xref: /titanic_50/usr/src/uts/i86pc/os/cpuid.c (revision 42096647a1cb1ee493b238f2713f001b8b039514)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Various routines to handle identification
28  * and classification of x86 processors.
29  */
30 
31 #include <sys/types.h>
32 #include <sys/archsystm.h>
33 #include <sys/x86_archext.h>
34 #include <sys/kmem.h>
35 #include <sys/systm.h>
36 #include <sys/cmn_err.h>
37 #include <sys/sunddi.h>
38 #include <sys/sunndi.h>
39 #include <sys/cpuvar.h>
40 #include <sys/processor.h>
41 #include <sys/sysmacros.h>
42 #include <sys/pg.h>
43 #include <sys/fp.h>
44 #include <sys/controlregs.h>
45 #include <sys/auxv_386.h>
46 #include <sys/bitmap.h>
47 #include <sys/memnode.h>
48 
49 #ifdef __xpv
50 #include <sys/hypervisor.h>
51 #else
52 #include <sys/ontrap.h>
53 #endif
54 
55 /*
56  * Pass 0 of cpuid feature analysis happens in locore. It contains special code
57  * to recognize Cyrix processors that are not cpuid-compliant, and to deal with
58  * them accordingly. For most modern processors, feature detection occurs here
59  * in pass 1.
60  *
61  * Pass 1 of cpuid feature analysis happens just at the beginning of mlsetup()
62  * for the boot CPU and does the basic analysis that the early kernel needs.
63  * x86_feature is set based on the return value of cpuid_pass1() of the boot
64  * CPU.
65  *
66  * Pass 1 includes:
67  *
68  *	o Determining vendor/model/family/stepping and setting x86_type and
69  *	  x86_vendor accordingly.
70  *	o Processing the feature flags returned by the cpuid instruction while
71  *	  applying any workarounds or tricks for the specific processor.
72  *	o Mapping the feature flags into Solaris feature bits (X86_*).
73  *	o Processing extended feature flags if supported by the processor,
74  *	  again while applying specific processor knowledge.
75  *	o Determining the CMT characteristics of the system.
76  *
77  * Pass 1 is done on non-boot CPUs during their initialization and the results
78  * are used only as a meager attempt at ensuring that all processors within the
79  * system support the same features.
80  *
81  * Pass 2 of cpuid feature analysis happens just at the beginning
82  * of startup().  It just copies in and corrects the remainder
83  * of the cpuid data we depend on: standard cpuid functions that we didn't
84  * need for pass1 feature analysis, and extended cpuid functions beyond the
85  * simple feature processing done in pass1.
86  *
87  * Pass 3 of cpuid analysis is invoked after basic kernel services; in
88  * particular kernel memory allocation has been made available. It creates a
89  * readable brand string based on the data collected in the first two passes.
90  *
91  * Pass 4 of cpuid analysis is invoked after post_startup() when all
92  * the support infrastructure for various hardware features has been
93  * initialized. It determines which processor features will be reported
94  * to userland via the aux vector.
95  *
96  * All passes are executed on all CPUs, but only the boot CPU determines what
97  * features the kernel will use.
98  *
99  * Much of the worst junk in this file is for the support of processors
100  * that didn't really implement the cpuid instruction properly.
101  *
102  * NOTE: The accessor functions (cpuid_get*) are aware of, and ASSERT upon,
103  * the pass numbers.  Accordingly, changes to the pass code may require changes
104  * to the accessor code.
105  */
106 
107 uint_t x86_feature = 0;
108 uint_t x86_vendor = X86_VENDOR_IntelClone;
109 uint_t x86_type = X86_TYPE_OTHER;
110 uint_t x86_clflush_size = 0;
111 
112 uint_t pentiumpro_bug4046376;
113 uint_t pentiumpro_bug4064495;
114 
115 uint_t enable486;
116 /*
117  * This is set to platform type Solaris is running on.
118  */
119 static int platform_type = HW_NATIVE;
120 
121 /*
122  * monitor/mwait info.
123  *
124  * size_actual and buf_actual are the real address and size allocated to get
125  * proper mwait_buf alignement.  buf_actual and size_actual should be passed
126  * to kmem_free().  Currently kmem_alloc() and mwait happen to both use
127  * processor cache-line alignment, but this is not guarantied in the furture.
128  */
129 struct mwait_info {
130 	size_t		mon_min;	/* min size to avoid missed wakeups */
131 	size_t		mon_max;	/* size to avoid false wakeups */
132 	size_t		size_actual;	/* size actually allocated */
133 	void		*buf_actual;	/* memory actually allocated */
134 	uint32_t	support;	/* processor support of monitor/mwait */
135 };
136 
137 /*
138  * These constants determine how many of the elements of the
139  * cpuid we cache in the cpuid_info data structure; the
140  * remaining elements are accessible via the cpuid instruction.
141  */
142 
143 #define	NMAX_CPI_STD	6		/* eax = 0 .. 5 */
144 #define	NMAX_CPI_EXTD	9		/* eax = 0x80000000 .. 0x80000008 */
145 
146 struct cpuid_info {
147 	uint_t cpi_pass;		/* last pass completed */
148 	/*
149 	 * standard function information
150 	 */
151 	uint_t cpi_maxeax;		/* fn 0: %eax */
152 	char cpi_vendorstr[13];		/* fn 0: %ebx:%ecx:%edx */
153 	uint_t cpi_vendor;		/* enum of cpi_vendorstr */
154 
155 	uint_t cpi_family;		/* fn 1: extended family */
156 	uint_t cpi_model;		/* fn 1: extended model */
157 	uint_t cpi_step;		/* fn 1: stepping */
158 	chipid_t cpi_chipid;		/* fn 1: %ebx: chip # on ht cpus */
159 	uint_t cpi_brandid;		/* fn 1: %ebx: brand ID */
160 	int cpi_clogid;			/* fn 1: %ebx: thread # */
161 	uint_t cpi_ncpu_per_chip;	/* fn 1: %ebx: logical cpu count */
162 	uint8_t cpi_cacheinfo[16];	/* fn 2: intel-style cache desc */
163 	uint_t cpi_ncache;		/* fn 2: number of elements */
164 	uint_t cpi_ncpu_shr_last_cache;	/* fn 4: %eax: ncpus sharing cache */
165 	id_t cpi_last_lvl_cacheid;	/* fn 4: %eax: derived cache id */
166 	uint_t cpi_std_4_size;		/* fn 4: number of fn 4 elements */
167 	struct cpuid_regs **cpi_std_4;	/* fn 4: %ecx == 0 .. fn4_size */
168 	struct cpuid_regs cpi_std[NMAX_CPI_STD];	/* 0 .. 5 */
169 	/*
170 	 * extended function information
171 	 */
172 	uint_t cpi_xmaxeax;		/* fn 0x80000000: %eax */
173 	char cpi_brandstr[49];		/* fn 0x8000000[234] */
174 	uint8_t cpi_pabits;		/* fn 0x80000006: %eax */
175 	uint8_t cpi_vabits;		/* fn 0x80000006: %eax */
176 	struct cpuid_regs cpi_extd[NMAX_CPI_EXTD]; /* 0x8000000[0-8] */
177 	id_t cpi_coreid;		/* same coreid => strands share core */
178 	int cpi_pkgcoreid;		/* core number within single package */
179 	uint_t cpi_ncore_per_chip;	/* AMD: fn 0x80000008: %ecx[7-0] */
180 					/* Intel: fn 4: %eax[31-26] */
181 	/*
182 	 * supported feature information
183 	 */
184 	uint32_t cpi_support[5];
185 #define	STD_EDX_FEATURES	0
186 #define	AMD_EDX_FEATURES	1
187 #define	TM_EDX_FEATURES		2
188 #define	STD_ECX_FEATURES	3
189 #define	AMD_ECX_FEATURES	4
190 	/*
191 	 * Synthesized information, where known.
192 	 */
193 	uint32_t cpi_chiprev;		/* See X86_CHIPREV_* in x86_archext.h */
194 	const char *cpi_chiprevstr;	/* May be NULL if chiprev unknown */
195 	uint32_t cpi_socket;		/* Chip package/socket type */
196 
197 	struct mwait_info cpi_mwait;	/* fn 5: monitor/mwait info */
198 	uint32_t cpi_apicid;
199 };
200 
201 
202 static struct cpuid_info cpuid_info0;
203 
204 /*
205  * These bit fields are defined by the Intel Application Note AP-485
206  * "Intel Processor Identification and the CPUID Instruction"
207  */
208 #define	CPI_FAMILY_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 27, 20)
209 #define	CPI_MODEL_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 19, 16)
210 #define	CPI_TYPE(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 13, 12)
211 #define	CPI_FAMILY(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 11, 8)
212 #define	CPI_STEP(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 3, 0)
213 #define	CPI_MODEL(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 7, 4)
214 
215 #define	CPI_FEATURES_EDX(cpi)		((cpi)->cpi_std[1].cp_edx)
216 #define	CPI_FEATURES_ECX(cpi)		((cpi)->cpi_std[1].cp_ecx)
217 #define	CPI_FEATURES_XTD_EDX(cpi)	((cpi)->cpi_extd[1].cp_edx)
218 #define	CPI_FEATURES_XTD_ECX(cpi)	((cpi)->cpi_extd[1].cp_ecx)
219 
220 #define	CPI_BRANDID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 7, 0)
221 #define	CPI_CHUNKS(cpi)		BITX((cpi)->cpi_std[1].cp_ebx, 15, 7)
222 #define	CPI_CPU_COUNT(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 23, 16)
223 #define	CPI_APIC_ID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 31, 24)
224 
225 #define	CPI_MAXEAX_MAX		0x100		/* sanity control */
226 #define	CPI_XMAXEAX_MAX		0x80000100
227 #define	CPI_FN4_ECX_MAX		0x20		/* sanity: max fn 4 levels */
228 #define	CPI_FNB_ECX_MAX		0x20		/* sanity: max fn B levels */
229 
230 /*
231  * Function 4 (Deterministic Cache Parameters) macros
232  * Defined by Intel Application Note AP-485
233  */
234 #define	CPI_NUM_CORES(regs)		BITX((regs)->cp_eax, 31, 26)
235 #define	CPI_NTHR_SHR_CACHE(regs)	BITX((regs)->cp_eax, 25, 14)
236 #define	CPI_FULL_ASSOC_CACHE(regs)	BITX((regs)->cp_eax, 9, 9)
237 #define	CPI_SELF_INIT_CACHE(regs)	BITX((regs)->cp_eax, 8, 8)
238 #define	CPI_CACHE_LVL(regs)		BITX((regs)->cp_eax, 7, 5)
239 #define	CPI_CACHE_TYPE(regs)		BITX((regs)->cp_eax, 4, 0)
240 #define	CPI_CPU_LEVEL_TYPE(regs)	BITX((regs)->cp_ecx, 15, 8)
241 
242 #define	CPI_CACHE_WAYS(regs)		BITX((regs)->cp_ebx, 31, 22)
243 #define	CPI_CACHE_PARTS(regs)		BITX((regs)->cp_ebx, 21, 12)
244 #define	CPI_CACHE_COH_LN_SZ(regs)	BITX((regs)->cp_ebx, 11, 0)
245 
246 #define	CPI_CACHE_SETS(regs)		BITX((regs)->cp_ecx, 31, 0)
247 
248 #define	CPI_PREFCH_STRIDE(regs)		BITX((regs)->cp_edx, 9, 0)
249 
250 
251 /*
252  * A couple of shorthand macros to identify "later" P6-family chips
253  * like the Pentium M and Core.  First, the "older" P6-based stuff
254  * (loosely defined as "pre-Pentium-4"):
255  * P6, PII, Mobile PII, PII Xeon, PIII, Mobile PIII, PIII Xeon
256  */
257 
258 #define	IS_LEGACY_P6(cpi) (			\
259 	cpi->cpi_family == 6 && 		\
260 		(cpi->cpi_model == 1 ||		\
261 		cpi->cpi_model == 3 ||		\
262 		cpi->cpi_model == 5 ||		\
263 		cpi->cpi_model == 6 ||		\
264 		cpi->cpi_model == 7 ||		\
265 		cpi->cpi_model == 8 ||		\
266 		cpi->cpi_model == 0xA ||	\
267 		cpi->cpi_model == 0xB)		\
268 )
269 
270 /* A "new F6" is everything with family 6 that's not the above */
271 #define	IS_NEW_F6(cpi) ((cpi->cpi_family == 6) && !IS_LEGACY_P6(cpi))
272 
273 /* Extended family/model support */
274 #define	IS_EXTENDED_MODEL_INTEL(cpi) (cpi->cpi_family == 0x6 || \
275 	cpi->cpi_family >= 0xf)
276 
277 /*
278  * Info for monitor/mwait idle loop.
279  *
280  * See cpuid section of "Intel 64 and IA-32 Architectures Software Developer's
281  * Manual Volume 2A: Instruction Set Reference, A-M" #25366-022US, November
282  * 2006.
283  * See MONITOR/MWAIT section of "AMD64 Architecture Programmer's Manual
284  * Documentation Updates" #33633, Rev 2.05, December 2006.
285  */
286 #define	MWAIT_SUPPORT		(0x00000001)	/* mwait supported */
287 #define	MWAIT_EXTENSIONS	(0x00000002)	/* extenstion supported */
288 #define	MWAIT_ECX_INT_ENABLE	(0x00000004)	/* ecx 1 extension supported */
289 #define	MWAIT_SUPPORTED(cpi)	((cpi)->cpi_std[1].cp_ecx & CPUID_INTC_ECX_MON)
290 #define	MWAIT_INT_ENABLE(cpi)	((cpi)->cpi_std[5].cp_ecx & 0x2)
291 #define	MWAIT_EXTENSION(cpi)	((cpi)->cpi_std[5].cp_ecx & 0x1)
292 #define	MWAIT_SIZE_MIN(cpi)	BITX((cpi)->cpi_std[5].cp_eax, 15, 0)
293 #define	MWAIT_SIZE_MAX(cpi)	BITX((cpi)->cpi_std[5].cp_ebx, 15, 0)
294 /*
295  * Number of sub-cstates for a given c-state.
296  */
297 #define	MWAIT_NUM_SUBC_STATES(cpi, c_state)			\
298 	BITX((cpi)->cpi_std[5].cp_edx, c_state + 3, c_state)
299 
300 /*
301  * Functions we consune from cpuid_subr.c;  don't publish these in a header
302  * file to try and keep people using the expected cpuid_* interfaces.
303  */
304 extern uint32_t _cpuid_skt(uint_t, uint_t, uint_t, uint_t);
305 extern uint32_t _cpuid_chiprev(uint_t, uint_t, uint_t, uint_t);
306 extern const char *_cpuid_chiprevstr(uint_t, uint_t, uint_t, uint_t);
307 extern uint_t _cpuid_vendorstr_to_vendorcode(char *);
308 
309 /*
310  * Apply up various platform-dependent restrictions where the
311  * underlying platform restrictions mean the CPU can be marked
312  * as less capable than its cpuid instruction would imply.
313  */
314 #if defined(__xpv)
315 static void
316 platform_cpuid_mangle(uint_t vendor, uint32_t eax, struct cpuid_regs *cp)
317 {
318 	switch (eax) {
319 	case 1: {
320 		uint32_t mcamask = DOMAIN_IS_INITDOMAIN(xen_info) ?
321 		    0 : CPUID_INTC_EDX_MCA;
322 		cp->cp_edx &=
323 		    ~(mcamask |
324 		    CPUID_INTC_EDX_PSE |
325 		    CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE |
326 		    CPUID_INTC_EDX_SEP | CPUID_INTC_EDX_MTRR |
327 		    CPUID_INTC_EDX_PGE | CPUID_INTC_EDX_PAT |
328 		    CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP |
329 		    CPUID_INTC_EDX_PSE36 | CPUID_INTC_EDX_HTT);
330 		break;
331 	}
332 
333 	case 0x80000001:
334 		cp->cp_edx &=
335 		    ~(CPUID_AMD_EDX_PSE |
336 		    CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE |
337 		    CPUID_AMD_EDX_MTRR | CPUID_AMD_EDX_PGE |
338 		    CPUID_AMD_EDX_PAT | CPUID_AMD_EDX_PSE36 |
339 		    CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP |
340 		    CPUID_AMD_EDX_TSCP);
341 		cp->cp_ecx &= ~CPUID_AMD_ECX_CMP_LGCY;
342 		break;
343 	default:
344 		break;
345 	}
346 
347 	switch (vendor) {
348 	case X86_VENDOR_Intel:
349 		switch (eax) {
350 		case 4:
351 			/*
352 			 * Zero out the (ncores-per-chip - 1) field
353 			 */
354 			cp->cp_eax &= 0x03fffffff;
355 			break;
356 		default:
357 			break;
358 		}
359 		break;
360 	case X86_VENDOR_AMD:
361 		switch (eax) {
362 		case 0x80000008:
363 			/*
364 			 * Zero out the (ncores-per-chip - 1) field
365 			 */
366 			cp->cp_ecx &= 0xffffff00;
367 			break;
368 		default:
369 			break;
370 		}
371 		break;
372 	default:
373 		break;
374 	}
375 }
376 #else
377 #define	platform_cpuid_mangle(vendor, eax, cp)	/* nothing */
378 #endif
379 
380 /*
381  *  Some undocumented ways of patching the results of the cpuid
382  *  instruction to permit running Solaris 10 on future cpus that
383  *  we don't currently support.  Could be set to non-zero values
384  *  via settings in eeprom.
385  */
386 
387 uint32_t cpuid_feature_ecx_include;
388 uint32_t cpuid_feature_ecx_exclude;
389 uint32_t cpuid_feature_edx_include;
390 uint32_t cpuid_feature_edx_exclude;
391 
392 void
393 cpuid_alloc_space(cpu_t *cpu)
394 {
395 	/*
396 	 * By convention, cpu0 is the boot cpu, which is set up
397 	 * before memory allocation is available.  All other cpus get
398 	 * their cpuid_info struct allocated here.
399 	 */
400 	ASSERT(cpu->cpu_id != 0);
401 	cpu->cpu_m.mcpu_cpi =
402 	    kmem_zalloc(sizeof (*cpu->cpu_m.mcpu_cpi), KM_SLEEP);
403 }
404 
405 void
406 cpuid_free_space(cpu_t *cpu)
407 {
408 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
409 	int i;
410 
411 	ASSERT(cpu->cpu_id != 0);
412 
413 	/*
414 	 * Free up any function 4 related dynamic storage
415 	 */
416 	for (i = 1; i < cpi->cpi_std_4_size; i++)
417 		kmem_free(cpi->cpi_std_4[i], sizeof (struct cpuid_regs));
418 	if (cpi->cpi_std_4_size > 0)
419 		kmem_free(cpi->cpi_std_4,
420 		    cpi->cpi_std_4_size * sizeof (struct cpuid_regs *));
421 
422 	kmem_free(cpu->cpu_m.mcpu_cpi, sizeof (*cpu->cpu_m.mcpu_cpi));
423 }
424 
425 #if !defined(__xpv)
426 
427 static void
428 determine_platform()
429 {
430 	struct cpuid_regs cp;
431 	char *xen_str;
432 	uint32_t xen_signature[4];
433 
434 	/*
435 	 * In a fully virtualized domain, Xen's pseudo-cpuid function
436 	 * 0x40000000 returns a string representing the Xen signature in
437 	 * %ebx, %ecx, and %edx.  %eax contains the maximum supported cpuid
438 	 * function.
439 	 */
440 	cp.cp_eax = 0x40000000;
441 	(void) __cpuid_insn(&cp);
442 	xen_signature[0] = cp.cp_ebx;
443 	xen_signature[1] = cp.cp_ecx;
444 	xen_signature[2] = cp.cp_edx;
445 	xen_signature[3] = 0;
446 	xen_str = (char *)xen_signature;
447 	if (strcmp("XenVMMXenVMM", xen_str) == 0 && cp.cp_eax <= 0x40000002) {
448 		platform_type = HW_XEN_HVM;
449 	} else if (vmware_platform()) { /* running under vmware hypervisor? */
450 		platform_type = HW_VMWARE;
451 	}
452 }
453 
454 int
455 get_hwenv(void)
456 {
457 	return (platform_type);
458 }
459 
460 int
461 is_controldom(void)
462 {
463 	return (0);
464 }
465 
466 #else
467 
468 int
469 get_hwenv(void)
470 {
471 	return (HW_XEN_PV);
472 }
473 
474 int
475 is_controldom(void)
476 {
477 	return (DOMAIN_IS_INITDOMAIN(xen_info));
478 }
479 
480 #endif	/* __xpv */
481 
482 uint_t
483 cpuid_pass1(cpu_t *cpu)
484 {
485 	uint32_t mask_ecx, mask_edx;
486 	uint_t feature = X86_CPUID;
487 	struct cpuid_info *cpi;
488 	struct cpuid_regs *cp;
489 	int xcpuid;
490 #if !defined(__xpv)
491 	extern int idle_cpu_prefer_mwait;
492 #endif
493 
494 	/*
495 	 * Space statically allocated for cpu0, ensure pointer is set
496 	 */
497 	if (cpu->cpu_id == 0)
498 		cpu->cpu_m.mcpu_cpi = &cpuid_info0;
499 	cpi = cpu->cpu_m.mcpu_cpi;
500 	ASSERT(cpi != NULL);
501 	cp = &cpi->cpi_std[0];
502 	cp->cp_eax = 0;
503 	cpi->cpi_maxeax = __cpuid_insn(cp);
504 	{
505 		uint32_t *iptr = (uint32_t *)cpi->cpi_vendorstr;
506 		*iptr++ = cp->cp_ebx;
507 		*iptr++ = cp->cp_edx;
508 		*iptr++ = cp->cp_ecx;
509 		*(char *)&cpi->cpi_vendorstr[12] = '\0';
510 	}
511 
512 	cpi->cpi_vendor = _cpuid_vendorstr_to_vendorcode(cpi->cpi_vendorstr);
513 	x86_vendor = cpi->cpi_vendor; /* for compatibility */
514 
515 	/*
516 	 * Limit the range in case of weird hardware
517 	 */
518 	if (cpi->cpi_maxeax > CPI_MAXEAX_MAX)
519 		cpi->cpi_maxeax = CPI_MAXEAX_MAX;
520 	if (cpi->cpi_maxeax < 1)
521 		goto pass1_done;
522 
523 	cp = &cpi->cpi_std[1];
524 	cp->cp_eax = 1;
525 	(void) __cpuid_insn(cp);
526 
527 	/*
528 	 * Extract identifying constants for easy access.
529 	 */
530 	cpi->cpi_model = CPI_MODEL(cpi);
531 	cpi->cpi_family = CPI_FAMILY(cpi);
532 
533 	if (cpi->cpi_family == 0xf)
534 		cpi->cpi_family += CPI_FAMILY_XTD(cpi);
535 
536 	/*
537 	 * Beware: AMD uses "extended model" iff base *FAMILY* == 0xf.
538 	 * Intel, and presumably everyone else, uses model == 0xf, as
539 	 * one would expect (max value means possible overflow).  Sigh.
540 	 */
541 
542 	switch (cpi->cpi_vendor) {
543 	case X86_VENDOR_Intel:
544 		if (IS_EXTENDED_MODEL_INTEL(cpi))
545 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
546 		break;
547 	case X86_VENDOR_AMD:
548 		if (CPI_FAMILY(cpi) == 0xf)
549 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
550 		break;
551 	default:
552 		if (cpi->cpi_model == 0xf)
553 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
554 		break;
555 	}
556 
557 	cpi->cpi_step = CPI_STEP(cpi);
558 	cpi->cpi_brandid = CPI_BRANDID(cpi);
559 
560 	/*
561 	 * *default* assumptions:
562 	 * - believe %edx feature word
563 	 * - ignore %ecx feature word
564 	 * - 32-bit virtual and physical addressing
565 	 */
566 	mask_edx = 0xffffffff;
567 	mask_ecx = 0;
568 
569 	cpi->cpi_pabits = cpi->cpi_vabits = 32;
570 
571 	switch (cpi->cpi_vendor) {
572 	case X86_VENDOR_Intel:
573 		if (cpi->cpi_family == 5)
574 			x86_type = X86_TYPE_P5;
575 		else if (IS_LEGACY_P6(cpi)) {
576 			x86_type = X86_TYPE_P6;
577 			pentiumpro_bug4046376 = 1;
578 			pentiumpro_bug4064495 = 1;
579 			/*
580 			 * Clear the SEP bit when it was set erroneously
581 			 */
582 			if (cpi->cpi_model < 3 && cpi->cpi_step < 3)
583 				cp->cp_edx &= ~CPUID_INTC_EDX_SEP;
584 		} else if (IS_NEW_F6(cpi) || cpi->cpi_family == 0xf) {
585 			x86_type = X86_TYPE_P4;
586 			/*
587 			 * We don't currently depend on any of the %ecx
588 			 * features until Prescott, so we'll only check
589 			 * this from P4 onwards.  We might want to revisit
590 			 * that idea later.
591 			 */
592 			mask_ecx = 0xffffffff;
593 		} else if (cpi->cpi_family > 0xf)
594 			mask_ecx = 0xffffffff;
595 		/*
596 		 * We don't support MONITOR/MWAIT if leaf 5 is not available
597 		 * to obtain the monitor linesize.
598 		 */
599 		if (cpi->cpi_maxeax < 5)
600 			mask_ecx &= ~CPUID_INTC_ECX_MON;
601 		break;
602 	case X86_VENDOR_IntelClone:
603 	default:
604 		break;
605 	case X86_VENDOR_AMD:
606 #if defined(OPTERON_ERRATUM_108)
607 		if (cpi->cpi_family == 0xf && cpi->cpi_model == 0xe) {
608 			cp->cp_eax = (0xf0f & cp->cp_eax) | 0xc0;
609 			cpi->cpi_model = 0xc;
610 		} else
611 #endif
612 		if (cpi->cpi_family == 5) {
613 			/*
614 			 * AMD K5 and K6
615 			 *
616 			 * These CPUs have an incomplete implementation
617 			 * of MCA/MCE which we mask away.
618 			 */
619 			mask_edx &= ~(CPUID_INTC_EDX_MCE | CPUID_INTC_EDX_MCA);
620 
621 			/*
622 			 * Model 0 uses the wrong (APIC) bit
623 			 * to indicate PGE.  Fix it here.
624 			 */
625 			if (cpi->cpi_model == 0) {
626 				if (cp->cp_edx & 0x200) {
627 					cp->cp_edx &= ~0x200;
628 					cp->cp_edx |= CPUID_INTC_EDX_PGE;
629 				}
630 			}
631 
632 			/*
633 			 * Early models had problems w/ MMX; disable.
634 			 */
635 			if (cpi->cpi_model < 6)
636 				mask_edx &= ~CPUID_INTC_EDX_MMX;
637 		}
638 
639 		/*
640 		 * For newer families, SSE3 and CX16, at least, are valid;
641 		 * enable all
642 		 */
643 		if (cpi->cpi_family >= 0xf)
644 			mask_ecx = 0xffffffff;
645 		/*
646 		 * We don't support MONITOR/MWAIT if leaf 5 is not available
647 		 * to obtain the monitor linesize.
648 		 */
649 		if (cpi->cpi_maxeax < 5)
650 			mask_ecx &= ~CPUID_INTC_ECX_MON;
651 
652 #if !defined(__xpv)
653 		/*
654 		 * Do not use MONITOR/MWAIT to halt in the idle loop on any AMD
655 		 * processors.  AMD does not intend MWAIT to be used in the cpu
656 		 * idle loop on current and future processors.  10h and future
657 		 * AMD processors use more power in MWAIT than HLT.
658 		 * Pre-family-10h Opterons do not have the MWAIT instruction.
659 		 */
660 		idle_cpu_prefer_mwait = 0;
661 #endif
662 
663 		break;
664 	case X86_VENDOR_TM:
665 		/*
666 		 * workaround the NT workaround in CMS 4.1
667 		 */
668 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4 &&
669 		    (cpi->cpi_step == 2 || cpi->cpi_step == 3))
670 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
671 		break;
672 	case X86_VENDOR_Centaur:
673 		/*
674 		 * workaround the NT workarounds again
675 		 */
676 		if (cpi->cpi_family == 6)
677 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
678 		break;
679 	case X86_VENDOR_Cyrix:
680 		/*
681 		 * We rely heavily on the probing in locore
682 		 * to actually figure out what parts, if any,
683 		 * of the Cyrix cpuid instruction to believe.
684 		 */
685 		switch (x86_type) {
686 		case X86_TYPE_CYRIX_486:
687 			mask_edx = 0;
688 			break;
689 		case X86_TYPE_CYRIX_6x86:
690 			mask_edx = 0;
691 			break;
692 		case X86_TYPE_CYRIX_6x86L:
693 			mask_edx =
694 			    CPUID_INTC_EDX_DE |
695 			    CPUID_INTC_EDX_CX8;
696 			break;
697 		case X86_TYPE_CYRIX_6x86MX:
698 			mask_edx =
699 			    CPUID_INTC_EDX_DE |
700 			    CPUID_INTC_EDX_MSR |
701 			    CPUID_INTC_EDX_CX8 |
702 			    CPUID_INTC_EDX_PGE |
703 			    CPUID_INTC_EDX_CMOV |
704 			    CPUID_INTC_EDX_MMX;
705 			break;
706 		case X86_TYPE_CYRIX_GXm:
707 			mask_edx =
708 			    CPUID_INTC_EDX_MSR |
709 			    CPUID_INTC_EDX_CX8 |
710 			    CPUID_INTC_EDX_CMOV |
711 			    CPUID_INTC_EDX_MMX;
712 			break;
713 		case X86_TYPE_CYRIX_MediaGX:
714 			break;
715 		case X86_TYPE_CYRIX_MII:
716 		case X86_TYPE_VIA_CYRIX_III:
717 			mask_edx =
718 			    CPUID_INTC_EDX_DE |
719 			    CPUID_INTC_EDX_TSC |
720 			    CPUID_INTC_EDX_MSR |
721 			    CPUID_INTC_EDX_CX8 |
722 			    CPUID_INTC_EDX_PGE |
723 			    CPUID_INTC_EDX_CMOV |
724 			    CPUID_INTC_EDX_MMX;
725 			break;
726 		default:
727 			break;
728 		}
729 		break;
730 	}
731 
732 #if defined(__xpv)
733 	/*
734 	 * Do not support MONITOR/MWAIT under a hypervisor
735 	 */
736 	mask_ecx &= ~CPUID_INTC_ECX_MON;
737 #endif	/* __xpv */
738 
739 	/*
740 	 * Now we've figured out the masks that determine
741 	 * which bits we choose to believe, apply the masks
742 	 * to the feature words, then map the kernel's view
743 	 * of these feature words into its feature word.
744 	 */
745 	cp->cp_edx &= mask_edx;
746 	cp->cp_ecx &= mask_ecx;
747 
748 	/*
749 	 * apply any platform restrictions (we don't call this
750 	 * immediately after __cpuid_insn here, because we need the
751 	 * workarounds applied above first)
752 	 */
753 	platform_cpuid_mangle(cpi->cpi_vendor, 1, cp);
754 
755 	/*
756 	 * fold in overrides from the "eeprom" mechanism
757 	 */
758 	cp->cp_edx |= cpuid_feature_edx_include;
759 	cp->cp_edx &= ~cpuid_feature_edx_exclude;
760 
761 	cp->cp_ecx |= cpuid_feature_ecx_include;
762 	cp->cp_ecx &= ~cpuid_feature_ecx_exclude;
763 
764 	if (cp->cp_edx & CPUID_INTC_EDX_PSE)
765 		feature |= X86_LARGEPAGE;
766 	if (cp->cp_edx & CPUID_INTC_EDX_TSC)
767 		feature |= X86_TSC;
768 	if (cp->cp_edx & CPUID_INTC_EDX_MSR)
769 		feature |= X86_MSR;
770 	if (cp->cp_edx & CPUID_INTC_EDX_MTRR)
771 		feature |= X86_MTRR;
772 	if (cp->cp_edx & CPUID_INTC_EDX_PGE)
773 		feature |= X86_PGE;
774 	if (cp->cp_edx & CPUID_INTC_EDX_CMOV)
775 		feature |= X86_CMOV;
776 	if (cp->cp_edx & CPUID_INTC_EDX_MMX)
777 		feature |= X86_MMX;
778 	if ((cp->cp_edx & CPUID_INTC_EDX_MCE) != 0 &&
779 	    (cp->cp_edx & CPUID_INTC_EDX_MCA) != 0)
780 		feature |= X86_MCA;
781 	if (cp->cp_edx & CPUID_INTC_EDX_PAE)
782 		feature |= X86_PAE;
783 	if (cp->cp_edx & CPUID_INTC_EDX_CX8)
784 		feature |= X86_CX8;
785 	if (cp->cp_ecx & CPUID_INTC_ECX_CX16)
786 		feature |= X86_CX16;
787 	if (cp->cp_edx & CPUID_INTC_EDX_PAT)
788 		feature |= X86_PAT;
789 	if (cp->cp_edx & CPUID_INTC_EDX_SEP)
790 		feature |= X86_SEP;
791 	if (cp->cp_edx & CPUID_INTC_EDX_FXSR) {
792 		/*
793 		 * In our implementation, fxsave/fxrstor
794 		 * are prerequisites before we'll even
795 		 * try and do SSE things.
796 		 */
797 		if (cp->cp_edx & CPUID_INTC_EDX_SSE)
798 			feature |= X86_SSE;
799 		if (cp->cp_edx & CPUID_INTC_EDX_SSE2)
800 			feature |= X86_SSE2;
801 		if (cp->cp_ecx & CPUID_INTC_ECX_SSE3)
802 			feature |= X86_SSE3;
803 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
804 			if (cp->cp_ecx & CPUID_INTC_ECX_SSSE3)
805 				feature |= X86_SSSE3;
806 			if (cp->cp_ecx & CPUID_INTC_ECX_SSE4_1)
807 				feature |= X86_SSE4_1;
808 			if (cp->cp_ecx & CPUID_INTC_ECX_SSE4_2)
809 				feature |= X86_SSE4_2;
810 		}
811 	}
812 	if (cp->cp_edx & CPUID_INTC_EDX_DE)
813 		feature |= X86_DE;
814 #if !defined(__xpv)
815 	if (cp->cp_ecx & CPUID_INTC_ECX_MON) {
816 
817 		/*
818 		 * We require the CLFLUSH instruction for erratum workaround
819 		 * to use MONITOR/MWAIT.
820 		 */
821 		if (cp->cp_edx & CPUID_INTC_EDX_CLFSH) {
822 			cpi->cpi_mwait.support |= MWAIT_SUPPORT;
823 			feature |= X86_MWAIT;
824 		} else {
825 			extern int idle_cpu_assert_cflush_monitor;
826 
827 			/*
828 			 * All processors we are aware of which have
829 			 * MONITOR/MWAIT also have CLFLUSH.
830 			 */
831 			if (idle_cpu_assert_cflush_monitor) {
832 				ASSERT((cp->cp_ecx & CPUID_INTC_ECX_MON) &&
833 				    (cp->cp_edx & CPUID_INTC_EDX_CLFSH));
834 			}
835 		}
836 	}
837 #endif	/* __xpv */
838 
839 	/*
840 	 * Only need it first time, rest of the cpus would follow suite.
841 	 * we only capture this for the bootcpu.
842 	 */
843 	if (cp->cp_edx & CPUID_INTC_EDX_CLFSH) {
844 		feature |= X86_CLFSH;
845 		x86_clflush_size = (BITX(cp->cp_ebx, 15, 8) * 8);
846 	}
847 
848 	if (feature & X86_PAE)
849 		cpi->cpi_pabits = 36;
850 
851 	/*
852 	 * Hyperthreading configuration is slightly tricky on Intel
853 	 * and pure clones, and even trickier on AMD.
854 	 *
855 	 * (AMD chose to set the HTT bit on their CMP processors,
856 	 * even though they're not actually hyperthreaded.  Thus it
857 	 * takes a bit more work to figure out what's really going
858 	 * on ... see the handling of the CMP_LGCY bit below)
859 	 */
860 	if (cp->cp_edx & CPUID_INTC_EDX_HTT) {
861 		cpi->cpi_ncpu_per_chip = CPI_CPU_COUNT(cpi);
862 		if (cpi->cpi_ncpu_per_chip > 1)
863 			feature |= X86_HTT;
864 	} else {
865 		cpi->cpi_ncpu_per_chip = 1;
866 	}
867 
868 	/*
869 	 * Work on the "extended" feature information, doing
870 	 * some basic initialization for cpuid_pass2()
871 	 */
872 	xcpuid = 0;
873 	switch (cpi->cpi_vendor) {
874 	case X86_VENDOR_Intel:
875 		if (IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf)
876 			xcpuid++;
877 		break;
878 	case X86_VENDOR_AMD:
879 		if (cpi->cpi_family > 5 ||
880 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
881 			xcpuid++;
882 		break;
883 	case X86_VENDOR_Cyrix:
884 		/*
885 		 * Only these Cyrix CPUs are -known- to support
886 		 * extended cpuid operations.
887 		 */
888 		if (x86_type == X86_TYPE_VIA_CYRIX_III ||
889 		    x86_type == X86_TYPE_CYRIX_GXm)
890 			xcpuid++;
891 		break;
892 	case X86_VENDOR_Centaur:
893 	case X86_VENDOR_TM:
894 	default:
895 		xcpuid++;
896 		break;
897 	}
898 
899 	if (xcpuid) {
900 		cp = &cpi->cpi_extd[0];
901 		cp->cp_eax = 0x80000000;
902 		cpi->cpi_xmaxeax = __cpuid_insn(cp);
903 	}
904 
905 	if (cpi->cpi_xmaxeax & 0x80000000) {
906 
907 		if (cpi->cpi_xmaxeax > CPI_XMAXEAX_MAX)
908 			cpi->cpi_xmaxeax = CPI_XMAXEAX_MAX;
909 
910 		switch (cpi->cpi_vendor) {
911 		case X86_VENDOR_Intel:
912 		case X86_VENDOR_AMD:
913 			if (cpi->cpi_xmaxeax < 0x80000001)
914 				break;
915 			cp = &cpi->cpi_extd[1];
916 			cp->cp_eax = 0x80000001;
917 			(void) __cpuid_insn(cp);
918 
919 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
920 			    cpi->cpi_family == 5 &&
921 			    cpi->cpi_model == 6 &&
922 			    cpi->cpi_step == 6) {
923 				/*
924 				 * K6 model 6 uses bit 10 to indicate SYSC
925 				 * Later models use bit 11. Fix it here.
926 				 */
927 				if (cp->cp_edx & 0x400) {
928 					cp->cp_edx &= ~0x400;
929 					cp->cp_edx |= CPUID_AMD_EDX_SYSC;
930 				}
931 			}
932 
933 			platform_cpuid_mangle(cpi->cpi_vendor, 0x80000001, cp);
934 
935 			/*
936 			 * Compute the additions to the kernel's feature word.
937 			 */
938 			if (cp->cp_edx & CPUID_AMD_EDX_NX)
939 				feature |= X86_NX;
940 
941 			/*
942 			 * Regardless whether or not we boot 64-bit,
943 			 * we should have a way to identify whether
944 			 * the CPU is capable of running 64-bit.
945 			 */
946 			if (cp->cp_edx & CPUID_AMD_EDX_LM)
947 				feature |= X86_64;
948 
949 #if defined(__amd64)
950 			/* 1 GB large page - enable only for 64 bit kernel */
951 			if (cp->cp_edx & CPUID_AMD_EDX_1GPG)
952 				feature |= X86_1GPG;
953 #endif
954 
955 			if ((cpi->cpi_vendor == X86_VENDOR_AMD) &&
956 			    (cpi->cpi_std[1].cp_edx & CPUID_INTC_EDX_FXSR) &&
957 			    (cp->cp_ecx & CPUID_AMD_ECX_SSE4A))
958 				feature |= X86_SSE4A;
959 
960 			/*
961 			 * If both the HTT and CMP_LGCY bits are set,
962 			 * then we're not actually HyperThreaded.  Read
963 			 * "AMD CPUID Specification" for more details.
964 			 */
965 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
966 			    (feature & X86_HTT) &&
967 			    (cp->cp_ecx & CPUID_AMD_ECX_CMP_LGCY)) {
968 				feature &= ~X86_HTT;
969 				feature |= X86_CMP;
970 			}
971 #if defined(__amd64)
972 			/*
973 			 * It's really tricky to support syscall/sysret in
974 			 * the i386 kernel; we rely on sysenter/sysexit
975 			 * instead.  In the amd64 kernel, things are -way-
976 			 * better.
977 			 */
978 			if (cp->cp_edx & CPUID_AMD_EDX_SYSC)
979 				feature |= X86_ASYSC;
980 
981 			/*
982 			 * While we're thinking about system calls, note
983 			 * that AMD processors don't support sysenter
984 			 * in long mode at all, so don't try to program them.
985 			 */
986 			if (x86_vendor == X86_VENDOR_AMD)
987 				feature &= ~X86_SEP;
988 #endif
989 			if (cp->cp_edx & CPUID_AMD_EDX_TSCP)
990 				feature |= X86_TSCP;
991 			break;
992 		default:
993 			break;
994 		}
995 
996 		/*
997 		 * Get CPUID data about processor cores and hyperthreads.
998 		 */
999 		switch (cpi->cpi_vendor) {
1000 		case X86_VENDOR_Intel:
1001 			if (cpi->cpi_maxeax >= 4) {
1002 				cp = &cpi->cpi_std[4];
1003 				cp->cp_eax = 4;
1004 				cp->cp_ecx = 0;
1005 				(void) __cpuid_insn(cp);
1006 				platform_cpuid_mangle(cpi->cpi_vendor, 4, cp);
1007 			}
1008 			/*FALLTHROUGH*/
1009 		case X86_VENDOR_AMD:
1010 			if (cpi->cpi_xmaxeax < 0x80000008)
1011 				break;
1012 			cp = &cpi->cpi_extd[8];
1013 			cp->cp_eax = 0x80000008;
1014 			(void) __cpuid_insn(cp);
1015 			platform_cpuid_mangle(cpi->cpi_vendor, 0x80000008, cp);
1016 
1017 			/*
1018 			 * Virtual and physical address limits from
1019 			 * cpuid override previously guessed values.
1020 			 */
1021 			cpi->cpi_pabits = BITX(cp->cp_eax, 7, 0);
1022 			cpi->cpi_vabits = BITX(cp->cp_eax, 15, 8);
1023 			break;
1024 		default:
1025 			break;
1026 		}
1027 
1028 		/*
1029 		 * Derive the number of cores per chip
1030 		 */
1031 		switch (cpi->cpi_vendor) {
1032 		case X86_VENDOR_Intel:
1033 			if (cpi->cpi_maxeax < 4) {
1034 				cpi->cpi_ncore_per_chip = 1;
1035 				break;
1036 			} else {
1037 				cpi->cpi_ncore_per_chip =
1038 				    BITX((cpi)->cpi_std[4].cp_eax, 31, 26) + 1;
1039 			}
1040 			break;
1041 		case X86_VENDOR_AMD:
1042 			if (cpi->cpi_xmaxeax < 0x80000008) {
1043 				cpi->cpi_ncore_per_chip = 1;
1044 				break;
1045 			} else {
1046 				/*
1047 				 * On family 0xf cpuid fn 2 ECX[7:0] "NC" is
1048 				 * 1 less than the number of physical cores on
1049 				 * the chip.  In family 0x10 this value can
1050 				 * be affected by "downcoring" - it reflects
1051 				 * 1 less than the number of cores actually
1052 				 * enabled on this node.
1053 				 */
1054 				cpi->cpi_ncore_per_chip =
1055 				    BITX((cpi)->cpi_extd[8].cp_ecx, 7, 0) + 1;
1056 			}
1057 			break;
1058 		default:
1059 			cpi->cpi_ncore_per_chip = 1;
1060 			break;
1061 		}
1062 
1063 		/*
1064 		 * Get CPUID data about TSC Invariance in Deep C-State.
1065 		 */
1066 		switch (cpi->cpi_vendor) {
1067 		case X86_VENDOR_Intel:
1068 			if (cpi->cpi_maxeax >= 7) {
1069 				cp = &cpi->cpi_extd[7];
1070 				cp->cp_eax = 0x80000007;
1071 				cp->cp_ecx = 0;
1072 				(void) __cpuid_insn(cp);
1073 			}
1074 			break;
1075 		default:
1076 			break;
1077 		}
1078 	} else {
1079 		cpi->cpi_ncore_per_chip = 1;
1080 	}
1081 
1082 	/*
1083 	 * If more than one core, then this processor is CMP.
1084 	 */
1085 	if (cpi->cpi_ncore_per_chip > 1)
1086 		feature |= X86_CMP;
1087 
1088 	/*
1089 	 * If the number of cores is the same as the number
1090 	 * of CPUs, then we cannot have HyperThreading.
1091 	 */
1092 	if (cpi->cpi_ncpu_per_chip == cpi->cpi_ncore_per_chip)
1093 		feature &= ~X86_HTT;
1094 
1095 	if ((feature & (X86_HTT | X86_CMP)) == 0) {
1096 		/*
1097 		 * Single-core single-threaded processors.
1098 		 */
1099 		cpi->cpi_chipid = -1;
1100 		cpi->cpi_clogid = 0;
1101 		cpi->cpi_coreid = cpu->cpu_id;
1102 		cpi->cpi_pkgcoreid = 0;
1103 	} else if (cpi->cpi_ncpu_per_chip > 1) {
1104 		uint_t i;
1105 		uint_t chipid_shift = 0;
1106 		uint_t coreid_shift = 0;
1107 		uint_t apic_id = CPI_APIC_ID(cpi);
1108 
1109 		for (i = 1; i < cpi->cpi_ncpu_per_chip; i <<= 1)
1110 			chipid_shift++;
1111 		cpi->cpi_chipid = apic_id >> chipid_shift;
1112 		cpi->cpi_clogid = apic_id & ((1 << chipid_shift) - 1);
1113 
1114 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
1115 			if (feature & X86_CMP) {
1116 				/*
1117 				 * Multi-core (and possibly multi-threaded)
1118 				 * processors.
1119 				 */
1120 				uint_t ncpu_per_core;
1121 				if (cpi->cpi_ncore_per_chip == 1)
1122 					ncpu_per_core = cpi->cpi_ncpu_per_chip;
1123 				else if (cpi->cpi_ncore_per_chip > 1)
1124 					ncpu_per_core = cpi->cpi_ncpu_per_chip /
1125 					    cpi->cpi_ncore_per_chip;
1126 				/*
1127 				 * 8bit APIC IDs on dual core Pentiums
1128 				 * look like this:
1129 				 *
1130 				 * +-----------------------+------+------+
1131 				 * | Physical Package ID   |  MC  |  HT  |
1132 				 * +-----------------------+------+------+
1133 				 * <------- chipid -------->
1134 				 * <------- coreid --------------->
1135 				 *			   <--- clogid -->
1136 				 *			   <------>
1137 				 *			   pkgcoreid
1138 				 *
1139 				 * Where the number of bits necessary to
1140 				 * represent MC and HT fields together equals
1141 				 * to the minimum number of bits necessary to
1142 				 * store the value of cpi->cpi_ncpu_per_chip.
1143 				 * Of those bits, the MC part uses the number
1144 				 * of bits necessary to store the value of
1145 				 * cpi->cpi_ncore_per_chip.
1146 				 */
1147 				for (i = 1; i < ncpu_per_core; i <<= 1)
1148 					coreid_shift++;
1149 				cpi->cpi_coreid = apic_id >> coreid_shift;
1150 				cpi->cpi_pkgcoreid = cpi->cpi_clogid >>
1151 				    coreid_shift;
1152 			} else if (feature & X86_HTT) {
1153 				/*
1154 				 * Single-core multi-threaded processors.
1155 				 */
1156 				cpi->cpi_coreid = cpi->cpi_chipid;
1157 				cpi->cpi_pkgcoreid = 0;
1158 			}
1159 		} else if (cpi->cpi_vendor == X86_VENDOR_AMD) {
1160 			/*
1161 			 * AMD CMP chips currently have a single thread per
1162 			 * core, with 2 cores on family 0xf and 2, 3 or 4
1163 			 * cores on family 0x10.
1164 			 *
1165 			 * Since no two cpus share a core we must assign a
1166 			 * distinct coreid per cpu, and we do this by using
1167 			 * the cpu_id.  This scheme does not, however,
1168 			 * guarantee that sibling cores of a chip will have
1169 			 * sequential coreids starting at a multiple of the
1170 			 * number of cores per chip - that is usually the
1171 			 * case, but if the ACPI MADT table is presented
1172 			 * in a different order then we need to perform a
1173 			 * few more gymnastics for the pkgcoreid.
1174 			 *
1175 			 * In family 0xf CMPs there are 2 cores on all nodes
1176 			 * present - no mixing of single and dual core parts.
1177 			 *
1178 			 * In family 0x10 CMPs cpuid fn 2 ECX[15:12]
1179 			 * "ApicIdCoreIdSize[3:0]" tells us how
1180 			 * many least-significant bits in the ApicId
1181 			 * are used to represent the core number
1182 			 * within the node.  Cores are always
1183 			 * numbered sequentially from 0 regardless
1184 			 * of how many or which are disabled, and
1185 			 * there seems to be no way to discover the
1186 			 * real core id when some are disabled.
1187 			 */
1188 			cpi->cpi_coreid = cpu->cpu_id;
1189 
1190 			if (cpi->cpi_family == 0x10 &&
1191 			    cpi->cpi_xmaxeax >= 0x80000008) {
1192 				int coreidsz =
1193 				    BITX((cpi)->cpi_extd[8].cp_ecx, 15, 12);
1194 
1195 				cpi->cpi_pkgcoreid =
1196 				    apic_id & ((1 << coreidsz) - 1);
1197 			} else {
1198 				cpi->cpi_pkgcoreid = cpi->cpi_clogid;
1199 			}
1200 		} else {
1201 			/*
1202 			 * All other processors are currently
1203 			 * assumed to have single cores.
1204 			 */
1205 			cpi->cpi_coreid = cpi->cpi_chipid;
1206 			cpi->cpi_pkgcoreid = 0;
1207 		}
1208 	}
1209 
1210 	cpi->cpi_apicid = CPI_APIC_ID(cpi);
1211 
1212 	/*
1213 	 * Synthesize chip "revision" and socket type
1214 	 */
1215 	cpi->cpi_chiprev = _cpuid_chiprev(cpi->cpi_vendor, cpi->cpi_family,
1216 	    cpi->cpi_model, cpi->cpi_step);
1217 	cpi->cpi_chiprevstr = _cpuid_chiprevstr(cpi->cpi_vendor,
1218 	    cpi->cpi_family, cpi->cpi_model, cpi->cpi_step);
1219 	cpi->cpi_socket = _cpuid_skt(cpi->cpi_vendor, cpi->cpi_family,
1220 	    cpi->cpi_model, cpi->cpi_step);
1221 
1222 pass1_done:
1223 #if !defined(__xpv)
1224 	determine_platform();
1225 #endif
1226 	cpi->cpi_pass = 1;
1227 	return (feature);
1228 }
1229 
1230 /*
1231  * Make copies of the cpuid table entries we depend on, in
1232  * part for ease of parsing now, in part so that we have only
1233  * one place to correct any of it, in part for ease of
1234  * later export to userland, and in part so we can look at
1235  * this stuff in a crash dump.
1236  */
1237 
1238 /*ARGSUSED*/
1239 void
1240 cpuid_pass2(cpu_t *cpu)
1241 {
1242 	uint_t n, nmax;
1243 	int i;
1244 	struct cpuid_regs *cp;
1245 	uint8_t *dp;
1246 	uint32_t *iptr;
1247 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1248 
1249 	ASSERT(cpi->cpi_pass == 1);
1250 
1251 	if (cpi->cpi_maxeax < 1)
1252 		goto pass2_done;
1253 
1254 	if ((nmax = cpi->cpi_maxeax + 1) > NMAX_CPI_STD)
1255 		nmax = NMAX_CPI_STD;
1256 	/*
1257 	 * (We already handled n == 0 and n == 1 in pass 1)
1258 	 */
1259 	for (n = 2, cp = &cpi->cpi_std[2]; n < nmax; n++, cp++) {
1260 		cp->cp_eax = n;
1261 
1262 		/*
1263 		 * CPUID function 4 expects %ecx to be initialized
1264 		 * with an index which indicates which cache to return
1265 		 * information about. The OS is expected to call function 4
1266 		 * with %ecx set to 0, 1, 2, ... until it returns with
1267 		 * EAX[4:0] set to 0, which indicates there are no more
1268 		 * caches.
1269 		 *
1270 		 * Here, populate cpi_std[4] with the information returned by
1271 		 * function 4 when %ecx == 0, and do the rest in cpuid_pass3()
1272 		 * when dynamic memory allocation becomes available.
1273 		 *
1274 		 * Note: we need to explicitly initialize %ecx here, since
1275 		 * function 4 may have been previously invoked.
1276 		 */
1277 		if (n == 4)
1278 			cp->cp_ecx = 0;
1279 
1280 		(void) __cpuid_insn(cp);
1281 		platform_cpuid_mangle(cpi->cpi_vendor, n, cp);
1282 		switch (n) {
1283 		case 2:
1284 			/*
1285 			 * "the lower 8 bits of the %eax register
1286 			 * contain a value that identifies the number
1287 			 * of times the cpuid [instruction] has to be
1288 			 * executed to obtain a complete image of the
1289 			 * processor's caching systems."
1290 			 *
1291 			 * How *do* they make this stuff up?
1292 			 */
1293 			cpi->cpi_ncache = sizeof (*cp) *
1294 			    BITX(cp->cp_eax, 7, 0);
1295 			if (cpi->cpi_ncache == 0)
1296 				break;
1297 			cpi->cpi_ncache--;	/* skip count byte */
1298 
1299 			/*
1300 			 * Well, for now, rather than attempt to implement
1301 			 * this slightly dubious algorithm, we just look
1302 			 * at the first 15 ..
1303 			 */
1304 			if (cpi->cpi_ncache > (sizeof (*cp) - 1))
1305 				cpi->cpi_ncache = sizeof (*cp) - 1;
1306 
1307 			dp = cpi->cpi_cacheinfo;
1308 			if (BITX(cp->cp_eax, 31, 31) == 0) {
1309 				uint8_t *p = (void *)&cp->cp_eax;
1310 				for (i = 1; i < 4; i++)
1311 					if (p[i] != 0)
1312 						*dp++ = p[i];
1313 			}
1314 			if (BITX(cp->cp_ebx, 31, 31) == 0) {
1315 				uint8_t *p = (void *)&cp->cp_ebx;
1316 				for (i = 0; i < 4; i++)
1317 					if (p[i] != 0)
1318 						*dp++ = p[i];
1319 			}
1320 			if (BITX(cp->cp_ecx, 31, 31) == 0) {
1321 				uint8_t *p = (void *)&cp->cp_ecx;
1322 				for (i = 0; i < 4; i++)
1323 					if (p[i] != 0)
1324 						*dp++ = p[i];
1325 			}
1326 			if (BITX(cp->cp_edx, 31, 31) == 0) {
1327 				uint8_t *p = (void *)&cp->cp_edx;
1328 				for (i = 0; i < 4; i++)
1329 					if (p[i] != 0)
1330 						*dp++ = p[i];
1331 			}
1332 			break;
1333 
1334 		case 3:	/* Processor serial number, if PSN supported */
1335 			break;
1336 
1337 		case 4:	/* Deterministic cache parameters */
1338 			break;
1339 
1340 		case 5:	/* Monitor/Mwait parameters */
1341 		{
1342 			size_t mwait_size;
1343 
1344 			/*
1345 			 * check cpi_mwait.support which was set in cpuid_pass1
1346 			 */
1347 			if (!(cpi->cpi_mwait.support & MWAIT_SUPPORT))
1348 				break;
1349 
1350 			/*
1351 			 * Protect ourself from insane mwait line size.
1352 			 * Workaround for incomplete hardware emulator(s).
1353 			 */
1354 			mwait_size = (size_t)MWAIT_SIZE_MAX(cpi);
1355 			if (mwait_size < sizeof (uint32_t) ||
1356 			    !ISP2(mwait_size)) {
1357 #if DEBUG
1358 				cmn_err(CE_NOTE, "Cannot handle cpu %d mwait "
1359 				    "size %ld", cpu->cpu_id, (long)mwait_size);
1360 #endif
1361 				break;
1362 			}
1363 
1364 			cpi->cpi_mwait.mon_min = (size_t)MWAIT_SIZE_MIN(cpi);
1365 			cpi->cpi_mwait.mon_max = mwait_size;
1366 			if (MWAIT_EXTENSION(cpi)) {
1367 				cpi->cpi_mwait.support |= MWAIT_EXTENSIONS;
1368 				if (MWAIT_INT_ENABLE(cpi))
1369 					cpi->cpi_mwait.support |=
1370 					    MWAIT_ECX_INT_ENABLE;
1371 			}
1372 			break;
1373 		}
1374 		default:
1375 			break;
1376 		}
1377 	}
1378 
1379 	if (cpi->cpi_maxeax >= 0xB && cpi->cpi_vendor == X86_VENDOR_Intel) {
1380 		struct cpuid_regs regs;
1381 
1382 		cp = &regs;
1383 		cp->cp_eax = 0xB;
1384 		cp->cp_edx = cp->cp_ebx = cp->cp_ecx = 0;
1385 
1386 		(void) __cpuid_insn(cp);
1387 
1388 		/*
1389 		 * Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero, which
1390 		 * indicates that the extended topology enumeration leaf is
1391 		 * available.
1392 		 */
1393 		if (cp->cp_ebx) {
1394 			uint32_t x2apic_id;
1395 			uint_t coreid_shift = 0;
1396 			uint_t ncpu_per_core = 1;
1397 			uint_t chipid_shift = 0;
1398 			uint_t ncpu_per_chip = 1;
1399 			uint_t i;
1400 			uint_t level;
1401 
1402 			for (i = 0; i < CPI_FNB_ECX_MAX; i++) {
1403 				cp->cp_eax = 0xB;
1404 				cp->cp_ecx = i;
1405 
1406 				(void) __cpuid_insn(cp);
1407 				level = CPI_CPU_LEVEL_TYPE(cp);
1408 
1409 				if (level == 1) {
1410 					x2apic_id = cp->cp_edx;
1411 					coreid_shift = BITX(cp->cp_eax, 4, 0);
1412 					ncpu_per_core = BITX(cp->cp_ebx, 15, 0);
1413 				} else if (level == 2) {
1414 					x2apic_id = cp->cp_edx;
1415 					chipid_shift = BITX(cp->cp_eax, 4, 0);
1416 					ncpu_per_chip = BITX(cp->cp_ebx, 15, 0);
1417 				}
1418 			}
1419 
1420 			cpi->cpi_apicid = x2apic_id;
1421 			cpi->cpi_ncpu_per_chip = ncpu_per_chip;
1422 			cpi->cpi_ncore_per_chip = ncpu_per_chip /
1423 			    ncpu_per_core;
1424 			cpi->cpi_chipid = x2apic_id >> chipid_shift;
1425 			cpi->cpi_clogid = x2apic_id & ((1 << chipid_shift) - 1);
1426 			cpi->cpi_coreid = x2apic_id >> coreid_shift;
1427 			cpi->cpi_pkgcoreid = cpi->cpi_clogid >> coreid_shift;
1428 		}
1429 
1430 		/* Make cp NULL so that we don't stumble on others */
1431 		cp = NULL;
1432 	}
1433 
1434 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0)
1435 		goto pass2_done;
1436 
1437 	if ((nmax = cpi->cpi_xmaxeax - 0x80000000 + 1) > NMAX_CPI_EXTD)
1438 		nmax = NMAX_CPI_EXTD;
1439 	/*
1440 	 * Copy the extended properties, fixing them as we go.
1441 	 * (We already handled n == 0 and n == 1 in pass 1)
1442 	 */
1443 	iptr = (void *)cpi->cpi_brandstr;
1444 	for (n = 2, cp = &cpi->cpi_extd[2]; n < nmax; cp++, n++) {
1445 		cp->cp_eax = 0x80000000 + n;
1446 		(void) __cpuid_insn(cp);
1447 		platform_cpuid_mangle(cpi->cpi_vendor, 0x80000000 + n, cp);
1448 		switch (n) {
1449 		case 2:
1450 		case 3:
1451 		case 4:
1452 			/*
1453 			 * Extract the brand string
1454 			 */
1455 			*iptr++ = cp->cp_eax;
1456 			*iptr++ = cp->cp_ebx;
1457 			*iptr++ = cp->cp_ecx;
1458 			*iptr++ = cp->cp_edx;
1459 			break;
1460 		case 5:
1461 			switch (cpi->cpi_vendor) {
1462 			case X86_VENDOR_AMD:
1463 				/*
1464 				 * The Athlon and Duron were the first
1465 				 * parts to report the sizes of the
1466 				 * TLB for large pages. Before then,
1467 				 * we don't trust the data.
1468 				 */
1469 				if (cpi->cpi_family < 6 ||
1470 				    (cpi->cpi_family == 6 &&
1471 				    cpi->cpi_model < 1))
1472 					cp->cp_eax = 0;
1473 				break;
1474 			default:
1475 				break;
1476 			}
1477 			break;
1478 		case 6:
1479 			switch (cpi->cpi_vendor) {
1480 			case X86_VENDOR_AMD:
1481 				/*
1482 				 * The Athlon and Duron were the first
1483 				 * AMD parts with L2 TLB's.
1484 				 * Before then, don't trust the data.
1485 				 */
1486 				if (cpi->cpi_family < 6 ||
1487 				    cpi->cpi_family == 6 &&
1488 				    cpi->cpi_model < 1)
1489 					cp->cp_eax = cp->cp_ebx = 0;
1490 				/*
1491 				 * AMD Duron rev A0 reports L2
1492 				 * cache size incorrectly as 1K
1493 				 * when it is really 64K
1494 				 */
1495 				if (cpi->cpi_family == 6 &&
1496 				    cpi->cpi_model == 3 &&
1497 				    cpi->cpi_step == 0) {
1498 					cp->cp_ecx &= 0xffff;
1499 					cp->cp_ecx |= 0x400000;
1500 				}
1501 				break;
1502 			case X86_VENDOR_Cyrix:	/* VIA C3 */
1503 				/*
1504 				 * VIA C3 processors are a bit messed
1505 				 * up w.r.t. encoding cache sizes in %ecx
1506 				 */
1507 				if (cpi->cpi_family != 6)
1508 					break;
1509 				/*
1510 				 * model 7 and 8 were incorrectly encoded
1511 				 *
1512 				 * xxx is model 8 really broken?
1513 				 */
1514 				if (cpi->cpi_model == 7 ||
1515 				    cpi->cpi_model == 8)
1516 					cp->cp_ecx =
1517 					    BITX(cp->cp_ecx, 31, 24) << 16 |
1518 					    BITX(cp->cp_ecx, 23, 16) << 12 |
1519 					    BITX(cp->cp_ecx, 15, 8) << 8 |
1520 					    BITX(cp->cp_ecx, 7, 0);
1521 				/*
1522 				 * model 9 stepping 1 has wrong associativity
1523 				 */
1524 				if (cpi->cpi_model == 9 && cpi->cpi_step == 1)
1525 					cp->cp_ecx |= 8 << 12;
1526 				break;
1527 			case X86_VENDOR_Intel:
1528 				/*
1529 				 * Extended L2 Cache features function.
1530 				 * First appeared on Prescott.
1531 				 */
1532 			default:
1533 				break;
1534 			}
1535 			break;
1536 		default:
1537 			break;
1538 		}
1539 	}
1540 
1541 pass2_done:
1542 	cpi->cpi_pass = 2;
1543 }
1544 
1545 static const char *
1546 intel_cpubrand(const struct cpuid_info *cpi)
1547 {
1548 	int i;
1549 
1550 	if ((x86_feature & X86_CPUID) == 0 ||
1551 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1552 		return ("i486");
1553 
1554 	switch (cpi->cpi_family) {
1555 	case 5:
1556 		return ("Intel Pentium(r)");
1557 	case 6:
1558 		switch (cpi->cpi_model) {
1559 			uint_t celeron, xeon;
1560 			const struct cpuid_regs *cp;
1561 		case 0:
1562 		case 1:
1563 		case 2:
1564 			return ("Intel Pentium(r) Pro");
1565 		case 3:
1566 		case 4:
1567 			return ("Intel Pentium(r) II");
1568 		case 6:
1569 			return ("Intel Celeron(r)");
1570 		case 5:
1571 		case 7:
1572 			celeron = xeon = 0;
1573 			cp = &cpi->cpi_std[2];	/* cache info */
1574 
1575 			for (i = 1; i < 4; i++) {
1576 				uint_t tmp;
1577 
1578 				tmp = (cp->cp_eax >> (8 * i)) & 0xff;
1579 				if (tmp == 0x40)
1580 					celeron++;
1581 				if (tmp >= 0x44 && tmp <= 0x45)
1582 					xeon++;
1583 			}
1584 
1585 			for (i = 0; i < 2; i++) {
1586 				uint_t tmp;
1587 
1588 				tmp = (cp->cp_ebx >> (8 * i)) & 0xff;
1589 				if (tmp == 0x40)
1590 					celeron++;
1591 				else if (tmp >= 0x44 && tmp <= 0x45)
1592 					xeon++;
1593 			}
1594 
1595 			for (i = 0; i < 4; i++) {
1596 				uint_t tmp;
1597 
1598 				tmp = (cp->cp_ecx >> (8 * i)) & 0xff;
1599 				if (tmp == 0x40)
1600 					celeron++;
1601 				else if (tmp >= 0x44 && tmp <= 0x45)
1602 					xeon++;
1603 			}
1604 
1605 			for (i = 0; i < 4; i++) {
1606 				uint_t tmp;
1607 
1608 				tmp = (cp->cp_edx >> (8 * i)) & 0xff;
1609 				if (tmp == 0x40)
1610 					celeron++;
1611 				else if (tmp >= 0x44 && tmp <= 0x45)
1612 					xeon++;
1613 			}
1614 
1615 			if (celeron)
1616 				return ("Intel Celeron(r)");
1617 			if (xeon)
1618 				return (cpi->cpi_model == 5 ?
1619 				    "Intel Pentium(r) II Xeon(tm)" :
1620 				    "Intel Pentium(r) III Xeon(tm)");
1621 			return (cpi->cpi_model == 5 ?
1622 			    "Intel Pentium(r) II or Pentium(r) II Xeon(tm)" :
1623 			    "Intel Pentium(r) III or Pentium(r) III Xeon(tm)");
1624 		default:
1625 			break;
1626 		}
1627 	default:
1628 		break;
1629 	}
1630 
1631 	/* BrandID is present if the field is nonzero */
1632 	if (cpi->cpi_brandid != 0) {
1633 		static const struct {
1634 			uint_t bt_bid;
1635 			const char *bt_str;
1636 		} brand_tbl[] = {
1637 			{ 0x1,	"Intel(r) Celeron(r)" },
1638 			{ 0x2,	"Intel(r) Pentium(r) III" },
1639 			{ 0x3,	"Intel(r) Pentium(r) III Xeon(tm)" },
1640 			{ 0x4,	"Intel(r) Pentium(r) III" },
1641 			{ 0x6,	"Mobile Intel(r) Pentium(r) III" },
1642 			{ 0x7,	"Mobile Intel(r) Celeron(r)" },
1643 			{ 0x8,	"Intel(r) Pentium(r) 4" },
1644 			{ 0x9,	"Intel(r) Pentium(r) 4" },
1645 			{ 0xa,	"Intel(r) Celeron(r)" },
1646 			{ 0xb,	"Intel(r) Xeon(tm)" },
1647 			{ 0xc,	"Intel(r) Xeon(tm) MP" },
1648 			{ 0xe,	"Mobile Intel(r) Pentium(r) 4" },
1649 			{ 0xf,	"Mobile Intel(r) Celeron(r)" },
1650 			{ 0x11, "Mobile Genuine Intel(r)" },
1651 			{ 0x12, "Intel(r) Celeron(r) M" },
1652 			{ 0x13, "Mobile Intel(r) Celeron(r)" },
1653 			{ 0x14, "Intel(r) Celeron(r)" },
1654 			{ 0x15, "Mobile Genuine Intel(r)" },
1655 			{ 0x16,	"Intel(r) Pentium(r) M" },
1656 			{ 0x17, "Mobile Intel(r) Celeron(r)" }
1657 		};
1658 		uint_t btblmax = sizeof (brand_tbl) / sizeof (brand_tbl[0]);
1659 		uint_t sgn;
1660 
1661 		sgn = (cpi->cpi_family << 8) |
1662 		    (cpi->cpi_model << 4) | cpi->cpi_step;
1663 
1664 		for (i = 0; i < btblmax; i++)
1665 			if (brand_tbl[i].bt_bid == cpi->cpi_brandid)
1666 				break;
1667 		if (i < btblmax) {
1668 			if (sgn == 0x6b1 && cpi->cpi_brandid == 3)
1669 				return ("Intel(r) Celeron(r)");
1670 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xb)
1671 				return ("Intel(r) Xeon(tm) MP");
1672 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xe)
1673 				return ("Intel(r) Xeon(tm)");
1674 			return (brand_tbl[i].bt_str);
1675 		}
1676 	}
1677 
1678 	return (NULL);
1679 }
1680 
1681 static const char *
1682 amd_cpubrand(const struct cpuid_info *cpi)
1683 {
1684 	if ((x86_feature & X86_CPUID) == 0 ||
1685 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1686 		return ("i486 compatible");
1687 
1688 	switch (cpi->cpi_family) {
1689 	case 5:
1690 		switch (cpi->cpi_model) {
1691 		case 0:
1692 		case 1:
1693 		case 2:
1694 		case 3:
1695 		case 4:
1696 		case 5:
1697 			return ("AMD-K5(r)");
1698 		case 6:
1699 		case 7:
1700 			return ("AMD-K6(r)");
1701 		case 8:
1702 			return ("AMD-K6(r)-2");
1703 		case 9:
1704 			return ("AMD-K6(r)-III");
1705 		default:
1706 			return ("AMD (family 5)");
1707 		}
1708 	case 6:
1709 		switch (cpi->cpi_model) {
1710 		case 1:
1711 			return ("AMD-K7(tm)");
1712 		case 0:
1713 		case 2:
1714 		case 4:
1715 			return ("AMD Athlon(tm)");
1716 		case 3:
1717 		case 7:
1718 			return ("AMD Duron(tm)");
1719 		case 6:
1720 		case 8:
1721 		case 10:
1722 			/*
1723 			 * Use the L2 cache size to distinguish
1724 			 */
1725 			return ((cpi->cpi_extd[6].cp_ecx >> 16) >= 256 ?
1726 			    "AMD Athlon(tm)" : "AMD Duron(tm)");
1727 		default:
1728 			return ("AMD (family 6)");
1729 		}
1730 	default:
1731 		break;
1732 	}
1733 
1734 	if (cpi->cpi_family == 0xf && cpi->cpi_model == 5 &&
1735 	    cpi->cpi_brandid != 0) {
1736 		switch (BITX(cpi->cpi_brandid, 7, 5)) {
1737 		case 3:
1738 			return ("AMD Opteron(tm) UP 1xx");
1739 		case 4:
1740 			return ("AMD Opteron(tm) DP 2xx");
1741 		case 5:
1742 			return ("AMD Opteron(tm) MP 8xx");
1743 		default:
1744 			return ("AMD Opteron(tm)");
1745 		}
1746 	}
1747 
1748 	return (NULL);
1749 }
1750 
1751 static const char *
1752 cyrix_cpubrand(struct cpuid_info *cpi, uint_t type)
1753 {
1754 	if ((x86_feature & X86_CPUID) == 0 ||
1755 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5 ||
1756 	    type == X86_TYPE_CYRIX_486)
1757 		return ("i486 compatible");
1758 
1759 	switch (type) {
1760 	case X86_TYPE_CYRIX_6x86:
1761 		return ("Cyrix 6x86");
1762 	case X86_TYPE_CYRIX_6x86L:
1763 		return ("Cyrix 6x86L");
1764 	case X86_TYPE_CYRIX_6x86MX:
1765 		return ("Cyrix 6x86MX");
1766 	case X86_TYPE_CYRIX_GXm:
1767 		return ("Cyrix GXm");
1768 	case X86_TYPE_CYRIX_MediaGX:
1769 		return ("Cyrix MediaGX");
1770 	case X86_TYPE_CYRIX_MII:
1771 		return ("Cyrix M2");
1772 	case X86_TYPE_VIA_CYRIX_III:
1773 		return ("VIA Cyrix M3");
1774 	default:
1775 		/*
1776 		 * Have another wild guess ..
1777 		 */
1778 		if (cpi->cpi_family == 4 && cpi->cpi_model == 9)
1779 			return ("Cyrix 5x86");
1780 		else if (cpi->cpi_family == 5) {
1781 			switch (cpi->cpi_model) {
1782 			case 2:
1783 				return ("Cyrix 6x86");	/* Cyrix M1 */
1784 			case 4:
1785 				return ("Cyrix MediaGX");
1786 			default:
1787 				break;
1788 			}
1789 		} else if (cpi->cpi_family == 6) {
1790 			switch (cpi->cpi_model) {
1791 			case 0:
1792 				return ("Cyrix 6x86MX"); /* Cyrix M2? */
1793 			case 5:
1794 			case 6:
1795 			case 7:
1796 			case 8:
1797 			case 9:
1798 				return ("VIA C3");
1799 			default:
1800 				break;
1801 			}
1802 		}
1803 		break;
1804 	}
1805 	return (NULL);
1806 }
1807 
1808 /*
1809  * This only gets called in the case that the CPU extended
1810  * feature brand string (0x80000002, 0x80000003, 0x80000004)
1811  * aren't available, or contain null bytes for some reason.
1812  */
1813 static void
1814 fabricate_brandstr(struct cpuid_info *cpi)
1815 {
1816 	const char *brand = NULL;
1817 
1818 	switch (cpi->cpi_vendor) {
1819 	case X86_VENDOR_Intel:
1820 		brand = intel_cpubrand(cpi);
1821 		break;
1822 	case X86_VENDOR_AMD:
1823 		brand = amd_cpubrand(cpi);
1824 		break;
1825 	case X86_VENDOR_Cyrix:
1826 		brand = cyrix_cpubrand(cpi, x86_type);
1827 		break;
1828 	case X86_VENDOR_NexGen:
1829 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1830 			brand = "NexGen Nx586";
1831 		break;
1832 	case X86_VENDOR_Centaur:
1833 		if (cpi->cpi_family == 5)
1834 			switch (cpi->cpi_model) {
1835 			case 4:
1836 				brand = "Centaur C6";
1837 				break;
1838 			case 8:
1839 				brand = "Centaur C2";
1840 				break;
1841 			case 9:
1842 				brand = "Centaur C3";
1843 				break;
1844 			default:
1845 				break;
1846 			}
1847 		break;
1848 	case X86_VENDOR_Rise:
1849 		if (cpi->cpi_family == 5 &&
1850 		    (cpi->cpi_model == 0 || cpi->cpi_model == 2))
1851 			brand = "Rise mP6";
1852 		break;
1853 	case X86_VENDOR_SiS:
1854 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1855 			brand = "SiS 55x";
1856 		break;
1857 	case X86_VENDOR_TM:
1858 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4)
1859 			brand = "Transmeta Crusoe TM3x00 or TM5x00";
1860 		break;
1861 	case X86_VENDOR_NSC:
1862 	case X86_VENDOR_UMC:
1863 	default:
1864 		break;
1865 	}
1866 	if (brand) {
1867 		(void) strcpy((char *)cpi->cpi_brandstr, brand);
1868 		return;
1869 	}
1870 
1871 	/*
1872 	 * If all else fails ...
1873 	 */
1874 	(void) snprintf(cpi->cpi_brandstr, sizeof (cpi->cpi_brandstr),
1875 	    "%s %d.%d.%d", cpi->cpi_vendorstr, cpi->cpi_family,
1876 	    cpi->cpi_model, cpi->cpi_step);
1877 }
1878 
1879 /*
1880  * This routine is called just after kernel memory allocation
1881  * becomes available on cpu0, and as part of mp_startup() on
1882  * the other cpus.
1883  *
1884  * Fixup the brand string, and collect any information from cpuid
1885  * that requires dynamicically allocated storage to represent.
1886  */
1887 /*ARGSUSED*/
1888 void
1889 cpuid_pass3(cpu_t *cpu)
1890 {
1891 	int	i, max, shft, level, size;
1892 	struct cpuid_regs regs;
1893 	struct cpuid_regs *cp;
1894 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1895 
1896 	ASSERT(cpi->cpi_pass == 2);
1897 
1898 	/*
1899 	 * Function 4: Deterministic cache parameters
1900 	 *
1901 	 * Take this opportunity to detect the number of threads
1902 	 * sharing the last level cache, and construct a corresponding
1903 	 * cache id. The respective cpuid_info members are initialized
1904 	 * to the default case of "no last level cache sharing".
1905 	 */
1906 	cpi->cpi_ncpu_shr_last_cache = 1;
1907 	cpi->cpi_last_lvl_cacheid = cpu->cpu_id;
1908 
1909 	if (cpi->cpi_maxeax >= 4 && cpi->cpi_vendor == X86_VENDOR_Intel) {
1910 
1911 		/*
1912 		 * Find the # of elements (size) returned by fn 4, and along
1913 		 * the way detect last level cache sharing details.
1914 		 */
1915 		bzero(&regs, sizeof (regs));
1916 		cp = &regs;
1917 		for (i = 0, max = 0; i < CPI_FN4_ECX_MAX; i++) {
1918 			cp->cp_eax = 4;
1919 			cp->cp_ecx = i;
1920 
1921 			(void) __cpuid_insn(cp);
1922 
1923 			if (CPI_CACHE_TYPE(cp) == 0)
1924 				break;
1925 			level = CPI_CACHE_LVL(cp);
1926 			if (level > max) {
1927 				max = level;
1928 				cpi->cpi_ncpu_shr_last_cache =
1929 				    CPI_NTHR_SHR_CACHE(cp) + 1;
1930 			}
1931 		}
1932 		cpi->cpi_std_4_size = size = i;
1933 
1934 		/*
1935 		 * Allocate the cpi_std_4 array. The first element
1936 		 * references the regs for fn 4, %ecx == 0, which
1937 		 * cpuid_pass2() stashed in cpi->cpi_std[4].
1938 		 */
1939 		if (size > 0) {
1940 			cpi->cpi_std_4 =
1941 			    kmem_alloc(size * sizeof (cp), KM_SLEEP);
1942 			cpi->cpi_std_4[0] = &cpi->cpi_std[4];
1943 
1944 			/*
1945 			 * Allocate storage to hold the additional regs
1946 			 * for function 4, %ecx == 1 .. cpi_std_4_size.
1947 			 *
1948 			 * The regs for fn 4, %ecx == 0 has already
1949 			 * been allocated as indicated above.
1950 			 */
1951 			for (i = 1; i < size; i++) {
1952 				cp = cpi->cpi_std_4[i] =
1953 				    kmem_zalloc(sizeof (regs), KM_SLEEP);
1954 				cp->cp_eax = 4;
1955 				cp->cp_ecx = i;
1956 
1957 				(void) __cpuid_insn(cp);
1958 			}
1959 		}
1960 		/*
1961 		 * Determine the number of bits needed to represent
1962 		 * the number of CPUs sharing the last level cache.
1963 		 *
1964 		 * Shift off that number of bits from the APIC id to
1965 		 * derive the cache id.
1966 		 */
1967 		shft = 0;
1968 		for (i = 1; i < cpi->cpi_ncpu_shr_last_cache; i <<= 1)
1969 			shft++;
1970 		cpi->cpi_last_lvl_cacheid = cpi->cpi_apicid >> shft;
1971 	}
1972 
1973 	/*
1974 	 * Now fixup the brand string
1975 	 */
1976 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0) {
1977 		fabricate_brandstr(cpi);
1978 	} else {
1979 
1980 		/*
1981 		 * If we successfully extracted a brand string from the cpuid
1982 		 * instruction, clean it up by removing leading spaces and
1983 		 * similar junk.
1984 		 */
1985 		if (cpi->cpi_brandstr[0]) {
1986 			size_t maxlen = sizeof (cpi->cpi_brandstr);
1987 			char *src, *dst;
1988 
1989 			dst = src = (char *)cpi->cpi_brandstr;
1990 			src[maxlen - 1] = '\0';
1991 			/*
1992 			 * strip leading spaces
1993 			 */
1994 			while (*src == ' ')
1995 				src++;
1996 			/*
1997 			 * Remove any 'Genuine' or "Authentic" prefixes
1998 			 */
1999 			if (strncmp(src, "Genuine ", 8) == 0)
2000 				src += 8;
2001 			if (strncmp(src, "Authentic ", 10) == 0)
2002 				src += 10;
2003 
2004 			/*
2005 			 * Now do an in-place copy.
2006 			 * Map (R) to (r) and (TM) to (tm).
2007 			 * The era of teletypes is long gone, and there's
2008 			 * -really- no need to shout.
2009 			 */
2010 			while (*src != '\0') {
2011 				if (src[0] == '(') {
2012 					if (strncmp(src + 1, "R)", 2) == 0) {
2013 						(void) strncpy(dst, "(r)", 3);
2014 						src += 3;
2015 						dst += 3;
2016 						continue;
2017 					}
2018 					if (strncmp(src + 1, "TM)", 3) == 0) {
2019 						(void) strncpy(dst, "(tm)", 4);
2020 						src += 4;
2021 						dst += 4;
2022 						continue;
2023 					}
2024 				}
2025 				*dst++ = *src++;
2026 			}
2027 			*dst = '\0';
2028 
2029 			/*
2030 			 * Finally, remove any trailing spaces
2031 			 */
2032 			while (--dst > cpi->cpi_brandstr)
2033 				if (*dst == ' ')
2034 					*dst = '\0';
2035 				else
2036 					break;
2037 		} else
2038 			fabricate_brandstr(cpi);
2039 	}
2040 	cpi->cpi_pass = 3;
2041 }
2042 
2043 /*
2044  * This routine is called out of bind_hwcap() much later in the life
2045  * of the kernel (post_startup()).  The job of this routine is to resolve
2046  * the hardware feature support and kernel support for those features into
2047  * what we're actually going to tell applications via the aux vector.
2048  */
2049 uint_t
2050 cpuid_pass4(cpu_t *cpu)
2051 {
2052 	struct cpuid_info *cpi;
2053 	uint_t hwcap_flags = 0;
2054 
2055 	if (cpu == NULL)
2056 		cpu = CPU;
2057 	cpi = cpu->cpu_m.mcpu_cpi;
2058 
2059 	ASSERT(cpi->cpi_pass == 3);
2060 
2061 	if (cpi->cpi_maxeax >= 1) {
2062 		uint32_t *edx = &cpi->cpi_support[STD_EDX_FEATURES];
2063 		uint32_t *ecx = &cpi->cpi_support[STD_ECX_FEATURES];
2064 
2065 		*edx = CPI_FEATURES_EDX(cpi);
2066 		*ecx = CPI_FEATURES_ECX(cpi);
2067 
2068 		/*
2069 		 * [these require explicit kernel support]
2070 		 */
2071 		if ((x86_feature & X86_SEP) == 0)
2072 			*edx &= ~CPUID_INTC_EDX_SEP;
2073 
2074 		if ((x86_feature & X86_SSE) == 0)
2075 			*edx &= ~(CPUID_INTC_EDX_FXSR|CPUID_INTC_EDX_SSE);
2076 		if ((x86_feature & X86_SSE2) == 0)
2077 			*edx &= ~CPUID_INTC_EDX_SSE2;
2078 
2079 		if ((x86_feature & X86_HTT) == 0)
2080 			*edx &= ~CPUID_INTC_EDX_HTT;
2081 
2082 		if ((x86_feature & X86_SSE3) == 0)
2083 			*ecx &= ~CPUID_INTC_ECX_SSE3;
2084 
2085 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
2086 			if ((x86_feature & X86_SSSE3) == 0)
2087 				*ecx &= ~CPUID_INTC_ECX_SSSE3;
2088 			if ((x86_feature & X86_SSE4_1) == 0)
2089 				*ecx &= ~CPUID_INTC_ECX_SSE4_1;
2090 			if ((x86_feature & X86_SSE4_2) == 0)
2091 				*ecx &= ~CPUID_INTC_ECX_SSE4_2;
2092 		}
2093 
2094 		/*
2095 		 * [no explicit support required beyond x87 fp context]
2096 		 */
2097 		if (!fpu_exists)
2098 			*edx &= ~(CPUID_INTC_EDX_FPU | CPUID_INTC_EDX_MMX);
2099 
2100 		/*
2101 		 * Now map the supported feature vector to things that we
2102 		 * think userland will care about.
2103 		 */
2104 		if (*edx & CPUID_INTC_EDX_SEP)
2105 			hwcap_flags |= AV_386_SEP;
2106 		if (*edx & CPUID_INTC_EDX_SSE)
2107 			hwcap_flags |= AV_386_FXSR | AV_386_SSE;
2108 		if (*edx & CPUID_INTC_EDX_SSE2)
2109 			hwcap_flags |= AV_386_SSE2;
2110 		if (*ecx & CPUID_INTC_ECX_SSE3)
2111 			hwcap_flags |= AV_386_SSE3;
2112 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
2113 			if (*ecx & CPUID_INTC_ECX_SSSE3)
2114 				hwcap_flags |= AV_386_SSSE3;
2115 			if (*ecx & CPUID_INTC_ECX_SSE4_1)
2116 				hwcap_flags |= AV_386_SSE4_1;
2117 			if (*ecx & CPUID_INTC_ECX_SSE4_2)
2118 				hwcap_flags |= AV_386_SSE4_2;
2119 			if (*ecx & CPUID_INTC_ECX_MOVBE)
2120 				hwcap_flags |= AV_386_MOVBE;
2121 		}
2122 		if (*ecx & CPUID_INTC_ECX_POPCNT)
2123 			hwcap_flags |= AV_386_POPCNT;
2124 		if (*edx & CPUID_INTC_EDX_FPU)
2125 			hwcap_flags |= AV_386_FPU;
2126 		if (*edx & CPUID_INTC_EDX_MMX)
2127 			hwcap_flags |= AV_386_MMX;
2128 
2129 		if (*edx & CPUID_INTC_EDX_TSC)
2130 			hwcap_flags |= AV_386_TSC;
2131 		if (*edx & CPUID_INTC_EDX_CX8)
2132 			hwcap_flags |= AV_386_CX8;
2133 		if (*edx & CPUID_INTC_EDX_CMOV)
2134 			hwcap_flags |= AV_386_CMOV;
2135 		if (*ecx & CPUID_INTC_ECX_MON)
2136 			hwcap_flags |= AV_386_MON;
2137 		if (*ecx & CPUID_INTC_ECX_CX16)
2138 			hwcap_flags |= AV_386_CX16;
2139 	}
2140 
2141 	if (x86_feature & X86_HTT)
2142 		hwcap_flags |= AV_386_PAUSE;
2143 
2144 	if (cpi->cpi_xmaxeax < 0x80000001)
2145 		goto pass4_done;
2146 
2147 	switch (cpi->cpi_vendor) {
2148 		struct cpuid_regs cp;
2149 		uint32_t *edx, *ecx;
2150 
2151 	case X86_VENDOR_Intel:
2152 		/*
2153 		 * Seems like Intel duplicated what we necessary
2154 		 * here to make the initial crop of 64-bit OS's work.
2155 		 * Hopefully, those are the only "extended" bits
2156 		 * they'll add.
2157 		 */
2158 		/*FALLTHROUGH*/
2159 
2160 	case X86_VENDOR_AMD:
2161 		edx = &cpi->cpi_support[AMD_EDX_FEATURES];
2162 		ecx = &cpi->cpi_support[AMD_ECX_FEATURES];
2163 
2164 		*edx = CPI_FEATURES_XTD_EDX(cpi);
2165 		*ecx = CPI_FEATURES_XTD_ECX(cpi);
2166 
2167 		/*
2168 		 * [these features require explicit kernel support]
2169 		 */
2170 		switch (cpi->cpi_vendor) {
2171 		case X86_VENDOR_Intel:
2172 			if ((x86_feature & X86_TSCP) == 0)
2173 				*edx &= ~CPUID_AMD_EDX_TSCP;
2174 			break;
2175 
2176 		case X86_VENDOR_AMD:
2177 			if ((x86_feature & X86_TSCP) == 0)
2178 				*edx &= ~CPUID_AMD_EDX_TSCP;
2179 			if ((x86_feature & X86_SSE4A) == 0)
2180 				*ecx &= ~CPUID_AMD_ECX_SSE4A;
2181 			break;
2182 
2183 		default:
2184 			break;
2185 		}
2186 
2187 		/*
2188 		 * [no explicit support required beyond
2189 		 * x87 fp context and exception handlers]
2190 		 */
2191 		if (!fpu_exists)
2192 			*edx &= ~(CPUID_AMD_EDX_MMXamd |
2193 			    CPUID_AMD_EDX_3DNow | CPUID_AMD_EDX_3DNowx);
2194 
2195 		if ((x86_feature & X86_NX) == 0)
2196 			*edx &= ~CPUID_AMD_EDX_NX;
2197 #if !defined(__amd64)
2198 		*edx &= ~CPUID_AMD_EDX_LM;
2199 #endif
2200 		/*
2201 		 * Now map the supported feature vector to
2202 		 * things that we think userland will care about.
2203 		 */
2204 #if defined(__amd64)
2205 		if (*edx & CPUID_AMD_EDX_SYSC)
2206 			hwcap_flags |= AV_386_AMD_SYSC;
2207 #endif
2208 		if (*edx & CPUID_AMD_EDX_MMXamd)
2209 			hwcap_flags |= AV_386_AMD_MMX;
2210 		if (*edx & CPUID_AMD_EDX_3DNow)
2211 			hwcap_flags |= AV_386_AMD_3DNow;
2212 		if (*edx & CPUID_AMD_EDX_3DNowx)
2213 			hwcap_flags |= AV_386_AMD_3DNowx;
2214 
2215 		switch (cpi->cpi_vendor) {
2216 		case X86_VENDOR_AMD:
2217 			if (*edx & CPUID_AMD_EDX_TSCP)
2218 				hwcap_flags |= AV_386_TSCP;
2219 			if (*ecx & CPUID_AMD_ECX_AHF64)
2220 				hwcap_flags |= AV_386_AHF;
2221 			if (*ecx & CPUID_AMD_ECX_SSE4A)
2222 				hwcap_flags |= AV_386_AMD_SSE4A;
2223 			if (*ecx & CPUID_AMD_ECX_LZCNT)
2224 				hwcap_flags |= AV_386_AMD_LZCNT;
2225 			break;
2226 
2227 		case X86_VENDOR_Intel:
2228 			if (*edx & CPUID_AMD_EDX_TSCP)
2229 				hwcap_flags |= AV_386_TSCP;
2230 			/*
2231 			 * Aarrgh.
2232 			 * Intel uses a different bit in the same word.
2233 			 */
2234 			if (*ecx & CPUID_INTC_ECX_AHF64)
2235 				hwcap_flags |= AV_386_AHF;
2236 			break;
2237 
2238 		default:
2239 			break;
2240 		}
2241 		break;
2242 
2243 	case X86_VENDOR_TM:
2244 		cp.cp_eax = 0x80860001;
2245 		(void) __cpuid_insn(&cp);
2246 		cpi->cpi_support[TM_EDX_FEATURES] = cp.cp_edx;
2247 		break;
2248 
2249 	default:
2250 		break;
2251 	}
2252 
2253 pass4_done:
2254 	cpi->cpi_pass = 4;
2255 	return (hwcap_flags);
2256 }
2257 
2258 
2259 /*
2260  * Simulate the cpuid instruction using the data we previously
2261  * captured about this CPU.  We try our best to return the truth
2262  * about the hardware, independently of kernel support.
2263  */
2264 uint32_t
2265 cpuid_insn(cpu_t *cpu, struct cpuid_regs *cp)
2266 {
2267 	struct cpuid_info *cpi;
2268 	struct cpuid_regs *xcp;
2269 
2270 	if (cpu == NULL)
2271 		cpu = CPU;
2272 	cpi = cpu->cpu_m.mcpu_cpi;
2273 
2274 	ASSERT(cpuid_checkpass(cpu, 3));
2275 
2276 	/*
2277 	 * CPUID data is cached in two separate places: cpi_std for standard
2278 	 * CPUID functions, and cpi_extd for extended CPUID functions.
2279 	 */
2280 	if (cp->cp_eax <= cpi->cpi_maxeax && cp->cp_eax < NMAX_CPI_STD)
2281 		xcp = &cpi->cpi_std[cp->cp_eax];
2282 	else if (cp->cp_eax >= 0x80000000 && cp->cp_eax <= cpi->cpi_xmaxeax &&
2283 	    cp->cp_eax < 0x80000000 + NMAX_CPI_EXTD)
2284 		xcp = &cpi->cpi_extd[cp->cp_eax - 0x80000000];
2285 	else
2286 		/*
2287 		 * The caller is asking for data from an input parameter which
2288 		 * the kernel has not cached.  In this case we go fetch from
2289 		 * the hardware and return the data directly to the user.
2290 		 */
2291 		return (__cpuid_insn(cp));
2292 
2293 	cp->cp_eax = xcp->cp_eax;
2294 	cp->cp_ebx = xcp->cp_ebx;
2295 	cp->cp_ecx = xcp->cp_ecx;
2296 	cp->cp_edx = xcp->cp_edx;
2297 	return (cp->cp_eax);
2298 }
2299 
2300 int
2301 cpuid_checkpass(cpu_t *cpu, int pass)
2302 {
2303 	return (cpu != NULL && cpu->cpu_m.mcpu_cpi != NULL &&
2304 	    cpu->cpu_m.mcpu_cpi->cpi_pass >= pass);
2305 }
2306 
2307 int
2308 cpuid_getbrandstr(cpu_t *cpu, char *s, size_t n)
2309 {
2310 	ASSERT(cpuid_checkpass(cpu, 3));
2311 
2312 	return (snprintf(s, n, "%s", cpu->cpu_m.mcpu_cpi->cpi_brandstr));
2313 }
2314 
2315 int
2316 cpuid_is_cmt(cpu_t *cpu)
2317 {
2318 	if (cpu == NULL)
2319 		cpu = CPU;
2320 
2321 	ASSERT(cpuid_checkpass(cpu, 1));
2322 
2323 	return (cpu->cpu_m.mcpu_cpi->cpi_chipid >= 0);
2324 }
2325 
2326 /*
2327  * AMD and Intel both implement the 64-bit variant of the syscall
2328  * instruction (syscallq), so if there's -any- support for syscall,
2329  * cpuid currently says "yes, we support this".
2330  *
2331  * However, Intel decided to -not- implement the 32-bit variant of the
2332  * syscall instruction, so we provide a predicate to allow our caller
2333  * to test that subtlety here.
2334  *
2335  * XXPV	Currently, 32-bit syscall instructions don't work via the hypervisor,
2336  *	even in the case where the hardware would in fact support it.
2337  */
2338 /*ARGSUSED*/
2339 int
2340 cpuid_syscall32_insn(cpu_t *cpu)
2341 {
2342 	ASSERT(cpuid_checkpass((cpu == NULL ? CPU : cpu), 1));
2343 
2344 #if !defined(__xpv)
2345 	if (cpu == NULL)
2346 		cpu = CPU;
2347 
2348 	/*CSTYLED*/
2349 	{
2350 		struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2351 
2352 		if (cpi->cpi_vendor == X86_VENDOR_AMD &&
2353 		    cpi->cpi_xmaxeax >= 0x80000001 &&
2354 		    (CPI_FEATURES_XTD_EDX(cpi) & CPUID_AMD_EDX_SYSC))
2355 			return (1);
2356 	}
2357 #endif
2358 	return (0);
2359 }
2360 
2361 int
2362 cpuid_getidstr(cpu_t *cpu, char *s, size_t n)
2363 {
2364 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2365 
2366 	static const char fmt[] =
2367 	    "x86 (%s %X family %d model %d step %d clock %d MHz)";
2368 	static const char fmt_ht[] =
2369 	    "x86 (chipid 0x%x %s %X family %d model %d step %d clock %d MHz)";
2370 
2371 	ASSERT(cpuid_checkpass(cpu, 1));
2372 
2373 	if (cpuid_is_cmt(cpu))
2374 		return (snprintf(s, n, fmt_ht, cpi->cpi_chipid,
2375 		    cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
2376 		    cpi->cpi_family, cpi->cpi_model,
2377 		    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
2378 	return (snprintf(s, n, fmt,
2379 	    cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
2380 	    cpi->cpi_family, cpi->cpi_model,
2381 	    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
2382 }
2383 
2384 const char *
2385 cpuid_getvendorstr(cpu_t *cpu)
2386 {
2387 	ASSERT(cpuid_checkpass(cpu, 1));
2388 	return ((const char *)cpu->cpu_m.mcpu_cpi->cpi_vendorstr);
2389 }
2390 
2391 uint_t
2392 cpuid_getvendor(cpu_t *cpu)
2393 {
2394 	ASSERT(cpuid_checkpass(cpu, 1));
2395 	return (cpu->cpu_m.mcpu_cpi->cpi_vendor);
2396 }
2397 
2398 uint_t
2399 cpuid_getfamily(cpu_t *cpu)
2400 {
2401 	ASSERT(cpuid_checkpass(cpu, 1));
2402 	return (cpu->cpu_m.mcpu_cpi->cpi_family);
2403 }
2404 
2405 uint_t
2406 cpuid_getmodel(cpu_t *cpu)
2407 {
2408 	ASSERT(cpuid_checkpass(cpu, 1));
2409 	return (cpu->cpu_m.mcpu_cpi->cpi_model);
2410 }
2411 
2412 uint_t
2413 cpuid_get_ncpu_per_chip(cpu_t *cpu)
2414 {
2415 	ASSERT(cpuid_checkpass(cpu, 1));
2416 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_per_chip);
2417 }
2418 
2419 uint_t
2420 cpuid_get_ncore_per_chip(cpu_t *cpu)
2421 {
2422 	ASSERT(cpuid_checkpass(cpu, 1));
2423 	return (cpu->cpu_m.mcpu_cpi->cpi_ncore_per_chip);
2424 }
2425 
2426 uint_t
2427 cpuid_get_ncpu_sharing_last_cache(cpu_t *cpu)
2428 {
2429 	ASSERT(cpuid_checkpass(cpu, 2));
2430 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_shr_last_cache);
2431 }
2432 
2433 id_t
2434 cpuid_get_last_lvl_cacheid(cpu_t *cpu)
2435 {
2436 	ASSERT(cpuid_checkpass(cpu, 2));
2437 	return (cpu->cpu_m.mcpu_cpi->cpi_last_lvl_cacheid);
2438 }
2439 
2440 uint_t
2441 cpuid_getstep(cpu_t *cpu)
2442 {
2443 	ASSERT(cpuid_checkpass(cpu, 1));
2444 	return (cpu->cpu_m.mcpu_cpi->cpi_step);
2445 }
2446 
2447 uint_t
2448 cpuid_getsig(struct cpu *cpu)
2449 {
2450 	ASSERT(cpuid_checkpass(cpu, 1));
2451 	return (cpu->cpu_m.mcpu_cpi->cpi_std[1].cp_eax);
2452 }
2453 
2454 uint32_t
2455 cpuid_getchiprev(struct cpu *cpu)
2456 {
2457 	ASSERT(cpuid_checkpass(cpu, 1));
2458 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprev);
2459 }
2460 
2461 const char *
2462 cpuid_getchiprevstr(struct cpu *cpu)
2463 {
2464 	ASSERT(cpuid_checkpass(cpu, 1));
2465 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprevstr);
2466 }
2467 
2468 uint32_t
2469 cpuid_getsockettype(struct cpu *cpu)
2470 {
2471 	ASSERT(cpuid_checkpass(cpu, 1));
2472 	return (cpu->cpu_m.mcpu_cpi->cpi_socket);
2473 }
2474 
2475 int
2476 cpuid_get_chipid(cpu_t *cpu)
2477 {
2478 	ASSERT(cpuid_checkpass(cpu, 1));
2479 
2480 	if (cpuid_is_cmt(cpu))
2481 		return (cpu->cpu_m.mcpu_cpi->cpi_chipid);
2482 	return (cpu->cpu_id);
2483 }
2484 
2485 id_t
2486 cpuid_get_coreid(cpu_t *cpu)
2487 {
2488 	ASSERT(cpuid_checkpass(cpu, 1));
2489 	return (cpu->cpu_m.mcpu_cpi->cpi_coreid);
2490 }
2491 
2492 int
2493 cpuid_get_pkgcoreid(cpu_t *cpu)
2494 {
2495 	ASSERT(cpuid_checkpass(cpu, 1));
2496 	return (cpu->cpu_m.mcpu_cpi->cpi_pkgcoreid);
2497 }
2498 
2499 int
2500 cpuid_get_clogid(cpu_t *cpu)
2501 {
2502 	ASSERT(cpuid_checkpass(cpu, 1));
2503 	return (cpu->cpu_m.mcpu_cpi->cpi_clogid);
2504 }
2505 
2506 void
2507 cpuid_get_addrsize(cpu_t *cpu, uint_t *pabits, uint_t *vabits)
2508 {
2509 	struct cpuid_info *cpi;
2510 
2511 	if (cpu == NULL)
2512 		cpu = CPU;
2513 	cpi = cpu->cpu_m.mcpu_cpi;
2514 
2515 	ASSERT(cpuid_checkpass(cpu, 1));
2516 
2517 	if (pabits)
2518 		*pabits = cpi->cpi_pabits;
2519 	if (vabits)
2520 		*vabits = cpi->cpi_vabits;
2521 }
2522 
2523 /*
2524  * Returns the number of data TLB entries for a corresponding
2525  * pagesize.  If it can't be computed, or isn't known, the
2526  * routine returns zero.  If you ask about an architecturally
2527  * impossible pagesize, the routine will panic (so that the
2528  * hat implementor knows that things are inconsistent.)
2529  */
2530 uint_t
2531 cpuid_get_dtlb_nent(cpu_t *cpu, size_t pagesize)
2532 {
2533 	struct cpuid_info *cpi;
2534 	uint_t dtlb_nent = 0;
2535 
2536 	if (cpu == NULL)
2537 		cpu = CPU;
2538 	cpi = cpu->cpu_m.mcpu_cpi;
2539 
2540 	ASSERT(cpuid_checkpass(cpu, 1));
2541 
2542 	/*
2543 	 * Check the L2 TLB info
2544 	 */
2545 	if (cpi->cpi_xmaxeax >= 0x80000006) {
2546 		struct cpuid_regs *cp = &cpi->cpi_extd[6];
2547 
2548 		switch (pagesize) {
2549 
2550 		case 4 * 1024:
2551 			/*
2552 			 * All zero in the top 16 bits of the register
2553 			 * indicates a unified TLB. Size is in low 16 bits.
2554 			 */
2555 			if ((cp->cp_ebx & 0xffff0000) == 0)
2556 				dtlb_nent = cp->cp_ebx & 0x0000ffff;
2557 			else
2558 				dtlb_nent = BITX(cp->cp_ebx, 27, 16);
2559 			break;
2560 
2561 		case 2 * 1024 * 1024:
2562 			if ((cp->cp_eax & 0xffff0000) == 0)
2563 				dtlb_nent = cp->cp_eax & 0x0000ffff;
2564 			else
2565 				dtlb_nent = BITX(cp->cp_eax, 27, 16);
2566 			break;
2567 
2568 		default:
2569 			panic("unknown L2 pagesize");
2570 			/*NOTREACHED*/
2571 		}
2572 	}
2573 
2574 	if (dtlb_nent != 0)
2575 		return (dtlb_nent);
2576 
2577 	/*
2578 	 * No L2 TLB support for this size, try L1.
2579 	 */
2580 	if (cpi->cpi_xmaxeax >= 0x80000005) {
2581 		struct cpuid_regs *cp = &cpi->cpi_extd[5];
2582 
2583 		switch (pagesize) {
2584 		case 4 * 1024:
2585 			dtlb_nent = BITX(cp->cp_ebx, 23, 16);
2586 			break;
2587 		case 2 * 1024 * 1024:
2588 			dtlb_nent = BITX(cp->cp_eax, 23, 16);
2589 			break;
2590 		default:
2591 			panic("unknown L1 d-TLB pagesize");
2592 			/*NOTREACHED*/
2593 		}
2594 	}
2595 
2596 	return (dtlb_nent);
2597 }
2598 
2599 /*
2600  * Return 0 if the erratum is not present or not applicable, positive
2601  * if it is, and negative if the status of the erratum is unknown.
2602  *
2603  * See "Revision Guide for AMD Athlon(tm) 64 and AMD Opteron(tm)
2604  * Processors" #25759, Rev 3.57, August 2005
2605  */
2606 int
2607 cpuid_opteron_erratum(cpu_t *cpu, uint_t erratum)
2608 {
2609 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2610 	uint_t eax;
2611 
2612 	/*
2613 	 * Bail out if this CPU isn't an AMD CPU, or if it's
2614 	 * a legacy (32-bit) AMD CPU.
2615 	 */
2616 	if (cpi->cpi_vendor != X86_VENDOR_AMD ||
2617 	    cpi->cpi_family == 4 || cpi->cpi_family == 5 ||
2618 	    cpi->cpi_family == 6)
2619 
2620 		return (0);
2621 
2622 	eax = cpi->cpi_std[1].cp_eax;
2623 
2624 #define	SH_B0(eax)	(eax == 0xf40 || eax == 0xf50)
2625 #define	SH_B3(eax) 	(eax == 0xf51)
2626 #define	B(eax)		(SH_B0(eax) || SH_B3(eax))
2627 
2628 #define	SH_C0(eax)	(eax == 0xf48 || eax == 0xf58)
2629 
2630 #define	SH_CG(eax)	(eax == 0xf4a || eax == 0xf5a || eax == 0xf7a)
2631 #define	DH_CG(eax)	(eax == 0xfc0 || eax == 0xfe0 || eax == 0xff0)
2632 #define	CH_CG(eax)	(eax == 0xf82 || eax == 0xfb2)
2633 #define	CG(eax)		(SH_CG(eax) || DH_CG(eax) || CH_CG(eax))
2634 
2635 #define	SH_D0(eax)	(eax == 0x10f40 || eax == 0x10f50 || eax == 0x10f70)
2636 #define	DH_D0(eax)	(eax == 0x10fc0 || eax == 0x10ff0)
2637 #define	CH_D0(eax)	(eax == 0x10f80 || eax == 0x10fb0)
2638 #define	D0(eax)		(SH_D0(eax) || DH_D0(eax) || CH_D0(eax))
2639 
2640 #define	SH_E0(eax)	(eax == 0x20f50 || eax == 0x20f40 || eax == 0x20f70)
2641 #define	JH_E1(eax)	(eax == 0x20f10)	/* JH8_E0 had 0x20f30 */
2642 #define	DH_E3(eax)	(eax == 0x20fc0 || eax == 0x20ff0)
2643 #define	SH_E4(eax)	(eax == 0x20f51 || eax == 0x20f71)
2644 #define	BH_E4(eax)	(eax == 0x20fb1)
2645 #define	SH_E5(eax)	(eax == 0x20f42)
2646 #define	DH_E6(eax)	(eax == 0x20ff2 || eax == 0x20fc2)
2647 #define	JH_E6(eax)	(eax == 0x20f12 || eax == 0x20f32)
2648 #define	EX(eax)		(SH_E0(eax) || JH_E1(eax) || DH_E3(eax) || \
2649 			    SH_E4(eax) || BH_E4(eax) || SH_E5(eax) || \
2650 			    DH_E6(eax) || JH_E6(eax))
2651 
2652 #define	DR_AX(eax)	(eax == 0x100f00 || eax == 0x100f01 || eax == 0x100f02)
2653 #define	DR_B0(eax)	(eax == 0x100f20)
2654 #define	DR_B1(eax)	(eax == 0x100f21)
2655 #define	DR_BA(eax)	(eax == 0x100f2a)
2656 #define	DR_B2(eax)	(eax == 0x100f22)
2657 #define	DR_B3(eax)	(eax == 0x100f23)
2658 #define	RB_C0(eax)	(eax == 0x100f40)
2659 
2660 	switch (erratum) {
2661 	case 1:
2662 		return (cpi->cpi_family < 0x10);
2663 	case 51:	/* what does the asterisk mean? */
2664 		return (B(eax) || SH_C0(eax) || CG(eax));
2665 	case 52:
2666 		return (B(eax));
2667 	case 57:
2668 		return (cpi->cpi_family <= 0x11);
2669 	case 58:
2670 		return (B(eax));
2671 	case 60:
2672 		return (cpi->cpi_family <= 0x11);
2673 	case 61:
2674 	case 62:
2675 	case 63:
2676 	case 64:
2677 	case 65:
2678 	case 66:
2679 	case 68:
2680 	case 69:
2681 	case 70:
2682 	case 71:
2683 		return (B(eax));
2684 	case 72:
2685 		return (SH_B0(eax));
2686 	case 74:
2687 		return (B(eax));
2688 	case 75:
2689 		return (cpi->cpi_family < 0x10);
2690 	case 76:
2691 		return (B(eax));
2692 	case 77:
2693 		return (cpi->cpi_family <= 0x11);
2694 	case 78:
2695 		return (B(eax) || SH_C0(eax));
2696 	case 79:
2697 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2698 	case 80:
2699 	case 81:
2700 	case 82:
2701 		return (B(eax));
2702 	case 83:
2703 		return (B(eax) || SH_C0(eax) || CG(eax));
2704 	case 85:
2705 		return (cpi->cpi_family < 0x10);
2706 	case 86:
2707 		return (SH_C0(eax) || CG(eax));
2708 	case 88:
2709 #if !defined(__amd64)
2710 		return (0);
2711 #else
2712 		return (B(eax) || SH_C0(eax));
2713 #endif
2714 	case 89:
2715 		return (cpi->cpi_family < 0x10);
2716 	case 90:
2717 		return (B(eax) || SH_C0(eax) || CG(eax));
2718 	case 91:
2719 	case 92:
2720 		return (B(eax) || SH_C0(eax));
2721 	case 93:
2722 		return (SH_C0(eax));
2723 	case 94:
2724 		return (B(eax) || SH_C0(eax) || CG(eax));
2725 	case 95:
2726 #if !defined(__amd64)
2727 		return (0);
2728 #else
2729 		return (B(eax) || SH_C0(eax));
2730 #endif
2731 	case 96:
2732 		return (B(eax) || SH_C0(eax) || CG(eax));
2733 	case 97:
2734 	case 98:
2735 		return (SH_C0(eax) || CG(eax));
2736 	case 99:
2737 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2738 	case 100:
2739 		return (B(eax) || SH_C0(eax));
2740 	case 101:
2741 	case 103:
2742 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2743 	case 104:
2744 		return (SH_C0(eax) || CG(eax) || D0(eax));
2745 	case 105:
2746 	case 106:
2747 	case 107:
2748 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2749 	case 108:
2750 		return (DH_CG(eax));
2751 	case 109:
2752 		return (SH_C0(eax) || CG(eax) || D0(eax));
2753 	case 110:
2754 		return (D0(eax) || EX(eax));
2755 	case 111:
2756 		return (CG(eax));
2757 	case 112:
2758 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2759 	case 113:
2760 		return (eax == 0x20fc0);
2761 	case 114:
2762 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
2763 	case 115:
2764 		return (SH_E0(eax) || JH_E1(eax));
2765 	case 116:
2766 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
2767 	case 117:
2768 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2769 	case 118:
2770 		return (SH_E0(eax) || JH_E1(eax) || SH_E4(eax) || BH_E4(eax) ||
2771 		    JH_E6(eax));
2772 	case 121:
2773 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2774 	case 122:
2775 		return (cpi->cpi_family < 0x10 || cpi->cpi_family == 0x11);
2776 	case 123:
2777 		return (JH_E1(eax) || BH_E4(eax) || JH_E6(eax));
2778 	case 131:
2779 		return (cpi->cpi_family < 0x10);
2780 	case 6336786:
2781 		/*
2782 		 * Test for AdvPowerMgmtInfo.TscPStateInvariant
2783 		 * if this is a K8 family or newer processor
2784 		 */
2785 		if (CPI_FAMILY(cpi) == 0xf) {
2786 			struct cpuid_regs regs;
2787 			regs.cp_eax = 0x80000007;
2788 			(void) __cpuid_insn(&regs);
2789 			return (!(regs.cp_edx & 0x100));
2790 		}
2791 		return (0);
2792 	case 6323525:
2793 		return (((((eax >> 12) & 0xff00) + (eax & 0xf00)) |
2794 		    (((eax >> 4) & 0xf) | ((eax >> 12) & 0xf0))) < 0xf40);
2795 
2796 	case 6671130:
2797 		/*
2798 		 * check for processors (pre-Shanghai) that do not provide
2799 		 * optimal management of 1gb ptes in its tlb.
2800 		 */
2801 		return (cpi->cpi_family == 0x10 && cpi->cpi_model < 4);
2802 
2803 	case 298:
2804 		return (DR_AX(eax) || DR_B0(eax) || DR_B1(eax) || DR_BA(eax) ||
2805 		    DR_B2(eax) || RB_C0(eax));
2806 
2807 	default:
2808 		return (-1);
2809 
2810 	}
2811 }
2812 
2813 /*
2814  * Determine if specified erratum is present via OSVW (OS Visible Workaround).
2815  * Return 1 if erratum is present, 0 if not present and -1 if indeterminate.
2816  */
2817 int
2818 osvw_opteron_erratum(cpu_t *cpu, uint_t erratum)
2819 {
2820 	struct cpuid_info	*cpi;
2821 	uint_t			osvwid;
2822 	static int		osvwfeature = -1;
2823 	uint64_t		osvwlength;
2824 
2825 
2826 	cpi = cpu->cpu_m.mcpu_cpi;
2827 
2828 	/* confirm OSVW supported */
2829 	if (osvwfeature == -1) {
2830 		osvwfeature = cpi->cpi_extd[1].cp_ecx & CPUID_AMD_ECX_OSVW;
2831 	} else {
2832 		/* assert that osvw feature setting is consistent on all cpus */
2833 		ASSERT(osvwfeature ==
2834 		    (cpi->cpi_extd[1].cp_ecx & CPUID_AMD_ECX_OSVW));
2835 	}
2836 	if (!osvwfeature)
2837 		return (-1);
2838 
2839 	osvwlength = rdmsr(MSR_AMD_OSVW_ID_LEN) & OSVW_ID_LEN_MASK;
2840 
2841 	switch (erratum) {
2842 	case 298:	/* osvwid is 0 */
2843 		osvwid = 0;
2844 		if (osvwlength <= (uint64_t)osvwid) {
2845 			/* osvwid 0 is unknown */
2846 			return (-1);
2847 		}
2848 
2849 		/*
2850 		 * Check the OSVW STATUS MSR to determine the state
2851 		 * of the erratum where:
2852 		 *   0 - fixed by HW
2853 		 *   1 - BIOS has applied the workaround when BIOS
2854 		 *   workaround is available. (Or for other errata,
2855 		 *   OS workaround is required.)
2856 		 * For a value of 1, caller will confirm that the
2857 		 * erratum 298 workaround has indeed been applied by BIOS.
2858 		 *
2859 		 * A 1 may be set in cpus that have a HW fix
2860 		 * in a mixed cpu system. Regarding erratum 298:
2861 		 *   In a multiprocessor platform, the workaround above
2862 		 *   should be applied to all processors regardless of
2863 		 *   silicon revision when an affected processor is
2864 		 *   present.
2865 		 */
2866 
2867 		return (rdmsr(MSR_AMD_OSVW_STATUS +
2868 		    (osvwid / OSVW_ID_CNT_PER_MSR)) &
2869 		    (1ULL << (osvwid % OSVW_ID_CNT_PER_MSR)));
2870 
2871 	default:
2872 		return (-1);
2873 	}
2874 }
2875 
2876 static const char assoc_str[] = "associativity";
2877 static const char line_str[] = "line-size";
2878 static const char size_str[] = "size";
2879 
2880 static void
2881 add_cache_prop(dev_info_t *devi, const char *label, const char *type,
2882     uint32_t val)
2883 {
2884 	char buf[128];
2885 
2886 	/*
2887 	 * ndi_prop_update_int() is used because it is desirable for
2888 	 * DDI_PROP_HW_DEF and DDI_PROP_DONTSLEEP to be set.
2889 	 */
2890 	if (snprintf(buf, sizeof (buf), "%s-%s", label, type) < sizeof (buf))
2891 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, buf, val);
2892 }
2893 
2894 /*
2895  * Intel-style cache/tlb description
2896  *
2897  * Standard cpuid level 2 gives a randomly ordered
2898  * selection of tags that index into a table that describes
2899  * cache and tlb properties.
2900  */
2901 
2902 static const char l1_icache_str[] = "l1-icache";
2903 static const char l1_dcache_str[] = "l1-dcache";
2904 static const char l2_cache_str[] = "l2-cache";
2905 static const char l3_cache_str[] = "l3-cache";
2906 static const char itlb4k_str[] = "itlb-4K";
2907 static const char dtlb4k_str[] = "dtlb-4K";
2908 static const char itlb2M_str[] = "itlb-2M";
2909 static const char itlb4M_str[] = "itlb-4M";
2910 static const char dtlb4M_str[] = "dtlb-4M";
2911 static const char dtlb24_str[] = "dtlb0-2M-4M";
2912 static const char itlb424_str[] = "itlb-4K-2M-4M";
2913 static const char itlb24_str[] = "itlb-2M-4M";
2914 static const char dtlb44_str[] = "dtlb-4K-4M";
2915 static const char sl1_dcache_str[] = "sectored-l1-dcache";
2916 static const char sl2_cache_str[] = "sectored-l2-cache";
2917 static const char itrace_str[] = "itrace-cache";
2918 static const char sl3_cache_str[] = "sectored-l3-cache";
2919 static const char sh_l2_tlb4k_str[] = "shared-l2-tlb-4k";
2920 
2921 static const struct cachetab {
2922 	uint8_t 	ct_code;
2923 	uint8_t		ct_assoc;
2924 	uint16_t 	ct_line_size;
2925 	size_t		ct_size;
2926 	const char	*ct_label;
2927 } intel_ctab[] = {
2928 	/*
2929 	 * maintain descending order!
2930 	 *
2931 	 * Codes ignored - Reason
2932 	 * ----------------------
2933 	 * 40H - intel_cpuid_4_cache_info() disambiguates l2/l3 cache
2934 	 * f0H/f1H - Currently we do not interpret prefetch size by design
2935 	 */
2936 	{ 0xe4, 16, 64, 8*1024*1024, l3_cache_str},
2937 	{ 0xe3, 16, 64, 4*1024*1024, l3_cache_str},
2938 	{ 0xe2, 16, 64, 2*1024*1024, l3_cache_str},
2939 	{ 0xde, 12, 64, 6*1024*1024, l3_cache_str},
2940 	{ 0xdd, 12, 64, 3*1024*1024, l3_cache_str},
2941 	{ 0xdc, 12, 64, ((1*1024*1024)+(512*1024)), l3_cache_str},
2942 	{ 0xd8, 8, 64, 4*1024*1024, l3_cache_str},
2943 	{ 0xd7, 8, 64, 2*1024*1024, l3_cache_str},
2944 	{ 0xd6, 8, 64, 1*1024*1024, l3_cache_str},
2945 	{ 0xd2, 4, 64, 2*1024*1024, l3_cache_str},
2946 	{ 0xd1, 4, 64, 1*1024*1024, l3_cache_str},
2947 	{ 0xd0, 4, 64, 512*1024, l3_cache_str},
2948 	{ 0xca, 4, 0, 512, sh_l2_tlb4k_str},
2949 	{ 0xc0, 4, 0, 8, dtlb44_str },
2950 	{ 0xba, 4, 0, 64, dtlb4k_str },
2951 	{ 0xb4, 4, 0, 256, dtlb4k_str },
2952 	{ 0xb3, 4, 0, 128, dtlb4k_str },
2953 	{ 0xb2, 4, 0, 64, itlb4k_str },
2954 	{ 0xb0, 4, 0, 128, itlb4k_str },
2955 	{ 0x87, 8, 64, 1024*1024, l2_cache_str},
2956 	{ 0x86, 4, 64, 512*1024, l2_cache_str},
2957 	{ 0x85, 8, 32, 2*1024*1024, l2_cache_str},
2958 	{ 0x84, 8, 32, 1024*1024, l2_cache_str},
2959 	{ 0x83, 8, 32, 512*1024, l2_cache_str},
2960 	{ 0x82, 8, 32, 256*1024, l2_cache_str},
2961 	{ 0x80, 8, 64, 512*1024, l2_cache_str},
2962 	{ 0x7f, 2, 64, 512*1024, l2_cache_str},
2963 	{ 0x7d, 8, 64, 2*1024*1024, sl2_cache_str},
2964 	{ 0x7c, 8, 64, 1024*1024, sl2_cache_str},
2965 	{ 0x7b, 8, 64, 512*1024, sl2_cache_str},
2966 	{ 0x7a, 8, 64, 256*1024, sl2_cache_str},
2967 	{ 0x79, 8, 64, 128*1024, sl2_cache_str},
2968 	{ 0x78, 8, 64, 1024*1024, l2_cache_str},
2969 	{ 0x73, 8, 0, 64*1024, itrace_str},
2970 	{ 0x72, 8, 0, 32*1024, itrace_str},
2971 	{ 0x71, 8, 0, 16*1024, itrace_str},
2972 	{ 0x70, 8, 0, 12*1024, itrace_str},
2973 	{ 0x68, 4, 64, 32*1024, sl1_dcache_str},
2974 	{ 0x67, 4, 64, 16*1024, sl1_dcache_str},
2975 	{ 0x66, 4, 64, 8*1024, sl1_dcache_str},
2976 	{ 0x60, 8, 64, 16*1024, sl1_dcache_str},
2977 	{ 0x5d, 0, 0, 256, dtlb44_str},
2978 	{ 0x5c, 0, 0, 128, dtlb44_str},
2979 	{ 0x5b, 0, 0, 64, dtlb44_str},
2980 	{ 0x5a, 4, 0, 32, dtlb24_str},
2981 	{ 0x59, 0, 0, 16, dtlb4k_str},
2982 	{ 0x57, 4, 0, 16, dtlb4k_str},
2983 	{ 0x56, 4, 0, 16, dtlb4M_str},
2984 	{ 0x55, 0, 0, 7, itlb24_str},
2985 	{ 0x52, 0, 0, 256, itlb424_str},
2986 	{ 0x51, 0, 0, 128, itlb424_str},
2987 	{ 0x50, 0, 0, 64, itlb424_str},
2988 	{ 0x4f, 0, 0, 32, itlb4k_str},
2989 	{ 0x4e, 24, 64, 6*1024*1024, l2_cache_str},
2990 	{ 0x4d, 16, 64, 16*1024*1024, l3_cache_str},
2991 	{ 0x4c, 12, 64, 12*1024*1024, l3_cache_str},
2992 	{ 0x4b, 16, 64, 8*1024*1024, l3_cache_str},
2993 	{ 0x4a, 12, 64, 6*1024*1024, l3_cache_str},
2994 	{ 0x49, 16, 64, 4*1024*1024, l3_cache_str},
2995 	{ 0x48, 12, 64, 3*1024*1024, l2_cache_str},
2996 	{ 0x47, 8, 64, 8*1024*1024, l3_cache_str},
2997 	{ 0x46, 4, 64, 4*1024*1024, l3_cache_str},
2998 	{ 0x45, 4, 32, 2*1024*1024, l2_cache_str},
2999 	{ 0x44, 4, 32, 1024*1024, l2_cache_str},
3000 	{ 0x43, 4, 32, 512*1024, l2_cache_str},
3001 	{ 0x42, 4, 32, 256*1024, l2_cache_str},
3002 	{ 0x41, 4, 32, 128*1024, l2_cache_str},
3003 	{ 0x3e, 4, 64, 512*1024, sl2_cache_str},
3004 	{ 0x3d, 6, 64, 384*1024, sl2_cache_str},
3005 	{ 0x3c, 4, 64, 256*1024, sl2_cache_str},
3006 	{ 0x3b, 2, 64, 128*1024, sl2_cache_str},
3007 	{ 0x3a, 6, 64, 192*1024, sl2_cache_str},
3008 	{ 0x39, 4, 64, 128*1024, sl2_cache_str},
3009 	{ 0x30, 8, 64, 32*1024, l1_icache_str},
3010 	{ 0x2c, 8, 64, 32*1024, l1_dcache_str},
3011 	{ 0x29, 8, 64, 4096*1024, sl3_cache_str},
3012 	{ 0x25, 8, 64, 2048*1024, sl3_cache_str},
3013 	{ 0x23, 8, 64, 1024*1024, sl3_cache_str},
3014 	{ 0x22, 4, 64, 512*1024, sl3_cache_str},
3015 	{ 0x0e, 6, 64, 24*1024, l1_dcache_str},
3016 	{ 0x0d, 4, 32, 16*1024, l1_dcache_str},
3017 	{ 0x0c, 4, 32, 16*1024, l1_dcache_str},
3018 	{ 0x0b, 4, 0, 4, itlb4M_str},
3019 	{ 0x0a, 2, 32, 8*1024, l1_dcache_str},
3020 	{ 0x08, 4, 32, 16*1024, l1_icache_str},
3021 	{ 0x06, 4, 32, 8*1024, l1_icache_str},
3022 	{ 0x05, 4, 0, 32, dtlb4M_str},
3023 	{ 0x04, 4, 0, 8, dtlb4M_str},
3024 	{ 0x03, 4, 0, 64, dtlb4k_str},
3025 	{ 0x02, 4, 0, 2, itlb4M_str},
3026 	{ 0x01, 4, 0, 32, itlb4k_str},
3027 	{ 0 }
3028 };
3029 
3030 static const struct cachetab cyrix_ctab[] = {
3031 	{ 0x70, 4, 0, 32, "tlb-4K" },
3032 	{ 0x80, 4, 16, 16*1024, "l1-cache" },
3033 	{ 0 }
3034 };
3035 
3036 /*
3037  * Search a cache table for a matching entry
3038  */
3039 static const struct cachetab *
3040 find_cacheent(const struct cachetab *ct, uint_t code)
3041 {
3042 	if (code != 0) {
3043 		for (; ct->ct_code != 0; ct++)
3044 			if (ct->ct_code <= code)
3045 				break;
3046 		if (ct->ct_code == code)
3047 			return (ct);
3048 	}
3049 	return (NULL);
3050 }
3051 
3052 /*
3053  * Populate cachetab entry with L2 or L3 cache-information using
3054  * cpuid function 4. This function is called from intel_walk_cacheinfo()
3055  * when descriptor 0x49 is encountered. It returns 0 if no such cache
3056  * information is found.
3057  */
3058 static int
3059 intel_cpuid_4_cache_info(struct cachetab *ct, struct cpuid_info *cpi)
3060 {
3061 	uint32_t level, i;
3062 	int ret = 0;
3063 
3064 	for (i = 0; i < cpi->cpi_std_4_size; i++) {
3065 		level = CPI_CACHE_LVL(cpi->cpi_std_4[i]);
3066 
3067 		if (level == 2 || level == 3) {
3068 			ct->ct_assoc = CPI_CACHE_WAYS(cpi->cpi_std_4[i]) + 1;
3069 			ct->ct_line_size =
3070 			    CPI_CACHE_COH_LN_SZ(cpi->cpi_std_4[i]) + 1;
3071 			ct->ct_size = ct->ct_assoc *
3072 			    (CPI_CACHE_PARTS(cpi->cpi_std_4[i]) + 1) *
3073 			    ct->ct_line_size *
3074 			    (cpi->cpi_std_4[i]->cp_ecx + 1);
3075 
3076 			if (level == 2) {
3077 				ct->ct_label = l2_cache_str;
3078 			} else if (level == 3) {
3079 				ct->ct_label = l3_cache_str;
3080 			}
3081 			ret = 1;
3082 		}
3083 	}
3084 
3085 	return (ret);
3086 }
3087 
3088 /*
3089  * Walk the cacheinfo descriptor, applying 'func' to every valid element
3090  * The walk is terminated if the walker returns non-zero.
3091  */
3092 static void
3093 intel_walk_cacheinfo(struct cpuid_info *cpi,
3094     void *arg, int (*func)(void *, const struct cachetab *))
3095 {
3096 	const struct cachetab *ct;
3097 	struct cachetab des_49_ct, des_b1_ct;
3098 	uint8_t *dp;
3099 	int i;
3100 
3101 	if ((dp = cpi->cpi_cacheinfo) == NULL)
3102 		return;
3103 	for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
3104 		/*
3105 		 * For overloaded descriptor 0x49 we use cpuid function 4
3106 		 * if supported by the current processor, to create
3107 		 * cache information.
3108 		 * For overloaded descriptor 0xb1 we use X86_PAE flag
3109 		 * to disambiguate the cache information.
3110 		 */
3111 		if (*dp == 0x49 && cpi->cpi_maxeax >= 0x4 &&
3112 		    intel_cpuid_4_cache_info(&des_49_ct, cpi) == 1) {
3113 				ct = &des_49_ct;
3114 		} else if (*dp == 0xb1) {
3115 			des_b1_ct.ct_code = 0xb1;
3116 			des_b1_ct.ct_assoc = 4;
3117 			des_b1_ct.ct_line_size = 0;
3118 			if (x86_feature & X86_PAE) {
3119 				des_b1_ct.ct_size = 8;
3120 				des_b1_ct.ct_label = itlb2M_str;
3121 			} else {
3122 				des_b1_ct.ct_size = 4;
3123 				des_b1_ct.ct_label = itlb4M_str;
3124 			}
3125 			ct = &des_b1_ct;
3126 		} else {
3127 			if ((ct = find_cacheent(intel_ctab, *dp)) == NULL) {
3128 				continue;
3129 			}
3130 		}
3131 
3132 		if (func(arg, ct) != 0) {
3133 			break;
3134 		}
3135 	}
3136 }
3137 
3138 /*
3139  * (Like the Intel one, except for Cyrix CPUs)
3140  */
3141 static void
3142 cyrix_walk_cacheinfo(struct cpuid_info *cpi,
3143     void *arg, int (*func)(void *, const struct cachetab *))
3144 {
3145 	const struct cachetab *ct;
3146 	uint8_t *dp;
3147 	int i;
3148 
3149 	if ((dp = cpi->cpi_cacheinfo) == NULL)
3150 		return;
3151 	for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
3152 		/*
3153 		 * Search Cyrix-specific descriptor table first ..
3154 		 */
3155 		if ((ct = find_cacheent(cyrix_ctab, *dp)) != NULL) {
3156 			if (func(arg, ct) != 0)
3157 				break;
3158 			continue;
3159 		}
3160 		/*
3161 		 * .. else fall back to the Intel one
3162 		 */
3163 		if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) {
3164 			if (func(arg, ct) != 0)
3165 				break;
3166 			continue;
3167 		}
3168 	}
3169 }
3170 
3171 /*
3172  * A cacheinfo walker that adds associativity, line-size, and size properties
3173  * to the devinfo node it is passed as an argument.
3174  */
3175 static int
3176 add_cacheent_props(void *arg, const struct cachetab *ct)
3177 {
3178 	dev_info_t *devi = arg;
3179 
3180 	add_cache_prop(devi, ct->ct_label, assoc_str, ct->ct_assoc);
3181 	if (ct->ct_line_size != 0)
3182 		add_cache_prop(devi, ct->ct_label, line_str,
3183 		    ct->ct_line_size);
3184 	add_cache_prop(devi, ct->ct_label, size_str, ct->ct_size);
3185 	return (0);
3186 }
3187 
3188 
3189 static const char fully_assoc[] = "fully-associative?";
3190 
3191 /*
3192  * AMD style cache/tlb description
3193  *
3194  * Extended functions 5 and 6 directly describe properties of
3195  * tlbs and various cache levels.
3196  */
3197 static void
3198 add_amd_assoc(dev_info_t *devi, const char *label, uint_t assoc)
3199 {
3200 	switch (assoc) {
3201 	case 0:	/* reserved; ignore */
3202 		break;
3203 	default:
3204 		add_cache_prop(devi, label, assoc_str, assoc);
3205 		break;
3206 	case 0xff:
3207 		add_cache_prop(devi, label, fully_assoc, 1);
3208 		break;
3209 	}
3210 }
3211 
3212 static void
3213 add_amd_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
3214 {
3215 	if (size == 0)
3216 		return;
3217 	add_cache_prop(devi, label, size_str, size);
3218 	add_amd_assoc(devi, label, assoc);
3219 }
3220 
3221 static void
3222 add_amd_cache(dev_info_t *devi, const char *label,
3223     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
3224 {
3225 	if (size == 0 || line_size == 0)
3226 		return;
3227 	add_amd_assoc(devi, label, assoc);
3228 	/*
3229 	 * Most AMD parts have a sectored cache. Multiple cache lines are
3230 	 * associated with each tag. A sector consists of all cache lines
3231 	 * associated with a tag. For example, the AMD K6-III has a sector
3232 	 * size of 2 cache lines per tag.
3233 	 */
3234 	if (lines_per_tag != 0)
3235 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
3236 	add_cache_prop(devi, label, line_str, line_size);
3237 	add_cache_prop(devi, label, size_str, size * 1024);
3238 }
3239 
3240 static void
3241 add_amd_l2_assoc(dev_info_t *devi, const char *label, uint_t assoc)
3242 {
3243 	switch (assoc) {
3244 	case 0:	/* off */
3245 		break;
3246 	case 1:
3247 	case 2:
3248 	case 4:
3249 		add_cache_prop(devi, label, assoc_str, assoc);
3250 		break;
3251 	case 6:
3252 		add_cache_prop(devi, label, assoc_str, 8);
3253 		break;
3254 	case 8:
3255 		add_cache_prop(devi, label, assoc_str, 16);
3256 		break;
3257 	case 0xf:
3258 		add_cache_prop(devi, label, fully_assoc, 1);
3259 		break;
3260 	default: /* reserved; ignore */
3261 		break;
3262 	}
3263 }
3264 
3265 static void
3266 add_amd_l2_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
3267 {
3268 	if (size == 0 || assoc == 0)
3269 		return;
3270 	add_amd_l2_assoc(devi, label, assoc);
3271 	add_cache_prop(devi, label, size_str, size);
3272 }
3273 
3274 static void
3275 add_amd_l2_cache(dev_info_t *devi, const char *label,
3276     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
3277 {
3278 	if (size == 0 || assoc == 0 || line_size == 0)
3279 		return;
3280 	add_amd_l2_assoc(devi, label, assoc);
3281 	if (lines_per_tag != 0)
3282 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
3283 	add_cache_prop(devi, label, line_str, line_size);
3284 	add_cache_prop(devi, label, size_str, size * 1024);
3285 }
3286 
3287 static void
3288 amd_cache_info(struct cpuid_info *cpi, dev_info_t *devi)
3289 {
3290 	struct cpuid_regs *cp;
3291 
3292 	if (cpi->cpi_xmaxeax < 0x80000005)
3293 		return;
3294 	cp = &cpi->cpi_extd[5];
3295 
3296 	/*
3297 	 * 4M/2M L1 TLB configuration
3298 	 *
3299 	 * We report the size for 2M pages because AMD uses two
3300 	 * TLB entries for one 4M page.
3301 	 */
3302 	add_amd_tlb(devi, "dtlb-2M",
3303 	    BITX(cp->cp_eax, 31, 24), BITX(cp->cp_eax, 23, 16));
3304 	add_amd_tlb(devi, "itlb-2M",
3305 	    BITX(cp->cp_eax, 15, 8), BITX(cp->cp_eax, 7, 0));
3306 
3307 	/*
3308 	 * 4K L1 TLB configuration
3309 	 */
3310 
3311 	switch (cpi->cpi_vendor) {
3312 		uint_t nentries;
3313 	case X86_VENDOR_TM:
3314 		if (cpi->cpi_family >= 5) {
3315 			/*
3316 			 * Crusoe processors have 256 TLB entries, but
3317 			 * cpuid data format constrains them to only
3318 			 * reporting 255 of them.
3319 			 */
3320 			if ((nentries = BITX(cp->cp_ebx, 23, 16)) == 255)
3321 				nentries = 256;
3322 			/*
3323 			 * Crusoe processors also have a unified TLB
3324 			 */
3325 			add_amd_tlb(devi, "tlb-4K", BITX(cp->cp_ebx, 31, 24),
3326 			    nentries);
3327 			break;
3328 		}
3329 		/*FALLTHROUGH*/
3330 	default:
3331 		add_amd_tlb(devi, itlb4k_str,
3332 		    BITX(cp->cp_ebx, 31, 24), BITX(cp->cp_ebx, 23, 16));
3333 		add_amd_tlb(devi, dtlb4k_str,
3334 		    BITX(cp->cp_ebx, 15, 8), BITX(cp->cp_ebx, 7, 0));
3335 		break;
3336 	}
3337 
3338 	/*
3339 	 * data L1 cache configuration
3340 	 */
3341 
3342 	add_amd_cache(devi, l1_dcache_str,
3343 	    BITX(cp->cp_ecx, 31, 24), BITX(cp->cp_ecx, 23, 16),
3344 	    BITX(cp->cp_ecx, 15, 8), BITX(cp->cp_ecx, 7, 0));
3345 
3346 	/*
3347 	 * code L1 cache configuration
3348 	 */
3349 
3350 	add_amd_cache(devi, l1_icache_str,
3351 	    BITX(cp->cp_edx, 31, 24), BITX(cp->cp_edx, 23, 16),
3352 	    BITX(cp->cp_edx, 15, 8), BITX(cp->cp_edx, 7, 0));
3353 
3354 	if (cpi->cpi_xmaxeax < 0x80000006)
3355 		return;
3356 	cp = &cpi->cpi_extd[6];
3357 
3358 	/* Check for a unified L2 TLB for large pages */
3359 
3360 	if (BITX(cp->cp_eax, 31, 16) == 0)
3361 		add_amd_l2_tlb(devi, "l2-tlb-2M",
3362 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3363 	else {
3364 		add_amd_l2_tlb(devi, "l2-dtlb-2M",
3365 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
3366 		add_amd_l2_tlb(devi, "l2-itlb-2M",
3367 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3368 	}
3369 
3370 	/* Check for a unified L2 TLB for 4K pages */
3371 
3372 	if (BITX(cp->cp_ebx, 31, 16) == 0) {
3373 		add_amd_l2_tlb(devi, "l2-tlb-4K",
3374 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3375 	} else {
3376 		add_amd_l2_tlb(devi, "l2-dtlb-4K",
3377 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
3378 		add_amd_l2_tlb(devi, "l2-itlb-4K",
3379 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3380 	}
3381 
3382 	add_amd_l2_cache(devi, l2_cache_str,
3383 	    BITX(cp->cp_ecx, 31, 16), BITX(cp->cp_ecx, 15, 12),
3384 	    BITX(cp->cp_ecx, 11, 8), BITX(cp->cp_ecx, 7, 0));
3385 }
3386 
3387 /*
3388  * There are two basic ways that the x86 world describes it cache
3389  * and tlb architecture - Intel's way and AMD's way.
3390  *
3391  * Return which flavor of cache architecture we should use
3392  */
3393 static int
3394 x86_which_cacheinfo(struct cpuid_info *cpi)
3395 {
3396 	switch (cpi->cpi_vendor) {
3397 	case X86_VENDOR_Intel:
3398 		if (cpi->cpi_maxeax >= 2)
3399 			return (X86_VENDOR_Intel);
3400 		break;
3401 	case X86_VENDOR_AMD:
3402 		/*
3403 		 * The K5 model 1 was the first part from AMD that reported
3404 		 * cache sizes via extended cpuid functions.
3405 		 */
3406 		if (cpi->cpi_family > 5 ||
3407 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
3408 			return (X86_VENDOR_AMD);
3409 		break;
3410 	case X86_VENDOR_TM:
3411 		if (cpi->cpi_family >= 5)
3412 			return (X86_VENDOR_AMD);
3413 		/*FALLTHROUGH*/
3414 	default:
3415 		/*
3416 		 * If they have extended CPU data for 0x80000005
3417 		 * then we assume they have AMD-format cache
3418 		 * information.
3419 		 *
3420 		 * If not, and the vendor happens to be Cyrix,
3421 		 * then try our-Cyrix specific handler.
3422 		 *
3423 		 * If we're not Cyrix, then assume we're using Intel's
3424 		 * table-driven format instead.
3425 		 */
3426 		if (cpi->cpi_xmaxeax >= 0x80000005)
3427 			return (X86_VENDOR_AMD);
3428 		else if (cpi->cpi_vendor == X86_VENDOR_Cyrix)
3429 			return (X86_VENDOR_Cyrix);
3430 		else if (cpi->cpi_maxeax >= 2)
3431 			return (X86_VENDOR_Intel);
3432 		break;
3433 	}
3434 	return (-1);
3435 }
3436 
3437 /*
3438  * create a node for the given cpu under the prom root node.
3439  * Also, create a cpu node in the device tree.
3440  */
3441 static dev_info_t *cpu_nex_devi = NULL;
3442 static kmutex_t cpu_node_lock;
3443 
3444 /*
3445  * Called from post_startup() and mp_startup()
3446  */
3447 void
3448 add_cpunode2devtree(processorid_t cpu_id, struct cpuid_info *cpi)
3449 {
3450 	dev_info_t *cpu_devi;
3451 	int create;
3452 
3453 	mutex_enter(&cpu_node_lock);
3454 
3455 	/*
3456 	 * create a nexus node for all cpus identified as 'cpu_id' under
3457 	 * the root node.
3458 	 */
3459 	if (cpu_nex_devi == NULL) {
3460 		if (ndi_devi_alloc(ddi_root_node(), "cpus",
3461 		    (pnode_t)DEVI_SID_NODEID, &cpu_nex_devi) != NDI_SUCCESS) {
3462 			mutex_exit(&cpu_node_lock);
3463 			return;
3464 		}
3465 		(void) ndi_devi_online(cpu_nex_devi, 0);
3466 	}
3467 
3468 	/*
3469 	 * create a child node for cpu identified as 'cpu_id'
3470 	 */
3471 	cpu_devi = ddi_add_child(cpu_nex_devi, "cpu", DEVI_SID_NODEID,
3472 	    cpu_id);
3473 	if (cpu_devi == NULL) {
3474 		mutex_exit(&cpu_node_lock);
3475 		return;
3476 	}
3477 
3478 	/* device_type */
3479 
3480 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3481 	    "device_type", "cpu");
3482 
3483 	/* reg */
3484 
3485 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3486 	    "reg", cpu_id);
3487 
3488 	/* cpu-mhz, and clock-frequency */
3489 
3490 	if (cpu_freq > 0) {
3491 		long long mul;
3492 
3493 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3494 		    "cpu-mhz", cpu_freq);
3495 
3496 		if ((mul = cpu_freq * 1000000LL) <= INT_MAX)
3497 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3498 			    "clock-frequency", (int)mul);
3499 	}
3500 
3501 	(void) ndi_devi_online(cpu_devi, 0);
3502 
3503 	if ((x86_feature & X86_CPUID) == 0) {
3504 		mutex_exit(&cpu_node_lock);
3505 		return;
3506 	}
3507 
3508 	/* vendor-id */
3509 
3510 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3511 	    "vendor-id", cpi->cpi_vendorstr);
3512 
3513 	if (cpi->cpi_maxeax == 0) {
3514 		mutex_exit(&cpu_node_lock);
3515 		return;
3516 	}
3517 
3518 	/*
3519 	 * family, model, and step
3520 	 */
3521 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3522 	    "family", CPI_FAMILY(cpi));
3523 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3524 	    "cpu-model", CPI_MODEL(cpi));
3525 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3526 	    "stepping-id", CPI_STEP(cpi));
3527 
3528 	/* type */
3529 
3530 	switch (cpi->cpi_vendor) {
3531 	case X86_VENDOR_Intel:
3532 		create = 1;
3533 		break;
3534 	default:
3535 		create = 0;
3536 		break;
3537 	}
3538 	if (create)
3539 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3540 		    "type", CPI_TYPE(cpi));
3541 
3542 	/* ext-family */
3543 
3544 	switch (cpi->cpi_vendor) {
3545 	case X86_VENDOR_Intel:
3546 	case X86_VENDOR_AMD:
3547 		create = cpi->cpi_family >= 0xf;
3548 		break;
3549 	default:
3550 		create = 0;
3551 		break;
3552 	}
3553 	if (create)
3554 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3555 		    "ext-family", CPI_FAMILY_XTD(cpi));
3556 
3557 	/* ext-model */
3558 
3559 	switch (cpi->cpi_vendor) {
3560 	case X86_VENDOR_Intel:
3561 		create = IS_EXTENDED_MODEL_INTEL(cpi);
3562 		break;
3563 	case X86_VENDOR_AMD:
3564 		create = CPI_FAMILY(cpi) == 0xf;
3565 		break;
3566 	default:
3567 		create = 0;
3568 		break;
3569 	}
3570 	if (create)
3571 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3572 		    "ext-model", CPI_MODEL_XTD(cpi));
3573 
3574 	/* generation */
3575 
3576 	switch (cpi->cpi_vendor) {
3577 	case X86_VENDOR_AMD:
3578 		/*
3579 		 * AMD K5 model 1 was the first part to support this
3580 		 */
3581 		create = cpi->cpi_xmaxeax >= 0x80000001;
3582 		break;
3583 	default:
3584 		create = 0;
3585 		break;
3586 	}
3587 	if (create)
3588 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3589 		    "generation", BITX((cpi)->cpi_extd[1].cp_eax, 11, 8));
3590 
3591 	/* brand-id */
3592 
3593 	switch (cpi->cpi_vendor) {
3594 	case X86_VENDOR_Intel:
3595 		/*
3596 		 * brand id first appeared on Pentium III Xeon model 8,
3597 		 * and Celeron model 8 processors and Opteron
3598 		 */
3599 		create = cpi->cpi_family > 6 ||
3600 		    (cpi->cpi_family == 6 && cpi->cpi_model >= 8);
3601 		break;
3602 	case X86_VENDOR_AMD:
3603 		create = cpi->cpi_family >= 0xf;
3604 		break;
3605 	default:
3606 		create = 0;
3607 		break;
3608 	}
3609 	if (create && cpi->cpi_brandid != 0) {
3610 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3611 		    "brand-id", cpi->cpi_brandid);
3612 	}
3613 
3614 	/* chunks, and apic-id */
3615 
3616 	switch (cpi->cpi_vendor) {
3617 		/*
3618 		 * first available on Pentium IV and Opteron (K8)
3619 		 */
3620 	case X86_VENDOR_Intel:
3621 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
3622 		break;
3623 	case X86_VENDOR_AMD:
3624 		create = cpi->cpi_family >= 0xf;
3625 		break;
3626 	default:
3627 		create = 0;
3628 		break;
3629 	}
3630 	if (create) {
3631 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3632 		    "chunks", CPI_CHUNKS(cpi));
3633 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3634 		    "apic-id", cpi->cpi_apicid);
3635 		if (cpi->cpi_chipid >= 0) {
3636 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3637 			    "chip#", cpi->cpi_chipid);
3638 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3639 			    "clog#", cpi->cpi_clogid);
3640 		}
3641 	}
3642 
3643 	/* cpuid-features */
3644 
3645 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3646 	    "cpuid-features", CPI_FEATURES_EDX(cpi));
3647 
3648 
3649 	/* cpuid-features-ecx */
3650 
3651 	switch (cpi->cpi_vendor) {
3652 	case X86_VENDOR_Intel:
3653 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
3654 		break;
3655 	default:
3656 		create = 0;
3657 		break;
3658 	}
3659 	if (create)
3660 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3661 		    "cpuid-features-ecx", CPI_FEATURES_ECX(cpi));
3662 
3663 	/* ext-cpuid-features */
3664 
3665 	switch (cpi->cpi_vendor) {
3666 	case X86_VENDOR_Intel:
3667 	case X86_VENDOR_AMD:
3668 	case X86_VENDOR_Cyrix:
3669 	case X86_VENDOR_TM:
3670 	case X86_VENDOR_Centaur:
3671 		create = cpi->cpi_xmaxeax >= 0x80000001;
3672 		break;
3673 	default:
3674 		create = 0;
3675 		break;
3676 	}
3677 	if (create) {
3678 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3679 		    "ext-cpuid-features", CPI_FEATURES_XTD_EDX(cpi));
3680 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3681 		    "ext-cpuid-features-ecx", CPI_FEATURES_XTD_ECX(cpi));
3682 	}
3683 
3684 	/*
3685 	 * Brand String first appeared in Intel Pentium IV, AMD K5
3686 	 * model 1, and Cyrix GXm.  On earlier models we try and
3687 	 * simulate something similar .. so this string should always
3688 	 * same -something- about the processor, however lame.
3689 	 */
3690 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3691 	    "brand-string", cpi->cpi_brandstr);
3692 
3693 	/*
3694 	 * Finally, cache and tlb information
3695 	 */
3696 	switch (x86_which_cacheinfo(cpi)) {
3697 	case X86_VENDOR_Intel:
3698 		intel_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
3699 		break;
3700 	case X86_VENDOR_Cyrix:
3701 		cyrix_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
3702 		break;
3703 	case X86_VENDOR_AMD:
3704 		amd_cache_info(cpi, cpu_devi);
3705 		break;
3706 	default:
3707 		break;
3708 	}
3709 
3710 	mutex_exit(&cpu_node_lock);
3711 }
3712 
3713 struct l2info {
3714 	int *l2i_csz;
3715 	int *l2i_lsz;
3716 	int *l2i_assoc;
3717 	int l2i_ret;
3718 };
3719 
3720 /*
3721  * A cacheinfo walker that fetches the size, line-size and associativity
3722  * of the L2 cache
3723  */
3724 static int
3725 intel_l2cinfo(void *arg, const struct cachetab *ct)
3726 {
3727 	struct l2info *l2i = arg;
3728 	int *ip;
3729 
3730 	if (ct->ct_label != l2_cache_str &&
3731 	    ct->ct_label != sl2_cache_str)
3732 		return (0);	/* not an L2 -- keep walking */
3733 
3734 	if ((ip = l2i->l2i_csz) != NULL)
3735 		*ip = ct->ct_size;
3736 	if ((ip = l2i->l2i_lsz) != NULL)
3737 		*ip = ct->ct_line_size;
3738 	if ((ip = l2i->l2i_assoc) != NULL)
3739 		*ip = ct->ct_assoc;
3740 	l2i->l2i_ret = ct->ct_size;
3741 	return (1);		/* was an L2 -- terminate walk */
3742 }
3743 
3744 /*
3745  * AMD L2/L3 Cache and TLB Associativity Field Definition:
3746  *
3747  *	Unlike the associativity for the L1 cache and tlb where the 8 bit
3748  *	value is the associativity, the associativity for the L2 cache and
3749  *	tlb is encoded in the following table. The 4 bit L2 value serves as
3750  *	an index into the amd_afd[] array to determine the associativity.
3751  *	-1 is undefined. 0 is fully associative.
3752  */
3753 
3754 static int amd_afd[] =
3755 	{-1, 1, 2, -1, 4, -1, 8, -1, 16, -1, 32, 48, 64, 96, 128, 0};
3756 
3757 static void
3758 amd_l2cacheinfo(struct cpuid_info *cpi, struct l2info *l2i)
3759 {
3760 	struct cpuid_regs *cp;
3761 	uint_t size, assoc;
3762 	int i;
3763 	int *ip;
3764 
3765 	if (cpi->cpi_xmaxeax < 0x80000006)
3766 		return;
3767 	cp = &cpi->cpi_extd[6];
3768 
3769 	if ((i = BITX(cp->cp_ecx, 15, 12)) != 0 &&
3770 	    (size = BITX(cp->cp_ecx, 31, 16)) != 0) {
3771 		uint_t cachesz = size * 1024;
3772 		assoc = amd_afd[i];
3773 
3774 		ASSERT(assoc != -1);
3775 
3776 		if ((ip = l2i->l2i_csz) != NULL)
3777 			*ip = cachesz;
3778 		if ((ip = l2i->l2i_lsz) != NULL)
3779 			*ip = BITX(cp->cp_ecx, 7, 0);
3780 		if ((ip = l2i->l2i_assoc) != NULL)
3781 			*ip = assoc;
3782 		l2i->l2i_ret = cachesz;
3783 	}
3784 }
3785 
3786 int
3787 getl2cacheinfo(cpu_t *cpu, int *csz, int *lsz, int *assoc)
3788 {
3789 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
3790 	struct l2info __l2info, *l2i = &__l2info;
3791 
3792 	l2i->l2i_csz = csz;
3793 	l2i->l2i_lsz = lsz;
3794 	l2i->l2i_assoc = assoc;
3795 	l2i->l2i_ret = -1;
3796 
3797 	switch (x86_which_cacheinfo(cpi)) {
3798 	case X86_VENDOR_Intel:
3799 		intel_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
3800 		break;
3801 	case X86_VENDOR_Cyrix:
3802 		cyrix_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
3803 		break;
3804 	case X86_VENDOR_AMD:
3805 		amd_l2cacheinfo(cpi, l2i);
3806 		break;
3807 	default:
3808 		break;
3809 	}
3810 	return (l2i->l2i_ret);
3811 }
3812 
3813 #if !defined(__xpv)
3814 
3815 uint32_t *
3816 cpuid_mwait_alloc(cpu_t *cpu)
3817 {
3818 	uint32_t	*ret;
3819 	size_t		mwait_size;
3820 
3821 	ASSERT(cpuid_checkpass(cpu, 2));
3822 
3823 	mwait_size = cpu->cpu_m.mcpu_cpi->cpi_mwait.mon_max;
3824 	if (mwait_size == 0)
3825 		return (NULL);
3826 
3827 	/*
3828 	 * kmem_alloc() returns cache line size aligned data for mwait_size
3829 	 * allocations.  mwait_size is currently cache line sized.  Neither
3830 	 * of these implementation details are guarantied to be true in the
3831 	 * future.
3832 	 *
3833 	 * First try allocating mwait_size as kmem_alloc() currently returns
3834 	 * correctly aligned memory.  If kmem_alloc() does not return
3835 	 * mwait_size aligned memory, then use mwait_size ROUNDUP.
3836 	 *
3837 	 * Set cpi_mwait.buf_actual and cpi_mwait.size_actual in case we
3838 	 * decide to free this memory.
3839 	 */
3840 	ret = kmem_zalloc(mwait_size, KM_SLEEP);
3841 	if (ret == (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size)) {
3842 		cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret;
3843 		cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size;
3844 		*ret = MWAIT_RUNNING;
3845 		return (ret);
3846 	} else {
3847 		kmem_free(ret, mwait_size);
3848 		ret = kmem_zalloc(mwait_size * 2, KM_SLEEP);
3849 		cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret;
3850 		cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size * 2;
3851 		ret = (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size);
3852 		*ret = MWAIT_RUNNING;
3853 		return (ret);
3854 	}
3855 }
3856 
3857 void
3858 cpuid_mwait_free(cpu_t *cpu)
3859 {
3860 	ASSERT(cpuid_checkpass(cpu, 2));
3861 
3862 	if (cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual != NULL &&
3863 	    cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual > 0) {
3864 		kmem_free(cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual,
3865 		    cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual);
3866 	}
3867 
3868 	cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = NULL;
3869 	cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = 0;
3870 }
3871 
3872 void
3873 patch_tsc_read(int flag)
3874 {
3875 	size_t cnt;
3876 
3877 	switch (flag) {
3878 	case X86_NO_TSC:
3879 		cnt = &_no_rdtsc_end - &_no_rdtsc_start;
3880 		(void) memcpy((void *)tsc_read, (void *)&_no_rdtsc_start, cnt);
3881 		break;
3882 	case X86_HAVE_TSCP:
3883 		cnt = &_tscp_end - &_tscp_start;
3884 		(void) memcpy((void *)tsc_read, (void *)&_tscp_start, cnt);
3885 		break;
3886 	case X86_TSC_MFENCE:
3887 		cnt = &_tsc_mfence_end - &_tsc_mfence_start;
3888 		(void) memcpy((void *)tsc_read,
3889 		    (void *)&_tsc_mfence_start, cnt);
3890 		break;
3891 	case X86_TSC_LFENCE:
3892 		cnt = &_tsc_lfence_end - &_tsc_lfence_start;
3893 		(void) memcpy((void *)tsc_read,
3894 		    (void *)&_tsc_lfence_start, cnt);
3895 		break;
3896 	default:
3897 		break;
3898 	}
3899 }
3900 
3901 int
3902 cpuid_deep_cstates_supported(void)
3903 {
3904 	struct cpuid_info *cpi;
3905 	struct cpuid_regs regs;
3906 
3907 	ASSERT(cpuid_checkpass(CPU, 1));
3908 
3909 	cpi = CPU->cpu_m.mcpu_cpi;
3910 
3911 	if (!(x86_feature & X86_CPUID))
3912 		return (0);
3913 
3914 	switch (cpi->cpi_vendor) {
3915 	case X86_VENDOR_Intel:
3916 		if (cpi->cpi_xmaxeax < 0x80000007)
3917 			return (0);
3918 
3919 		/*
3920 		 * TSC run at a constant rate in all ACPI C-states?
3921 		 */
3922 		regs.cp_eax = 0x80000007;
3923 		(void) __cpuid_insn(&regs);
3924 		return (regs.cp_edx & CPUID_TSC_CSTATE_INVARIANCE);
3925 
3926 	default:
3927 		return (0);
3928 	}
3929 }
3930 
3931 #endif	/* !__xpv */
3932 
3933 void
3934 post_startup_cpu_fixups(void)
3935 {
3936 #ifndef __xpv
3937 	/*
3938 	 * Some AMD processors support C1E state. Entering this state will
3939 	 * cause the local APIC timer to stop, which we can't deal with at
3940 	 * this time.
3941 	 */
3942 	if (cpuid_getvendor(CPU) == X86_VENDOR_AMD) {
3943 		on_trap_data_t otd;
3944 		uint64_t reg;
3945 
3946 		if (!on_trap(&otd, OT_DATA_ACCESS)) {
3947 			reg = rdmsr(MSR_AMD_INT_PENDING_CMP_HALT);
3948 			/* Disable C1E state if it is enabled by BIOS */
3949 			if ((reg >> AMD_ACTONCMPHALT_SHIFT) &
3950 			    AMD_ACTONCMPHALT_MASK) {
3951 				reg &= ~(AMD_ACTONCMPHALT_MASK <<
3952 				    AMD_ACTONCMPHALT_SHIFT);
3953 				wrmsr(MSR_AMD_INT_PENDING_CMP_HALT, reg);
3954 			}
3955 		}
3956 		no_trap();
3957 	}
3958 #endif	/* !__xpv */
3959 }
3960 
3961 #if defined(__amd64) && !defined(__xpv)
3962 /*
3963  * Patch in versions of bcopy for high performance Intel Nhm processors
3964  * and later...
3965  */
3966 void
3967 patch_memops(uint_t vendor)
3968 {
3969 	size_t cnt, i;
3970 	caddr_t to, from;
3971 
3972 	if ((vendor == X86_VENDOR_Intel) && ((x86_feature & X86_SSE4_2) != 0)) {
3973 		cnt = &bcopy_patch_end - &bcopy_patch_start;
3974 		to = &bcopy_ck_size;
3975 		from = &bcopy_patch_start;
3976 		for (i = 0; i < cnt; i++) {
3977 			*to++ = *from++;
3978 		}
3979 	}
3980 }
3981 #endif  /* __amd64 && !__xpv */
3982