    kmem_alloc(size * sizeof (cp), KM_SLEEP);
1858 			cpi->cpi_std_4[0] = &cpi->cpi_std[4];
1859 
1860 			/*
1861 			 * Allocate storage to hold the additional regs
1862 			 * for function 4, %ecx == 1 .. cpi_std_4_size.
1863 			 *
1864 			 * The regs for fn 4, %ecx == 0 has already
1865 			 * been allocated as indicated above.
1866 			 */
1867 			for (i = 1; i < size; i++) {
1868 				cp = cpi->cpi_std_4[i] =
1869 				    kmem_zalloc(sizeof (regs), KM_SLEEP);
1870 				cp->cp_eax = 4;
1871 				cp->cp_ecx = i;
1872 
1873 				(void) __cpuid_insn(cp);
1874 			}
1875 		}
1876 		/*
1877 		 * Determine the number of bits needed to represent
1878 		 * the number of CPUs sharing the last level cache.
1879 		 *
1880 		 * Shift off that number of bits from the APIC id to
1881 		 * derive the cache id.
1882 		 */
1883 		shft = 0;
1884 		for (i = 1; i < cpi->cpi_ncpu_shr_last_cache; i <<= 1)
1885 			shft++;
1886 		cpi->cpi_last_lvl_cacheid = cpi->cpi_apicid >> shft;
1887 	}
1888 
1889 	/*
1890 	 * Now fixup the brand string
1891 	 */
1892 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0) {
1893 		fabricate_brandstr(cpi);
1894 	} else {
1895 
1896 		/*
1897 		 * If we successfully extracted a brand string from the cpuid
1898 		 * instruction, clean it up by removing leading spaces and
1899 		 * similar junk.
1900 		 */
1901 		if (cpi->cpi_brandstr[0]) {
1902 			size_t maxlen = sizeof (cpi->cpi_brandstr);
1903 			char *src, *dst;
1904 
1905 			dst = src = (char *)cpi->cpi_brandstr;
1906 			src[maxlen - 1] = '\0';
1907 			/*
1908 			 * strip leading spaces
1909 			 */
1910 			while (*src == ' ')
1911 				src++;
1912 			/*
1913 			 * Remove any 'Genuine' or "Authentic" prefixes
1914 			 */
1915 			if (strncmp(src, "Genuine ", 8) == 0)
1916 				src += 8;
1917 			if (strncmp(src, "Authentic ", 10) == 0)
1918 				src += 10;
1919 
1920 			/*
1921 			 * Now do an in-place copy.
1922 			 * Map (R) to (r) and (TM) to (tm).
1923 			 * The era of teletypes is long gone, and there's
1924 			 * -really- no need to shout.
1925 			 */
1926 			while (*src != '\0') {
1927 				if (src[0] == '(') {
1928 					if (strncmp(src + 1, "R)", 2) == 0) {
1929 						(void) strncpy(dst, "(r)", 3);
1930 						src += 3;
1931 						dst += 3;
1932 						continue;
1933 					}
1934 					if (strncmp(src + 1, "TM)", 3) == 0) {
1935 						(void) strncpy(dst, "(tm)", 4);
1936 						src += 4;
1937 						dst += 4;
1938 						continue;
1939 					}
1940 				}
1941 				*dst++ = *src++;
1942 			}
1943 			*dst = '\0';
1944 
1945 			/*
1946 			 * Finally, remove any trailing spaces
1947 			 */
1948 			while (--dst > cpi->cpi_brandstr)
1949 				if (*dst == ' ')
1950 					*dst = '\0';
1951 				else
1952 					break;
1953 		} else
1954 			fabricate_brandstr(cpi);
1955 	}
1956 	cpi->cpi_pass = 3;
1957 }
1958 
1959 /*
1960  * This routine is called out of bind_hwcap() much later in the life
1961  * of the kernel (post_startup()).  The job of this routine is to resolve
1962  * the hardware feature support and kernel support for those features into
1963  * what we're actually going to tell applications via the aux vector.
1964  */
1965 uint_t
1966 cpuid_pass4(cpu_t *cpu)
1967 {
1968 	struct cpuid_info *cpi;
1969 	uint_t hwcap_flags = 0;
1970 
1971 	if (cpu == NULL)
1972 		cpu = CPU;
1973 	cpi = cpu->cpu_m.mcpu_cpi;
1974 
1975 	ASSERT(cpi->cpi_pass == 3);
1976 
1977 	if (cpi->cpi_maxeax >= 1) {
1978 		uint32_t *edx = &cpi->cpi_support[STD_EDX_FEATURES];
1979 		uint32_t *ecx = &cpi->cpi_support[STD_ECX_FEATURES];
1980 
1981 		*edx = CPI_FEATURES_EDX(cpi);
1982 		*ecx = CPI_FEATURES_ECX(cpi);
1983 
1984 		/*
1985 		 * [these require explicit kernel support]
1986 		 */
1987 		if ((x86_feature & X86_SEP) == 0)
1988 			*edx &= ~CPUID_INTC_EDX_SEP;
1989 
1990 		if ((x86_feature & X86_SSE) == 0)
1991 			*edx &= ~(CPUID_INTC_EDX_FXSR|CPUID_INTC_EDX_SSE);
1992 		if ((x86_feature & X86_SSE2) == 0)
1993 			*edx &= ~CPUID_INTC_EDX_SSE2;
1994 
1995 		if ((x86_feature & X86_HTT) == 0)
1996 			*edx &= ~CPUID_INTC_EDX_HTT;
1997 
1998 		if ((x86_feature & X86_SSE3) == 0)
1999 			*ecx &= ~CPUID_INTC_ECX_SSE3;
2000 
2001 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
2002 			if ((x86_feature & X86_SSSE3) == 0)
2003 				*ecx &= ~CPUID_INTC_ECX_SSSE3;
2004 			if ((x86_feature & X86_SSE4_1) == 0)
2005 				*ecx &= ~CPUID_INTC_ECX_SSE4_1;
2006 			if ((x86_feature & X86_SSE4_2) == 0)
2007 				*ecx &= ~CPUID_INTC_ECX_SSE4_2;
2008 		}
2009 
2010 		/*
2011 		 * [no explicit support required beyond x87 fp context]
2012 		 */
2013 		if (!fpu_exists)
2014 			*edx &= ~(CPUID_INTC_EDX_FPU | CPUID_INTC_EDX_MMX);
2015 
2016 		/*
2017 		 * Now map the supported feature vector to things that we
2018 		 * think userland will care about.
2019 		 */
2020 		if (*edx & CPUID_INTC_EDX_SEP)
2021 			hwcap_flags |= AV_386_SEP;
2022 		if (*edx & CPUID_INTC_EDX_SSE)
2023 			hwcap_flags |= AV_386_FXSR | AV_386_SSE;
2024 		if (*edx & CPUID_INTC_EDX_SSE2)
2025 			hwcap_flags |= AV_386_SSE2;
2026 		if (*ecx & CPUID_INTC_ECX_SSE3)
2027 			hwcap_flags |= AV_386_SSE3;
2028 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
2029 			if (*ecx & CPUID_INTC_ECX_SSSE3)
2030 				hwcap_flags |= AV_386_SSSE3;
2031 			if (*ecx & CPUID_INTC_ECX_SSE4_1)
2032 				hwcap_flags |= AV_386_SSE4_1;
2033 			if (*ecx & CPUID_INTC_ECX_SSE4_2)
2034 				hwcap_flags |= AV_386_SSE4_2;
2035 		}
2036 		if (*ecx & CPUID_INTC_ECX_POPCNT)
2037 			hwcap_flags |= AV_386_POPCNT;
2038 		if (*edx & CPUID_INTC_EDX_FPU)
2039 			hwcap_flags |= AV_386_FPU;
2040 		if (*edx & CPUID_INTC_EDX_MMX)
2041 			hwcap_flags |= AV_386_MMX;
2042 
2043 		if (*edx & CPUID_INTC_EDX_TSC)
2044 			hwcap_flags |= AV_386_TSC;
2045 		if (*edx & CPUID_INTC_EDX_CX8)
2046 			hwcap_flags |= AV_386_CX8;
2047 		if (*edx & CPUID_INTC_EDX_CMOV)
2048 			hwcap_flags |= AV_386_CMOV;
2049 		if (*ecx & CPUID_INTC_ECX_MON)
2050 			hwcap_flags |= AV_386_MON;
2051 		if (*ecx & CPUID_INTC_ECX_CX16)
2052 			hwcap_flags |= AV_386_CX16;
2053 	}
2054 
2055 	if (x86_feature & X86_HTT)
2056 		hwcap_flags |= AV_386_PAUSE;
2057 
2058 	if (cpi->cpi_xmaxeax < 0x80000001)
2059 		goto pass4_done;
2060 
2061 	switch (cpi->cpi_vendor) {
2062 		struct cpuid_regs cp;
2063 		uint32_t *edx, *ecx;
2064 
2065 	case X86_VENDOR_Intel:
2066 		/*
2067 		 * Seems like Intel duplicated what we necessary
2068 		 * here to make the initial crop of 64-bit OS's work.
2069 		 * Hopefully, those are the only "extended" bits
2070 		 * they'll add.
2071 		 */
2072 		/*FALLTHROUGH*/
2073 
2074 	case X86_VENDOR_AMD:
2075 		edx = &cpi->cpi_support[AMD_EDX_FEATURES];
2076 		ecx = &cpi->cpi_support[AMD_ECX_FEATURES];
2077 
2078 		*edx = CPI_FEATURES_XTD_EDX(cpi);
2079 		*ecx = CPI_FEATURES_XTD_ECX(cpi);
2080 
2081 		/*
2082 		 * [these features require explicit kernel support]
2083 		 */
2084 		switch (cpi->cpi_vendor) {
2085 		case X86_VENDOR_Intel:
2086 			if ((x86_feature & X86_TSCP) == 0)
2087 				*edx &= ~CPUID_AMD_EDX_TSCP;
2088 			break;
2089 
2090 		case X86_VENDOR_AMD:
2091 			if ((x86_feature & X86_TSCP) == 0)
2092 				*edx &= ~CPUID_AMD_EDX_TSCP;
2093 			if ((x86_feature & X86_SSE4A) == 0)
2094 				*ecx &= ~CPUID_AMD_ECX_SSE4A;
2095 			break;
2096 
2097 		default:
2098 			break;
2099 		}
2100 
2101 		/*
2102 		 * [no explicit support required beyond
2103 		 * x87 fp context and exception handlers]
2104 		 */
2105 		if (!fpu_exists)
2106 			*edx &= ~(CPUID_AMD_EDX_MMXamd |
2107 			    CPUID_AMD_EDX_3DNow | CPUID_AMD_EDX_3DNowx);
2108 
2109 		if ((x86_feature & X86_NX) == 0)
2110 			*edx &= ~CPUID_AMD_EDX_NX;
2111 #if !defined(__amd64)
2112 		*edx &= ~CPUID_AMD_EDX_LM;
2113 #endif
2114 		/*
2115 		 * Now map the supported feature vector to
2116 		 * things that we think userland will care about.
2117 		 */
2118 #if defined(__amd64)
2119 		if (*edx & CPUID_AMD_EDX_SYSC)
2120 			hwcap_flags |= AV_386_AMD_SYSC;
2121 #endif
2122 		if (*edx & CPUID_AMD_EDX_MMXamd)
2123 			hwcap_flags |= AV_386_AMD_MMX;
2124 		if (*edx & CPUID_AMD_EDX_3DNow)
2125 			hwcap_flags |= AV_386_AMD_3DNow;
2126 		if (*edx & CPUID_AMD_EDX_3DNowx)
2127 			hwcap_flags |= AV_386_AMD_3DNowx;
2128 
2129 		switch (cpi->cpi_vendor) {
2130 		case X86_VENDOR_AMD:
2131 			if (*edx & CPUID_AMD_EDX_TSCP)
2132 				hwcap_flags |= AV_386_TSCP;
2133 			if (*ecx & CPUID_AMD_ECX_AHF64)
2134 				hwcap_flags |= AV_386_AHF;
2135 			if (*ecx & CPUID_AMD_ECX_SSE4A)
2136 				hwcap_flags |= AV_386_AMD_SSE4A;
2137 			if (*ecx & CPUID_AMD_ECX_LZCNT)
2138 				hwcap_flags |= AV_386_AMD_LZCNT;
2139 			break;
2140 
2141 		case X86_VENDOR_Intel:
2142 			if (*edx & CPUID_AMD_EDX_TSCP)
2143 				hwcap_flags |= AV_386_TSCP;
2144 			/*
2145 			 * Aarrgh.
2146 			 * Intel uses a different bit in the same word.
2147 			 */
2148 			if (*ecx & CPUID_INTC_ECX_AHF64)
2149 				hwcap_flags |= AV_386_AHF;
2150 			break;
2151 
2152 		default:
2153 			break;
2154 		}
2155 		break;
2156 
2157 	case X86_VENDOR_TM:
2158 		cp.cp_eax = 0x80860001;
2159 		(void) __cpuid_insn(&cp);
2160 		cpi->cpi_support[TM_EDX_FEATURES] = cp.cp_edx;
2161 		break;
2162 
2163 	default:
2164 		break;
2165 	}
2166 
2167 pass4_done:
2168 	cpi->cpi_pass = 4;
2169 	return (hwcap_flags);
2170 }
2171 
2172 
2173 /*
2174  * Simulate the cpuid instruction using the data we previously
2175  * captured about this CPU.  We try our best to return the truth
2176  * about the hardware, independently of kernel support.
2177  */
2178 uint32_t
2179 cpuid_insn(cpu_t *cpu, struct cpuid_regs *cp)
2180 {
2181 	struct cpuid_info *cpi;
2182 	struct cpuid_regs *xcp;
2183 
2184 	if (cpu == NULL)
2185 		cpu = CPU;
2186 	cpi = cpu->cpu_m.mcpu_cpi;
2187 
2188 	ASSERT(cpuid_checkpass(cpu, 3));
2189 
2190 	/*
2191 	 * CPUID data is cached in two separate places: cpi_std for standard
2192 	 * CPUID functions, and cpi_extd for extended CPUID functions.
2193 	 */
2194 	if (cp->cp_eax <= cpi->cpi_maxeax && cp->cp_eax < NMAX_CPI_STD)
2195 		xcp = &cpi->cpi_std[cp->cp_eax];
2196 	else if (cp->cp_eax >= 0x80000000 && cp->cp_eax <= cpi->cpi_xmaxeax &&
2197 	    cp->cp_eax < 0x80000000 + NMAX_CPI_EXTD)
2198 		xcp = &cpi->cpi_extd[cp->cp_eax - 0x80000000];
2199 	else
2200 		/*
2201 		 * The caller is asking for data from an input parameter which
2202 		 * the kernel has not cached.  In this case we go fetch from
2203 		 * the hardware and return the data directly to the user.
2204 		 */
2205 		return (__cpuid_insn(cp));
2206 
2207 	cp->cp_eax = xcp->cp_eax;
2208 	cp->cp_ebx = xcp->cp_ebx;
2209 	cp->cp_ecx = xcp->cp_ecx;
2210 	cp->cp_edx = xcp->cp_edx;
2211 	return (cp->cp_eax);
2212 }
2213 
2214 int
2215 cpuid_checkpass(cpu_t *cpu, int pass)
2216 {
2217 	return (cpu != NULL && cpu->cpu_m.mcpu_cpi != NULL &&
2218 	    cpu->cpu_m.mcpu_cpi->cpi_pass >= pass);
2219 }
2220 
2221 int
2222 cpuid_getbrandstr(cpu_t *cpu, char *s, size_t n)
2223 {
2224 	ASSERT(cpuid_checkpass(cpu, 3));
2225 
2226 	return (snprintf(s, n, "%s", cpu->cpu_m.mcpu_cpi->cpi_brandstr));
2227 }
2228 
2229 int
2230 cpuid_is_cmt(cpu_t *cpu)
2231 {
2232 	if (cpu == NULL)
2233 		cpu = CPU;
2234 
2235 	ASSERT(cpuid_checkpass(cpu, 1));
2236 
2237 	return (cpu->cpu_m.mcpu_cpi->cpi_chipid >= 0);
2238 }
2239 
2240 /*
2241  * AMD and Intel both implement the 64-bit variant of the syscall
2242  * instruction (syscallq), so if there's -any- support for syscall,
2243  * cpuid currently says "yes, we support this".
2244  *
2245  * However, Intel decided to -not- implement the 32-bit variant of the
2246  * syscall instruction, so we provide a predicate to allow our caller
2247  * to test that subtlety here.
2248  *
2249  * XXPV	Currently, 32-bit syscall instructions don't work via the hypervisor,
2250  *	even in the case where the hardware would in fact support it.
2251  */
2252 /*ARGSUSED*/
2253 int
2254 cpuid_syscall32_insn(cpu_t *cpu)
2255 {
2256 	ASSERT(cpuid_checkpass((cpu == NULL ? CPU : cpu), 1));
2257 
2258 #if !defined(__xpv)
2259 	if (cpu == NULL)
2260 		cpu = CPU;
2261 
2262 	/*CSTYLED*/
2263 	{
2264 		struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2265 
2266 		if (cpi->cpi_vendor == X86_VENDOR_AMD &&
2267 		    cpi->cpi_xmaxeax >= 0x80000001 &&
2268 		    (CPI_FEATURES_XTD_EDX(cpi) & CPUID_AMD_EDX_SYSC))
2269 			return (1);
2270 	}
2271 #endif
2272 	return (0);
2273 }
2274 
2275 int
2276 cpuid_getidstr(cpu_t *cpu, char *s, size_t n)
2277 {
2278 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2279 
2280 	static const char fmt[] =
2281 	    "x86 (%s %X family %d model %d step %d clock %d MHz)";
2282 	static const char fmt_ht[] =
2283 	    "x86 (chipid 0x%x %s %X family %d model %d step %d clock %d MHz)";
2284 
2285 	ASSERT(cpuid_checkpass(cpu, 1));
2286 
2287 	if (cpuid_is_cmt(cpu))
2288 		return (snprintf(s, n, fmt_ht, cpi->cpi_chipid,
2289 		    cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
2290 		    cpi->cpi_family, cpi->cpi_model,
2291 		    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
2292 	return (snprintf(s, n, fmt,
2293 	    cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
2294 	    cpi->cpi_family, cpi->cpi_model,
2295 	    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
2296 }
2297 
2298 const char *
2299 cpuid_getvendorstr(cpu_t *cpu)
2300 {
2301 	ASSERT(cpuid_checkpass(cpu, 1));
2302 	return ((const char *)cpu->cpu_m.mcpu_cpi->cpi_vendorstr);
2303 }
2304 
2305 uint_t
2306 cpuid_getvendor(cpu_t *cpu)
2307 {
2308 	ASSERT(cpuid_checkpass(cpu, 1));
2309 	return (cpu->cpu_m.mcpu_cpi->cpi_vendor);
2310 }
2311 
2312 uint_t
2313 cpuid_getfamily(cpu_t *cpu)
2314 {
2315 	ASSERT(cpuid_checkpass(cpu, 1));
2316 	return (cpu->cpu_m.mcpu_cpi->cpi_family);
2317 }
2318 
2319 uint_t
2320 cpuid_getmodel(cpu_t *cpu)
2321 {
2322 	ASSERT(cpuid_checkpass(cpu, 1));
2323 	return (cpu->cpu_m.mcpu_cpi->cpi_model);
2324 }
2325 
2326 uint_t
2327 cpuid_get_ncpu_per_chip(cpu_t *cpu)
2328 {
2329 	ASSERT(cpuid_checkpass(cpu, 1));
2330 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_per_chip);
2331 }
2332 
2333 uint_t
2334 cpuid_get_ncore_per_chip(cpu_t *cpu)
2335 {
2336 	ASSERT(cpuid_checkpass(cpu, 1));
2337 	return (cpu->cpu_m.mcpu_cpi->cpi_ncore_per_chip);
2338 }
2339 
2340 uint_t
2341 cpuid_get_ncpu_sharing_last_cache(cpu_t *cpu)
2342 {
2343 	ASSERT(cpuid_checkpass(cpu, 2));
2344 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_shr_last_cache);
2345 }
2346 
2347 id_t
2348 cpuid_get_last_lvl_cacheid(cpu_t *cpu)
2349 {
2350 	ASSERT(cpuid_checkpass(cpu, 2));
2351 	return (cpu->cpu_m.mcpu_cpi->cpi_last_lvl_cacheid);
2352 }
2353 
2354 uint_t
2355 cpuid_getstep(cpu_t *cpu)
2356 {
2357 	ASSERT(cpuid_checkpass(cpu, 1));
2358 	return (cpu->cpu_m.mcpu_cpi->cpi_step);
2359 }
2360 
2361 uint_t
2362 cpuid_getsig(struct cpu *cpu)
2363 {
2364 	ASSERT(cpuid_checkpass(cpu, 1));
2365 	return (cpu->cpu_m.mcpu_cpi->cpi_std[1].cp_eax);
2366 }
2367 
2368 uint32_t
2369 cpuid_getchiprev(struct cpu *cpu)
2370 {
2371 	ASSERT(cpuid_checkpass(cpu, 1));
2372 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprev);
2373 }
2374 
2375 const char *
2376 cpuid_getchiprevstr(struct cpu *cpu)
2377 {
2378 	ASSERT(cpuid_checkpass(cpu, 1));
2379 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprevstr);
2380 }
2381 
2382 uint32_t
2383 cpuid_getsockettype(struct cpu *cpu)
2384 {
2385 	ASSERT(cpuid_checkpass(cpu, 1));
2386 	return (cpu->cpu_m.mcpu_cpi->cpi_socket);
2387 }
2388 
2389 int
2390 cpuid_get_chipid(cpu_t *cpu)
2391 {
2392 	ASSERT(cpuid_checkpass(cpu, 1));
2393 
2394 	if (cpuid_is_cmt(cpu))
2395 		return (cpu->cpu_m.mcpu_cpi->cpi_chipid);
2396 	return (cpu->cpu_id);
2397 }
2398 
2399 id_t
2400 cpuid_get_coreid(cpu_t *cpu)
2401 {
2402 	ASSERT(cpuid_checkpass(cpu, 1));
2403 	return (cpu->cpu_m.mcpu_cpi->cpi_coreid);
2404 }
2405 
2406 int
2407 cpuid_get_pkgcoreid(cpu_t *cpu)
2408 {
2409 	ASSERT(cpuid_checkpass(cpu, 1));
2410 	return (cpu->cpu_m.mcpu_cpi->cpi_pkgcoreid);
2411 }
2412 
2413 int
2414 cpuid_get_clogid(cpu_t *cpu)
2415 {
2416 	ASSERT(cpuid_checkpass(cpu, 1));
2417 	return (cpu->cpu_m.mcpu_cpi->cpi_clogid);
2418 }
2419 
2420 void
2421 cpuid_get_addrsize(cpu_t *cpu, uint_t *pabits, uint_t *vabits)
2422 {
2423 	struct cpuid_info *cpi;
2424 
2425 	if (cpu == NULL)
2426 		cpu = CPU;
2427 	cpi = cpu->cpu_m.mcpu_cpi;
2428 
2429 	ASSERT(cpuid_checkpass(cpu, 1));
2430 
2431 	if (pabits)
2432 		*pabits = cpi->cpi_pabits;
2433 	if (vabits)
2434 		*vabits = cpi->cpi_vabits;
2435 }
2436 
2437 /*
2438  * Returns the number of data TLB entries for a corresponding
2439  * pagesize.  If it can't be computed, or isn't known, the
2440  * routine returns zero.  If you ask about an architecturally
2441  * impossible pagesize, the routine will panic (so that the
2442  * hat implementor knows that things are inconsistent.)
2443  */
2444 uint_t
2445 cpuid_get_dtlb_nent(cpu_t *cpu, size_t pagesize)
2446 {
2447 	struct cpuid_info *cpi;
2448 	uint_t dtlb_nent = 0;
2449 
2450 	if (cpu == NULL)
2451 		cpu = CPU;
2452 	cpi = cpu->cpu_m.mcpu_cpi;
2453 
2454 	ASSERT(cpuid_checkpass(cpu, 1));
2455 
2456 	/*
2457 	 * Check the L2 TLB info
2458 	 */
2459 	if (cpi->cpi_xmaxeax >= 0x80000006) {
2460 		struct cpuid_regs *cp = &cpi->cpi_extd[6];
2461 
2462 		switch (pagesize) {
2463 
2464 		case 4 * 1024:
2465 			/*
2466 			 * All zero in the top 16 bits of the register
2467 			 * indicates a unified TLB. Size is in low 16 bits.
2468 			 */
2469 			if ((cp->cp_ebx & 0xffff0000) == 0)
2470 				dtlb_nent = cp->cp_ebx & 0x0000ffff;
2471 			else
2472 				dtlb_nent = BITX(cp->cp_ebx, 27, 16);
2473 			break;
2474 
2475 		case 2 * 1024 * 1024:
2476 			if ((cp->cp_eax & 0xffff0000) == 0)
2477 				dtlb_nent = cp->cp_eax & 0x0000ffff;
2478 			else
2479 				dtlb_nent = BITX(cp->cp_eax, 27, 16);
2480 			break;
2481 
2482 		default:
2483 			panic("unknown L2 pagesize");
2484 			/*NOTREACHED*/
2485 		}
2486 	}
2487 
2488 	if (dtlb_nent != 0)
2489 		return (dtlb_nent);
2490 
2491 	/*
2492 	 * No L2 TLB support for this size, try L1.
2493 	 */
2494 	if (cpi->cpi_xmaxeax >= 0x80000005) {
2495 		struct cpuid_regs *cp = &cpi->cpi_extd[5];
2496 
2497 		switch (pagesize) {
2498 		case 4 * 1024:
2499 			dtlb_nent = BITX(cp->cp_ebx, 23, 16);
2500 			break;
2501 		case 2 * 1024 * 1024:
2502 			dtlb_nent = BITX(cp->cp_eax, 23, 16);
2503 			break;
2504 		default:
2505 			panic("unknown L1 d-TLB pagesize");
2506 			/*NOTREACHED*/
2507 		}
2508 	}
2509 
2510 	return (dtlb_nent);
2511 }
2512 
2513 /*
2514  * Return 0 if the erratum is not present or not applicable, positive
2515  * if it is, and negative if the status of the erratum is unknown.
2516  *
2517  * See "Revision Guide for AMD Athlon(tm) 64 and AMD Opteron(tm)
2518  * Processors" #25759, Rev 3.57, August 2005
2519  */
2520 int
2521 cpuid_opteron_erratum(cpu_t *cpu, uint_t erratum)
2522 {
2523 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2524 	uint_t eax;
2525 
2526 	/*
2527 	 * Bail out if this CPU isn't an AMD CPU, or if it's
2528 	 * a legacy (32-bit) AMD CPU.
2529 	 */
2530 	if (cpi->cpi_vendor != X86_VENDOR_AMD ||
2531 	    cpi->cpi_family == 4 || cpi->cpi_family == 5 ||
2532 	    cpi->cpi_family == 6)
2533 
2534 		return (0);
2535 
2536 	eax = cpi->cpi_std[1].cp_eax;
2537 
2538 #define	SH_B0(eax)	(eax == 0xf40 || eax == 0xf50)
2539 #define	SH_B3(eax) 	(eax == 0xf51)
2540 #define	B(eax)		(SH_B0(eax) || SH_B3(eax))
2541 
2542 #define	SH_C0(eax)	(eax == 0xf48 || eax == 0xf58)
2543 
2544 #define	SH_CG(eax)	(eax == 0xf4a || eax == 0xf5a || eax == 0xf7a)
2545 #define	DH_CG(eax)	(eax == 0xfc0 || eax == 0xfe0 || eax == 0xff0)
2546 #define	CH_CG(eax)	(eax == 0xf82 || eax == 0xfb2)
2547 #define	CG(eax)		(SH_CG(eax) || DH_CG(eax) || CH_CG(eax))
2548 
2549 #define	SH_D0(eax)	(eax == 0x10f40 || eax == 0x10f50 || eax == 0x10f70)
2550 #define	DH_D0(eax)	(eax == 0x10fc0 || eax == 0x10ff0)
2551 #define	CH_D0(eax)	(eax == 0x10f80 || eax == 0x10fb0)
2552 #define	D0(eax)		(SH_D0(eax) || DH_D0(eax) || CH_D0(eax))
2553 
2554 #define	SH_E0(eax)	(eax == 0x20f50 || eax == 0x20f40 || eax == 0x20f70)
2555 #define	JH_E1(eax)	(eax == 0x20f10)	/* JH8_E0 had 0x20f30 */
2556 #define	DH_E3(eax)	(eax == 0x20fc0 || eax == 0x20ff0)
2557 #define	SH_E4(eax)	(eax == 0x20f51 || eax == 0x20f71)
2558 #define	BH_E4(eax)	(eax == 0x20fb1)
2559 #define	SH_E5(eax)	(eax == 0x20f42)
2560 #define	DH_E6(eax)	(eax == 0x20ff2 || eax == 0x20fc2)
2561 #define	JH_E6(eax)	(eax == 0x20f12 || eax == 0x20f32)
2562 #define	EX(eax)		(SH_E0(eax) || JH_E1(eax) || DH_E3(eax) || \
2563 			    SH_E4(eax) || BH_E4(eax) || SH_E5(eax) || \
2564 			    DH_E6(eax) || JH_E6(eax))
2565 
2566 #define	DR_AX(eax)	(eax == 0x100f00 || eax == 0x100f01 || eax == 0x100f02)
2567 #define	DR_B0(eax)	(eax == 0x100f20)
2568 #define	DR_B1(eax)	(eax == 0x100f21)
2569 #define	DR_BA(eax)	(eax == 0x100f2a)
2570 #define	DR_B2(eax)	(eax == 0x100f22)
2571 #define	DR_B3(eax)	(eax == 0x100f23)
2572 #define	RB_C0(eax)	(eax == 0x100f40)
2573 
2574 	switch (erratum) {
2575 	case 1:
2576 		return (cpi->cpi_family < 0x10);
2577 	case 51:	/* what does the asterisk mean? */
2578 		return (B(eax) || SH_C0(eax) || CG(eax));
2579 	case 52:
2580 		return (B(eax));
2581 	case 57:
2582 		return (cpi->cpi_family <= 0x11);
2583 	case 58:
2584 		return (B(eax));
2585 	case 60:
2586 		return (cpi->cpi_family <= 0x11);
2587 	case 61:
2588 	case 62:
2589 	case 63:
2590 	case 64:
2591 	case 65:
2592 	case 66:
2593 	case 68:
2594 	case 69:
2595 	case 70:
2596 	case 71:
2597 		return (B(eax));
2598 	case 72:
2599 		return (SH_B0(eax));
2600 	case 74:
2601 		return (B(eax));
2602 	case 75:
2603 		return (cpi->cpi_family < 0x10);
2604 	case 76:
2605 		return (B(eax));
2606 	case 77:
2607 		return (cpi->cpi_family <= 0x11);
2608 	case 78:
2609 		return (B(eax) || SH_C0(eax));
2610 	case 79:
2611 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2612 	case 80:
2613 	case 81:
2614 	case 82:
2615 		return (B(eax));
2616 	case 83:
2617 		return (B(eax) || SH_C0(eax) || CG(eax));
2618 	case 85:
2619 		return (cpi->cpi_family < 0x10);
2620 	case 86:
2621 		return (SH_C0(eax) || CG(eax));
2622 	case 88:
2623 #if !defined(__amd64)
2624 		return (0);
2625 #else
2626 		return (B(eax) || SH_C0(eax));
2627 #endif
2628 	case 89:
2629 		return (cpi->cpi_family < 0x10);
2630 	case 90:
2631 		return (B(eax) || SH_C0(eax) || CG(eax));
2632 	case 91:
2633 	case 92:
2634 		return (B(eax) || SH_C0(eax));
2635 	case 93:
2636 		return (SH_C0(eax));
2637 	case 94:
2638 		return (B(eax) || SH_C0(eax) || CG(eax));
2639 	case 95:
2640 #if !defined(__amd64)
2641 		return (0);
2642 #else
2643 		return (B(eax) || SH_C0(eax));
2644 #endif
2645 	case 96:
2646 		return (B(eax) || SH_C0(eax) || CG(eax));
2647 	case 97:
2648 	case 98:
2649 		return (SH_C0(eax) || CG(eax));
2650 	case 99:
2651 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2652 	case 100:
2653 		return (B(eax) || SH_C0(eax));
2654 	case 101:
2655 	case 103:
2656 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2657 	case 104:
2658 		return (SH_C0(eax) || CG(eax) || D0(eax));
2659 	case 105:
2660 	case 106:
2661 	case 107:
2662 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2663 	case 108:
2664 		return (DH_CG(eax));
2665 	case 109:
2666 		return (SH_C0(eax) || CG(eax) || D0(eax));
2667 	case 110:
2668 		return (D0(eax) || EX(eax));
2669 	case 111:
2670 		return (CG(eax));
2671 	case 112:
2672 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2673 	case 113:
2674 		return (eax == 0x20fc0);
2675 	case 114:
2676 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
2677 	case 115:
2678 		return (SH_E0(eax) || JH_E1(eax));
2679 	case 116:
2680 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
2681 	case 117:
2682 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2683 	case 118:
2684 		return (SH_E0(eax) || JH_E1(eax) || SH_E4(eax) || BH_E4(eax) ||
2685 		    JH_E6(eax));
2686 	case 121:
2687 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2688 	case 122:
2689 		return (cpi->cpi_family < 0x10 || cpi->cpi_family == 0x11);
2690 	case 123:
2691 		return (JH_E1(eax) || BH_E4(eax) || JH_E6(eax));
2692 	case 131:
2693 		return (cpi->cpi_family < 0x10);
2694 	case 6336786:
2695 		/*
2696 		 * Test for AdvPowerMgmtInfo.TscPStateInvariant
2697 		 * if this is a K8 family or newer processor
2698 		 */
2699 		if (CPI_FAMILY(cpi) == 0xf) {
2700 			struct cpuid_regs regs;
2701 			regs.cp_eax = 0x80000007;
2702 			(void) __cpuid_insn(&regs);
2703 			return (!(regs.cp_edx & 0x100));
2704 		}
2705 		return (0);
2706 	case 6323525:
2707 		return (((((eax >> 12) & 0xff00) + (eax & 0xf00)) |
2708 		    (((eax >> 4) & 0xf) | ((eax >> 12) & 0xf0))) < 0xf40);
2709 
2710 	case 6671130:
2711 		/*
2712 		 * check for processors (pre-Shanghai) that do not provide
2713 		 * optimal management of 1gb ptes in its tlb.
2714 		 */
2715 		return (cpi->cpi_family == 0x10 && cpi->cpi_model < 4);
2716 
2717 	case 298:
2718 		return (DR_AX(eax) || DR_B0(eax) || DR_B1(eax) || DR_BA(eax) ||
2719 		    DR_B2(eax) || RB_C0(eax));
2720 
2721 	default:
2722 		return (-1);
2723 
2724 	}
2725 }
2726 
2727 /*
2728  * Determine if specified erratum is present via OSVW (OS Visible Workaround).
2729  * Return 1 if erratum is present, 0 if not present and -1 if indeterminate.
2730  */
2731 int
2732 osvw_opteron_erratum(cpu_t *cpu, uint_t erratum)
2733 {
2734 	struct cpuid_info	*cpi;
2735 	uint_t			osvwid;
2736 	static int		osvwfeature = -1;
2737 	uint64_t		osvwlength;
2738 
2739 
2740 	cpi = cpu->cpu_m.mcpu_cpi;
2741 
2742 	/* confirm OSVW supported */
2743 	if (osvwfeature == -1) {
2744 		osvwfeature = cpi->cpi_extd[1].cp_ecx & CPUID_AMD_ECX_OSVW;
2745 	} else {
2746 		/* assert that osvw feature setting is consistent on all cpus */
2747 		ASSERT(osvwfeature ==
2748 		    (cpi->cpi_extd[1].cp_ecx & CPUID_AMD_ECX_OSVW));
2749 	}
2750 	if (!osvwfeature)
2751 		return (-1);
2752 
2753 	osvwlength = rdmsr(MSR_AMD_OSVW_ID_LEN) & OSVW_ID_LEN_MASK;
2754 
2755 	switch (erratum) {
2756 	case 298:	/* osvwid is 0 */
2757 		osvwid = 0;
2758 		if (osvwlength <= (uint64_t)osvwid) {
2759 			/* osvwid 0 is unknown */
2760 			return (-1);
2761 		}
2762 
2763 		/*
2764 		 * Check the OSVW STATUS MSR to determine the state
2765 		 * of the erratum where:
2766 		 *   0 - fixed by HW
2767 		 *   1 - BIOS has applied the workaround when BIOS
2768 		 *   workaround is available. (Or for other errata,
2769 		 *   OS workaround is required.)
2770 		 * For a value of 1, caller will confirm that the
2771 		 * erratum 298 workaround has indeed been applied by BIOS.
2772 		 *
2773 		 * A 1 may be set in cpus that have a HW fix
2774 		 * in a mixed cpu system. Regarding erratum 298:
2775 		 *   In a multiprocessor platform, the workaround above
2776 		 *   should be applied to all processors regardless of
2777 		 *   silicon revision when an affected processor is
2778 		 *   present.
2779 		 */
2780 
2781 		return (rdmsr(MSR_AMD_OSVW_STATUS +
2782 		    (osvwid / OSVW_ID_CNT_PER_MSR)) &
2783 		    (1ULL << (osvwid % OSVW_ID_CNT_PER_MSR)));
2784 
2785 	default:
2786 		return (-1);
2787 	}
2788 }
2789 
2790 static const char assoc_str[] = "associativity";
2791 static const char line_str[] = "line-size";
2792 static const char size_str[] = "size";
2793 
2794 static void
2795 add_cache_prop(dev_info_t *devi, const char *label, const char *type,
2796     uint32_t val)
2797 {
2798 	char buf[128];
2799 
2800 	/*
2801 	 * ndi_prop_update_int() is used because it is desirable for
2802 	 * DDI_PROP_HW_DEF and DDI_PROP_DONTSLEEP to be set.
2803 	 */
2804 	if (snprintf(buf, sizeof (buf), "%s-%s", label, type) < sizeof (buf))
2805 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, buf, val);
2806 }
2807 
2808 /*
2809  * Intel-style cache/tlb description
2810  *
2811  * Standard cpuid level 2 gives a randomly ordered
2812  * selection of tags that index into a table that describes
2813  * cache and tlb properties.
2814  */
2815 
2816 static const char l1_icache_str[] = "l1-icache";
2817 static const char l1_dcache_str[] = "l1-dcache";
2818 static const char l2_cache_str[] = "l2-cache";
2819 static const char l3_cache_str[] = "l3-cache";
2820 static const char itlb4k_str[] = "itlb-4K";
2821 static const char dtlb4k_str[] = "dtlb-4K";
2822 static const char itlb2M_str[] = "itlb-2M";
2823 static const char itlb4M_str[] = "itlb-4M";
2824 static const char dtlb4M_str[] = "dtlb-4M";
2825 static const char dtlb24_str[] = "dtlb0-2M-4M";
2826 static const char itlb424_str[] = "itlb-4K-2M-4M";
2827 static const char itlb24_str[] = "itlb-2M-4M";
2828 static const char dtlb44_str[] = "dtlb-4K-4M";
2829 static const char sl1_dcache_str[] = "sectored-l1-dcache";
2830 static const char sl2_cache_str[] = "sectored-l2-cache";
2831 static const char itrace_str[] = "itrace-cache";
2832 static const char sl3_cache_str[] = "sectored-l3-cache";
2833 static const char sh_l2_tlb4k_str[] = "shared-l2-tlb-4k";
2834 
2835 static const struct cachetab {
2836 	uint8_t 	ct_code;
2837 	uint8_t		ct_assoc;
2838 	uint16_t 	ct_line_size;
2839 	size_t		ct_size;
2840 	const char	*ct_label;
2841 } intel_ctab[] = {
2842 	/*
2843 	 * maintain descending order!
2844 	 *
2845 	 * Codes ignored - Reason
2846 	 * ----------------------
2847 	 * 40H - intel_cpuid_4_cache_info() disambiguates l2/l3 cache
2848 	 * f0H/f1H - Currently we do not interpret prefetch size by design
2849 	 */
2850 	{ 0xe4, 16, 64, 8*1024*1024, l3_cache_str},
2851 	{ 0xe3, 16, 64, 4*1024*1024, l3_cache_str},
2852 	{ 0xe2, 16, 64, 2*1024*1024, l3_cache_str},
2853 	{ 0xde, 12, 64, 6*1024*1024, l3_cache_str},
2854 	{ 0xdd, 12, 64, 3*1024*1024, l3_cache_str},
2855 	{ 0xdc, 12, 64, ((1*1024*1024)+(512*1024)), l3_cache_str},
2856 	{ 0xd8, 8, 64, 4*1024*1024, l3_cache_str},
2857 	{ 0xd7, 8, 64, 2*1024*1024, l3_cache_str},
2858 	{ 0xd6, 8, 64, 1*1024*1024, l3_cache_str},
2859 	{ 0xd2, 4, 64, 2*1024*1024, l3_cache_str},
2860 	{ 0xd1, 4, 64, 1*1024*1024, l3_cache_str},
2861 	{ 0xd0, 4, 64, 512*1024, l3_cache_str},
2862 	{ 0xca, 4, 0, 512, sh_l2_tlb4k_str},
2863 	{ 0xc0, 4, 0, 8, dtlb44_str },
2864 	{ 0xba, 4, 0, 64, dtlb4k_str },
2865 	{ 0xb4, 4, 0, 256, dtlb4k_str },
2866 	{ 0xb3, 4, 0, 128, dtlb4k_str },
2867 	{ 0xb2, 4, 0, 64, itlb4k_str },
2868 	{ 0xb0, 4, 0, 128, itlb4k_str },
2869 	{ 0x87, 8, 64, 1024*1024, l2_cache_str},
2870 	{ 0x86, 4, 64, 512*1024, l2_cache_str},
2871 	{ 0x85, 8, 32, 2*1024*1024, l2_cache_str},
2872 	{ 0x84, 8, 32, 1024*1024, l2_cache_str},
2873 	{ 0x83, 8, 32, 512*1024, l2_cache_str},
2874 	{ 0x82, 8, 32, 256*1024, l2_cache_str},
2875 	{ 0x80, 8, 64, 512*1024, l2_cache_str},
2876 	{ 0x7f, 2, 64, 512*1024, l2_cache_str},
2877 	{ 0x7d, 8, 64, 2*1024*1024, sl2_cache_str},
2878 	{ 0x7c, 8, 64, 1024*1024, sl2_cache_str},
2879 	{ 0x7b, 8, 64, 512*1024, sl2_cache_str},
2880 	{ 0x7a, 8, 64, 256*1024, sl2_cache_str},
2881 	{ 0x79, 8, 64, 128*1024, sl2_cache_str},
2882 	{ 0x78, 8, 64, 1024*1024, l2_cache_str},
2883 	{ 0x73, 8, 0, 64*1024, itrace_str},
2884 	{ 0x72, 8, 0, 32*1024, itrace_str},
2885 	{ 0x71, 8, 0, 16*1024, itrace_str},
2886 	{ 0x70, 8, 0, 12*1024, itrace_str},
2887 	{ 0x68, 4, 64, 32*1024, sl1_dcache_str},
2888 	{ 0x67, 4, 64, 16*1024, sl1_dcache_str},
2889 	{ 0x66, 4, 64, 8*1024, sl1_dcache_str},
2890 	{ 0x60, 8, 64, 16*1024, sl1_dcache_str},
2891 	{ 0x5d, 0, 0, 256, dtlb44_str},
2892 	{ 0x5c, 0, 0, 128, dtlb44_str},
2893 	{ 0x5b, 0, 0, 64, dtlb44_str},
2894 	{ 0x5a, 4, 0, 32, dtlb24_str},
2895 	{ 0x59, 0, 0, 16, dtlb4k_str},
2896 	{ 0x57, 4, 0, 16, dtlb4k_str},
2897 	{ 0x56, 4, 0, 16, dtlb4M_str},
2898 	{ 0x55, 0, 0, 7, itlb24_str},
2899 	{ 0x52, 0, 0, 256, itlb424_str},
2900 	{ 0x51, 0, 0, 128, itlb424_str},
2901 	{ 0x50, 0, 0, 64, itlb424_str},
2902 	{ 0x4f, 0, 0, 32, itlb4k_str},
2903 	{ 0x4e, 24, 64, 6*1024*1024, l2_cache_str},
2904 	{ 0x4d, 16, 64, 16*1024*1024, l3_cache_str},
2905 	{ 0x4c, 12, 64, 12*1024*1024, l3_cache_str},
2906 	{ 0x4b, 16, 64, 8*1024*1024, l3_cache_str},
2907 	{ 0x4a, 12, 64, 6*1024*1024, l3_cache_str},
2908 	{ 0x49, 16, 64, 4*1024*1024, l3_cache_str},
2909 	{ 0x48, 12, 64, 3*1024*1024, l2_cache_str},
2910 	{ 0x47, 8, 64, 8*1024*1024, l3_cache_str},
2911 	{ 0x46, 4, 64, 4*1024*1024, l3_cache_str},
2912 	{ 0x45, 4, 32, 2*1024*1024, l2_cache_str},
2913 	{ 0x44, 4, 32, 1024*1024, l2_cache_str},
2914 	{ 0x43, 4, 32, 512*1024, l2_cache_str},
2915 	{ 0x42, 4, 32, 256*1024, l2_cache_str},
2916 	{ 0x41, 4, 32, 128*1024, l2_cache_str},
2917 	{ 0x3e, 4, 64, 512*1024, sl2_cache_str},
2918 	{ 0x3d, 6, 64, 384*1024, sl2_cache_str},
2919 	{ 0x3c, 4, 64, 256*1024, sl2_cache_str},
2920 	{ 0x3b, 2, 64, 128*1024, sl2_cache_str},
2921 	{ 0x3a, 6, 64, 192*1024, sl2_cache_str},
2922 	{ 0x39, 4, 64, 128*1024, sl2_cache_str},
2923 	{ 0x30, 8, 64, 32*1024, l1_icache_str},
2924 	{ 0x2c, 8, 64, 32*1024, l1_dcache_str},
2925 	{ 0x29, 8, 64, 4096*1024, sl3_cache_str},
2926 	{ 0x25, 8, 64, 2048*1024, sl3_cache_str},
2927 	{ 0x23, 8, 64, 1024*1024, sl3_cache_str},
2928 	{ 0x22, 4, 64, 512*1024, sl3_cache_str},
2929 	{ 0x0e, 6, 64, 24*1024, l1_dcache_str},
2930 	{ 0x0d, 4, 32, 16*1024, l1_dcache_str},
2931 	{ 0x0c, 4, 32, 16*1024, l1_dcache_str},
2932 	{ 0x0b, 4, 0, 4, itlb4M_str},
2933 	{ 0x0a, 2, 32, 8*1024, l1_dcache_str},
2934 	{ 0x08, 4, 32, 16*1024, l1_icache_str},
2935 	{ 0x06, 4, 32, 8*1024, l1_icache_str},
2936 	{ 0x05, 4, 0, 32, dtlb4M_str},
2937 	{ 0x04, 4, 0, 8, dtlb4M_str},
2938 	{ 0x03, 4, 0, 64, dtlb4k_str},
2939 	{ 0x02, 4, 0, 2, itlb4M_str},
2940 	{ 0x01, 4, 0, 32, itlb4k_str},
2941 	{ 0 }
2942 };
2943 
2944 static const struct cachetab cyrix_ctab[] = {
2945 	{ 0x70, 4, 0, 32, "tlb-4K" },
2946 	{ 0x80, 4, 16, 16*1024, "l1-cache" },
2947 	{ 0 }
2948 };
2949 
2950 /*
2951  * Search a cache table for a matching entry
2952  */
2953 static const struct cachetab *
2954 find_cacheent(const struct cachetab *ct, uint_t code)
2955 {
2956 	if (code != 0) {
2957 		for (; ct->ct_code != 0; ct++)
2958 			if (ct->ct_code <= code)
2959 				break;
2960 		if (ct->ct_code == code)
2961 			return (ct);
2962 	}
2963 	return (NULL);
2964 }
2965 
2966 /*
2967  * Populate cachetab entry with L2 or L3 cache-information using
2968  * cpuid function 4. This function is called from intel_walk_cacheinfo()
2969  * when descriptor 0x49 is encountered. It returns 0 if no such cache
2970  * information is found.
2971  */
2972 static int
2973 intel_cpuid_4_cache_info(struct cachetab *ct, struct cpuid_info *cpi)
2974 {
2975 	uint32_t level, i;
2976 	int ret = 0;
2977 
2978 	for (i = 0; i < cpi->cpi_std_4_size; i++) {
2979 		level = CPI_CACHE_LVL(cpi->cpi_std_4[i]);
2980 
2981 		if (level == 2 || level == 3) {
2982 			ct->ct_assoc = CPI_CACHE_WAYS(cpi->cpi_std_4[i]) + 1;
2983 			ct->ct_line_size =
2984 			    CPI_CACHE_COH_LN_SZ(cpi->cpi_std_4[i]) + 1;
2985 			ct->ct_size = ct->ct_assoc *
2986 			    (CPI_CACHE_PARTS(cpi->cpi_std_4[i]) + 1) *
2987 			    ct->ct_line_size *
2988 			    (cpi->cpi_std_4[i]->cp_ecx + 1);
2989 
2990 			if (level == 2) {
2991 				ct->ct_label = l2_cache_str;
2992 			} else if (level == 3) {
2993 				ct->ct_label = l3_cache_str;
2994 			}
2995 			ret = 1;
2996 		}
2997 	}
2998 
2999 	return (ret);
3000 }
3001 
3002 /*
3003  * Walk the cacheinfo descriptor, applying 'func' to every valid element
3004  * The walk is terminated if the walker returns non-zero.
3005  */
3006 static void
3007 intel_walk_cacheinfo(struct cpuid_info *cpi,
3008     void *arg, int (*func)(void *, const struct cachetab *))
3009 {
3010 	const struct cachetab *ct;
3011 	struct cachetab des_49_ct, des_b1_ct;
3012 	uint8_t *dp;
3013 	int i;
3014 
3015 	if ((dp = cpi->cpi_cacheinfo) == NULL)
3016 		return;
3017 	for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
3018 		/*
3019 		 * For overloaded descriptor 0x49 we use cpuid function 4
3020 		 * if supported by the current processor, to create
3021 		 * cache information.
3022 		 * For overloaded descriptor 0xb1 we use X86_PAE flag
3023 		 * to disambiguate the cache information.
3024 		 */
3025 		if (*dp == 0x49 && cpi->cpi_maxeax >= 0x4 &&
3026 		    intel_cpuid_4_cache_info(&des_49_ct, cpi) == 1) {
3027 				ct = &des_49_ct;
3028 		} else if (*dp == 0xb1) {
3029 			des_b1_ct.ct_code = 0xb1;
3030 			des_b1_ct.ct_assoc = 4;
3031 			des_b1_ct.ct_line_size = 0;
3032 			if (x86_feature & X86_PAE) {
3033 				des_b1_ct.ct_size = 8;
3034 				des_b1_ct.ct_label = itlb2M_str;
3035 			} else {
3036 				des_b1_ct.ct_size = 4;
3037 				des_b1_ct.ct_label = itlb4M_str;
3038 			}
3039 			ct = &des_b1_ct;
3040 		} else {
3041 			if ((ct = find_cacheent(intel_ctab, *dp)) == NULL) {
3042 				continue;
3043 			}
3044 		}
3045 
3046 		if (func(arg, ct) != 0) {
3047 			break;
3048 		}
3049 	}
3050 }
3051 
3052 /*
3053  * (Like the Intel one, except for Cyrix CPUs)
3054  */
3055 static void
3056 cyrix_walk_cacheinfo(struct cpuid_info *cpi,
3057     void *arg, int (*func)(void *, const struct cachetab *))
3058 {
3059 	const struct cachetab *ct;
3060 	uint8_t *dp;
3061 	int i;
3062 
3063 	if ((dp = cpi->cpi_cacheinfo) == NULL)
3064 		return;
3065 	for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
3066 		/*
3067 		 * Search Cyrix-specific descriptor table first ..
3068 		 */
3069 		if ((ct = find_cacheent(cyrix_ctab, *dp)) != NULL) {
3070 			if (func(arg, ct) != 0)
3071 				break;
3072 			continue;
3073 		}
3074 		/*
3075 		 * .. else fall back to the Intel one
3076 		 */
3077 		if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) {
3078 			if (func(arg, ct) != 0)
3079 				break;
3080 			continue;
3081 		}
3082 	}
3083 }
3084 
3085 /*
3086  * A cacheinfo walker that adds associativity, line-size, and size properties
3087  * to the devinfo node it is passed as an argument.
3088  */
3089 static int
3090 add_cacheent_props(void *arg, const struct cachetab *ct)
3091 {
3092 	dev_info_t *devi = arg;
3093 
3094 	add_cache_prop(devi, ct->ct_label, assoc_str, ct->ct_assoc);
3095 	if (ct->ct_line_size != 0)
3096 		add_cache_prop(devi, ct->ct_label, line_str,
3097 		    ct->ct_line_size);
3098 	add_cache_prop(devi, ct->ct_label, size_str, ct->ct_size);
3099 	return (0);
3100 }
3101 
3102 
3103 static const char fully_assoc[] = "fully-associative?";
3104 
3105 /*
3106  * AMD style cache/tlb description
3107  *
3108  * Extended functions 5 and 6 directly describe properties of
3109  * tlbs and various cache levels.
3110  */
3111 static void
3112 add_amd_assoc(dev_info_t *devi, const char *label, uint_t assoc)
3113 {
3114 	switch (assoc) {
3115 	case 0:	/* reserved; ignore */
3116 		break;
3117 	default:
3118 		add_cache_prop(devi, label, assoc_str, assoc);
3119 		break;
3120 	case 0xff:
3121 		add_cache_prop(devi, label, fully_assoc, 1);
3122 		break;
3123 	}
3124 }
3125 
3126 static void
3127 add_amd_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
3128 {
3129 	if (size == 0)
3130 		return;
3131 	add_cache_prop(devi, label, size_str, size);
3132 	add_amd_assoc(devi, label, assoc);
3133 }
3134 
3135 static void
3136 add_amd_cache(dev_info_t *devi, const char *label,
3137     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
3138 {
3139 	if (size == 0 || line_size == 0)
3140 		return;
3141 	add_amd_assoc(devi, label, assoc);
3142 	/*
3143 	 * Most AMD parts have a sectored cache. Multiple cache lines are
3144 	 * associated with each tag. A sector consists of all cache lines
3145 	 * associated with a tag. For example, the AMD K6-III has a sector
3146 	 * size of 2 cache lines per tag.
3147 	 */
3148 	if (lines_per_tag != 0)
3149 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
3150 	add_cache_prop(devi, label, line_str, line_size);
3151 	add_cache_prop(devi, label, size_str, size * 1024);
3152 }
3153 
3154 static void
3155 add_amd_l2_assoc(dev_info_t *devi, const char *label, uint_t assoc)
3156 {
3157 	switch (assoc) {
3158 	case 0:	/* off */
3159 		break;
3160 	case 1:
3161 	case 2:
3162 	case 4:
3163 		add_cache_prop(devi, label, assoc_str, assoc);
3164 		break;
3165 	case 6:
3166 		add_cache_prop(devi, label, assoc_str, 8);
3167 		break;
3168 	case 8:
3169 		add_cache_prop(devi, label, assoc_str, 16);
3170 		break;
3171 	case 0xf:
3172 		add_cache_prop(devi, label, fully_assoc, 1);
3173 		break;
3174 	default: /* reserved; ignore */
3175 		break;
3176 	}
3177 }
3178 
3179 static void
3180 add_amd_l2_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
3181 {
3182 	if (size == 0 || assoc == 0)
3183 		return;
3184 	add_amd_l2_assoc(devi, label, assoc);
3185 	add_cache_prop(devi, label, size_str, size);
3186 }
3187 
3188 static void
3189 add_amd_l2_cache(dev_info_t *devi, const char *label,
3190     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
3191 {
3192 	if (size == 0 || assoc == 0 || line_size == 0)
3193 		return;
3194 	add_amd_l2_assoc(devi, label, assoc);
3195 	if (lines_per_tag != 0)
3196 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
3197 	add_cache_prop(devi, label, line_str, line_size);
3198 	add_cache_prop(devi, label, size_str, size * 1024);
3199 }
3200 
3201 static void
3202 amd_cache_info(struct cpuid_info *cpi, dev_info_t *devi)
3203 {
3204 	struct cpuid_regs *cp;
3205 
3206 	if (cpi->cpi_xmaxeax < 0x80000005)
3207 		return;
3208 	cp = &cpi->cpi_extd[5];
3209 
3210 	/*
3211 	 * 4M/2M L1 TLB configuration
3212 	 *
3213 	 * We report the size for 2M pages because AMD uses two
3214 	 * TLB entries for one 4M page.
3215 	 */
3216 	add_amd_tlb(devi, "dtlb-2M",
3217 	    BITX(cp->cp_eax, 31, 24), BITX(cp->cp_eax, 23, 16));
3218 	add_amd_tlb(devi, "itlb-2M",
3219 	    BITX(cp->cp_eax, 15, 8), BITX(cp->cp_eax, 7, 0));
3220 
3221 	/*
3222 	 * 4K L1 TLB configuration
3223 	 */
3224 
3225 	switch (cpi->cpi_vendor) {
3226 		uint_t nentries;
3227 	case X86_VENDOR_TM:
3228 		if (cpi->cpi_family >= 5) {
3229 			/*
3230 			 * Crusoe processors have 256 TLB entries, but
3231 			 * cpuid data format constrains them to only
3232 			 * reporting 255 of them.
3233 			 */
3234 			if ((nentries = BITX(cp->cp_ebx, 23, 16)) == 255)
3235 				nentries = 256;
3236 			/*
3237 			 * Crusoe processors also have a unified TLB
3238 			 */
3239 			add_amd_tlb(devi, "tlb-4K", BITX(cp->cp_ebx, 31, 24),
3240 			    nentries);
3241 			break;
3242 		}
3243 		/*FALLTHROUGH*/
3244 	default:
3245 		add_amd_tlb(devi, itlb4k_str,
3246 		    BITX(cp->cp_ebx, 31, 24), BITX(cp->cp_ebx, 23, 16));
3247 		add_amd_tlb(devi, dtlb4k_str,
3248 		    BITX(cp->cp_ebx, 15, 8), BITX(cp->cp_ebx, 7, 0));
3249 		break;
3250 	}
3251 
3252 	/*
3253 	 * data L1 cache configuration
3254 	 */
3255 
3256 	add_amd_cache(devi, l1_dcache_str,
3257 	    BITX(cp->cp_ecx, 31, 24), BITX(cp->cp_ecx, 23, 16),
3258 	    BITX(cp->cp_ecx, 15, 8), BITX(cp->cp_ecx, 7, 0));
3259 
3260 	/*
3261 	 * code L1 cache configuration
3262 	 */
3263 
3264 	add_amd_cache(devi, l1_icache_str,
3265 	    BITX(cp->cp_edx, 31, 24), BITX(cp->cp_edx, 23, 16),
3266 	    BITX(cp->cp_edx, 15, 8), BITX(cp->cp_edx, 7, 0));
3267 
3268 	if (cpi->cpi_xmaxeax < 0x80000006)
3269 		return;
3270 	cp = &cpi->cpi_extd[6];
3271 
3272 	/* Check for a unified L2 TLB for large pages */
3273 
3274 	if (BITX(cp->cp_eax, 31, 16) == 0)
3275 		add_amd_l2_tlb(devi, "l2-tlb-2M",
3276 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3277 	else {
3278 		add_amd_l2_tlb(devi, "l2-dtlb-2M",
3279 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
3280 		add_amd_l2_tlb(devi, "l2-itlb-2M",
3281 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3282 	}
3283 
3284 	/* Check for a unified L2 TLB for 4K pages */
3285 
3286 	if (BITX(cp->cp_ebx, 31, 16) == 0) {
3287 		add_amd_l2_tlb(devi, "l2-tlb-4K",
3288 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3289 	} else {
3290 		add_amd_l2_tlb(devi, "l2-dtlb-4K",
3291 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
3292 		add_amd_l2_tlb(devi, "l2-itlb-4K",
3293 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3294 	}
3295 
3296 	add_amd_l2_cache(devi, l2_cache_str,
3297 	    BITX(cp->cp_ecx, 31, 16), BITX(cp->cp_ecx, 15, 12),
3298 	    BITX(cp->cp_ecx, 11, 8), BITX(cp->cp_ecx, 7, 0));
3299 }
3300 
3301 /*
3302  * There are two basic ways that the x86 world describes it cache
3303  * and tlb architecture - Intel's way and AMD's way.
3304  *
3305  * Return which flavor of cache architecture we should use
3306  */
3307 static int
3308 x86_which_cacheinfo(struct cpuid_info *cpi)
3309 {
3310 	switch (cpi->cpi_vendor) {
3311 	case X86_VENDOR_Intel:
3312 		if (cpi->cpi_maxeax >= 2)
3313 			return (X86_VENDOR_Intel);
3314 		break;
3315 	case X86_VENDOR_AMD:
3316 		/*
3317 		 * The K5 model 1 was the first part from AMD that reported
3318 		 * cache sizes via extended cpuid functions.
3319 		 */
3320 		if (cpi->cpi_family > 5 ||
3321 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
3322 			return (X86_VENDOR_AMD);
3323 		break;
3324 	case X86_VENDOR_TM:
3325 		if (cpi->cpi_family >= 5)
3326 			return (X86_VENDOR_AMD);
3327 		/*FALLTHROUGH*/
3328 	default:
3329 		/*
3330 		 * If they have extended CPU data for 0x80000005
3331 		 * then we assume they have AMD-format cache
3332 		 * information.
3333 		 *
3334 		 * If not, and the vendor happens to be Cyrix,
3335 		 * then try our-Cyrix specific handler.
3336 		 *
3337 		 * If we're not Cyrix, then assume we're using Intel's
3338 		 * table-driven format instead.
3339 		 */
3340 		if (cpi->cpi_xmaxeax >= 0x80000005)
3341 			return (X86_VENDOR_AMD);
3342 		else if (cpi->cpi_vendor == X86_VENDOR_Cyrix)
3343 			return (X86_VENDOR_Cyrix);
3344 		else if (cpi->cpi_maxeax >= 2)
3345 			return (X86_VENDOR_Intel);
3346 		break;
3347 	}
3348 	return (-1);
3349 }
3350 
3351 /*
3352  * create a node for the given cpu under the prom root node.
3353  * Also, create a cpu node in the device tree.
3354  */
3355 static dev_info_t *cpu_nex_devi = NULL;
3356 static kmutex_t cpu_node_lock;
3357 
3358 /*
3359  * Called from post_startup() and mp_startup()
3360  */
3361 void
3362 add_cpunode2devtree(processorid_t cpu_id, struct cpuid_info *cpi)
3363 {
3364 	dev_info_t *cpu_devi;
3365 	int create;
3366 
3367 	mutex_enter(&cpu_node_lock);
3368 
3369 	/*
3370 	 * create a nexus node for all cpus identified as 'cpu_id' under
3371 	 * the root node.
3372 	 */
3373 	if (cpu_nex_devi == NULL) {
3374 		if (ndi_devi_alloc(ddi_root_node(), "cpus",
3375 		    (pnode_t)DEVI_SID_NODEID, &cpu_nex_devi) != NDI_SUCCESS) {
3376 			mutex_exit(&cpu_node_lock);
3377 			return;
3378 		}
3379 		(void) ndi_devi_online(cpu_nex_devi, 0);
3380 	}
3381 
3382 	/*
3383 	 * create a child node for cpu identified as 'cpu_id'
3384 	 */
3385 	cpu_devi = ddi_add_child(cpu_nex_devi, "cpu", DEVI_SID_NODEID,
3386 	    cpu_id);
3387 	if (cpu_devi == NULL) {
3388 		mutex_exit(&cpu_node_lock);
3389 		return;
3390 	}
3391 
3392 	/* device_type */
3393 
3394 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3395 	    "device_type", "cpu");
3396 
3397 	/* reg */
3398 
3399 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3400 	    "reg", cpu_id);
3401 
3402 	/* cpu-mhz, and clock-frequency */
3403 
3404 	if (cpu_freq > 0) {
3405 		long long mul;
3406 
3407 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3408 		    "cpu-mhz", cpu_freq);
3409 
3410 		if ((mul = cpu_freq * 1000000LL) <= INT_MAX)
3411 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3412 			    "clock-frequency", (int)mul);
3413 	}
3414 
3415 	(void) ndi_devi_online(cpu_devi, 0);
3416 
3417 	if ((x86_feature & X86_CPUID) == 0) {
3418 		mutex_exit(&cpu_node_lock);
3419 		return;
3420 	}
3421 
3422 	/* vendor-id */
3423 
3424 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3425 	    "vendor-id", cpi->cpi_vendorstr);
3426 
3427 	if (cpi->cpi_maxeax == 0) {
3428 		mutex_exit(&cpu_node_lock);
3429 		return;
3430 	}
3431 
3432 	/*
3433 	 * family, model, and step
3434 	 */
3435 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3436 	    "family", CPI_FAMILY(cpi));
3437 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3438 	    "cpu-model", CPI_MODEL(cpi));
3439 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3440 	    "stepping-id", CPI_STEP(cpi));
3441 
3442 	/* type */
3443 
3444 	switch (cpi->cpi_vendor) {
3445 	case X86_VENDOR_Intel:
3446 		create = 1;
3447 		break;
3448 	default:
3449 		create = 0;
3450 		break;
3451 	}
3452 	if (create)
3453 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3454 		    "type", CPI_TYPE(cpi));
3455 
3456 	/* ext-family */
3457 
3458 	switch (cpi->cpi_vendor) {
3459 	case X86_VENDOR_Intel:
3460 	case X86_VENDOR_AMD:
3461 		create = cpi->cpi_family >= 0xf;
3462 		break;
3463 	default:
3464 		create = 0;
3465 		break;
3466 	}
3467 	if (create)
3468 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3469 		    "ext-family", CPI_FAMILY_XTD(cpi));
3470 
3471 	/* ext-model */
3472 
3473 	switch (cpi->cpi_vendor) {
3474 	case X86_VENDOR_Intel:
3475 		create = IS_EXTENDED_MODEL_INTEL(cpi);
3476 		break;
3477 	case X86_VENDOR_AMD:
3478 		create = CPI_FAMILY(cpi) == 0xf;
3479 		break;
3480 	default:
3481 		create = 0;
3482 		break;
3483 	}
3484 	if (create)
3485 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3486 		    "ext-model", CPI_MODEL_XTD(cpi));
3487 
3488 	/* generation */
3489 
3490 	switch (cpi->cpi_vendor) {
3491 	case X86_VENDOR_AMD:
3492 		/*
3493 		 * AMD K5 model 1 was the first part to support this
3494 		 */
3495 		create = cpi->cpi_xmaxeax >= 0x80000001;
3496 		break;
3497 	default:
3498 		create = 0;
3499 		break;
3500 	}
3501 	if (create)
3502 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3503 		    "generation", BITX((cpi)->cpi_extd[1].cp_eax, 11, 8));
3504 
3505 	/* brand-id */
3506 
3507 	switch (cpi->cpi_vendor) {
3508 	case X86_VENDOR_Intel:
3509 		/*
3510 		 * brand id first appeared on Pentium III Xeon model 8,
3511 		 * and Celeron model 8 processors and Opteron
3512 		 */
3513 		create = cpi->cpi_family > 6 ||
3514 		    (cpi->cpi_family == 6 && cpi->cpi_model >= 8);
3515 		break;
3516 	case X86_VENDOR_AMD:
3517 		create = cpi->cpi_family >= 0xf;
3518 		break;
3519 	default:
3520 		create = 0;
3521 		break;
3522 	}
3523 	if (create && cpi->cpi_brandid != 0) {
3524 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3525 		    "brand-id", cpi->cpi_brandid);
3526 	}
3527 
3528 	/* chunks, and apic-id */
3529 
3530 	switch (cpi->cpi_vendor) {
3531 		/*
3532 		 * first available on Pentium IV and Opteron (K8)
3533 		 */
3534 	case X86_VENDOR_Intel:
3535 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
3536 		break;
3537 	case X86_VENDOR_AMD:
3538 		create = cpi->cpi_family >= 0xf;
3539 		break;
3540 	default:
3541 		create = 0;
3542 		break;
3543 	}
3544 	if (create) {
3545 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3546 		    "chunks", CPI_CHUNKS(cpi));
3547 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3548 		    "apic-id", cpi->cpi_apicid);
3549 		if (cpi->cpi_chipid >= 0) {
3550 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3551 			    "chip#", cpi->cpi_chipid);
3552 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3553 			    "clog#", cpi->cpi_clogid);
3554 		}
3555 	}
3556 
3557 	/* cpuid-features */
3558 
3559 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3560 	    "cpuid-features", CPI_FEATURES_EDX(cpi));
3561 
3562 
3563 	/* cpuid-features-ecx */
3564 
3565 	switch (cpi->cpi_vendor) {
3566 	case X86_VENDOR_Intel:
3567 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
3568 		break;
3569 	default:
3570 		create = 0;
3571 		break;
3572 	}
3573 	if (create)
3574 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3575 		    "cpuid-features-ecx", CPI_FEATURES_ECX(cpi));
3576 
3577 	/* ext-cpuid-features */
3578 
3579 	switch (cpi->cpi_vendor) {
3580 	case X86_VENDOR_Intel:
3581 	case X86_VENDOR_AMD:
3582 	case X86_VENDOR_Cyrix:
3583 	case X86_VENDOR_TM:
3584 	case X86_VENDOR_Centaur:
3585 		create = cpi->cpi_xmaxeax >= 0x80000001;
3586 		break;
3587 	default:
3588 		create = 0;
3589 		break;
3590 	}
3591 	if (create) {
3592 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3593 		    "ext-cpuid-features", CPI_FEATURES_XTD_EDX(cpi));
3594 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3595 		    "ext-cpuid-features-ecx", CPI_FEATURES_XTD_ECX(cpi));
3596 	}
3597 
3598 	/*
3599 	 * Brand String first appeared in Intel Pentium IV, AMD K5
3600 	 * model 1, and Cyrix GXm.  On earlier models we try and
3601 	 * simulate something similar .. so this string should always
3602 	 * same -something- about the processor, however lame.
3603 	 */
3604 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3605 	    "brand-string", cpi->cpi_brandstr);
3606 
3607 	/*
3608 	 * Finally, cache and tlb information
3609 	 */
3610 	switch (x86_which_cacheinfo(cpi)) {
3611 	case X86_VENDOR_Intel:
3612 		intel_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
3613 		break;
3614 	case X86_VENDOR_Cyrix:
3615 		cyrix_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
3616 		break;
3617 	case X86_VENDOR_AMD:
3618 		amd_cache_info(cpi, cpu_devi);
3619 		break;
3620 	default:
3621 		break;
3622 	}
3623 
3624 	mutex_exit(&cpu_node_lock);
3625 }
3626 
3627 struct l2info {
3628 	int *l2i_csz;
3629 	int *l2i_lsz;
3630 	int *l2i_assoc;
3631 	int l2i_ret;
3632 };
3633 
3634 /*
3635  * A cacheinfo walker that fetches the size, line-size and associativity
3636  * of the L2 cache
3637  */
3638 static int
3639 intel_l2cinfo(void *arg, const struct cachetab *ct)
3640 {
3641 	struct l2info *l2i = arg;
3642 	int *ip;
3643 
3644 	if (ct->ct_label != l2_cache_str &&
3645 	    ct->ct_label != sl2_cache_str)
3646 		return (0);	/* not an L2 -- keep walking */
3647 
3648 	if ((ip = l2i->l2i_csz) != NULL)
3649 		*ip = ct->ct_size;
3650 	if ((ip = l2i->l2i_lsz) != NULL)
3651 		*ip = ct->ct_line_size;
3652 	if ((ip = l2i->l2i_assoc) != NULL)
3653 		*ip = ct->ct_assoc;
3654 	l2i->l2i_ret = ct->ct_size;
3655 	return (1);		/* was an L2 -- terminate walk */
3656 }
3657 
3658 /*
3659  * AMD L2/L3 Cache and TLB Associativity Field Definition:
3660  *
3661  *	Unlike the associativity for the L1 cache and tlb where the 8 bit
3662  *	value is the associativity, the associativity for the L2 cache and
3663  *	tlb is encoded in the following table. The 4 bit L2 value serves as
3664  *	an index into the amd_afd[] array to determine the associativity.
3665  *	-1 is undefined. 0 is fully associative.
3666  */
3667 
3668 static int amd_afd[] =
3669 	{-1, 1, 2, -1, 4, -1, 8, -1, 16, -1, 32, 48, 64, 96, 128, 0};
3670 
3671 static void
3672 amd_l2cacheinfo(struct cpuid_info *cpi, struct l2info *l2i)
3673 {
3674 	struct cpuid_regs *cp;
3675 	uint_t size, assoc;
3676 	int i;
3677 	int *ip;
3678 
3679 	if (cpi->cpi_xmaxeax < 0x80000006)
3680 		return;
3681 	cp = &cpi->cpi_extd[6];
3682 
3683 	if ((i = BITX(cp->cp_ecx, 15, 12)) != 0 &&
3684 	    (size = BITX(cp->cp_ecx, 31, 16)) != 0) {
3685 		uint_t cachesz = size * 1024;
3686 		assoc = amd_afd[i];
3687 
3688 		ASSERT(assoc != -1);
3689 
3690 		if ((ip = l2i->l2i_csz) != NULL)
3691 			*ip = cachesz;
3692 		if ((ip = l2i->l2i_lsz) != NULL)
3693 			*ip = BITX(cp->cp_ecx, 7, 0);
3694 		if ((ip = l2i->l2i_assoc) != NULL)
3695 			*ip = assoc;
3696 		l2i->l2i_ret = cachesz;
3697 	}
3698 }
3699 
3700 int
3701 getl2cacheinfo(cpu_t *cpu, int *csz, int *lsz, int *assoc)
3702 {
3703 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
3704 	struct l2info __l2info, *l2i = &__l2info;
3705 
3706 	l2i->l2i_csz = csz;
3707 	l2i->l2i_lsz = lsz;
3708 	l2i->l2i_assoc = assoc;
3709 	l2i->l2i_ret = -1;
3710 
3711 	switch (x86_which_cacheinfo(cpi)) {
3712 	case X86_VENDOR_Intel:
3713 		intel_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
3714 		break;
3715 	case X86_VENDOR_Cyrix:
3716 		cyrix_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
3717 		break;
3718 	case X86_VENDOR_AMD:
3719 		amd_l2cacheinfo(cpi, l2i);
3720 		break;
3721 	default:
3722 		break;
3723 	}
3724 	return (l2i->l2i_ret);
3725 }
3726 
3727 #if !defined(__xpv)
3728 
3729 uint32_t *
3730 cpuid_mwait_alloc(cpu_t *cpu)
3731 {
3732 	uint32_t	*ret;
3733 	size_t		mwait_size;
3734 
3735 	ASSERT(cpuid_checkpass(cpu, 2));
3736 
3737 	mwait_size = cpu->cpu_m.mcpu_cpi->cpi_mwait.mon_max;
3738 	if (mwait_size == 0)
3739 		return (NULL);
3740 
3741 	/*
3742 	 * kmem_alloc() returns cache line size aligned data for mwait_size
3743 	 * allocations.  mwait_size is currently cache line sized.  Neither
3744 	 * of these implementation details are guarantied to be true in the
3745 	 * future.
3746 	 *
3747 	 * First try allocating mwait_size as kmem_alloc() currently returns
3748 	 * correctly aligned memory.  If kmem_alloc() does not return
3749 	 * mwait_size aligned memory, then use mwait_size ROUNDUP.
3750 	 *
3751 	 * Set cpi_mwait.buf_actual and cpi_mwait.size_actual in case we
3752 	 * decide to free this memory.
3753 	 */
3754 	ret = kmem_zalloc(mwait_size, KM_SLEEP);
3755 	if (ret == (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size)) {
3756 		cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret;
3757 		cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size;
3758 		*ret = MWAIT_RUNNING;
3759 		return (ret);
3760 	} else {
3761 		kmem_free(ret, mwait_size);
3762 		ret = kmem_zalloc(mwait_size * 2, KM_SLEEP);
3763 		cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret;
3764 		cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size * 2;
3765 		ret = (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size);
3766 		*ret = MWAIT_RUNNING;
3767 		return (ret);
3768 	}
3769 }
3770 
3771 void
3772 cpuid_mwait_free(cpu_t *cpu)
3773 {
3774 	ASSERT(cpuid_checkpass(cpu, 2));
3775 
3776 	if (cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual != NULL &&
3777 	    cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual > 0) {
3778 		kmem_free(cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual,
3779 		    cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual);
3780 	}
3781 
3782 	cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = NULL;
3783 	cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = 0;
3784 }
3785 
3786 void
3787 patch_tsc_read(int flag)
3788 {
3789 	size_t cnt;
3790 
3791 	switch (flag) {
3792 	case X86_NO_TSC:
3793 		cnt = &_no_rdtsc_end - &_no_rdtsc_start;
3794 		(void) memcpy((void *)tsc_read, (void *)&_no_rdtsc_start, cnt);
3795 		break;
3796 	case X86_HAVE_TSCP:
3797 		cnt = &_tscp_end - &_tscp_start;
3798 		(void) memcpy((void *)tsc_read, (void *)&_tscp_start, cnt);
3799 		break;
3800 	case X86_TSC_MFENCE:
3801 		cnt = &_tsc_mfence_end - &_tsc_mfence_start;
3802 		(void) memcpy((void *)tsc_read,
3803 		    (void *)&_tsc_mfence_start, cnt);
3804 		break;
3805 	case X86_TSC_LFENCE:
3806 		cnt = &_tsc_lfence_end - &_tsc_lfence_start;
3807 		(void) memcpy((void *)tsc_read,
3808 		    (void *)&_tsc_lfence_start, cnt);
3809 		break;
3810 	default:
3811 		break;
3812 	}
3813 }
3814 
3815 #endif	/* !__xpv */
3816