xref: /titanic_50/usr/src/uts/i86pc/os/cpuid.c (revision 3441f6a1af86b9b2f883f3323bf02c9dd0f7a94d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Various routines to handle identification
30  * and classification of x86 processors.
31  */
32 
33 #include <sys/types.h>
34 #include <sys/archsystm.h>
35 #include <sys/x86_archext.h>
36 #include <sys/kmem.h>
37 #include <sys/systm.h>
38 #include <sys/cmn_err.h>
39 #include <sys/sunddi.h>
40 #include <sys/sunndi.h>
41 #include <sys/cpuvar.h>
42 #include <sys/processor.h>
43 #include <sys/pg.h>
44 #include <sys/fp.h>
45 #include <sys/controlregs.h>
46 #include <sys/auxv_386.h>
47 #include <sys/bitmap.h>
48 #include <sys/memnode.h>
49 
50 /*
51  * Pass 0 of cpuid feature analysis happens in locore. It contains special code
52  * to recognize Cyrix processors that are not cpuid-compliant, and to deal with
53  * them accordingly. For most modern processors, feature detection occurs here
54  * in pass 1.
55  *
56  * Pass 1 of cpuid feature analysis happens just at the beginning of mlsetup()
57  * for the boot CPU and does the basic analysis that the early kernel needs.
58  * x86_feature is set based on the return value of cpuid_pass1() of the boot
59  * CPU.
60  *
61  * Pass 1 includes:
62  *
63  *	o Determining vendor/model/family/stepping and setting x86_type and
64  *	  x86_vendor accordingly.
65  *	o Processing the feature flags returned by the cpuid instruction while
66  *	  applying any workarounds or tricks for the specific processor.
67  *	o Mapping the feature flags into Solaris feature bits (X86_*).
68  *	o Processing extended feature flags if supported by the processor,
69  *	  again while applying specific processor knowledge.
70  *	o Determining the CMT characteristics of the system.
71  *
72  * Pass 1 is done on non-boot CPUs during their initialization and the results
73  * are used only as a meager attempt at ensuring that all processors within the
74  * system support the same features.
75  *
76  * Pass 2 of cpuid feature analysis happens just at the beginning
77  * of startup().  It just copies in and corrects the remainder
78  * of the cpuid data we depend on: standard cpuid functions that we didn't
79  * need for pass1 feature analysis, and extended cpuid functions beyond the
80  * simple feature processing done in pass1.
81  *
82  * Pass 3 of cpuid analysis is invoked after basic kernel services; in
83  * particular kernel memory allocation has been made available. It creates a
84  * readable brand string based on the data collected in the first two passes.
85  *
86  * Pass 4 of cpuid analysis is invoked after post_startup() when all
87  * the support infrastructure for various hardware features has been
88  * initialized. It determines which processor features will be reported
89  * to userland via the aux vector.
90  *
91  * All passes are executed on all CPUs, but only the boot CPU determines what
92  * features the kernel will use.
93  *
94  * Much of the worst junk in this file is for the support of processors
95  * that didn't really implement the cpuid instruction properly.
96  *
97  * NOTE: The accessor functions (cpuid_get*) are aware of, and ASSERT upon,
98  * the pass numbers.  Accordingly, changes to the pass code may require changes
99  * to the accessor code.
100  */
101 
102 uint_t x86_feature = 0;
103 uint_t x86_vendor = X86_VENDOR_IntelClone;
104 uint_t x86_type = X86_TYPE_OTHER;
105 
106 uint_t pentiumpro_bug4046376;
107 uint_t pentiumpro_bug4064495;
108 
109 uint_t enable486;
110 
111 /*
112  * This set of strings are for processors rumored to support the cpuid
113  * instruction, and is used by locore.s to figure out how to set x86_vendor
114  */
115 const char CyrixInstead[] = "CyrixInstead";
116 
117 /*
118  * monitor/mwait info.
119  */
120 struct mwait_info {
121 	size_t		mon_min;	/* min size to avoid missed wakeups */
122 	size_t		mon_max;	/* size to avoid false wakeups */
123 	uint32_t	support;	/* processor support of monitor/mwait */
124 };
125 
126 /*
127  * These constants determine how many of the elements of the
128  * cpuid we cache in the cpuid_info data structure; the
129  * remaining elements are accessible via the cpuid instruction.
130  */
131 
132 #define	NMAX_CPI_STD	6		/* eax = 0 .. 5 */
133 #define	NMAX_CPI_EXTD	9		/* eax = 0x80000000 .. 0x80000008 */
134 
135 struct cpuid_info {
136 	uint_t cpi_pass;		/* last pass completed */
137 	/*
138 	 * standard function information
139 	 */
140 	uint_t cpi_maxeax;		/* fn 0: %eax */
141 	char cpi_vendorstr[13];		/* fn 0: %ebx:%ecx:%edx */
142 	uint_t cpi_vendor;		/* enum of cpi_vendorstr */
143 
144 	uint_t cpi_family;		/* fn 1: extended family */
145 	uint_t cpi_model;		/* fn 1: extended model */
146 	uint_t cpi_step;		/* fn 1: stepping */
147 	chipid_t cpi_chipid;		/* fn 1: %ebx: chip # on ht cpus */
148 	uint_t cpi_brandid;		/* fn 1: %ebx: brand ID */
149 	int cpi_clogid;			/* fn 1: %ebx: thread # */
150 	uint_t cpi_ncpu_per_chip;	/* fn 1: %ebx: logical cpu count */
151 	uint8_t cpi_cacheinfo[16];	/* fn 2: intel-style cache desc */
152 	uint_t cpi_ncache;		/* fn 2: number of elements */
153 	uint_t cpi_ncpu_shr_last_cache;	/* fn 4: %eax: ncpus sharing cache */
154 	id_t cpi_last_lvl_cacheid;	/* fn 4: %eax: derived cache id */
155 	uint_t cpi_std_4_size;		/* fn 4: number of fn 4 elements */
156 	struct cpuid_regs **cpi_std_4;	/* fn 4: %ecx == 0 .. fn4_size */
157 	struct cpuid_regs cpi_std[NMAX_CPI_STD];	/* 0 .. 5 */
158 	/*
159 	 * extended function information
160 	 */
161 	uint_t cpi_xmaxeax;		/* fn 0x80000000: %eax */
162 	char cpi_brandstr[49];		/* fn 0x8000000[234] */
163 	uint8_t cpi_pabits;		/* fn 0x80000006: %eax */
164 	uint8_t cpi_vabits;		/* fn 0x80000006: %eax */
165 	struct cpuid_regs cpi_extd[NMAX_CPI_EXTD]; /* 0x8000000[0-8] */
166 	id_t cpi_coreid;
167 	uint_t cpi_ncore_per_chip;	/* AMD: fn 0x80000008: %ecx[7-0] */
168 					/* Intel: fn 4: %eax[31-26] */
169 	/*
170 	 * supported feature information
171 	 */
172 	uint32_t cpi_support[5];
173 #define	STD_EDX_FEATURES	0
174 #define	AMD_EDX_FEATURES	1
175 #define	TM_EDX_FEATURES		2
176 #define	STD_ECX_FEATURES	3
177 #define	AMD_ECX_FEATURES	4
178 	/*
179 	 * Synthesized information, where known.
180 	 */
181 	uint32_t cpi_chiprev;		/* See X86_CHIPREV_* in x86_archext.h */
182 	const char *cpi_chiprevstr;	/* May be NULL if chiprev unknown */
183 	uint32_t cpi_socket;		/* Chip package/socket type */
184 
185 	struct mwait_info cpi_mwait;	/* fn 5: monitor/mwait info */
186 };
187 
188 
189 static struct cpuid_info cpuid_info0;
190 
191 /*
192  * These bit fields are defined by the Intel Application Note AP-485
193  * "Intel Processor Identification and the CPUID Instruction"
194  */
195 #define	CPI_FAMILY_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 27, 20)
196 #define	CPI_MODEL_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 19, 16)
197 #define	CPI_TYPE(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 13, 12)
198 #define	CPI_FAMILY(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 11, 8)
199 #define	CPI_STEP(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 3, 0)
200 #define	CPI_MODEL(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 7, 4)
201 
202 #define	CPI_FEATURES_EDX(cpi)		((cpi)->cpi_std[1].cp_edx)
203 #define	CPI_FEATURES_ECX(cpi)		((cpi)->cpi_std[1].cp_ecx)
204 #define	CPI_FEATURES_XTD_EDX(cpi)	((cpi)->cpi_extd[1].cp_edx)
205 #define	CPI_FEATURES_XTD_ECX(cpi)	((cpi)->cpi_extd[1].cp_ecx)
206 
207 #define	CPI_BRANDID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 7, 0)
208 #define	CPI_CHUNKS(cpi)		BITX((cpi)->cpi_std[1].cp_ebx, 15, 7)
209 #define	CPI_CPU_COUNT(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 23, 16)
210 #define	CPI_APIC_ID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 31, 24)
211 
212 #define	CPI_MAXEAX_MAX		0x100		/* sanity control */
213 #define	CPI_XMAXEAX_MAX		0x80000100
214 #define	CPI_FN4_ECX_MAX		0x20		/* sanity: max fn 4 levels */
215 
216 /*
217  * Function 4 (Deterministic Cache Parameters) macros
218  * Defined by Intel Application Note AP-485
219  */
220 #define	CPI_NUM_CORES(regs)		BITX((regs)->cp_eax, 31, 26)
221 #define	CPI_NTHR_SHR_CACHE(regs)	BITX((regs)->cp_eax, 25, 14)
222 #define	CPI_FULL_ASSOC_CACHE(regs)	BITX((regs)->cp_eax, 9, 9)
223 #define	CPI_SELF_INIT_CACHE(regs)	BITX((regs)->cp_eax, 8, 8)
224 #define	CPI_CACHE_LVL(regs)		BITX((regs)->cp_eax, 7, 5)
225 #define	CPI_CACHE_TYPE(regs)		BITX((regs)->cp_eax, 4, 0)
226 
227 #define	CPI_CACHE_WAYS(regs)		BITX((regs)->cp_ebx, 31, 22)
228 #define	CPI_CACHE_PARTS(regs)		BITX((regs)->cp_ebx, 21, 12)
229 #define	CPI_CACHE_COH_LN_SZ(regs)	BITX((regs)->cp_ebx, 11, 0)
230 
231 #define	CPI_CACHE_SETS(regs)		BITX((regs)->cp_ecx, 31, 0)
232 
233 #define	CPI_PREFCH_STRIDE(regs)		BITX((regs)->cp_edx, 9, 0)
234 
235 
236 /*
237  * A couple of shorthand macros to identify "later" P6-family chips
238  * like the Pentium M and Core.  First, the "older" P6-based stuff
239  * (loosely defined as "pre-Pentium-4"):
240  * P6, PII, Mobile PII, PII Xeon, PIII, Mobile PIII, PIII Xeon
241  */
242 
243 #define	IS_LEGACY_P6(cpi) (			\
244 	cpi->cpi_family == 6 && 		\
245 		(cpi->cpi_model == 1 ||		\
246 		cpi->cpi_model == 3 ||		\
247 		cpi->cpi_model == 5 ||		\
248 		cpi->cpi_model == 6 ||		\
249 		cpi->cpi_model == 7 ||		\
250 		cpi->cpi_model == 8 ||		\
251 		cpi->cpi_model == 0xA ||	\
252 		cpi->cpi_model == 0xB)		\
253 )
254 
255 /* A "new F6" is everything with family 6 that's not the above */
256 #define	IS_NEW_F6(cpi) ((cpi->cpi_family == 6) && !IS_LEGACY_P6(cpi))
257 
258 /*
259  * AMD family 0xf socket types.
260  * First index is 0 for revs B thru E, 1 for F and G.
261  * Second index by (model & 0x3)
262  */
263 static uint32_t amd_skts[2][4] = {
264 	{
265 		X86_SOCKET_754,		/* 0b00 */
266 		X86_SOCKET_940,		/* 0b01 */
267 		X86_SOCKET_754,		/* 0b10 */
268 		X86_SOCKET_939		/* 0b11 */
269 	},
270 	{
271 		X86_SOCKET_S1g1,	/* 0b00 */
272 		X86_SOCKET_F1207,	/* 0b01 */
273 		X86_SOCKET_UNKNOWN,	/* 0b10 */
274 		X86_SOCKET_AM2		/* 0b11 */
275 	}
276 };
277 
278 /*
279  * Table for mapping AMD Family 0xf model/stepping combination to
280  * chip "revision" and socket type.  Only rm_family 0xf is used at the
281  * moment, but AMD family 0x10 will extend the exsiting revision names
282  * so will likely also use this table.
283  *
284  * The first member of this array that matches a given family, extended model
285  * plus model range, and stepping range will be considered a match.
286  */
287 static const struct amd_rev_mapent {
288 	uint_t rm_family;
289 	uint_t rm_modello;
290 	uint_t rm_modelhi;
291 	uint_t rm_steplo;
292 	uint_t rm_stephi;
293 	uint32_t rm_chiprev;
294 	const char *rm_chiprevstr;
295 	int rm_sktidx;
296 } amd_revmap[] = {
297 	/*
298 	 * Rev B includes model 0x4 stepping 0 and model 0x5 stepping 0 and 1.
299 	 */
300 	{ 0xf, 0x04, 0x04, 0x0, 0x0, X86_CHIPREV_AMD_F_REV_B, "B", 0 },
301 	{ 0xf, 0x05, 0x05, 0x0, 0x1, X86_CHIPREV_AMD_F_REV_B, "B", 0 },
302 	/*
303 	 * Rev C0 includes model 0x4 stepping 8 and model 0x5 stepping 8
304 	 */
305 	{ 0xf, 0x04, 0x05, 0x8, 0x8, X86_CHIPREV_AMD_F_REV_C0, "C0", 0 },
306 	/*
307 	 * Rev CG is the rest of extended model 0x0 - i.e., everything
308 	 * but the rev B and C0 combinations covered above.
309 	 */
310 	{ 0xf, 0x00, 0x0f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_CG, "CG", 0 },
311 	/*
312 	 * Rev D has extended model 0x1.
313 	 */
314 	{ 0xf, 0x10, 0x1f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_D, "D", 0 },
315 	/*
316 	 * Rev E has extended model 0x2.
317 	 * Extended model 0x3 is unused but available to grow into.
318 	 */
319 	{ 0xf, 0x20, 0x3f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_E, "E", 0 },
320 	/*
321 	 * Rev F has extended models 0x4 and 0x5.
322 	 */
323 	{ 0xf, 0x40, 0x5f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_F, "F", 1 },
324 	/*
325 	 * Rev G has extended model 0x6.
326 	 */
327 	{ 0xf, 0x60, 0x6f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_G, "G", 1 },
328 };
329 
330 /*
331  * Info for monitor/mwait idle loop.
332  *
333  * See cpuid section of "Intel 64 and IA-32 Architectures Software Developer's
334  * Manual Volume 2A: Instruction Set Reference, A-M" #25366-022US, November
335  * 2006.
336  * See MONITOR/MWAIT section of "AMD64 Architecture Programmer's Manual
337  * Documentation Updates" #33633, Rev 2.05, December 2006.
338  */
339 #define	MWAIT_SUPPORT		(0x00000001)	/* mwait supported */
340 #define	MWAIT_EXTENSIONS	(0x00000002)	/* extenstion supported */
341 #define	MWAIT_ECX_INT_ENABLE	(0x00000004)	/* ecx 1 extension supported */
342 #define	MWAIT_SUPPORTED(cpi)	((cpi)->cpi_std[1].cp_ecx & CPUID_INTC_ECX_MON)
343 #define	MWAIT_INT_ENABLE(cpi)	((cpi)->cpi_std[5].cp_ecx & 0x2)
344 #define	MWAIT_EXTENSION(cpi)	((cpi)->cpi_std[5].cp_ecx & 0x1)
345 #define	MWAIT_SIZE_MIN(cpi)	BITX((cpi)->cpi_std[5].cp_eax, 15, 0)
346 #define	MWAIT_SIZE_MAX(cpi)	BITX((cpi)->cpi_std[5].cp_ebx, 15, 0)
347 /*
348  * Number of sub-cstates for a given c-state.
349  */
350 #define	MWAIT_NUM_SUBC_STATES(cpi, c_state)			\
351 	BITX((cpi)->cpi_std[5].cp_edx, c_state + 3, c_state)
352 
353 static void
354 synth_amd_info(struct cpuid_info *cpi)
355 {
356 	const struct amd_rev_mapent *rmp;
357 	uint_t family, model, step;
358 	int i;
359 
360 	/*
361 	 * Currently only AMD family 0xf uses these fields.
362 	 */
363 	if (cpi->cpi_family != 0xf)
364 		return;
365 
366 	family = cpi->cpi_family;
367 	model = cpi->cpi_model;
368 	step = cpi->cpi_step;
369 
370 	for (i = 0, rmp = amd_revmap; i < sizeof (amd_revmap) / sizeof (*rmp);
371 	    i++, rmp++) {
372 		if (family == rmp->rm_family &&
373 		    model >= rmp->rm_modello && model <= rmp->rm_modelhi &&
374 		    step >= rmp->rm_steplo && step <= rmp->rm_stephi) {
375 			cpi->cpi_chiprev = rmp->rm_chiprev;
376 			cpi->cpi_chiprevstr = rmp->rm_chiprevstr;
377 			cpi->cpi_socket = amd_skts[rmp->rm_sktidx][model & 0x3];
378 			return;
379 		}
380 	}
381 }
382 
383 static void
384 synth_info(struct cpuid_info *cpi)
385 {
386 	cpi->cpi_chiprev = X86_CHIPREV_UNKNOWN;
387 	cpi->cpi_chiprevstr = "Unknown";
388 	cpi->cpi_socket = X86_SOCKET_UNKNOWN;
389 
390 	switch (cpi->cpi_vendor) {
391 	case X86_VENDOR_AMD:
392 		synth_amd_info(cpi);
393 		break;
394 
395 	default:
396 		break;
397 
398 	}
399 }
400 
401 /*
402  * Apply up various platform-dependent restrictions where the
403  * underlying platform restrictions mean the CPU can be marked
404  * as less capable than its cpuid instruction would imply.
405  */
406 
407 #define	platform_cpuid_mangle(vendor, eax, cp)	/* nothing */
408 
409 /*
410  *  Some undocumented ways of patching the results of the cpuid
411  *  instruction to permit running Solaris 10 on future cpus that
412  *  we don't currently support.  Could be set to non-zero values
413  *  via settings in eeprom.
414  */
415 
416 uint32_t cpuid_feature_ecx_include;
417 uint32_t cpuid_feature_ecx_exclude;
418 uint32_t cpuid_feature_edx_include;
419 uint32_t cpuid_feature_edx_exclude;
420 
421 void
422 cpuid_alloc_space(cpu_t *cpu)
423 {
424 	/*
425 	 * By convention, cpu0 is the boot cpu, which is set up
426 	 * before memory allocation is available.  All other cpus get
427 	 * their cpuid_info struct allocated here.
428 	 */
429 	ASSERT(cpu->cpu_id != 0);
430 	cpu->cpu_m.mcpu_cpi =
431 	    kmem_zalloc(sizeof (*cpu->cpu_m.mcpu_cpi), KM_SLEEP);
432 }
433 
434 void
435 cpuid_free_space(cpu_t *cpu)
436 {
437 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
438 	int i;
439 
440 	ASSERT(cpu->cpu_id != 0);
441 
442 	/*
443 	 * Free up any function 4 related dynamic storage
444 	 */
445 	for (i = 1; i < cpi->cpi_std_4_size; i++)
446 		kmem_free(cpi->cpi_std_4[i], sizeof (struct cpuid_regs));
447 	if (cpi->cpi_std_4_size > 0)
448 		kmem_free(cpi->cpi_std_4,
449 		    cpi->cpi_std_4_size * sizeof (struct cpuid_regs *));
450 
451 	kmem_free(cpu->cpu_m.mcpu_cpi, sizeof (*cpu->cpu_m.mcpu_cpi));
452 }
453 
454 uint_t
455 cpuid_pass1(cpu_t *cpu)
456 {
457 	uint32_t mask_ecx, mask_edx;
458 	uint_t feature = X86_CPUID;
459 	struct cpuid_info *cpi;
460 	struct cpuid_regs *cp;
461 	int xcpuid;
462 
463 
464 	/*
465 	 * Space statically allocated for cpu0, ensure pointer is set
466 	 */
467 	if (cpu->cpu_id == 0)
468 		cpu->cpu_m.mcpu_cpi = &cpuid_info0;
469 	cpi = cpu->cpu_m.mcpu_cpi;
470 	ASSERT(cpi != NULL);
471 	cp = &cpi->cpi_std[0];
472 	cp->cp_eax = 0;
473 	cpi->cpi_maxeax = __cpuid_insn(cp);
474 	{
475 		uint32_t *iptr = (uint32_t *)cpi->cpi_vendorstr;
476 		*iptr++ = cp->cp_ebx;
477 		*iptr++ = cp->cp_edx;
478 		*iptr++ = cp->cp_ecx;
479 		*(char *)&cpi->cpi_vendorstr[12] = '\0';
480 	}
481 
482 	/*
483 	 * Map the vendor string to a type code
484 	 */
485 	if (strcmp(cpi->cpi_vendorstr, "GenuineIntel") == 0)
486 		cpi->cpi_vendor = X86_VENDOR_Intel;
487 	else if (strcmp(cpi->cpi_vendorstr, "AuthenticAMD") == 0)
488 		cpi->cpi_vendor = X86_VENDOR_AMD;
489 	else if (strcmp(cpi->cpi_vendorstr, "GenuineTMx86") == 0)
490 		cpi->cpi_vendor = X86_VENDOR_TM;
491 	else if (strcmp(cpi->cpi_vendorstr, CyrixInstead) == 0)
492 		/*
493 		 * CyrixInstead is a variable used by the Cyrix detection code
494 		 * in locore.
495 		 */
496 		cpi->cpi_vendor = X86_VENDOR_Cyrix;
497 	else if (strcmp(cpi->cpi_vendorstr, "UMC UMC UMC ") == 0)
498 		cpi->cpi_vendor = X86_VENDOR_UMC;
499 	else if (strcmp(cpi->cpi_vendorstr, "NexGenDriven") == 0)
500 		cpi->cpi_vendor = X86_VENDOR_NexGen;
501 	else if (strcmp(cpi->cpi_vendorstr, "CentaurHauls") == 0)
502 		cpi->cpi_vendor = X86_VENDOR_Centaur;
503 	else if (strcmp(cpi->cpi_vendorstr, "RiseRiseRise") == 0)
504 		cpi->cpi_vendor = X86_VENDOR_Rise;
505 	else if (strcmp(cpi->cpi_vendorstr, "SiS SiS SiS ") == 0)
506 		cpi->cpi_vendor = X86_VENDOR_SiS;
507 	else if (strcmp(cpi->cpi_vendorstr, "Geode by NSC") == 0)
508 		cpi->cpi_vendor = X86_VENDOR_NSC;
509 	else
510 		cpi->cpi_vendor = X86_VENDOR_IntelClone;
511 
512 	x86_vendor = cpi->cpi_vendor; /* for compatibility */
513 
514 	/*
515 	 * Limit the range in case of weird hardware
516 	 */
517 	if (cpi->cpi_maxeax > CPI_MAXEAX_MAX)
518 		cpi->cpi_maxeax = CPI_MAXEAX_MAX;
519 	if (cpi->cpi_maxeax < 1)
520 		goto pass1_done;
521 
522 	cp = &cpi->cpi_std[1];
523 	cp->cp_eax = 1;
524 	(void) __cpuid_insn(cp);
525 
526 	/*
527 	 * Extract identifying constants for easy access.
528 	 */
529 	cpi->cpi_model = CPI_MODEL(cpi);
530 	cpi->cpi_family = CPI_FAMILY(cpi);
531 
532 	if (cpi->cpi_family == 0xf)
533 		cpi->cpi_family += CPI_FAMILY_XTD(cpi);
534 
535 	/*
536 	 * Beware: AMD uses "extended model" iff base *FAMILY* == 0xf.
537 	 * Intel, and presumably everyone else, uses model == 0xf, as
538 	 * one would expect (max value means possible overflow).  Sigh.
539 	 */
540 
541 	switch (cpi->cpi_vendor) {
542 	case X86_VENDOR_AMD:
543 		if (CPI_FAMILY(cpi) == 0xf)
544 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
545 		break;
546 	default:
547 		if (cpi->cpi_model == 0xf)
548 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
549 		break;
550 	}
551 
552 	cpi->cpi_step = CPI_STEP(cpi);
553 	cpi->cpi_brandid = CPI_BRANDID(cpi);
554 
555 	/*
556 	 * *default* assumptions:
557 	 * - believe %edx feature word
558 	 * - ignore %ecx feature word
559 	 * - 32-bit virtual and physical addressing
560 	 */
561 	mask_edx = 0xffffffff;
562 	mask_ecx = 0;
563 
564 	cpi->cpi_pabits = cpi->cpi_vabits = 32;
565 
566 	switch (cpi->cpi_vendor) {
567 	case X86_VENDOR_Intel:
568 		if (cpi->cpi_family == 5)
569 			x86_type = X86_TYPE_P5;
570 		else if (IS_LEGACY_P6(cpi)) {
571 			x86_type = X86_TYPE_P6;
572 			pentiumpro_bug4046376 = 1;
573 			pentiumpro_bug4064495 = 1;
574 			/*
575 			 * Clear the SEP bit when it was set erroneously
576 			 */
577 			if (cpi->cpi_model < 3 && cpi->cpi_step < 3)
578 				cp->cp_edx &= ~CPUID_INTC_EDX_SEP;
579 		} else if (IS_NEW_F6(cpi) || cpi->cpi_family == 0xf) {
580 			x86_type = X86_TYPE_P4;
581 			/*
582 			 * We don't currently depend on any of the %ecx
583 			 * features until Prescott, so we'll only check
584 			 * this from P4 onwards.  We might want to revisit
585 			 * that idea later.
586 			 */
587 			mask_ecx = 0xffffffff;
588 		} else if (cpi->cpi_family > 0xf)
589 			mask_ecx = 0xffffffff;
590 		break;
591 	case X86_VENDOR_IntelClone:
592 	default:
593 		break;
594 	case X86_VENDOR_AMD:
595 #if defined(OPTERON_ERRATUM_108)
596 		if (cpi->cpi_family == 0xf && cpi->cpi_model == 0xe) {
597 			cp->cp_eax = (0xf0f & cp->cp_eax) | 0xc0;
598 			cpi->cpi_model = 0xc;
599 		} else
600 #endif
601 		if (cpi->cpi_family == 5) {
602 			/*
603 			 * AMD K5 and K6
604 			 *
605 			 * These CPUs have an incomplete implementation
606 			 * of MCA/MCE which we mask away.
607 			 */
608 			mask_edx &= ~(CPUID_INTC_EDX_MCE | CPUID_INTC_EDX_MCA);
609 
610 			/*
611 			 * Model 0 uses the wrong (APIC) bit
612 			 * to indicate PGE.  Fix it here.
613 			 */
614 			if (cpi->cpi_model == 0) {
615 				if (cp->cp_edx & 0x200) {
616 					cp->cp_edx &= ~0x200;
617 					cp->cp_edx |= CPUID_INTC_EDX_PGE;
618 				}
619 			}
620 
621 			/*
622 			 * Early models had problems w/ MMX; disable.
623 			 */
624 			if (cpi->cpi_model < 6)
625 				mask_edx &= ~CPUID_INTC_EDX_MMX;
626 		}
627 
628 		/*
629 		 * For newer families, SSE3 and CX16, at least, are valid;
630 		 * enable all
631 		 */
632 		if (cpi->cpi_family >= 0xf)
633 			mask_ecx = 0xffffffff;
634 		break;
635 	case X86_VENDOR_TM:
636 		/*
637 		 * workaround the NT workaround in CMS 4.1
638 		 */
639 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4 &&
640 		    (cpi->cpi_step == 2 || cpi->cpi_step == 3))
641 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
642 		break;
643 	case X86_VENDOR_Centaur:
644 		/*
645 		 * workaround the NT workarounds again
646 		 */
647 		if (cpi->cpi_family == 6)
648 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
649 		break;
650 	case X86_VENDOR_Cyrix:
651 		/*
652 		 * We rely heavily on the probing in locore
653 		 * to actually figure out what parts, if any,
654 		 * of the Cyrix cpuid instruction to believe.
655 		 */
656 		switch (x86_type) {
657 		case X86_TYPE_CYRIX_486:
658 			mask_edx = 0;
659 			break;
660 		case X86_TYPE_CYRIX_6x86:
661 			mask_edx = 0;
662 			break;
663 		case X86_TYPE_CYRIX_6x86L:
664 			mask_edx =
665 			    CPUID_INTC_EDX_DE |
666 			    CPUID_INTC_EDX_CX8;
667 			break;
668 		case X86_TYPE_CYRIX_6x86MX:
669 			mask_edx =
670 			    CPUID_INTC_EDX_DE |
671 			    CPUID_INTC_EDX_MSR |
672 			    CPUID_INTC_EDX_CX8 |
673 			    CPUID_INTC_EDX_PGE |
674 			    CPUID_INTC_EDX_CMOV |
675 			    CPUID_INTC_EDX_MMX;
676 			break;
677 		case X86_TYPE_CYRIX_GXm:
678 			mask_edx =
679 			    CPUID_INTC_EDX_MSR |
680 			    CPUID_INTC_EDX_CX8 |
681 			    CPUID_INTC_EDX_CMOV |
682 			    CPUID_INTC_EDX_MMX;
683 			break;
684 		case X86_TYPE_CYRIX_MediaGX:
685 			break;
686 		case X86_TYPE_CYRIX_MII:
687 		case X86_TYPE_VIA_CYRIX_III:
688 			mask_edx =
689 			    CPUID_INTC_EDX_DE |
690 			    CPUID_INTC_EDX_TSC |
691 			    CPUID_INTC_EDX_MSR |
692 			    CPUID_INTC_EDX_CX8 |
693 			    CPUID_INTC_EDX_PGE |
694 			    CPUID_INTC_EDX_CMOV |
695 			    CPUID_INTC_EDX_MMX;
696 			break;
697 		default:
698 			break;
699 		}
700 		break;
701 	}
702 
703 	/*
704 	 * Now we've figured out the masks that determine
705 	 * which bits we choose to believe, apply the masks
706 	 * to the feature words, then map the kernel's view
707 	 * of these feature words into its feature word.
708 	 */
709 	cp->cp_edx &= mask_edx;
710 	cp->cp_ecx &= mask_ecx;
711 
712 	/*
713 	 * apply any platform restrictions (we don't call this
714 	 * immediately after __cpuid_insn here, because we need the
715 	 * workarounds applied above first)
716 	 */
717 	platform_cpuid_mangle(cpi->cpi_vendor, 1, cp);
718 
719 	/*
720 	 * fold in overrides from the "eeprom" mechanism
721 	 */
722 	cp->cp_edx |= cpuid_feature_edx_include;
723 	cp->cp_edx &= ~cpuid_feature_edx_exclude;
724 
725 	cp->cp_ecx |= cpuid_feature_ecx_include;
726 	cp->cp_ecx &= ~cpuid_feature_ecx_exclude;
727 
728 	if (cp->cp_edx & CPUID_INTC_EDX_PSE)
729 		feature |= X86_LARGEPAGE;
730 	if (cp->cp_edx & CPUID_INTC_EDX_TSC)
731 		feature |= X86_TSC;
732 	if (cp->cp_edx & CPUID_INTC_EDX_MSR)
733 		feature |= X86_MSR;
734 	if (cp->cp_edx & CPUID_INTC_EDX_MTRR)
735 		feature |= X86_MTRR;
736 	if (cp->cp_edx & CPUID_INTC_EDX_PGE)
737 		feature |= X86_PGE;
738 	if (cp->cp_edx & CPUID_INTC_EDX_CMOV)
739 		feature |= X86_CMOV;
740 	if (cp->cp_edx & CPUID_INTC_EDX_MMX)
741 		feature |= X86_MMX;
742 	if ((cp->cp_edx & CPUID_INTC_EDX_MCE) != 0 &&
743 	    (cp->cp_edx & CPUID_INTC_EDX_MCA) != 0)
744 		feature |= X86_MCA;
745 	if (cp->cp_edx & CPUID_INTC_EDX_PAE)
746 		feature |= X86_PAE;
747 	if (cp->cp_edx & CPUID_INTC_EDX_CX8)
748 		feature |= X86_CX8;
749 	if (cp->cp_ecx & CPUID_INTC_ECX_CX16)
750 		feature |= X86_CX16;
751 	if (cp->cp_edx & CPUID_INTC_EDX_PAT)
752 		feature |= X86_PAT;
753 	if (cp->cp_edx & CPUID_INTC_EDX_SEP)
754 		feature |= X86_SEP;
755 	if (cp->cp_edx & CPUID_INTC_EDX_FXSR) {
756 		/*
757 		 * In our implementation, fxsave/fxrstor
758 		 * are prerequisites before we'll even
759 		 * try and do SSE things.
760 		 */
761 		if (cp->cp_edx & CPUID_INTC_EDX_SSE)
762 			feature |= X86_SSE;
763 		if (cp->cp_edx & CPUID_INTC_EDX_SSE2)
764 			feature |= X86_SSE2;
765 		if (cp->cp_ecx & CPUID_INTC_ECX_SSE3)
766 			feature |= X86_SSE3;
767 	}
768 	if (cp->cp_edx & CPUID_INTC_EDX_DE)
769 		feature |= X86_DE;
770 	if (cp->cp_ecx & CPUID_INTC_ECX_MON) {
771 		cpi->cpi_mwait.support |= MWAIT_SUPPORT;
772 		feature |= X86_MWAIT;
773 	}
774 
775 	if (feature & X86_PAE)
776 		cpi->cpi_pabits = 36;
777 
778 	/*
779 	 * Hyperthreading configuration is slightly tricky on Intel
780 	 * and pure clones, and even trickier on AMD.
781 	 *
782 	 * (AMD chose to set the HTT bit on their CMP processors,
783 	 * even though they're not actually hyperthreaded.  Thus it
784 	 * takes a bit more work to figure out what's really going
785 	 * on ... see the handling of the CMP_LGCY bit below)
786 	 */
787 	if (cp->cp_edx & CPUID_INTC_EDX_HTT) {
788 		cpi->cpi_ncpu_per_chip = CPI_CPU_COUNT(cpi);
789 		if (cpi->cpi_ncpu_per_chip > 1)
790 			feature |= X86_HTT;
791 	} else {
792 		cpi->cpi_ncpu_per_chip = 1;
793 	}
794 
795 	/*
796 	 * Work on the "extended" feature information, doing
797 	 * some basic initialization for cpuid_pass2()
798 	 */
799 	xcpuid = 0;
800 	switch (cpi->cpi_vendor) {
801 	case X86_VENDOR_Intel:
802 		if (IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf)
803 			xcpuid++;
804 		break;
805 	case X86_VENDOR_AMD:
806 		if (cpi->cpi_family > 5 ||
807 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
808 			xcpuid++;
809 		break;
810 	case X86_VENDOR_Cyrix:
811 		/*
812 		 * Only these Cyrix CPUs are -known- to support
813 		 * extended cpuid operations.
814 		 */
815 		if (x86_type == X86_TYPE_VIA_CYRIX_III ||
816 		    x86_type == X86_TYPE_CYRIX_GXm)
817 			xcpuid++;
818 		break;
819 	case X86_VENDOR_Centaur:
820 	case X86_VENDOR_TM:
821 	default:
822 		xcpuid++;
823 		break;
824 	}
825 
826 	if (xcpuid) {
827 		cp = &cpi->cpi_extd[0];
828 		cp->cp_eax = 0x80000000;
829 		cpi->cpi_xmaxeax = __cpuid_insn(cp);
830 	}
831 
832 	if (cpi->cpi_xmaxeax & 0x80000000) {
833 
834 		if (cpi->cpi_xmaxeax > CPI_XMAXEAX_MAX)
835 			cpi->cpi_xmaxeax = CPI_XMAXEAX_MAX;
836 
837 		switch (cpi->cpi_vendor) {
838 		case X86_VENDOR_Intel:
839 		case X86_VENDOR_AMD:
840 			if (cpi->cpi_xmaxeax < 0x80000001)
841 				break;
842 			cp = &cpi->cpi_extd[1];
843 			cp->cp_eax = 0x80000001;
844 			(void) __cpuid_insn(cp);
845 
846 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
847 			    cpi->cpi_family == 5 &&
848 			    cpi->cpi_model == 6 &&
849 			    cpi->cpi_step == 6) {
850 				/*
851 				 * K6 model 6 uses bit 10 to indicate SYSC
852 				 * Later models use bit 11. Fix it here.
853 				 */
854 				if (cp->cp_edx & 0x400) {
855 					cp->cp_edx &= ~0x400;
856 					cp->cp_edx |= CPUID_AMD_EDX_SYSC;
857 				}
858 			}
859 
860 			platform_cpuid_mangle(cpi->cpi_vendor, 0x80000001, cp);
861 
862 			/*
863 			 * Compute the additions to the kernel's feature word.
864 			 */
865 			if (cp->cp_edx & CPUID_AMD_EDX_NX)
866 				feature |= X86_NX;
867 
868 			/*
869 			 * If both the HTT and CMP_LGCY bits are set,
870 			 * then we're not actually HyperThreaded.  Read
871 			 * "AMD CPUID Specification" for more details.
872 			 */
873 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
874 			    (feature & X86_HTT) &&
875 			    (cp->cp_ecx & CPUID_AMD_ECX_CMP_LGCY)) {
876 				feature &= ~X86_HTT;
877 				feature |= X86_CMP;
878 			}
879 #if defined(__amd64)
880 			/*
881 			 * It's really tricky to support syscall/sysret in
882 			 * the i386 kernel; we rely on sysenter/sysexit
883 			 * instead.  In the amd64 kernel, things are -way-
884 			 * better.
885 			 */
886 			if (cp->cp_edx & CPUID_AMD_EDX_SYSC)
887 				feature |= X86_ASYSC;
888 
889 			/*
890 			 * While we're thinking about system calls, note
891 			 * that AMD processors don't support sysenter
892 			 * in long mode at all, so don't try to program them.
893 			 */
894 			if (x86_vendor == X86_VENDOR_AMD)
895 				feature &= ~X86_SEP;
896 #endif
897 			if (cp->cp_edx & CPUID_AMD_EDX_TSCP)
898 				feature |= X86_TSCP;
899 			break;
900 		default:
901 			break;
902 		}
903 
904 		/*
905 		 * Get CPUID data about processor cores and hyperthreads.
906 		 */
907 		switch (cpi->cpi_vendor) {
908 		case X86_VENDOR_Intel:
909 			if (cpi->cpi_maxeax >= 4) {
910 				cp = &cpi->cpi_std[4];
911 				cp->cp_eax = 4;
912 				cp->cp_ecx = 0;
913 				(void) __cpuid_insn(cp);
914 				platform_cpuid_mangle(cpi->cpi_vendor, 4, cp);
915 			}
916 			/*FALLTHROUGH*/
917 		case X86_VENDOR_AMD:
918 			if (cpi->cpi_xmaxeax < 0x80000008)
919 				break;
920 			cp = &cpi->cpi_extd[8];
921 			cp->cp_eax = 0x80000008;
922 			(void) __cpuid_insn(cp);
923 			platform_cpuid_mangle(cpi->cpi_vendor, 0x80000008, cp);
924 
925 			/*
926 			 * Virtual and physical address limits from
927 			 * cpuid override previously guessed values.
928 			 */
929 			cpi->cpi_pabits = BITX(cp->cp_eax, 7, 0);
930 			cpi->cpi_vabits = BITX(cp->cp_eax, 15, 8);
931 			break;
932 		default:
933 			break;
934 		}
935 
936 		/*
937 		 * Derive the number of cores per chip
938 		 */
939 		switch (cpi->cpi_vendor) {
940 		case X86_VENDOR_Intel:
941 			if (cpi->cpi_maxeax < 4) {
942 				cpi->cpi_ncore_per_chip = 1;
943 				break;
944 			} else {
945 				cpi->cpi_ncore_per_chip =
946 				    BITX((cpi)->cpi_std[4].cp_eax, 31, 26) + 1;
947 			}
948 			break;
949 		case X86_VENDOR_AMD:
950 			if (cpi->cpi_xmaxeax < 0x80000008) {
951 				cpi->cpi_ncore_per_chip = 1;
952 				break;
953 			} else {
954 				cpi->cpi_ncore_per_chip =
955 				    BITX((cpi)->cpi_extd[8].cp_ecx, 7, 0) + 1;
956 			}
957 			break;
958 		default:
959 			cpi->cpi_ncore_per_chip = 1;
960 			break;
961 		}
962 	}
963 
964 	/*
965 	 * If more than one core, then this processor is CMP.
966 	 */
967 	if (cpi->cpi_ncore_per_chip > 1)
968 		feature |= X86_CMP;
969 
970 	/*
971 	 * If the number of cores is the same as the number
972 	 * of CPUs, then we cannot have HyperThreading.
973 	 */
974 	if (cpi->cpi_ncpu_per_chip == cpi->cpi_ncore_per_chip)
975 		feature &= ~X86_HTT;
976 
977 	if ((feature & (X86_HTT | X86_CMP)) == 0) {
978 		/*
979 		 * Single-core single-threaded processors.
980 		 */
981 		cpi->cpi_chipid = -1;
982 		cpi->cpi_clogid = 0;
983 		cpi->cpi_coreid = cpu->cpu_id;
984 	} else if (cpi->cpi_ncpu_per_chip > 1) {
985 		uint_t i;
986 		uint_t chipid_shift = 0;
987 		uint_t coreid_shift = 0;
988 		uint_t apic_id = CPI_APIC_ID(cpi);
989 
990 		for (i = 1; i < cpi->cpi_ncpu_per_chip; i <<= 1)
991 			chipid_shift++;
992 		cpi->cpi_chipid = apic_id >> chipid_shift;
993 		cpi->cpi_clogid = apic_id & ((1 << chipid_shift) - 1);
994 
995 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
996 			if (feature & X86_CMP) {
997 				/*
998 				 * Multi-core (and possibly multi-threaded)
999 				 * processors.
1000 				 */
1001 				uint_t ncpu_per_core;
1002 				if (cpi->cpi_ncore_per_chip == 1)
1003 					ncpu_per_core = cpi->cpi_ncpu_per_chip;
1004 				else if (cpi->cpi_ncore_per_chip > 1)
1005 					ncpu_per_core = cpi->cpi_ncpu_per_chip /
1006 					    cpi->cpi_ncore_per_chip;
1007 				/*
1008 				 * 8bit APIC IDs on dual core Pentiums
1009 				 * look like this:
1010 				 *
1011 				 * +-----------------------+------+------+
1012 				 * | Physical Package ID   |  MC  |  HT  |
1013 				 * +-----------------------+------+------+
1014 				 * <------- chipid -------->
1015 				 * <------- coreid --------------->
1016 				 *			   <--- clogid -->
1017 				 *
1018 				 * Where the number of bits necessary to
1019 				 * represent MC and HT fields together equals
1020 				 * to the minimum number of bits necessary to
1021 				 * store the value of cpi->cpi_ncpu_per_chip.
1022 				 * Of those bits, the MC part uses the number
1023 				 * of bits necessary to store the value of
1024 				 * cpi->cpi_ncore_per_chip.
1025 				 */
1026 				for (i = 1; i < ncpu_per_core; i <<= 1)
1027 					coreid_shift++;
1028 				cpi->cpi_coreid = apic_id >> coreid_shift;
1029 			} else if (feature & X86_HTT) {
1030 				/*
1031 				 * Single-core multi-threaded processors.
1032 				 */
1033 				cpi->cpi_coreid = cpi->cpi_chipid;
1034 			}
1035 		} else if (cpi->cpi_vendor == X86_VENDOR_AMD) {
1036 			/*
1037 			 * AMD currently only has dual-core processors with
1038 			 * single-threaded cores.  If they ever release
1039 			 * multi-threaded processors, then this code
1040 			 * will have to be updated.
1041 			 */
1042 			cpi->cpi_coreid = cpu->cpu_id;
1043 		} else {
1044 			/*
1045 			 * All other processors are currently
1046 			 * assumed to have single cores.
1047 			 */
1048 			cpi->cpi_coreid = cpi->cpi_chipid;
1049 		}
1050 	}
1051 
1052 	/*
1053 	 * Synthesize chip "revision" and socket type
1054 	 */
1055 	synth_info(cpi);
1056 
1057 pass1_done:
1058 	cpi->cpi_pass = 1;
1059 	return (feature);
1060 }
1061 
1062 /*
1063  * Make copies of the cpuid table entries we depend on, in
1064  * part for ease of parsing now, in part so that we have only
1065  * one place to correct any of it, in part for ease of
1066  * later export to userland, and in part so we can look at
1067  * this stuff in a crash dump.
1068  */
1069 
1070 /*ARGSUSED*/
1071 void
1072 cpuid_pass2(cpu_t *cpu)
1073 {
1074 	uint_t n, nmax;
1075 	int i;
1076 	struct cpuid_regs *cp;
1077 	uint8_t *dp;
1078 	uint32_t *iptr;
1079 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1080 
1081 	ASSERT(cpi->cpi_pass == 1);
1082 
1083 	if (cpi->cpi_maxeax < 1)
1084 		goto pass2_done;
1085 
1086 	if ((nmax = cpi->cpi_maxeax + 1) > NMAX_CPI_STD)
1087 		nmax = NMAX_CPI_STD;
1088 	/*
1089 	 * (We already handled n == 0 and n == 1 in pass 1)
1090 	 */
1091 	for (n = 2, cp = &cpi->cpi_std[2]; n < nmax; n++, cp++) {
1092 		cp->cp_eax = n;
1093 
1094 		/*
1095 		 * CPUID function 4 expects %ecx to be initialized
1096 		 * with an index which indicates which cache to return
1097 		 * information about. The OS is expected to call function 4
1098 		 * with %ecx set to 0, 1, 2, ... until it returns with
1099 		 * EAX[4:0] set to 0, which indicates there are no more
1100 		 * caches.
1101 		 *
1102 		 * Here, populate cpi_std[4] with the information returned by
1103 		 * function 4 when %ecx == 0, and do the rest in cpuid_pass3()
1104 		 * when dynamic memory allocation becomes available.
1105 		 *
1106 		 * Note: we need to explicitly initialize %ecx here, since
1107 		 * function 4 may have been previously invoked.
1108 		 */
1109 		if (n == 4)
1110 			cp->cp_ecx = 0;
1111 
1112 		(void) __cpuid_insn(cp);
1113 		platform_cpuid_mangle(cpi->cpi_vendor, n, cp);
1114 		switch (n) {
1115 		case 2:
1116 			/*
1117 			 * "the lower 8 bits of the %eax register
1118 			 * contain a value that identifies the number
1119 			 * of times the cpuid [instruction] has to be
1120 			 * executed to obtain a complete image of the
1121 			 * processor's caching systems."
1122 			 *
1123 			 * How *do* they make this stuff up?
1124 			 */
1125 			cpi->cpi_ncache = sizeof (*cp) *
1126 			    BITX(cp->cp_eax, 7, 0);
1127 			if (cpi->cpi_ncache == 0)
1128 				break;
1129 			cpi->cpi_ncache--;	/* skip count byte */
1130 
1131 			/*
1132 			 * Well, for now, rather than attempt to implement
1133 			 * this slightly dubious algorithm, we just look
1134 			 * at the first 15 ..
1135 			 */
1136 			if (cpi->cpi_ncache > (sizeof (*cp) - 1))
1137 				cpi->cpi_ncache = sizeof (*cp) - 1;
1138 
1139 			dp = cpi->cpi_cacheinfo;
1140 			if (BITX(cp->cp_eax, 31, 31) == 0) {
1141 				uint8_t *p = (void *)&cp->cp_eax;
1142 				for (i = 1; i < 3; i++)
1143 					if (p[i] != 0)
1144 						*dp++ = p[i];
1145 			}
1146 			if (BITX(cp->cp_ebx, 31, 31) == 0) {
1147 				uint8_t *p = (void *)&cp->cp_ebx;
1148 				for (i = 0; i < 4; i++)
1149 					if (p[i] != 0)
1150 						*dp++ = p[i];
1151 			}
1152 			if (BITX(cp->cp_ecx, 31, 31) == 0) {
1153 				uint8_t *p = (void *)&cp->cp_ecx;
1154 				for (i = 0; i < 4; i++)
1155 					if (p[i] != 0)
1156 						*dp++ = p[i];
1157 			}
1158 			if (BITX(cp->cp_edx, 31, 31) == 0) {
1159 				uint8_t *p = (void *)&cp->cp_edx;
1160 				for (i = 0; i < 4; i++)
1161 					if (p[i] != 0)
1162 						*dp++ = p[i];
1163 			}
1164 			break;
1165 
1166 		case 3:	/* Processor serial number, if PSN supported */
1167 			break;
1168 
1169 		case 4:	/* Deterministic cache parameters */
1170 			break;
1171 
1172 		case 5:	/* Monitor/Mwait parameters */
1173 
1174 			/*
1175 			 * check cpi_mwait.support which was set in cpuid_pass1
1176 			 */
1177 			if (!(cpi->cpi_mwait.support & MWAIT_SUPPORT))
1178 				break;
1179 
1180 			cpi->cpi_mwait.mon_min = (size_t)MWAIT_SIZE_MIN(cpi);
1181 			cpi->cpi_mwait.mon_max = (size_t)MWAIT_SIZE_MAX(cpi);
1182 			if (MWAIT_EXTENSION(cpi)) {
1183 				cpi->cpi_mwait.support |= MWAIT_EXTENSIONS;
1184 				if (MWAIT_INT_ENABLE(cpi))
1185 					cpi->cpi_mwait.support |=
1186 					    MWAIT_ECX_INT_ENABLE;
1187 			}
1188 			break;
1189 		default:
1190 			break;
1191 		}
1192 	}
1193 
1194 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0)
1195 		goto pass2_done;
1196 
1197 	if ((nmax = cpi->cpi_xmaxeax - 0x80000000 + 1) > NMAX_CPI_EXTD)
1198 		nmax = NMAX_CPI_EXTD;
1199 	/*
1200 	 * Copy the extended properties, fixing them as we go.
1201 	 * (We already handled n == 0 and n == 1 in pass 1)
1202 	 */
1203 	iptr = (void *)cpi->cpi_brandstr;
1204 	for (n = 2, cp = &cpi->cpi_extd[2]; n < nmax; cp++, n++) {
1205 		cp->cp_eax = 0x80000000 + n;
1206 		(void) __cpuid_insn(cp);
1207 		platform_cpuid_mangle(cpi->cpi_vendor, 0x80000000 + n, cp);
1208 		switch (n) {
1209 		case 2:
1210 		case 3:
1211 		case 4:
1212 			/*
1213 			 * Extract the brand string
1214 			 */
1215 			*iptr++ = cp->cp_eax;
1216 			*iptr++ = cp->cp_ebx;
1217 			*iptr++ = cp->cp_ecx;
1218 			*iptr++ = cp->cp_edx;
1219 			break;
1220 		case 5:
1221 			switch (cpi->cpi_vendor) {
1222 			case X86_VENDOR_AMD:
1223 				/*
1224 				 * The Athlon and Duron were the first
1225 				 * parts to report the sizes of the
1226 				 * TLB for large pages. Before then,
1227 				 * we don't trust the data.
1228 				 */
1229 				if (cpi->cpi_family < 6 ||
1230 				    (cpi->cpi_family == 6 &&
1231 				    cpi->cpi_model < 1))
1232 					cp->cp_eax = 0;
1233 				break;
1234 			default:
1235 				break;
1236 			}
1237 			break;
1238 		case 6:
1239 			switch (cpi->cpi_vendor) {
1240 			case X86_VENDOR_AMD:
1241 				/*
1242 				 * The Athlon and Duron were the first
1243 				 * AMD parts with L2 TLB's.
1244 				 * Before then, don't trust the data.
1245 				 */
1246 				if (cpi->cpi_family < 6 ||
1247 				    cpi->cpi_family == 6 &&
1248 				    cpi->cpi_model < 1)
1249 					cp->cp_eax = cp->cp_ebx = 0;
1250 				/*
1251 				 * AMD Duron rev A0 reports L2
1252 				 * cache size incorrectly as 1K
1253 				 * when it is really 64K
1254 				 */
1255 				if (cpi->cpi_family == 6 &&
1256 				    cpi->cpi_model == 3 &&
1257 				    cpi->cpi_step == 0) {
1258 					cp->cp_ecx &= 0xffff;
1259 					cp->cp_ecx |= 0x400000;
1260 				}
1261 				break;
1262 			case X86_VENDOR_Cyrix:	/* VIA C3 */
1263 				/*
1264 				 * VIA C3 processors are a bit messed
1265 				 * up w.r.t. encoding cache sizes in %ecx
1266 				 */
1267 				if (cpi->cpi_family != 6)
1268 					break;
1269 				/*
1270 				 * model 7 and 8 were incorrectly encoded
1271 				 *
1272 				 * xxx is model 8 really broken?
1273 				 */
1274 				if (cpi->cpi_model == 7 ||
1275 				    cpi->cpi_model == 8)
1276 					cp->cp_ecx =
1277 					    BITX(cp->cp_ecx, 31, 24) << 16 |
1278 					    BITX(cp->cp_ecx, 23, 16) << 12 |
1279 					    BITX(cp->cp_ecx, 15, 8) << 8 |
1280 					    BITX(cp->cp_ecx, 7, 0);
1281 				/*
1282 				 * model 9 stepping 1 has wrong associativity
1283 				 */
1284 				if (cpi->cpi_model == 9 && cpi->cpi_step == 1)
1285 					cp->cp_ecx |= 8 << 12;
1286 				break;
1287 			case X86_VENDOR_Intel:
1288 				/*
1289 				 * Extended L2 Cache features function.
1290 				 * First appeared on Prescott.
1291 				 */
1292 			default:
1293 				break;
1294 			}
1295 			break;
1296 		default:
1297 			break;
1298 		}
1299 	}
1300 
1301 pass2_done:
1302 	cpi->cpi_pass = 2;
1303 }
1304 
1305 static const char *
1306 intel_cpubrand(const struct cpuid_info *cpi)
1307 {
1308 	int i;
1309 
1310 	if ((x86_feature & X86_CPUID) == 0 ||
1311 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1312 		return ("i486");
1313 
1314 	switch (cpi->cpi_family) {
1315 	case 5:
1316 		return ("Intel Pentium(r)");
1317 	case 6:
1318 		switch (cpi->cpi_model) {
1319 			uint_t celeron, xeon;
1320 			const struct cpuid_regs *cp;
1321 		case 0:
1322 		case 1:
1323 		case 2:
1324 			return ("Intel Pentium(r) Pro");
1325 		case 3:
1326 		case 4:
1327 			return ("Intel Pentium(r) II");
1328 		case 6:
1329 			return ("Intel Celeron(r)");
1330 		case 5:
1331 		case 7:
1332 			celeron = xeon = 0;
1333 			cp = &cpi->cpi_std[2];	/* cache info */
1334 
1335 			for (i = 1; i < 3; i++) {
1336 				uint_t tmp;
1337 
1338 				tmp = (cp->cp_eax >> (8 * i)) & 0xff;
1339 				if (tmp == 0x40)
1340 					celeron++;
1341 				if (tmp >= 0x44 && tmp <= 0x45)
1342 					xeon++;
1343 			}
1344 
1345 			for (i = 0; i < 2; i++) {
1346 				uint_t tmp;
1347 
1348 				tmp = (cp->cp_ebx >> (8 * i)) & 0xff;
1349 				if (tmp == 0x40)
1350 					celeron++;
1351 				else if (tmp >= 0x44 && tmp <= 0x45)
1352 					xeon++;
1353 			}
1354 
1355 			for (i = 0; i < 4; i++) {
1356 				uint_t tmp;
1357 
1358 				tmp = (cp->cp_ecx >> (8 * i)) & 0xff;
1359 				if (tmp == 0x40)
1360 					celeron++;
1361 				else if (tmp >= 0x44 && tmp <= 0x45)
1362 					xeon++;
1363 			}
1364 
1365 			for (i = 0; i < 4; i++) {
1366 				uint_t tmp;
1367 
1368 				tmp = (cp->cp_edx >> (8 * i)) & 0xff;
1369 				if (tmp == 0x40)
1370 					celeron++;
1371 				else if (tmp >= 0x44 && tmp <= 0x45)
1372 					xeon++;
1373 			}
1374 
1375 			if (celeron)
1376 				return ("Intel Celeron(r)");
1377 			if (xeon)
1378 				return (cpi->cpi_model == 5 ?
1379 				    "Intel Pentium(r) II Xeon(tm)" :
1380 				    "Intel Pentium(r) III Xeon(tm)");
1381 			return (cpi->cpi_model == 5 ?
1382 			    "Intel Pentium(r) II or Pentium(r) II Xeon(tm)" :
1383 			    "Intel Pentium(r) III or Pentium(r) III Xeon(tm)");
1384 		default:
1385 			break;
1386 		}
1387 	default:
1388 		break;
1389 	}
1390 
1391 	/* BrandID is present if the field is nonzero */
1392 	if (cpi->cpi_brandid != 0) {
1393 		static const struct {
1394 			uint_t bt_bid;
1395 			const char *bt_str;
1396 		} brand_tbl[] = {
1397 			{ 0x1,	"Intel(r) Celeron(r)" },
1398 			{ 0x2,	"Intel(r) Pentium(r) III" },
1399 			{ 0x3,	"Intel(r) Pentium(r) III Xeon(tm)" },
1400 			{ 0x4,	"Intel(r) Pentium(r) III" },
1401 			{ 0x6,	"Mobile Intel(r) Pentium(r) III" },
1402 			{ 0x7,	"Mobile Intel(r) Celeron(r)" },
1403 			{ 0x8,	"Intel(r) Pentium(r) 4" },
1404 			{ 0x9,	"Intel(r) Pentium(r) 4" },
1405 			{ 0xa,	"Intel(r) Celeron(r)" },
1406 			{ 0xb,	"Intel(r) Xeon(tm)" },
1407 			{ 0xc,	"Intel(r) Xeon(tm) MP" },
1408 			{ 0xe,	"Mobile Intel(r) Pentium(r) 4" },
1409 			{ 0xf,	"Mobile Intel(r) Celeron(r)" },
1410 			{ 0x11, "Mobile Genuine Intel(r)" },
1411 			{ 0x12, "Intel(r) Celeron(r) M" },
1412 			{ 0x13, "Mobile Intel(r) Celeron(r)" },
1413 			{ 0x14, "Intel(r) Celeron(r)" },
1414 			{ 0x15, "Mobile Genuine Intel(r)" },
1415 			{ 0x16,	"Intel(r) Pentium(r) M" },
1416 			{ 0x17, "Mobile Intel(r) Celeron(r)" }
1417 		};
1418 		uint_t btblmax = sizeof (brand_tbl) / sizeof (brand_tbl[0]);
1419 		uint_t sgn;
1420 
1421 		sgn = (cpi->cpi_family << 8) |
1422 		    (cpi->cpi_model << 4) | cpi->cpi_step;
1423 
1424 		for (i = 0; i < btblmax; i++)
1425 			if (brand_tbl[i].bt_bid == cpi->cpi_brandid)
1426 				break;
1427 		if (i < btblmax) {
1428 			if (sgn == 0x6b1 && cpi->cpi_brandid == 3)
1429 				return ("Intel(r) Celeron(r)");
1430 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xb)
1431 				return ("Intel(r) Xeon(tm) MP");
1432 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xe)
1433 				return ("Intel(r) Xeon(tm)");
1434 			return (brand_tbl[i].bt_str);
1435 		}
1436 	}
1437 
1438 	return (NULL);
1439 }
1440 
1441 static const char *
1442 amd_cpubrand(const struct cpuid_info *cpi)
1443 {
1444 	if ((x86_feature & X86_CPUID) == 0 ||
1445 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1446 		return ("i486 compatible");
1447 
1448 	switch (cpi->cpi_family) {
1449 	case 5:
1450 		switch (cpi->cpi_model) {
1451 		case 0:
1452 		case 1:
1453 		case 2:
1454 		case 3:
1455 		case 4:
1456 		case 5:
1457 			return ("AMD-K5(r)");
1458 		case 6:
1459 		case 7:
1460 			return ("AMD-K6(r)");
1461 		case 8:
1462 			return ("AMD-K6(r)-2");
1463 		case 9:
1464 			return ("AMD-K6(r)-III");
1465 		default:
1466 			return ("AMD (family 5)");
1467 		}
1468 	case 6:
1469 		switch (cpi->cpi_model) {
1470 		case 1:
1471 			return ("AMD-K7(tm)");
1472 		case 0:
1473 		case 2:
1474 		case 4:
1475 			return ("AMD Athlon(tm)");
1476 		case 3:
1477 		case 7:
1478 			return ("AMD Duron(tm)");
1479 		case 6:
1480 		case 8:
1481 		case 10:
1482 			/*
1483 			 * Use the L2 cache size to distinguish
1484 			 */
1485 			return ((cpi->cpi_extd[6].cp_ecx >> 16) >= 256 ?
1486 			    "AMD Athlon(tm)" : "AMD Duron(tm)");
1487 		default:
1488 			return ("AMD (family 6)");
1489 		}
1490 	default:
1491 		break;
1492 	}
1493 
1494 	if (cpi->cpi_family == 0xf && cpi->cpi_model == 5 &&
1495 	    cpi->cpi_brandid != 0) {
1496 		switch (BITX(cpi->cpi_brandid, 7, 5)) {
1497 		case 3:
1498 			return ("AMD Opteron(tm) UP 1xx");
1499 		case 4:
1500 			return ("AMD Opteron(tm) DP 2xx");
1501 		case 5:
1502 			return ("AMD Opteron(tm) MP 8xx");
1503 		default:
1504 			return ("AMD Opteron(tm)");
1505 		}
1506 	}
1507 
1508 	return (NULL);
1509 }
1510 
1511 static const char *
1512 cyrix_cpubrand(struct cpuid_info *cpi, uint_t type)
1513 {
1514 	if ((x86_feature & X86_CPUID) == 0 ||
1515 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5 ||
1516 	    type == X86_TYPE_CYRIX_486)
1517 		return ("i486 compatible");
1518 
1519 	switch (type) {
1520 	case X86_TYPE_CYRIX_6x86:
1521 		return ("Cyrix 6x86");
1522 	case X86_TYPE_CYRIX_6x86L:
1523 		return ("Cyrix 6x86L");
1524 	case X86_TYPE_CYRIX_6x86MX:
1525 		return ("Cyrix 6x86MX");
1526 	case X86_TYPE_CYRIX_GXm:
1527 		return ("Cyrix GXm");
1528 	case X86_TYPE_CYRIX_MediaGX:
1529 		return ("Cyrix MediaGX");
1530 	case X86_TYPE_CYRIX_MII:
1531 		return ("Cyrix M2");
1532 	case X86_TYPE_VIA_CYRIX_III:
1533 		return ("VIA Cyrix M3");
1534 	default:
1535 		/*
1536 		 * Have another wild guess ..
1537 		 */
1538 		if (cpi->cpi_family == 4 && cpi->cpi_model == 9)
1539 			return ("Cyrix 5x86");
1540 		else if (cpi->cpi_family == 5) {
1541 			switch (cpi->cpi_model) {
1542 			case 2:
1543 				return ("Cyrix 6x86");	/* Cyrix M1 */
1544 			case 4:
1545 				return ("Cyrix MediaGX");
1546 			default:
1547 				break;
1548 			}
1549 		} else if (cpi->cpi_family == 6) {
1550 			switch (cpi->cpi_model) {
1551 			case 0:
1552 				return ("Cyrix 6x86MX"); /* Cyrix M2? */
1553 			case 5:
1554 			case 6:
1555 			case 7:
1556 			case 8:
1557 			case 9:
1558 				return ("VIA C3");
1559 			default:
1560 				break;
1561 			}
1562 		}
1563 		break;
1564 	}
1565 	return (NULL);
1566 }
1567 
1568 /*
1569  * This only gets called in the case that the CPU extended
1570  * feature brand string (0x80000002, 0x80000003, 0x80000004)
1571  * aren't available, or contain null bytes for some reason.
1572  */
1573 static void
1574 fabricate_brandstr(struct cpuid_info *cpi)
1575 {
1576 	const char *brand = NULL;
1577 
1578 	switch (cpi->cpi_vendor) {
1579 	case X86_VENDOR_Intel:
1580 		brand = intel_cpubrand(cpi);
1581 		break;
1582 	case X86_VENDOR_AMD:
1583 		brand = amd_cpubrand(cpi);
1584 		break;
1585 	case X86_VENDOR_Cyrix:
1586 		brand = cyrix_cpubrand(cpi, x86_type);
1587 		break;
1588 	case X86_VENDOR_NexGen:
1589 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1590 			brand = "NexGen Nx586";
1591 		break;
1592 	case X86_VENDOR_Centaur:
1593 		if (cpi->cpi_family == 5)
1594 			switch (cpi->cpi_model) {
1595 			case 4:
1596 				brand = "Centaur C6";
1597 				break;
1598 			case 8:
1599 				brand = "Centaur C2";
1600 				break;
1601 			case 9:
1602 				brand = "Centaur C3";
1603 				break;
1604 			default:
1605 				break;
1606 			}
1607 		break;
1608 	case X86_VENDOR_Rise:
1609 		if (cpi->cpi_family == 5 &&
1610 		    (cpi->cpi_model == 0 || cpi->cpi_model == 2))
1611 			brand = "Rise mP6";
1612 		break;
1613 	case X86_VENDOR_SiS:
1614 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1615 			brand = "SiS 55x";
1616 		break;
1617 	case X86_VENDOR_TM:
1618 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4)
1619 			brand = "Transmeta Crusoe TM3x00 or TM5x00";
1620 		break;
1621 	case X86_VENDOR_NSC:
1622 	case X86_VENDOR_UMC:
1623 	default:
1624 		break;
1625 	}
1626 	if (brand) {
1627 		(void) strcpy((char *)cpi->cpi_brandstr, brand);
1628 		return;
1629 	}
1630 
1631 	/*
1632 	 * If all else fails ...
1633 	 */
1634 	(void) snprintf(cpi->cpi_brandstr, sizeof (cpi->cpi_brandstr),
1635 	    "%s %d.%d.%d", cpi->cpi_vendorstr, cpi->cpi_family,
1636 	    cpi->cpi_model, cpi->cpi_step);
1637 }
1638 
1639 /*
1640  * This routine is called just after kernel memory allocation
1641  * becomes available on cpu0, and as part of mp_startup() on
1642  * the other cpus.
1643  *
1644  * Fixup the brand string, and collect any information from cpuid
1645  * that requires dynamicically allocated storage to represent.
1646  */
1647 /*ARGSUSED*/
1648 void
1649 cpuid_pass3(cpu_t *cpu)
1650 {
1651 	int	i, max, shft, level, size;
1652 	struct cpuid_regs regs;
1653 	struct cpuid_regs *cp;
1654 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1655 
1656 	ASSERT(cpi->cpi_pass == 2);
1657 
1658 	/*
1659 	 * Function 4: Deterministic cache parameters
1660 	 *
1661 	 * Take this opportunity to detect the number of threads
1662 	 * sharing the last level cache, and construct a corresponding
1663 	 * cache id. The respective cpuid_info members are initialized
1664 	 * to the default case of "no last level cache sharing".
1665 	 */
1666 	cpi->cpi_ncpu_shr_last_cache = 1;
1667 	cpi->cpi_last_lvl_cacheid = cpu->cpu_id;
1668 
1669 	if (cpi->cpi_maxeax >= 4 && cpi->cpi_vendor == X86_VENDOR_Intel) {
1670 
1671 		/*
1672 		 * Find the # of elements (size) returned by fn 4, and along
1673 		 * the way detect last level cache sharing details.
1674 		 */
1675 		bzero(&regs, sizeof (regs));
1676 		cp = &regs;
1677 		for (i = 0, max = 0; i < CPI_FN4_ECX_MAX; i++) {
1678 			cp->cp_eax = 4;
1679 			cp->cp_ecx = i;
1680 
1681 			(void) __cpuid_insn(cp);
1682 
1683 			if (CPI_CACHE_TYPE(cp) == 0)
1684 				break;
1685 			level = CPI_CACHE_LVL(cp);
1686 			if (level > max) {
1687 				max = level;
1688 				cpi->cpi_ncpu_shr_last_cache =
1689 				    CPI_NTHR_SHR_CACHE(cp) + 1;
1690 			}
1691 		}
1692 		cpi->cpi_std_4_size = size = i;
1693 
1694 		/*
1695 		 * Allocate the cpi_std_4 array. The first element
1696 		 * references the regs for fn 4, %ecx == 0, which
1697 		 * cpuid_pass2() stashed in cpi->cpi_std[4].
1698 		 */
1699 		if (size > 0) {
1700 			cpi->cpi_std_4 =
1701 			    kmem_alloc(size * sizeof (cp), KM_SLEEP);
1702 			cpi->cpi_std_4[0] = &cpi->cpi_std[4];
1703 
1704 			/*
1705 			 * Allocate storage to hold the additional regs
1706 			 * for function 4, %ecx == 1 .. cpi_std_4_size.
1707 			 *
1708 			 * The regs for fn 4, %ecx == 0 has already
1709 			 * been allocated as indicated above.
1710 			 */
1711 			for (i = 1; i < size; i++) {
1712 				cp = cpi->cpi_std_4[i] =
1713 				    kmem_zalloc(sizeof (regs), KM_SLEEP);
1714 				cp->cp_eax = 4;
1715 				cp->cp_ecx = i;
1716 
1717 				(void) __cpuid_insn(cp);
1718 			}
1719 		}
1720 		/*
1721 		 * Determine the number of bits needed to represent
1722 		 * the number of CPUs sharing the last level cache.
1723 		 *
1724 		 * Shift off that number of bits from the APIC id to
1725 		 * derive the cache id.
1726 		 */
1727 		shft = 0;
1728 		for (i = 1; i < cpi->cpi_ncpu_shr_last_cache; i <<= 1)
1729 			shft++;
1730 		cpi->cpi_last_lvl_cacheid = CPI_APIC_ID(cpi) >> shft;
1731 	}
1732 
1733 	/*
1734 	 * Now fixup the brand string
1735 	 */
1736 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0) {
1737 		fabricate_brandstr(cpi);
1738 	} else {
1739 
1740 		/*
1741 		 * If we successfully extracted a brand string from the cpuid
1742 		 * instruction, clean it up by removing leading spaces and
1743 		 * similar junk.
1744 		 */
1745 		if (cpi->cpi_brandstr[0]) {
1746 			size_t maxlen = sizeof (cpi->cpi_brandstr);
1747 			char *src, *dst;
1748 
1749 			dst = src = (char *)cpi->cpi_brandstr;
1750 			src[maxlen - 1] = '\0';
1751 			/*
1752 			 * strip leading spaces
1753 			 */
1754 			while (*src == ' ')
1755 				src++;
1756 			/*
1757 			 * Remove any 'Genuine' or "Authentic" prefixes
1758 			 */
1759 			if (strncmp(src, "Genuine ", 8) == 0)
1760 				src += 8;
1761 			if (strncmp(src, "Authentic ", 10) == 0)
1762 				src += 10;
1763 
1764 			/*
1765 			 * Now do an in-place copy.
1766 			 * Map (R) to (r) and (TM) to (tm).
1767 			 * The era of teletypes is long gone, and there's
1768 			 * -really- no need to shout.
1769 			 */
1770 			while (*src != '\0') {
1771 				if (src[0] == '(') {
1772 					if (strncmp(src + 1, "R)", 2) == 0) {
1773 						(void) strncpy(dst, "(r)", 3);
1774 						src += 3;
1775 						dst += 3;
1776 						continue;
1777 					}
1778 					if (strncmp(src + 1, "TM)", 3) == 0) {
1779 						(void) strncpy(dst, "(tm)", 4);
1780 						src += 4;
1781 						dst += 4;
1782 						continue;
1783 					}
1784 				}
1785 				*dst++ = *src++;
1786 			}
1787 			*dst = '\0';
1788 
1789 			/*
1790 			 * Finally, remove any trailing spaces
1791 			 */
1792 			while (--dst > cpi->cpi_brandstr)
1793 				if (*dst == ' ')
1794 					*dst = '\0';
1795 				else
1796 					break;
1797 		} else
1798 			fabricate_brandstr(cpi);
1799 	}
1800 	cpi->cpi_pass = 3;
1801 }
1802 
1803 /*
1804  * This routine is called out of bind_hwcap() much later in the life
1805  * of the kernel (post_startup()).  The job of this routine is to resolve
1806  * the hardware feature support and kernel support for those features into
1807  * what we're actually going to tell applications via the aux vector.
1808  */
1809 uint_t
1810 cpuid_pass4(cpu_t *cpu)
1811 {
1812 	struct cpuid_info *cpi;
1813 	uint_t hwcap_flags = 0;
1814 
1815 	if (cpu == NULL)
1816 		cpu = CPU;
1817 	cpi = cpu->cpu_m.mcpu_cpi;
1818 
1819 	ASSERT(cpi->cpi_pass == 3);
1820 
1821 	if (cpi->cpi_maxeax >= 1) {
1822 		uint32_t *edx = &cpi->cpi_support[STD_EDX_FEATURES];
1823 		uint32_t *ecx = &cpi->cpi_support[STD_ECX_FEATURES];
1824 
1825 		*edx = CPI_FEATURES_EDX(cpi);
1826 		*ecx = CPI_FEATURES_ECX(cpi);
1827 
1828 		/*
1829 		 * [these require explicit kernel support]
1830 		 */
1831 		if ((x86_feature & X86_SEP) == 0)
1832 			*edx &= ~CPUID_INTC_EDX_SEP;
1833 
1834 		if ((x86_feature & X86_SSE) == 0)
1835 			*edx &= ~(CPUID_INTC_EDX_FXSR|CPUID_INTC_EDX_SSE);
1836 		if ((x86_feature & X86_SSE2) == 0)
1837 			*edx &= ~CPUID_INTC_EDX_SSE2;
1838 
1839 		if ((x86_feature & X86_HTT) == 0)
1840 			*edx &= ~CPUID_INTC_EDX_HTT;
1841 
1842 		if ((x86_feature & X86_SSE3) == 0)
1843 			*ecx &= ~CPUID_INTC_ECX_SSE3;
1844 
1845 		/*
1846 		 * [no explicit support required beyond x87 fp context]
1847 		 */
1848 		if (!fpu_exists)
1849 			*edx &= ~(CPUID_INTC_EDX_FPU | CPUID_INTC_EDX_MMX);
1850 
1851 		/*
1852 		 * Now map the supported feature vector to things that we
1853 		 * think userland will care about.
1854 		 */
1855 		if (*edx & CPUID_INTC_EDX_SEP)
1856 			hwcap_flags |= AV_386_SEP;
1857 		if (*edx & CPUID_INTC_EDX_SSE)
1858 			hwcap_flags |= AV_386_FXSR | AV_386_SSE;
1859 		if (*edx & CPUID_INTC_EDX_SSE2)
1860 			hwcap_flags |= AV_386_SSE2;
1861 		if (*ecx & CPUID_INTC_ECX_SSE3)
1862 			hwcap_flags |= AV_386_SSE3;
1863 
1864 		if (*edx & CPUID_INTC_EDX_FPU)
1865 			hwcap_flags |= AV_386_FPU;
1866 		if (*edx & CPUID_INTC_EDX_MMX)
1867 			hwcap_flags |= AV_386_MMX;
1868 
1869 		if (*edx & CPUID_INTC_EDX_TSC)
1870 			hwcap_flags |= AV_386_TSC;
1871 		if (*edx & CPUID_INTC_EDX_CX8)
1872 			hwcap_flags |= AV_386_CX8;
1873 		if (*edx & CPUID_INTC_EDX_CMOV)
1874 			hwcap_flags |= AV_386_CMOV;
1875 		if (*ecx & CPUID_INTC_ECX_MON)
1876 			hwcap_flags |= AV_386_MON;
1877 		if (*ecx & CPUID_INTC_ECX_CX16)
1878 			hwcap_flags |= AV_386_CX16;
1879 	}
1880 
1881 	if (x86_feature & X86_HTT)
1882 		hwcap_flags |= AV_386_PAUSE;
1883 
1884 	if (cpi->cpi_xmaxeax < 0x80000001)
1885 		goto pass4_done;
1886 
1887 	switch (cpi->cpi_vendor) {
1888 		struct cpuid_regs cp;
1889 		uint32_t *edx, *ecx;
1890 
1891 	case X86_VENDOR_Intel:
1892 		/*
1893 		 * Seems like Intel duplicated what we necessary
1894 		 * here to make the initial crop of 64-bit OS's work.
1895 		 * Hopefully, those are the only "extended" bits
1896 		 * they'll add.
1897 		 */
1898 		/*FALLTHROUGH*/
1899 
1900 	case X86_VENDOR_AMD:
1901 		edx = &cpi->cpi_support[AMD_EDX_FEATURES];
1902 		ecx = &cpi->cpi_support[AMD_ECX_FEATURES];
1903 
1904 		*edx = CPI_FEATURES_XTD_EDX(cpi);
1905 		*ecx = CPI_FEATURES_XTD_ECX(cpi);
1906 
1907 		/*
1908 		 * [these features require explicit kernel support]
1909 		 */
1910 		switch (cpi->cpi_vendor) {
1911 		case X86_VENDOR_Intel:
1912 			break;
1913 
1914 		case X86_VENDOR_AMD:
1915 			if ((x86_feature & X86_TSCP) == 0)
1916 				*edx &= ~CPUID_AMD_EDX_TSCP;
1917 			break;
1918 
1919 		default:
1920 			break;
1921 		}
1922 
1923 		/*
1924 		 * [no explicit support required beyond
1925 		 * x87 fp context and exception handlers]
1926 		 */
1927 		if (!fpu_exists)
1928 			*edx &= ~(CPUID_AMD_EDX_MMXamd |
1929 			    CPUID_AMD_EDX_3DNow | CPUID_AMD_EDX_3DNowx);
1930 
1931 		if ((x86_feature & X86_NX) == 0)
1932 			*edx &= ~CPUID_AMD_EDX_NX;
1933 #if !defined(__amd64)
1934 		*edx &= ~CPUID_AMD_EDX_LM;
1935 #endif
1936 		/*
1937 		 * Now map the supported feature vector to
1938 		 * things that we think userland will care about.
1939 		 */
1940 #if defined(__amd64)
1941 		if (*edx & CPUID_AMD_EDX_SYSC)
1942 			hwcap_flags |= AV_386_AMD_SYSC;
1943 #endif
1944 		if (*edx & CPUID_AMD_EDX_MMXamd)
1945 			hwcap_flags |= AV_386_AMD_MMX;
1946 		if (*edx & CPUID_AMD_EDX_3DNow)
1947 			hwcap_flags |= AV_386_AMD_3DNow;
1948 		if (*edx & CPUID_AMD_EDX_3DNowx)
1949 			hwcap_flags |= AV_386_AMD_3DNowx;
1950 
1951 		switch (cpi->cpi_vendor) {
1952 		case X86_VENDOR_AMD:
1953 			if (*edx & CPUID_AMD_EDX_TSCP)
1954 				hwcap_flags |= AV_386_TSCP;
1955 			if (*ecx & CPUID_AMD_ECX_AHF64)
1956 				hwcap_flags |= AV_386_AHF;
1957 			break;
1958 
1959 		case X86_VENDOR_Intel:
1960 			/*
1961 			 * Aarrgh.
1962 			 * Intel uses a different bit in the same word.
1963 			 */
1964 			if (*ecx & CPUID_INTC_ECX_AHF64)
1965 				hwcap_flags |= AV_386_AHF;
1966 			break;
1967 
1968 		default:
1969 			break;
1970 		}
1971 		break;
1972 
1973 	case X86_VENDOR_TM:
1974 		cp.cp_eax = 0x80860001;
1975 		(void) __cpuid_insn(&cp);
1976 		cpi->cpi_support[TM_EDX_FEATURES] = cp.cp_edx;
1977 		break;
1978 
1979 	default:
1980 		break;
1981 	}
1982 
1983 pass4_done:
1984 	cpi->cpi_pass = 4;
1985 	return (hwcap_flags);
1986 }
1987 
1988 
1989 /*
1990  * Simulate the cpuid instruction using the data we previously
1991  * captured about this CPU.  We try our best to return the truth
1992  * about the hardware, independently of kernel support.
1993  */
1994 uint32_t
1995 cpuid_insn(cpu_t *cpu, struct cpuid_regs *cp)
1996 {
1997 	struct cpuid_info *cpi;
1998 	struct cpuid_regs *xcp;
1999 
2000 	if (cpu == NULL)
2001 		cpu = CPU;
2002 	cpi = cpu->cpu_m.mcpu_cpi;
2003 
2004 	ASSERT(cpuid_checkpass(cpu, 3));
2005 
2006 	/*
2007 	 * CPUID data is cached in two separate places: cpi_std for standard
2008 	 * CPUID functions, and cpi_extd for extended CPUID functions.
2009 	 */
2010 	if (cp->cp_eax <= cpi->cpi_maxeax && cp->cp_eax < NMAX_CPI_STD)
2011 		xcp = &cpi->cpi_std[cp->cp_eax];
2012 	else if (cp->cp_eax >= 0x80000000 && cp->cp_eax <= cpi->cpi_xmaxeax &&
2013 	    cp->cp_eax < 0x80000000 + NMAX_CPI_EXTD)
2014 		xcp = &cpi->cpi_extd[cp->cp_eax - 0x80000000];
2015 	else
2016 		/*
2017 		 * The caller is asking for data from an input parameter which
2018 		 * the kernel has not cached.  In this case we go fetch from
2019 		 * the hardware and return the data directly to the user.
2020 		 */
2021 		return (__cpuid_insn(cp));
2022 
2023 	cp->cp_eax = xcp->cp_eax;
2024 	cp->cp_ebx = xcp->cp_ebx;
2025 	cp->cp_ecx = xcp->cp_ecx;
2026 	cp->cp_edx = xcp->cp_edx;
2027 	return (cp->cp_eax);
2028 }
2029 
2030 int
2031 cpuid_checkpass(cpu_t *cpu, int pass)
2032 {
2033 	return (cpu != NULL && cpu->cpu_m.mcpu_cpi != NULL &&
2034 	    cpu->cpu_m.mcpu_cpi->cpi_pass >= pass);
2035 }
2036 
2037 int
2038 cpuid_getbrandstr(cpu_t *cpu, char *s, size_t n)
2039 {
2040 	ASSERT(cpuid_checkpass(cpu, 3));
2041 
2042 	return (snprintf(s, n, "%s", cpu->cpu_m.mcpu_cpi->cpi_brandstr));
2043 }
2044 
2045 int
2046 cpuid_is_cmt(cpu_t *cpu)
2047 {
2048 	if (cpu == NULL)
2049 		cpu = CPU;
2050 
2051 	ASSERT(cpuid_checkpass(cpu, 1));
2052 
2053 	return (cpu->cpu_m.mcpu_cpi->cpi_chipid >= 0);
2054 }
2055 
2056 /*
2057  * AMD and Intel both implement the 64-bit variant of the syscall
2058  * instruction (syscallq), so if there's -any- support for syscall,
2059  * cpuid currently says "yes, we support this".
2060  *
2061  * However, Intel decided to -not- implement the 32-bit variant of the
2062  * syscall instruction, so we provide a predicate to allow our caller
2063  * to test that subtlety here.
2064  */
2065 /*ARGSUSED*/
2066 int
2067 cpuid_syscall32_insn(cpu_t *cpu)
2068 {
2069 	ASSERT(cpuid_checkpass((cpu == NULL ? CPU : cpu), 1));
2070 
2071 	if (cpu == NULL)
2072 		cpu = CPU;
2073 
2074 	/*CSTYLED*/
2075 	{
2076 		struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2077 
2078 		if (cpi->cpi_vendor == X86_VENDOR_AMD &&
2079 		    cpi->cpi_xmaxeax >= 0x80000001 &&
2080 		    (CPI_FEATURES_XTD_EDX(cpi) & CPUID_AMD_EDX_SYSC))
2081 			return (1);
2082 	}
2083 	return (0);
2084 }
2085 
2086 int
2087 cpuid_getidstr(cpu_t *cpu, char *s, size_t n)
2088 {
2089 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2090 
2091 	static const char fmt[] =
2092 	    "x86 (%s %X family %d model %d step %d clock %d MHz)";
2093 	static const char fmt_ht[] =
2094 	    "x86 (chipid 0x%x %s %X family %d model %d step %d clock %d MHz)";
2095 
2096 	ASSERT(cpuid_checkpass(cpu, 1));
2097 
2098 	if (cpuid_is_cmt(cpu))
2099 		return (snprintf(s, n, fmt_ht, cpi->cpi_chipid,
2100 		    cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
2101 		    cpi->cpi_family, cpi->cpi_model,
2102 		    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
2103 	return (snprintf(s, n, fmt,
2104 	    cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
2105 	    cpi->cpi_family, cpi->cpi_model,
2106 	    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
2107 }
2108 
2109 const char *
2110 cpuid_getvendorstr(cpu_t *cpu)
2111 {
2112 	ASSERT(cpuid_checkpass(cpu, 1));
2113 	return ((const char *)cpu->cpu_m.mcpu_cpi->cpi_vendorstr);
2114 }
2115 
2116 uint_t
2117 cpuid_getvendor(cpu_t *cpu)
2118 {
2119 	ASSERT(cpuid_checkpass(cpu, 1));
2120 	return (cpu->cpu_m.mcpu_cpi->cpi_vendor);
2121 }
2122 
2123 uint_t
2124 cpuid_getfamily(cpu_t *cpu)
2125 {
2126 	ASSERT(cpuid_checkpass(cpu, 1));
2127 	return (cpu->cpu_m.mcpu_cpi->cpi_family);
2128 }
2129 
2130 uint_t
2131 cpuid_getmodel(cpu_t *cpu)
2132 {
2133 	ASSERT(cpuid_checkpass(cpu, 1));
2134 	return (cpu->cpu_m.mcpu_cpi->cpi_model);
2135 }
2136 
2137 uint_t
2138 cpuid_get_ncpu_per_chip(cpu_t *cpu)
2139 {
2140 	ASSERT(cpuid_checkpass(cpu, 1));
2141 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_per_chip);
2142 }
2143 
2144 uint_t
2145 cpuid_get_ncore_per_chip(cpu_t *cpu)
2146 {
2147 	ASSERT(cpuid_checkpass(cpu, 1));
2148 	return (cpu->cpu_m.mcpu_cpi->cpi_ncore_per_chip);
2149 }
2150 
2151 uint_t
2152 cpuid_get_ncpu_sharing_last_cache(cpu_t *cpu)
2153 {
2154 	ASSERT(cpuid_checkpass(cpu, 2));
2155 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_shr_last_cache);
2156 }
2157 
2158 id_t
2159 cpuid_get_last_lvl_cacheid(cpu_t *cpu)
2160 {
2161 	ASSERT(cpuid_checkpass(cpu, 2));
2162 	return (cpu->cpu_m.mcpu_cpi->cpi_last_lvl_cacheid);
2163 }
2164 
2165 uint_t
2166 cpuid_getstep(cpu_t *cpu)
2167 {
2168 	ASSERT(cpuid_checkpass(cpu, 1));
2169 	return (cpu->cpu_m.mcpu_cpi->cpi_step);
2170 }
2171 
2172 uint_t
2173 cpuid_getsig(struct cpu *cpu)
2174 {
2175 	ASSERT(cpuid_checkpass(cpu, 1));
2176 	return (cpu->cpu_m.mcpu_cpi->cpi_std[1].cp_eax);
2177 }
2178 
2179 uint32_t
2180 cpuid_getchiprev(struct cpu *cpu)
2181 {
2182 	ASSERT(cpuid_checkpass(cpu, 1));
2183 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprev);
2184 }
2185 
2186 const char *
2187 cpuid_getchiprevstr(struct cpu *cpu)
2188 {
2189 	ASSERT(cpuid_checkpass(cpu, 1));
2190 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprevstr);
2191 }
2192 
2193 uint32_t
2194 cpuid_getsockettype(struct cpu *cpu)
2195 {
2196 	ASSERT(cpuid_checkpass(cpu, 1));
2197 	return (cpu->cpu_m.mcpu_cpi->cpi_socket);
2198 }
2199 
2200 int
2201 cpuid_get_chipid(cpu_t *cpu)
2202 {
2203 	ASSERT(cpuid_checkpass(cpu, 1));
2204 
2205 	if (cpuid_is_cmt(cpu))
2206 		return (cpu->cpu_m.mcpu_cpi->cpi_chipid);
2207 	return (cpu->cpu_id);
2208 }
2209 
2210 id_t
2211 cpuid_get_coreid(cpu_t *cpu)
2212 {
2213 	ASSERT(cpuid_checkpass(cpu, 1));
2214 	return (cpu->cpu_m.mcpu_cpi->cpi_coreid);
2215 }
2216 
2217 int
2218 cpuid_get_clogid(cpu_t *cpu)
2219 {
2220 	ASSERT(cpuid_checkpass(cpu, 1));
2221 	return (cpu->cpu_m.mcpu_cpi->cpi_clogid);
2222 }
2223 
2224 void
2225 cpuid_get_addrsize(cpu_t *cpu, uint_t *pabits, uint_t *vabits)
2226 {
2227 	struct cpuid_info *cpi;
2228 
2229 	if (cpu == NULL)
2230 		cpu = CPU;
2231 	cpi = cpu->cpu_m.mcpu_cpi;
2232 
2233 	ASSERT(cpuid_checkpass(cpu, 1));
2234 
2235 	if (pabits)
2236 		*pabits = cpi->cpi_pabits;
2237 	if (vabits)
2238 		*vabits = cpi->cpi_vabits;
2239 }
2240 
2241 /*
2242  * Returns the number of data TLB entries for a corresponding
2243  * pagesize.  If it can't be computed, or isn't known, the
2244  * routine returns zero.  If you ask about an architecturally
2245  * impossible pagesize, the routine will panic (so that the
2246  * hat implementor knows that things are inconsistent.)
2247  */
2248 uint_t
2249 cpuid_get_dtlb_nent(cpu_t *cpu, size_t pagesize)
2250 {
2251 	struct cpuid_info *cpi;
2252 	uint_t dtlb_nent = 0;
2253 
2254 	if (cpu == NULL)
2255 		cpu = CPU;
2256 	cpi = cpu->cpu_m.mcpu_cpi;
2257 
2258 	ASSERT(cpuid_checkpass(cpu, 1));
2259 
2260 	/*
2261 	 * Check the L2 TLB info
2262 	 */
2263 	if (cpi->cpi_xmaxeax >= 0x80000006) {
2264 		struct cpuid_regs *cp = &cpi->cpi_extd[6];
2265 
2266 		switch (pagesize) {
2267 
2268 		case 4 * 1024:
2269 			/*
2270 			 * All zero in the top 16 bits of the register
2271 			 * indicates a unified TLB. Size is in low 16 bits.
2272 			 */
2273 			if ((cp->cp_ebx & 0xffff0000) == 0)
2274 				dtlb_nent = cp->cp_ebx & 0x0000ffff;
2275 			else
2276 				dtlb_nent = BITX(cp->cp_ebx, 27, 16);
2277 			break;
2278 
2279 		case 2 * 1024 * 1024:
2280 			if ((cp->cp_eax & 0xffff0000) == 0)
2281 				dtlb_nent = cp->cp_eax & 0x0000ffff;
2282 			else
2283 				dtlb_nent = BITX(cp->cp_eax, 27, 16);
2284 			break;
2285 
2286 		default:
2287 			panic("unknown L2 pagesize");
2288 			/*NOTREACHED*/
2289 		}
2290 	}
2291 
2292 	if (dtlb_nent != 0)
2293 		return (dtlb_nent);
2294 
2295 	/*
2296 	 * No L2 TLB support for this size, try L1.
2297 	 */
2298 	if (cpi->cpi_xmaxeax >= 0x80000005) {
2299 		struct cpuid_regs *cp = &cpi->cpi_extd[5];
2300 
2301 		switch (pagesize) {
2302 		case 4 * 1024:
2303 			dtlb_nent = BITX(cp->cp_ebx, 23, 16);
2304 			break;
2305 		case 2 * 1024 * 1024:
2306 			dtlb_nent = BITX(cp->cp_eax, 23, 16);
2307 			break;
2308 		default:
2309 			panic("unknown L1 d-TLB pagesize");
2310 			/*NOTREACHED*/
2311 		}
2312 	}
2313 
2314 	return (dtlb_nent);
2315 }
2316 
2317 /*
2318  * Return 0 if the erratum is not present or not applicable, positive
2319  * if it is, and negative if the status of the erratum is unknown.
2320  *
2321  * See "Revision Guide for AMD Athlon(tm) 64 and AMD Opteron(tm)
2322  * Processors" #25759, Rev 3.57, August 2005
2323  */
2324 int
2325 cpuid_opteron_erratum(cpu_t *cpu, uint_t erratum)
2326 {
2327 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2328 	uint_t eax;
2329 
2330 	/*
2331 	 * Bail out if this CPU isn't an AMD CPU, or if it's
2332 	 * a legacy (32-bit) AMD CPU.
2333 	 */
2334 	if (cpi->cpi_vendor != X86_VENDOR_AMD ||
2335 	    cpi->cpi_family == 4 || cpi->cpi_family == 5 ||
2336 	    cpi->cpi_family == 6)
2337 
2338 		return (0);
2339 
2340 	eax = cpi->cpi_std[1].cp_eax;
2341 
2342 #define	SH_B0(eax)	(eax == 0xf40 || eax == 0xf50)
2343 #define	SH_B3(eax) 	(eax == 0xf51)
2344 #define	B(eax)		(SH_B0(eax) || SH_B3(eax))
2345 
2346 #define	SH_C0(eax)	(eax == 0xf48 || eax == 0xf58)
2347 
2348 #define	SH_CG(eax)	(eax == 0xf4a || eax == 0xf5a || eax == 0xf7a)
2349 #define	DH_CG(eax)	(eax == 0xfc0 || eax == 0xfe0 || eax == 0xff0)
2350 #define	CH_CG(eax)	(eax == 0xf82 || eax == 0xfb2)
2351 #define	CG(eax)		(SH_CG(eax) || DH_CG(eax) || CH_CG(eax))
2352 
2353 #define	SH_D0(eax)	(eax == 0x10f40 || eax == 0x10f50 || eax == 0x10f70)
2354 #define	DH_D0(eax)	(eax == 0x10fc0 || eax == 0x10ff0)
2355 #define	CH_D0(eax)	(eax == 0x10f80 || eax == 0x10fb0)
2356 #define	D0(eax)		(SH_D0(eax) || DH_D0(eax) || CH_D0(eax))
2357 
2358 #define	SH_E0(eax)	(eax == 0x20f50 || eax == 0x20f40 || eax == 0x20f70)
2359 #define	JH_E1(eax)	(eax == 0x20f10)	/* JH8_E0 had 0x20f30 */
2360 #define	DH_E3(eax)	(eax == 0x20fc0 || eax == 0x20ff0)
2361 #define	SH_E4(eax)	(eax == 0x20f51 || eax == 0x20f71)
2362 #define	BH_E4(eax)	(eax == 0x20fb1)
2363 #define	SH_E5(eax)	(eax == 0x20f42)
2364 #define	DH_E6(eax)	(eax == 0x20ff2 || eax == 0x20fc2)
2365 #define	JH_E6(eax)	(eax == 0x20f12 || eax == 0x20f32)
2366 #define	EX(eax)		(SH_E0(eax) || JH_E1(eax) || DH_E3(eax) || \
2367 			    SH_E4(eax) || BH_E4(eax) || SH_E5(eax) || \
2368 			    DH_E6(eax) || JH_E6(eax))
2369 
2370 	switch (erratum) {
2371 	case 1:
2372 		return (cpi->cpi_family < 0x10);
2373 	case 51:	/* what does the asterisk mean? */
2374 		return (B(eax) || SH_C0(eax) || CG(eax));
2375 	case 52:
2376 		return (B(eax));
2377 	case 57:
2378 		return (cpi->cpi_family <= 0x10);
2379 	case 58:
2380 		return (B(eax));
2381 	case 60:
2382 		return (cpi->cpi_family <= 0x10);
2383 	case 61:
2384 	case 62:
2385 	case 63:
2386 	case 64:
2387 	case 65:
2388 	case 66:
2389 	case 68:
2390 	case 69:
2391 	case 70:
2392 	case 71:
2393 		return (B(eax));
2394 	case 72:
2395 		return (SH_B0(eax));
2396 	case 74:
2397 		return (B(eax));
2398 	case 75:
2399 		return (cpi->cpi_family < 0x10);
2400 	case 76:
2401 		return (B(eax));
2402 	case 77:
2403 		return (cpi->cpi_family <= 0x10);
2404 	case 78:
2405 		return (B(eax) || SH_C0(eax));
2406 	case 79:
2407 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2408 	case 80:
2409 	case 81:
2410 	case 82:
2411 		return (B(eax));
2412 	case 83:
2413 		return (B(eax) || SH_C0(eax) || CG(eax));
2414 	case 85:
2415 		return (cpi->cpi_family < 0x10);
2416 	case 86:
2417 		return (SH_C0(eax) || CG(eax));
2418 	case 88:
2419 #if !defined(__amd64)
2420 		return (0);
2421 #else
2422 		return (B(eax) || SH_C0(eax));
2423 #endif
2424 	case 89:
2425 		return (cpi->cpi_family < 0x10);
2426 	case 90:
2427 		return (B(eax) || SH_C0(eax) || CG(eax));
2428 	case 91:
2429 	case 92:
2430 		return (B(eax) || SH_C0(eax));
2431 	case 93:
2432 		return (SH_C0(eax));
2433 	case 94:
2434 		return (B(eax) || SH_C0(eax) || CG(eax));
2435 	case 95:
2436 #if !defined(__amd64)
2437 		return (0);
2438 #else
2439 		return (B(eax) || SH_C0(eax));
2440 #endif
2441 	case 96:
2442 		return (B(eax) || SH_C0(eax) || CG(eax));
2443 	case 97:
2444 	case 98:
2445 		return (SH_C0(eax) || CG(eax));
2446 	case 99:
2447 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2448 	case 100:
2449 		return (B(eax) || SH_C0(eax));
2450 	case 101:
2451 	case 103:
2452 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2453 	case 104:
2454 		return (SH_C0(eax) || CG(eax) || D0(eax));
2455 	case 105:
2456 	case 106:
2457 	case 107:
2458 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2459 	case 108:
2460 		return (DH_CG(eax));
2461 	case 109:
2462 		return (SH_C0(eax) || CG(eax) || D0(eax));
2463 	case 110:
2464 		return (D0(eax) || EX(eax));
2465 	case 111:
2466 		return (CG(eax));
2467 	case 112:
2468 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2469 	case 113:
2470 		return (eax == 0x20fc0);
2471 	case 114:
2472 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
2473 	case 115:
2474 		return (SH_E0(eax) || JH_E1(eax));
2475 	case 116:
2476 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
2477 	case 117:
2478 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2479 	case 118:
2480 		return (SH_E0(eax) || JH_E1(eax) || SH_E4(eax) || BH_E4(eax) ||
2481 		    JH_E6(eax));
2482 	case 121:
2483 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2484 	case 122:
2485 		return (cpi->cpi_family < 0x10);
2486 	case 123:
2487 		return (JH_E1(eax) || BH_E4(eax) || JH_E6(eax));
2488 	case 131:
2489 		return (cpi->cpi_family < 0x10);
2490 	case 6336786:
2491 		/*
2492 		 * Test for AdvPowerMgmtInfo.TscPStateInvariant
2493 		 * if this is a K8 family or newer processor
2494 		 */
2495 		if (CPI_FAMILY(cpi) == 0xf) {
2496 			struct cpuid_regs regs;
2497 			regs.cp_eax = 0x80000007;
2498 			(void) __cpuid_insn(&regs);
2499 			return (!(regs.cp_edx & 0x100));
2500 		}
2501 		return (0);
2502 	case 6323525:
2503 		return (((((eax >> 12) & 0xff00) + (eax & 0xf00)) |
2504 		    (((eax >> 4) & 0xf) | ((eax >> 12) & 0xf0))) < 0xf40);
2505 
2506 	default:
2507 		return (-1);
2508 	}
2509 }
2510 
2511 static const char assoc_str[] = "associativity";
2512 static const char line_str[] = "line-size";
2513 static const char size_str[] = "size";
2514 
2515 static void
2516 add_cache_prop(dev_info_t *devi, const char *label, const char *type,
2517     uint32_t val)
2518 {
2519 	char buf[128];
2520 
2521 	/*
2522 	 * ndi_prop_update_int() is used because it is desirable for
2523 	 * DDI_PROP_HW_DEF and DDI_PROP_DONTSLEEP to be set.
2524 	 */
2525 	if (snprintf(buf, sizeof (buf), "%s-%s", label, type) < sizeof (buf))
2526 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, buf, val);
2527 }
2528 
2529 /*
2530  * Intel-style cache/tlb description
2531  *
2532  * Standard cpuid level 2 gives a randomly ordered
2533  * selection of tags that index into a table that describes
2534  * cache and tlb properties.
2535  */
2536 
2537 static const char l1_icache_str[] = "l1-icache";
2538 static const char l1_dcache_str[] = "l1-dcache";
2539 static const char l2_cache_str[] = "l2-cache";
2540 static const char l3_cache_str[] = "l3-cache";
2541 static const char itlb4k_str[] = "itlb-4K";
2542 static const char dtlb4k_str[] = "dtlb-4K";
2543 static const char itlb4M_str[] = "itlb-4M";
2544 static const char dtlb4M_str[] = "dtlb-4M";
2545 static const char itlb424_str[] = "itlb-4K-2M-4M";
2546 static const char dtlb44_str[] = "dtlb-4K-4M";
2547 static const char sl1_dcache_str[] = "sectored-l1-dcache";
2548 static const char sl2_cache_str[] = "sectored-l2-cache";
2549 static const char itrace_str[] = "itrace-cache";
2550 static const char sl3_cache_str[] = "sectored-l3-cache";
2551 
2552 static const struct cachetab {
2553 	uint8_t 	ct_code;
2554 	uint8_t		ct_assoc;
2555 	uint16_t 	ct_line_size;
2556 	size_t		ct_size;
2557 	const char	*ct_label;
2558 } intel_ctab[] = {
2559 	/* maintain descending order! */
2560 	{ 0xb4, 4, 0, 256, dtlb4k_str },
2561 	{ 0xb3, 4, 0, 128, dtlb4k_str },
2562 	{ 0xb0, 4, 0, 128, itlb4k_str },
2563 	{ 0x87, 8, 64, 1024*1024, l2_cache_str},
2564 	{ 0x86, 4, 64, 512*1024, l2_cache_str},
2565 	{ 0x85, 8, 32, 2*1024*1024, l2_cache_str},
2566 	{ 0x84, 8, 32, 1024*1024, l2_cache_str},
2567 	{ 0x83, 8, 32, 512*1024, l2_cache_str},
2568 	{ 0x82, 8, 32, 256*1024, l2_cache_str},
2569 	{ 0x7f, 2, 64, 512*1024, l2_cache_str},
2570 	{ 0x7d, 8, 64, 2*1024*1024, sl2_cache_str},
2571 	{ 0x7c, 8, 64, 1024*1024, sl2_cache_str},
2572 	{ 0x7b, 8, 64, 512*1024, sl2_cache_str},
2573 	{ 0x7a, 8, 64, 256*1024, sl2_cache_str},
2574 	{ 0x79, 8, 64, 128*1024, sl2_cache_str},
2575 	{ 0x78, 8, 64, 1024*1024, l2_cache_str},
2576 	{ 0x73, 8, 0, 64*1024, itrace_str},
2577 	{ 0x72, 8, 0, 32*1024, itrace_str},
2578 	{ 0x71, 8, 0, 16*1024, itrace_str},
2579 	{ 0x70, 8, 0, 12*1024, itrace_str},
2580 	{ 0x68, 4, 64, 32*1024, sl1_dcache_str},
2581 	{ 0x67, 4, 64, 16*1024, sl1_dcache_str},
2582 	{ 0x66, 4, 64, 8*1024, sl1_dcache_str},
2583 	{ 0x60, 8, 64, 16*1024, sl1_dcache_str},
2584 	{ 0x5d, 0, 0, 256, dtlb44_str},
2585 	{ 0x5c, 0, 0, 128, dtlb44_str},
2586 	{ 0x5b, 0, 0, 64, dtlb44_str},
2587 	{ 0x52, 0, 0, 256, itlb424_str},
2588 	{ 0x51, 0, 0, 128, itlb424_str},
2589 	{ 0x50, 0, 0, 64, itlb424_str},
2590 	{ 0x4d, 16, 64, 16*1024*1024, l3_cache_str},
2591 	{ 0x4c, 12, 64, 12*1024*1024, l3_cache_str},
2592 	{ 0x4b, 16, 64, 8*1024*1024, l3_cache_str},
2593 	{ 0x4a, 12, 64, 6*1024*1024, l3_cache_str},
2594 	{ 0x49, 16, 64, 4*1024*1024, l3_cache_str},
2595 	{ 0x47, 8, 64, 8*1024*1024, l3_cache_str},
2596 	{ 0x46, 4, 64, 4*1024*1024, l3_cache_str},
2597 	{ 0x45, 4, 32, 2*1024*1024, l2_cache_str},
2598 	{ 0x44, 4, 32, 1024*1024, l2_cache_str},
2599 	{ 0x43, 4, 32, 512*1024, l2_cache_str},
2600 	{ 0x42, 4, 32, 256*1024, l2_cache_str},
2601 	{ 0x41, 4, 32, 128*1024, l2_cache_str},
2602 	{ 0x3e, 4, 64, 512*1024, sl2_cache_str},
2603 	{ 0x3d, 6, 64, 384*1024, sl2_cache_str},
2604 	{ 0x3c, 4, 64, 256*1024, sl2_cache_str},
2605 	{ 0x3b, 2, 64, 128*1024, sl2_cache_str},
2606 	{ 0x3a, 6, 64, 192*1024, sl2_cache_str},
2607 	{ 0x39, 4, 64, 128*1024, sl2_cache_str},
2608 	{ 0x30, 8, 64, 32*1024, l1_icache_str},
2609 	{ 0x2c, 8, 64, 32*1024, l1_dcache_str},
2610 	{ 0x29, 8, 64, 4096*1024, sl3_cache_str},
2611 	{ 0x25, 8, 64, 2048*1024, sl3_cache_str},
2612 	{ 0x23, 8, 64, 1024*1024, sl3_cache_str},
2613 	{ 0x22, 4, 64, 512*1024, sl3_cache_str},
2614 	{ 0x0c, 4, 32, 16*1024, l1_dcache_str},
2615 	{ 0x0b, 4, 0, 4, itlb4M_str},
2616 	{ 0x0a, 2, 32, 8*1024, l1_dcache_str},
2617 	{ 0x08, 4, 32, 16*1024, l1_icache_str},
2618 	{ 0x06, 4, 32, 8*1024, l1_icache_str},
2619 	{ 0x04, 4, 0, 8, dtlb4M_str},
2620 	{ 0x03, 4, 0, 64, dtlb4k_str},
2621 	{ 0x02, 4, 0, 2, itlb4M_str},
2622 	{ 0x01, 4, 0, 32, itlb4k_str},
2623 	{ 0 }
2624 };
2625 
2626 static const struct cachetab cyrix_ctab[] = {
2627 	{ 0x70, 4, 0, 32, "tlb-4K" },
2628 	{ 0x80, 4, 16, 16*1024, "l1-cache" },
2629 	{ 0 }
2630 };
2631 
2632 /*
2633  * Search a cache table for a matching entry
2634  */
2635 static const struct cachetab *
2636 find_cacheent(const struct cachetab *ct, uint_t code)
2637 {
2638 	if (code != 0) {
2639 		for (; ct->ct_code != 0; ct++)
2640 			if (ct->ct_code <= code)
2641 				break;
2642 		if (ct->ct_code == code)
2643 			return (ct);
2644 	}
2645 	return (NULL);
2646 }
2647 
2648 /*
2649  * Walk the cacheinfo descriptor, applying 'func' to every valid element
2650  * The walk is terminated if the walker returns non-zero.
2651  */
2652 static void
2653 intel_walk_cacheinfo(struct cpuid_info *cpi,
2654     void *arg, int (*func)(void *, const struct cachetab *))
2655 {
2656 	const struct cachetab *ct;
2657 	uint8_t *dp;
2658 	int i;
2659 
2660 	if ((dp = cpi->cpi_cacheinfo) == NULL)
2661 		return;
2662 	for (i = 0; i < cpi->cpi_ncache; i++, dp++)
2663 		if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) {
2664 			if (func(arg, ct) != 0)
2665 				break;
2666 		}
2667 }
2668 
2669 /*
2670  * (Like the Intel one, except for Cyrix CPUs)
2671  */
2672 static void
2673 cyrix_walk_cacheinfo(struct cpuid_info *cpi,
2674     void *arg, int (*func)(void *, const struct cachetab *))
2675 {
2676 	const struct cachetab *ct;
2677 	uint8_t *dp;
2678 	int i;
2679 
2680 	if ((dp = cpi->cpi_cacheinfo) == NULL)
2681 		return;
2682 	for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
2683 		/*
2684 		 * Search Cyrix-specific descriptor table first ..
2685 		 */
2686 		if ((ct = find_cacheent(cyrix_ctab, *dp)) != NULL) {
2687 			if (func(arg, ct) != 0)
2688 				break;
2689 			continue;
2690 		}
2691 		/*
2692 		 * .. else fall back to the Intel one
2693 		 */
2694 		if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) {
2695 			if (func(arg, ct) != 0)
2696 				break;
2697 			continue;
2698 		}
2699 	}
2700 }
2701 
2702 /*
2703  * A cacheinfo walker that adds associativity, line-size, and size properties
2704  * to the devinfo node it is passed as an argument.
2705  */
2706 static int
2707 add_cacheent_props(void *arg, const struct cachetab *ct)
2708 {
2709 	dev_info_t *devi = arg;
2710 
2711 	add_cache_prop(devi, ct->ct_label, assoc_str, ct->ct_assoc);
2712 	if (ct->ct_line_size != 0)
2713 		add_cache_prop(devi, ct->ct_label, line_str,
2714 		    ct->ct_line_size);
2715 	add_cache_prop(devi, ct->ct_label, size_str, ct->ct_size);
2716 	return (0);
2717 }
2718 
2719 static const char fully_assoc[] = "fully-associative?";
2720 
2721 /*
2722  * AMD style cache/tlb description
2723  *
2724  * Extended functions 5 and 6 directly describe properties of
2725  * tlbs and various cache levels.
2726  */
2727 static void
2728 add_amd_assoc(dev_info_t *devi, const char *label, uint_t assoc)
2729 {
2730 	switch (assoc) {
2731 	case 0:	/* reserved; ignore */
2732 		break;
2733 	default:
2734 		add_cache_prop(devi, label, assoc_str, assoc);
2735 		break;
2736 	case 0xff:
2737 		add_cache_prop(devi, label, fully_assoc, 1);
2738 		break;
2739 	}
2740 }
2741 
2742 static void
2743 add_amd_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
2744 {
2745 	if (size == 0)
2746 		return;
2747 	add_cache_prop(devi, label, size_str, size);
2748 	add_amd_assoc(devi, label, assoc);
2749 }
2750 
2751 static void
2752 add_amd_cache(dev_info_t *devi, const char *label,
2753     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
2754 {
2755 	if (size == 0 || line_size == 0)
2756 		return;
2757 	add_amd_assoc(devi, label, assoc);
2758 	/*
2759 	 * Most AMD parts have a sectored cache. Multiple cache lines are
2760 	 * associated with each tag. A sector consists of all cache lines
2761 	 * associated with a tag. For example, the AMD K6-III has a sector
2762 	 * size of 2 cache lines per tag.
2763 	 */
2764 	if (lines_per_tag != 0)
2765 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
2766 	add_cache_prop(devi, label, line_str, line_size);
2767 	add_cache_prop(devi, label, size_str, size * 1024);
2768 }
2769 
2770 static void
2771 add_amd_l2_assoc(dev_info_t *devi, const char *label, uint_t assoc)
2772 {
2773 	switch (assoc) {
2774 	case 0:	/* off */
2775 		break;
2776 	case 1:
2777 	case 2:
2778 	case 4:
2779 		add_cache_prop(devi, label, assoc_str, assoc);
2780 		break;
2781 	case 6:
2782 		add_cache_prop(devi, label, assoc_str, 8);
2783 		break;
2784 	case 8:
2785 		add_cache_prop(devi, label, assoc_str, 16);
2786 		break;
2787 	case 0xf:
2788 		add_cache_prop(devi, label, fully_assoc, 1);
2789 		break;
2790 	default: /* reserved; ignore */
2791 		break;
2792 	}
2793 }
2794 
2795 static void
2796 add_amd_l2_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
2797 {
2798 	if (size == 0 || assoc == 0)
2799 		return;
2800 	add_amd_l2_assoc(devi, label, assoc);
2801 	add_cache_prop(devi, label, size_str, size);
2802 }
2803 
2804 static void
2805 add_amd_l2_cache(dev_info_t *devi, const char *label,
2806     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
2807 {
2808 	if (size == 0 || assoc == 0 || line_size == 0)
2809 		return;
2810 	add_amd_l2_assoc(devi, label, assoc);
2811 	if (lines_per_tag != 0)
2812 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
2813 	add_cache_prop(devi, label, line_str, line_size);
2814 	add_cache_prop(devi, label, size_str, size * 1024);
2815 }
2816 
2817 static void
2818 amd_cache_info(struct cpuid_info *cpi, dev_info_t *devi)
2819 {
2820 	struct cpuid_regs *cp;
2821 
2822 	if (cpi->cpi_xmaxeax < 0x80000005)
2823 		return;
2824 	cp = &cpi->cpi_extd[5];
2825 
2826 	/*
2827 	 * 4M/2M L1 TLB configuration
2828 	 *
2829 	 * We report the size for 2M pages because AMD uses two
2830 	 * TLB entries for one 4M page.
2831 	 */
2832 	add_amd_tlb(devi, "dtlb-2M",
2833 	    BITX(cp->cp_eax, 31, 24), BITX(cp->cp_eax, 23, 16));
2834 	add_amd_tlb(devi, "itlb-2M",
2835 	    BITX(cp->cp_eax, 15, 8), BITX(cp->cp_eax, 7, 0));
2836 
2837 	/*
2838 	 * 4K L1 TLB configuration
2839 	 */
2840 
2841 	switch (cpi->cpi_vendor) {
2842 		uint_t nentries;
2843 	case X86_VENDOR_TM:
2844 		if (cpi->cpi_family >= 5) {
2845 			/*
2846 			 * Crusoe processors have 256 TLB entries, but
2847 			 * cpuid data format constrains them to only
2848 			 * reporting 255 of them.
2849 			 */
2850 			if ((nentries = BITX(cp->cp_ebx, 23, 16)) == 255)
2851 				nentries = 256;
2852 			/*
2853 			 * Crusoe processors also have a unified TLB
2854 			 */
2855 			add_amd_tlb(devi, "tlb-4K", BITX(cp->cp_ebx, 31, 24),
2856 			    nentries);
2857 			break;
2858 		}
2859 		/*FALLTHROUGH*/
2860 	default:
2861 		add_amd_tlb(devi, itlb4k_str,
2862 		    BITX(cp->cp_ebx, 31, 24), BITX(cp->cp_ebx, 23, 16));
2863 		add_amd_tlb(devi, dtlb4k_str,
2864 		    BITX(cp->cp_ebx, 15, 8), BITX(cp->cp_ebx, 7, 0));
2865 		break;
2866 	}
2867 
2868 	/*
2869 	 * data L1 cache configuration
2870 	 */
2871 
2872 	add_amd_cache(devi, l1_dcache_str,
2873 	    BITX(cp->cp_ecx, 31, 24), BITX(cp->cp_ecx, 23, 16),
2874 	    BITX(cp->cp_ecx, 15, 8), BITX(cp->cp_ecx, 7, 0));
2875 
2876 	/*
2877 	 * code L1 cache configuration
2878 	 */
2879 
2880 	add_amd_cache(devi, l1_icache_str,
2881 	    BITX(cp->cp_edx, 31, 24), BITX(cp->cp_edx, 23, 16),
2882 	    BITX(cp->cp_edx, 15, 8), BITX(cp->cp_edx, 7, 0));
2883 
2884 	if (cpi->cpi_xmaxeax < 0x80000006)
2885 		return;
2886 	cp = &cpi->cpi_extd[6];
2887 
2888 	/* Check for a unified L2 TLB for large pages */
2889 
2890 	if (BITX(cp->cp_eax, 31, 16) == 0)
2891 		add_amd_l2_tlb(devi, "l2-tlb-2M",
2892 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
2893 	else {
2894 		add_amd_l2_tlb(devi, "l2-dtlb-2M",
2895 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
2896 		add_amd_l2_tlb(devi, "l2-itlb-2M",
2897 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
2898 	}
2899 
2900 	/* Check for a unified L2 TLB for 4K pages */
2901 
2902 	if (BITX(cp->cp_ebx, 31, 16) == 0) {
2903 		add_amd_l2_tlb(devi, "l2-tlb-4K",
2904 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
2905 	} else {
2906 		add_amd_l2_tlb(devi, "l2-dtlb-4K",
2907 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
2908 		add_amd_l2_tlb(devi, "l2-itlb-4K",
2909 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
2910 	}
2911 
2912 	add_amd_l2_cache(devi, l2_cache_str,
2913 	    BITX(cp->cp_ecx, 31, 16), BITX(cp->cp_ecx, 15, 12),
2914 	    BITX(cp->cp_ecx, 11, 8), BITX(cp->cp_ecx, 7, 0));
2915 }
2916 
2917 /*
2918  * There are two basic ways that the x86 world describes it cache
2919  * and tlb architecture - Intel's way and AMD's way.
2920  *
2921  * Return which flavor of cache architecture we should use
2922  */
2923 static int
2924 x86_which_cacheinfo(struct cpuid_info *cpi)
2925 {
2926 	switch (cpi->cpi_vendor) {
2927 	case X86_VENDOR_Intel:
2928 		if (cpi->cpi_maxeax >= 2)
2929 			return (X86_VENDOR_Intel);
2930 		break;
2931 	case X86_VENDOR_AMD:
2932 		/*
2933 		 * The K5 model 1 was the first part from AMD that reported
2934 		 * cache sizes via extended cpuid functions.
2935 		 */
2936 		if (cpi->cpi_family > 5 ||
2937 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
2938 			return (X86_VENDOR_AMD);
2939 		break;
2940 	case X86_VENDOR_TM:
2941 		if (cpi->cpi_family >= 5)
2942 			return (X86_VENDOR_AMD);
2943 		/*FALLTHROUGH*/
2944 	default:
2945 		/*
2946 		 * If they have extended CPU data for 0x80000005
2947 		 * then we assume they have AMD-format cache
2948 		 * information.
2949 		 *
2950 		 * If not, and the vendor happens to be Cyrix,
2951 		 * then try our-Cyrix specific handler.
2952 		 *
2953 		 * If we're not Cyrix, then assume we're using Intel's
2954 		 * table-driven format instead.
2955 		 */
2956 		if (cpi->cpi_xmaxeax >= 0x80000005)
2957 			return (X86_VENDOR_AMD);
2958 		else if (cpi->cpi_vendor == X86_VENDOR_Cyrix)
2959 			return (X86_VENDOR_Cyrix);
2960 		else if (cpi->cpi_maxeax >= 2)
2961 			return (X86_VENDOR_Intel);
2962 		break;
2963 	}
2964 	return (-1);
2965 }
2966 
2967 /*
2968  * create a node for the given cpu under the prom root node.
2969  * Also, create a cpu node in the device tree.
2970  */
2971 static dev_info_t *cpu_nex_devi = NULL;
2972 static kmutex_t cpu_node_lock;
2973 
2974 /*
2975  * Called from post_startup() and mp_startup()
2976  */
2977 void
2978 add_cpunode2devtree(processorid_t cpu_id, struct cpuid_info *cpi)
2979 {
2980 	dev_info_t *cpu_devi;
2981 	int create;
2982 
2983 	mutex_enter(&cpu_node_lock);
2984 
2985 	/*
2986 	 * create a nexus node for all cpus identified as 'cpu_id' under
2987 	 * the root node.
2988 	 */
2989 	if (cpu_nex_devi == NULL) {
2990 		if (ndi_devi_alloc(ddi_root_node(), "cpus",
2991 		    (pnode_t)DEVI_SID_NODEID, &cpu_nex_devi) != NDI_SUCCESS) {
2992 			mutex_exit(&cpu_node_lock);
2993 			return;
2994 		}
2995 		(void) ndi_devi_online(cpu_nex_devi, 0);
2996 	}
2997 
2998 	/*
2999 	 * create a child node for cpu identified as 'cpu_id'
3000 	 */
3001 	cpu_devi = ddi_add_child(cpu_nex_devi, "cpu", DEVI_SID_NODEID,
3002 	    cpu_id);
3003 	if (cpu_devi == NULL) {
3004 		mutex_exit(&cpu_node_lock);
3005 		return;
3006 	}
3007 
3008 	/* device_type */
3009 
3010 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3011 	    "device_type", "cpu");
3012 
3013 	/* reg */
3014 
3015 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3016 	    "reg", cpu_id);
3017 
3018 	/* cpu-mhz, and clock-frequency */
3019 
3020 	if (cpu_freq > 0) {
3021 		long long mul;
3022 
3023 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3024 		    "cpu-mhz", cpu_freq);
3025 
3026 		if ((mul = cpu_freq * 1000000LL) <= INT_MAX)
3027 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3028 			    "clock-frequency", (int)mul);
3029 	}
3030 
3031 	(void) ndi_devi_online(cpu_devi, 0);
3032 
3033 	if ((x86_feature & X86_CPUID) == 0) {
3034 		mutex_exit(&cpu_node_lock);
3035 		return;
3036 	}
3037 
3038 	/* vendor-id */
3039 
3040 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3041 	    "vendor-id", cpi->cpi_vendorstr);
3042 
3043 	if (cpi->cpi_maxeax == 0) {
3044 		mutex_exit(&cpu_node_lock);
3045 		return;
3046 	}
3047 
3048 	/*
3049 	 * family, model, and step
3050 	 */
3051 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3052 	    "family", CPI_FAMILY(cpi));
3053 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3054 	    "cpu-model", CPI_MODEL(cpi));
3055 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3056 	    "stepping-id", CPI_STEP(cpi));
3057 
3058 	/* type */
3059 
3060 	switch (cpi->cpi_vendor) {
3061 	case X86_VENDOR_Intel:
3062 		create = 1;
3063 		break;
3064 	default:
3065 		create = 0;
3066 		break;
3067 	}
3068 	if (create)
3069 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3070 		    "type", CPI_TYPE(cpi));
3071 
3072 	/* ext-family */
3073 
3074 	switch (cpi->cpi_vendor) {
3075 	case X86_VENDOR_Intel:
3076 	case X86_VENDOR_AMD:
3077 		create = cpi->cpi_family >= 0xf;
3078 		break;
3079 	default:
3080 		create = 0;
3081 		break;
3082 	}
3083 	if (create)
3084 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3085 		    "ext-family", CPI_FAMILY_XTD(cpi));
3086 
3087 	/* ext-model */
3088 
3089 	switch (cpi->cpi_vendor) {
3090 	case X86_VENDOR_Intel:
3091 		create = CPI_MODEL(cpi) == 0xf;
3092 		break;
3093 	case X86_VENDOR_AMD:
3094 		create = CPI_FAMILY(cpi) == 0xf;
3095 		break;
3096 	default:
3097 		create = 0;
3098 		break;
3099 	}
3100 	if (create)
3101 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3102 		    "ext-model", CPI_MODEL_XTD(cpi));
3103 
3104 	/* generation */
3105 
3106 	switch (cpi->cpi_vendor) {
3107 	case X86_VENDOR_AMD:
3108 		/*
3109 		 * AMD K5 model 1 was the first part to support this
3110 		 */
3111 		create = cpi->cpi_xmaxeax >= 0x80000001;
3112 		break;
3113 	default:
3114 		create = 0;
3115 		break;
3116 	}
3117 	if (create)
3118 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3119 		    "generation", BITX((cpi)->cpi_extd[1].cp_eax, 11, 8));
3120 
3121 	/* brand-id */
3122 
3123 	switch (cpi->cpi_vendor) {
3124 	case X86_VENDOR_Intel:
3125 		/*
3126 		 * brand id first appeared on Pentium III Xeon model 8,
3127 		 * and Celeron model 8 processors and Opteron
3128 		 */
3129 		create = cpi->cpi_family > 6 ||
3130 		    (cpi->cpi_family == 6 && cpi->cpi_model >= 8);
3131 		break;
3132 	case X86_VENDOR_AMD:
3133 		create = cpi->cpi_family >= 0xf;
3134 		break;
3135 	default:
3136 		create = 0;
3137 		break;
3138 	}
3139 	if (create && cpi->cpi_brandid != 0) {
3140 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3141 		    "brand-id", cpi->cpi_brandid);
3142 	}
3143 
3144 	/* chunks, and apic-id */
3145 
3146 	switch (cpi->cpi_vendor) {
3147 		/*
3148 		 * first available on Pentium IV and Opteron (K8)
3149 		 */
3150 	case X86_VENDOR_Intel:
3151 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
3152 		break;
3153 	case X86_VENDOR_AMD:
3154 		create = cpi->cpi_family >= 0xf;
3155 		break;
3156 	default:
3157 		create = 0;
3158 		break;
3159 	}
3160 	if (create) {
3161 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3162 		    "chunks", CPI_CHUNKS(cpi));
3163 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3164 		    "apic-id", CPI_APIC_ID(cpi));
3165 		if (cpi->cpi_chipid >= 0) {
3166 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3167 			    "chip#", cpi->cpi_chipid);
3168 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3169 			    "clog#", cpi->cpi_clogid);
3170 		}
3171 	}
3172 
3173 	/* cpuid-features */
3174 
3175 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3176 	    "cpuid-features", CPI_FEATURES_EDX(cpi));
3177 
3178 
3179 	/* cpuid-features-ecx */
3180 
3181 	switch (cpi->cpi_vendor) {
3182 	case X86_VENDOR_Intel:
3183 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
3184 		break;
3185 	default:
3186 		create = 0;
3187 		break;
3188 	}
3189 	if (create)
3190 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3191 		    "cpuid-features-ecx", CPI_FEATURES_ECX(cpi));
3192 
3193 	/* ext-cpuid-features */
3194 
3195 	switch (cpi->cpi_vendor) {
3196 	case X86_VENDOR_Intel:
3197 	case X86_VENDOR_AMD:
3198 	case X86_VENDOR_Cyrix:
3199 	case X86_VENDOR_TM:
3200 	case X86_VENDOR_Centaur:
3201 		create = cpi->cpi_xmaxeax >= 0x80000001;
3202 		break;
3203 	default:
3204 		create = 0;
3205 		break;
3206 	}
3207 	if (create) {
3208 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3209 		    "ext-cpuid-features", CPI_FEATURES_XTD_EDX(cpi));
3210 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3211 		    "ext-cpuid-features-ecx", CPI_FEATURES_XTD_ECX(cpi));
3212 	}
3213 
3214 	/*
3215 	 * Brand String first appeared in Intel Pentium IV, AMD K5
3216 	 * model 1, and Cyrix GXm.  On earlier models we try and
3217 	 * simulate something similar .. so this string should always
3218 	 * same -something- about the processor, however lame.
3219 	 */
3220 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3221 	    "brand-string", cpi->cpi_brandstr);
3222 
3223 	/*
3224 	 * Finally, cache and tlb information
3225 	 */
3226 	switch (x86_which_cacheinfo(cpi)) {
3227 	case X86_VENDOR_Intel:
3228 		intel_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
3229 		break;
3230 	case X86_VENDOR_Cyrix:
3231 		cyrix_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
3232 		break;
3233 	case X86_VENDOR_AMD:
3234 		amd_cache_info(cpi, cpu_devi);
3235 		break;
3236 	default:
3237 		break;
3238 	}
3239 
3240 	mutex_exit(&cpu_node_lock);
3241 }
3242 
3243 struct l2info {
3244 	int *l2i_csz;
3245 	int *l2i_lsz;
3246 	int *l2i_assoc;
3247 	int l2i_ret;
3248 };
3249 
3250 /*
3251  * A cacheinfo walker that fetches the size, line-size and associativity
3252  * of the L2 cache
3253  */
3254 static int
3255 intel_l2cinfo(void *arg, const struct cachetab *ct)
3256 {
3257 	struct l2info *l2i = arg;
3258 	int *ip;
3259 
3260 	if (ct->ct_label != l2_cache_str &&
3261 	    ct->ct_label != sl2_cache_str)
3262 		return (0);	/* not an L2 -- keep walking */
3263 
3264 	if ((ip = l2i->l2i_csz) != NULL)
3265 		*ip = ct->ct_size;
3266 	if ((ip = l2i->l2i_lsz) != NULL)
3267 		*ip = ct->ct_line_size;
3268 	if ((ip = l2i->l2i_assoc) != NULL)
3269 		*ip = ct->ct_assoc;
3270 	l2i->l2i_ret = ct->ct_size;
3271 	return (1);		/* was an L2 -- terminate walk */
3272 }
3273 
3274 static void
3275 amd_l2cacheinfo(struct cpuid_info *cpi, struct l2info *l2i)
3276 {
3277 	struct cpuid_regs *cp;
3278 	uint_t size, assoc;
3279 	int *ip;
3280 
3281 	if (cpi->cpi_xmaxeax < 0x80000006)
3282 		return;
3283 	cp = &cpi->cpi_extd[6];
3284 
3285 	if ((assoc = BITX(cp->cp_ecx, 15, 12)) != 0 &&
3286 	    (size = BITX(cp->cp_ecx, 31, 16)) != 0) {
3287 		uint_t cachesz = size * 1024;
3288 
3289 
3290 		if ((ip = l2i->l2i_csz) != NULL)
3291 			*ip = cachesz;
3292 		if ((ip = l2i->l2i_lsz) != NULL)
3293 			*ip = BITX(cp->cp_ecx, 7, 0);
3294 		if ((ip = l2i->l2i_assoc) != NULL)
3295 			*ip = assoc;
3296 		l2i->l2i_ret = cachesz;
3297 	}
3298 }
3299 
3300 int
3301 getl2cacheinfo(cpu_t *cpu, int *csz, int *lsz, int *assoc)
3302 {
3303 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
3304 	struct l2info __l2info, *l2i = &__l2info;
3305 
3306 	l2i->l2i_csz = csz;
3307 	l2i->l2i_lsz = lsz;
3308 	l2i->l2i_assoc = assoc;
3309 	l2i->l2i_ret = -1;
3310 
3311 	switch (x86_which_cacheinfo(cpi)) {
3312 	case X86_VENDOR_Intel:
3313 		intel_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
3314 		break;
3315 	case X86_VENDOR_Cyrix:
3316 		cyrix_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
3317 		break;
3318 	case X86_VENDOR_AMD:
3319 		amd_l2cacheinfo(cpi, l2i);
3320 		break;
3321 	default:
3322 		break;
3323 	}
3324 	return (l2i->l2i_ret);
3325 }
3326 
3327 size_t
3328 cpuid_get_mwait_size(cpu_t *cpu)
3329 {
3330 	ASSERT(cpuid_checkpass(cpu, 2));
3331 	return (cpu->cpu_m.mcpu_cpi->cpi_mwait.mon_max);
3332 }
3333