xref: /titanic_50/usr/src/uts/i86pc/os/cpuid.c (revision 48633f182599946aebd63dccdc852ad722b57d0e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Various routines to handle identification
28  * and classification of x86 processors.
29  */
30 
31 #include <sys/types.h>
32 #include <sys/archsystm.h>
33 #include <sys/x86_archext.h>
34 #include <sys/kmem.h>
35 #include <sys/systm.h>
36 #include <sys/cmn_err.h>
37 #include <sys/sunddi.h>
38 #include <sys/sunndi.h>
39 #include <sys/cpuvar.h>
40 #include <sys/processor.h>
41 #include <sys/sysmacros.h>
42 #include <sys/pg.h>
43 #include <sys/fp.h>
44 #include <sys/controlregs.h>
45 #include <sys/auxv_386.h>
46 #include <sys/bitmap.h>
47 #include <sys/memnode.h>
48 
49 #ifdef __xpv
50 #include <sys/hypervisor.h>
51 #else
52 #include <sys/ontrap.h>
53 #endif
54 
55 /*
56  * Pass 0 of cpuid feature analysis happens in locore. It contains special code
57  * to recognize Cyrix processors that are not cpuid-compliant, and to deal with
58  * them accordingly. For most modern processors, feature detection occurs here
59  * in pass 1.
60  *
61  * Pass 1 of cpuid feature analysis happens just at the beginning of mlsetup()
62  * for the boot CPU and does the basic analysis that the early kernel needs.
63  * x86_feature is set based on the return value of cpuid_pass1() of the boot
64  * CPU.
65  *
66  * Pass 1 includes:
67  *
68  *	o Determining vendor/model/family/stepping and setting x86_type and
69  *	  x86_vendor accordingly.
70  *	o Processing the feature flags returned by the cpuid instruction while
71  *	  applying any workarounds or tricks for the specific processor.
72  *	o Mapping the feature flags into Solaris feature bits (X86_*).
73  *	o Processing extended feature flags if supported by the processor,
74  *	  again while applying specific processor knowledge.
75  *	o Determining the CMT characteristics of the system.
76  *
77  * Pass 1 is done on non-boot CPUs during their initialization and the results
78  * are used only as a meager attempt at ensuring that all processors within the
79  * system support the same features.
80  *
81  * Pass 2 of cpuid feature analysis happens just at the beginning
82  * of startup().  It just copies in and corrects the remainder
83  * of the cpuid data we depend on: standard cpuid functions that we didn't
84  * need for pass1 feature analysis, and extended cpuid functions beyond the
85  * simple feature processing done in pass1.
86  *
87  * Pass 3 of cpuid analysis is invoked after basic kernel services; in
88  * particular kernel memory allocation has been made available. It creates a
89  * readable brand string based on the data collected in the first two passes.
90  *
91  * Pass 4 of cpuid analysis is invoked after post_startup() when all
92  * the support infrastructure for various hardware features has been
93  * initialized. It determines which processor features will be reported
94  * to userland via the aux vector.
95  *
96  * All passes are executed on all CPUs, but only the boot CPU determines what
97  * features the kernel will use.
98  *
99  * Much of the worst junk in this file is for the support of processors
100  * that didn't really implement the cpuid instruction properly.
101  *
102  * NOTE: The accessor functions (cpuid_get*) are aware of, and ASSERT upon,
103  * the pass numbers.  Accordingly, changes to the pass code may require changes
104  * to the accessor code.
105  */
106 
107 uint_t x86_feature = 0;
108 uint_t x86_vendor = X86_VENDOR_IntelClone;
109 uint_t x86_type = X86_TYPE_OTHER;
110 uint_t x86_clflush_size = 0;
111 
112 uint_t pentiumpro_bug4046376;
113 uint_t pentiumpro_bug4064495;
114 
115 uint_t enable486;
116 
117 /*
118  * monitor/mwait info.
119  *
120  * size_actual and buf_actual are the real address and size allocated to get
121  * proper mwait_buf alignement.  buf_actual and size_actual should be passed
122  * to kmem_free().  Currently kmem_alloc() and mwait happen to both use
123  * processor cache-line alignment, but this is not guarantied in the furture.
124  */
125 struct mwait_info {
126 	size_t		mon_min;	/* min size to avoid missed wakeups */
127 	size_t		mon_max;	/* size to avoid false wakeups */
128 	size_t		size_actual;	/* size actually allocated */
129 	void		*buf_actual;	/* memory actually allocated */
130 	uint32_t	support;	/* processor support of monitor/mwait */
131 };
132 
133 /*
134  * These constants determine how many of the elements of the
135  * cpuid we cache in the cpuid_info data structure; the
136  * remaining elements are accessible via the cpuid instruction.
137  */
138 
139 #define	NMAX_CPI_STD	6		/* eax = 0 .. 5 */
140 #define	NMAX_CPI_EXTD	9		/* eax = 0x80000000 .. 0x80000008 */
141 
142 struct cpuid_info {
143 	uint_t cpi_pass;		/* last pass completed */
144 	/*
145 	 * standard function information
146 	 */
147 	uint_t cpi_maxeax;		/* fn 0: %eax */
148 	char cpi_vendorstr[13];		/* fn 0: %ebx:%ecx:%edx */
149 	uint_t cpi_vendor;		/* enum of cpi_vendorstr */
150 
151 	uint_t cpi_family;		/* fn 1: extended family */
152 	uint_t cpi_model;		/* fn 1: extended model */
153 	uint_t cpi_step;		/* fn 1: stepping */
154 	chipid_t cpi_chipid;		/* fn 1: %ebx: chip # on ht cpus */
155 	uint_t cpi_brandid;		/* fn 1: %ebx: brand ID */
156 	int cpi_clogid;			/* fn 1: %ebx: thread # */
157 	uint_t cpi_ncpu_per_chip;	/* fn 1: %ebx: logical cpu count */
158 	uint8_t cpi_cacheinfo[16];	/* fn 2: intel-style cache desc */
159 	uint_t cpi_ncache;		/* fn 2: number of elements */
160 	uint_t cpi_ncpu_shr_last_cache;	/* fn 4: %eax: ncpus sharing cache */
161 	id_t cpi_last_lvl_cacheid;	/* fn 4: %eax: derived cache id */
162 	uint_t cpi_std_4_size;		/* fn 4: number of fn 4 elements */
163 	struct cpuid_regs **cpi_std_4;	/* fn 4: %ecx == 0 .. fn4_size */
164 	struct cpuid_regs cpi_std[NMAX_CPI_STD];	/* 0 .. 5 */
165 	/*
166 	 * extended function information
167 	 */
168 	uint_t cpi_xmaxeax;		/* fn 0x80000000: %eax */
169 	char cpi_brandstr[49];		/* fn 0x8000000[234] */
170 	uint8_t cpi_pabits;		/* fn 0x80000006: %eax */
171 	uint8_t cpi_vabits;		/* fn 0x80000006: %eax */
172 	struct cpuid_regs cpi_extd[NMAX_CPI_EXTD]; /* 0x8000000[0-8] */
173 	id_t cpi_coreid;		/* same coreid => strands share core */
174 	int cpi_pkgcoreid;		/* core number within single package */
175 	uint_t cpi_ncore_per_chip;	/* AMD: fn 0x80000008: %ecx[7-0] */
176 					/* Intel: fn 4: %eax[31-26] */
177 	/*
178 	 * supported feature information
179 	 */
180 	uint32_t cpi_support[5];
181 #define	STD_EDX_FEATURES	0
182 #define	AMD_EDX_FEATURES	1
183 #define	TM_EDX_FEATURES		2
184 #define	STD_ECX_FEATURES	3
185 #define	AMD_ECX_FEATURES	4
186 	/*
187 	 * Synthesized information, where known.
188 	 */
189 	uint32_t cpi_chiprev;		/* See X86_CHIPREV_* in x86_archext.h */
190 	const char *cpi_chiprevstr;	/* May be NULL if chiprev unknown */
191 	uint32_t cpi_socket;		/* Chip package/socket type */
192 
193 	struct mwait_info cpi_mwait;	/* fn 5: monitor/mwait info */
194 	uint32_t cpi_apicid;
195 };
196 
197 
198 static struct cpuid_info cpuid_info0;
199 
200 /*
201  * These bit fields are defined by the Intel Application Note AP-485
202  * "Intel Processor Identification and the CPUID Instruction"
203  */
204 #define	CPI_FAMILY_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 27, 20)
205 #define	CPI_MODEL_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 19, 16)
206 #define	CPI_TYPE(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 13, 12)
207 #define	CPI_FAMILY(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 11, 8)
208 #define	CPI_STEP(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 3, 0)
209 #define	CPI_MODEL(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 7, 4)
210 
211 #define	CPI_FEATURES_EDX(cpi)		((cpi)->cpi_std[1].cp_edx)
212 #define	CPI_FEATURES_ECX(cpi)		((cpi)->cpi_std[1].cp_ecx)
213 #define	CPI_FEATURES_XTD_EDX(cpi)	((cpi)->cpi_extd[1].cp_edx)
214 #define	CPI_FEATURES_XTD_ECX(cpi)	((cpi)->cpi_extd[1].cp_ecx)
215 
216 #define	CPI_BRANDID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 7, 0)
217 #define	CPI_CHUNKS(cpi)		BITX((cpi)->cpi_std[1].cp_ebx, 15, 7)
218 #define	CPI_CPU_COUNT(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 23, 16)
219 #define	CPI_APIC_ID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 31, 24)
220 
221 #define	CPI_MAXEAX_MAX		0x100		/* sanity control */
222 #define	CPI_XMAXEAX_MAX		0x80000100
223 #define	CPI_FN4_ECX_MAX		0x20		/* sanity: max fn 4 levels */
224 #define	CPI_FNB_ECX_MAX		0x20		/* sanity: max fn B levels */
225 
226 /*
227  * Function 4 (Deterministic Cache Parameters) macros
228  * Defined by Intel Application Note AP-485
229  */
230 #define	CPI_NUM_CORES(regs)		BITX((regs)->cp_eax, 31, 26)
231 #define	CPI_NTHR_SHR_CACHE(regs)	BITX((regs)->cp_eax, 25, 14)
232 #define	CPI_FULL_ASSOC_CACHE(regs)	BITX((regs)->cp_eax, 9, 9)
233 #define	CPI_SELF_INIT_CACHE(regs)	BITX((regs)->cp_eax, 8, 8)
234 #define	CPI_CACHE_LVL(regs)		BITX((regs)->cp_eax, 7, 5)
235 #define	CPI_CACHE_TYPE(regs)		BITX((regs)->cp_eax, 4, 0)
236 #define	CPI_CPU_LEVEL_TYPE(regs)	BITX((regs)->cp_ecx, 15, 8)
237 
238 #define	CPI_CACHE_WAYS(regs)		BITX((regs)->cp_ebx, 31, 22)
239 #define	CPI_CACHE_PARTS(regs)		BITX((regs)->cp_ebx, 21, 12)
240 #define	CPI_CACHE_COH_LN_SZ(regs)	BITX((regs)->cp_ebx, 11, 0)
241 
242 #define	CPI_CACHE_SETS(regs)		BITX((regs)->cp_ecx, 31, 0)
243 
244 #define	CPI_PREFCH_STRIDE(regs)		BITX((regs)->cp_edx, 9, 0)
245 
246 
247 /*
248  * A couple of shorthand macros to identify "later" P6-family chips
249  * like the Pentium M and Core.  First, the "older" P6-based stuff
250  * (loosely defined as "pre-Pentium-4"):
251  * P6, PII, Mobile PII, PII Xeon, PIII, Mobile PIII, PIII Xeon
252  */
253 
254 #define	IS_LEGACY_P6(cpi) (			\
255 	cpi->cpi_family == 6 && 		\
256 		(cpi->cpi_model == 1 ||		\
257 		cpi->cpi_model == 3 ||		\
258 		cpi->cpi_model == 5 ||		\
259 		cpi->cpi_model == 6 ||		\
260 		cpi->cpi_model == 7 ||		\
261 		cpi->cpi_model == 8 ||		\
262 		cpi->cpi_model == 0xA ||	\
263 		cpi->cpi_model == 0xB)		\
264 )
265 
266 /* A "new F6" is everything with family 6 that's not the above */
267 #define	IS_NEW_F6(cpi) ((cpi->cpi_family == 6) && !IS_LEGACY_P6(cpi))
268 
269 /* Extended family/model support */
270 #define	IS_EXTENDED_MODEL_INTEL(cpi) (cpi->cpi_family == 0x6 || \
271 	cpi->cpi_family >= 0xf)
272 
273 /*
274  * Info for monitor/mwait idle loop.
275  *
276  * See cpuid section of "Intel 64 and IA-32 Architectures Software Developer's
277  * Manual Volume 2A: Instruction Set Reference, A-M" #25366-022US, November
278  * 2006.
279  * See MONITOR/MWAIT section of "AMD64 Architecture Programmer's Manual
280  * Documentation Updates" #33633, Rev 2.05, December 2006.
281  */
282 #define	MWAIT_SUPPORT		(0x00000001)	/* mwait supported */
283 #define	MWAIT_EXTENSIONS	(0x00000002)	/* extenstion supported */
284 #define	MWAIT_ECX_INT_ENABLE	(0x00000004)	/* ecx 1 extension supported */
285 #define	MWAIT_SUPPORTED(cpi)	((cpi)->cpi_std[1].cp_ecx & CPUID_INTC_ECX_MON)
286 #define	MWAIT_INT_ENABLE(cpi)	((cpi)->cpi_std[5].cp_ecx & 0x2)
287 #define	MWAIT_EXTENSION(cpi)	((cpi)->cpi_std[5].cp_ecx & 0x1)
288 #define	MWAIT_SIZE_MIN(cpi)	BITX((cpi)->cpi_std[5].cp_eax, 15, 0)
289 #define	MWAIT_SIZE_MAX(cpi)	BITX((cpi)->cpi_std[5].cp_ebx, 15, 0)
290 /*
291  * Number of sub-cstates for a given c-state.
292  */
293 #define	MWAIT_NUM_SUBC_STATES(cpi, c_state)			\
294 	BITX((cpi)->cpi_std[5].cp_edx, c_state + 3, c_state)
295 
296 /*
297  * Functions we consune from cpuid_subr.c;  don't publish these in a header
298  * file to try and keep people using the expected cpuid_* interfaces.
299  */
300 extern uint32_t _cpuid_skt(uint_t, uint_t, uint_t, uint_t);
301 extern uint32_t _cpuid_chiprev(uint_t, uint_t, uint_t, uint_t);
302 extern const char *_cpuid_chiprevstr(uint_t, uint_t, uint_t, uint_t);
303 extern uint_t _cpuid_vendorstr_to_vendorcode(char *);
304 
305 /*
306  * Apply up various platform-dependent restrictions where the
307  * underlying platform restrictions mean the CPU can be marked
308  * as less capable than its cpuid instruction would imply.
309  */
310 #if defined(__xpv)
311 static void
312 platform_cpuid_mangle(uint_t vendor, uint32_t eax, struct cpuid_regs *cp)
313 {
314 	switch (eax) {
315 	case 1: {
316 		uint32_t mcamask = DOMAIN_IS_INITDOMAIN(xen_info) ?
317 		    0 : CPUID_INTC_EDX_MCA;
318 		cp->cp_edx &=
319 		    ~(mcamask |
320 		    CPUID_INTC_EDX_PSE |
321 		    CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE |
322 		    CPUID_INTC_EDX_SEP | CPUID_INTC_EDX_MTRR |
323 		    CPUID_INTC_EDX_PGE | CPUID_INTC_EDX_PAT |
324 		    CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP |
325 		    CPUID_INTC_EDX_PSE36 | CPUID_INTC_EDX_HTT);
326 		break;
327 	}
328 
329 	case 0x80000001:
330 		cp->cp_edx &=
331 		    ~(CPUID_AMD_EDX_PSE |
332 		    CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE |
333 		    CPUID_AMD_EDX_MTRR | CPUID_AMD_EDX_PGE |
334 		    CPUID_AMD_EDX_PAT | CPUID_AMD_EDX_PSE36 |
335 		    CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP |
336 		    CPUID_AMD_EDX_TSCP);
337 		cp->cp_ecx &= ~CPUID_AMD_ECX_CMP_LGCY;
338 		break;
339 	default:
340 		break;
341 	}
342 
343 	switch (vendor) {
344 	case X86_VENDOR_Intel:
345 		switch (eax) {
346 		case 4:
347 			/*
348 			 * Zero out the (ncores-per-chip - 1) field
349 			 */
350 			cp->cp_eax &= 0x03fffffff;
351 			break;
352 		default:
353 			break;
354 		}
355 		break;
356 	case X86_VENDOR_AMD:
357 		switch (eax) {
358 		case 0x80000008:
359 			/*
360 			 * Zero out the (ncores-per-chip - 1) field
361 			 */
362 			cp->cp_ecx &= 0xffffff00;
363 			break;
364 		default:
365 			break;
366 		}
367 		break;
368 	default:
369 		break;
370 	}
371 }
372 #else
373 #define	platform_cpuid_mangle(vendor, eax, cp)	/* nothing */
374 #endif
375 
376 /*
377  *  Some undocumented ways of patching the results of the cpuid
378  *  instruction to permit running Solaris 10 on future cpus that
379  *  we don't currently support.  Could be set to non-zero values
380  *  via settings in eeprom.
381  */
382 
383 uint32_t cpuid_feature_ecx_include;
384 uint32_t cpuid_feature_ecx_exclude;
385 uint32_t cpuid_feature_edx_include;
386 uint32_t cpuid_feature_edx_exclude;
387 
388 void
389 cpuid_alloc_space(cpu_t *cpu)
390 {
391 	/*
392 	 * By convention, cpu0 is the boot cpu, which is set up
393 	 * before memory allocation is available.  All other cpus get
394 	 * their cpuid_info struct allocated here.
395 	 */
396 	ASSERT(cpu->cpu_id != 0);
397 	cpu->cpu_m.mcpu_cpi =
398 	    kmem_zalloc(sizeof (*cpu->cpu_m.mcpu_cpi), KM_SLEEP);
399 }
400 
401 void
402 cpuid_free_space(cpu_t *cpu)
403 {
404 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
405 	int i;
406 
407 	ASSERT(cpu->cpu_id != 0);
408 
409 	/*
410 	 * Free up any function 4 related dynamic storage
411 	 */
412 	for (i = 1; i < cpi->cpi_std_4_size; i++)
413 		kmem_free(cpi->cpi_std_4[i], sizeof (struct cpuid_regs));
414 	if (cpi->cpi_std_4_size > 0)
415 		kmem_free(cpi->cpi_std_4,
416 		    cpi->cpi_std_4_size * sizeof (struct cpuid_regs *));
417 
418 	kmem_free(cpu->cpu_m.mcpu_cpi, sizeof (*cpu->cpu_m.mcpu_cpi));
419 }
420 
421 #if !defined(__xpv)
422 
423 static void
424 check_for_hvm()
425 {
426 	struct cpuid_regs cp;
427 	char *xen_str;
428 	uint32_t xen_signature[4];
429 	extern int xpv_is_hvm;
430 
431 	/*
432 	 * In a fully virtualized domain, Xen's pseudo-cpuid function
433 	 * 0x40000000 returns a string representing the Xen signature in
434 	 * %ebx, %ecx, and %edx.  %eax contains the maximum supported cpuid
435 	 * function.
436 	 */
437 	cp.cp_eax = 0x40000000;
438 	(void) __cpuid_insn(&cp);
439 	xen_signature[0] = cp.cp_ebx;
440 	xen_signature[1] = cp.cp_ecx;
441 	xen_signature[2] = cp.cp_edx;
442 	xen_signature[3] = 0;
443 	xen_str = (char *)xen_signature;
444 	if (strcmp("XenVMMXenVMM", xen_str) == 0 && cp.cp_eax <= 0x40000002)
445 		xpv_is_hvm = 1;
446 }
447 #endif	/* __xpv */
448 
449 uint_t
450 cpuid_pass1(cpu_t *cpu)
451 {
452 	uint32_t mask_ecx, mask_edx;
453 	uint_t feature = X86_CPUID;
454 	struct cpuid_info *cpi;
455 	struct cpuid_regs *cp;
456 	int xcpuid;
457 #if !defined(__xpv)
458 	extern int idle_cpu_prefer_mwait;
459 #endif
460 
461 	/*
462 	 * Space statically allocated for cpu0, ensure pointer is set
463 	 */
464 	if (cpu->cpu_id == 0)
465 		cpu->cpu_m.mcpu_cpi = &cpuid_info0;
466 	cpi = cpu->cpu_m.mcpu_cpi;
467 	ASSERT(cpi != NULL);
468 	cp = &cpi->cpi_std[0];
469 	cp->cp_eax = 0;
470 	cpi->cpi_maxeax = __cpuid_insn(cp);
471 	{
472 		uint32_t *iptr = (uint32_t *)cpi->cpi_vendorstr;
473 		*iptr++ = cp->cp_ebx;
474 		*iptr++ = cp->cp_edx;
475 		*iptr++ = cp->cp_ecx;
476 		*(char *)&cpi->cpi_vendorstr[12] = '\0';
477 	}
478 
479 	cpi->cpi_vendor = _cpuid_vendorstr_to_vendorcode(cpi->cpi_vendorstr);
480 	x86_vendor = cpi->cpi_vendor; /* for compatibility */
481 
482 	/*
483 	 * Limit the range in case of weird hardware
484 	 */
485 	if (cpi->cpi_maxeax > CPI_MAXEAX_MAX)
486 		cpi->cpi_maxeax = CPI_MAXEAX_MAX;
487 	if (cpi->cpi_maxeax < 1)
488 		goto pass1_done;
489 
490 	cp = &cpi->cpi_std[1];
491 	cp->cp_eax = 1;
492 	(void) __cpuid_insn(cp);
493 
494 	/*
495 	 * Extract identifying constants for easy access.
496 	 */
497 	cpi->cpi_model = CPI_MODEL(cpi);
498 	cpi->cpi_family = CPI_FAMILY(cpi);
499 
500 	if (cpi->cpi_family == 0xf)
501 		cpi->cpi_family += CPI_FAMILY_XTD(cpi);
502 
503 	/*
504 	 * Beware: AMD uses "extended model" iff base *FAMILY* == 0xf.
505 	 * Intel, and presumably everyone else, uses model == 0xf, as
506 	 * one would expect (max value means possible overflow).  Sigh.
507 	 */
508 
509 	switch (cpi->cpi_vendor) {
510 	case X86_VENDOR_Intel:
511 		if (IS_EXTENDED_MODEL_INTEL(cpi))
512 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
513 		break;
514 	case X86_VENDOR_AMD:
515 		if (CPI_FAMILY(cpi) == 0xf)
516 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
517 		break;
518 	default:
519 		if (cpi->cpi_model == 0xf)
520 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
521 		break;
522 	}
523 
524 	cpi->cpi_step = CPI_STEP(cpi);
525 	cpi->cpi_brandid = CPI_BRANDID(cpi);
526 
527 	/*
528 	 * *default* assumptions:
529 	 * - believe %edx feature word
530 	 * - ignore %ecx feature word
531 	 * - 32-bit virtual and physical addressing
532 	 */
533 	mask_edx = 0xffffffff;
534 	mask_ecx = 0;
535 
536 	cpi->cpi_pabits = cpi->cpi_vabits = 32;
537 
538 	switch (cpi->cpi_vendor) {
539 	case X86_VENDOR_Intel:
540 		if (cpi->cpi_family == 5)
541 			x86_type = X86_TYPE_P5;
542 		else if (IS_LEGACY_P6(cpi)) {
543 			x86_type = X86_TYPE_P6;
544 			pentiumpro_bug4046376 = 1;
545 			pentiumpro_bug4064495 = 1;
546 			/*
547 			 * Clear the SEP bit when it was set erroneously
548 			 */
549 			if (cpi->cpi_model < 3 && cpi->cpi_step < 3)
550 				cp->cp_edx &= ~CPUID_INTC_EDX_SEP;
551 		} else if (IS_NEW_F6(cpi) || cpi->cpi_family == 0xf) {
552 			x86_type = X86_TYPE_P4;
553 			/*
554 			 * We don't currently depend on any of the %ecx
555 			 * features until Prescott, so we'll only check
556 			 * this from P4 onwards.  We might want to revisit
557 			 * that idea later.
558 			 */
559 			mask_ecx = 0xffffffff;
560 		} else if (cpi->cpi_family > 0xf)
561 			mask_ecx = 0xffffffff;
562 		/*
563 		 * We don't support MONITOR/MWAIT if leaf 5 is not available
564 		 * to obtain the monitor linesize.
565 		 */
566 		if (cpi->cpi_maxeax < 5)
567 			mask_ecx &= ~CPUID_INTC_ECX_MON;
568 		break;
569 	case X86_VENDOR_IntelClone:
570 	default:
571 		break;
572 	case X86_VENDOR_AMD:
573 #if defined(OPTERON_ERRATUM_108)
574 		if (cpi->cpi_family == 0xf && cpi->cpi_model == 0xe) {
575 			cp->cp_eax = (0xf0f & cp->cp_eax) | 0xc0;
576 			cpi->cpi_model = 0xc;
577 		} else
578 #endif
579 		if (cpi->cpi_family == 5) {
580 			/*
581 			 * AMD K5 and K6
582 			 *
583 			 * These CPUs have an incomplete implementation
584 			 * of MCA/MCE which we mask away.
585 			 */
586 			mask_edx &= ~(CPUID_INTC_EDX_MCE | CPUID_INTC_EDX_MCA);
587 
588 			/*
589 			 * Model 0 uses the wrong (APIC) bit
590 			 * to indicate PGE.  Fix it here.
591 			 */
592 			if (cpi->cpi_model == 0) {
593 				if (cp->cp_edx & 0x200) {
594 					cp->cp_edx &= ~0x200;
595 					cp->cp_edx |= CPUID_INTC_EDX_PGE;
596 				}
597 			}
598 
599 			/*
600 			 * Early models had problems w/ MMX; disable.
601 			 */
602 			if (cpi->cpi_model < 6)
603 				mask_edx &= ~CPUID_INTC_EDX_MMX;
604 		}
605 
606 		/*
607 		 * For newer families, SSE3 and CX16, at least, are valid;
608 		 * enable all
609 		 */
610 		if (cpi->cpi_family >= 0xf)
611 			mask_ecx = 0xffffffff;
612 		/*
613 		 * We don't support MONITOR/MWAIT if leaf 5 is not available
614 		 * to obtain the monitor linesize.
615 		 */
616 		if (cpi->cpi_maxeax < 5)
617 			mask_ecx &= ~CPUID_INTC_ECX_MON;
618 
619 #if !defined(__xpv)
620 		/*
621 		 * Do not use MONITOR/MWAIT to halt in the idle loop on any AMD
622 		 * processors.  AMD does not intend MWAIT to be used in the cpu
623 		 * idle loop on current and future processors.  10h and future
624 		 * AMD processors use more power in MWAIT than HLT.
625 		 * Pre-family-10h Opterons do not have the MWAIT instruction.
626 		 */
627 		idle_cpu_prefer_mwait = 0;
628 #endif
629 
630 		break;
631 	case X86_VENDOR_TM:
632 		/*
633 		 * workaround the NT workaround in CMS 4.1
634 		 */
635 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4 &&
636 		    (cpi->cpi_step == 2 || cpi->cpi_step == 3))
637 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
638 		break;
639 	case X86_VENDOR_Centaur:
640 		/*
641 		 * workaround the NT workarounds again
642 		 */
643 		if (cpi->cpi_family == 6)
644 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
645 		break;
646 	case X86_VENDOR_Cyrix:
647 		/*
648 		 * We rely heavily on the probing in locore
649 		 * to actually figure out what parts, if any,
650 		 * of the Cyrix cpuid instruction to believe.
651 		 */
652 		switch (x86_type) {
653 		case X86_TYPE_CYRIX_486:
654 			mask_edx = 0;
655 			break;
656 		case X86_TYPE_CYRIX_6x86:
657 			mask_edx = 0;
658 			break;
659 		case X86_TYPE_CYRIX_6x86L:
660 			mask_edx =
661 			    CPUID_INTC_EDX_DE |
662 			    CPUID_INTC_EDX_CX8;
663 			break;
664 		case X86_TYPE_CYRIX_6x86MX:
665 			mask_edx =
666 			    CPUID_INTC_EDX_DE |
667 			    CPUID_INTC_EDX_MSR |
668 			    CPUID_INTC_EDX_CX8 |
669 			    CPUID_INTC_EDX_PGE |
670 			    CPUID_INTC_EDX_CMOV |
671 			    CPUID_INTC_EDX_MMX;
672 			break;
673 		case X86_TYPE_CYRIX_GXm:
674 			mask_edx =
675 			    CPUID_INTC_EDX_MSR |
676 			    CPUID_INTC_EDX_CX8 |
677 			    CPUID_INTC_EDX_CMOV |
678 			    CPUID_INTC_EDX_MMX;
679 			break;
680 		case X86_TYPE_CYRIX_MediaGX:
681 			break;
682 		case X86_TYPE_CYRIX_MII:
683 		case X86_TYPE_VIA_CYRIX_III:
684 			mask_edx =
685 			    CPUID_INTC_EDX_DE |
686 			    CPUID_INTC_EDX_TSC |
687 			    CPUID_INTC_EDX_MSR |
688 			    CPUID_INTC_EDX_CX8 |
689 			    CPUID_INTC_EDX_PGE |
690 			    CPUID_INTC_EDX_CMOV |
691 			    CPUID_INTC_EDX_MMX;
692 			break;
693 		default:
694 			break;
695 		}
696 		break;
697 	}
698 
699 #if defined(__xpv)
700 	/*
701 	 * Do not support MONITOR/MWAIT under a hypervisor
702 	 */
703 	mask_ecx &= ~CPUID_INTC_ECX_MON;
704 #endif	/* __xpv */
705 
706 	/*
707 	 * Now we've figured out the masks that determine
708 	 * which bits we choose to believe, apply the masks
709 	 * to the feature words, then map the kernel's view
710 	 * of these feature words into its feature word.
711 	 */
712 	cp->cp_edx &= mask_edx;
713 	cp->cp_ecx &= mask_ecx;
714 
715 	/*
716 	 * apply any platform restrictions (we don't call this
717 	 * immediately after __cpuid_insn here, because we need the
718 	 * workarounds applied above first)
719 	 */
720 	platform_cpuid_mangle(cpi->cpi_vendor, 1, cp);
721 
722 	/*
723 	 * fold in overrides from the "eeprom" mechanism
724 	 */
725 	cp->cp_edx |= cpuid_feature_edx_include;
726 	cp->cp_edx &= ~cpuid_feature_edx_exclude;
727 
728 	cp->cp_ecx |= cpuid_feature_ecx_include;
729 	cp->cp_ecx &= ~cpuid_feature_ecx_exclude;
730 
731 	if (cp->cp_edx & CPUID_INTC_EDX_PSE)
732 		feature |= X86_LARGEPAGE;
733 	if (cp->cp_edx & CPUID_INTC_EDX_TSC)
734 		feature |= X86_TSC;
735 	if (cp->cp_edx & CPUID_INTC_EDX_MSR)
736 		feature |= X86_MSR;
737 	if (cp->cp_edx & CPUID_INTC_EDX_MTRR)
738 		feature |= X86_MTRR;
739 	if (cp->cp_edx & CPUID_INTC_EDX_PGE)
740 		feature |= X86_PGE;
741 	if (cp->cp_edx & CPUID_INTC_EDX_CMOV)
742 		feature |= X86_CMOV;
743 	if (cp->cp_edx & CPUID_INTC_EDX_MMX)
744 		feature |= X86_MMX;
745 	if ((cp->cp_edx & CPUID_INTC_EDX_MCE) != 0 &&
746 	    (cp->cp_edx & CPUID_INTC_EDX_MCA) != 0)
747 		feature |= X86_MCA;
748 	if (cp->cp_edx & CPUID_INTC_EDX_PAE)
749 		feature |= X86_PAE;
750 	if (cp->cp_edx & CPUID_INTC_EDX_CX8)
751 		feature |= X86_CX8;
752 	if (cp->cp_ecx & CPUID_INTC_ECX_CX16)
753 		feature |= X86_CX16;
754 	if (cp->cp_edx & CPUID_INTC_EDX_PAT)
755 		feature |= X86_PAT;
756 	if (cp->cp_edx & CPUID_INTC_EDX_SEP)
757 		feature |= X86_SEP;
758 	if (cp->cp_edx & CPUID_INTC_EDX_FXSR) {
759 		/*
760 		 * In our implementation, fxsave/fxrstor
761 		 * are prerequisites before we'll even
762 		 * try and do SSE things.
763 		 */
764 		if (cp->cp_edx & CPUID_INTC_EDX_SSE)
765 			feature |= X86_SSE;
766 		if (cp->cp_edx & CPUID_INTC_EDX_SSE2)
767 			feature |= X86_SSE2;
768 		if (cp->cp_ecx & CPUID_INTC_ECX_SSE3)
769 			feature |= X86_SSE3;
770 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
771 			if (cp->cp_ecx & CPUID_INTC_ECX_SSSE3)
772 				feature |= X86_SSSE3;
773 			if (cp->cp_ecx & CPUID_INTC_ECX_SSE4_1)
774 				feature |= X86_SSE4_1;
775 			if (cp->cp_ecx & CPUID_INTC_ECX_SSE4_2)
776 				feature |= X86_SSE4_2;
777 		}
778 	}
779 	if (cp->cp_edx & CPUID_INTC_EDX_DE)
780 		feature |= X86_DE;
781 #if !defined(__xpv)
782 	if (cp->cp_ecx & CPUID_INTC_ECX_MON) {
783 
784 		/*
785 		 * We require the CLFLUSH instruction for erratum workaround
786 		 * to use MONITOR/MWAIT.
787 		 */
788 		if (cp->cp_edx & CPUID_INTC_EDX_CLFSH) {
789 			cpi->cpi_mwait.support |= MWAIT_SUPPORT;
790 			feature |= X86_MWAIT;
791 		} else {
792 			extern int idle_cpu_assert_cflush_monitor;
793 
794 			/*
795 			 * All processors we are aware of which have
796 			 * MONITOR/MWAIT also have CLFLUSH.
797 			 */
798 			if (idle_cpu_assert_cflush_monitor) {
799 				ASSERT((cp->cp_ecx & CPUID_INTC_ECX_MON) &&
800 				    (cp->cp_edx & CPUID_INTC_EDX_CLFSH));
801 			}
802 		}
803 	}
804 #endif	/* __xpv */
805 
806 	/*
807 	 * Only need it first time, rest of the cpus would follow suite.
808 	 * we only capture this for the bootcpu.
809 	 */
810 	if (cp->cp_edx & CPUID_INTC_EDX_CLFSH) {
811 		feature |= X86_CLFSH;
812 		x86_clflush_size = (BITX(cp->cp_ebx, 15, 8) * 8);
813 	}
814 
815 	if (feature & X86_PAE)
816 		cpi->cpi_pabits = 36;
817 
818 	/*
819 	 * Hyperthreading configuration is slightly tricky on Intel
820 	 * and pure clones, and even trickier on AMD.
821 	 *
822 	 * (AMD chose to set the HTT bit on their CMP processors,
823 	 * even though they're not actually hyperthreaded.  Thus it
824 	 * takes a bit more work to figure out what's really going
825 	 * on ... see the handling of the CMP_LGCY bit below)
826 	 */
827 	if (cp->cp_edx & CPUID_INTC_EDX_HTT) {
828 		cpi->cpi_ncpu_per_chip = CPI_CPU_COUNT(cpi);
829 		if (cpi->cpi_ncpu_per_chip > 1)
830 			feature |= X86_HTT;
831 	} else {
832 		cpi->cpi_ncpu_per_chip = 1;
833 	}
834 
835 	/*
836 	 * Work on the "extended" feature information, doing
837 	 * some basic initialization for cpuid_pass2()
838 	 */
839 	xcpuid = 0;
840 	switch (cpi->cpi_vendor) {
841 	case X86_VENDOR_Intel:
842 		if (IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf)
843 			xcpuid++;
844 		break;
845 	case X86_VENDOR_AMD:
846 		if (cpi->cpi_family > 5 ||
847 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
848 			xcpuid++;
849 		break;
850 	case X86_VENDOR_Cyrix:
851 		/*
852 		 * Only these Cyrix CPUs are -known- to support
853 		 * extended cpuid operations.
854 		 */
855 		if (x86_type == X86_TYPE_VIA_CYRIX_III ||
856 		    x86_type == X86_TYPE_CYRIX_GXm)
857 			xcpuid++;
858 		break;
859 	case X86_VENDOR_Centaur:
860 	case X86_VENDOR_TM:
861 	default:
862 		xcpuid++;
863 		break;
864 	}
865 
866 	if (xcpuid) {
867 		cp = &cpi->cpi_extd[0];
868 		cp->cp_eax = 0x80000000;
869 		cpi->cpi_xmaxeax = __cpuid_insn(cp);
870 	}
871 
872 	if (cpi->cpi_xmaxeax & 0x80000000) {
873 
874 		if (cpi->cpi_xmaxeax > CPI_XMAXEAX_MAX)
875 			cpi->cpi_xmaxeax = CPI_XMAXEAX_MAX;
876 
877 		switch (cpi->cpi_vendor) {
878 		case X86_VENDOR_Intel:
879 		case X86_VENDOR_AMD:
880 			if (cpi->cpi_xmaxeax < 0x80000001)
881 				break;
882 			cp = &cpi->cpi_extd[1];
883 			cp->cp_eax = 0x80000001;
884 			(void) __cpuid_insn(cp);
885 
886 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
887 			    cpi->cpi_family == 5 &&
888 			    cpi->cpi_model == 6 &&
889 			    cpi->cpi_step == 6) {
890 				/*
891 				 * K6 model 6 uses bit 10 to indicate SYSC
892 				 * Later models use bit 11. Fix it here.
893 				 */
894 				if (cp->cp_edx & 0x400) {
895 					cp->cp_edx &= ~0x400;
896 					cp->cp_edx |= CPUID_AMD_EDX_SYSC;
897 				}
898 			}
899 
900 			platform_cpuid_mangle(cpi->cpi_vendor, 0x80000001, cp);
901 
902 			/*
903 			 * Compute the additions to the kernel's feature word.
904 			 */
905 			if (cp->cp_edx & CPUID_AMD_EDX_NX)
906 				feature |= X86_NX;
907 
908 			/*
909 			 * Regardless whether or not we boot 64-bit,
910 			 * we should have a way to identify whether
911 			 * the CPU is capable of running 64-bit.
912 			 */
913 			if (cp->cp_edx & CPUID_AMD_EDX_LM)
914 				feature |= X86_64;
915 
916 #if defined(__amd64)
917 			/* 1 GB large page - enable only for 64 bit kernel */
918 			if (cp->cp_edx & CPUID_AMD_EDX_1GPG)
919 				feature |= X86_1GPG;
920 #endif
921 
922 			if ((cpi->cpi_vendor == X86_VENDOR_AMD) &&
923 			    (cpi->cpi_std[1].cp_edx & CPUID_INTC_EDX_FXSR) &&
924 			    (cp->cp_ecx & CPUID_AMD_ECX_SSE4A))
925 				feature |= X86_SSE4A;
926 
927 			/*
928 			 * If both the HTT and CMP_LGCY bits are set,
929 			 * then we're not actually HyperThreaded.  Read
930 			 * "AMD CPUID Specification" for more details.
931 			 */
932 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
933 			    (feature & X86_HTT) &&
934 			    (cp->cp_ecx & CPUID_AMD_ECX_CMP_LGCY)) {
935 				feature &= ~X86_HTT;
936 				feature |= X86_CMP;
937 			}
938 #if defined(__amd64)
939 			/*
940 			 * It's really tricky to support syscall/sysret in
941 			 * the i386 kernel; we rely on sysenter/sysexit
942 			 * instead.  In the amd64 kernel, things are -way-
943 			 * better.
944 			 */
945 			if (cp->cp_edx & CPUID_AMD_EDX_SYSC)
946 				feature |= X86_ASYSC;
947 
948 			/*
949 			 * While we're thinking about system calls, note
950 			 * that AMD processors don't support sysenter
951 			 * in long mode at all, so don't try to program them.
952 			 */
953 			if (x86_vendor == X86_VENDOR_AMD)
954 				feature &= ~X86_SEP;
955 #endif
956 			if (cp->cp_edx & CPUID_AMD_EDX_TSCP)
957 				feature |= X86_TSCP;
958 			break;
959 		default:
960 			break;
961 		}
962 
963 		/*
964 		 * Get CPUID data about processor cores and hyperthreads.
965 		 */
966 		switch (cpi->cpi_vendor) {
967 		case X86_VENDOR_Intel:
968 			if (cpi->cpi_maxeax >= 4) {
969 				cp = &cpi->cpi_std[4];
970 				cp->cp_eax = 4;
971 				cp->cp_ecx = 0;
972 				(void) __cpuid_insn(cp);
973 				platform_cpuid_mangle(cpi->cpi_vendor, 4, cp);
974 			}
975 			/*FALLTHROUGH*/
976 		case X86_VENDOR_AMD:
977 			if (cpi->cpi_xmaxeax < 0x80000008)
978 				break;
979 			cp = &cpi->cpi_extd[8];
980 			cp->cp_eax = 0x80000008;
981 			(void) __cpuid_insn(cp);
982 			platform_cpuid_mangle(cpi->cpi_vendor, 0x80000008, cp);
983 
984 			/*
985 			 * Virtual and physical address limits from
986 			 * cpuid override previously guessed values.
987 			 */
988 			cpi->cpi_pabits = BITX(cp->cp_eax, 7, 0);
989 			cpi->cpi_vabits = BITX(cp->cp_eax, 15, 8);
990 			break;
991 		default:
992 			break;
993 		}
994 
995 		/*
996 		 * Derive the number of cores per chip
997 		 */
998 		switch (cpi->cpi_vendor) {
999 		case X86_VENDOR_Intel:
1000 			if (cpi->cpi_maxeax < 4) {
1001 				cpi->cpi_ncore_per_chip = 1;
1002 				break;
1003 			} else {
1004 				cpi->cpi_ncore_per_chip =
1005 				    BITX((cpi)->cpi_std[4].cp_eax, 31, 26) + 1;
1006 			}
1007 			break;
1008 		case X86_VENDOR_AMD:
1009 			if (cpi->cpi_xmaxeax < 0x80000008) {
1010 				cpi->cpi_ncore_per_chip = 1;
1011 				break;
1012 			} else {
1013 				/*
1014 				 * On family 0xf cpuid fn 2 ECX[7:0] "NC" is
1015 				 * 1 less than the number of physical cores on
1016 				 * the chip.  In family 0x10 this value can
1017 				 * be affected by "downcoring" - it reflects
1018 				 * 1 less than the number of cores actually
1019 				 * enabled on this node.
1020 				 */
1021 				cpi->cpi_ncore_per_chip =
1022 				    BITX((cpi)->cpi_extd[8].cp_ecx, 7, 0) + 1;
1023 			}
1024 			break;
1025 		default:
1026 			cpi->cpi_ncore_per_chip = 1;
1027 			break;
1028 		}
1029 
1030 		/*
1031 		 * Get CPUID data about TSC Invariance in Deep C-State.
1032 		 */
1033 		switch (cpi->cpi_vendor) {
1034 		case X86_VENDOR_Intel:
1035 			if (cpi->cpi_maxeax >= 7) {
1036 				cp = &cpi->cpi_extd[7];
1037 				cp->cp_eax = 0x80000007;
1038 				cp->cp_ecx = 0;
1039 				(void) __cpuid_insn(cp);
1040 			}
1041 			break;
1042 		default:
1043 			break;
1044 		}
1045 	} else {
1046 		cpi->cpi_ncore_per_chip = 1;
1047 	}
1048 
1049 	/*
1050 	 * If more than one core, then this processor is CMP.
1051 	 */
1052 	if (cpi->cpi_ncore_per_chip > 1)
1053 		feature |= X86_CMP;
1054 
1055 	/*
1056 	 * If the number of cores is the same as the number
1057 	 * of CPUs, then we cannot have HyperThreading.
1058 	 */
1059 	if (cpi->cpi_ncpu_per_chip == cpi->cpi_ncore_per_chip)
1060 		feature &= ~X86_HTT;
1061 
1062 	if ((feature & (X86_HTT | X86_CMP)) == 0) {
1063 		/*
1064 		 * Single-core single-threaded processors.
1065 		 */
1066 		cpi->cpi_chipid = -1;
1067 		cpi->cpi_clogid = 0;
1068 		cpi->cpi_coreid = cpu->cpu_id;
1069 		cpi->cpi_pkgcoreid = 0;
1070 	} else if (cpi->cpi_ncpu_per_chip > 1) {
1071 		uint_t i;
1072 		uint_t chipid_shift = 0;
1073 		uint_t coreid_shift = 0;
1074 		uint_t apic_id = CPI_APIC_ID(cpi);
1075 
1076 		for (i = 1; i < cpi->cpi_ncpu_per_chip; i <<= 1)
1077 			chipid_shift++;
1078 		cpi->cpi_chipid = apic_id >> chipid_shift;
1079 		cpi->cpi_clogid = apic_id & ((1 << chipid_shift) - 1);
1080 
1081 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
1082 			if (feature & X86_CMP) {
1083 				/*
1084 				 * Multi-core (and possibly multi-threaded)
1085 				 * processors.
1086 				 */
1087 				uint_t ncpu_per_core;
1088 				if (cpi->cpi_ncore_per_chip == 1)
1089 					ncpu_per_core = cpi->cpi_ncpu_per_chip;
1090 				else if (cpi->cpi_ncore_per_chip > 1)
1091 					ncpu_per_core = cpi->cpi_ncpu_per_chip /
1092 					    cpi->cpi_ncore_per_chip;
1093 				/*
1094 				 * 8bit APIC IDs on dual core Pentiums
1095 				 * look like this:
1096 				 *
1097 				 * +-----------------------+------+------+
1098 				 * | Physical Package ID   |  MC  |  HT  |
1099 				 * +-----------------------+------+------+
1100 				 * <------- chipid -------->
1101 				 * <------- coreid --------------->
1102 				 *			   <--- clogid -->
1103 				 *			   <------>
1104 				 *			   pkgcoreid
1105 				 *
1106 				 * Where the number of bits necessary to
1107 				 * represent MC and HT fields together equals
1108 				 * to the minimum number of bits necessary to
1109 				 * store the value of cpi->cpi_ncpu_per_chip.
1110 				 * Of those bits, the MC part uses the number
1111 				 * of bits necessary to store the value of
1112 				 * cpi->cpi_ncore_per_chip.
1113 				 */
1114 				for (i = 1; i < ncpu_per_core; i <<= 1)
1115 					coreid_shift++;
1116 				cpi->cpi_coreid = apic_id >> coreid_shift;
1117 				cpi->cpi_pkgcoreid = cpi->cpi_clogid >>
1118 				    coreid_shift;
1119 			} else if (feature & X86_HTT) {
1120 				/*
1121 				 * Single-core multi-threaded processors.
1122 				 */
1123 				cpi->cpi_coreid = cpi->cpi_chipid;
1124 				cpi->cpi_pkgcoreid = 0;
1125 			}
1126 		} else if (cpi->cpi_vendor == X86_VENDOR_AMD) {
1127 			/*
1128 			 * AMD CMP chips currently have a single thread per
1129 			 * core, with 2 cores on family 0xf and 2, 3 or 4
1130 			 * cores on family 0x10.
1131 			 *
1132 			 * Since no two cpus share a core we must assign a
1133 			 * distinct coreid per cpu, and we do this by using
1134 			 * the cpu_id.  This scheme does not, however,
1135 			 * guarantee that sibling cores of a chip will have
1136 			 * sequential coreids starting at a multiple of the
1137 			 * number of cores per chip - that is usually the
1138 			 * case, but if the ACPI MADT table is presented
1139 			 * in a different order then we need to perform a
1140 			 * few more gymnastics for the pkgcoreid.
1141 			 *
1142 			 * In family 0xf CMPs there are 2 cores on all nodes
1143 			 * present - no mixing of single and dual core parts.
1144 			 *
1145 			 * In family 0x10 CMPs cpuid fn 2 ECX[15:12]
1146 			 * "ApicIdCoreIdSize[3:0]" tells us how
1147 			 * many least-significant bits in the ApicId
1148 			 * are used to represent the core number
1149 			 * within the node.  Cores are always
1150 			 * numbered sequentially from 0 regardless
1151 			 * of how many or which are disabled, and
1152 			 * there seems to be no way to discover the
1153 			 * real core id when some are disabled.
1154 			 */
1155 			cpi->cpi_coreid = cpu->cpu_id;
1156 
1157 			if (cpi->cpi_family == 0x10 &&
1158 			    cpi->cpi_xmaxeax >= 0x80000008) {
1159 				int coreidsz =
1160 				    BITX((cpi)->cpi_extd[8].cp_ecx, 15, 12);
1161 
1162 				cpi->cpi_pkgcoreid =
1163 				    apic_id & ((1 << coreidsz) - 1);
1164 			} else {
1165 				cpi->cpi_pkgcoreid = cpi->cpi_clogid;
1166 			}
1167 		} else {
1168 			/*
1169 			 * All other processors are currently
1170 			 * assumed to have single cores.
1171 			 */
1172 			cpi->cpi_coreid = cpi->cpi_chipid;
1173 			cpi->cpi_pkgcoreid = 0;
1174 		}
1175 	}
1176 
1177 	cpi->cpi_apicid = CPI_APIC_ID(cpi);
1178 
1179 	/*
1180 	 * Synthesize chip "revision" and socket type
1181 	 */
1182 	cpi->cpi_chiprev = _cpuid_chiprev(cpi->cpi_vendor, cpi->cpi_family,
1183 	    cpi->cpi_model, cpi->cpi_step);
1184 	cpi->cpi_chiprevstr = _cpuid_chiprevstr(cpi->cpi_vendor,
1185 	    cpi->cpi_family, cpi->cpi_model, cpi->cpi_step);
1186 	cpi->cpi_socket = _cpuid_skt(cpi->cpi_vendor, cpi->cpi_family,
1187 	    cpi->cpi_model, cpi->cpi_step);
1188 
1189 pass1_done:
1190 #if !defined(__xpv)
1191 	check_for_hvm();
1192 #endif
1193 	cpi->cpi_pass = 1;
1194 	return (feature);
1195 }
1196 
1197 /*
1198  * Make copies of the cpuid table entries we depend on, in
1199  * part for ease of parsing now, in part so that we have only
1200  * one place to correct any of it, in part for ease of
1201  * later export to userland, and in part so we can look at
1202  * this stuff in a crash dump.
1203  */
1204 
1205 /*ARGSUSED*/
1206 void
1207 cpuid_pass2(cpu_t *cpu)
1208 {
1209 	uint_t n, nmax;
1210 	int i;
1211 	struct cpuid_regs *cp;
1212 	uint8_t *dp;
1213 	uint32_t *iptr;
1214 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1215 
1216 	ASSERT(cpi->cpi_pass == 1);
1217 
1218 	if (cpi->cpi_maxeax < 1)
1219 		goto pass2_done;
1220 
1221 	if ((nmax = cpi->cpi_maxeax + 1) > NMAX_CPI_STD)
1222 		nmax = NMAX_CPI_STD;
1223 	/*
1224 	 * (We already handled n == 0 and n == 1 in pass 1)
1225 	 */
1226 	for (n = 2, cp = &cpi->cpi_std[2]; n < nmax; n++, cp++) {
1227 		cp->cp_eax = n;
1228 
1229 		/*
1230 		 * CPUID function 4 expects %ecx to be initialized
1231 		 * with an index which indicates which cache to return
1232 		 * information about. The OS is expected to call function 4
1233 		 * with %ecx set to 0, 1, 2, ... until it returns with
1234 		 * EAX[4:0] set to 0, which indicates there are no more
1235 		 * caches.
1236 		 *
1237 		 * Here, populate cpi_std[4] with the information returned by
1238 		 * function 4 when %ecx == 0, and do the rest in cpuid_pass3()
1239 		 * when dynamic memory allocation becomes available.
1240 		 *
1241 		 * Note: we need to explicitly initialize %ecx here, since
1242 		 * function 4 may have been previously invoked.
1243 		 */
1244 		if (n == 4)
1245 			cp->cp_ecx = 0;
1246 
1247 		(void) __cpuid_insn(cp);
1248 		platform_cpuid_mangle(cpi->cpi_vendor, n, cp);
1249 		switch (n) {
1250 		case 2:
1251 			/*
1252 			 * "the lower 8 bits of the %eax register
1253 			 * contain a value that identifies the number
1254 			 * of times the cpuid [instruction] has to be
1255 			 * executed to obtain a complete image of the
1256 			 * processor's caching systems."
1257 			 *
1258 			 * How *do* they make this stuff up?
1259 			 */
1260 			cpi->cpi_ncache = sizeof (*cp) *
1261 			    BITX(cp->cp_eax, 7, 0);
1262 			if (cpi->cpi_ncache == 0)
1263 				break;
1264 			cpi->cpi_ncache--;	/* skip count byte */
1265 
1266 			/*
1267 			 * Well, for now, rather than attempt to implement
1268 			 * this slightly dubious algorithm, we just look
1269 			 * at the first 15 ..
1270 			 */
1271 			if (cpi->cpi_ncache > (sizeof (*cp) - 1))
1272 				cpi->cpi_ncache = sizeof (*cp) - 1;
1273 
1274 			dp = cpi->cpi_cacheinfo;
1275 			if (BITX(cp->cp_eax, 31, 31) == 0) {
1276 				uint8_t *p = (void *)&cp->cp_eax;
1277 				for (i = 1; i < 4; i++)
1278 					if (p[i] != 0)
1279 						*dp++ = p[i];
1280 			}
1281 			if (BITX(cp->cp_ebx, 31, 31) == 0) {
1282 				uint8_t *p = (void *)&cp->cp_ebx;
1283 				for (i = 0; i < 4; i++)
1284 					if (p[i] != 0)
1285 						*dp++ = p[i];
1286 			}
1287 			if (BITX(cp->cp_ecx, 31, 31) == 0) {
1288 				uint8_t *p = (void *)&cp->cp_ecx;
1289 				for (i = 0; i < 4; i++)
1290 					if (p[i] != 0)
1291 						*dp++ = p[i];
1292 			}
1293 			if (BITX(cp->cp_edx, 31, 31) == 0) {
1294 				uint8_t *p = (void *)&cp->cp_edx;
1295 				for (i = 0; i < 4; i++)
1296 					if (p[i] != 0)
1297 						*dp++ = p[i];
1298 			}
1299 			break;
1300 
1301 		case 3:	/* Processor serial number, if PSN supported */
1302 			break;
1303 
1304 		case 4:	/* Deterministic cache parameters */
1305 			break;
1306 
1307 		case 5:	/* Monitor/Mwait parameters */
1308 		{
1309 			size_t mwait_size;
1310 
1311 			/*
1312 			 * check cpi_mwait.support which was set in cpuid_pass1
1313 			 */
1314 			if (!(cpi->cpi_mwait.support & MWAIT_SUPPORT))
1315 				break;
1316 
1317 			/*
1318 			 * Protect ourself from insane mwait line size.
1319 			 * Workaround for incomplete hardware emulator(s).
1320 			 */
1321 			mwait_size = (size_t)MWAIT_SIZE_MAX(cpi);
1322 			if (mwait_size < sizeof (uint32_t) ||
1323 			    !ISP2(mwait_size)) {
1324 #if DEBUG
1325 				cmn_err(CE_NOTE, "Cannot handle cpu %d mwait "
1326 				    "size %ld", cpu->cpu_id, (long)mwait_size);
1327 #endif
1328 				break;
1329 			}
1330 
1331 			cpi->cpi_mwait.mon_min = (size_t)MWAIT_SIZE_MIN(cpi);
1332 			cpi->cpi_mwait.mon_max = mwait_size;
1333 			if (MWAIT_EXTENSION(cpi)) {
1334 				cpi->cpi_mwait.support |= MWAIT_EXTENSIONS;
1335 				if (MWAIT_INT_ENABLE(cpi))
1336 					cpi->cpi_mwait.support |=
1337 					    MWAIT_ECX_INT_ENABLE;
1338 			}
1339 			break;
1340 		}
1341 		default:
1342 			break;
1343 		}
1344 	}
1345 
1346 	if (cpi->cpi_maxeax >= 0xB && cpi->cpi_vendor == X86_VENDOR_Intel) {
1347 		struct cpuid_regs regs;
1348 
1349 		cp = &regs;
1350 		cp->cp_eax = 0xB;
1351 		cp->cp_edx = cp->cp_ebx = cp->cp_ecx = 0;
1352 
1353 		(void) __cpuid_insn(cp);
1354 
1355 		/*
1356 		 * Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero, which
1357 		 * indicates that the extended topology enumeration leaf is
1358 		 * available.
1359 		 */
1360 		if (cp->cp_ebx) {
1361 			uint32_t x2apic_id;
1362 			uint_t coreid_shift = 0;
1363 			uint_t ncpu_per_core = 1;
1364 			uint_t chipid_shift = 0;
1365 			uint_t ncpu_per_chip = 1;
1366 			uint_t i;
1367 			uint_t level;
1368 
1369 			for (i = 0; i < CPI_FNB_ECX_MAX; i++) {
1370 				cp->cp_eax = 0xB;
1371 				cp->cp_ecx = i;
1372 
1373 				(void) __cpuid_insn(cp);
1374 				level = CPI_CPU_LEVEL_TYPE(cp);
1375 
1376 				if (level == 1) {
1377 					x2apic_id = cp->cp_edx;
1378 					coreid_shift = BITX(cp->cp_eax, 4, 0);
1379 					ncpu_per_core = BITX(cp->cp_ebx, 15, 0);
1380 				} else if (level == 2) {
1381 					x2apic_id = cp->cp_edx;
1382 					chipid_shift = BITX(cp->cp_eax, 4, 0);
1383 					ncpu_per_chip = BITX(cp->cp_ebx, 15, 0);
1384 				}
1385 			}
1386 
1387 			cpi->cpi_apicid = x2apic_id;
1388 			cpi->cpi_ncpu_per_chip = ncpu_per_chip;
1389 			cpi->cpi_ncore_per_chip = ncpu_per_chip /
1390 			    ncpu_per_core;
1391 			cpi->cpi_chipid = x2apic_id >> chipid_shift;
1392 			cpi->cpi_clogid = x2apic_id & ((1 << chipid_shift) - 1);
1393 			cpi->cpi_coreid = x2apic_id >> coreid_shift;
1394 			cpi->cpi_pkgcoreid = cpi->cpi_clogid >> coreid_shift;
1395 		}
1396 
1397 		/* Make cp NULL so that we don't stumble on others */
1398 		cp = NULL;
1399 	}
1400 
1401 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0)
1402 		goto pass2_done;
1403 
1404 	if ((nmax = cpi->cpi_xmaxeax - 0x80000000 + 1) > NMAX_CPI_EXTD)
1405 		nmax = NMAX_CPI_EXTD;
1406 	/*
1407 	 * Copy the extended properties, fixing them as we go.
1408 	 * (We already handled n == 0 and n == 1 in pass 1)
1409 	 */
1410 	iptr = (void *)cpi->cpi_brandstr;
1411 	for (n = 2, cp = &cpi->cpi_extd[2]; n < nmax; cp++, n++) {
1412 		cp->cp_eax = 0x80000000 + n;
1413 		(void) __cpuid_insn(cp);
1414 		platform_cpuid_mangle(cpi->cpi_vendor, 0x80000000 + n, cp);
1415 		switch (n) {
1416 		case 2:
1417 		case 3:
1418 		case 4:
1419 			/*
1420 			 * Extract the brand string
1421 			 */
1422 			*iptr++ = cp->cp_eax;
1423 			*iptr++ = cp->cp_ebx;
1424 			*iptr++ = cp->cp_ecx;
1425 			*iptr++ = cp->cp_edx;
1426 			break;
1427 		case 5:
1428 			switch (cpi->cpi_vendor) {
1429 			case X86_VENDOR_AMD:
1430 				/*
1431 				 * The Athlon and Duron were the first
1432 				 * parts to report the sizes of the
1433 				 * TLB for large pages. Before then,
1434 				 * we don't trust the data.
1435 				 */
1436 				if (cpi->cpi_family < 6 ||
1437 				    (cpi->cpi_family == 6 &&
1438 				    cpi->cpi_model < 1))
1439 					cp->cp_eax = 0;
1440 				break;
1441 			default:
1442 				break;
1443 			}
1444 			break;
1445 		case 6:
1446 			switch (cpi->cpi_vendor) {
1447 			case X86_VENDOR_AMD:
1448 				/*
1449 				 * The Athlon and Duron were the first
1450 				 * AMD parts with L2 TLB's.
1451 				 * Before then, don't trust the data.
1452 				 */
1453 				if (cpi->cpi_family < 6 ||
1454 				    cpi->cpi_family == 6 &&
1455 				    cpi->cpi_model < 1)
1456 					cp->cp_eax = cp->cp_ebx = 0;
1457 				/*
1458 				 * AMD Duron rev A0 reports L2
1459 				 * cache size incorrectly as 1K
1460 				 * when it is really 64K
1461 				 */
1462 				if (cpi->cpi_family == 6 &&
1463 				    cpi->cpi_model == 3 &&
1464 				    cpi->cpi_step == 0) {
1465 					cp->cp_ecx &= 0xffff;
1466 					cp->cp_ecx |= 0x400000;
1467 				}
1468 				break;
1469 			case X86_VENDOR_Cyrix:	/* VIA C3 */
1470 				/*
1471 				 * VIA C3 processors are a bit messed
1472 				 * up w.r.t. encoding cache sizes in %ecx
1473 				 */
1474 				if (cpi->cpi_family != 6)
1475 					break;
1476 				/*
1477 				 * model 7 and 8 were incorrectly encoded
1478 				 *
1479 				 * xxx is model 8 really broken?
1480 				 */
1481 				if (cpi->cpi_model == 7 ||
1482 				    cpi->cpi_model == 8)
1483 					cp->cp_ecx =
1484 					    BITX(cp->cp_ecx, 31, 24) << 16 |
1485 					    BITX(cp->cp_ecx, 23, 16) << 12 |
1486 					    BITX(cp->cp_ecx, 15, 8) << 8 |
1487 					    BITX(cp->cp_ecx, 7, 0);
1488 				/*
1489 				 * model 9 stepping 1 has wrong associativity
1490 				 */
1491 				if (cpi->cpi_model == 9 && cpi->cpi_step == 1)
1492 					cp->cp_ecx |= 8 << 12;
1493 				break;
1494 			case X86_VENDOR_Intel:
1495 				/*
1496 				 * Extended L2 Cache features function.
1497 				 * First appeared on Prescott.
1498 				 */
1499 			default:
1500 				break;
1501 			}
1502 			break;
1503 		default:
1504 			break;
1505 		}
1506 	}
1507 
1508 pass2_done:
1509 	cpi->cpi_pass = 2;
1510 }
1511 
1512 static const char *
1513 intel_cpubrand(const struct cpuid_info *cpi)
1514 {
1515 	int i;
1516 
1517 	if ((x86_feature & X86_CPUID) == 0 ||
1518 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1519 		return ("i486");
1520 
1521 	switch (cpi->cpi_family) {
1522 	case 5:
1523 		return ("Intel Pentium(r)");
1524 	case 6:
1525 		switch (cpi->cpi_model) {
1526 			uint_t celeron, xeon;
1527 			const struct cpuid_regs *cp;
1528 		case 0:
1529 		case 1:
1530 		case 2:
1531 			return ("Intel Pentium(r) Pro");
1532 		case 3:
1533 		case 4:
1534 			return ("Intel Pentium(r) II");
1535 		case 6:
1536 			return ("Intel Celeron(r)");
1537 		case 5:
1538 		case 7:
1539 			celeron = xeon = 0;
1540 			cp = &cpi->cpi_std[2];	/* cache info */
1541 
1542 			for (i = 1; i < 4; i++) {
1543 				uint_t tmp;
1544 
1545 				tmp = (cp->cp_eax >> (8 * i)) & 0xff;
1546 				if (tmp == 0x40)
1547 					celeron++;
1548 				if (tmp >= 0x44 && tmp <= 0x45)
1549 					xeon++;
1550 			}
1551 
1552 			for (i = 0; i < 2; i++) {
1553 				uint_t tmp;
1554 
1555 				tmp = (cp->cp_ebx >> (8 * i)) & 0xff;
1556 				if (tmp == 0x40)
1557 					celeron++;
1558 				else if (tmp >= 0x44 && tmp <= 0x45)
1559 					xeon++;
1560 			}
1561 
1562 			for (i = 0; i < 4; i++) {
1563 				uint_t tmp;
1564 
1565 				tmp = (cp->cp_ecx >> (8 * i)) & 0xff;
1566 				if (tmp == 0x40)
1567 					celeron++;
1568 				else if (tmp >= 0x44 && tmp <= 0x45)
1569 					xeon++;
1570 			}
1571 
1572 			for (i = 0; i < 4; i++) {
1573 				uint_t tmp;
1574 
1575 				tmp = (cp->cp_edx >> (8 * i)) & 0xff;
1576 				if (tmp == 0x40)
1577 					celeron++;
1578 				else if (tmp >= 0x44 && tmp <= 0x45)
1579 					xeon++;
1580 			}
1581 
1582 			if (celeron)
1583 				return ("Intel Celeron(r)");
1584 			if (xeon)
1585 				return (cpi->cpi_model == 5 ?
1586 				    "Intel Pentium(r) II Xeon(tm)" :
1587 				    "Intel Pentium(r) III Xeon(tm)");
1588 			return (cpi->cpi_model == 5 ?
1589 			    "Intel Pentium(r) II or Pentium(r) II Xeon(tm)" :
1590 			    "Intel Pentium(r) III or Pentium(r) III Xeon(tm)");
1591 		default:
1592 			break;
1593 		}
1594 	default:
1595 		break;
1596 	}
1597 
1598 	/* BrandID is present if the field is nonzero */
1599 	if (cpi->cpi_brandid != 0) {
1600 		static const struct {
1601 			uint_t bt_bid;
1602 			const char *bt_str;
1603 		} brand_tbl[] = {
1604 			{ 0x1,	"Intel(r) Celeron(r)" },
1605 			{ 0x2,	"Intel(r) Pentium(r) III" },
1606 			{ 0x3,	"Intel(r) Pentium(r) III Xeon(tm)" },
1607 			{ 0x4,	"Intel(r) Pentium(r) III" },
1608 			{ 0x6,	"Mobile Intel(r) Pentium(r) III" },
1609 			{ 0x7,	"Mobile Intel(r) Celeron(r)" },
1610 			{ 0x8,	"Intel(r) Pentium(r) 4" },
1611 			{ 0x9,	"Intel(r) Pentium(r) 4" },
1612 			{ 0xa,	"Intel(r) Celeron(r)" },
1613 			{ 0xb,	"Intel(r) Xeon(tm)" },
1614 			{ 0xc,	"Intel(r) Xeon(tm) MP" },
1615 			{ 0xe,	"Mobile Intel(r) Pentium(r) 4" },
1616 			{ 0xf,	"Mobile Intel(r) Celeron(r)" },
1617 			{ 0x11, "Mobile Genuine Intel(r)" },
1618 			{ 0x12, "Intel(r) Celeron(r) M" },
1619 			{ 0x13, "Mobile Intel(r) Celeron(r)" },
1620 			{ 0x14, "Intel(r) Celeron(r)" },
1621 			{ 0x15, "Mobile Genuine Intel(r)" },
1622 			{ 0x16,	"Intel(r) Pentium(r) M" },
1623 			{ 0x17, "Mobile Intel(r) Celeron(r)" }
1624 		};
1625 		uint_t btblmax = sizeof (brand_tbl) / sizeof (brand_tbl[0]);
1626 		uint_t sgn;
1627 
1628 		sgn = (cpi->cpi_family << 8) |
1629 		    (cpi->cpi_model << 4) | cpi->cpi_step;
1630 
1631 		for (i = 0; i < btblmax; i++)
1632 			if (brand_tbl[i].bt_bid == cpi->cpi_brandid)
1633 				break;
1634 		if (i < btblmax) {
1635 			if (sgn == 0x6b1 && cpi->cpi_brandid == 3)
1636 				return ("Intel(r) Celeron(r)");
1637 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xb)
1638 				return ("Intel(r) Xeon(tm) MP");
1639 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xe)
1640 				return ("Intel(r) Xeon(tm)");
1641 			return (brand_tbl[i].bt_str);
1642 		}
1643 	}
1644 
1645 	return (NULL);
1646 }
1647 
1648 static const char *
1649 amd_cpubrand(const struct cpuid_info *cpi)
1650 {
1651 	if ((x86_feature & X86_CPUID) == 0 ||
1652 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1653 		return ("i486 compatible");
1654 
1655 	switch (cpi->cpi_family) {
1656 	case 5:
1657 		switch (cpi->cpi_model) {
1658 		case 0:
1659 		case 1:
1660 		case 2:
1661 		case 3:
1662 		case 4:
1663 		case 5:
1664 			return ("AMD-K5(r)");
1665 		case 6:
1666 		case 7:
1667 			return ("AMD-K6(r)");
1668 		case 8:
1669 			return ("AMD-K6(r)-2");
1670 		case 9:
1671 			return ("AMD-K6(r)-III");
1672 		default:
1673 			return ("AMD (family 5)");
1674 		}
1675 	case 6:
1676 		switch (cpi->cpi_model) {
1677 		case 1:
1678 			return ("AMD-K7(tm)");
1679 		case 0:
1680 		case 2:
1681 		case 4:
1682 			return ("AMD Athlon(tm)");
1683 		case 3:
1684 		case 7:
1685 			return ("AMD Duron(tm)");
1686 		case 6:
1687 		case 8:
1688 		case 10:
1689 			/*
1690 			 * Use the L2 cache size to distinguish
1691 			 */
1692 			return ((cpi->cpi_extd[6].cp_ecx >> 16) >= 256 ?
1693 			    "AMD Athlon(tm)" : "AMD Duron(tm)");
1694 		default:
1695 			return ("AMD (family 6)");
1696 		}
1697 	default:
1698 		break;
1699 	}
1700 
1701 	if (cpi->cpi_family == 0xf && cpi->cpi_model == 5 &&
1702 	    cpi->cpi_brandid != 0) {
1703 		switch (BITX(cpi->cpi_brandid, 7, 5)) {
1704 		case 3:
1705 			return ("AMD Opteron(tm) UP 1xx");
1706 		case 4:
1707 			return ("AMD Opteron(tm) DP 2xx");
1708 		case 5:
1709 			return ("AMD Opteron(tm) MP 8xx");
1710 		default:
1711 			return ("AMD Opteron(tm)");
1712 		}
1713 	}
1714 
1715 	return (NULL);
1716 }
1717 
1718 static const char *
1719 cyrix_cpubrand(struct cpuid_info *cpi, uint_t type)
1720 {
1721 	if ((x86_feature & X86_CPUID) == 0 ||
1722 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5 ||
1723 	    type == X86_TYPE_CYRIX_486)
1724 		return ("i486 compatible");
1725 
1726 	switch (type) {
1727 	case X86_TYPE_CYRIX_6x86:
1728 		return ("Cyrix 6x86");
1729 	case X86_TYPE_CYRIX_6x86L:
1730 		return ("Cyrix 6x86L");
1731 	case X86_TYPE_CYRIX_6x86MX:
1732 		return ("Cyrix 6x86MX");
1733 	case X86_TYPE_CYRIX_GXm:
1734 		return ("Cyrix GXm");
1735 	case X86_TYPE_CYRIX_MediaGX:
1736 		return ("Cyrix MediaGX");
1737 	case X86_TYPE_CYRIX_MII:
1738 		return ("Cyrix M2");
1739 	case X86_TYPE_VIA_CYRIX_III:
1740 		return ("VIA Cyrix M3");
1741 	default:
1742 		/*
1743 		 * Have another wild guess ..
1744 		 */
1745 		if (cpi->cpi_family == 4 && cpi->cpi_model == 9)
1746 			return ("Cyrix 5x86");
1747 		else if (cpi->cpi_family == 5) {
1748 			switch (cpi->cpi_model) {
1749 			case 2:
1750 				return ("Cyrix 6x86");	/* Cyrix M1 */
1751 			case 4:
1752 				return ("Cyrix MediaGX");
1753 			default:
1754 				break;
1755 			}
1756 		} else if (cpi->cpi_family == 6) {
1757 			switch (cpi->cpi_model) {
1758 			case 0:
1759 				return ("Cyrix 6x86MX"); /* Cyrix M2? */
1760 			case 5:
1761 			case 6:
1762 			case 7:
1763 			case 8:
1764 			case 9:
1765 				return ("VIA C3");
1766 			default:
1767 				break;
1768 			}
1769 		}
1770 		break;
1771 	}
1772 	return (NULL);
1773 }
1774 
1775 /*
1776  * This only gets called in the case that the CPU extended
1777  * feature brand string (0x80000002, 0x80000003, 0x80000004)
1778  * aren't available, or contain null bytes for some reason.
1779  */
1780 static void
1781 fabricate_brandstr(struct cpuid_info *cpi)
1782 {
1783 	const char *brand = NULL;
1784 
1785 	switch (cpi->cpi_vendor) {
1786 	case X86_VENDOR_Intel:
1787 		brand = intel_cpubrand(cpi);
1788 		break;
1789 	case X86_VENDOR_AMD:
1790 		brand = amd_cpubrand(cpi);
1791 		break;
1792 	case X86_VENDOR_Cyrix:
1793 		brand = cyrix_cpubrand(cpi, x86_type);
1794 		break;
1795 	case X86_VENDOR_NexGen:
1796 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1797 			brand = "NexGen Nx586";
1798 		break;
1799 	case X86_VENDOR_Centaur:
1800 		if (cpi->cpi_family == 5)
1801 			switch (cpi->cpi_model) {
1802 			case 4:
1803 				brand = "Centaur C6";
1804 				break;
1805 			case 8:
1806 				brand = "Centaur C2";
1807 				break;
1808 			case 9:
1809 				brand = "Centaur C3";
1810 				break;
1811 			default:
1812 				break;
1813 			}
1814 		break;
1815 	case X86_VENDOR_Rise:
1816 		if (cpi->cpi_family == 5 &&
1817 		    (cpi->cpi_model == 0 || cpi->cpi_model == 2))
1818 			brand = "Rise mP6";
1819 		break;
1820 	case X86_VENDOR_SiS:
1821 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1822 			brand = "SiS 55x";
1823 		break;
1824 	case X86_VENDOR_TM:
1825 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4)
1826 			brand = "Transmeta Crusoe TM3x00 or TM5x00";
1827 		break;
1828 	case X86_VENDOR_NSC:
1829 	case X86_VENDOR_UMC:
1830 	default:
1831 		break;
1832 	}
1833 	if (brand) {
1834 		(void) strcpy((char *)cpi->cpi_brandstr, brand);
1835 		return;
1836 	}
1837 
1838 	/*
1839 	 * If all else fails ...
1840 	 */
1841 	(void) snprintf(cpi->cpi_brandstr, sizeof (cpi->cpi_brandstr),
1842 	    "%s %d.%d.%d", cpi->cpi_vendorstr, cpi->cpi_family,
1843 	    cpi->cpi_model, cpi->cpi_step);
1844 }
1845 
1846 /*
1847  * This routine is called just after kernel memory allocation
1848  * becomes available on cpu0, and as part of mp_startup() on
1849  * the other cpus.
1850  *
1851  * Fixup the brand string, and collect any information from cpuid
1852  * that requires dynamicically allocated storage to represent.
1853  */
1854 /*ARGSUSED*/
1855 void
1856 cpuid_pass3(cpu_t *cpu)
1857 {
1858 	int	i, max, shft, level, size;
1859 	struct cpuid_regs regs;
1860 	struct cpuid_regs *cp;
1861 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1862 
1863 	ASSERT(cpi->cpi_pass == 2);
1864 
1865 	/*
1866 	 * Function 4: Deterministic cache parameters
1867 	 *
1868 	 * Take this opportunity to detect the number of threads
1869 	 * sharing the last level cache, and construct a corresponding
1870 	 * cache id. The respective cpuid_info members are initialized
1871 	 * to the default case of "no last level cache sharing".
1872 	 */
1873 	cpi->cpi_ncpu_shr_last_cache = 1;
1874 	cpi->cpi_last_lvl_cacheid = cpu->cpu_id;
1875 
1876 	if (cpi->cpi_maxeax >= 4 && cpi->cpi_vendor == X86_VENDOR_Intel) {
1877 
1878 		/*
1879 		 * Find the # of elements (size) returned by fn 4, and along
1880 		 * the way detect last level cache sharing details.
1881 		 */
1882 		bzero(&regs, sizeof (regs));
1883 		cp = &regs;
1884 		for (i = 0, max = 0; i < CPI_FN4_ECX_MAX; i++) {
1885 			cp->cp_eax = 4;
1886 			cp->cp_ecx = i;
1887 
1888 			(void) __cpuid_insn(cp);
1889 
1890 			if (CPI_CACHE_TYPE(cp) == 0)
1891 				break;
1892 			level = CPI_CACHE_LVL(cp);
1893 			if (level > max) {
1894 				max = level;
1895 				cpi->cpi_ncpu_shr_last_cache =
1896 				    CPI_NTHR_SHR_CACHE(cp) + 1;
1897 			}
1898 		}
1899 		cpi->cpi_std_4_size = size = i;
1900 
1901 		/*
1902 		 * Allocate the cpi_std_4 array. The first element
1903 		 * references the regs for fn 4, %ecx == 0, which
1904 		 * cpuid_pass2() stashed in cpi->cpi_std[4].
1905 		 */
1906 		if (size > 0) {
1907 			cpi->cpi_std_4 =
1908 			    kmem_alloc(size * sizeof (cp), KM_SLEEP);
1909 			cpi->cpi_std_4[0] = &cpi->cpi_std[4];
1910 
1911 			/*
1912 			 * Allocate storage to hold the additional regs
1913 			 * for function 4, %ecx == 1 .. cpi_std_4_size.
1914 			 *
1915 			 * The regs for fn 4, %ecx == 0 has already
1916 			 * been allocated as indicated above.
1917 			 */
1918 			for (i = 1; i < size; i++) {
1919 				cp = cpi->cpi_std_4[i] =
1920 				    kmem_zalloc(sizeof (regs), KM_SLEEP);
1921 				cp->cp_eax = 4;
1922 				cp->cp_ecx = i;
1923 
1924 				(void) __cpuid_insn(cp);
1925 			}
1926 		}
1927 		/*
1928 		 * Determine the number of bits needed to represent
1929 		 * the number of CPUs sharing the last level cache.
1930 		 *
1931 		 * Shift off that number of bits from the APIC id to
1932 		 * derive the cache id.
1933 		 */
1934 		shft = 0;
1935 		for (i = 1; i < cpi->cpi_ncpu_shr_last_cache; i <<= 1)
1936 			shft++;
1937 		cpi->cpi_last_lvl_cacheid = cpi->cpi_apicid >> shft;
1938 	}
1939 
1940 	/*
1941 	 * Now fixup the brand string
1942 	 */
1943 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0) {
1944 		fabricate_brandstr(cpi);
1945 	} else {
1946 
1947 		/*
1948 		 * If we successfully extracted a brand string from the cpuid
1949 		 * instruction, clean it up by removing leading spaces and
1950 		 * similar junk.
1951 		 */
1952 		if (cpi->cpi_brandstr[0]) {
1953 			size_t maxlen = sizeof (cpi->cpi_brandstr);
1954 			char *src, *dst;
1955 
1956 			dst = src = (char *)cpi->cpi_brandstr;
1957 			src[maxlen - 1] = '\0';
1958 			/*
1959 			 * strip leading spaces
1960 			 */
1961 			while (*src == ' ')
1962 				src++;
1963 			/*
1964 			 * Remove any 'Genuine' or "Authentic" prefixes
1965 			 */
1966 			if (strncmp(src, "Genuine ", 8) == 0)
1967 				src += 8;
1968 			if (strncmp(src, "Authentic ", 10) == 0)
1969 				src += 10;
1970 
1971 			/*
1972 			 * Now do an in-place copy.
1973 			 * Map (R) to (r) and (TM) to (tm).
1974 			 * The era of teletypes is long gone, and there's
1975 			 * -really- no need to shout.
1976 			 */
1977 			while (*src != '\0') {
1978 				if (src[0] == '(') {
1979 					if (strncmp(src + 1, "R)", 2) == 0) {
1980 						(void) strncpy(dst, "(r)", 3);
1981 						src += 3;
1982 						dst += 3;
1983 						continue;
1984 					}
1985 					if (strncmp(src + 1, "TM)", 3) == 0) {
1986 						(void) strncpy(dst, "(tm)", 4);
1987 						src += 4;
1988 						dst += 4;
1989 						continue;
1990 					}
1991 				}
1992 				*dst++ = *src++;
1993 			}
1994 			*dst = '\0';
1995 
1996 			/*
1997 			 * Finally, remove any trailing spaces
1998 			 */
1999 			while (--dst > cpi->cpi_brandstr)
2000 				if (*dst == ' ')
2001 					*dst = '\0';
2002 				else
2003 					break;
2004 		} else
2005 			fabricate_brandstr(cpi);
2006 	}
2007 	cpi->cpi_pass = 3;
2008 }
2009 
2010 /*
2011  * This routine is called out of bind_hwcap() much later in the life
2012  * of the kernel (post_startup()).  The job of this routine is to resolve
2013  * the hardware feature support and kernel support for those features into
2014  * what we're actually going to tell applications via the aux vector.
2015  */
2016 uint_t
2017 cpuid_pass4(cpu_t *cpu)
2018 {
2019 	struct cpuid_info *cpi;
2020 	uint_t hwcap_flags = 0;
2021 
2022 	if (cpu == NULL)
2023 		cpu = CPU;
2024 	cpi = cpu->cpu_m.mcpu_cpi;
2025 
2026 	ASSERT(cpi->cpi_pass == 3);
2027 
2028 	if (cpi->cpi_maxeax >= 1) {
2029 		uint32_t *edx = &cpi->cpi_support[STD_EDX_FEATURES];
2030 		uint32_t *ecx = &cpi->cpi_support[STD_ECX_FEATURES];
2031 
2032 		*edx = CPI_FEATURES_EDX(cpi);
2033 		*ecx = CPI_FEATURES_ECX(cpi);
2034 
2035 		/*
2036 		 * [these require explicit kernel support]
2037 		 */
2038 		if ((x86_feature & X86_SEP) == 0)
2039 			*edx &= ~CPUID_INTC_EDX_SEP;
2040 
2041 		if ((x86_feature & X86_SSE) == 0)
2042 			*edx &= ~(CPUID_INTC_EDX_FXSR|CPUID_INTC_EDX_SSE);
2043 		if ((x86_feature & X86_SSE2) == 0)
2044 			*edx &= ~CPUID_INTC_EDX_SSE2;
2045 
2046 		if ((x86_feature & X86_HTT) == 0)
2047 			*edx &= ~CPUID_INTC_EDX_HTT;
2048 
2049 		if ((x86_feature & X86_SSE3) == 0)
2050 			*ecx &= ~CPUID_INTC_ECX_SSE3;
2051 
2052 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
2053 			if ((x86_feature & X86_SSSE3) == 0)
2054 				*ecx &= ~CPUID_INTC_ECX_SSSE3;
2055 			if ((x86_feature & X86_SSE4_1) == 0)
2056 				*ecx &= ~CPUID_INTC_ECX_SSE4_1;
2057 			if ((x86_feature & X86_SSE4_2) == 0)
2058 				*ecx &= ~CPUID_INTC_ECX_SSE4_2;
2059 		}
2060 
2061 		/*
2062 		 * [no explicit support required beyond x87 fp context]
2063 		 */
2064 		if (!fpu_exists)
2065 			*edx &= ~(CPUID_INTC_EDX_FPU | CPUID_INTC_EDX_MMX);
2066 
2067 		/*
2068 		 * Now map the supported feature vector to things that we
2069 		 * think userland will care about.
2070 		 */
2071 		if (*edx & CPUID_INTC_EDX_SEP)
2072 			hwcap_flags |= AV_386_SEP;
2073 		if (*edx & CPUID_INTC_EDX_SSE)
2074 			hwcap_flags |= AV_386_FXSR | AV_386_SSE;
2075 		if (*edx & CPUID_INTC_EDX_SSE2)
2076 			hwcap_flags |= AV_386_SSE2;
2077 		if (*ecx & CPUID_INTC_ECX_SSE3)
2078 			hwcap_flags |= AV_386_SSE3;
2079 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
2080 			if (*ecx & CPUID_INTC_ECX_SSSE3)
2081 				hwcap_flags |= AV_386_SSSE3;
2082 			if (*ecx & CPUID_INTC_ECX_SSE4_1)
2083 				hwcap_flags |= AV_386_SSE4_1;
2084 			if (*ecx & CPUID_INTC_ECX_SSE4_2)
2085 				hwcap_flags |= AV_386_SSE4_2;
2086 			if (*ecx & CPUID_INTC_ECX_MOVBE)
2087 				hwcap_flags |= AV_386_MOVBE;
2088 		}
2089 		if (*ecx & CPUID_INTC_ECX_POPCNT)
2090 			hwcap_flags |= AV_386_POPCNT;
2091 		if (*edx & CPUID_INTC_EDX_FPU)
2092 			hwcap_flags |= AV_386_FPU;
2093 		if (*edx & CPUID_INTC_EDX_MMX)
2094 			hwcap_flags |= AV_386_MMX;
2095 
2096 		if (*edx & CPUID_INTC_EDX_TSC)
2097 			hwcap_flags |= AV_386_TSC;
2098 		if (*edx & CPUID_INTC_EDX_CX8)
2099 			hwcap_flags |= AV_386_CX8;
2100 		if (*edx & CPUID_INTC_EDX_CMOV)
2101 			hwcap_flags |= AV_386_CMOV;
2102 		if (*ecx & CPUID_INTC_ECX_MON)
2103 			hwcap_flags |= AV_386_MON;
2104 		if (*ecx & CPUID_INTC_ECX_CX16)
2105 			hwcap_flags |= AV_386_CX16;
2106 	}
2107 
2108 	if (x86_feature & X86_HTT)
2109 		hwcap_flags |= AV_386_PAUSE;
2110 
2111 	if (cpi->cpi_xmaxeax < 0x80000001)
2112 		goto pass4_done;
2113 
2114 	switch (cpi->cpi_vendor) {
2115 		struct cpuid_regs cp;
2116 		uint32_t *edx, *ecx;
2117 
2118 	case X86_VENDOR_Intel:
2119 		/*
2120 		 * Seems like Intel duplicated what we necessary
2121 		 * here to make the initial crop of 64-bit OS's work.
2122 		 * Hopefully, those are the only "extended" bits
2123 		 * they'll add.
2124 		 */
2125 		/*FALLTHROUGH*/
2126 
2127 	case X86_VENDOR_AMD:
2128 		edx = &cpi->cpi_support[AMD_EDX_FEATURES];
2129 		ecx = &cpi->cpi_support[AMD_ECX_FEATURES];
2130 
2131 		*edx = CPI_FEATURES_XTD_EDX(cpi);
2132 		*ecx = CPI_FEATURES_XTD_ECX(cpi);
2133 
2134 		/*
2135 		 * [these features require explicit kernel support]
2136 		 */
2137 		switch (cpi->cpi_vendor) {
2138 		case X86_VENDOR_Intel:
2139 			if ((x86_feature & X86_TSCP) == 0)
2140 				*edx &= ~CPUID_AMD_EDX_TSCP;
2141 			break;
2142 
2143 		case X86_VENDOR_AMD:
2144 			if ((x86_feature & X86_TSCP) == 0)
2145 				*edx &= ~CPUID_AMD_EDX_TSCP;
2146 			if ((x86_feature & X86_SSE4A) == 0)
2147 				*ecx &= ~CPUID_AMD_ECX_SSE4A;
2148 			break;
2149 
2150 		default:
2151 			break;
2152 		}
2153 
2154 		/*
2155 		 * [no explicit support required beyond
2156 		 * x87 fp context and exception handlers]
2157 		 */
2158 		if (!fpu_exists)
2159 			*edx &= ~(CPUID_AMD_EDX_MMXamd |
2160 			    CPUID_AMD_EDX_3DNow | CPUID_AMD_EDX_3DNowx);
2161 
2162 		if ((x86_feature & X86_NX) == 0)
2163 			*edx &= ~CPUID_AMD_EDX_NX;
2164 #if !defined(__amd64)
2165 		*edx &= ~CPUID_AMD_EDX_LM;
2166 #endif
2167 		/*
2168 		 * Now map the supported feature vector to
2169 		 * things that we think userland will care about.
2170 		 */
2171 #if defined(__amd64)
2172 		if (*edx & CPUID_AMD_EDX_SYSC)
2173 			hwcap_flags |= AV_386_AMD_SYSC;
2174 #endif
2175 		if (*edx & CPUID_AMD_EDX_MMXamd)
2176 			hwcap_flags |= AV_386_AMD_MMX;
2177 		if (*edx & CPUID_AMD_EDX_3DNow)
2178 			hwcap_flags |= AV_386_AMD_3DNow;
2179 		if (*edx & CPUID_AMD_EDX_3DNowx)
2180 			hwcap_flags |= AV_386_AMD_3DNowx;
2181 
2182 		switch (cpi->cpi_vendor) {
2183 		case X86_VENDOR_AMD:
2184 			if (*edx & CPUID_AMD_EDX_TSCP)
2185 				hwcap_flags |= AV_386_TSCP;
2186 			if (*ecx & CPUID_AMD_ECX_AHF64)
2187 				hwcap_flags |= AV_386_AHF;
2188 			if (*ecx & CPUID_AMD_ECX_SSE4A)
2189 				hwcap_flags |= AV_386_AMD_SSE4A;
2190 			if (*ecx & CPUID_AMD_ECX_LZCNT)
2191 				hwcap_flags |= AV_386_AMD_LZCNT;
2192 			break;
2193 
2194 		case X86_VENDOR_Intel:
2195 			if (*edx & CPUID_AMD_EDX_TSCP)
2196 				hwcap_flags |= AV_386_TSCP;
2197 			/*
2198 			 * Aarrgh.
2199 			 * Intel uses a different bit in the same word.
2200 			 */
2201 			if (*ecx & CPUID_INTC_ECX_AHF64)
2202 				hwcap_flags |= AV_386_AHF;
2203 			break;
2204 
2205 		default:
2206 			break;
2207 		}
2208 		break;
2209 
2210 	case X86_VENDOR_TM:
2211 		cp.cp_eax = 0x80860001;
2212 		(void) __cpuid_insn(&cp);
2213 		cpi->cpi_support[TM_EDX_FEATURES] = cp.cp_edx;
2214 		break;
2215 
2216 	default:
2217 		break;
2218 	}
2219 
2220 pass4_done:
2221 	cpi->cpi_pass = 4;
2222 	return (hwcap_flags);
2223 }
2224 
2225 
2226 /*
2227  * Simulate the cpuid instruction using the data we previously
2228  * captured about this CPU.  We try our best to return the truth
2229  * about the hardware, independently of kernel support.
2230  */
2231 uint32_t
2232 cpuid_insn(cpu_t *cpu, struct cpuid_regs *cp)
2233 {
2234 	struct cpuid_info *cpi;
2235 	struct cpuid_regs *xcp;
2236 
2237 	if (cpu == NULL)
2238 		cpu = CPU;
2239 	cpi = cpu->cpu_m.mcpu_cpi;
2240 
2241 	ASSERT(cpuid_checkpass(cpu, 3));
2242 
2243 	/*
2244 	 * CPUID data is cached in two separate places: cpi_std for standard
2245 	 * CPUID functions, and cpi_extd for extended CPUID functions.
2246 	 */
2247 	if (cp->cp_eax <= cpi->cpi_maxeax && cp->cp_eax < NMAX_CPI_STD)
2248 		xcp = &cpi->cpi_std[cp->cp_eax];
2249 	else if (cp->cp_eax >= 0x80000000 && cp->cp_eax <= cpi->cpi_xmaxeax &&
2250 	    cp->cp_eax < 0x80000000 + NMAX_CPI_EXTD)
2251 		xcp = &cpi->cpi_extd[cp->cp_eax - 0x80000000];
2252 	else
2253 		/*
2254 		 * The caller is asking for data from an input parameter which
2255 		 * the kernel has not cached.  In this case we go fetch from
2256 		 * the hardware and return the data directly to the user.
2257 		 */
2258 		return (__cpuid_insn(cp));
2259 
2260 	cp->cp_eax = xcp->cp_eax;
2261 	cp->cp_ebx = xcp->cp_ebx;
2262 	cp->cp_ecx = xcp->cp_ecx;
2263 	cp->cp_edx = xcp->cp_edx;
2264 	return (cp->cp_eax);
2265 }
2266 
2267 int
2268 cpuid_checkpass(cpu_t *cpu, int pass)
2269 {
2270 	return (cpu != NULL && cpu->cpu_m.mcpu_cpi != NULL &&
2271 	    cpu->cpu_m.mcpu_cpi->cpi_pass >= pass);
2272 }
2273 
2274 int
2275 cpuid_getbrandstr(cpu_t *cpu, char *s, size_t n)
2276 {
2277 	ASSERT(cpuid_checkpass(cpu, 3));
2278 
2279 	return (snprintf(s, n, "%s", cpu->cpu_m.mcpu_cpi->cpi_brandstr));
2280 }
2281 
2282 int
2283 cpuid_is_cmt(cpu_t *cpu)
2284 {
2285 	if (cpu == NULL)
2286 		cpu = CPU;
2287 
2288 	ASSERT(cpuid_checkpass(cpu, 1));
2289 
2290 	return (cpu->cpu_m.mcpu_cpi->cpi_chipid >= 0);
2291 }
2292 
2293 /*
2294  * AMD and Intel both implement the 64-bit variant of the syscall
2295  * instruction (syscallq), so if there's -any- support for syscall,
2296  * cpuid currently says "yes, we support this".
2297  *
2298  * However, Intel decided to -not- implement the 32-bit variant of the
2299  * syscall instruction, so we provide a predicate to allow our caller
2300  * to test that subtlety here.
2301  *
2302  * XXPV	Currently, 32-bit syscall instructions don't work via the hypervisor,
2303  *	even in the case where the hardware would in fact support it.
2304  */
2305 /*ARGSUSED*/
2306 int
2307 cpuid_syscall32_insn(cpu_t *cpu)
2308 {
2309 	ASSERT(cpuid_checkpass((cpu == NULL ? CPU : cpu), 1));
2310 
2311 #if !defined(__xpv)
2312 	if (cpu == NULL)
2313 		cpu = CPU;
2314 
2315 	/*CSTYLED*/
2316 	{
2317 		struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2318 
2319 		if (cpi->cpi_vendor == X86_VENDOR_AMD &&
2320 		    cpi->cpi_xmaxeax >= 0x80000001 &&
2321 		    (CPI_FEATURES_XTD_EDX(cpi) & CPUID_AMD_EDX_SYSC))
2322 			return (1);
2323 	}
2324 #endif
2325 	return (0);
2326 }
2327 
2328 int
2329 cpuid_getidstr(cpu_t *cpu, char *s, size_t n)
2330 {
2331 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2332 
2333 	static const char fmt[] =
2334 	    "x86 (%s %X family %d model %d step %d clock %d MHz)";
2335 	static const char fmt_ht[] =
2336 	    "x86 (chipid 0x%x %s %X family %d model %d step %d clock %d MHz)";
2337 
2338 	ASSERT(cpuid_checkpass(cpu, 1));
2339 
2340 	if (cpuid_is_cmt(cpu))
2341 		return (snprintf(s, n, fmt_ht, cpi->cpi_chipid,
2342 		    cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
2343 		    cpi->cpi_family, cpi->cpi_model,
2344 		    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
2345 	return (snprintf(s, n, fmt,
2346 	    cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
2347 	    cpi->cpi_family, cpi->cpi_model,
2348 	    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
2349 }
2350 
2351 const char *
2352 cpuid_getvendorstr(cpu_t *cpu)
2353 {
2354 	ASSERT(cpuid_checkpass(cpu, 1));
2355 	return ((const char *)cpu->cpu_m.mcpu_cpi->cpi_vendorstr);
2356 }
2357 
2358 uint_t
2359 cpuid_getvendor(cpu_t *cpu)
2360 {
2361 	ASSERT(cpuid_checkpass(cpu, 1));
2362 	return (cpu->cpu_m.mcpu_cpi->cpi_vendor);
2363 }
2364 
2365 uint_t
2366 cpuid_getfamily(cpu_t *cpu)
2367 {
2368 	ASSERT(cpuid_checkpass(cpu, 1));
2369 	return (cpu->cpu_m.mcpu_cpi->cpi_family);
2370 }
2371 
2372 uint_t
2373 cpuid_getmodel(cpu_t *cpu)
2374 {
2375 	ASSERT(cpuid_checkpass(cpu, 1));
2376 	return (cpu->cpu_m.mcpu_cpi->cpi_model);
2377 }
2378 
2379 uint_t
2380 cpuid_get_ncpu_per_chip(cpu_t *cpu)
2381 {
2382 	ASSERT(cpuid_checkpass(cpu, 1));
2383 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_per_chip);
2384 }
2385 
2386 uint_t
2387 cpuid_get_ncore_per_chip(cpu_t *cpu)
2388 {
2389 	ASSERT(cpuid_checkpass(cpu, 1));
2390 	return (cpu->cpu_m.mcpu_cpi->cpi_ncore_per_chip);
2391 }
2392 
2393 uint_t
2394 cpuid_get_ncpu_sharing_last_cache(cpu_t *cpu)
2395 {
2396 	ASSERT(cpuid_checkpass(cpu, 2));
2397 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_shr_last_cache);
2398 }
2399 
2400 id_t
2401 cpuid_get_last_lvl_cacheid(cpu_t *cpu)
2402 {
2403 	ASSERT(cpuid_checkpass(cpu, 2));
2404 	return (cpu->cpu_m.mcpu_cpi->cpi_last_lvl_cacheid);
2405 }
2406 
2407 uint_t
2408 cpuid_getstep(cpu_t *cpu)
2409 {
2410 	ASSERT(cpuid_checkpass(cpu, 1));
2411 	return (cpu->cpu_m.mcpu_cpi->cpi_step);
2412 }
2413 
2414 uint_t
2415 cpuid_getsig(struct cpu *cpu)
2416 {
2417 	ASSERT(cpuid_checkpass(cpu, 1));
2418 	return (cpu->cpu_m.mcpu_cpi->cpi_std[1].cp_eax);
2419 }
2420 
2421 uint32_t
2422 cpuid_getchiprev(struct cpu *cpu)
2423 {
2424 	ASSERT(cpuid_checkpass(cpu, 1));
2425 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprev);
2426 }
2427 
2428 const char *
2429 cpuid_getchiprevstr(struct cpu *cpu)
2430 {
2431 	ASSERT(cpuid_checkpass(cpu, 1));
2432 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprevstr);
2433 }
2434 
2435 uint32_t
2436 cpuid_getsockettype(struct cpu *cpu)
2437 {
2438 	ASSERT(cpuid_checkpass(cpu, 1));
2439 	return (cpu->cpu_m.mcpu_cpi->cpi_socket);
2440 }
2441 
2442 int
2443 cpuid_get_chipid(cpu_t *cpu)
2444 {
2445 	ASSERT(cpuid_checkpass(cpu, 1));
2446 
2447 	if (cpuid_is_cmt(cpu))
2448 		return (cpu->cpu_m.mcpu_cpi->cpi_chipid);
2449 	return (cpu->cpu_id);
2450 }
2451 
2452 id_t
2453 cpuid_get_coreid(cpu_t *cpu)
2454 {
2455 	ASSERT(cpuid_checkpass(cpu, 1));
2456 	return (cpu->cpu_m.mcpu_cpi->cpi_coreid);
2457 }
2458 
2459 int
2460 cpuid_get_pkgcoreid(cpu_t *cpu)
2461 {
2462 	ASSERT(cpuid_checkpass(cpu, 1));
2463 	return (cpu->cpu_m.mcpu_cpi->cpi_pkgcoreid);
2464 }
2465 
2466 int
2467 cpuid_get_clogid(cpu_t *cpu)
2468 {
2469 	ASSERT(cpuid_checkpass(cpu, 1));
2470 	return (cpu->cpu_m.mcpu_cpi->cpi_clogid);
2471 }
2472 
2473 void
2474 cpuid_get_addrsize(cpu_t *cpu, uint_t *pabits, uint_t *vabits)
2475 {
2476 	struct cpuid_info *cpi;
2477 
2478 	if (cpu == NULL)
2479 		cpu = CPU;
2480 	cpi = cpu->cpu_m.mcpu_cpi;
2481 
2482 	ASSERT(cpuid_checkpass(cpu, 1));
2483 
2484 	if (pabits)
2485 		*pabits = cpi->cpi_pabits;
2486 	if (vabits)
2487 		*vabits = cpi->cpi_vabits;
2488 }
2489 
2490 /*
2491  * Returns the number of data TLB entries for a corresponding
2492  * pagesize.  If it can't be computed, or isn't known, the
2493  * routine returns zero.  If you ask about an architecturally
2494  * impossible pagesize, the routine will panic (so that the
2495  * hat implementor knows that things are inconsistent.)
2496  */
2497 uint_t
2498 cpuid_get_dtlb_nent(cpu_t *cpu, size_t pagesize)
2499 {
2500 	struct cpuid_info *cpi;
2501 	uint_t dtlb_nent = 0;
2502 
2503 	if (cpu == NULL)
2504 		cpu = CPU;
2505 	cpi = cpu->cpu_m.mcpu_cpi;
2506 
2507 	ASSERT(cpuid_checkpass(cpu, 1));
2508 
2509 	/*
2510 	 * Check the L2 TLB info
2511 	 */
2512 	if (cpi->cpi_xmaxeax >= 0x80000006) {
2513 		struct cpuid_regs *cp = &cpi->cpi_extd[6];
2514 
2515 		switch (pagesize) {
2516 
2517 		case 4 * 1024:
2518 			/*
2519 			 * All zero in the top 16 bits of the register
2520 			 * indicates a unified TLB. Size is in low 16 bits.
2521 			 */
2522 			if ((cp->cp_ebx & 0xffff0000) == 0)
2523 				dtlb_nent = cp->cp_ebx & 0x0000ffff;
2524 			else
2525 				dtlb_nent = BITX(cp->cp_ebx, 27, 16);
2526 			break;
2527 
2528 		case 2 * 1024 * 1024:
2529 			if ((cp->cp_eax & 0xffff0000) == 0)
2530 				dtlb_nent = cp->cp_eax & 0x0000ffff;
2531 			else
2532 				dtlb_nent = BITX(cp->cp_eax, 27, 16);
2533 			break;
2534 
2535 		default:
2536 			panic("unknown L2 pagesize");
2537 			/*NOTREACHED*/
2538 		}
2539 	}
2540 
2541 	if (dtlb_nent != 0)
2542 		return (dtlb_nent);
2543 
2544 	/*
2545 	 * No L2 TLB support for this size, try L1.
2546 	 */
2547 	if (cpi->cpi_xmaxeax >= 0x80000005) {
2548 		struct cpuid_regs *cp = &cpi->cpi_extd[5];
2549 
2550 		switch (pagesize) {
2551 		case 4 * 1024:
2552 			dtlb_nent = BITX(cp->cp_ebx, 23, 16);
2553 			break;
2554 		case 2 * 1024 * 1024:
2555 			dtlb_nent = BITX(cp->cp_eax, 23, 16);
2556 			break;
2557 		default:
2558 			panic("unknown L1 d-TLB pagesize");
2559 			/*NOTREACHED*/
2560 		}
2561 	}
2562 
2563 	return (dtlb_nent);
2564 }
2565 
2566 /*
2567  * Return 0 if the erratum is not present or not applicable, positive
2568  * if it is, and negative if the status of the erratum is unknown.
2569  *
2570  * See "Revision Guide for AMD Athlon(tm) 64 and AMD Opteron(tm)
2571  * Processors" #25759, Rev 3.57, August 2005
2572  */
2573 int
2574 cpuid_opteron_erratum(cpu_t *cpu, uint_t erratum)
2575 {
2576 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2577 	uint_t eax;
2578 
2579 	/*
2580 	 * Bail out if this CPU isn't an AMD CPU, or if it's
2581 	 * a legacy (32-bit) AMD CPU.
2582 	 */
2583 	if (cpi->cpi_vendor != X86_VENDOR_AMD ||
2584 	    cpi->cpi_family == 4 || cpi->cpi_family == 5 ||
2585 	    cpi->cpi_family == 6)
2586 
2587 		return (0);
2588 
2589 	eax = cpi->cpi_std[1].cp_eax;
2590 
2591 #define	SH_B0(eax)	(eax == 0xf40 || eax == 0xf50)
2592 #define	SH_B3(eax) 	(eax == 0xf51)
2593 #define	B(eax)		(SH_B0(eax) || SH_B3(eax))
2594 
2595 #define	SH_C0(eax)	(eax == 0xf48 || eax == 0xf58)
2596 
2597 #define	SH_CG(eax)	(eax == 0xf4a || eax == 0xf5a || eax == 0xf7a)
2598 #define	DH_CG(eax)	(eax == 0xfc0 || eax == 0xfe0 || eax == 0xff0)
2599 #define	CH_CG(eax)	(eax == 0xf82 || eax == 0xfb2)
2600 #define	CG(eax)		(SH_CG(eax) || DH_CG(eax) || CH_CG(eax))
2601 
2602 #define	SH_D0(eax)	(eax == 0x10f40 || eax == 0x10f50 || eax == 0x10f70)
2603 #define	DH_D0(eax)	(eax == 0x10fc0 || eax == 0x10ff0)
2604 #define	CH_D0(eax)	(eax == 0x10f80 || eax == 0x10fb0)
2605 #define	D0(eax)		(SH_D0(eax) || DH_D0(eax) || CH_D0(eax))
2606 
2607 #define	SH_E0(eax)	(eax == 0x20f50 || eax == 0x20f40 || eax == 0x20f70)
2608 #define	JH_E1(eax)	(eax == 0x20f10)	/* JH8_E0 had 0x20f30 */
2609 #define	DH_E3(eax)	(eax == 0x20fc0 || eax == 0x20ff0)
2610 #define	SH_E4(eax)	(eax == 0x20f51 || eax == 0x20f71)
2611 #define	BH_E4(eax)	(eax == 0x20fb1)
2612 #define	SH_E5(eax)	(eax == 0x20f42)
2613 #define	DH_E6(eax)	(eax == 0x20ff2 || eax == 0x20fc2)
2614 #define	JH_E6(eax)	(eax == 0x20f12 || eax == 0x20f32)
2615 #define	EX(eax)		(SH_E0(eax) || JH_E1(eax) || DH_E3(eax) || \
2616 			    SH_E4(eax) || BH_E4(eax) || SH_E5(eax) || \
2617 			    DH_E6(eax) || JH_E6(eax))
2618 
2619 #define	DR_AX(eax)	(eax == 0x100f00 || eax == 0x100f01 || eax == 0x100f02)
2620 #define	DR_B0(eax)	(eax == 0x100f20)
2621 #define	DR_B1(eax)	(eax == 0x100f21)
2622 #define	DR_BA(eax)	(eax == 0x100f2a)
2623 #define	DR_B2(eax)	(eax == 0x100f22)
2624 #define	DR_B3(eax)	(eax == 0x100f23)
2625 #define	RB_C0(eax)	(eax == 0x100f40)
2626 
2627 	switch (erratum) {
2628 	case 1:
2629 		return (cpi->cpi_family < 0x10);
2630 	case 51:	/* what does the asterisk mean? */
2631 		return (B(eax) || SH_C0(eax) || CG(eax));
2632 	case 52:
2633 		return (B(eax));
2634 	case 57:
2635 		return (cpi->cpi_family <= 0x11);
2636 	case 58:
2637 		return (B(eax));
2638 	case 60:
2639 		return (cpi->cpi_family <= 0x11);
2640 	case 61:
2641 	case 62:
2642 	case 63:
2643 	case 64:
2644 	case 65:
2645 	case 66:
2646 	case 68:
2647 	case 69:
2648 	case 70:
2649 	case 71:
2650 		return (B(eax));
2651 	case 72:
2652 		return (SH_B0(eax));
2653 	case 74:
2654 		return (B(eax));
2655 	case 75:
2656 		return (cpi->cpi_family < 0x10);
2657 	case 76:
2658 		return (B(eax));
2659 	case 77:
2660 		return (cpi->cpi_family <= 0x11);
2661 	case 78:
2662 		return (B(eax) || SH_C0(eax));
2663 	case 79:
2664 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2665 	case 80:
2666 	case 81:
2667 	case 82:
2668 		return (B(eax));
2669 	case 83:
2670 		return (B(eax) || SH_C0(eax) || CG(eax));
2671 	case 85:
2672 		return (cpi->cpi_family < 0x10);
2673 	case 86:
2674 		return (SH_C0(eax) || CG(eax));
2675 	case 88:
2676 #if !defined(__amd64)
2677 		return (0);
2678 #else
2679 		return (B(eax) || SH_C0(eax));
2680 #endif
2681 	case 89:
2682 		return (cpi->cpi_family < 0x10);
2683 	case 90:
2684 		return (B(eax) || SH_C0(eax) || CG(eax));
2685 	case 91:
2686 	case 92:
2687 		return (B(eax) || SH_C0(eax));
2688 	case 93:
2689 		return (SH_C0(eax));
2690 	case 94:
2691 		return (B(eax) || SH_C0(eax) || CG(eax));
2692 	case 95:
2693 #if !defined(__amd64)
2694 		return (0);
2695 #else
2696 		return (B(eax) || SH_C0(eax));
2697 #endif
2698 	case 96:
2699 		return (B(eax) || SH_C0(eax) || CG(eax));
2700 	case 97:
2701 	case 98:
2702 		return (SH_C0(eax) || CG(eax));
2703 	case 99:
2704 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2705 	case 100:
2706 		return (B(eax) || SH_C0(eax));
2707 	case 101:
2708 	case 103:
2709 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2710 	case 104:
2711 		return (SH_C0(eax) || CG(eax) || D0(eax));
2712 	case 105:
2713 	case 106:
2714 	case 107:
2715 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2716 	case 108:
2717 		return (DH_CG(eax));
2718 	case 109:
2719 		return (SH_C0(eax) || CG(eax) || D0(eax));
2720 	case 110:
2721 		return (D0(eax) || EX(eax));
2722 	case 111:
2723 		return (CG(eax));
2724 	case 112:
2725 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2726 	case 113:
2727 		return (eax == 0x20fc0);
2728 	case 114:
2729 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
2730 	case 115:
2731 		return (SH_E0(eax) || JH_E1(eax));
2732 	case 116:
2733 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
2734 	case 117:
2735 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2736 	case 118:
2737 		return (SH_E0(eax) || JH_E1(eax) || SH_E4(eax) || BH_E4(eax) ||
2738 		    JH_E6(eax));
2739 	case 121:
2740 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2741 	case 122:
2742 		return (cpi->cpi_family < 0x10 || cpi->cpi_family == 0x11);
2743 	case 123:
2744 		return (JH_E1(eax) || BH_E4(eax) || JH_E6(eax));
2745 	case 131:
2746 		return (cpi->cpi_family < 0x10);
2747 	case 6336786:
2748 		/*
2749 		 * Test for AdvPowerMgmtInfo.TscPStateInvariant
2750 		 * if this is a K8 family or newer processor
2751 		 */
2752 		if (CPI_FAMILY(cpi) == 0xf) {
2753 			struct cpuid_regs regs;
2754 			regs.cp_eax = 0x80000007;
2755 			(void) __cpuid_insn(&regs);
2756 			return (!(regs.cp_edx & 0x100));
2757 		}
2758 		return (0);
2759 	case 6323525:
2760 		return (((((eax >> 12) & 0xff00) + (eax & 0xf00)) |
2761 		    (((eax >> 4) & 0xf) | ((eax >> 12) & 0xf0))) < 0xf40);
2762 
2763 	case 6671130:
2764 		/*
2765 		 * check for processors (pre-Shanghai) that do not provide
2766 		 * optimal management of 1gb ptes in its tlb.
2767 		 */
2768 		return (cpi->cpi_family == 0x10 && cpi->cpi_model < 4);
2769 
2770 	case 298:
2771 		return (DR_AX(eax) || DR_B0(eax) || DR_B1(eax) || DR_BA(eax) ||
2772 		    DR_B2(eax) || RB_C0(eax));
2773 
2774 	default:
2775 		return (-1);
2776 
2777 	}
2778 }
2779 
2780 /*
2781  * Determine if specified erratum is present via OSVW (OS Visible Workaround).
2782  * Return 1 if erratum is present, 0 if not present and -1 if indeterminate.
2783  */
2784 int
2785 osvw_opteron_erratum(cpu_t *cpu, uint_t erratum)
2786 {
2787 	struct cpuid_info	*cpi;
2788 	uint_t			osvwid;
2789 	static int		osvwfeature = -1;
2790 	uint64_t		osvwlength;
2791 
2792 
2793 	cpi = cpu->cpu_m.mcpu_cpi;
2794 
2795 	/* confirm OSVW supported */
2796 	if (osvwfeature == -1) {
2797 		osvwfeature = cpi->cpi_extd[1].cp_ecx & CPUID_AMD_ECX_OSVW;
2798 	} else {
2799 		/* assert that osvw feature setting is consistent on all cpus */
2800 		ASSERT(osvwfeature ==
2801 		    (cpi->cpi_extd[1].cp_ecx & CPUID_AMD_ECX_OSVW));
2802 	}
2803 	if (!osvwfeature)
2804 		return (-1);
2805 
2806 	osvwlength = rdmsr(MSR_AMD_OSVW_ID_LEN) & OSVW_ID_LEN_MASK;
2807 
2808 	switch (erratum) {
2809 	case 298:	/* osvwid is 0 */
2810 		osvwid = 0;
2811 		if (osvwlength <= (uint64_t)osvwid) {
2812 			/* osvwid 0 is unknown */
2813 			return (-1);
2814 		}
2815 
2816 		/*
2817 		 * Check the OSVW STATUS MSR to determine the state
2818 		 * of the erratum where:
2819 		 *   0 - fixed by HW
2820 		 *   1 - BIOS has applied the workaround when BIOS
2821 		 *   workaround is available. (Or for other errata,
2822 		 *   OS workaround is required.)
2823 		 * For a value of 1, caller will confirm that the
2824 		 * erratum 298 workaround has indeed been applied by BIOS.
2825 		 *
2826 		 * A 1 may be set in cpus that have a HW fix
2827 		 * in a mixed cpu system. Regarding erratum 298:
2828 		 *   In a multiprocessor platform, the workaround above
2829 		 *   should be applied to all processors regardless of
2830 		 *   silicon revision when an affected processor is
2831 		 *   present.
2832 		 */
2833 
2834 		return (rdmsr(MSR_AMD_OSVW_STATUS +
2835 		    (osvwid / OSVW_ID_CNT_PER_MSR)) &
2836 		    (1ULL << (osvwid % OSVW_ID_CNT_PER_MSR)));
2837 
2838 	default:
2839 		return (-1);
2840 	}
2841 }
2842 
2843 static const char assoc_str[] = "associativity";
2844 static const char line_str[] = "line-size";
2845 static const char size_str[] = "size";
2846 
2847 static void
2848 add_cache_prop(dev_info_t *devi, const char *label, const char *type,
2849     uint32_t val)
2850 {
2851 	char buf[128];
2852 
2853 	/*
2854 	 * ndi_prop_update_int() is used because it is desirable for
2855 	 * DDI_PROP_HW_DEF and DDI_PROP_DONTSLEEP to be set.
2856 	 */
2857 	if (snprintf(buf, sizeof (buf), "%s-%s", label, type) < sizeof (buf))
2858 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, buf, val);
2859 }
2860 
2861 /*
2862  * Intel-style cache/tlb description
2863  *
2864  * Standard cpuid level 2 gives a randomly ordered
2865  * selection of tags that index into a table that describes
2866  * cache and tlb properties.
2867  */
2868 
2869 static const char l1_icache_str[] = "l1-icache";
2870 static const char l1_dcache_str[] = "l1-dcache";
2871 static const char l2_cache_str[] = "l2-cache";
2872 static const char l3_cache_str[] = "l3-cache";
2873 static const char itlb4k_str[] = "itlb-4K";
2874 static const char dtlb4k_str[] = "dtlb-4K";
2875 static const char itlb2M_str[] = "itlb-2M";
2876 static const char itlb4M_str[] = "itlb-4M";
2877 static const char dtlb4M_str[] = "dtlb-4M";
2878 static const char dtlb24_str[] = "dtlb0-2M-4M";
2879 static const char itlb424_str[] = "itlb-4K-2M-4M";
2880 static const char itlb24_str[] = "itlb-2M-4M";
2881 static const char dtlb44_str[] = "dtlb-4K-4M";
2882 static const char sl1_dcache_str[] = "sectored-l1-dcache";
2883 static const char sl2_cache_str[] = "sectored-l2-cache";
2884 static const char itrace_str[] = "itrace-cache";
2885 static const char sl3_cache_str[] = "sectored-l3-cache";
2886 static const char sh_l2_tlb4k_str[] = "shared-l2-tlb-4k";
2887 
2888 static const struct cachetab {
2889 	uint8_t 	ct_code;
2890 	uint8_t		ct_assoc;
2891 	uint16_t 	ct_line_size;
2892 	size_t		ct_size;
2893 	const char	*ct_label;
2894 } intel_ctab[] = {
2895 	/*
2896 	 * maintain descending order!
2897 	 *
2898 	 * Codes ignored - Reason
2899 	 * ----------------------
2900 	 * 40H - intel_cpuid_4_cache_info() disambiguates l2/l3 cache
2901 	 * f0H/f1H - Currently we do not interpret prefetch size by design
2902 	 */
2903 	{ 0xe4, 16, 64, 8*1024*1024, l3_cache_str},
2904 	{ 0xe3, 16, 64, 4*1024*1024, l3_cache_str},
2905 	{ 0xe2, 16, 64, 2*1024*1024, l3_cache_str},
2906 	{ 0xde, 12, 64, 6*1024*1024, l3_cache_str},
2907 	{ 0xdd, 12, 64, 3*1024*1024, l3_cache_str},
2908 	{ 0xdc, 12, 64, ((1*1024*1024)+(512*1024)), l3_cache_str},
2909 	{ 0xd8, 8, 64, 4*1024*1024, l3_cache_str},
2910 	{ 0xd7, 8, 64, 2*1024*1024, l3_cache_str},
2911 	{ 0xd6, 8, 64, 1*1024*1024, l3_cache_str},
2912 	{ 0xd2, 4, 64, 2*1024*1024, l3_cache_str},
2913 	{ 0xd1, 4, 64, 1*1024*1024, l3_cache_str},
2914 	{ 0xd0, 4, 64, 512*1024, l3_cache_str},
2915 	{ 0xca, 4, 0, 512, sh_l2_tlb4k_str},
2916 	{ 0xc0, 4, 0, 8, dtlb44_str },
2917 	{ 0xba, 4, 0, 64, dtlb4k_str },
2918 	{ 0xb4, 4, 0, 256, dtlb4k_str },
2919 	{ 0xb3, 4, 0, 128, dtlb4k_str },
2920 	{ 0xb2, 4, 0, 64, itlb4k_str },
2921 	{ 0xb0, 4, 0, 128, itlb4k_str },
2922 	{ 0x87, 8, 64, 1024*1024, l2_cache_str},
2923 	{ 0x86, 4, 64, 512*1024, l2_cache_str},
2924 	{ 0x85, 8, 32, 2*1024*1024, l2_cache_str},
2925 	{ 0x84, 8, 32, 1024*1024, l2_cache_str},
2926 	{ 0x83, 8, 32, 512*1024, l2_cache_str},
2927 	{ 0x82, 8, 32, 256*1024, l2_cache_str},
2928 	{ 0x80, 8, 64, 512*1024, l2_cache_str},
2929 	{ 0x7f, 2, 64, 512*1024, l2_cache_str},
2930 	{ 0x7d, 8, 64, 2*1024*1024, sl2_cache_str},
2931 	{ 0x7c, 8, 64, 1024*1024, sl2_cache_str},
2932 	{ 0x7b, 8, 64, 512*1024, sl2_cache_str},
2933 	{ 0x7a, 8, 64, 256*1024, sl2_cache_str},
2934 	{ 0x79, 8, 64, 128*1024, sl2_cache_str},
2935 	{ 0x78, 8, 64, 1024*1024, l2_cache_str},
2936 	{ 0x73, 8, 0, 64*1024, itrace_str},
2937 	{ 0x72, 8, 0, 32*1024, itrace_str},
2938 	{ 0x71, 8, 0, 16*1024, itrace_str},
2939 	{ 0x70, 8, 0, 12*1024, itrace_str},
2940 	{ 0x68, 4, 64, 32*1024, sl1_dcache_str},
2941 	{ 0x67, 4, 64, 16*1024, sl1_dcache_str},
2942 	{ 0x66, 4, 64, 8*1024, sl1_dcache_str},
2943 	{ 0x60, 8, 64, 16*1024, sl1_dcache_str},
2944 	{ 0x5d, 0, 0, 256, dtlb44_str},
2945 	{ 0x5c, 0, 0, 128, dtlb44_str},
2946 	{ 0x5b, 0, 0, 64, dtlb44_str},
2947 	{ 0x5a, 4, 0, 32, dtlb24_str},
2948 	{ 0x59, 0, 0, 16, dtlb4k_str},
2949 	{ 0x57, 4, 0, 16, dtlb4k_str},
2950 	{ 0x56, 4, 0, 16, dtlb4M_str},
2951 	{ 0x55, 0, 0, 7, itlb24_str},
2952 	{ 0x52, 0, 0, 256, itlb424_str},
2953 	{ 0x51, 0, 0, 128, itlb424_str},
2954 	{ 0x50, 0, 0, 64, itlb424_str},
2955 	{ 0x4f, 0, 0, 32, itlb4k_str},
2956 	{ 0x4e, 24, 64, 6*1024*1024, l2_cache_str},
2957 	{ 0x4d, 16, 64, 16*1024*1024, l3_cache_str},
2958 	{ 0x4c, 12, 64, 12*1024*1024, l3_cache_str},
2959 	{ 0x4b, 16, 64, 8*1024*1024, l3_cache_str},
2960 	{ 0x4a, 12, 64, 6*1024*1024, l3_cache_str},
2961 	{ 0x49, 16, 64, 4*1024*1024, l3_cache_str},
2962 	{ 0x48, 12, 64, 3*1024*1024, l2_cache_str},
2963 	{ 0x47, 8, 64, 8*1024*1024, l3_cache_str},
2964 	{ 0x46, 4, 64, 4*1024*1024, l3_cache_str},
2965 	{ 0x45, 4, 32, 2*1024*1024, l2_cache_str},
2966 	{ 0x44, 4, 32, 1024*1024, l2_cache_str},
2967 	{ 0x43, 4, 32, 512*1024, l2_cache_str},
2968 	{ 0x42, 4, 32, 256*1024, l2_cache_str},
2969 	{ 0x41, 4, 32, 128*1024, l2_cache_str},
2970 	{ 0x3e, 4, 64, 512*1024, sl2_cache_str},
2971 	{ 0x3d, 6, 64, 384*1024, sl2_cache_str},
2972 	{ 0x3c, 4, 64, 256*1024, sl2_cache_str},
2973 	{ 0x3b, 2, 64, 128*1024, sl2_cache_str},
2974 	{ 0x3a, 6, 64, 192*1024, sl2_cache_str},
2975 	{ 0x39, 4, 64, 128*1024, sl2_cache_str},
2976 	{ 0x30, 8, 64, 32*1024, l1_icache_str},
2977 	{ 0x2c, 8, 64, 32*1024, l1_dcache_str},
2978 	{ 0x29, 8, 64, 4096*1024, sl3_cache_str},
2979 	{ 0x25, 8, 64, 2048*1024, sl3_cache_str},
2980 	{ 0x23, 8, 64, 1024*1024, sl3_cache_str},
2981 	{ 0x22, 4, 64, 512*1024, sl3_cache_str},
2982 	{ 0x0e, 6, 64, 24*1024, l1_dcache_str},
2983 	{ 0x0d, 4, 32, 16*1024, l1_dcache_str},
2984 	{ 0x0c, 4, 32, 16*1024, l1_dcache_str},
2985 	{ 0x0b, 4, 0, 4, itlb4M_str},
2986 	{ 0x0a, 2, 32, 8*1024, l1_dcache_str},
2987 	{ 0x08, 4, 32, 16*1024, l1_icache_str},
2988 	{ 0x06, 4, 32, 8*1024, l1_icache_str},
2989 	{ 0x05, 4, 0, 32, dtlb4M_str},
2990 	{ 0x04, 4, 0, 8, dtlb4M_str},
2991 	{ 0x03, 4, 0, 64, dtlb4k_str},
2992 	{ 0x02, 4, 0, 2, itlb4M_str},
2993 	{ 0x01, 4, 0, 32, itlb4k_str},
2994 	{ 0 }
2995 };
2996 
2997 static const struct cachetab cyrix_ctab[] = {
2998 	{ 0x70, 4, 0, 32, "tlb-4K" },
2999 	{ 0x80, 4, 16, 16*1024, "l1-cache" },
3000 	{ 0 }
3001 };
3002 
3003 /*
3004  * Search a cache table for a matching entry
3005  */
3006 static const struct cachetab *
3007 find_cacheent(const struct cachetab *ct, uint_t code)
3008 {
3009 	if (code != 0) {
3010 		for (; ct->ct_code != 0; ct++)
3011 			if (ct->ct_code <= code)
3012 				break;
3013 		if (ct->ct_code == code)
3014 			return (ct);
3015 	}
3016 	return (NULL);
3017 }
3018 
3019 /*
3020  * Populate cachetab entry with L2 or L3 cache-information using
3021  * cpuid function 4. This function is called from intel_walk_cacheinfo()
3022  * when descriptor 0x49 is encountered. It returns 0 if no such cache
3023  * information is found.
3024  */
3025 static int
3026 intel_cpuid_4_cache_info(struct cachetab *ct, struct cpuid_info *cpi)
3027 {
3028 	uint32_t level, i;
3029 	int ret = 0;
3030 
3031 	for (i = 0; i < cpi->cpi_std_4_size; i++) {
3032 		level = CPI_CACHE_LVL(cpi->cpi_std_4[i]);
3033 
3034 		if (level == 2 || level == 3) {
3035 			ct->ct_assoc = CPI_CACHE_WAYS(cpi->cpi_std_4[i]) + 1;
3036 			ct->ct_line_size =
3037 			    CPI_CACHE_COH_LN_SZ(cpi->cpi_std_4[i]) + 1;
3038 			ct->ct_size = ct->ct_assoc *
3039 			    (CPI_CACHE_PARTS(cpi->cpi_std_4[i]) + 1) *
3040 			    ct->ct_line_size *
3041 			    (cpi->cpi_std_4[i]->cp_ecx + 1);
3042 
3043 			if (level == 2) {
3044 				ct->ct_label = l2_cache_str;
3045 			} else if (level == 3) {
3046 				ct->ct_label = l3_cache_str;
3047 			}
3048 			ret = 1;
3049 		}
3050 	}
3051 
3052 	return (ret);
3053 }
3054 
3055 /*
3056  * Walk the cacheinfo descriptor, applying 'func' to every valid element
3057  * The walk is terminated if the walker returns non-zero.
3058  */
3059 static void
3060 intel_walk_cacheinfo(struct cpuid_info *cpi,
3061     void *arg, int (*func)(void *, const struct cachetab *))
3062 {
3063 	const struct cachetab *ct;
3064 	struct cachetab des_49_ct, des_b1_ct;
3065 	uint8_t *dp;
3066 	int i;
3067 
3068 	if ((dp = cpi->cpi_cacheinfo) == NULL)
3069 		return;
3070 	for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
3071 		/*
3072 		 * For overloaded descriptor 0x49 we use cpuid function 4
3073 		 * if supported by the current processor, to create
3074 		 * cache information.
3075 		 * For overloaded descriptor 0xb1 we use X86_PAE flag
3076 		 * to disambiguate the cache information.
3077 		 */
3078 		if (*dp == 0x49 && cpi->cpi_maxeax >= 0x4 &&
3079 		    intel_cpuid_4_cache_info(&des_49_ct, cpi) == 1) {
3080 				ct = &des_49_ct;
3081 		} else if (*dp == 0xb1) {
3082 			des_b1_ct.ct_code = 0xb1;
3083 			des_b1_ct.ct_assoc = 4;
3084 			des_b1_ct.ct_line_size = 0;
3085 			if (x86_feature & X86_PAE) {
3086 				des_b1_ct.ct_size = 8;
3087 				des_b1_ct.ct_label = itlb2M_str;
3088 			} else {
3089 				des_b1_ct.ct_size = 4;
3090 				des_b1_ct.ct_label = itlb4M_str;
3091 			}
3092 			ct = &des_b1_ct;
3093 		} else {
3094 			if ((ct = find_cacheent(intel_ctab, *dp)) == NULL) {
3095 				continue;
3096 			}
3097 		}
3098 
3099 		if (func(arg, ct) != 0) {
3100 			break;
3101 		}
3102 	}
3103 }
3104 
3105 /*
3106  * (Like the Intel one, except for Cyrix CPUs)
3107  */
3108 static void
3109 cyrix_walk_cacheinfo(struct cpuid_info *cpi,
3110     void *arg, int (*func)(void *, const struct cachetab *))
3111 {
3112 	const struct cachetab *ct;
3113 	uint8_t *dp;
3114 	int i;
3115 
3116 	if ((dp = cpi->cpi_cacheinfo) == NULL)
3117 		return;
3118 	for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
3119 		/*
3120 		 * Search Cyrix-specific descriptor table first ..
3121 		 */
3122 		if ((ct = find_cacheent(cyrix_ctab, *dp)) != NULL) {
3123 			if (func(arg, ct) != 0)
3124 				break;
3125 			continue;
3126 		}
3127 		/*
3128 		 * .. else fall back to the Intel one
3129 		 */
3130 		if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) {
3131 			if (func(arg, ct) != 0)
3132 				break;
3133 			continue;
3134 		}
3135 	}
3136 }
3137 
3138 /*
3139  * A cacheinfo walker that adds associativity, line-size, and size properties
3140  * to the devinfo node it is passed as an argument.
3141  */
3142 static int
3143 add_cacheent_props(void *arg, const struct cachetab *ct)
3144 {
3145 	dev_info_t *devi = arg;
3146 
3147 	add_cache_prop(devi, ct->ct_label, assoc_str, ct->ct_assoc);
3148 	if (ct->ct_line_size != 0)
3149 		add_cache_prop(devi, ct->ct_label, line_str,
3150 		    ct->ct_line_size);
3151 	add_cache_prop(devi, ct->ct_label, size_str, ct->ct_size);
3152 	return (0);
3153 }
3154 
3155 
3156 static const char fully_assoc[] = "fully-associative?";
3157 
3158 /*
3159  * AMD style cache/tlb description
3160  *
3161  * Extended functions 5 and 6 directly describe properties of
3162  * tlbs and various cache levels.
3163  */
3164 static void
3165 add_amd_assoc(dev_info_t *devi, const char *label, uint_t assoc)
3166 {
3167 	switch (assoc) {
3168 	case 0:	/* reserved; ignore */
3169 		break;
3170 	default:
3171 		add_cache_prop(devi, label, assoc_str, assoc);
3172 		break;
3173 	case 0xff:
3174 		add_cache_prop(devi, label, fully_assoc, 1);
3175 		break;
3176 	}
3177 }
3178 
3179 static void
3180 add_amd_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
3181 {
3182 	if (size == 0)
3183 		return;
3184 	add_cache_prop(devi, label, size_str, size);
3185 	add_amd_assoc(devi, label, assoc);
3186 }
3187 
3188 static void
3189 add_amd_cache(dev_info_t *devi, const char *label,
3190     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
3191 {
3192 	if (size == 0 || line_size == 0)
3193 		return;
3194 	add_amd_assoc(devi, label, assoc);
3195 	/*
3196 	 * Most AMD parts have a sectored cache. Multiple cache lines are
3197 	 * associated with each tag. A sector consists of all cache lines
3198 	 * associated with a tag. For example, the AMD K6-III has a sector
3199 	 * size of 2 cache lines per tag.
3200 	 */
3201 	if (lines_per_tag != 0)
3202 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
3203 	add_cache_prop(devi, label, line_str, line_size);
3204 	add_cache_prop(devi, label, size_str, size * 1024);
3205 }
3206 
3207 static void
3208 add_amd_l2_assoc(dev_info_t *devi, const char *label, uint_t assoc)
3209 {
3210 	switch (assoc) {
3211 	case 0:	/* off */
3212 		break;
3213 	case 1:
3214 	case 2:
3215 	case 4:
3216 		add_cache_prop(devi, label, assoc_str, assoc);
3217 		break;
3218 	case 6:
3219 		add_cache_prop(devi, label, assoc_str, 8);
3220 		break;
3221 	case 8:
3222 		add_cache_prop(devi, label, assoc_str, 16);
3223 		break;
3224 	case 0xf:
3225 		add_cache_prop(devi, label, fully_assoc, 1);
3226 		break;
3227 	default: /* reserved; ignore */
3228 		break;
3229 	}
3230 }
3231 
3232 static void
3233 add_amd_l2_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
3234 {
3235 	if (size == 0 || assoc == 0)
3236 		return;
3237 	add_amd_l2_assoc(devi, label, assoc);
3238 	add_cache_prop(devi, label, size_str, size);
3239 }
3240 
3241 static void
3242 add_amd_l2_cache(dev_info_t *devi, const char *label,
3243     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
3244 {
3245 	if (size == 0 || assoc == 0 || line_size == 0)
3246 		return;
3247 	add_amd_l2_assoc(devi, label, assoc);
3248 	if (lines_per_tag != 0)
3249 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
3250 	add_cache_prop(devi, label, line_str, line_size);
3251 	add_cache_prop(devi, label, size_str, size * 1024);
3252 }
3253 
3254 static void
3255 amd_cache_info(struct cpuid_info *cpi, dev_info_t *devi)
3256 {
3257 	struct cpuid_regs *cp;
3258 
3259 	if (cpi->cpi_xmaxeax < 0x80000005)
3260 		return;
3261 	cp = &cpi->cpi_extd[5];
3262 
3263 	/*
3264 	 * 4M/2M L1 TLB configuration
3265 	 *
3266 	 * We report the size for 2M pages because AMD uses two
3267 	 * TLB entries for one 4M page.
3268 	 */
3269 	add_amd_tlb(devi, "dtlb-2M",
3270 	    BITX(cp->cp_eax, 31, 24), BITX(cp->cp_eax, 23, 16));
3271 	add_amd_tlb(devi, "itlb-2M",
3272 	    BITX(cp->cp_eax, 15, 8), BITX(cp->cp_eax, 7, 0));
3273 
3274 	/*
3275 	 * 4K L1 TLB configuration
3276 	 */
3277 
3278 	switch (cpi->cpi_vendor) {
3279 		uint_t nentries;
3280 	case X86_VENDOR_TM:
3281 		if (cpi->cpi_family >= 5) {
3282 			/*
3283 			 * Crusoe processors have 256 TLB entries, but
3284 			 * cpuid data format constrains them to only
3285 			 * reporting 255 of them.
3286 			 */
3287 			if ((nentries = BITX(cp->cp_ebx, 23, 16)) == 255)
3288 				nentries = 256;
3289 			/*
3290 			 * Crusoe processors also have a unified TLB
3291 			 */
3292 			add_amd_tlb(devi, "tlb-4K", BITX(cp->cp_ebx, 31, 24),
3293 			    nentries);
3294 			break;
3295 		}
3296 		/*FALLTHROUGH*/
3297 	default:
3298 		add_amd_tlb(devi, itlb4k_str,
3299 		    BITX(cp->cp_ebx, 31, 24), BITX(cp->cp_ebx, 23, 16));
3300 		add_amd_tlb(devi, dtlb4k_str,
3301 		    BITX(cp->cp_ebx, 15, 8), BITX(cp->cp_ebx, 7, 0));
3302 		break;
3303 	}
3304 
3305 	/*
3306 	 * data L1 cache configuration
3307 	 */
3308 
3309 	add_amd_cache(devi, l1_dcache_str,
3310 	    BITX(cp->cp_ecx, 31, 24), BITX(cp->cp_ecx, 23, 16),
3311 	    BITX(cp->cp_ecx, 15, 8), BITX(cp->cp_ecx, 7, 0));
3312 
3313 	/*
3314 	 * code L1 cache configuration
3315 	 */
3316 
3317 	add_amd_cache(devi, l1_icache_str,
3318 	    BITX(cp->cp_edx, 31, 24), BITX(cp->cp_edx, 23, 16),
3319 	    BITX(cp->cp_edx, 15, 8), BITX(cp->cp_edx, 7, 0));
3320 
3321 	if (cpi->cpi_xmaxeax < 0x80000006)
3322 		return;
3323 	cp = &cpi->cpi_extd[6];
3324 
3325 	/* Check for a unified L2 TLB for large pages */
3326 
3327 	if (BITX(cp->cp_eax, 31, 16) == 0)
3328 		add_amd_l2_tlb(devi, "l2-tlb-2M",
3329 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3330 	else {
3331 		add_amd_l2_tlb(devi, "l2-dtlb-2M",
3332 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
3333 		add_amd_l2_tlb(devi, "l2-itlb-2M",
3334 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3335 	}
3336 
3337 	/* Check for a unified L2 TLB for 4K pages */
3338 
3339 	if (BITX(cp->cp_ebx, 31, 16) == 0) {
3340 		add_amd_l2_tlb(devi, "l2-tlb-4K",
3341 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3342 	} else {
3343 		add_amd_l2_tlb(devi, "l2-dtlb-4K",
3344 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
3345 		add_amd_l2_tlb(devi, "l2-itlb-4K",
3346 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3347 	}
3348 
3349 	add_amd_l2_cache(devi, l2_cache_str,
3350 	    BITX(cp->cp_ecx, 31, 16), BITX(cp->cp_ecx, 15, 12),
3351 	    BITX(cp->cp_ecx, 11, 8), BITX(cp->cp_ecx, 7, 0));
3352 }
3353 
3354 /*
3355  * There are two basic ways that the x86 world describes it cache
3356  * and tlb architecture - Intel's way and AMD's way.
3357  *
3358  * Return which flavor of cache architecture we should use
3359  */
3360 static int
3361 x86_which_cacheinfo(struct cpuid_info *cpi)
3362 {
3363 	switch (cpi->cpi_vendor) {
3364 	case X86_VENDOR_Intel:
3365 		if (cpi->cpi_maxeax >= 2)
3366 			return (X86_VENDOR_Intel);
3367 		break;
3368 	case X86_VENDOR_AMD:
3369 		/*
3370 		 * The K5 model 1 was the first part from AMD that reported
3371 		 * cache sizes via extended cpuid functions.
3372 		 */
3373 		if (cpi->cpi_family > 5 ||
3374 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
3375 			return (X86_VENDOR_AMD);
3376 		break;
3377 	case X86_VENDOR_TM:
3378 		if (cpi->cpi_family >= 5)
3379 			return (X86_VENDOR_AMD);
3380 		/*FALLTHROUGH*/
3381 	default:
3382 		/*
3383 		 * If they have extended CPU data for 0x80000005
3384 		 * then we assume they have AMD-format cache
3385 		 * information.
3386 		 *
3387 		 * If not, and the vendor happens to be Cyrix,
3388 		 * then try our-Cyrix specific handler.
3389 		 *
3390 		 * If we're not Cyrix, then assume we're using Intel's
3391 		 * table-driven format instead.
3392 		 */
3393 		if (cpi->cpi_xmaxeax >= 0x80000005)
3394 			return (X86_VENDOR_AMD);
3395 		else if (cpi->cpi_vendor == X86_VENDOR_Cyrix)
3396 			return (X86_VENDOR_Cyrix);
3397 		else if (cpi->cpi_maxeax >= 2)
3398 			return (X86_VENDOR_Intel);
3399 		break;
3400 	}
3401 	return (-1);
3402 }
3403 
3404 /*
3405  * create a node for the given cpu under the prom root node.
3406  * Also, create a cpu node in the device tree.
3407  */
3408 static dev_info_t *cpu_nex_devi = NULL;
3409 static kmutex_t cpu_node_lock;
3410 
3411 /*
3412  * Called from post_startup() and mp_startup()
3413  */
3414 void
3415 add_cpunode2devtree(processorid_t cpu_id, struct cpuid_info *cpi)
3416 {
3417 	dev_info_t *cpu_devi;
3418 	int create;
3419 
3420 	mutex_enter(&cpu_node_lock);
3421 
3422 	/*
3423 	 * create a nexus node for all cpus identified as 'cpu_id' under
3424 	 * the root node.
3425 	 */
3426 	if (cpu_nex_devi == NULL) {
3427 		if (ndi_devi_alloc(ddi_root_node(), "cpus",
3428 		    (pnode_t)DEVI_SID_NODEID, &cpu_nex_devi) != NDI_SUCCESS) {
3429 			mutex_exit(&cpu_node_lock);
3430 			return;
3431 		}
3432 		(void) ndi_devi_online(cpu_nex_devi, 0);
3433 	}
3434 
3435 	/*
3436 	 * create a child node for cpu identified as 'cpu_id'
3437 	 */
3438 	cpu_devi = ddi_add_child(cpu_nex_devi, "cpu", DEVI_SID_NODEID,
3439 	    cpu_id);
3440 	if (cpu_devi == NULL) {
3441 		mutex_exit(&cpu_node_lock);
3442 		return;
3443 	}
3444 
3445 	/* device_type */
3446 
3447 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3448 	    "device_type", "cpu");
3449 
3450 	/* reg */
3451 
3452 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3453 	    "reg", cpu_id);
3454 
3455 	/* cpu-mhz, and clock-frequency */
3456 
3457 	if (cpu_freq > 0) {
3458 		long long mul;
3459 
3460 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3461 		    "cpu-mhz", cpu_freq);
3462 
3463 		if ((mul = cpu_freq * 1000000LL) <= INT_MAX)
3464 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3465 			    "clock-frequency", (int)mul);
3466 	}
3467 
3468 	(void) ndi_devi_online(cpu_devi, 0);
3469 
3470 	if ((x86_feature & X86_CPUID) == 0) {
3471 		mutex_exit(&cpu_node_lock);
3472 		return;
3473 	}
3474 
3475 	/* vendor-id */
3476 
3477 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3478 	    "vendor-id", cpi->cpi_vendorstr);
3479 
3480 	if (cpi->cpi_maxeax == 0) {
3481 		mutex_exit(&cpu_node_lock);
3482 		return;
3483 	}
3484 
3485 	/*
3486 	 * family, model, and step
3487 	 */
3488 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3489 	    "family", CPI_FAMILY(cpi));
3490 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3491 	    "cpu-model", CPI_MODEL(cpi));
3492 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3493 	    "stepping-id", CPI_STEP(cpi));
3494 
3495 	/* type */
3496 
3497 	switch (cpi->cpi_vendor) {
3498 	case X86_VENDOR_Intel:
3499 		create = 1;
3500 		break;
3501 	default:
3502 		create = 0;
3503 		break;
3504 	}
3505 	if (create)
3506 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3507 		    "type", CPI_TYPE(cpi));
3508 
3509 	/* ext-family */
3510 
3511 	switch (cpi->cpi_vendor) {
3512 	case X86_VENDOR_Intel:
3513 	case X86_VENDOR_AMD:
3514 		create = cpi->cpi_family >= 0xf;
3515 		break;
3516 	default:
3517 		create = 0;
3518 		break;
3519 	}
3520 	if (create)
3521 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3522 		    "ext-family", CPI_FAMILY_XTD(cpi));
3523 
3524 	/* ext-model */
3525 
3526 	switch (cpi->cpi_vendor) {
3527 	case X86_VENDOR_Intel:
3528 		create = IS_EXTENDED_MODEL_INTEL(cpi);
3529 		break;
3530 	case X86_VENDOR_AMD:
3531 		create = CPI_FAMILY(cpi) == 0xf;
3532 		break;
3533 	default:
3534 		create = 0;
3535 		break;
3536 	}
3537 	if (create)
3538 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3539 		    "ext-model", CPI_MODEL_XTD(cpi));
3540 
3541 	/* generation */
3542 
3543 	switch (cpi->cpi_vendor) {
3544 	case X86_VENDOR_AMD:
3545 		/*
3546 		 * AMD K5 model 1 was the first part to support this
3547 		 */
3548 		create = cpi->cpi_xmaxeax >= 0x80000001;
3549 		break;
3550 	default:
3551 		create = 0;
3552 		break;
3553 	}
3554 	if (create)
3555 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3556 		    "generation", BITX((cpi)->cpi_extd[1].cp_eax, 11, 8));
3557 
3558 	/* brand-id */
3559 
3560 	switch (cpi->cpi_vendor) {
3561 	case X86_VENDOR_Intel:
3562 		/*
3563 		 * brand id first appeared on Pentium III Xeon model 8,
3564 		 * and Celeron model 8 processors and Opteron
3565 		 */
3566 		create = cpi->cpi_family > 6 ||
3567 		    (cpi->cpi_family == 6 && cpi->cpi_model >= 8);
3568 		break;
3569 	case X86_VENDOR_AMD:
3570 		create = cpi->cpi_family >= 0xf;
3571 		break;
3572 	default:
3573 		create = 0;
3574 		break;
3575 	}
3576 	if (create && cpi->cpi_brandid != 0) {
3577 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3578 		    "brand-id", cpi->cpi_brandid);
3579 	}
3580 
3581 	/* chunks, and apic-id */
3582 
3583 	switch (cpi->cpi_vendor) {
3584 		/*
3585 		 * first available on Pentium IV and Opteron (K8)
3586 		 */
3587 	case X86_VENDOR_Intel:
3588 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
3589 		break;
3590 	case X86_VENDOR_AMD:
3591 		create = cpi->cpi_family >= 0xf;
3592 		break;
3593 	default:
3594 		create = 0;
3595 		break;
3596 	}
3597 	if (create) {
3598 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3599 		    "chunks", CPI_CHUNKS(cpi));
3600 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3601 		    "apic-id", cpi->cpi_apicid);
3602 		if (cpi->cpi_chipid >= 0) {
3603 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3604 			    "chip#", cpi->cpi_chipid);
3605 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3606 			    "clog#", cpi->cpi_clogid);
3607 		}
3608 	}
3609 
3610 	/* cpuid-features */
3611 
3612 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3613 	    "cpuid-features", CPI_FEATURES_EDX(cpi));
3614 
3615 
3616 	/* cpuid-features-ecx */
3617 
3618 	switch (cpi->cpi_vendor) {
3619 	case X86_VENDOR_Intel:
3620 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
3621 		break;
3622 	default:
3623 		create = 0;
3624 		break;
3625 	}
3626 	if (create)
3627 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3628 		    "cpuid-features-ecx", CPI_FEATURES_ECX(cpi));
3629 
3630 	/* ext-cpuid-features */
3631 
3632 	switch (cpi->cpi_vendor) {
3633 	case X86_VENDOR_Intel:
3634 	case X86_VENDOR_AMD:
3635 	case X86_VENDOR_Cyrix:
3636 	case X86_VENDOR_TM:
3637 	case X86_VENDOR_Centaur:
3638 		create = cpi->cpi_xmaxeax >= 0x80000001;
3639 		break;
3640 	default:
3641 		create = 0;
3642 		break;
3643 	}
3644 	if (create) {
3645 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3646 		    "ext-cpuid-features", CPI_FEATURES_XTD_EDX(cpi));
3647 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3648 		    "ext-cpuid-features-ecx", CPI_FEATURES_XTD_ECX(cpi));
3649 	}
3650 
3651 	/*
3652 	 * Brand String first appeared in Intel Pentium IV, AMD K5
3653 	 * model 1, and Cyrix GXm.  On earlier models we try and
3654 	 * simulate something similar .. so this string should always
3655 	 * same -something- about the processor, however lame.
3656 	 */
3657 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3658 	    "brand-string", cpi->cpi_brandstr);
3659 
3660 	/*
3661 	 * Finally, cache and tlb information
3662 	 */
3663 	switch (x86_which_cacheinfo(cpi)) {
3664 	case X86_VENDOR_Intel:
3665 		intel_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
3666 		break;
3667 	case X86_VENDOR_Cyrix:
3668 		cyrix_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
3669 		break;
3670 	case X86_VENDOR_AMD:
3671 		amd_cache_info(cpi, cpu_devi);
3672 		break;
3673 	default:
3674 		break;
3675 	}
3676 
3677 	mutex_exit(&cpu_node_lock);
3678 }
3679 
3680 struct l2info {
3681 	int *l2i_csz;
3682 	int *l2i_lsz;
3683 	int *l2i_assoc;
3684 	int l2i_ret;
3685 };
3686 
3687 /*
3688  * A cacheinfo walker that fetches the size, line-size and associativity
3689  * of the L2 cache
3690  */
3691 static int
3692 intel_l2cinfo(void *arg, const struct cachetab *ct)
3693 {
3694 	struct l2info *l2i = arg;
3695 	int *ip;
3696 
3697 	if (ct->ct_label != l2_cache_str &&
3698 	    ct->ct_label != sl2_cache_str)
3699 		return (0);	/* not an L2 -- keep walking */
3700 
3701 	if ((ip = l2i->l2i_csz) != NULL)
3702 		*ip = ct->ct_size;
3703 	if ((ip = l2i->l2i_lsz) != NULL)
3704 		*ip = ct->ct_line_size;
3705 	if ((ip = l2i->l2i_assoc) != NULL)
3706 		*ip = ct->ct_assoc;
3707 	l2i->l2i_ret = ct->ct_size;
3708 	return (1);		/* was an L2 -- terminate walk */
3709 }
3710 
3711 /*
3712  * AMD L2/L3 Cache and TLB Associativity Field Definition:
3713  *
3714  *	Unlike the associativity for the L1 cache and tlb where the 8 bit
3715  *	value is the associativity, the associativity for the L2 cache and
3716  *	tlb is encoded in the following table. The 4 bit L2 value serves as
3717  *	an index into the amd_afd[] array to determine the associativity.
3718  *	-1 is undefined. 0 is fully associative.
3719  */
3720 
3721 static int amd_afd[] =
3722 	{-1, 1, 2, -1, 4, -1, 8, -1, 16, -1, 32, 48, 64, 96, 128, 0};
3723 
3724 static void
3725 amd_l2cacheinfo(struct cpuid_info *cpi, struct l2info *l2i)
3726 {
3727 	struct cpuid_regs *cp;
3728 	uint_t size, assoc;
3729 	int i;
3730 	int *ip;
3731 
3732 	if (cpi->cpi_xmaxeax < 0x80000006)
3733 		return;
3734 	cp = &cpi->cpi_extd[6];
3735 
3736 	if ((i = BITX(cp->cp_ecx, 15, 12)) != 0 &&
3737 	    (size = BITX(cp->cp_ecx, 31, 16)) != 0) {
3738 		uint_t cachesz = size * 1024;
3739 		assoc = amd_afd[i];
3740 
3741 		ASSERT(assoc != -1);
3742 
3743 		if ((ip = l2i->l2i_csz) != NULL)
3744 			*ip = cachesz;
3745 		if ((ip = l2i->l2i_lsz) != NULL)
3746 			*ip = BITX(cp->cp_ecx, 7, 0);
3747 		if ((ip = l2i->l2i_assoc) != NULL)
3748 			*ip = assoc;
3749 		l2i->l2i_ret = cachesz;
3750 	}
3751 }
3752 
3753 int
3754 getl2cacheinfo(cpu_t *cpu, int *csz, int *lsz, int *assoc)
3755 {
3756 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
3757 	struct l2info __l2info, *l2i = &__l2info;
3758 
3759 	l2i->l2i_csz = csz;
3760 	l2i->l2i_lsz = lsz;
3761 	l2i->l2i_assoc = assoc;
3762 	l2i->l2i_ret = -1;
3763 
3764 	switch (x86_which_cacheinfo(cpi)) {
3765 	case X86_VENDOR_Intel:
3766 		intel_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
3767 		break;
3768 	case X86_VENDOR_Cyrix:
3769 		cyrix_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
3770 		break;
3771 	case X86_VENDOR_AMD:
3772 		amd_l2cacheinfo(cpi, l2i);
3773 		break;
3774 	default:
3775 		break;
3776 	}
3777 	return (l2i->l2i_ret);
3778 }
3779 
3780 #if !defined(__xpv)
3781 
3782 uint32_t *
3783 cpuid_mwait_alloc(cpu_t *cpu)
3784 {
3785 	uint32_t	*ret;
3786 	size_t		mwait_size;
3787 
3788 	ASSERT(cpuid_checkpass(cpu, 2));
3789 
3790 	mwait_size = cpu->cpu_m.mcpu_cpi->cpi_mwait.mon_max;
3791 	if (mwait_size == 0)
3792 		return (NULL);
3793 
3794 	/*
3795 	 * kmem_alloc() returns cache line size aligned data for mwait_size
3796 	 * allocations.  mwait_size is currently cache line sized.  Neither
3797 	 * of these implementation details are guarantied to be true in the
3798 	 * future.
3799 	 *
3800 	 * First try allocating mwait_size as kmem_alloc() currently returns
3801 	 * correctly aligned memory.  If kmem_alloc() does not return
3802 	 * mwait_size aligned memory, then use mwait_size ROUNDUP.
3803 	 *
3804 	 * Set cpi_mwait.buf_actual and cpi_mwait.size_actual in case we
3805 	 * decide to free this memory.
3806 	 */
3807 	ret = kmem_zalloc(mwait_size, KM_SLEEP);
3808 	if (ret == (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size)) {
3809 		cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret;
3810 		cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size;
3811 		*ret = MWAIT_RUNNING;
3812 		return (ret);
3813 	} else {
3814 		kmem_free(ret, mwait_size);
3815 		ret = kmem_zalloc(mwait_size * 2, KM_SLEEP);
3816 		cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret;
3817 		cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size * 2;
3818 		ret = (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size);
3819 		*ret = MWAIT_RUNNING;
3820 		return (ret);
3821 	}
3822 }
3823 
3824 void
3825 cpuid_mwait_free(cpu_t *cpu)
3826 {
3827 	ASSERT(cpuid_checkpass(cpu, 2));
3828 
3829 	if (cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual != NULL &&
3830 	    cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual > 0) {
3831 		kmem_free(cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual,
3832 		    cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual);
3833 	}
3834 
3835 	cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = NULL;
3836 	cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = 0;
3837 }
3838 
3839 void
3840 patch_tsc_read(int flag)
3841 {
3842 	size_t cnt;
3843 
3844 	switch (flag) {
3845 	case X86_NO_TSC:
3846 		cnt = &_no_rdtsc_end - &_no_rdtsc_start;
3847 		(void) memcpy((void *)tsc_read, (void *)&_no_rdtsc_start, cnt);
3848 		break;
3849 	case X86_HAVE_TSCP:
3850 		cnt = &_tscp_end - &_tscp_start;
3851 		(void) memcpy((void *)tsc_read, (void *)&_tscp_start, cnt);
3852 		break;
3853 	case X86_TSC_MFENCE:
3854 		cnt = &_tsc_mfence_end - &_tsc_mfence_start;
3855 		(void) memcpy((void *)tsc_read,
3856 		    (void *)&_tsc_mfence_start, cnt);
3857 		break;
3858 	case X86_TSC_LFENCE:
3859 		cnt = &_tsc_lfence_end - &_tsc_lfence_start;
3860 		(void) memcpy((void *)tsc_read,
3861 		    (void *)&_tsc_lfence_start, cnt);
3862 		break;
3863 	default:
3864 		break;
3865 	}
3866 }
3867 
3868 int
3869 cpuid_deep_cstates_supported(void)
3870 {
3871 	struct cpuid_info *cpi;
3872 	struct cpuid_regs regs;
3873 
3874 	ASSERT(cpuid_checkpass(CPU, 1));
3875 
3876 	cpi = CPU->cpu_m.mcpu_cpi;
3877 
3878 	if (!(x86_feature & X86_CPUID))
3879 		return (0);
3880 
3881 	switch (cpi->cpi_vendor) {
3882 	case X86_VENDOR_Intel:
3883 		if (cpi->cpi_xmaxeax < 0x80000007)
3884 			return (0);
3885 
3886 		/*
3887 		 * TSC run at a constant rate in all ACPI C-states?
3888 		 */
3889 		regs.cp_eax = 0x80000007;
3890 		(void) __cpuid_insn(&regs);
3891 		return (regs.cp_edx & CPUID_TSC_CSTATE_INVARIANCE);
3892 
3893 	default:
3894 		return (0);
3895 	}
3896 }
3897 
3898 #endif	/* !__xpv */
3899 
3900 void
3901 post_startup_cpu_fixups(void)
3902 {
3903 #ifndef __xpv
3904 	/*
3905 	 * Some AMD processors support C1E state. Entering this state will
3906 	 * cause the local APIC timer to stop, which we can't deal with at
3907 	 * this time.
3908 	 */
3909 	if (cpuid_getvendor(CPU) == X86_VENDOR_AMD) {
3910 		on_trap_data_t otd;
3911 		uint64_t reg;
3912 
3913 		if (!on_trap(&otd, OT_DATA_ACCESS)) {
3914 			reg = rdmsr(MSR_AMD_INT_PENDING_CMP_HALT);
3915 			/* Disable C1E state if it is enabled by BIOS */
3916 			if ((reg >> AMD_ACTONCMPHALT_SHIFT) &
3917 			    AMD_ACTONCMPHALT_MASK) {
3918 				reg &= ~(AMD_ACTONCMPHALT_MASK <<
3919 				    AMD_ACTONCMPHALT_SHIFT);
3920 				wrmsr(MSR_AMD_INT_PENDING_CMP_HALT, reg);
3921 			}
3922 		}
3923 		no_trap();
3924 	}
3925 #endif	/* !__xpv */
3926 }
3927 
3928 #if defined(__amd64) && !defined(__xpv)
3929 /*
3930  * Patch in versions of bcopy for high performance Intel Nhm processors
3931  * and later...
3932  */
3933 void
3934 patch_memops(uint_t vendor)
3935 {
3936 	size_t cnt, i;
3937 	caddr_t to, from;
3938 
3939 	if ((vendor == X86_VENDOR_Intel) && ((x86_feature & X86_SSE4_2) != 0)) {
3940 		cnt = &bcopy_patch_end - &bcopy_patch_start;
3941 		to = &bcopy_ck_size;
3942 		from = &bcopy_patch_start;
3943 		for (i = 0; i < cnt; i++) {
3944 			*to++ = *from++;
3945 		}
3946 	}
3947 }
3948 #endif  /* __amd64 && !__xpv */
3949