xref: /titanic_50/usr/src/uts/i86pc/os/cpuid.c (revision 0ba00e7a9ccbe1b6eb17ffb9692d015a7929e11f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011 by Delphix. All rights reserved.
24  * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
25  * Copyright 2014 Josef "Jeff" Sipek <jeffpc@josefsipek.net>
26  */
27 /*
28  * Copyright (c) 2010, Intel Corporation.
29  * All rights reserved.
30  */
31 /*
32  * Portions Copyright 2009 Advanced Micro Devices, Inc.
33  */
34 /*
35  * Copyright 2016 Joyent, Inc.
36  */
37 /*
38  * Various routines to handle identification
39  * and classification of x86 processors.
40  */
41 
42 #include <sys/types.h>
43 #include <sys/archsystm.h>
44 #include <sys/x86_archext.h>
45 #include <sys/kmem.h>
46 #include <sys/systm.h>
47 #include <sys/cmn_err.h>
48 #include <sys/sunddi.h>
49 #include <sys/sunndi.h>
50 #include <sys/cpuvar.h>
51 #include <sys/processor.h>
52 #include <sys/sysmacros.h>
53 #include <sys/pg.h>
54 #include <sys/fp.h>
55 #include <sys/controlregs.h>
56 #include <sys/bitmap.h>
57 #include <sys/auxv_386.h>
58 #include <sys/memnode.h>
59 #include <sys/pci_cfgspace.h>
60 #include <sys/comm_page.h>
61 #include <sys/tsc.h>
62 
63 #ifdef __xpv
64 #include <sys/hypervisor.h>
65 #else
66 #include <sys/ontrap.h>
67 #endif
68 
69 /*
70  * Pass 0 of cpuid feature analysis happens in locore. It contains special code
71  * to recognize Cyrix processors that are not cpuid-compliant, and to deal with
72  * them accordingly. For most modern processors, feature detection occurs here
73  * in pass 1.
74  *
75  * Pass 1 of cpuid feature analysis happens just at the beginning of mlsetup()
76  * for the boot CPU and does the basic analysis that the early kernel needs.
77  * x86_featureset is set based on the return value of cpuid_pass1() of the boot
78  * CPU.
79  *
80  * Pass 1 includes:
81  *
82  *	o Determining vendor/model/family/stepping and setting x86_type and
83  *	  x86_vendor accordingly.
84  *	o Processing the feature flags returned by the cpuid instruction while
85  *	  applying any workarounds or tricks for the specific processor.
86  *	o Mapping the feature flags into Solaris feature bits (X86_*).
87  *	o Processing extended feature flags if supported by the processor,
88  *	  again while applying specific processor knowledge.
89  *	o Determining the CMT characteristics of the system.
90  *
91  * Pass 1 is done on non-boot CPUs during their initialization and the results
92  * are used only as a meager attempt at ensuring that all processors within the
93  * system support the same features.
94  *
95  * Pass 2 of cpuid feature analysis happens just at the beginning
96  * of startup().  It just copies in and corrects the remainder
97  * of the cpuid data we depend on: standard cpuid functions that we didn't
98  * need for pass1 feature analysis, and extended cpuid functions beyond the
99  * simple feature processing done in pass1.
100  *
101  * Pass 3 of cpuid analysis is invoked after basic kernel services; in
102  * particular kernel memory allocation has been made available. It creates a
103  * readable brand string based on the data collected in the first two passes.
104  *
105  * Pass 4 of cpuid analysis is invoked after post_startup() when all
106  * the support infrastructure for various hardware features has been
107  * initialized. It determines which processor features will be reported
108  * to userland via the aux vector.
109  *
110  * All passes are executed on all CPUs, but only the boot CPU determines what
111  * features the kernel will use.
112  *
113  * Much of the worst junk in this file is for the support of processors
114  * that didn't really implement the cpuid instruction properly.
115  *
116  * NOTE: The accessor functions (cpuid_get*) are aware of, and ASSERT upon,
117  * the pass numbers.  Accordingly, changes to the pass code may require changes
118  * to the accessor code.
119  */
120 
121 uint_t x86_vendor = X86_VENDOR_IntelClone;
122 uint_t x86_type = X86_TYPE_OTHER;
123 uint_t x86_clflush_size = 0;
124 
125 uint_t pentiumpro_bug4046376;
126 
127 uchar_t x86_featureset[BT_SIZEOFMAP(NUM_X86_FEATURES)];
128 
129 static char *x86_feature_names[NUM_X86_FEATURES] = {
130 	"lgpg",
131 	"tsc",
132 	"msr",
133 	"mtrr",
134 	"pge",
135 	"de",
136 	"cmov",
137 	"mmx",
138 	"mca",
139 	"pae",
140 	"cv8",
141 	"pat",
142 	"sep",
143 	"sse",
144 	"sse2",
145 	"htt",
146 	"asysc",
147 	"nx",
148 	"sse3",
149 	"cx16",
150 	"cmp",
151 	"tscp",
152 	"mwait",
153 	"sse4a",
154 	"cpuid",
155 	"ssse3",
156 	"sse4_1",
157 	"sse4_2",
158 	"1gpg",
159 	"clfsh",
160 	"64",
161 	"aes",
162 	"pclmulqdq",
163 	"xsave",
164 	"avx",
165 	"vmx",
166 	"svm",
167 	"topoext",
168 	"f16c",
169 	"rdrand",
170 	"x2apic",
171 	"avx2",
172 	"bmi1",
173 	"bmi2",
174 	"fma",
175 	"smep",
176 	"adx",
177 	"rdseed"
178 };
179 
180 boolean_t
181 is_x86_feature(void *featureset, uint_t feature)
182 {
183 	ASSERT(feature < NUM_X86_FEATURES);
184 	return (BT_TEST((ulong_t *)featureset, feature));
185 }
186 
187 void
188 add_x86_feature(void *featureset, uint_t feature)
189 {
190 	ASSERT(feature < NUM_X86_FEATURES);
191 	BT_SET((ulong_t *)featureset, feature);
192 }
193 
194 void
195 remove_x86_feature(void *featureset, uint_t feature)
196 {
197 	ASSERT(feature < NUM_X86_FEATURES);
198 	BT_CLEAR((ulong_t *)featureset, feature);
199 }
200 
201 boolean_t
202 compare_x86_featureset(void *setA, void *setB)
203 {
204 	/*
205 	 * We assume that the unused bits of the bitmap are always zero.
206 	 */
207 	if (memcmp(setA, setB, BT_SIZEOFMAP(NUM_X86_FEATURES)) == 0) {
208 		return (B_TRUE);
209 	} else {
210 		return (B_FALSE);
211 	}
212 }
213 
214 void
215 print_x86_featureset(void *featureset)
216 {
217 	uint_t i;
218 
219 	for (i = 0; i < NUM_X86_FEATURES; i++) {
220 		if (is_x86_feature(featureset, i)) {
221 			cmn_err(CE_CONT, "?x86_feature: %s\n",
222 			    x86_feature_names[i]);
223 		}
224 	}
225 }
226 
227 static size_t xsave_state_size = 0;
228 uint64_t xsave_bv_all = (XFEATURE_LEGACY_FP | XFEATURE_SSE);
229 boolean_t xsave_force_disable = B_FALSE;
230 
231 /*
232  * This is set to platform type we are running on.
233  */
234 static int platform_type = -1;
235 
236 #if !defined(__xpv)
237 /*
238  * Variable to patch if hypervisor platform detection needs to be
239  * disabled (e.g. platform_type will always be HW_NATIVE if this is 0).
240  */
241 int enable_platform_detection = 1;
242 #endif
243 
244 /*
245  * monitor/mwait info.
246  *
247  * size_actual and buf_actual are the real address and size allocated to get
248  * proper mwait_buf alignement.  buf_actual and size_actual should be passed
249  * to kmem_free().  Currently kmem_alloc() and mwait happen to both use
250  * processor cache-line alignment, but this is not guarantied in the furture.
251  */
252 struct mwait_info {
253 	size_t		mon_min;	/* min size to avoid missed wakeups */
254 	size_t		mon_max;	/* size to avoid false wakeups */
255 	size_t		size_actual;	/* size actually allocated */
256 	void		*buf_actual;	/* memory actually allocated */
257 	uint32_t	support;	/* processor support of monitor/mwait */
258 };
259 
260 /*
261  * xsave/xrestor info.
262  *
263  * This structure contains HW feature bits and size of the xsave save area.
264  * Note: the kernel will use the maximum size required for all hardware
265  * features. It is not optimize for potential memory savings if features at
266  * the end of the save area are not enabled.
267  */
268 struct xsave_info {
269 	uint32_t	xsav_hw_features_low;   /* Supported HW features */
270 	uint32_t	xsav_hw_features_high;  /* Supported HW features */
271 	size_t		xsav_max_size;  /* max size save area for HW features */
272 	size_t		ymm_size;	/* AVX: size of ymm save area */
273 	size_t		ymm_offset;	/* AVX: offset for ymm save area */
274 };
275 
276 
277 /*
278  * These constants determine how many of the elements of the
279  * cpuid we cache in the cpuid_info data structure; the
280  * remaining elements are accessible via the cpuid instruction.
281  */
282 
283 #define	NMAX_CPI_STD	8		/* eax = 0 .. 7 */
284 #define	NMAX_CPI_EXTD	0x1f		/* eax = 0x80000000 .. 0x8000001e */
285 
286 /*
287  * Some terminology needs to be explained:
288  *  - Socket: Something that can be plugged into a motherboard.
289  *  - Package: Same as socket
290  *  - Chip: Same as socket. Note that AMD's documentation uses term "chip"
291  *    differently: there, chip is the same as processor node (below)
292  *  - Processor node: Some AMD processors have more than one
293  *    "subprocessor" embedded in a package. These subprocessors (nodes)
294  *    are fully-functional processors themselves with cores, caches,
295  *    memory controllers, PCI configuration spaces. They are connected
296  *    inside the package with Hypertransport links. On single-node
297  *    processors, processor node is equivalent to chip/socket/package.
298  *  - Compute Unit: Some AMD processors pair cores in "compute units" that
299  *    share the FPU and the I$ and L2 caches.
300  */
301 
302 struct cpuid_info {
303 	uint_t cpi_pass;		/* last pass completed */
304 	/*
305 	 * standard function information
306 	 */
307 	uint_t cpi_maxeax;		/* fn 0: %eax */
308 	char cpi_vendorstr[13];		/* fn 0: %ebx:%ecx:%edx */
309 	uint_t cpi_vendor;		/* enum of cpi_vendorstr */
310 
311 	uint_t cpi_family;		/* fn 1: extended family */
312 	uint_t cpi_model;		/* fn 1: extended model */
313 	uint_t cpi_step;		/* fn 1: stepping */
314 	chipid_t cpi_chipid;		/* fn 1: %ebx:  Intel: chip # */
315 					/*		AMD: package/socket # */
316 	uint_t cpi_brandid;		/* fn 1: %ebx: brand ID */
317 	int cpi_clogid;			/* fn 1: %ebx: thread # */
318 	uint_t cpi_ncpu_per_chip;	/* fn 1: %ebx: logical cpu count */
319 	uint8_t cpi_cacheinfo[16];	/* fn 2: intel-style cache desc */
320 	uint_t cpi_ncache;		/* fn 2: number of elements */
321 	uint_t cpi_ncpu_shr_last_cache;	/* fn 4: %eax: ncpus sharing cache */
322 	id_t cpi_last_lvl_cacheid;	/* fn 4: %eax: derived cache id */
323 	uint_t cpi_std_4_size;		/* fn 4: number of fn 4 elements */
324 	struct cpuid_regs **cpi_std_4;	/* fn 4: %ecx == 0 .. fn4_size */
325 	struct cpuid_regs cpi_std[NMAX_CPI_STD];	/* 0 .. 7 */
326 	/*
327 	 * extended function information
328 	 */
329 	uint_t cpi_xmaxeax;		/* fn 0x80000000: %eax */
330 	char cpi_brandstr[49];		/* fn 0x8000000[234] */
331 	uint8_t cpi_pabits;		/* fn 0x80000006: %eax */
332 	uint8_t	cpi_vabits;		/* fn 0x80000006: %eax */
333 	struct	cpuid_regs cpi_extd[NMAX_CPI_EXTD];	/* 0x800000XX */
334 
335 	id_t cpi_coreid;		/* same coreid => strands share core */
336 	int cpi_pkgcoreid;		/* core number within single package */
337 	uint_t cpi_ncore_per_chip;	/* AMD: fn 0x80000008: %ecx[7-0] */
338 					/* Intel: fn 4: %eax[31-26] */
339 	/*
340 	 * supported feature information
341 	 */
342 	uint32_t cpi_support[6];
343 #define	STD_EDX_FEATURES	0
344 #define	AMD_EDX_FEATURES	1
345 #define	TM_EDX_FEATURES		2
346 #define	STD_ECX_FEATURES	3
347 #define	AMD_ECX_FEATURES	4
348 #define	STD_EBX_FEATURES	5
349 	/*
350 	 * Synthesized information, where known.
351 	 */
352 	uint32_t cpi_chiprev;		/* See X86_CHIPREV_* in x86_archext.h */
353 	const char *cpi_chiprevstr;	/* May be NULL if chiprev unknown */
354 	uint32_t cpi_socket;		/* Chip package/socket type */
355 
356 	struct mwait_info cpi_mwait;	/* fn 5: monitor/mwait info */
357 	uint32_t cpi_apicid;
358 	uint_t cpi_procnodeid;		/* AMD: nodeID on HT, Intel: chipid */
359 	uint_t cpi_procnodes_per_pkg;	/* AMD: # of nodes in the package */
360 					/* Intel: 1 */
361 	uint_t cpi_compunitid;		/* AMD: ComputeUnit ID, Intel: coreid */
362 	uint_t cpi_cores_per_compunit;	/* AMD: # of cores in the ComputeUnit */
363 
364 	struct xsave_info cpi_xsave;	/* fn D: xsave/xrestor info */
365 };
366 
367 
368 static struct cpuid_info cpuid_info0;
369 
370 /*
371  * These bit fields are defined by the Intel Application Note AP-485
372  * "Intel Processor Identification and the CPUID Instruction"
373  */
374 #define	CPI_FAMILY_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 27, 20)
375 #define	CPI_MODEL_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 19, 16)
376 #define	CPI_TYPE(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 13, 12)
377 #define	CPI_FAMILY(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 11, 8)
378 #define	CPI_STEP(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 3, 0)
379 #define	CPI_MODEL(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 7, 4)
380 
381 #define	CPI_FEATURES_EDX(cpi)		((cpi)->cpi_std[1].cp_edx)
382 #define	CPI_FEATURES_ECX(cpi)		((cpi)->cpi_std[1].cp_ecx)
383 #define	CPI_FEATURES_XTD_EDX(cpi)	((cpi)->cpi_extd[1].cp_edx)
384 #define	CPI_FEATURES_XTD_ECX(cpi)	((cpi)->cpi_extd[1].cp_ecx)
385 #define	CPI_FEATURES_7_0_EBX(cpi)	((cpi)->cpi_std[7].cp_ebx)
386 
387 #define	CPI_BRANDID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 7, 0)
388 #define	CPI_CHUNKS(cpi)		BITX((cpi)->cpi_std[1].cp_ebx, 15, 7)
389 #define	CPI_CPU_COUNT(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 23, 16)
390 #define	CPI_APIC_ID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 31, 24)
391 
392 #define	CPI_MAXEAX_MAX		0x100		/* sanity control */
393 #define	CPI_XMAXEAX_MAX		0x80000100
394 #define	CPI_FN4_ECX_MAX		0x20		/* sanity: max fn 4 levels */
395 #define	CPI_FNB_ECX_MAX		0x20		/* sanity: max fn B levels */
396 
397 /*
398  * Function 4 (Deterministic Cache Parameters) macros
399  * Defined by Intel Application Note AP-485
400  */
401 #define	CPI_NUM_CORES(regs)		BITX((regs)->cp_eax, 31, 26)
402 #define	CPI_NTHR_SHR_CACHE(regs)	BITX((regs)->cp_eax, 25, 14)
403 #define	CPI_FULL_ASSOC_CACHE(regs)	BITX((regs)->cp_eax, 9, 9)
404 #define	CPI_SELF_INIT_CACHE(regs)	BITX((regs)->cp_eax, 8, 8)
405 #define	CPI_CACHE_LVL(regs)		BITX((regs)->cp_eax, 7, 5)
406 #define	CPI_CACHE_TYPE(regs)		BITX((regs)->cp_eax, 4, 0)
407 #define	CPI_CPU_LEVEL_TYPE(regs)	BITX((regs)->cp_ecx, 15, 8)
408 
409 #define	CPI_CACHE_WAYS(regs)		BITX((regs)->cp_ebx, 31, 22)
410 #define	CPI_CACHE_PARTS(regs)		BITX((regs)->cp_ebx, 21, 12)
411 #define	CPI_CACHE_COH_LN_SZ(regs)	BITX((regs)->cp_ebx, 11, 0)
412 
413 #define	CPI_CACHE_SETS(regs)		BITX((regs)->cp_ecx, 31, 0)
414 
415 #define	CPI_PREFCH_STRIDE(regs)		BITX((regs)->cp_edx, 9, 0)
416 
417 
418 /*
419  * A couple of shorthand macros to identify "later" P6-family chips
420  * like the Pentium M and Core.  First, the "older" P6-based stuff
421  * (loosely defined as "pre-Pentium-4"):
422  * P6, PII, Mobile PII, PII Xeon, PIII, Mobile PIII, PIII Xeon
423  */
424 
425 #define	IS_LEGACY_P6(cpi) (			\
426 	cpi->cpi_family == 6 && 		\
427 		(cpi->cpi_model == 1 ||		\
428 		cpi->cpi_model == 3 ||		\
429 		cpi->cpi_model == 5 ||		\
430 		cpi->cpi_model == 6 ||		\
431 		cpi->cpi_model == 7 ||		\
432 		cpi->cpi_model == 8 ||		\
433 		cpi->cpi_model == 0xA ||	\
434 		cpi->cpi_model == 0xB)		\
435 )
436 
437 /* A "new F6" is everything with family 6 that's not the above */
438 #define	IS_NEW_F6(cpi) ((cpi->cpi_family == 6) && !IS_LEGACY_P6(cpi))
439 
440 /* Extended family/model support */
441 #define	IS_EXTENDED_MODEL_INTEL(cpi) (cpi->cpi_family == 0x6 || \
442 	cpi->cpi_family >= 0xf)
443 
444 /*
445  * Info for monitor/mwait idle loop.
446  *
447  * See cpuid section of "Intel 64 and IA-32 Architectures Software Developer's
448  * Manual Volume 2A: Instruction Set Reference, A-M" #25366-022US, November
449  * 2006.
450  * See MONITOR/MWAIT section of "AMD64 Architecture Programmer's Manual
451  * Documentation Updates" #33633, Rev 2.05, December 2006.
452  */
453 #define	MWAIT_SUPPORT		(0x00000001)	/* mwait supported */
454 #define	MWAIT_EXTENSIONS	(0x00000002)	/* extenstion supported */
455 #define	MWAIT_ECX_INT_ENABLE	(0x00000004)	/* ecx 1 extension supported */
456 #define	MWAIT_SUPPORTED(cpi)	((cpi)->cpi_std[1].cp_ecx & CPUID_INTC_ECX_MON)
457 #define	MWAIT_INT_ENABLE(cpi)	((cpi)->cpi_std[5].cp_ecx & 0x2)
458 #define	MWAIT_EXTENSION(cpi)	((cpi)->cpi_std[5].cp_ecx & 0x1)
459 #define	MWAIT_SIZE_MIN(cpi)	BITX((cpi)->cpi_std[5].cp_eax, 15, 0)
460 #define	MWAIT_SIZE_MAX(cpi)	BITX((cpi)->cpi_std[5].cp_ebx, 15, 0)
461 /*
462  * Number of sub-cstates for a given c-state.
463  */
464 #define	MWAIT_NUM_SUBC_STATES(cpi, c_state)			\
465 	BITX((cpi)->cpi_std[5].cp_edx, c_state + 3, c_state)
466 
467 /*
468  * XSAVE leaf 0xD enumeration
469  */
470 #define	CPUID_LEAFD_2_YMM_OFFSET	576
471 #define	CPUID_LEAFD_2_YMM_SIZE		256
472 
473 /*
474  * Functions we consune from cpuid_subr.c;  don't publish these in a header
475  * file to try and keep people using the expected cpuid_* interfaces.
476  */
477 extern uint32_t _cpuid_skt(uint_t, uint_t, uint_t, uint_t);
478 extern const char *_cpuid_sktstr(uint_t, uint_t, uint_t, uint_t);
479 extern uint32_t _cpuid_chiprev(uint_t, uint_t, uint_t, uint_t);
480 extern const char *_cpuid_chiprevstr(uint_t, uint_t, uint_t, uint_t);
481 extern uint_t _cpuid_vendorstr_to_vendorcode(char *);
482 
483 /*
484  * Apply up various platform-dependent restrictions where the
485  * underlying platform restrictions mean the CPU can be marked
486  * as less capable than its cpuid instruction would imply.
487  */
488 #if defined(__xpv)
489 static void
490 platform_cpuid_mangle(uint_t vendor, uint32_t eax, struct cpuid_regs *cp)
491 {
492 	switch (eax) {
493 	case 1: {
494 		uint32_t mcamask = DOMAIN_IS_INITDOMAIN(xen_info) ?
495 		    0 : CPUID_INTC_EDX_MCA;
496 		cp->cp_edx &=
497 		    ~(mcamask |
498 		    CPUID_INTC_EDX_PSE |
499 		    CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE |
500 		    CPUID_INTC_EDX_SEP | CPUID_INTC_EDX_MTRR |
501 		    CPUID_INTC_EDX_PGE | CPUID_INTC_EDX_PAT |
502 		    CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP |
503 		    CPUID_INTC_EDX_PSE36 | CPUID_INTC_EDX_HTT);
504 		break;
505 	}
506 
507 	case 0x80000001:
508 		cp->cp_edx &=
509 		    ~(CPUID_AMD_EDX_PSE |
510 		    CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE |
511 		    CPUID_AMD_EDX_MTRR | CPUID_AMD_EDX_PGE |
512 		    CPUID_AMD_EDX_PAT | CPUID_AMD_EDX_PSE36 |
513 		    CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP |
514 		    CPUID_AMD_EDX_TSCP);
515 		cp->cp_ecx &= ~CPUID_AMD_ECX_CMP_LGCY;
516 		break;
517 	default:
518 		break;
519 	}
520 
521 	switch (vendor) {
522 	case X86_VENDOR_Intel:
523 		switch (eax) {
524 		case 4:
525 			/*
526 			 * Zero out the (ncores-per-chip - 1) field
527 			 */
528 			cp->cp_eax &= 0x03fffffff;
529 			break;
530 		default:
531 			break;
532 		}
533 		break;
534 	case X86_VENDOR_AMD:
535 		switch (eax) {
536 
537 		case 0x80000001:
538 			cp->cp_ecx &= ~CPUID_AMD_ECX_CR8D;
539 			break;
540 
541 		case 0x80000008:
542 			/*
543 			 * Zero out the (ncores-per-chip - 1) field
544 			 */
545 			cp->cp_ecx &= 0xffffff00;
546 			break;
547 		default:
548 			break;
549 		}
550 		break;
551 	default:
552 		break;
553 	}
554 }
555 #else
556 #define	platform_cpuid_mangle(vendor, eax, cp)	/* nothing */
557 #endif
558 
559 /*
560  *  Some undocumented ways of patching the results of the cpuid
561  *  instruction to permit running Solaris 10 on future cpus that
562  *  we don't currently support.  Could be set to non-zero values
563  *  via settings in eeprom.
564  */
565 
566 uint32_t cpuid_feature_ecx_include;
567 uint32_t cpuid_feature_ecx_exclude;
568 uint32_t cpuid_feature_edx_include;
569 uint32_t cpuid_feature_edx_exclude;
570 
571 /*
572  * Allocate space for mcpu_cpi in the machcpu structure for all non-boot CPUs.
573  */
574 void
575 cpuid_alloc_space(cpu_t *cpu)
576 {
577 	/*
578 	 * By convention, cpu0 is the boot cpu, which is set up
579 	 * before memory allocation is available.  All other cpus get
580 	 * their cpuid_info struct allocated here.
581 	 */
582 	ASSERT(cpu->cpu_id != 0);
583 	ASSERT(cpu->cpu_m.mcpu_cpi == NULL);
584 	cpu->cpu_m.mcpu_cpi =
585 	    kmem_zalloc(sizeof (*cpu->cpu_m.mcpu_cpi), KM_SLEEP);
586 }
587 
588 void
589 cpuid_free_space(cpu_t *cpu)
590 {
591 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
592 	int i;
593 
594 	ASSERT(cpi != NULL);
595 	ASSERT(cpi != &cpuid_info0);
596 
597 	/*
598 	 * Free up any function 4 related dynamic storage
599 	 */
600 	for (i = 1; i < cpi->cpi_std_4_size; i++)
601 		kmem_free(cpi->cpi_std_4[i], sizeof (struct cpuid_regs));
602 	if (cpi->cpi_std_4_size > 0)
603 		kmem_free(cpi->cpi_std_4,
604 		    cpi->cpi_std_4_size * sizeof (struct cpuid_regs *));
605 
606 	kmem_free(cpi, sizeof (*cpi));
607 	cpu->cpu_m.mcpu_cpi = NULL;
608 }
609 
610 #if !defined(__xpv)
611 /*
612  * Determine the type of the underlying platform. This is used to customize
613  * initialization of various subsystems (e.g. TSC). determine_platform() must
614  * only ever be called once to prevent two processors from seeing different
615  * values of platform_type. Must be called before cpuid_pass1(), the earliest
616  * consumer to execute (uses _cpuid_chiprev --> synth_amd_info --> get_hwenv).
617  */
618 void
619 determine_platform(void)
620 {
621 	struct cpuid_regs cp;
622 	uint32_t base;
623 	uint32_t regs[4];
624 	char *hvstr = (char *)regs;
625 
626 	ASSERT(platform_type == -1);
627 
628 	platform_type = HW_NATIVE;
629 
630 	if (!enable_platform_detection)
631 		return;
632 
633 	/*
634 	 * If Hypervisor CPUID bit is set, try to determine hypervisor
635 	 * vendor signature, and set platform type accordingly.
636 	 *
637 	 * References:
638 	 * http://lkml.org/lkml/2008/10/1/246
639 	 * http://kb.vmware.com/kb/1009458
640 	 */
641 	cp.cp_eax = 0x1;
642 	(void) __cpuid_insn(&cp);
643 	if ((cp.cp_ecx & CPUID_INTC_ECX_HV) != 0) {
644 		cp.cp_eax = 0x40000000;
645 		(void) __cpuid_insn(&cp);
646 		regs[0] = cp.cp_ebx;
647 		regs[1] = cp.cp_ecx;
648 		regs[2] = cp.cp_edx;
649 		regs[3] = 0;
650 		if (strcmp(hvstr, HVSIG_XEN_HVM) == 0) {
651 			platform_type = HW_XEN_HVM;
652 			return;
653 		}
654 		if (strcmp(hvstr, HVSIG_VMWARE) == 0) {
655 			platform_type = HW_VMWARE;
656 			return;
657 		}
658 		if (strcmp(hvstr, HVSIG_KVM) == 0) {
659 			platform_type = HW_KVM;
660 			return;
661 		}
662 		if (strcmp(hvstr, HVSIG_MICROSOFT) == 0)
663 			platform_type = HW_MICROSOFT;
664 	} else {
665 		/*
666 		 * Check older VMware hardware versions. VMware hypervisor is
667 		 * detected by performing an IN operation to VMware hypervisor
668 		 * port and checking that value returned in %ebx is VMware
669 		 * hypervisor magic value.
670 		 *
671 		 * References: http://kb.vmware.com/kb/1009458
672 		 */
673 		vmware_port(VMWARE_HVCMD_GETVERSION, regs);
674 		if (regs[1] == VMWARE_HVMAGIC) {
675 			platform_type = HW_VMWARE;
676 			return;
677 		}
678 	}
679 
680 	/*
681 	 * Check Xen hypervisor. In a fully virtualized domain,
682 	 * Xen's pseudo-cpuid function returns a string representing the
683 	 * Xen signature in %ebx, %ecx, and %edx. %eax contains the maximum
684 	 * supported cpuid function. We need at least a (base + 2) leaf value
685 	 * to do what we want to do. Try different base values, since the
686 	 * hypervisor might use a different one depending on whether Hyper-V
687 	 * emulation is switched on by default or not.
688 	 */
689 	for (base = 0x40000000; base < 0x40010000; base += 0x100) {
690 		cp.cp_eax = base;
691 		(void) __cpuid_insn(&cp);
692 		regs[0] = cp.cp_ebx;
693 		regs[1] = cp.cp_ecx;
694 		regs[2] = cp.cp_edx;
695 		regs[3] = 0;
696 		if (strcmp(hvstr, HVSIG_XEN_HVM) == 0 &&
697 		    cp.cp_eax >= (base + 2)) {
698 			platform_type &= ~HW_NATIVE;
699 			platform_type |= HW_XEN_HVM;
700 			return;
701 		}
702 	}
703 }
704 
705 int
706 get_hwenv(void)
707 {
708 	ASSERT(platform_type != -1);
709 	return (platform_type);
710 }
711 
712 int
713 is_controldom(void)
714 {
715 	return (0);
716 }
717 
718 #else
719 
720 int
721 get_hwenv(void)
722 {
723 	return (HW_XEN_PV);
724 }
725 
726 int
727 is_controldom(void)
728 {
729 	return (DOMAIN_IS_INITDOMAIN(xen_info));
730 }
731 
732 #endif	/* __xpv */
733 
734 static void
735 cpuid_intel_getids(cpu_t *cpu, void *feature)
736 {
737 	uint_t i;
738 	uint_t chipid_shift = 0;
739 	uint_t coreid_shift = 0;
740 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
741 
742 	for (i = 1; i < cpi->cpi_ncpu_per_chip; i <<= 1)
743 		chipid_shift++;
744 
745 	cpi->cpi_chipid = cpi->cpi_apicid >> chipid_shift;
746 	cpi->cpi_clogid = cpi->cpi_apicid & ((1 << chipid_shift) - 1);
747 
748 	if (is_x86_feature(feature, X86FSET_CMP)) {
749 		/*
750 		 * Multi-core (and possibly multi-threaded)
751 		 * processors.
752 		 */
753 		uint_t ncpu_per_core;
754 		if (cpi->cpi_ncore_per_chip == 1)
755 			ncpu_per_core = cpi->cpi_ncpu_per_chip;
756 		else if (cpi->cpi_ncore_per_chip > 1)
757 			ncpu_per_core = cpi->cpi_ncpu_per_chip /
758 			    cpi->cpi_ncore_per_chip;
759 		/*
760 		 * 8bit APIC IDs on dual core Pentiums
761 		 * look like this:
762 		 *
763 		 * +-----------------------+------+------+
764 		 * | Physical Package ID   |  MC  |  HT  |
765 		 * +-----------------------+------+------+
766 		 * <------- chipid -------->
767 		 * <------- coreid --------------->
768 		 *			   <--- clogid -->
769 		 *			   <------>
770 		 *			   pkgcoreid
771 		 *
772 		 * Where the number of bits necessary to
773 		 * represent MC and HT fields together equals
774 		 * to the minimum number of bits necessary to
775 		 * store the value of cpi->cpi_ncpu_per_chip.
776 		 * Of those bits, the MC part uses the number
777 		 * of bits necessary to store the value of
778 		 * cpi->cpi_ncore_per_chip.
779 		 */
780 		for (i = 1; i < ncpu_per_core; i <<= 1)
781 			coreid_shift++;
782 		cpi->cpi_coreid = cpi->cpi_apicid >> coreid_shift;
783 		cpi->cpi_pkgcoreid = cpi->cpi_clogid >> coreid_shift;
784 	} else if (is_x86_feature(feature, X86FSET_HTT)) {
785 		/*
786 		 * Single-core multi-threaded processors.
787 		 */
788 		cpi->cpi_coreid = cpi->cpi_chipid;
789 		cpi->cpi_pkgcoreid = 0;
790 	}
791 	cpi->cpi_procnodeid = cpi->cpi_chipid;
792 	cpi->cpi_compunitid = cpi->cpi_coreid;
793 }
794 
795 static void
796 cpuid_amd_getids(cpu_t *cpu)
797 {
798 	int i, first_half, coreidsz;
799 	uint32_t nb_caps_reg;
800 	uint_t node2_1;
801 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
802 	struct cpuid_regs *cp;
803 
804 	/*
805 	 * AMD CMP chips currently have a single thread per core.
806 	 *
807 	 * Since no two cpus share a core we must assign a distinct coreid
808 	 * per cpu, and we do this by using the cpu_id.  This scheme does not,
809 	 * however, guarantee that sibling cores of a chip will have sequential
810 	 * coreids starting at a multiple of the number of cores per chip -
811 	 * that is usually the case, but if the ACPI MADT table is presented
812 	 * in a different order then we need to perform a few more gymnastics
813 	 * for the pkgcoreid.
814 	 *
815 	 * All processors in the system have the same number of enabled
816 	 * cores. Cores within a processor are always numbered sequentially
817 	 * from 0 regardless of how many or which are disabled, and there
818 	 * is no way for operating system to discover the real core id when some
819 	 * are disabled.
820 	 *
821 	 * In family 0x15, the cores come in pairs called compute units. They
822 	 * share I$ and L2 caches and the FPU. Enumeration of this feature is
823 	 * simplified by the new topology extensions CPUID leaf, indicated by
824 	 * the X86 feature X86FSET_TOPOEXT.
825 	 */
826 
827 	cpi->cpi_coreid = cpu->cpu_id;
828 	cpi->cpi_compunitid = cpu->cpu_id;
829 
830 	if (cpi->cpi_xmaxeax >= 0x80000008) {
831 
832 		coreidsz = BITX((cpi)->cpi_extd[8].cp_ecx, 15, 12);
833 
834 		/*
835 		 * In AMD parlance chip is really a node while Solaris
836 		 * sees chip as equivalent to socket/package.
837 		 */
838 		cpi->cpi_ncore_per_chip =
839 		    BITX((cpi)->cpi_extd[8].cp_ecx, 7, 0) + 1;
840 		if (coreidsz == 0) {
841 			/* Use legacy method */
842 			for (i = 1; i < cpi->cpi_ncore_per_chip; i <<= 1)
843 				coreidsz++;
844 			if (coreidsz == 0)
845 				coreidsz = 1;
846 		}
847 	} else {
848 		/* Assume single-core part */
849 		cpi->cpi_ncore_per_chip = 1;
850 		coreidsz = 1;
851 	}
852 
853 	cpi->cpi_clogid = cpi->cpi_pkgcoreid =
854 	    cpi->cpi_apicid & ((1<<coreidsz) - 1);
855 	cpi->cpi_ncpu_per_chip = cpi->cpi_ncore_per_chip;
856 
857 	/* Get node ID, compute unit ID */
858 	if (is_x86_feature(x86_featureset, X86FSET_TOPOEXT) &&
859 	    cpi->cpi_xmaxeax >= 0x8000001e) {
860 		cp = &cpi->cpi_extd[0x1e];
861 		cp->cp_eax = 0x8000001e;
862 		(void) __cpuid_insn(cp);
863 
864 		cpi->cpi_procnodes_per_pkg = BITX(cp->cp_ecx, 10, 8) + 1;
865 		cpi->cpi_procnodeid = BITX(cp->cp_ecx, 7, 0);
866 		cpi->cpi_cores_per_compunit = BITX(cp->cp_ebx, 15, 8) + 1;
867 		cpi->cpi_compunitid = BITX(cp->cp_ebx, 7, 0)
868 		    + (cpi->cpi_ncore_per_chip / cpi->cpi_cores_per_compunit)
869 		    * (cpi->cpi_procnodeid / cpi->cpi_procnodes_per_pkg);
870 	} else if (cpi->cpi_family == 0xf || cpi->cpi_family >= 0x11) {
871 		cpi->cpi_procnodeid = (cpi->cpi_apicid >> coreidsz) & 7;
872 	} else if (cpi->cpi_family == 0x10) {
873 		/*
874 		 * See if we are a multi-node processor.
875 		 * All processors in the system have the same number of nodes
876 		 */
877 		nb_caps_reg =  pci_getl_func(0, 24, 3, 0xe8);
878 		if ((cpi->cpi_model < 8) || BITX(nb_caps_reg, 29, 29) == 0) {
879 			/* Single-node */
880 			cpi->cpi_procnodeid = BITX(cpi->cpi_apicid, 5,
881 			    coreidsz);
882 		} else {
883 
884 			/*
885 			 * Multi-node revision D (2 nodes per package
886 			 * are supported)
887 			 */
888 			cpi->cpi_procnodes_per_pkg = 2;
889 
890 			first_half = (cpi->cpi_pkgcoreid <=
891 			    (cpi->cpi_ncore_per_chip/2 - 1));
892 
893 			if (cpi->cpi_apicid == cpi->cpi_pkgcoreid) {
894 				/* We are BSP */
895 				cpi->cpi_procnodeid = (first_half ? 0 : 1);
896 			} else {
897 
898 				/* We are AP */
899 				/* NodeId[2:1] bits to use for reading F3xe8 */
900 				node2_1 = BITX(cpi->cpi_apicid, 5, 4) << 1;
901 
902 				nb_caps_reg =
903 				    pci_getl_func(0, 24 + node2_1, 3, 0xe8);
904 
905 				/*
906 				 * Check IntNodeNum bit (31:30, but bit 31 is
907 				 * always 0 on dual-node processors)
908 				 */
909 				if (BITX(nb_caps_reg, 30, 30) == 0)
910 					cpi->cpi_procnodeid = node2_1 +
911 					    !first_half;
912 				else
913 					cpi->cpi_procnodeid = node2_1 +
914 					    first_half;
915 			}
916 		}
917 	} else {
918 		cpi->cpi_procnodeid = 0;
919 	}
920 
921 	cpi->cpi_chipid =
922 	    cpi->cpi_procnodeid / cpi->cpi_procnodes_per_pkg;
923 }
924 
925 /*
926  * Setup XFeature_Enabled_Mask register. Required by xsave feature.
927  */
928 void
929 setup_xfem(void)
930 {
931 	uint64_t flags = XFEATURE_LEGACY_FP;
932 
933 	ASSERT(is_x86_feature(x86_featureset, X86FSET_XSAVE));
934 
935 	if (is_x86_feature(x86_featureset, X86FSET_SSE))
936 		flags |= XFEATURE_SSE;
937 
938 	if (is_x86_feature(x86_featureset, X86FSET_AVX))
939 		flags |= XFEATURE_AVX;
940 
941 	set_xcr(XFEATURE_ENABLED_MASK, flags);
942 
943 	xsave_bv_all = flags;
944 }
945 
946 void
947 cpuid_pass1(cpu_t *cpu, uchar_t *featureset)
948 {
949 	uint32_t mask_ecx, mask_edx;
950 	struct cpuid_info *cpi;
951 	struct cpuid_regs *cp;
952 	int xcpuid;
953 #if !defined(__xpv)
954 	extern int idle_cpu_prefer_mwait;
955 #endif
956 
957 	/*
958 	 * Space statically allocated for BSP, ensure pointer is set
959 	 */
960 	if (cpu->cpu_id == 0) {
961 		if (cpu->cpu_m.mcpu_cpi == NULL)
962 			cpu->cpu_m.mcpu_cpi = &cpuid_info0;
963 	}
964 
965 	add_x86_feature(featureset, X86FSET_CPUID);
966 
967 	cpi = cpu->cpu_m.mcpu_cpi;
968 	ASSERT(cpi != NULL);
969 	cp = &cpi->cpi_std[0];
970 	cp->cp_eax = 0;
971 	cpi->cpi_maxeax = __cpuid_insn(cp);
972 	{
973 		uint32_t *iptr = (uint32_t *)cpi->cpi_vendorstr;
974 		*iptr++ = cp->cp_ebx;
975 		*iptr++ = cp->cp_edx;
976 		*iptr++ = cp->cp_ecx;
977 		*(char *)&cpi->cpi_vendorstr[12] = '\0';
978 	}
979 
980 	cpi->cpi_vendor = _cpuid_vendorstr_to_vendorcode(cpi->cpi_vendorstr);
981 	x86_vendor = cpi->cpi_vendor; /* for compatibility */
982 
983 	/*
984 	 * Limit the range in case of weird hardware
985 	 */
986 	if (cpi->cpi_maxeax > CPI_MAXEAX_MAX)
987 		cpi->cpi_maxeax = CPI_MAXEAX_MAX;
988 	if (cpi->cpi_maxeax < 1)
989 		goto pass1_done;
990 
991 	cp = &cpi->cpi_std[1];
992 	cp->cp_eax = 1;
993 	(void) __cpuid_insn(cp);
994 
995 	/*
996 	 * Extract identifying constants for easy access.
997 	 */
998 	cpi->cpi_model = CPI_MODEL(cpi);
999 	cpi->cpi_family = CPI_FAMILY(cpi);
1000 
1001 	if (cpi->cpi_family == 0xf)
1002 		cpi->cpi_family += CPI_FAMILY_XTD(cpi);
1003 
1004 	/*
1005 	 * Beware: AMD uses "extended model" iff base *FAMILY* == 0xf.
1006 	 * Intel, and presumably everyone else, uses model == 0xf, as
1007 	 * one would expect (max value means possible overflow).  Sigh.
1008 	 */
1009 
1010 	switch (cpi->cpi_vendor) {
1011 	case X86_VENDOR_Intel:
1012 		if (IS_EXTENDED_MODEL_INTEL(cpi))
1013 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
1014 		break;
1015 	case X86_VENDOR_AMD:
1016 		if (CPI_FAMILY(cpi) == 0xf)
1017 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
1018 		break;
1019 	default:
1020 		if (cpi->cpi_model == 0xf)
1021 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
1022 		break;
1023 	}
1024 
1025 	cpi->cpi_step = CPI_STEP(cpi);
1026 	cpi->cpi_brandid = CPI_BRANDID(cpi);
1027 
1028 	/*
1029 	 * *default* assumptions:
1030 	 * - believe %edx feature word
1031 	 * - ignore %ecx feature word
1032 	 * - 32-bit virtual and physical addressing
1033 	 */
1034 	mask_edx = 0xffffffff;
1035 	mask_ecx = 0;
1036 
1037 	cpi->cpi_pabits = cpi->cpi_vabits = 32;
1038 
1039 	switch (cpi->cpi_vendor) {
1040 	case X86_VENDOR_Intel:
1041 		if (cpi->cpi_family == 5)
1042 			x86_type = X86_TYPE_P5;
1043 		else if (IS_LEGACY_P6(cpi)) {
1044 			x86_type = X86_TYPE_P6;
1045 			pentiumpro_bug4046376 = 1;
1046 			/*
1047 			 * Clear the SEP bit when it was set erroneously
1048 			 */
1049 			if (cpi->cpi_model < 3 && cpi->cpi_step < 3)
1050 				cp->cp_edx &= ~CPUID_INTC_EDX_SEP;
1051 		} else if (IS_NEW_F6(cpi) || cpi->cpi_family == 0xf) {
1052 			x86_type = X86_TYPE_P4;
1053 			/*
1054 			 * We don't currently depend on any of the %ecx
1055 			 * features until Prescott, so we'll only check
1056 			 * this from P4 onwards.  We might want to revisit
1057 			 * that idea later.
1058 			 */
1059 			mask_ecx = 0xffffffff;
1060 		} else if (cpi->cpi_family > 0xf)
1061 			mask_ecx = 0xffffffff;
1062 		/*
1063 		 * We don't support MONITOR/MWAIT if leaf 5 is not available
1064 		 * to obtain the monitor linesize.
1065 		 */
1066 		if (cpi->cpi_maxeax < 5)
1067 			mask_ecx &= ~CPUID_INTC_ECX_MON;
1068 		break;
1069 	case X86_VENDOR_IntelClone:
1070 	default:
1071 		break;
1072 	case X86_VENDOR_AMD:
1073 #if defined(OPTERON_ERRATUM_108)
1074 		if (cpi->cpi_family == 0xf && cpi->cpi_model == 0xe) {
1075 			cp->cp_eax = (0xf0f & cp->cp_eax) | 0xc0;
1076 			cpi->cpi_model = 0xc;
1077 		} else
1078 #endif
1079 		if (cpi->cpi_family == 5) {
1080 			/*
1081 			 * AMD K5 and K6
1082 			 *
1083 			 * These CPUs have an incomplete implementation
1084 			 * of MCA/MCE which we mask away.
1085 			 */
1086 			mask_edx &= ~(CPUID_INTC_EDX_MCE | CPUID_INTC_EDX_MCA);
1087 
1088 			/*
1089 			 * Model 0 uses the wrong (APIC) bit
1090 			 * to indicate PGE.  Fix it here.
1091 			 */
1092 			if (cpi->cpi_model == 0) {
1093 				if (cp->cp_edx & 0x200) {
1094 					cp->cp_edx &= ~0x200;
1095 					cp->cp_edx |= CPUID_INTC_EDX_PGE;
1096 				}
1097 			}
1098 
1099 			/*
1100 			 * Early models had problems w/ MMX; disable.
1101 			 */
1102 			if (cpi->cpi_model < 6)
1103 				mask_edx &= ~CPUID_INTC_EDX_MMX;
1104 		}
1105 
1106 		/*
1107 		 * For newer families, SSE3 and CX16, at least, are valid;
1108 		 * enable all
1109 		 */
1110 		if (cpi->cpi_family >= 0xf)
1111 			mask_ecx = 0xffffffff;
1112 		/*
1113 		 * We don't support MONITOR/MWAIT if leaf 5 is not available
1114 		 * to obtain the monitor linesize.
1115 		 */
1116 		if (cpi->cpi_maxeax < 5)
1117 			mask_ecx &= ~CPUID_INTC_ECX_MON;
1118 
1119 #if !defined(__xpv)
1120 		/*
1121 		 * Do not use MONITOR/MWAIT to halt in the idle loop on any AMD
1122 		 * processors.  AMD does not intend MWAIT to be used in the cpu
1123 		 * idle loop on current and future processors.  10h and future
1124 		 * AMD processors use more power in MWAIT than HLT.
1125 		 * Pre-family-10h Opterons do not have the MWAIT instruction.
1126 		 */
1127 		idle_cpu_prefer_mwait = 0;
1128 #endif
1129 
1130 		break;
1131 	case X86_VENDOR_TM:
1132 		/*
1133 		 * workaround the NT workaround in CMS 4.1
1134 		 */
1135 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4 &&
1136 		    (cpi->cpi_step == 2 || cpi->cpi_step == 3))
1137 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
1138 		break;
1139 	case X86_VENDOR_Centaur:
1140 		/*
1141 		 * workaround the NT workarounds again
1142 		 */
1143 		if (cpi->cpi_family == 6)
1144 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
1145 		break;
1146 	case X86_VENDOR_Cyrix:
1147 		/*
1148 		 * We rely heavily on the probing in locore
1149 		 * to actually figure out what parts, if any,
1150 		 * of the Cyrix cpuid instruction to believe.
1151 		 */
1152 		switch (x86_type) {
1153 		case X86_TYPE_CYRIX_486:
1154 			mask_edx = 0;
1155 			break;
1156 		case X86_TYPE_CYRIX_6x86:
1157 			mask_edx = 0;
1158 			break;
1159 		case X86_TYPE_CYRIX_6x86L:
1160 			mask_edx =
1161 			    CPUID_INTC_EDX_DE |
1162 			    CPUID_INTC_EDX_CX8;
1163 			break;
1164 		case X86_TYPE_CYRIX_6x86MX:
1165 			mask_edx =
1166 			    CPUID_INTC_EDX_DE |
1167 			    CPUID_INTC_EDX_MSR |
1168 			    CPUID_INTC_EDX_CX8 |
1169 			    CPUID_INTC_EDX_PGE |
1170 			    CPUID_INTC_EDX_CMOV |
1171 			    CPUID_INTC_EDX_MMX;
1172 			break;
1173 		case X86_TYPE_CYRIX_GXm:
1174 			mask_edx =
1175 			    CPUID_INTC_EDX_MSR |
1176 			    CPUID_INTC_EDX_CX8 |
1177 			    CPUID_INTC_EDX_CMOV |
1178 			    CPUID_INTC_EDX_MMX;
1179 			break;
1180 		case X86_TYPE_CYRIX_MediaGX:
1181 			break;
1182 		case X86_TYPE_CYRIX_MII:
1183 		case X86_TYPE_VIA_CYRIX_III:
1184 			mask_edx =
1185 			    CPUID_INTC_EDX_DE |
1186 			    CPUID_INTC_EDX_TSC |
1187 			    CPUID_INTC_EDX_MSR |
1188 			    CPUID_INTC_EDX_CX8 |
1189 			    CPUID_INTC_EDX_PGE |
1190 			    CPUID_INTC_EDX_CMOV |
1191 			    CPUID_INTC_EDX_MMX;
1192 			break;
1193 		default:
1194 			break;
1195 		}
1196 		break;
1197 	}
1198 
1199 #if defined(__xpv)
1200 	/*
1201 	 * Do not support MONITOR/MWAIT under a hypervisor
1202 	 */
1203 	mask_ecx &= ~CPUID_INTC_ECX_MON;
1204 	/*
1205 	 * Do not support XSAVE under a hypervisor for now
1206 	 */
1207 	xsave_force_disable = B_TRUE;
1208 
1209 #endif	/* __xpv */
1210 
1211 	if (xsave_force_disable) {
1212 		mask_ecx &= ~CPUID_INTC_ECX_XSAVE;
1213 		mask_ecx &= ~CPUID_INTC_ECX_AVX;
1214 		mask_ecx &= ~CPUID_INTC_ECX_F16C;
1215 		mask_ecx &= ~CPUID_INTC_ECX_FMA;
1216 	}
1217 
1218 	/*
1219 	 * Now we've figured out the masks that determine
1220 	 * which bits we choose to believe, apply the masks
1221 	 * to the feature words, then map the kernel's view
1222 	 * of these feature words into its feature word.
1223 	 */
1224 	cp->cp_edx &= mask_edx;
1225 	cp->cp_ecx &= mask_ecx;
1226 
1227 	/*
1228 	 * apply any platform restrictions (we don't call this
1229 	 * immediately after __cpuid_insn here, because we need the
1230 	 * workarounds applied above first)
1231 	 */
1232 	platform_cpuid_mangle(cpi->cpi_vendor, 1, cp);
1233 
1234 	/*
1235 	 * In addition to ecx and edx, Intel is storing a bunch of instruction
1236 	 * set extensions in leaf 7's ebx.
1237 	 */
1238 	if (cpi->cpi_vendor == X86_VENDOR_Intel && cpi->cpi_maxeax >= 7) {
1239 		struct cpuid_regs *ecp;
1240 		ecp = &cpi->cpi_std[7];
1241 		ecp->cp_eax = 7;
1242 		ecp->cp_ecx = 0;
1243 		(void) __cpuid_insn(ecp);
1244 		/*
1245 		 * If XSAVE has been disabled, just ignore all of the AVX
1246 		 * dependent flags here.
1247 		 */
1248 		if (xsave_force_disable) {
1249 			ecp->cp_ebx &= ~CPUID_INTC_EBX_7_0_BMI1;
1250 			ecp->cp_ebx &= ~CPUID_INTC_EBX_7_0_BMI2;
1251 			ecp->cp_ebx &= ~CPUID_INTC_EBX_7_0_AVX2;
1252 		}
1253 
1254 		if (ecp->cp_ebx & CPUID_INTC_EBX_7_0_SMEP)
1255 			add_x86_feature(featureset, X86FSET_SMEP);
1256 
1257 		if (ecp->cp_ebx & CPUID_INTC_EBX_7_0_RDSEED)
1258 			add_x86_feature(featureset, X86FSET_RDSEED);
1259 
1260 		if (ecp->cp_ebx & CPUID_INTC_EBX_7_0_ADX)
1261 			add_x86_feature(featureset, X86FSET_ADX);
1262 	}
1263 
1264 	/*
1265 	 * fold in overrides from the "eeprom" mechanism
1266 	 */
1267 	cp->cp_edx |= cpuid_feature_edx_include;
1268 	cp->cp_edx &= ~cpuid_feature_edx_exclude;
1269 
1270 	cp->cp_ecx |= cpuid_feature_ecx_include;
1271 	cp->cp_ecx &= ~cpuid_feature_ecx_exclude;
1272 
1273 	if (cp->cp_edx & CPUID_INTC_EDX_PSE) {
1274 		add_x86_feature(featureset, X86FSET_LARGEPAGE);
1275 	}
1276 	if (cp->cp_edx & CPUID_INTC_EDX_TSC) {
1277 		add_x86_feature(featureset, X86FSET_TSC);
1278 	}
1279 	if (cp->cp_edx & CPUID_INTC_EDX_MSR) {
1280 		add_x86_feature(featureset, X86FSET_MSR);
1281 	}
1282 	if (cp->cp_edx & CPUID_INTC_EDX_MTRR) {
1283 		add_x86_feature(featureset, X86FSET_MTRR);
1284 	}
1285 	if (cp->cp_edx & CPUID_INTC_EDX_PGE) {
1286 		add_x86_feature(featureset, X86FSET_PGE);
1287 	}
1288 	if (cp->cp_edx & CPUID_INTC_EDX_CMOV) {
1289 		add_x86_feature(featureset, X86FSET_CMOV);
1290 	}
1291 	if (cp->cp_edx & CPUID_INTC_EDX_MMX) {
1292 		add_x86_feature(featureset, X86FSET_MMX);
1293 	}
1294 	if ((cp->cp_edx & CPUID_INTC_EDX_MCE) != 0 &&
1295 	    (cp->cp_edx & CPUID_INTC_EDX_MCA) != 0) {
1296 		add_x86_feature(featureset, X86FSET_MCA);
1297 	}
1298 	if (cp->cp_edx & CPUID_INTC_EDX_PAE) {
1299 		add_x86_feature(featureset, X86FSET_PAE);
1300 	}
1301 	if (cp->cp_edx & CPUID_INTC_EDX_CX8) {
1302 		add_x86_feature(featureset, X86FSET_CX8);
1303 	}
1304 	if (cp->cp_ecx & CPUID_INTC_ECX_CX16) {
1305 		add_x86_feature(featureset, X86FSET_CX16);
1306 	}
1307 	if (cp->cp_edx & CPUID_INTC_EDX_PAT) {
1308 		add_x86_feature(featureset, X86FSET_PAT);
1309 	}
1310 	if (cp->cp_edx & CPUID_INTC_EDX_SEP) {
1311 		add_x86_feature(featureset, X86FSET_SEP);
1312 	}
1313 	if (cp->cp_edx & CPUID_INTC_EDX_FXSR) {
1314 		/*
1315 		 * In our implementation, fxsave/fxrstor
1316 		 * are prerequisites before we'll even
1317 		 * try and do SSE things.
1318 		 */
1319 		if (cp->cp_edx & CPUID_INTC_EDX_SSE) {
1320 			add_x86_feature(featureset, X86FSET_SSE);
1321 		}
1322 		if (cp->cp_edx & CPUID_INTC_EDX_SSE2) {
1323 			add_x86_feature(featureset, X86FSET_SSE2);
1324 		}
1325 		if (cp->cp_ecx & CPUID_INTC_ECX_SSE3) {
1326 			add_x86_feature(featureset, X86FSET_SSE3);
1327 		}
1328 		if (cp->cp_ecx & CPUID_INTC_ECX_SSSE3) {
1329 			add_x86_feature(featureset, X86FSET_SSSE3);
1330 		}
1331 		if (cp->cp_ecx & CPUID_INTC_ECX_SSE4_1) {
1332 			add_x86_feature(featureset, X86FSET_SSE4_1);
1333 		}
1334 		if (cp->cp_ecx & CPUID_INTC_ECX_SSE4_2) {
1335 			add_x86_feature(featureset, X86FSET_SSE4_2);
1336 		}
1337 		if (cp->cp_ecx & CPUID_INTC_ECX_AES) {
1338 			add_x86_feature(featureset, X86FSET_AES);
1339 		}
1340 		if (cp->cp_ecx & CPUID_INTC_ECX_PCLMULQDQ) {
1341 			add_x86_feature(featureset, X86FSET_PCLMULQDQ);
1342 		}
1343 
1344 		if (cp->cp_ecx & CPUID_INTC_ECX_XSAVE) {
1345 			add_x86_feature(featureset, X86FSET_XSAVE);
1346 
1347 			/* We only test AVX when there is XSAVE */
1348 			if (cp->cp_ecx & CPUID_INTC_ECX_AVX) {
1349 				add_x86_feature(featureset,
1350 				    X86FSET_AVX);
1351 
1352 				/*
1353 				 * Intel says we can't check these without also
1354 				 * checking AVX.
1355 				 */
1356 				if (cp->cp_ecx & CPUID_INTC_ECX_F16C)
1357 					add_x86_feature(featureset,
1358 					    X86FSET_F16C);
1359 
1360 				if (cp->cp_ecx & CPUID_INTC_ECX_FMA)
1361 					add_x86_feature(featureset,
1362 					    X86FSET_FMA);
1363 
1364 				if (cpi->cpi_std[7].cp_ebx &
1365 				    CPUID_INTC_EBX_7_0_BMI1)
1366 					add_x86_feature(featureset,
1367 					    X86FSET_BMI1);
1368 
1369 				if (cpi->cpi_std[7].cp_ebx &
1370 				    CPUID_INTC_EBX_7_0_BMI2)
1371 					add_x86_feature(featureset,
1372 					    X86FSET_BMI2);
1373 
1374 				if (cpi->cpi_std[7].cp_ebx &
1375 				    CPUID_INTC_EBX_7_0_AVX2)
1376 					add_x86_feature(featureset,
1377 					    X86FSET_AVX2);
1378 			}
1379 		}
1380 	}
1381 	if (cp->cp_ecx & CPUID_INTC_ECX_X2APIC) {
1382 		add_x86_feature(featureset, X86FSET_X2APIC);
1383 	}
1384 	if (cp->cp_edx & CPUID_INTC_EDX_DE) {
1385 		add_x86_feature(featureset, X86FSET_DE);
1386 	}
1387 #if !defined(__xpv)
1388 	if (cp->cp_ecx & CPUID_INTC_ECX_MON) {
1389 
1390 		/*
1391 		 * We require the CLFLUSH instruction for erratum workaround
1392 		 * to use MONITOR/MWAIT.
1393 		 */
1394 		if (cp->cp_edx & CPUID_INTC_EDX_CLFSH) {
1395 			cpi->cpi_mwait.support |= MWAIT_SUPPORT;
1396 			add_x86_feature(featureset, X86FSET_MWAIT);
1397 		} else {
1398 			extern int idle_cpu_assert_cflush_monitor;
1399 
1400 			/*
1401 			 * All processors we are aware of which have
1402 			 * MONITOR/MWAIT also have CLFLUSH.
1403 			 */
1404 			if (idle_cpu_assert_cflush_monitor) {
1405 				ASSERT((cp->cp_ecx & CPUID_INTC_ECX_MON) &&
1406 				    (cp->cp_edx & CPUID_INTC_EDX_CLFSH));
1407 			}
1408 		}
1409 	}
1410 #endif	/* __xpv */
1411 
1412 	if (cp->cp_ecx & CPUID_INTC_ECX_VMX) {
1413 		add_x86_feature(featureset, X86FSET_VMX);
1414 	}
1415 
1416 	if (cp->cp_ecx & CPUID_INTC_ECX_RDRAND)
1417 		add_x86_feature(featureset, X86FSET_RDRAND);
1418 
1419 	/*
1420 	 * Only need it first time, rest of the cpus would follow suit.
1421 	 * we only capture this for the bootcpu.
1422 	 */
1423 	if (cp->cp_edx & CPUID_INTC_EDX_CLFSH) {
1424 		add_x86_feature(featureset, X86FSET_CLFSH);
1425 		x86_clflush_size = (BITX(cp->cp_ebx, 15, 8) * 8);
1426 	}
1427 	if (is_x86_feature(featureset, X86FSET_PAE))
1428 		cpi->cpi_pabits = 36;
1429 
1430 	/*
1431 	 * Hyperthreading configuration is slightly tricky on Intel
1432 	 * and pure clones, and even trickier on AMD.
1433 	 *
1434 	 * (AMD chose to set the HTT bit on their CMP processors,
1435 	 * even though they're not actually hyperthreaded.  Thus it
1436 	 * takes a bit more work to figure out what's really going
1437 	 * on ... see the handling of the CMP_LGCY bit below)
1438 	 */
1439 	if (cp->cp_edx & CPUID_INTC_EDX_HTT) {
1440 		cpi->cpi_ncpu_per_chip = CPI_CPU_COUNT(cpi);
1441 		if (cpi->cpi_ncpu_per_chip > 1)
1442 			add_x86_feature(featureset, X86FSET_HTT);
1443 	} else {
1444 		cpi->cpi_ncpu_per_chip = 1;
1445 	}
1446 
1447 	/*
1448 	 * Work on the "extended" feature information, doing
1449 	 * some basic initialization for cpuid_pass2()
1450 	 */
1451 	xcpuid = 0;
1452 	switch (cpi->cpi_vendor) {
1453 	case X86_VENDOR_Intel:
1454 		if (IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf)
1455 			xcpuid++;
1456 		break;
1457 	case X86_VENDOR_AMD:
1458 		if (cpi->cpi_family > 5 ||
1459 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
1460 			xcpuid++;
1461 		break;
1462 	case X86_VENDOR_Cyrix:
1463 		/*
1464 		 * Only these Cyrix CPUs are -known- to support
1465 		 * extended cpuid operations.
1466 		 */
1467 		if (x86_type == X86_TYPE_VIA_CYRIX_III ||
1468 		    x86_type == X86_TYPE_CYRIX_GXm)
1469 			xcpuid++;
1470 		break;
1471 	case X86_VENDOR_Centaur:
1472 	case X86_VENDOR_TM:
1473 	default:
1474 		xcpuid++;
1475 		break;
1476 	}
1477 
1478 	if (xcpuid) {
1479 		cp = &cpi->cpi_extd[0];
1480 		cp->cp_eax = 0x80000000;
1481 		cpi->cpi_xmaxeax = __cpuid_insn(cp);
1482 	}
1483 
1484 	if (cpi->cpi_xmaxeax & 0x80000000) {
1485 
1486 		if (cpi->cpi_xmaxeax > CPI_XMAXEAX_MAX)
1487 			cpi->cpi_xmaxeax = CPI_XMAXEAX_MAX;
1488 
1489 		switch (cpi->cpi_vendor) {
1490 		case X86_VENDOR_Intel:
1491 		case X86_VENDOR_AMD:
1492 			if (cpi->cpi_xmaxeax < 0x80000001)
1493 				break;
1494 			cp = &cpi->cpi_extd[1];
1495 			cp->cp_eax = 0x80000001;
1496 			(void) __cpuid_insn(cp);
1497 
1498 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
1499 			    cpi->cpi_family == 5 &&
1500 			    cpi->cpi_model == 6 &&
1501 			    cpi->cpi_step == 6) {
1502 				/*
1503 				 * K6 model 6 uses bit 10 to indicate SYSC
1504 				 * Later models use bit 11. Fix it here.
1505 				 */
1506 				if (cp->cp_edx & 0x400) {
1507 					cp->cp_edx &= ~0x400;
1508 					cp->cp_edx |= CPUID_AMD_EDX_SYSC;
1509 				}
1510 			}
1511 
1512 			platform_cpuid_mangle(cpi->cpi_vendor, 0x80000001, cp);
1513 
1514 			/*
1515 			 * Compute the additions to the kernel's feature word.
1516 			 */
1517 			if (cp->cp_edx & CPUID_AMD_EDX_NX) {
1518 				add_x86_feature(featureset, X86FSET_NX);
1519 			}
1520 
1521 			/*
1522 			 * Regardless whether or not we boot 64-bit,
1523 			 * we should have a way to identify whether
1524 			 * the CPU is capable of running 64-bit.
1525 			 */
1526 			if (cp->cp_edx & CPUID_AMD_EDX_LM) {
1527 				add_x86_feature(featureset, X86FSET_64);
1528 			}
1529 
1530 #if defined(__amd64)
1531 			/* 1 GB large page - enable only for 64 bit kernel */
1532 			if (cp->cp_edx & CPUID_AMD_EDX_1GPG) {
1533 				add_x86_feature(featureset, X86FSET_1GPG);
1534 			}
1535 #endif
1536 
1537 			if ((cpi->cpi_vendor == X86_VENDOR_AMD) &&
1538 			    (cpi->cpi_std[1].cp_edx & CPUID_INTC_EDX_FXSR) &&
1539 			    (cp->cp_ecx & CPUID_AMD_ECX_SSE4A)) {
1540 				add_x86_feature(featureset, X86FSET_SSE4A);
1541 			}
1542 
1543 			/*
1544 			 * If both the HTT and CMP_LGCY bits are set,
1545 			 * then we're not actually HyperThreaded.  Read
1546 			 * "AMD CPUID Specification" for more details.
1547 			 */
1548 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
1549 			    is_x86_feature(featureset, X86FSET_HTT) &&
1550 			    (cp->cp_ecx & CPUID_AMD_ECX_CMP_LGCY)) {
1551 				remove_x86_feature(featureset, X86FSET_HTT);
1552 				add_x86_feature(featureset, X86FSET_CMP);
1553 			}
1554 #if defined(__amd64)
1555 			/*
1556 			 * It's really tricky to support syscall/sysret in
1557 			 * the i386 kernel; we rely on sysenter/sysexit
1558 			 * instead.  In the amd64 kernel, things are -way-
1559 			 * better.
1560 			 */
1561 			if (cp->cp_edx & CPUID_AMD_EDX_SYSC) {
1562 				add_x86_feature(featureset, X86FSET_ASYSC);
1563 			}
1564 
1565 			/*
1566 			 * While we're thinking about system calls, note
1567 			 * that AMD processors don't support sysenter
1568 			 * in long mode at all, so don't try to program them.
1569 			 */
1570 			if (x86_vendor == X86_VENDOR_AMD) {
1571 				remove_x86_feature(featureset, X86FSET_SEP);
1572 			}
1573 #endif
1574 			if (cp->cp_edx & CPUID_AMD_EDX_TSCP) {
1575 				add_x86_feature(featureset, X86FSET_TSCP);
1576 			}
1577 
1578 			if (cp->cp_ecx & CPUID_AMD_ECX_SVM) {
1579 				add_x86_feature(featureset, X86FSET_SVM);
1580 			}
1581 
1582 			if (cp->cp_ecx & CPUID_AMD_ECX_TOPOEXT) {
1583 				add_x86_feature(featureset, X86FSET_TOPOEXT);
1584 			}
1585 			break;
1586 		default:
1587 			break;
1588 		}
1589 
1590 		/*
1591 		 * Get CPUID data about processor cores and hyperthreads.
1592 		 */
1593 		switch (cpi->cpi_vendor) {
1594 		case X86_VENDOR_Intel:
1595 			if (cpi->cpi_maxeax >= 4) {
1596 				cp = &cpi->cpi_std[4];
1597 				cp->cp_eax = 4;
1598 				cp->cp_ecx = 0;
1599 				(void) __cpuid_insn(cp);
1600 				platform_cpuid_mangle(cpi->cpi_vendor, 4, cp);
1601 			}
1602 			/*FALLTHROUGH*/
1603 		case X86_VENDOR_AMD:
1604 			if (cpi->cpi_xmaxeax < 0x80000008)
1605 				break;
1606 			cp = &cpi->cpi_extd[8];
1607 			cp->cp_eax = 0x80000008;
1608 			(void) __cpuid_insn(cp);
1609 			platform_cpuid_mangle(cpi->cpi_vendor, 0x80000008, cp);
1610 
1611 			/*
1612 			 * Virtual and physical address limits from
1613 			 * cpuid override previously guessed values.
1614 			 */
1615 			cpi->cpi_pabits = BITX(cp->cp_eax, 7, 0);
1616 			cpi->cpi_vabits = BITX(cp->cp_eax, 15, 8);
1617 			break;
1618 		default:
1619 			break;
1620 		}
1621 
1622 		/*
1623 		 * Derive the number of cores per chip
1624 		 */
1625 		switch (cpi->cpi_vendor) {
1626 		case X86_VENDOR_Intel:
1627 			if (cpi->cpi_maxeax < 4) {
1628 				cpi->cpi_ncore_per_chip = 1;
1629 				break;
1630 			} else {
1631 				cpi->cpi_ncore_per_chip =
1632 				    BITX((cpi)->cpi_std[4].cp_eax, 31, 26) + 1;
1633 			}
1634 			break;
1635 		case X86_VENDOR_AMD:
1636 			if (cpi->cpi_xmaxeax < 0x80000008) {
1637 				cpi->cpi_ncore_per_chip = 1;
1638 				break;
1639 			} else {
1640 				/*
1641 				 * On family 0xf cpuid fn 2 ECX[7:0] "NC" is
1642 				 * 1 less than the number of physical cores on
1643 				 * the chip.  In family 0x10 this value can
1644 				 * be affected by "downcoring" - it reflects
1645 				 * 1 less than the number of cores actually
1646 				 * enabled on this node.
1647 				 */
1648 				cpi->cpi_ncore_per_chip =
1649 				    BITX((cpi)->cpi_extd[8].cp_ecx, 7, 0) + 1;
1650 			}
1651 			break;
1652 		default:
1653 			cpi->cpi_ncore_per_chip = 1;
1654 			break;
1655 		}
1656 
1657 		/*
1658 		 * Get CPUID data about TSC Invariance in Deep C-State.
1659 		 */
1660 		switch (cpi->cpi_vendor) {
1661 		case X86_VENDOR_Intel:
1662 			if (cpi->cpi_maxeax >= 7) {
1663 				cp = &cpi->cpi_extd[7];
1664 				cp->cp_eax = 0x80000007;
1665 				cp->cp_ecx = 0;
1666 				(void) __cpuid_insn(cp);
1667 			}
1668 			break;
1669 		default:
1670 			break;
1671 		}
1672 	} else {
1673 		cpi->cpi_ncore_per_chip = 1;
1674 	}
1675 
1676 	/*
1677 	 * If more than one core, then this processor is CMP.
1678 	 */
1679 	if (cpi->cpi_ncore_per_chip > 1) {
1680 		add_x86_feature(featureset, X86FSET_CMP);
1681 	}
1682 
1683 	/*
1684 	 * If the number of cores is the same as the number
1685 	 * of CPUs, then we cannot have HyperThreading.
1686 	 */
1687 	if (cpi->cpi_ncpu_per_chip == cpi->cpi_ncore_per_chip) {
1688 		remove_x86_feature(featureset, X86FSET_HTT);
1689 	}
1690 
1691 	cpi->cpi_apicid = CPI_APIC_ID(cpi);
1692 	cpi->cpi_procnodes_per_pkg = 1;
1693 	cpi->cpi_cores_per_compunit = 1;
1694 	if (is_x86_feature(featureset, X86FSET_HTT) == B_FALSE &&
1695 	    is_x86_feature(featureset, X86FSET_CMP) == B_FALSE) {
1696 		/*
1697 		 * Single-core single-threaded processors.
1698 		 */
1699 		cpi->cpi_chipid = -1;
1700 		cpi->cpi_clogid = 0;
1701 		cpi->cpi_coreid = cpu->cpu_id;
1702 		cpi->cpi_pkgcoreid = 0;
1703 		if (cpi->cpi_vendor == X86_VENDOR_AMD)
1704 			cpi->cpi_procnodeid = BITX(cpi->cpi_apicid, 3, 0);
1705 		else
1706 			cpi->cpi_procnodeid = cpi->cpi_chipid;
1707 	} else if (cpi->cpi_ncpu_per_chip > 1) {
1708 		if (cpi->cpi_vendor == X86_VENDOR_Intel)
1709 			cpuid_intel_getids(cpu, featureset);
1710 		else if (cpi->cpi_vendor == X86_VENDOR_AMD)
1711 			cpuid_amd_getids(cpu);
1712 		else {
1713 			/*
1714 			 * All other processors are currently
1715 			 * assumed to have single cores.
1716 			 */
1717 			cpi->cpi_coreid = cpi->cpi_chipid;
1718 			cpi->cpi_pkgcoreid = 0;
1719 			cpi->cpi_procnodeid = cpi->cpi_chipid;
1720 			cpi->cpi_compunitid = cpi->cpi_chipid;
1721 		}
1722 	}
1723 
1724 	/*
1725 	 * Synthesize chip "revision" and socket type
1726 	 */
1727 	cpi->cpi_chiprev = _cpuid_chiprev(cpi->cpi_vendor, cpi->cpi_family,
1728 	    cpi->cpi_model, cpi->cpi_step);
1729 	cpi->cpi_chiprevstr = _cpuid_chiprevstr(cpi->cpi_vendor,
1730 	    cpi->cpi_family, cpi->cpi_model, cpi->cpi_step);
1731 	cpi->cpi_socket = _cpuid_skt(cpi->cpi_vendor, cpi->cpi_family,
1732 	    cpi->cpi_model, cpi->cpi_step);
1733 
1734 pass1_done:
1735 	cpi->cpi_pass = 1;
1736 }
1737 
1738 /*
1739  * Make copies of the cpuid table entries we depend on, in
1740  * part for ease of parsing now, in part so that we have only
1741  * one place to correct any of it, in part for ease of
1742  * later export to userland, and in part so we can look at
1743  * this stuff in a crash dump.
1744  */
1745 
1746 /*ARGSUSED*/
1747 void
1748 cpuid_pass2(cpu_t *cpu)
1749 {
1750 	uint_t n, nmax;
1751 	int i;
1752 	struct cpuid_regs *cp;
1753 	uint8_t *dp;
1754 	uint32_t *iptr;
1755 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1756 
1757 	ASSERT(cpi->cpi_pass == 1);
1758 
1759 	if (cpi->cpi_maxeax < 1)
1760 		goto pass2_done;
1761 
1762 	if ((nmax = cpi->cpi_maxeax + 1) > NMAX_CPI_STD)
1763 		nmax = NMAX_CPI_STD;
1764 	/*
1765 	 * (We already handled n == 0 and n == 1 in pass 1)
1766 	 */
1767 	for (n = 2, cp = &cpi->cpi_std[2]; n < nmax; n++, cp++) {
1768 		cp->cp_eax = n;
1769 
1770 		/*
1771 		 * CPUID function 4 expects %ecx to be initialized
1772 		 * with an index which indicates which cache to return
1773 		 * information about. The OS is expected to call function 4
1774 		 * with %ecx set to 0, 1, 2, ... until it returns with
1775 		 * EAX[4:0] set to 0, which indicates there are no more
1776 		 * caches.
1777 		 *
1778 		 * Here, populate cpi_std[4] with the information returned by
1779 		 * function 4 when %ecx == 0, and do the rest in cpuid_pass3()
1780 		 * when dynamic memory allocation becomes available.
1781 		 *
1782 		 * Note: we need to explicitly initialize %ecx here, since
1783 		 * function 4 may have been previously invoked.
1784 		 */
1785 		if (n == 4)
1786 			cp->cp_ecx = 0;
1787 
1788 		(void) __cpuid_insn(cp);
1789 		platform_cpuid_mangle(cpi->cpi_vendor, n, cp);
1790 		switch (n) {
1791 		case 2:
1792 			/*
1793 			 * "the lower 8 bits of the %eax register
1794 			 * contain a value that identifies the number
1795 			 * of times the cpuid [instruction] has to be
1796 			 * executed to obtain a complete image of the
1797 			 * processor's caching systems."
1798 			 *
1799 			 * How *do* they make this stuff up?
1800 			 */
1801 			cpi->cpi_ncache = sizeof (*cp) *
1802 			    BITX(cp->cp_eax, 7, 0);
1803 			if (cpi->cpi_ncache == 0)
1804 				break;
1805 			cpi->cpi_ncache--;	/* skip count byte */
1806 
1807 			/*
1808 			 * Well, for now, rather than attempt to implement
1809 			 * this slightly dubious algorithm, we just look
1810 			 * at the first 15 ..
1811 			 */
1812 			if (cpi->cpi_ncache > (sizeof (*cp) - 1))
1813 				cpi->cpi_ncache = sizeof (*cp) - 1;
1814 
1815 			dp = cpi->cpi_cacheinfo;
1816 			if (BITX(cp->cp_eax, 31, 31) == 0) {
1817 				uint8_t *p = (void *)&cp->cp_eax;
1818 				for (i = 1; i < 4; i++)
1819 					if (p[i] != 0)
1820 						*dp++ = p[i];
1821 			}
1822 			if (BITX(cp->cp_ebx, 31, 31) == 0) {
1823 				uint8_t *p = (void *)&cp->cp_ebx;
1824 				for (i = 0; i < 4; i++)
1825 					if (p[i] != 0)
1826 						*dp++ = p[i];
1827 			}
1828 			if (BITX(cp->cp_ecx, 31, 31) == 0) {
1829 				uint8_t *p = (void *)&cp->cp_ecx;
1830 				for (i = 0; i < 4; i++)
1831 					if (p[i] != 0)
1832 						*dp++ = p[i];
1833 			}
1834 			if (BITX(cp->cp_edx, 31, 31) == 0) {
1835 				uint8_t *p = (void *)&cp->cp_edx;
1836 				for (i = 0; i < 4; i++)
1837 					if (p[i] != 0)
1838 						*dp++ = p[i];
1839 			}
1840 			break;
1841 
1842 		case 3:	/* Processor serial number, if PSN supported */
1843 			break;
1844 
1845 		case 4:	/* Deterministic cache parameters */
1846 			break;
1847 
1848 		case 5:	/* Monitor/Mwait parameters */
1849 		{
1850 			size_t mwait_size;
1851 
1852 			/*
1853 			 * check cpi_mwait.support which was set in cpuid_pass1
1854 			 */
1855 			if (!(cpi->cpi_mwait.support & MWAIT_SUPPORT))
1856 				break;
1857 
1858 			/*
1859 			 * Protect ourself from insane mwait line size.
1860 			 * Workaround for incomplete hardware emulator(s).
1861 			 */
1862 			mwait_size = (size_t)MWAIT_SIZE_MAX(cpi);
1863 			if (mwait_size < sizeof (uint32_t) ||
1864 			    !ISP2(mwait_size)) {
1865 #if DEBUG
1866 				cmn_err(CE_NOTE, "Cannot handle cpu %d mwait "
1867 				    "size %ld", cpu->cpu_id, (long)mwait_size);
1868 #endif
1869 				break;
1870 			}
1871 
1872 			cpi->cpi_mwait.mon_min = (size_t)MWAIT_SIZE_MIN(cpi);
1873 			cpi->cpi_mwait.mon_max = mwait_size;
1874 			if (MWAIT_EXTENSION(cpi)) {
1875 				cpi->cpi_mwait.support |= MWAIT_EXTENSIONS;
1876 				if (MWAIT_INT_ENABLE(cpi))
1877 					cpi->cpi_mwait.support |=
1878 					    MWAIT_ECX_INT_ENABLE;
1879 			}
1880 			break;
1881 		}
1882 		default:
1883 			break;
1884 		}
1885 	}
1886 
1887 	if (cpi->cpi_maxeax >= 0xB && cpi->cpi_vendor == X86_VENDOR_Intel) {
1888 		struct cpuid_regs regs;
1889 
1890 		cp = &regs;
1891 		cp->cp_eax = 0xB;
1892 		cp->cp_edx = cp->cp_ebx = cp->cp_ecx = 0;
1893 
1894 		(void) __cpuid_insn(cp);
1895 
1896 		/*
1897 		 * Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero, which
1898 		 * indicates that the extended topology enumeration leaf is
1899 		 * available.
1900 		 */
1901 		if (cp->cp_ebx) {
1902 			uint32_t x2apic_id;
1903 			uint_t coreid_shift = 0;
1904 			uint_t ncpu_per_core = 1;
1905 			uint_t chipid_shift = 0;
1906 			uint_t ncpu_per_chip = 1;
1907 			uint_t i;
1908 			uint_t level;
1909 
1910 			for (i = 0; i < CPI_FNB_ECX_MAX; i++) {
1911 				cp->cp_eax = 0xB;
1912 				cp->cp_ecx = i;
1913 
1914 				(void) __cpuid_insn(cp);
1915 				level = CPI_CPU_LEVEL_TYPE(cp);
1916 
1917 				if (level == 1) {
1918 					x2apic_id = cp->cp_edx;
1919 					coreid_shift = BITX(cp->cp_eax, 4, 0);
1920 					ncpu_per_core = BITX(cp->cp_ebx, 15, 0);
1921 				} else if (level == 2) {
1922 					x2apic_id = cp->cp_edx;
1923 					chipid_shift = BITX(cp->cp_eax, 4, 0);
1924 					ncpu_per_chip = BITX(cp->cp_ebx, 15, 0);
1925 				}
1926 			}
1927 
1928 			cpi->cpi_apicid = x2apic_id;
1929 			cpi->cpi_ncpu_per_chip = ncpu_per_chip;
1930 			cpi->cpi_ncore_per_chip = ncpu_per_chip /
1931 			    ncpu_per_core;
1932 			cpi->cpi_chipid = x2apic_id >> chipid_shift;
1933 			cpi->cpi_clogid = x2apic_id & ((1 << chipid_shift) - 1);
1934 			cpi->cpi_coreid = x2apic_id >> coreid_shift;
1935 			cpi->cpi_pkgcoreid = cpi->cpi_clogid >> coreid_shift;
1936 		}
1937 
1938 		/* Make cp NULL so that we don't stumble on others */
1939 		cp = NULL;
1940 	}
1941 
1942 	/*
1943 	 * XSAVE enumeration
1944 	 */
1945 	if (cpi->cpi_maxeax >= 0xD) {
1946 		struct cpuid_regs regs;
1947 		boolean_t cpuid_d_valid = B_TRUE;
1948 
1949 		cp = &regs;
1950 		cp->cp_eax = 0xD;
1951 		cp->cp_edx = cp->cp_ebx = cp->cp_ecx = 0;
1952 
1953 		(void) __cpuid_insn(cp);
1954 
1955 		/*
1956 		 * Sanity checks for debug
1957 		 */
1958 		if ((cp->cp_eax & XFEATURE_LEGACY_FP) == 0 ||
1959 		    (cp->cp_eax & XFEATURE_SSE) == 0) {
1960 			cpuid_d_valid = B_FALSE;
1961 		}
1962 
1963 		cpi->cpi_xsave.xsav_hw_features_low = cp->cp_eax;
1964 		cpi->cpi_xsave.xsav_hw_features_high = cp->cp_edx;
1965 		cpi->cpi_xsave.xsav_max_size = cp->cp_ecx;
1966 
1967 		/*
1968 		 * If the hw supports AVX, get the size and offset in the save
1969 		 * area for the ymm state.
1970 		 */
1971 		if (cpi->cpi_xsave.xsav_hw_features_low & XFEATURE_AVX) {
1972 			cp->cp_eax = 0xD;
1973 			cp->cp_ecx = 2;
1974 			cp->cp_edx = cp->cp_ebx = 0;
1975 
1976 			(void) __cpuid_insn(cp);
1977 
1978 			if (cp->cp_ebx != CPUID_LEAFD_2_YMM_OFFSET ||
1979 			    cp->cp_eax != CPUID_LEAFD_2_YMM_SIZE) {
1980 				cpuid_d_valid = B_FALSE;
1981 			}
1982 
1983 			cpi->cpi_xsave.ymm_size = cp->cp_eax;
1984 			cpi->cpi_xsave.ymm_offset = cp->cp_ebx;
1985 		}
1986 
1987 		if (is_x86_feature(x86_featureset, X86FSET_XSAVE)) {
1988 			xsave_state_size = 0;
1989 		} else if (cpuid_d_valid) {
1990 			xsave_state_size = cpi->cpi_xsave.xsav_max_size;
1991 		} else {
1992 			/* Broken CPUID 0xD, probably in HVM */
1993 			cmn_err(CE_WARN, "cpu%d: CPUID.0xD returns invalid "
1994 			    "value: hw_low = %d, hw_high = %d, xsave_size = %d"
1995 			    ", ymm_size = %d, ymm_offset = %d\n",
1996 			    cpu->cpu_id, cpi->cpi_xsave.xsav_hw_features_low,
1997 			    cpi->cpi_xsave.xsav_hw_features_high,
1998 			    (int)cpi->cpi_xsave.xsav_max_size,
1999 			    (int)cpi->cpi_xsave.ymm_size,
2000 			    (int)cpi->cpi_xsave.ymm_offset);
2001 
2002 			if (xsave_state_size != 0) {
2003 				/*
2004 				 * This must be a non-boot CPU. We cannot
2005 				 * continue, because boot cpu has already
2006 				 * enabled XSAVE.
2007 				 */
2008 				ASSERT(cpu->cpu_id != 0);
2009 				cmn_err(CE_PANIC, "cpu%d: we have already "
2010 				    "enabled XSAVE on boot cpu, cannot "
2011 				    "continue.", cpu->cpu_id);
2012 			} else {
2013 				/*
2014 				 * If we reached here on the boot CPU, it's also
2015 				 * almost certain that we'll reach here on the
2016 				 * non-boot CPUs. When we're here on a boot CPU
2017 				 * we should disable the feature, on a non-boot
2018 				 * CPU we need to confirm that we have.
2019 				 */
2020 				if (cpu->cpu_id == 0) {
2021 					remove_x86_feature(x86_featureset,
2022 					    X86FSET_XSAVE);
2023 					remove_x86_feature(x86_featureset,
2024 					    X86FSET_AVX);
2025 					remove_x86_feature(x86_featureset,
2026 					    X86FSET_F16C);
2027 					remove_x86_feature(x86_featureset,
2028 					    X86FSET_BMI1);
2029 					remove_x86_feature(x86_featureset,
2030 					    X86FSET_BMI2);
2031 					remove_x86_feature(x86_featureset,
2032 					    X86FSET_FMA);
2033 					remove_x86_feature(x86_featureset,
2034 					    X86FSET_AVX2);
2035 					CPI_FEATURES_ECX(cpi) &=
2036 					    ~CPUID_INTC_ECX_XSAVE;
2037 					CPI_FEATURES_ECX(cpi) &=
2038 					    ~CPUID_INTC_ECX_AVX;
2039 					CPI_FEATURES_ECX(cpi) &=
2040 					    ~CPUID_INTC_ECX_F16C;
2041 					CPI_FEATURES_ECX(cpi) &=
2042 					    ~CPUID_INTC_ECX_FMA;
2043 					CPI_FEATURES_7_0_EBX(cpi) &=
2044 					    ~CPUID_INTC_EBX_7_0_BMI1;
2045 					CPI_FEATURES_7_0_EBX(cpi) &=
2046 					    ~CPUID_INTC_EBX_7_0_BMI2;
2047 					CPI_FEATURES_7_0_EBX(cpi) &=
2048 					    ~CPUID_INTC_EBX_7_0_AVX2;
2049 					xsave_force_disable = B_TRUE;
2050 				} else {
2051 					VERIFY(is_x86_feature(x86_featureset,
2052 					    X86FSET_XSAVE) == B_FALSE);
2053 				}
2054 			}
2055 		}
2056 	}
2057 
2058 
2059 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0)
2060 		goto pass2_done;
2061 
2062 	if ((nmax = cpi->cpi_xmaxeax - 0x80000000 + 1) > NMAX_CPI_EXTD)
2063 		nmax = NMAX_CPI_EXTD;
2064 	/*
2065 	 * Copy the extended properties, fixing them as we go.
2066 	 * (We already handled n == 0 and n == 1 in pass 1)
2067 	 */
2068 	iptr = (void *)cpi->cpi_brandstr;
2069 	for (n = 2, cp = &cpi->cpi_extd[2]; n < nmax; cp++, n++) {
2070 		cp->cp_eax = 0x80000000 + n;
2071 		(void) __cpuid_insn(cp);
2072 		platform_cpuid_mangle(cpi->cpi_vendor, 0x80000000 + n, cp);
2073 		switch (n) {
2074 		case 2:
2075 		case 3:
2076 		case 4:
2077 			/*
2078 			 * Extract the brand string
2079 			 */
2080 			*iptr++ = cp->cp_eax;
2081 			*iptr++ = cp->cp_ebx;
2082 			*iptr++ = cp->cp_ecx;
2083 			*iptr++ = cp->cp_edx;
2084 			break;
2085 		case 5:
2086 			switch (cpi->cpi_vendor) {
2087 			case X86_VENDOR_AMD:
2088 				/*
2089 				 * The Athlon and Duron were the first
2090 				 * parts to report the sizes of the
2091 				 * TLB for large pages. Before then,
2092 				 * we don't trust the data.
2093 				 */
2094 				if (cpi->cpi_family < 6 ||
2095 				    (cpi->cpi_family == 6 &&
2096 				    cpi->cpi_model < 1))
2097 					cp->cp_eax = 0;
2098 				break;
2099 			default:
2100 				break;
2101 			}
2102 			break;
2103 		case 6:
2104 			switch (cpi->cpi_vendor) {
2105 			case X86_VENDOR_AMD:
2106 				/*
2107 				 * The Athlon and Duron were the first
2108 				 * AMD parts with L2 TLB's.
2109 				 * Before then, don't trust the data.
2110 				 */
2111 				if (cpi->cpi_family < 6 ||
2112 				    cpi->cpi_family == 6 &&
2113 				    cpi->cpi_model < 1)
2114 					cp->cp_eax = cp->cp_ebx = 0;
2115 				/*
2116 				 * AMD Duron rev A0 reports L2
2117 				 * cache size incorrectly as 1K
2118 				 * when it is really 64K
2119 				 */
2120 				if (cpi->cpi_family == 6 &&
2121 				    cpi->cpi_model == 3 &&
2122 				    cpi->cpi_step == 0) {
2123 					cp->cp_ecx &= 0xffff;
2124 					cp->cp_ecx |= 0x400000;
2125 				}
2126 				break;
2127 			case X86_VENDOR_Cyrix:	/* VIA C3 */
2128 				/*
2129 				 * VIA C3 processors are a bit messed
2130 				 * up w.r.t. encoding cache sizes in %ecx
2131 				 */
2132 				if (cpi->cpi_family != 6)
2133 					break;
2134 				/*
2135 				 * model 7 and 8 were incorrectly encoded
2136 				 *
2137 				 * xxx is model 8 really broken?
2138 				 */
2139 				if (cpi->cpi_model == 7 ||
2140 				    cpi->cpi_model == 8)
2141 					cp->cp_ecx =
2142 					    BITX(cp->cp_ecx, 31, 24) << 16 |
2143 					    BITX(cp->cp_ecx, 23, 16) << 12 |
2144 					    BITX(cp->cp_ecx, 15, 8) << 8 |
2145 					    BITX(cp->cp_ecx, 7, 0);
2146 				/*
2147 				 * model 9 stepping 1 has wrong associativity
2148 				 */
2149 				if (cpi->cpi_model == 9 && cpi->cpi_step == 1)
2150 					cp->cp_ecx |= 8 << 12;
2151 				break;
2152 			case X86_VENDOR_Intel:
2153 				/*
2154 				 * Extended L2 Cache features function.
2155 				 * First appeared on Prescott.
2156 				 */
2157 			default:
2158 				break;
2159 			}
2160 			break;
2161 		default:
2162 			break;
2163 		}
2164 	}
2165 
2166 pass2_done:
2167 	cpi->cpi_pass = 2;
2168 }
2169 
2170 static const char *
2171 intel_cpubrand(const struct cpuid_info *cpi)
2172 {
2173 	int i;
2174 
2175 	if (!is_x86_feature(x86_featureset, X86FSET_CPUID) ||
2176 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
2177 		return ("i486");
2178 
2179 	switch (cpi->cpi_family) {
2180 	case 5:
2181 		return ("Intel Pentium(r)");
2182 	case 6:
2183 		switch (cpi->cpi_model) {
2184 			uint_t celeron, xeon;
2185 			const struct cpuid_regs *cp;
2186 		case 0:
2187 		case 1:
2188 		case 2:
2189 			return ("Intel Pentium(r) Pro");
2190 		case 3:
2191 		case 4:
2192 			return ("Intel Pentium(r) II");
2193 		case 6:
2194 			return ("Intel Celeron(r)");
2195 		case 5:
2196 		case 7:
2197 			celeron = xeon = 0;
2198 			cp = &cpi->cpi_std[2];	/* cache info */
2199 
2200 			for (i = 1; i < 4; i++) {
2201 				uint_t tmp;
2202 
2203 				tmp = (cp->cp_eax >> (8 * i)) & 0xff;
2204 				if (tmp == 0x40)
2205 					celeron++;
2206 				if (tmp >= 0x44 && tmp <= 0x45)
2207 					xeon++;
2208 			}
2209 
2210 			for (i = 0; i < 2; i++) {
2211 				uint_t tmp;
2212 
2213 				tmp = (cp->cp_ebx >> (8 * i)) & 0xff;
2214 				if (tmp == 0x40)
2215 					celeron++;
2216 				else if (tmp >= 0x44 && tmp <= 0x45)
2217 					xeon++;
2218 			}
2219 
2220 			for (i = 0; i < 4; i++) {
2221 				uint_t tmp;
2222 
2223 				tmp = (cp->cp_ecx >> (8 * i)) & 0xff;
2224 				if (tmp == 0x40)
2225 					celeron++;
2226 				else if (tmp >= 0x44 && tmp <= 0x45)
2227 					xeon++;
2228 			}
2229 
2230 			for (i = 0; i < 4; i++) {
2231 				uint_t tmp;
2232 
2233 				tmp = (cp->cp_edx >> (8 * i)) & 0xff;
2234 				if (tmp == 0x40)
2235 					celeron++;
2236 				else if (tmp >= 0x44 && tmp <= 0x45)
2237 					xeon++;
2238 			}
2239 
2240 			if (celeron)
2241 				return ("Intel Celeron(r)");
2242 			if (xeon)
2243 				return (cpi->cpi_model == 5 ?
2244 				    "Intel Pentium(r) II Xeon(tm)" :
2245 				    "Intel Pentium(r) III Xeon(tm)");
2246 			return (cpi->cpi_model == 5 ?
2247 			    "Intel Pentium(r) II or Pentium(r) II Xeon(tm)" :
2248 			    "Intel Pentium(r) III or Pentium(r) III Xeon(tm)");
2249 		default:
2250 			break;
2251 		}
2252 	default:
2253 		break;
2254 	}
2255 
2256 	/* BrandID is present if the field is nonzero */
2257 	if (cpi->cpi_brandid != 0) {
2258 		static const struct {
2259 			uint_t bt_bid;
2260 			const char *bt_str;
2261 		} brand_tbl[] = {
2262 			{ 0x1,	"Intel(r) Celeron(r)" },
2263 			{ 0x2,	"Intel(r) Pentium(r) III" },
2264 			{ 0x3,	"Intel(r) Pentium(r) III Xeon(tm)" },
2265 			{ 0x4,	"Intel(r) Pentium(r) III" },
2266 			{ 0x6,	"Mobile Intel(r) Pentium(r) III" },
2267 			{ 0x7,	"Mobile Intel(r) Celeron(r)" },
2268 			{ 0x8,	"Intel(r) Pentium(r) 4" },
2269 			{ 0x9,	"Intel(r) Pentium(r) 4" },
2270 			{ 0xa,	"Intel(r) Celeron(r)" },
2271 			{ 0xb,	"Intel(r) Xeon(tm)" },
2272 			{ 0xc,	"Intel(r) Xeon(tm) MP" },
2273 			{ 0xe,	"Mobile Intel(r) Pentium(r) 4" },
2274 			{ 0xf,	"Mobile Intel(r) Celeron(r)" },
2275 			{ 0x11, "Mobile Genuine Intel(r)" },
2276 			{ 0x12, "Intel(r) Celeron(r) M" },
2277 			{ 0x13, "Mobile Intel(r) Celeron(r)" },
2278 			{ 0x14, "Intel(r) Celeron(r)" },
2279 			{ 0x15, "Mobile Genuine Intel(r)" },
2280 			{ 0x16,	"Intel(r) Pentium(r) M" },
2281 			{ 0x17, "Mobile Intel(r) Celeron(r)" }
2282 		};
2283 		uint_t btblmax = sizeof (brand_tbl) / sizeof (brand_tbl[0]);
2284 		uint_t sgn;
2285 
2286 		sgn = (cpi->cpi_family << 8) |
2287 		    (cpi->cpi_model << 4) | cpi->cpi_step;
2288 
2289 		for (i = 0; i < btblmax; i++)
2290 			if (brand_tbl[i].bt_bid == cpi->cpi_brandid)
2291 				break;
2292 		if (i < btblmax) {
2293 			if (sgn == 0x6b1 && cpi->cpi_brandid == 3)
2294 				return ("Intel(r) Celeron(r)");
2295 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xb)
2296 				return ("Intel(r) Xeon(tm) MP");
2297 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xe)
2298 				return ("Intel(r) Xeon(tm)");
2299 			return (brand_tbl[i].bt_str);
2300 		}
2301 	}
2302 
2303 	return (NULL);
2304 }
2305 
2306 static const char *
2307 amd_cpubrand(const struct cpuid_info *cpi)
2308 {
2309 	if (!is_x86_feature(x86_featureset, X86FSET_CPUID) ||
2310 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
2311 		return ("i486 compatible");
2312 
2313 	switch (cpi->cpi_family) {
2314 	case 5:
2315 		switch (cpi->cpi_model) {
2316 		case 0:
2317 		case 1:
2318 		case 2:
2319 		case 3:
2320 		case 4:
2321 		case 5:
2322 			return ("AMD-K5(r)");
2323 		case 6:
2324 		case 7:
2325 			return ("AMD-K6(r)");
2326 		case 8:
2327 			return ("AMD-K6(r)-2");
2328 		case 9:
2329 			return ("AMD-K6(r)-III");
2330 		default:
2331 			return ("AMD (family 5)");
2332 		}
2333 	case 6:
2334 		switch (cpi->cpi_model) {
2335 		case 1:
2336 			return ("AMD-K7(tm)");
2337 		case 0:
2338 		case 2:
2339 		case 4:
2340 			return ("AMD Athlon(tm)");
2341 		case 3:
2342 		case 7:
2343 			return ("AMD Duron(tm)");
2344 		case 6:
2345 		case 8:
2346 		case 10:
2347 			/*
2348 			 * Use the L2 cache size to distinguish
2349 			 */
2350 			return ((cpi->cpi_extd[6].cp_ecx >> 16) >= 256 ?
2351 			    "AMD Athlon(tm)" : "AMD Duron(tm)");
2352 		default:
2353 			return ("AMD (family 6)");
2354 		}
2355 	default:
2356 		break;
2357 	}
2358 
2359 	if (cpi->cpi_family == 0xf && cpi->cpi_model == 5 &&
2360 	    cpi->cpi_brandid != 0) {
2361 		switch (BITX(cpi->cpi_brandid, 7, 5)) {
2362 		case 3:
2363 			return ("AMD Opteron(tm) UP 1xx");
2364 		case 4:
2365 			return ("AMD Opteron(tm) DP 2xx");
2366 		case 5:
2367 			return ("AMD Opteron(tm) MP 8xx");
2368 		default:
2369 			return ("AMD Opteron(tm)");
2370 		}
2371 	}
2372 
2373 	return (NULL);
2374 }
2375 
2376 static const char *
2377 cyrix_cpubrand(struct cpuid_info *cpi, uint_t type)
2378 {
2379 	if (!is_x86_feature(x86_featureset, X86FSET_CPUID) ||
2380 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5 ||
2381 	    type == X86_TYPE_CYRIX_486)
2382 		return ("i486 compatible");
2383 
2384 	switch (type) {
2385 	case X86_TYPE_CYRIX_6x86:
2386 		return ("Cyrix 6x86");
2387 	case X86_TYPE_CYRIX_6x86L:
2388 		return ("Cyrix 6x86L");
2389 	case X86_TYPE_CYRIX_6x86MX:
2390 		return ("Cyrix 6x86MX");
2391 	case X86_TYPE_CYRIX_GXm:
2392 		return ("Cyrix GXm");
2393 	case X86_TYPE_CYRIX_MediaGX:
2394 		return ("Cyrix MediaGX");
2395 	case X86_TYPE_CYRIX_MII:
2396 		return ("Cyrix M2");
2397 	case X86_TYPE_VIA_CYRIX_III:
2398 		return ("VIA Cyrix M3");
2399 	default:
2400 		/*
2401 		 * Have another wild guess ..
2402 		 */
2403 		if (cpi->cpi_family == 4 && cpi->cpi_model == 9)
2404 			return ("Cyrix 5x86");
2405 		else if (cpi->cpi_family == 5) {
2406 			switch (cpi->cpi_model) {
2407 			case 2:
2408 				return ("Cyrix 6x86");	/* Cyrix M1 */
2409 			case 4:
2410 				return ("Cyrix MediaGX");
2411 			default:
2412 				break;
2413 			}
2414 		} else if (cpi->cpi_family == 6) {
2415 			switch (cpi->cpi_model) {
2416 			case 0:
2417 				return ("Cyrix 6x86MX"); /* Cyrix M2? */
2418 			case 5:
2419 			case 6:
2420 			case 7:
2421 			case 8:
2422 			case 9:
2423 				return ("VIA C3");
2424 			default:
2425 				break;
2426 			}
2427 		}
2428 		break;
2429 	}
2430 	return (NULL);
2431 }
2432 
2433 /*
2434  * This only gets called in the case that the CPU extended
2435  * feature brand string (0x80000002, 0x80000003, 0x80000004)
2436  * aren't available, or contain null bytes for some reason.
2437  */
2438 static void
2439 fabricate_brandstr(struct cpuid_info *cpi)
2440 {
2441 	const char *brand = NULL;
2442 
2443 	switch (cpi->cpi_vendor) {
2444 	case X86_VENDOR_Intel:
2445 		brand = intel_cpubrand(cpi);
2446 		break;
2447 	case X86_VENDOR_AMD:
2448 		brand = amd_cpubrand(cpi);
2449 		break;
2450 	case X86_VENDOR_Cyrix:
2451 		brand = cyrix_cpubrand(cpi, x86_type);
2452 		break;
2453 	case X86_VENDOR_NexGen:
2454 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
2455 			brand = "NexGen Nx586";
2456 		break;
2457 	case X86_VENDOR_Centaur:
2458 		if (cpi->cpi_family == 5)
2459 			switch (cpi->cpi_model) {
2460 			case 4:
2461 				brand = "Centaur C6";
2462 				break;
2463 			case 8:
2464 				brand = "Centaur C2";
2465 				break;
2466 			case 9:
2467 				brand = "Centaur C3";
2468 				break;
2469 			default:
2470 				break;
2471 			}
2472 		break;
2473 	case X86_VENDOR_Rise:
2474 		if (cpi->cpi_family == 5 &&
2475 		    (cpi->cpi_model == 0 || cpi->cpi_model == 2))
2476 			brand = "Rise mP6";
2477 		break;
2478 	case X86_VENDOR_SiS:
2479 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
2480 			brand = "SiS 55x";
2481 		break;
2482 	case X86_VENDOR_TM:
2483 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4)
2484 			brand = "Transmeta Crusoe TM3x00 or TM5x00";
2485 		break;
2486 	case X86_VENDOR_NSC:
2487 	case X86_VENDOR_UMC:
2488 	default:
2489 		break;
2490 	}
2491 	if (brand) {
2492 		(void) strcpy((char *)cpi->cpi_brandstr, brand);
2493 		return;
2494 	}
2495 
2496 	/*
2497 	 * If all else fails ...
2498 	 */
2499 	(void) snprintf(cpi->cpi_brandstr, sizeof (cpi->cpi_brandstr),
2500 	    "%s %d.%d.%d", cpi->cpi_vendorstr, cpi->cpi_family,
2501 	    cpi->cpi_model, cpi->cpi_step);
2502 }
2503 
2504 /*
2505  * This routine is called just after kernel memory allocation
2506  * becomes available on cpu0, and as part of mp_startup() on
2507  * the other cpus.
2508  *
2509  * Fixup the brand string, and collect any information from cpuid
2510  * that requires dynamically allocated storage to represent.
2511  */
2512 /*ARGSUSED*/
2513 void
2514 cpuid_pass3(cpu_t *cpu)
2515 {
2516 	int	i, max, shft, level, size;
2517 	struct cpuid_regs regs;
2518 	struct cpuid_regs *cp;
2519 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2520 
2521 	ASSERT(cpi->cpi_pass == 2);
2522 
2523 	/*
2524 	 * Function 4: Deterministic cache parameters
2525 	 *
2526 	 * Take this opportunity to detect the number of threads
2527 	 * sharing the last level cache, and construct a corresponding
2528 	 * cache id. The respective cpuid_info members are initialized
2529 	 * to the default case of "no last level cache sharing".
2530 	 */
2531 	cpi->cpi_ncpu_shr_last_cache = 1;
2532 	cpi->cpi_last_lvl_cacheid = cpu->cpu_id;
2533 
2534 	if (cpi->cpi_maxeax >= 4 && cpi->cpi_vendor == X86_VENDOR_Intel) {
2535 
2536 		/*
2537 		 * Find the # of elements (size) returned by fn 4, and along
2538 		 * the way detect last level cache sharing details.
2539 		 */
2540 		bzero(&regs, sizeof (regs));
2541 		cp = &regs;
2542 		for (i = 0, max = 0; i < CPI_FN4_ECX_MAX; i++) {
2543 			cp->cp_eax = 4;
2544 			cp->cp_ecx = i;
2545 
2546 			(void) __cpuid_insn(cp);
2547 
2548 			if (CPI_CACHE_TYPE(cp) == 0)
2549 				break;
2550 			level = CPI_CACHE_LVL(cp);
2551 			if (level > max) {
2552 				max = level;
2553 				cpi->cpi_ncpu_shr_last_cache =
2554 				    CPI_NTHR_SHR_CACHE(cp) + 1;
2555 			}
2556 		}
2557 		cpi->cpi_std_4_size = size = i;
2558 
2559 		/*
2560 		 * Allocate the cpi_std_4 array. The first element
2561 		 * references the regs for fn 4, %ecx == 0, which
2562 		 * cpuid_pass2() stashed in cpi->cpi_std[4].
2563 		 */
2564 		if (size > 0) {
2565 			cpi->cpi_std_4 =
2566 			    kmem_alloc(size * sizeof (cp), KM_SLEEP);
2567 			cpi->cpi_std_4[0] = &cpi->cpi_std[4];
2568 
2569 			/*
2570 			 * Allocate storage to hold the additional regs
2571 			 * for function 4, %ecx == 1 .. cpi_std_4_size.
2572 			 *
2573 			 * The regs for fn 4, %ecx == 0 has already
2574 			 * been allocated as indicated above.
2575 			 */
2576 			for (i = 1; i < size; i++) {
2577 				cp = cpi->cpi_std_4[i] =
2578 				    kmem_zalloc(sizeof (regs), KM_SLEEP);
2579 				cp->cp_eax = 4;
2580 				cp->cp_ecx = i;
2581 
2582 				(void) __cpuid_insn(cp);
2583 			}
2584 		}
2585 		/*
2586 		 * Determine the number of bits needed to represent
2587 		 * the number of CPUs sharing the last level cache.
2588 		 *
2589 		 * Shift off that number of bits from the APIC id to
2590 		 * derive the cache id.
2591 		 */
2592 		shft = 0;
2593 		for (i = 1; i < cpi->cpi_ncpu_shr_last_cache; i <<= 1)
2594 			shft++;
2595 		cpi->cpi_last_lvl_cacheid = cpi->cpi_apicid >> shft;
2596 	}
2597 
2598 	/*
2599 	 * Now fixup the brand string
2600 	 */
2601 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0) {
2602 		fabricate_brandstr(cpi);
2603 	} else {
2604 
2605 		/*
2606 		 * If we successfully extracted a brand string from the cpuid
2607 		 * instruction, clean it up by removing leading spaces and
2608 		 * similar junk.
2609 		 */
2610 		if (cpi->cpi_brandstr[0]) {
2611 			size_t maxlen = sizeof (cpi->cpi_brandstr);
2612 			char *src, *dst;
2613 
2614 			dst = src = (char *)cpi->cpi_brandstr;
2615 			src[maxlen - 1] = '\0';
2616 			/*
2617 			 * strip leading spaces
2618 			 */
2619 			while (*src == ' ')
2620 				src++;
2621 			/*
2622 			 * Remove any 'Genuine' or "Authentic" prefixes
2623 			 */
2624 			if (strncmp(src, "Genuine ", 8) == 0)
2625 				src += 8;
2626 			if (strncmp(src, "Authentic ", 10) == 0)
2627 				src += 10;
2628 
2629 			/*
2630 			 * Now do an in-place copy.
2631 			 * Map (R) to (r) and (TM) to (tm).
2632 			 * The era of teletypes is long gone, and there's
2633 			 * -really- no need to shout.
2634 			 */
2635 			while (*src != '\0') {
2636 				if (src[0] == '(') {
2637 					if (strncmp(src + 1, "R)", 2) == 0) {
2638 						(void) strncpy(dst, "(r)", 3);
2639 						src += 3;
2640 						dst += 3;
2641 						continue;
2642 					}
2643 					if (strncmp(src + 1, "TM)", 3) == 0) {
2644 						(void) strncpy(dst, "(tm)", 4);
2645 						src += 4;
2646 						dst += 4;
2647 						continue;
2648 					}
2649 				}
2650 				*dst++ = *src++;
2651 			}
2652 			*dst = '\0';
2653 
2654 			/*
2655 			 * Finally, remove any trailing spaces
2656 			 */
2657 			while (--dst > cpi->cpi_brandstr)
2658 				if (*dst == ' ')
2659 					*dst = '\0';
2660 				else
2661 					break;
2662 		} else
2663 			fabricate_brandstr(cpi);
2664 	}
2665 	cpi->cpi_pass = 3;
2666 }
2667 
2668 /*
2669  * This routine is called out of bind_hwcap() much later in the life
2670  * of the kernel (post_startup()).  The job of this routine is to resolve
2671  * the hardware feature support and kernel support for those features into
2672  * what we're actually going to tell applications via the aux vector.
2673  */
2674 void
2675 cpuid_pass4(cpu_t *cpu, uint_t *hwcap_out)
2676 {
2677 	struct cpuid_info *cpi;
2678 	uint_t hwcap_flags = 0, hwcap_flags_2 = 0;
2679 
2680 	if (cpu == NULL)
2681 		cpu = CPU;
2682 	cpi = cpu->cpu_m.mcpu_cpi;
2683 
2684 	ASSERT(cpi->cpi_pass == 3);
2685 
2686 	if (cpi->cpi_maxeax >= 1) {
2687 		uint32_t *edx = &cpi->cpi_support[STD_EDX_FEATURES];
2688 		uint32_t *ecx = &cpi->cpi_support[STD_ECX_FEATURES];
2689 		uint32_t *ebx = &cpi->cpi_support[STD_EBX_FEATURES];
2690 
2691 		*edx = CPI_FEATURES_EDX(cpi);
2692 		*ecx = CPI_FEATURES_ECX(cpi);
2693 		*ebx = CPI_FEATURES_7_0_EBX(cpi);
2694 
2695 		/*
2696 		 * [these require explicit kernel support]
2697 		 */
2698 		if (!is_x86_feature(x86_featureset, X86FSET_SEP))
2699 			*edx &= ~CPUID_INTC_EDX_SEP;
2700 
2701 		if (!is_x86_feature(x86_featureset, X86FSET_SSE))
2702 			*edx &= ~(CPUID_INTC_EDX_FXSR|CPUID_INTC_EDX_SSE);
2703 		if (!is_x86_feature(x86_featureset, X86FSET_SSE2))
2704 			*edx &= ~CPUID_INTC_EDX_SSE2;
2705 
2706 		if (!is_x86_feature(x86_featureset, X86FSET_HTT))
2707 			*edx &= ~CPUID_INTC_EDX_HTT;
2708 
2709 		if (!is_x86_feature(x86_featureset, X86FSET_SSE3))
2710 			*ecx &= ~CPUID_INTC_ECX_SSE3;
2711 
2712 		if (!is_x86_feature(x86_featureset, X86FSET_SSSE3))
2713 			*ecx &= ~CPUID_INTC_ECX_SSSE3;
2714 		if (!is_x86_feature(x86_featureset, X86FSET_SSE4_1))
2715 			*ecx &= ~CPUID_INTC_ECX_SSE4_1;
2716 		if (!is_x86_feature(x86_featureset, X86FSET_SSE4_2))
2717 			*ecx &= ~CPUID_INTC_ECX_SSE4_2;
2718 		if (!is_x86_feature(x86_featureset, X86FSET_AES))
2719 			*ecx &= ~CPUID_INTC_ECX_AES;
2720 		if (!is_x86_feature(x86_featureset, X86FSET_PCLMULQDQ))
2721 			*ecx &= ~CPUID_INTC_ECX_PCLMULQDQ;
2722 		if (!is_x86_feature(x86_featureset, X86FSET_XSAVE))
2723 			*ecx &= ~(CPUID_INTC_ECX_XSAVE |
2724 			    CPUID_INTC_ECX_OSXSAVE);
2725 		if (!is_x86_feature(x86_featureset, X86FSET_AVX))
2726 			*ecx &= ~CPUID_INTC_ECX_AVX;
2727 		if (!is_x86_feature(x86_featureset, X86FSET_F16C))
2728 			*ecx &= ~CPUID_INTC_ECX_F16C;
2729 		if (!is_x86_feature(x86_featureset, X86FSET_FMA))
2730 			*ecx &= ~CPUID_INTC_ECX_FMA;
2731 		if (!is_x86_feature(x86_featureset, X86FSET_BMI1))
2732 			*ebx &= ~CPUID_INTC_EBX_7_0_BMI1;
2733 		if (!is_x86_feature(x86_featureset, X86FSET_BMI2))
2734 			*ebx &= ~CPUID_INTC_EBX_7_0_BMI2;
2735 		if (!is_x86_feature(x86_featureset, X86FSET_AVX2))
2736 			*ebx &= ~CPUID_INTC_EBX_7_0_AVX2;
2737 		if (!is_x86_feature(x86_featureset, X86FSET_RDSEED))
2738 			*ebx &= ~CPUID_INTC_EBX_7_0_RDSEED;
2739 		if (!is_x86_feature(x86_featureset, X86FSET_ADX))
2740 			*ebx &= ~CPUID_INTC_EBX_7_0_ADX;
2741 
2742 		/*
2743 		 * [no explicit support required beyond x87 fp context]
2744 		 */
2745 		if (!fpu_exists)
2746 			*edx &= ~(CPUID_INTC_EDX_FPU | CPUID_INTC_EDX_MMX);
2747 
2748 		/*
2749 		 * Now map the supported feature vector to things that we
2750 		 * think userland will care about.
2751 		 */
2752 		if (*edx & CPUID_INTC_EDX_SEP)
2753 			hwcap_flags |= AV_386_SEP;
2754 		if (*edx & CPUID_INTC_EDX_SSE)
2755 			hwcap_flags |= AV_386_FXSR | AV_386_SSE;
2756 		if (*edx & CPUID_INTC_EDX_SSE2)
2757 			hwcap_flags |= AV_386_SSE2;
2758 		if (*ecx & CPUID_INTC_ECX_SSE3)
2759 			hwcap_flags |= AV_386_SSE3;
2760 		if (*ecx & CPUID_INTC_ECX_SSSE3)
2761 			hwcap_flags |= AV_386_SSSE3;
2762 		if (*ecx & CPUID_INTC_ECX_SSE4_1)
2763 			hwcap_flags |= AV_386_SSE4_1;
2764 		if (*ecx & CPUID_INTC_ECX_SSE4_2)
2765 			hwcap_flags |= AV_386_SSE4_2;
2766 		if (*ecx & CPUID_INTC_ECX_MOVBE)
2767 			hwcap_flags |= AV_386_MOVBE;
2768 		if (*ecx & CPUID_INTC_ECX_AES)
2769 			hwcap_flags |= AV_386_AES;
2770 		if (*ecx & CPUID_INTC_ECX_PCLMULQDQ)
2771 			hwcap_flags |= AV_386_PCLMULQDQ;
2772 		if ((*ecx & CPUID_INTC_ECX_XSAVE) &&
2773 		    (*ecx & CPUID_INTC_ECX_OSXSAVE)) {
2774 			hwcap_flags |= AV_386_XSAVE;
2775 
2776 			if (*ecx & CPUID_INTC_ECX_AVX) {
2777 				hwcap_flags |= AV_386_AVX;
2778 				if (*ecx & CPUID_INTC_ECX_F16C)
2779 					hwcap_flags_2 |= AV_386_2_F16C;
2780 				if (*ecx & CPUID_INTC_ECX_FMA)
2781 					hwcap_flags_2 |= AV_386_2_FMA;
2782 				if (*ebx & CPUID_INTC_EBX_7_0_BMI1)
2783 					hwcap_flags_2 |= AV_386_2_BMI1;
2784 				if (*ebx & CPUID_INTC_EBX_7_0_BMI2)
2785 					hwcap_flags_2 |= AV_386_2_BMI2;
2786 				if (*ebx & CPUID_INTC_EBX_7_0_AVX2)
2787 					hwcap_flags_2 |= AV_386_2_AVX2;
2788 			}
2789 		}
2790 		if (*ecx & CPUID_INTC_ECX_VMX)
2791 			hwcap_flags |= AV_386_VMX;
2792 		if (*ecx & CPUID_INTC_ECX_POPCNT)
2793 			hwcap_flags |= AV_386_POPCNT;
2794 		if (*edx & CPUID_INTC_EDX_FPU)
2795 			hwcap_flags |= AV_386_FPU;
2796 		if (*edx & CPUID_INTC_EDX_MMX)
2797 			hwcap_flags |= AV_386_MMX;
2798 
2799 		if (*edx & CPUID_INTC_EDX_TSC)
2800 			hwcap_flags |= AV_386_TSC;
2801 		if (*edx & CPUID_INTC_EDX_CX8)
2802 			hwcap_flags |= AV_386_CX8;
2803 		if (*edx & CPUID_INTC_EDX_CMOV)
2804 			hwcap_flags |= AV_386_CMOV;
2805 		if (*ecx & CPUID_INTC_ECX_CX16)
2806 			hwcap_flags |= AV_386_CX16;
2807 
2808 		if (*ecx & CPUID_INTC_ECX_RDRAND)
2809 			hwcap_flags_2 |= AV_386_2_RDRAND;
2810 		if (*ebx & CPUID_INTC_EBX_7_0_ADX)
2811 			hwcap_flags_2 |= AV_386_2_ADX;
2812 		if (*ebx & CPUID_INTC_EBX_7_0_RDSEED)
2813 			hwcap_flags_2 |= AV_386_2_RDSEED;
2814 
2815 	}
2816 
2817 	if (cpi->cpi_xmaxeax < 0x80000001)
2818 		goto pass4_done;
2819 
2820 	switch (cpi->cpi_vendor) {
2821 		struct cpuid_regs cp;
2822 		uint32_t *edx, *ecx;
2823 
2824 	case X86_VENDOR_Intel:
2825 		/*
2826 		 * Seems like Intel duplicated what we necessary
2827 		 * here to make the initial crop of 64-bit OS's work.
2828 		 * Hopefully, those are the only "extended" bits
2829 		 * they'll add.
2830 		 */
2831 		/*FALLTHROUGH*/
2832 
2833 	case X86_VENDOR_AMD:
2834 		edx = &cpi->cpi_support[AMD_EDX_FEATURES];
2835 		ecx = &cpi->cpi_support[AMD_ECX_FEATURES];
2836 
2837 		*edx = CPI_FEATURES_XTD_EDX(cpi);
2838 		*ecx = CPI_FEATURES_XTD_ECX(cpi);
2839 
2840 		/*
2841 		 * [these features require explicit kernel support]
2842 		 */
2843 		switch (cpi->cpi_vendor) {
2844 		case X86_VENDOR_Intel:
2845 			if (!is_x86_feature(x86_featureset, X86FSET_TSCP))
2846 				*edx &= ~CPUID_AMD_EDX_TSCP;
2847 			break;
2848 
2849 		case X86_VENDOR_AMD:
2850 			if (!is_x86_feature(x86_featureset, X86FSET_TSCP))
2851 				*edx &= ~CPUID_AMD_EDX_TSCP;
2852 			if (!is_x86_feature(x86_featureset, X86FSET_SSE4A))
2853 				*ecx &= ~CPUID_AMD_ECX_SSE4A;
2854 			break;
2855 
2856 		default:
2857 			break;
2858 		}
2859 
2860 		/*
2861 		 * [no explicit support required beyond
2862 		 * x87 fp context and exception handlers]
2863 		 */
2864 		if (!fpu_exists)
2865 			*edx &= ~(CPUID_AMD_EDX_MMXamd |
2866 			    CPUID_AMD_EDX_3DNow | CPUID_AMD_EDX_3DNowx);
2867 
2868 		if (!is_x86_feature(x86_featureset, X86FSET_NX))
2869 			*edx &= ~CPUID_AMD_EDX_NX;
2870 #if !defined(__amd64)
2871 		*edx &= ~CPUID_AMD_EDX_LM;
2872 #endif
2873 		/*
2874 		 * Now map the supported feature vector to
2875 		 * things that we think userland will care about.
2876 		 */
2877 #if defined(__amd64)
2878 		if (*edx & CPUID_AMD_EDX_SYSC)
2879 			hwcap_flags |= AV_386_AMD_SYSC;
2880 #endif
2881 		if (*edx & CPUID_AMD_EDX_MMXamd)
2882 			hwcap_flags |= AV_386_AMD_MMX;
2883 		if (*edx & CPUID_AMD_EDX_3DNow)
2884 			hwcap_flags |= AV_386_AMD_3DNow;
2885 		if (*edx & CPUID_AMD_EDX_3DNowx)
2886 			hwcap_flags |= AV_386_AMD_3DNowx;
2887 		if (*ecx & CPUID_AMD_ECX_SVM)
2888 			hwcap_flags |= AV_386_AMD_SVM;
2889 
2890 		switch (cpi->cpi_vendor) {
2891 		case X86_VENDOR_AMD:
2892 			if (*edx & CPUID_AMD_EDX_TSCP)
2893 				hwcap_flags |= AV_386_TSCP;
2894 			if (*ecx & CPUID_AMD_ECX_AHF64)
2895 				hwcap_flags |= AV_386_AHF;
2896 			if (*ecx & CPUID_AMD_ECX_SSE4A)
2897 				hwcap_flags |= AV_386_AMD_SSE4A;
2898 			if (*ecx & CPUID_AMD_ECX_LZCNT)
2899 				hwcap_flags |= AV_386_AMD_LZCNT;
2900 			break;
2901 
2902 		case X86_VENDOR_Intel:
2903 			if (*edx & CPUID_AMD_EDX_TSCP)
2904 				hwcap_flags |= AV_386_TSCP;
2905 			/*
2906 			 * Aarrgh.
2907 			 * Intel uses a different bit in the same word.
2908 			 */
2909 			if (*ecx & CPUID_INTC_ECX_AHF64)
2910 				hwcap_flags |= AV_386_AHF;
2911 			break;
2912 
2913 		default:
2914 			break;
2915 		}
2916 		break;
2917 
2918 	case X86_VENDOR_TM:
2919 		cp.cp_eax = 0x80860001;
2920 		(void) __cpuid_insn(&cp);
2921 		cpi->cpi_support[TM_EDX_FEATURES] = cp.cp_edx;
2922 		break;
2923 
2924 	default:
2925 		break;
2926 	}
2927 
2928 pass4_done:
2929 	cpi->cpi_pass = 4;
2930 	if (hwcap_out != NULL) {
2931 		hwcap_out[0] = hwcap_flags;
2932 		hwcap_out[1] = hwcap_flags_2;
2933 	}
2934 }
2935 
2936 
2937 /*
2938  * Simulate the cpuid instruction using the data we previously
2939  * captured about this CPU.  We try our best to return the truth
2940  * about the hardware, independently of kernel support.
2941  */
2942 uint32_t
2943 cpuid_insn(cpu_t *cpu, struct cpuid_regs *cp)
2944 {
2945 	struct cpuid_info *cpi;
2946 	struct cpuid_regs *xcp;
2947 
2948 	if (cpu == NULL)
2949 		cpu = CPU;
2950 	cpi = cpu->cpu_m.mcpu_cpi;
2951 
2952 	ASSERT(cpuid_checkpass(cpu, 3));
2953 
2954 	/*
2955 	 * CPUID data is cached in two separate places: cpi_std for standard
2956 	 * CPUID functions, and cpi_extd for extended CPUID functions.
2957 	 */
2958 	if (cp->cp_eax <= cpi->cpi_maxeax && cp->cp_eax < NMAX_CPI_STD)
2959 		xcp = &cpi->cpi_std[cp->cp_eax];
2960 	else if (cp->cp_eax >= 0x80000000 && cp->cp_eax <= cpi->cpi_xmaxeax &&
2961 	    cp->cp_eax < 0x80000000 + NMAX_CPI_EXTD)
2962 		xcp = &cpi->cpi_extd[cp->cp_eax - 0x80000000];
2963 	else
2964 		/*
2965 		 * The caller is asking for data from an input parameter which
2966 		 * the kernel has not cached.  In this case we go fetch from
2967 		 * the hardware and return the data directly to the user.
2968 		 */
2969 		return (__cpuid_insn(cp));
2970 
2971 	cp->cp_eax = xcp->cp_eax;
2972 	cp->cp_ebx = xcp->cp_ebx;
2973 	cp->cp_ecx = xcp->cp_ecx;
2974 	cp->cp_edx = xcp->cp_edx;
2975 	return (cp->cp_eax);
2976 }
2977 
2978 int
2979 cpuid_checkpass(cpu_t *cpu, int pass)
2980 {
2981 	return (cpu != NULL && cpu->cpu_m.mcpu_cpi != NULL &&
2982 	    cpu->cpu_m.mcpu_cpi->cpi_pass >= pass);
2983 }
2984 
2985 int
2986 cpuid_getbrandstr(cpu_t *cpu, char *s, size_t n)
2987 {
2988 	ASSERT(cpuid_checkpass(cpu, 3));
2989 
2990 	return (snprintf(s, n, "%s", cpu->cpu_m.mcpu_cpi->cpi_brandstr));
2991 }
2992 
2993 int
2994 cpuid_is_cmt(cpu_t *cpu)
2995 {
2996 	if (cpu == NULL)
2997 		cpu = CPU;
2998 
2999 	ASSERT(cpuid_checkpass(cpu, 1));
3000 
3001 	return (cpu->cpu_m.mcpu_cpi->cpi_chipid >= 0);
3002 }
3003 
3004 /*
3005  * AMD and Intel both implement the 64-bit variant of the syscall
3006  * instruction (syscallq), so if there's -any- support for syscall,
3007  * cpuid currently says "yes, we support this".
3008  *
3009  * However, Intel decided to -not- implement the 32-bit variant of the
3010  * syscall instruction, so we provide a predicate to allow our caller
3011  * to test that subtlety here.
3012  *
3013  * XXPV	Currently, 32-bit syscall instructions don't work via the hypervisor,
3014  *	even in the case where the hardware would in fact support it.
3015  */
3016 /*ARGSUSED*/
3017 int
3018 cpuid_syscall32_insn(cpu_t *cpu)
3019 {
3020 	ASSERT(cpuid_checkpass((cpu == NULL ? CPU : cpu), 1));
3021 
3022 #if !defined(__xpv)
3023 	if (cpu == NULL)
3024 		cpu = CPU;
3025 
3026 	/*CSTYLED*/
3027 	{
3028 		struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
3029 
3030 		if (cpi->cpi_vendor == X86_VENDOR_AMD &&
3031 		    cpi->cpi_xmaxeax >= 0x80000001 &&
3032 		    (CPI_FEATURES_XTD_EDX(cpi) & CPUID_AMD_EDX_SYSC))
3033 			return (1);
3034 	}
3035 #endif
3036 	return (0);
3037 }
3038 
3039 int
3040 cpuid_getidstr(cpu_t *cpu, char *s, size_t n)
3041 {
3042 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
3043 
3044 	static const char fmt[] =
3045 	    "x86 (%s %X family %d model %d step %d clock %d MHz)";
3046 	static const char fmt_ht[] =
3047 	    "x86 (chipid 0x%x %s %X family %d model %d step %d clock %d MHz)";
3048 
3049 	ASSERT(cpuid_checkpass(cpu, 1));
3050 
3051 	if (cpuid_is_cmt(cpu))
3052 		return (snprintf(s, n, fmt_ht, cpi->cpi_chipid,
3053 		    cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
3054 		    cpi->cpi_family, cpi->cpi_model,
3055 		    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
3056 	return (snprintf(s, n, fmt,
3057 	    cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
3058 	    cpi->cpi_family, cpi->cpi_model,
3059 	    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
3060 }
3061 
3062 const char *
3063 cpuid_getvendorstr(cpu_t *cpu)
3064 {
3065 	ASSERT(cpuid_checkpass(cpu, 1));
3066 	return ((const char *)cpu->cpu_m.mcpu_cpi->cpi_vendorstr);
3067 }
3068 
3069 uint_t
3070 cpuid_getvendor(cpu_t *cpu)
3071 {
3072 	ASSERT(cpuid_checkpass(cpu, 1));
3073 	return (cpu->cpu_m.mcpu_cpi->cpi_vendor);
3074 }
3075 
3076 uint_t
3077 cpuid_getfamily(cpu_t *cpu)
3078 {
3079 	ASSERT(cpuid_checkpass(cpu, 1));
3080 	return (cpu->cpu_m.mcpu_cpi->cpi_family);
3081 }
3082 
3083 uint_t
3084 cpuid_getmodel(cpu_t *cpu)
3085 {
3086 	ASSERT(cpuid_checkpass(cpu, 1));
3087 	return (cpu->cpu_m.mcpu_cpi->cpi_model);
3088 }
3089 
3090 uint_t
3091 cpuid_get_ncpu_per_chip(cpu_t *cpu)
3092 {
3093 	ASSERT(cpuid_checkpass(cpu, 1));
3094 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_per_chip);
3095 }
3096 
3097 uint_t
3098 cpuid_get_ncore_per_chip(cpu_t *cpu)
3099 {
3100 	ASSERT(cpuid_checkpass(cpu, 1));
3101 	return (cpu->cpu_m.mcpu_cpi->cpi_ncore_per_chip);
3102 }
3103 
3104 uint_t
3105 cpuid_get_ncpu_sharing_last_cache(cpu_t *cpu)
3106 {
3107 	ASSERT(cpuid_checkpass(cpu, 2));
3108 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_shr_last_cache);
3109 }
3110 
3111 id_t
3112 cpuid_get_last_lvl_cacheid(cpu_t *cpu)
3113 {
3114 	ASSERT(cpuid_checkpass(cpu, 2));
3115 	return (cpu->cpu_m.mcpu_cpi->cpi_last_lvl_cacheid);
3116 }
3117 
3118 uint_t
3119 cpuid_getstep(cpu_t *cpu)
3120 {
3121 	ASSERT(cpuid_checkpass(cpu, 1));
3122 	return (cpu->cpu_m.mcpu_cpi->cpi_step);
3123 }
3124 
3125 uint_t
3126 cpuid_getsig(struct cpu *cpu)
3127 {
3128 	ASSERT(cpuid_checkpass(cpu, 1));
3129 	return (cpu->cpu_m.mcpu_cpi->cpi_std[1].cp_eax);
3130 }
3131 
3132 uint32_t
3133 cpuid_getchiprev(struct cpu *cpu)
3134 {
3135 	ASSERT(cpuid_checkpass(cpu, 1));
3136 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprev);
3137 }
3138 
3139 const char *
3140 cpuid_getchiprevstr(struct cpu *cpu)
3141 {
3142 	ASSERT(cpuid_checkpass(cpu, 1));
3143 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprevstr);
3144 }
3145 
3146 uint32_t
3147 cpuid_getsockettype(struct cpu *cpu)
3148 {
3149 	ASSERT(cpuid_checkpass(cpu, 1));
3150 	return (cpu->cpu_m.mcpu_cpi->cpi_socket);
3151 }
3152 
3153 const char *
3154 cpuid_getsocketstr(cpu_t *cpu)
3155 {
3156 	static const char *socketstr = NULL;
3157 	struct cpuid_info *cpi;
3158 
3159 	ASSERT(cpuid_checkpass(cpu, 1));
3160 	cpi = cpu->cpu_m.mcpu_cpi;
3161 
3162 	/* Assume that socket types are the same across the system */
3163 	if (socketstr == NULL)
3164 		socketstr = _cpuid_sktstr(cpi->cpi_vendor, cpi->cpi_family,
3165 		    cpi->cpi_model, cpi->cpi_step);
3166 
3167 
3168 	return (socketstr);
3169 }
3170 
3171 int
3172 cpuid_get_chipid(cpu_t *cpu)
3173 {
3174 	ASSERT(cpuid_checkpass(cpu, 1));
3175 
3176 	if (cpuid_is_cmt(cpu))
3177 		return (cpu->cpu_m.mcpu_cpi->cpi_chipid);
3178 	return (cpu->cpu_id);
3179 }
3180 
3181 id_t
3182 cpuid_get_coreid(cpu_t *cpu)
3183 {
3184 	ASSERT(cpuid_checkpass(cpu, 1));
3185 	return (cpu->cpu_m.mcpu_cpi->cpi_coreid);
3186 }
3187 
3188 int
3189 cpuid_get_pkgcoreid(cpu_t *cpu)
3190 {
3191 	ASSERT(cpuid_checkpass(cpu, 1));
3192 	return (cpu->cpu_m.mcpu_cpi->cpi_pkgcoreid);
3193 }
3194 
3195 int
3196 cpuid_get_clogid(cpu_t *cpu)
3197 {
3198 	ASSERT(cpuid_checkpass(cpu, 1));
3199 	return (cpu->cpu_m.mcpu_cpi->cpi_clogid);
3200 }
3201 
3202 int
3203 cpuid_get_cacheid(cpu_t *cpu)
3204 {
3205 	ASSERT(cpuid_checkpass(cpu, 1));
3206 	return (cpu->cpu_m.mcpu_cpi->cpi_last_lvl_cacheid);
3207 }
3208 
3209 uint_t
3210 cpuid_get_procnodeid(cpu_t *cpu)
3211 {
3212 	ASSERT(cpuid_checkpass(cpu, 1));
3213 	return (cpu->cpu_m.mcpu_cpi->cpi_procnodeid);
3214 }
3215 
3216 uint_t
3217 cpuid_get_procnodes_per_pkg(cpu_t *cpu)
3218 {
3219 	ASSERT(cpuid_checkpass(cpu, 1));
3220 	return (cpu->cpu_m.mcpu_cpi->cpi_procnodes_per_pkg);
3221 }
3222 
3223 uint_t
3224 cpuid_get_compunitid(cpu_t *cpu)
3225 {
3226 	ASSERT(cpuid_checkpass(cpu, 1));
3227 	return (cpu->cpu_m.mcpu_cpi->cpi_compunitid);
3228 }
3229 
3230 uint_t
3231 cpuid_get_cores_per_compunit(cpu_t *cpu)
3232 {
3233 	ASSERT(cpuid_checkpass(cpu, 1));
3234 	return (cpu->cpu_m.mcpu_cpi->cpi_cores_per_compunit);
3235 }
3236 
3237 /*ARGSUSED*/
3238 int
3239 cpuid_have_cr8access(cpu_t *cpu)
3240 {
3241 #if defined(__amd64)
3242 	return (1);
3243 #else
3244 	struct cpuid_info *cpi;
3245 
3246 	ASSERT(cpu != NULL);
3247 	cpi = cpu->cpu_m.mcpu_cpi;
3248 	if (cpi->cpi_vendor == X86_VENDOR_AMD && cpi->cpi_maxeax >= 1 &&
3249 	    (CPI_FEATURES_XTD_ECX(cpi) & CPUID_AMD_ECX_CR8D) != 0)
3250 		return (1);
3251 	return (0);
3252 #endif
3253 }
3254 
3255 uint32_t
3256 cpuid_get_apicid(cpu_t *cpu)
3257 {
3258 	ASSERT(cpuid_checkpass(cpu, 1));
3259 	if (cpu->cpu_m.mcpu_cpi->cpi_maxeax < 1) {
3260 		return (UINT32_MAX);
3261 	} else {
3262 		return (cpu->cpu_m.mcpu_cpi->cpi_apicid);
3263 	}
3264 }
3265 
3266 void
3267 cpuid_get_addrsize(cpu_t *cpu, uint_t *pabits, uint_t *vabits)
3268 {
3269 	struct cpuid_info *cpi;
3270 
3271 	if (cpu == NULL)
3272 		cpu = CPU;
3273 	cpi = cpu->cpu_m.mcpu_cpi;
3274 
3275 	ASSERT(cpuid_checkpass(cpu, 1));
3276 
3277 	if (pabits)
3278 		*pabits = cpi->cpi_pabits;
3279 	if (vabits)
3280 		*vabits = cpi->cpi_vabits;
3281 }
3282 
3283 /*
3284  * Returns the number of data TLB entries for a corresponding
3285  * pagesize.  If it can't be computed, or isn't known, the
3286  * routine returns zero.  If you ask about an architecturally
3287  * impossible pagesize, the routine will panic (so that the
3288  * hat implementor knows that things are inconsistent.)
3289  */
3290 uint_t
3291 cpuid_get_dtlb_nent(cpu_t *cpu, size_t pagesize)
3292 {
3293 	struct cpuid_info *cpi;
3294 	uint_t dtlb_nent = 0;
3295 
3296 	if (cpu == NULL)
3297 		cpu = CPU;
3298 	cpi = cpu->cpu_m.mcpu_cpi;
3299 
3300 	ASSERT(cpuid_checkpass(cpu, 1));
3301 
3302 	/*
3303 	 * Check the L2 TLB info
3304 	 */
3305 	if (cpi->cpi_xmaxeax >= 0x80000006) {
3306 		struct cpuid_regs *cp = &cpi->cpi_extd[6];
3307 
3308 		switch (pagesize) {
3309 
3310 		case 4 * 1024:
3311 			/*
3312 			 * All zero in the top 16 bits of the register
3313 			 * indicates a unified TLB. Size is in low 16 bits.
3314 			 */
3315 			if ((cp->cp_ebx & 0xffff0000) == 0)
3316 				dtlb_nent = cp->cp_ebx & 0x0000ffff;
3317 			else
3318 				dtlb_nent = BITX(cp->cp_ebx, 27, 16);
3319 			break;
3320 
3321 		case 2 * 1024 * 1024:
3322 			if ((cp->cp_eax & 0xffff0000) == 0)
3323 				dtlb_nent = cp->cp_eax & 0x0000ffff;
3324 			else
3325 				dtlb_nent = BITX(cp->cp_eax, 27, 16);
3326 			break;
3327 
3328 		default:
3329 			panic("unknown L2 pagesize");
3330 			/*NOTREACHED*/
3331 		}
3332 	}
3333 
3334 	if (dtlb_nent != 0)
3335 		return (dtlb_nent);
3336 
3337 	/*
3338 	 * No L2 TLB support for this size, try L1.
3339 	 */
3340 	if (cpi->cpi_xmaxeax >= 0x80000005) {
3341 		struct cpuid_regs *cp = &cpi->cpi_extd[5];
3342 
3343 		switch (pagesize) {
3344 		case 4 * 1024:
3345 			dtlb_nent = BITX(cp->cp_ebx, 23, 16);
3346 			break;
3347 		case 2 * 1024 * 1024:
3348 			dtlb_nent = BITX(cp->cp_eax, 23, 16);
3349 			break;
3350 		default:
3351 			panic("unknown L1 d-TLB pagesize");
3352 			/*NOTREACHED*/
3353 		}
3354 	}
3355 
3356 	return (dtlb_nent);
3357 }
3358 
3359 /*
3360  * Return 0 if the erratum is not present or not applicable, positive
3361  * if it is, and negative if the status of the erratum is unknown.
3362  *
3363  * See "Revision Guide for AMD Athlon(tm) 64 and AMD Opteron(tm)
3364  * Processors" #25759, Rev 3.57, August 2005
3365  */
3366 int
3367 cpuid_opteron_erratum(cpu_t *cpu, uint_t erratum)
3368 {
3369 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
3370 	uint_t eax;
3371 
3372 	/*
3373 	 * Bail out if this CPU isn't an AMD CPU, or if it's
3374 	 * a legacy (32-bit) AMD CPU.
3375 	 */
3376 	if (cpi->cpi_vendor != X86_VENDOR_AMD ||
3377 	    cpi->cpi_family == 4 || cpi->cpi_family == 5 ||
3378 	    cpi->cpi_family == 6)
3379 
3380 		return (0);
3381 
3382 	eax = cpi->cpi_std[1].cp_eax;
3383 
3384 #define	SH_B0(eax)	(eax == 0xf40 || eax == 0xf50)
3385 #define	SH_B3(eax) 	(eax == 0xf51)
3386 #define	B(eax)		(SH_B0(eax) || SH_B3(eax))
3387 
3388 #define	SH_C0(eax)	(eax == 0xf48 || eax == 0xf58)
3389 
3390 #define	SH_CG(eax)	(eax == 0xf4a || eax == 0xf5a || eax == 0xf7a)
3391 #define	DH_CG(eax)	(eax == 0xfc0 || eax == 0xfe0 || eax == 0xff0)
3392 #define	CH_CG(eax)	(eax == 0xf82 || eax == 0xfb2)
3393 #define	CG(eax)		(SH_CG(eax) || DH_CG(eax) || CH_CG(eax))
3394 
3395 #define	SH_D0(eax)	(eax == 0x10f40 || eax == 0x10f50 || eax == 0x10f70)
3396 #define	DH_D0(eax)	(eax == 0x10fc0 || eax == 0x10ff0)
3397 #define	CH_D0(eax)	(eax == 0x10f80 || eax == 0x10fb0)
3398 #define	D0(eax)		(SH_D0(eax) || DH_D0(eax) || CH_D0(eax))
3399 
3400 #define	SH_E0(eax)	(eax == 0x20f50 || eax == 0x20f40 || eax == 0x20f70)
3401 #define	JH_E1(eax)	(eax == 0x20f10)	/* JH8_E0 had 0x20f30 */
3402 #define	DH_E3(eax)	(eax == 0x20fc0 || eax == 0x20ff0)
3403 #define	SH_E4(eax)	(eax == 0x20f51 || eax == 0x20f71)
3404 #define	BH_E4(eax)	(eax == 0x20fb1)
3405 #define	SH_E5(eax)	(eax == 0x20f42)
3406 #define	DH_E6(eax)	(eax == 0x20ff2 || eax == 0x20fc2)
3407 #define	JH_E6(eax)	(eax == 0x20f12 || eax == 0x20f32)
3408 #define	EX(eax)		(SH_E0(eax) || JH_E1(eax) || DH_E3(eax) || \
3409 			    SH_E4(eax) || BH_E4(eax) || SH_E5(eax) || \
3410 			    DH_E6(eax) || JH_E6(eax))
3411 
3412 #define	DR_AX(eax)	(eax == 0x100f00 || eax == 0x100f01 || eax == 0x100f02)
3413 #define	DR_B0(eax)	(eax == 0x100f20)
3414 #define	DR_B1(eax)	(eax == 0x100f21)
3415 #define	DR_BA(eax)	(eax == 0x100f2a)
3416 #define	DR_B2(eax)	(eax == 0x100f22)
3417 #define	DR_B3(eax)	(eax == 0x100f23)
3418 #define	RB_C0(eax)	(eax == 0x100f40)
3419 
3420 	switch (erratum) {
3421 	case 1:
3422 		return (cpi->cpi_family < 0x10);
3423 	case 51:	/* what does the asterisk mean? */
3424 		return (B(eax) || SH_C0(eax) || CG(eax));
3425 	case 52:
3426 		return (B(eax));
3427 	case 57:
3428 		return (cpi->cpi_family <= 0x11);
3429 	case 58:
3430 		return (B(eax));
3431 	case 60:
3432 		return (cpi->cpi_family <= 0x11);
3433 	case 61:
3434 	case 62:
3435 	case 63:
3436 	case 64:
3437 	case 65:
3438 	case 66:
3439 	case 68:
3440 	case 69:
3441 	case 70:
3442 	case 71:
3443 		return (B(eax));
3444 	case 72:
3445 		return (SH_B0(eax));
3446 	case 74:
3447 		return (B(eax));
3448 	case 75:
3449 		return (cpi->cpi_family < 0x10);
3450 	case 76:
3451 		return (B(eax));
3452 	case 77:
3453 		return (cpi->cpi_family <= 0x11);
3454 	case 78:
3455 		return (B(eax) || SH_C0(eax));
3456 	case 79:
3457 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
3458 	case 80:
3459 	case 81:
3460 	case 82:
3461 		return (B(eax));
3462 	case 83:
3463 		return (B(eax) || SH_C0(eax) || CG(eax));
3464 	case 85:
3465 		return (cpi->cpi_family < 0x10);
3466 	case 86:
3467 		return (SH_C0(eax) || CG(eax));
3468 	case 88:
3469 #if !defined(__amd64)
3470 		return (0);
3471 #else
3472 		return (B(eax) || SH_C0(eax));
3473 #endif
3474 	case 89:
3475 		return (cpi->cpi_family < 0x10);
3476 	case 90:
3477 		return (B(eax) || SH_C0(eax) || CG(eax));
3478 	case 91:
3479 	case 92:
3480 		return (B(eax) || SH_C0(eax));
3481 	case 93:
3482 		return (SH_C0(eax));
3483 	case 94:
3484 		return (B(eax) || SH_C0(eax) || CG(eax));
3485 	case 95:
3486 #if !defined(__amd64)
3487 		return (0);
3488 #else
3489 		return (B(eax) || SH_C0(eax));
3490 #endif
3491 	case 96:
3492 		return (B(eax) || SH_C0(eax) || CG(eax));
3493 	case 97:
3494 	case 98:
3495 		return (SH_C0(eax) || CG(eax));
3496 	case 99:
3497 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
3498 	case 100:
3499 		return (B(eax) || SH_C0(eax));
3500 	case 101:
3501 	case 103:
3502 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
3503 	case 104:
3504 		return (SH_C0(eax) || CG(eax) || D0(eax));
3505 	case 105:
3506 	case 106:
3507 	case 107:
3508 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
3509 	case 108:
3510 		return (DH_CG(eax));
3511 	case 109:
3512 		return (SH_C0(eax) || CG(eax) || D0(eax));
3513 	case 110:
3514 		return (D0(eax) || EX(eax));
3515 	case 111:
3516 		return (CG(eax));
3517 	case 112:
3518 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
3519 	case 113:
3520 		return (eax == 0x20fc0);
3521 	case 114:
3522 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
3523 	case 115:
3524 		return (SH_E0(eax) || JH_E1(eax));
3525 	case 116:
3526 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
3527 	case 117:
3528 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
3529 	case 118:
3530 		return (SH_E0(eax) || JH_E1(eax) || SH_E4(eax) || BH_E4(eax) ||
3531 		    JH_E6(eax));
3532 	case 121:
3533 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
3534 	case 122:
3535 		return (cpi->cpi_family < 0x10 || cpi->cpi_family == 0x11);
3536 	case 123:
3537 		return (JH_E1(eax) || BH_E4(eax) || JH_E6(eax));
3538 	case 131:
3539 		return (cpi->cpi_family < 0x10);
3540 	case 6336786:
3541 		/*
3542 		 * Test for AdvPowerMgmtInfo.TscPStateInvariant
3543 		 * if this is a K8 family or newer processor
3544 		 */
3545 		if (CPI_FAMILY(cpi) == 0xf) {
3546 			struct cpuid_regs regs;
3547 			regs.cp_eax = 0x80000007;
3548 			(void) __cpuid_insn(&regs);
3549 			return (!(regs.cp_edx & 0x100));
3550 		}
3551 		return (0);
3552 	case 6323525:
3553 		return (((((eax >> 12) & 0xff00) + (eax & 0xf00)) |
3554 		    (((eax >> 4) & 0xf) | ((eax >> 12) & 0xf0))) < 0xf40);
3555 
3556 	case 6671130:
3557 		/*
3558 		 * check for processors (pre-Shanghai) that do not provide
3559 		 * optimal management of 1gb ptes in its tlb.
3560 		 */
3561 		return (cpi->cpi_family == 0x10 && cpi->cpi_model < 4);
3562 
3563 	case 298:
3564 		return (DR_AX(eax) || DR_B0(eax) || DR_B1(eax) || DR_BA(eax) ||
3565 		    DR_B2(eax) || RB_C0(eax));
3566 
3567 	case 721:
3568 #if defined(__amd64)
3569 		return (cpi->cpi_family == 0x10 || cpi->cpi_family == 0x12);
3570 #else
3571 		return (0);
3572 #endif
3573 
3574 	default:
3575 		return (-1);
3576 
3577 	}
3578 }
3579 
3580 /*
3581  * Determine if specified erratum is present via OSVW (OS Visible Workaround).
3582  * Return 1 if erratum is present, 0 if not present and -1 if indeterminate.
3583  */
3584 int
3585 osvw_opteron_erratum(cpu_t *cpu, uint_t erratum)
3586 {
3587 	struct cpuid_info	*cpi;
3588 	uint_t			osvwid;
3589 	static int		osvwfeature = -1;
3590 	uint64_t		osvwlength;
3591 
3592 
3593 	cpi = cpu->cpu_m.mcpu_cpi;
3594 
3595 	/* confirm OSVW supported */
3596 	if (osvwfeature == -1) {
3597 		osvwfeature = cpi->cpi_extd[1].cp_ecx & CPUID_AMD_ECX_OSVW;
3598 	} else {
3599 		/* assert that osvw feature setting is consistent on all cpus */
3600 		ASSERT(osvwfeature ==
3601 		    (cpi->cpi_extd[1].cp_ecx & CPUID_AMD_ECX_OSVW));
3602 	}
3603 	if (!osvwfeature)
3604 		return (-1);
3605 
3606 	osvwlength = rdmsr(MSR_AMD_OSVW_ID_LEN) & OSVW_ID_LEN_MASK;
3607 
3608 	switch (erratum) {
3609 	case 298:	/* osvwid is 0 */
3610 		osvwid = 0;
3611 		if (osvwlength <= (uint64_t)osvwid) {
3612 			/* osvwid 0 is unknown */
3613 			return (-1);
3614 		}
3615 
3616 		/*
3617 		 * Check the OSVW STATUS MSR to determine the state
3618 		 * of the erratum where:
3619 		 *   0 - fixed by HW
3620 		 *   1 - BIOS has applied the workaround when BIOS
3621 		 *   workaround is available. (Or for other errata,
3622 		 *   OS workaround is required.)
3623 		 * For a value of 1, caller will confirm that the
3624 		 * erratum 298 workaround has indeed been applied by BIOS.
3625 		 *
3626 		 * A 1 may be set in cpus that have a HW fix
3627 		 * in a mixed cpu system. Regarding erratum 298:
3628 		 *   In a multiprocessor platform, the workaround above
3629 		 *   should be applied to all processors regardless of
3630 		 *   silicon revision when an affected processor is
3631 		 *   present.
3632 		 */
3633 
3634 		return (rdmsr(MSR_AMD_OSVW_STATUS +
3635 		    (osvwid / OSVW_ID_CNT_PER_MSR)) &
3636 		    (1ULL << (osvwid % OSVW_ID_CNT_PER_MSR)));
3637 
3638 	default:
3639 		return (-1);
3640 	}
3641 }
3642 
3643 static const char assoc_str[] = "associativity";
3644 static const char line_str[] = "line-size";
3645 static const char size_str[] = "size";
3646 
3647 static void
3648 add_cache_prop(dev_info_t *devi, const char *label, const char *type,
3649     uint32_t val)
3650 {
3651 	char buf[128];
3652 
3653 	/*
3654 	 * ndi_prop_update_int() is used because it is desirable for
3655 	 * DDI_PROP_HW_DEF and DDI_PROP_DONTSLEEP to be set.
3656 	 */
3657 	if (snprintf(buf, sizeof (buf), "%s-%s", label, type) < sizeof (buf))
3658 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, buf, val);
3659 }
3660 
3661 /*
3662  * Intel-style cache/tlb description
3663  *
3664  * Standard cpuid level 2 gives a randomly ordered
3665  * selection of tags that index into a table that describes
3666  * cache and tlb properties.
3667  */
3668 
3669 static const char l1_icache_str[] = "l1-icache";
3670 static const char l1_dcache_str[] = "l1-dcache";
3671 static const char l2_cache_str[] = "l2-cache";
3672 static const char l3_cache_str[] = "l3-cache";
3673 static const char itlb4k_str[] = "itlb-4K";
3674 static const char dtlb4k_str[] = "dtlb-4K";
3675 static const char itlb2M_str[] = "itlb-2M";
3676 static const char itlb4M_str[] = "itlb-4M";
3677 static const char dtlb4M_str[] = "dtlb-4M";
3678 static const char dtlb24_str[] = "dtlb0-2M-4M";
3679 static const char itlb424_str[] = "itlb-4K-2M-4M";
3680 static const char itlb24_str[] = "itlb-2M-4M";
3681 static const char dtlb44_str[] = "dtlb-4K-4M";
3682 static const char sl1_dcache_str[] = "sectored-l1-dcache";
3683 static const char sl2_cache_str[] = "sectored-l2-cache";
3684 static const char itrace_str[] = "itrace-cache";
3685 static const char sl3_cache_str[] = "sectored-l3-cache";
3686 static const char sh_l2_tlb4k_str[] = "shared-l2-tlb-4k";
3687 
3688 static const struct cachetab {
3689 	uint8_t 	ct_code;
3690 	uint8_t		ct_assoc;
3691 	uint16_t 	ct_line_size;
3692 	size_t		ct_size;
3693 	const char	*ct_label;
3694 } intel_ctab[] = {
3695 	/*
3696 	 * maintain descending order!
3697 	 *
3698 	 * Codes ignored - Reason
3699 	 * ----------------------
3700 	 * 40H - intel_cpuid_4_cache_info() disambiguates l2/l3 cache
3701 	 * f0H/f1H - Currently we do not interpret prefetch size by design
3702 	 */
3703 	{ 0xe4, 16, 64, 8*1024*1024, l3_cache_str},
3704 	{ 0xe3, 16, 64, 4*1024*1024, l3_cache_str},
3705 	{ 0xe2, 16, 64, 2*1024*1024, l3_cache_str},
3706 	{ 0xde, 12, 64, 6*1024*1024, l3_cache_str},
3707 	{ 0xdd, 12, 64, 3*1024*1024, l3_cache_str},
3708 	{ 0xdc, 12, 64, ((1*1024*1024)+(512*1024)), l3_cache_str},
3709 	{ 0xd8, 8, 64, 4*1024*1024, l3_cache_str},
3710 	{ 0xd7, 8, 64, 2*1024*1024, l3_cache_str},
3711 	{ 0xd6, 8, 64, 1*1024*1024, l3_cache_str},
3712 	{ 0xd2, 4, 64, 2*1024*1024, l3_cache_str},
3713 	{ 0xd1, 4, 64, 1*1024*1024, l3_cache_str},
3714 	{ 0xd0, 4, 64, 512*1024, l3_cache_str},
3715 	{ 0xca, 4, 0, 512, sh_l2_tlb4k_str},
3716 	{ 0xc0, 4, 0, 8, dtlb44_str },
3717 	{ 0xba, 4, 0, 64, dtlb4k_str },
3718 	{ 0xb4, 4, 0, 256, dtlb4k_str },
3719 	{ 0xb3, 4, 0, 128, dtlb4k_str },
3720 	{ 0xb2, 4, 0, 64, itlb4k_str },
3721 	{ 0xb0, 4, 0, 128, itlb4k_str },
3722 	{ 0x87, 8, 64, 1024*1024, l2_cache_str},
3723 	{ 0x86, 4, 64, 512*1024, l2_cache_str},
3724 	{ 0x85, 8, 32, 2*1024*1024, l2_cache_str},
3725 	{ 0x84, 8, 32, 1024*1024, l2_cache_str},
3726 	{ 0x83, 8, 32, 512*1024, l2_cache_str},
3727 	{ 0x82, 8, 32, 256*1024, l2_cache_str},
3728 	{ 0x80, 8, 64, 512*1024, l2_cache_str},
3729 	{ 0x7f, 2, 64, 512*1024, l2_cache_str},
3730 	{ 0x7d, 8, 64, 2*1024*1024, sl2_cache_str},
3731 	{ 0x7c, 8, 64, 1024*1024, sl2_cache_str},
3732 	{ 0x7b, 8, 64, 512*1024, sl2_cache_str},
3733 	{ 0x7a, 8, 64, 256*1024, sl2_cache_str},
3734 	{ 0x79, 8, 64, 128*1024, sl2_cache_str},
3735 	{ 0x78, 8, 64, 1024*1024, l2_cache_str},
3736 	{ 0x73, 8, 0, 64*1024, itrace_str},
3737 	{ 0x72, 8, 0, 32*1024, itrace_str},
3738 	{ 0x71, 8, 0, 16*1024, itrace_str},
3739 	{ 0x70, 8, 0, 12*1024, itrace_str},
3740 	{ 0x68, 4, 64, 32*1024, sl1_dcache_str},
3741 	{ 0x67, 4, 64, 16*1024, sl1_dcache_str},
3742 	{ 0x66, 4, 64, 8*1024, sl1_dcache_str},
3743 	{ 0x60, 8, 64, 16*1024, sl1_dcache_str},
3744 	{ 0x5d, 0, 0, 256, dtlb44_str},
3745 	{ 0x5c, 0, 0, 128, dtlb44_str},
3746 	{ 0x5b, 0, 0, 64, dtlb44_str},
3747 	{ 0x5a, 4, 0, 32, dtlb24_str},
3748 	{ 0x59, 0, 0, 16, dtlb4k_str},
3749 	{ 0x57, 4, 0, 16, dtlb4k_str},
3750 	{ 0x56, 4, 0, 16, dtlb4M_str},
3751 	{ 0x55, 0, 0, 7, itlb24_str},
3752 	{ 0x52, 0, 0, 256, itlb424_str},
3753 	{ 0x51, 0, 0, 128, itlb424_str},
3754 	{ 0x50, 0, 0, 64, itlb424_str},
3755 	{ 0x4f, 0, 0, 32, itlb4k_str},
3756 	{ 0x4e, 24, 64, 6*1024*1024, l2_cache_str},
3757 	{ 0x4d, 16, 64, 16*1024*1024, l3_cache_str},
3758 	{ 0x4c, 12, 64, 12*1024*1024, l3_cache_str},
3759 	{ 0x4b, 16, 64, 8*1024*1024, l3_cache_str},
3760 	{ 0x4a, 12, 64, 6*1024*1024, l3_cache_str},
3761 	{ 0x49, 16, 64, 4*1024*1024, l3_cache_str},
3762 	{ 0x48, 12, 64, 3*1024*1024, l2_cache_str},
3763 	{ 0x47, 8, 64, 8*1024*1024, l3_cache_str},
3764 	{ 0x46, 4, 64, 4*1024*1024, l3_cache_str},
3765 	{ 0x45, 4, 32, 2*1024*1024, l2_cache_str},
3766 	{ 0x44, 4, 32, 1024*1024, l2_cache_str},
3767 	{ 0x43, 4, 32, 512*1024, l2_cache_str},
3768 	{ 0x42, 4, 32, 256*1024, l2_cache_str},
3769 	{ 0x41, 4, 32, 128*1024, l2_cache_str},
3770 	{ 0x3e, 4, 64, 512*1024, sl2_cache_str},
3771 	{ 0x3d, 6, 64, 384*1024, sl2_cache_str},
3772 	{ 0x3c, 4, 64, 256*1024, sl2_cache_str},
3773 	{ 0x3b, 2, 64, 128*1024, sl2_cache_str},
3774 	{ 0x3a, 6, 64, 192*1024, sl2_cache_str},
3775 	{ 0x39, 4, 64, 128*1024, sl2_cache_str},
3776 	{ 0x30, 8, 64, 32*1024, l1_icache_str},
3777 	{ 0x2c, 8, 64, 32*1024, l1_dcache_str},
3778 	{ 0x29, 8, 64, 4096*1024, sl3_cache_str},
3779 	{ 0x25, 8, 64, 2048*1024, sl3_cache_str},
3780 	{ 0x23, 8, 64, 1024*1024, sl3_cache_str},
3781 	{ 0x22, 4, 64, 512*1024, sl3_cache_str},
3782 	{ 0x0e, 6, 64, 24*1024, l1_dcache_str},
3783 	{ 0x0d, 4, 32, 16*1024, l1_dcache_str},
3784 	{ 0x0c, 4, 32, 16*1024, l1_dcache_str},
3785 	{ 0x0b, 4, 0, 4, itlb4M_str},
3786 	{ 0x0a, 2, 32, 8*1024, l1_dcache_str},
3787 	{ 0x08, 4, 32, 16*1024, l1_icache_str},
3788 	{ 0x06, 4, 32, 8*1024, l1_icache_str},
3789 	{ 0x05, 4, 0, 32, dtlb4M_str},
3790 	{ 0x04, 4, 0, 8, dtlb4M_str},
3791 	{ 0x03, 4, 0, 64, dtlb4k_str},
3792 	{ 0x02, 4, 0, 2, itlb4M_str},
3793 	{ 0x01, 4, 0, 32, itlb4k_str},
3794 	{ 0 }
3795 };
3796 
3797 static const struct cachetab cyrix_ctab[] = {
3798 	{ 0x70, 4, 0, 32, "tlb-4K" },
3799 	{ 0x80, 4, 16, 16*1024, "l1-cache" },
3800 	{ 0 }
3801 };
3802 
3803 /*
3804  * Search a cache table for a matching entry
3805  */
3806 static const struct cachetab *
3807 find_cacheent(const struct cachetab *ct, uint_t code)
3808 {
3809 	if (code != 0) {
3810 		for (; ct->ct_code != 0; ct++)
3811 			if (ct->ct_code <= code)
3812 				break;
3813 		if (ct->ct_code == code)
3814 			return (ct);
3815 	}
3816 	return (NULL);
3817 }
3818 
3819 /*
3820  * Populate cachetab entry with L2 or L3 cache-information using
3821  * cpuid function 4. This function is called from intel_walk_cacheinfo()
3822  * when descriptor 0x49 is encountered. It returns 0 if no such cache
3823  * information is found.
3824  */
3825 static int
3826 intel_cpuid_4_cache_info(struct cachetab *ct, struct cpuid_info *cpi)
3827 {
3828 	uint32_t level, i;
3829 	int ret = 0;
3830 
3831 	for (i = 0; i < cpi->cpi_std_4_size; i++) {
3832 		level = CPI_CACHE_LVL(cpi->cpi_std_4[i]);
3833 
3834 		if (level == 2 || level == 3) {
3835 			ct->ct_assoc = CPI_CACHE_WAYS(cpi->cpi_std_4[i]) + 1;
3836 			ct->ct_line_size =
3837 			    CPI_CACHE_COH_LN_SZ(cpi->cpi_std_4[i]) + 1;
3838 			ct->ct_size = ct->ct_assoc *
3839 			    (CPI_CACHE_PARTS(cpi->cpi_std_4[i]) + 1) *
3840 			    ct->ct_line_size *
3841 			    (cpi->cpi_std_4[i]->cp_ecx + 1);
3842 
3843 			if (level == 2) {
3844 				ct->ct_label = l2_cache_str;
3845 			} else if (level == 3) {
3846 				ct->ct_label = l3_cache_str;
3847 			}
3848 			ret = 1;
3849 		}
3850 	}
3851 
3852 	return (ret);
3853 }
3854 
3855 /*
3856  * Walk the cacheinfo descriptor, applying 'func' to every valid element
3857  * The walk is terminated if the walker returns non-zero.
3858  */
3859 static void
3860 intel_walk_cacheinfo(struct cpuid_info *cpi,
3861     void *arg, int (*func)(void *, const struct cachetab *))
3862 {
3863 	const struct cachetab *ct;
3864 	struct cachetab des_49_ct, des_b1_ct;
3865 	uint8_t *dp;
3866 	int i;
3867 
3868 	if ((dp = cpi->cpi_cacheinfo) == NULL)
3869 		return;
3870 	for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
3871 		/*
3872 		 * For overloaded descriptor 0x49 we use cpuid function 4
3873 		 * if supported by the current processor, to create
3874 		 * cache information.
3875 		 * For overloaded descriptor 0xb1 we use X86_PAE flag
3876 		 * to disambiguate the cache information.
3877 		 */
3878 		if (*dp == 0x49 && cpi->cpi_maxeax >= 0x4 &&
3879 		    intel_cpuid_4_cache_info(&des_49_ct, cpi) == 1) {
3880 				ct = &des_49_ct;
3881 		} else if (*dp == 0xb1) {
3882 			des_b1_ct.ct_code = 0xb1;
3883 			des_b1_ct.ct_assoc = 4;
3884 			des_b1_ct.ct_line_size = 0;
3885 			if (is_x86_feature(x86_featureset, X86FSET_PAE)) {
3886 				des_b1_ct.ct_size = 8;
3887 				des_b1_ct.ct_label = itlb2M_str;
3888 			} else {
3889 				des_b1_ct.ct_size = 4;
3890 				des_b1_ct.ct_label = itlb4M_str;
3891 			}
3892 			ct = &des_b1_ct;
3893 		} else {
3894 			if ((ct = find_cacheent(intel_ctab, *dp)) == NULL) {
3895 				continue;
3896 			}
3897 		}
3898 
3899 		if (func(arg, ct) != 0) {
3900 			break;
3901 		}
3902 	}
3903 }
3904 
3905 /*
3906  * (Like the Intel one, except for Cyrix CPUs)
3907  */
3908 static void
3909 cyrix_walk_cacheinfo(struct cpuid_info *cpi,
3910     void *arg, int (*func)(void *, const struct cachetab *))
3911 {
3912 	const struct cachetab *ct;
3913 	uint8_t *dp;
3914 	int i;
3915 
3916 	if ((dp = cpi->cpi_cacheinfo) == NULL)
3917 		return;
3918 	for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
3919 		/*
3920 		 * Search Cyrix-specific descriptor table first ..
3921 		 */
3922 		if ((ct = find_cacheent(cyrix_ctab, *dp)) != NULL) {
3923 			if (func(arg, ct) != 0)
3924 				break;
3925 			continue;
3926 		}
3927 		/*
3928 		 * .. else fall back to the Intel one
3929 		 */
3930 		if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) {
3931 			if (func(arg, ct) != 0)
3932 				break;
3933 			continue;
3934 		}
3935 	}
3936 }
3937 
3938 /*
3939  * A cacheinfo walker that adds associativity, line-size, and size properties
3940  * to the devinfo node it is passed as an argument.
3941  */
3942 static int
3943 add_cacheent_props(void *arg, const struct cachetab *ct)
3944 {
3945 	dev_info_t *devi = arg;
3946 
3947 	add_cache_prop(devi, ct->ct_label, assoc_str, ct->ct_assoc);
3948 	if (ct->ct_line_size != 0)
3949 		add_cache_prop(devi, ct->ct_label, line_str,
3950 		    ct->ct_line_size);
3951 	add_cache_prop(devi, ct->ct_label, size_str, ct->ct_size);
3952 	return (0);
3953 }
3954 
3955 
3956 static const char fully_assoc[] = "fully-associative?";
3957 
3958 /*
3959  * AMD style cache/tlb description
3960  *
3961  * Extended functions 5 and 6 directly describe properties of
3962  * tlbs and various cache levels.
3963  */
3964 static void
3965 add_amd_assoc(dev_info_t *devi, const char *label, uint_t assoc)
3966 {
3967 	switch (assoc) {
3968 	case 0:	/* reserved; ignore */
3969 		break;
3970 	default:
3971 		add_cache_prop(devi, label, assoc_str, assoc);
3972 		break;
3973 	case 0xff:
3974 		add_cache_prop(devi, label, fully_assoc, 1);
3975 		break;
3976 	}
3977 }
3978 
3979 static void
3980 add_amd_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
3981 {
3982 	if (size == 0)
3983 		return;
3984 	add_cache_prop(devi, label, size_str, size);
3985 	add_amd_assoc(devi, label, assoc);
3986 }
3987 
3988 static void
3989 add_amd_cache(dev_info_t *devi, const char *label,
3990     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
3991 {
3992 	if (size == 0 || line_size == 0)
3993 		return;
3994 	add_amd_assoc(devi, label, assoc);
3995 	/*
3996 	 * Most AMD parts have a sectored cache. Multiple cache lines are
3997 	 * associated with each tag. A sector consists of all cache lines
3998 	 * associated with a tag. For example, the AMD K6-III has a sector
3999 	 * size of 2 cache lines per tag.
4000 	 */
4001 	if (lines_per_tag != 0)
4002 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
4003 	add_cache_prop(devi, label, line_str, line_size);
4004 	add_cache_prop(devi, label, size_str, size * 1024);
4005 }
4006 
4007 static void
4008 add_amd_l2_assoc(dev_info_t *devi, const char *label, uint_t assoc)
4009 {
4010 	switch (assoc) {
4011 	case 0:	/* off */
4012 		break;
4013 	case 1:
4014 	case 2:
4015 	case 4:
4016 		add_cache_prop(devi, label, assoc_str, assoc);
4017 		break;
4018 	case 6:
4019 		add_cache_prop(devi, label, assoc_str, 8);
4020 		break;
4021 	case 8:
4022 		add_cache_prop(devi, label, assoc_str, 16);
4023 		break;
4024 	case 0xf:
4025 		add_cache_prop(devi, label, fully_assoc, 1);
4026 		break;
4027 	default: /* reserved; ignore */
4028 		break;
4029 	}
4030 }
4031 
4032 static void
4033 add_amd_l2_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
4034 {
4035 	if (size == 0 || assoc == 0)
4036 		return;
4037 	add_amd_l2_assoc(devi, label, assoc);
4038 	add_cache_prop(devi, label, size_str, size);
4039 }
4040 
4041 static void
4042 add_amd_l2_cache(dev_info_t *devi, const char *label,
4043     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
4044 {
4045 	if (size == 0 || assoc == 0 || line_size == 0)
4046 		return;
4047 	add_amd_l2_assoc(devi, label, assoc);
4048 	if (lines_per_tag != 0)
4049 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
4050 	add_cache_prop(devi, label, line_str, line_size);
4051 	add_cache_prop(devi, label, size_str, size * 1024);
4052 }
4053 
4054 static void
4055 amd_cache_info(struct cpuid_info *cpi, dev_info_t *devi)
4056 {
4057 	struct cpuid_regs *cp;
4058 
4059 	if (cpi->cpi_xmaxeax < 0x80000005)
4060 		return;
4061 	cp = &cpi->cpi_extd[5];
4062 
4063 	/*
4064 	 * 4M/2M L1 TLB configuration
4065 	 *
4066 	 * We report the size for 2M pages because AMD uses two
4067 	 * TLB entries for one 4M page.
4068 	 */
4069 	add_amd_tlb(devi, "dtlb-2M",
4070 	    BITX(cp->cp_eax, 31, 24), BITX(cp->cp_eax, 23, 16));
4071 	add_amd_tlb(devi, "itlb-2M",
4072 	    BITX(cp->cp_eax, 15, 8), BITX(cp->cp_eax, 7, 0));
4073 
4074 	/*
4075 	 * 4K L1 TLB configuration
4076 	 */
4077 
4078 	switch (cpi->cpi_vendor) {
4079 		uint_t nentries;
4080 	case X86_VENDOR_TM:
4081 		if (cpi->cpi_family >= 5) {
4082 			/*
4083 			 * Crusoe processors have 256 TLB entries, but
4084 			 * cpuid data format constrains them to only
4085 			 * reporting 255 of them.
4086 			 */
4087 			if ((nentries = BITX(cp->cp_ebx, 23, 16)) == 255)
4088 				nentries = 256;
4089 			/*
4090 			 * Crusoe processors also have a unified TLB
4091 			 */
4092 			add_amd_tlb(devi, "tlb-4K", BITX(cp->cp_ebx, 31, 24),
4093 			    nentries);
4094 			break;
4095 		}
4096 		/*FALLTHROUGH*/
4097 	default:
4098 		add_amd_tlb(devi, itlb4k_str,
4099 		    BITX(cp->cp_ebx, 31, 24), BITX(cp->cp_ebx, 23, 16));
4100 		add_amd_tlb(devi, dtlb4k_str,
4101 		    BITX(cp->cp_ebx, 15, 8), BITX(cp->cp_ebx, 7, 0));
4102 		break;
4103 	}
4104 
4105 	/*
4106 	 * data L1 cache configuration
4107 	 */
4108 
4109 	add_amd_cache(devi, l1_dcache_str,
4110 	    BITX(cp->cp_ecx, 31, 24), BITX(cp->cp_ecx, 23, 16),
4111 	    BITX(cp->cp_ecx, 15, 8), BITX(cp->cp_ecx, 7, 0));
4112 
4113 	/*
4114 	 * code L1 cache configuration
4115 	 */
4116 
4117 	add_amd_cache(devi, l1_icache_str,
4118 	    BITX(cp->cp_edx, 31, 24), BITX(cp->cp_edx, 23, 16),
4119 	    BITX(cp->cp_edx, 15, 8), BITX(cp->cp_edx, 7, 0));
4120 
4121 	if (cpi->cpi_xmaxeax < 0x80000006)
4122 		return;
4123 	cp = &cpi->cpi_extd[6];
4124 
4125 	/* Check for a unified L2 TLB for large pages */
4126 
4127 	if (BITX(cp->cp_eax, 31, 16) == 0)
4128 		add_amd_l2_tlb(devi, "l2-tlb-2M",
4129 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
4130 	else {
4131 		add_amd_l2_tlb(devi, "l2-dtlb-2M",
4132 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
4133 		add_amd_l2_tlb(devi, "l2-itlb-2M",
4134 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
4135 	}
4136 
4137 	/* Check for a unified L2 TLB for 4K pages */
4138 
4139 	if (BITX(cp->cp_ebx, 31, 16) == 0) {
4140 		add_amd_l2_tlb(devi, "l2-tlb-4K",
4141 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
4142 	} else {
4143 		add_amd_l2_tlb(devi, "l2-dtlb-4K",
4144 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
4145 		add_amd_l2_tlb(devi, "l2-itlb-4K",
4146 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
4147 	}
4148 
4149 	add_amd_l2_cache(devi, l2_cache_str,
4150 	    BITX(cp->cp_ecx, 31, 16), BITX(cp->cp_ecx, 15, 12),
4151 	    BITX(cp->cp_ecx, 11, 8), BITX(cp->cp_ecx, 7, 0));
4152 }
4153 
4154 /*
4155  * There are two basic ways that the x86 world describes it cache
4156  * and tlb architecture - Intel's way and AMD's way.
4157  *
4158  * Return which flavor of cache architecture we should use
4159  */
4160 static int
4161 x86_which_cacheinfo(struct cpuid_info *cpi)
4162 {
4163 	switch (cpi->cpi_vendor) {
4164 	case X86_VENDOR_Intel:
4165 		if (cpi->cpi_maxeax >= 2)
4166 			return (X86_VENDOR_Intel);
4167 		break;
4168 	case X86_VENDOR_AMD:
4169 		/*
4170 		 * The K5 model 1 was the first part from AMD that reported
4171 		 * cache sizes via extended cpuid functions.
4172 		 */
4173 		if (cpi->cpi_family > 5 ||
4174 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
4175 			return (X86_VENDOR_AMD);
4176 		break;
4177 	case X86_VENDOR_TM:
4178 		if (cpi->cpi_family >= 5)
4179 			return (X86_VENDOR_AMD);
4180 		/*FALLTHROUGH*/
4181 	default:
4182 		/*
4183 		 * If they have extended CPU data for 0x80000005
4184 		 * then we assume they have AMD-format cache
4185 		 * information.
4186 		 *
4187 		 * If not, and the vendor happens to be Cyrix,
4188 		 * then try our-Cyrix specific handler.
4189 		 *
4190 		 * If we're not Cyrix, then assume we're using Intel's
4191 		 * table-driven format instead.
4192 		 */
4193 		if (cpi->cpi_xmaxeax >= 0x80000005)
4194 			return (X86_VENDOR_AMD);
4195 		else if (cpi->cpi_vendor == X86_VENDOR_Cyrix)
4196 			return (X86_VENDOR_Cyrix);
4197 		else if (cpi->cpi_maxeax >= 2)
4198 			return (X86_VENDOR_Intel);
4199 		break;
4200 	}
4201 	return (-1);
4202 }
4203 
4204 void
4205 cpuid_set_cpu_properties(void *dip, processorid_t cpu_id,
4206     struct cpuid_info *cpi)
4207 {
4208 	dev_info_t *cpu_devi;
4209 	int create;
4210 
4211 	cpu_devi = (dev_info_t *)dip;
4212 
4213 	/* device_type */
4214 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
4215 	    "device_type", "cpu");
4216 
4217 	/* reg */
4218 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
4219 	    "reg", cpu_id);
4220 
4221 	/* cpu-mhz, and clock-frequency */
4222 	if (cpu_freq > 0) {
4223 		long long mul;
4224 
4225 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
4226 		    "cpu-mhz", cpu_freq);
4227 		if ((mul = cpu_freq * 1000000LL) <= INT_MAX)
4228 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
4229 			    "clock-frequency", (int)mul);
4230 	}
4231 
4232 	if (!is_x86_feature(x86_featureset, X86FSET_CPUID)) {
4233 		return;
4234 	}
4235 
4236 	/* vendor-id */
4237 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
4238 	    "vendor-id", cpi->cpi_vendorstr);
4239 
4240 	if (cpi->cpi_maxeax == 0) {
4241 		return;
4242 	}
4243 
4244 	/*
4245 	 * family, model, and step
4246 	 */
4247 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
4248 	    "family", CPI_FAMILY(cpi));
4249 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
4250 	    "cpu-model", CPI_MODEL(cpi));
4251 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
4252 	    "stepping-id", CPI_STEP(cpi));
4253 
4254 	/* type */
4255 	switch (cpi->cpi_vendor) {
4256 	case X86_VENDOR_Intel:
4257 		create = 1;
4258 		break;
4259 	default:
4260 		create = 0;
4261 		break;
4262 	}
4263 	if (create)
4264 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
4265 		    "type", CPI_TYPE(cpi));
4266 
4267 	/* ext-family */
4268 	switch (cpi->cpi_vendor) {
4269 	case X86_VENDOR_Intel:
4270 	case X86_VENDOR_AMD:
4271 		create = cpi->cpi_family >= 0xf;
4272 		break;
4273 	default:
4274 		create = 0;
4275 		break;
4276 	}
4277 	if (create)
4278 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
4279 		    "ext-family", CPI_FAMILY_XTD(cpi));
4280 
4281 	/* ext-model */
4282 	switch (cpi->cpi_vendor) {
4283 	case X86_VENDOR_Intel:
4284 		create = IS_EXTENDED_MODEL_INTEL(cpi);
4285 		break;
4286 	case X86_VENDOR_AMD:
4287 		create = CPI_FAMILY(cpi) == 0xf;
4288 		break;
4289 	default:
4290 		create = 0;
4291 		break;
4292 	}
4293 	if (create)
4294 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
4295 		    "ext-model", CPI_MODEL_XTD(cpi));
4296 
4297 	/* generation */
4298 	switch (cpi->cpi_vendor) {
4299 	case X86_VENDOR_AMD:
4300 		/*
4301 		 * AMD K5 model 1 was the first part to support this
4302 		 */
4303 		create = cpi->cpi_xmaxeax >= 0x80000001;
4304 		break;
4305 	default:
4306 		create = 0;
4307 		break;
4308 	}
4309 	if (create)
4310 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
4311 		    "generation", BITX((cpi)->cpi_extd[1].cp_eax, 11, 8));
4312 
4313 	/* brand-id */
4314 	switch (cpi->cpi_vendor) {
4315 	case X86_VENDOR_Intel:
4316 		/*
4317 		 * brand id first appeared on Pentium III Xeon model 8,
4318 		 * and Celeron model 8 processors and Opteron
4319 		 */
4320 		create = cpi->cpi_family > 6 ||
4321 		    (cpi->cpi_family == 6 && cpi->cpi_model >= 8);
4322 		break;
4323 	case X86_VENDOR_AMD:
4324 		create = cpi->cpi_family >= 0xf;
4325 		break;
4326 	default:
4327 		create = 0;
4328 		break;
4329 	}
4330 	if (create && cpi->cpi_brandid != 0) {
4331 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
4332 		    "brand-id", cpi->cpi_brandid);
4333 	}
4334 
4335 	/* chunks, and apic-id */
4336 	switch (cpi->cpi_vendor) {
4337 		/*
4338 		 * first available on Pentium IV and Opteron (K8)
4339 		 */
4340 	case X86_VENDOR_Intel:
4341 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
4342 		break;
4343 	case X86_VENDOR_AMD:
4344 		create = cpi->cpi_family >= 0xf;
4345 		break;
4346 	default:
4347 		create = 0;
4348 		break;
4349 	}
4350 	if (create) {
4351 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
4352 		    "chunks", CPI_CHUNKS(cpi));
4353 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
4354 		    "apic-id", cpi->cpi_apicid);
4355 		if (cpi->cpi_chipid >= 0) {
4356 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
4357 			    "chip#", cpi->cpi_chipid);
4358 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
4359 			    "clog#", cpi->cpi_clogid);
4360 		}
4361 	}
4362 
4363 	/* cpuid-features */
4364 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
4365 	    "cpuid-features", CPI_FEATURES_EDX(cpi));
4366 
4367 
4368 	/* cpuid-features-ecx */
4369 	switch (cpi->cpi_vendor) {
4370 	case X86_VENDOR_Intel:
4371 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
4372 		break;
4373 	case X86_VENDOR_AMD:
4374 		create = cpi->cpi_family >= 0xf;
4375 		break;
4376 	default:
4377 		create = 0;
4378 		break;
4379 	}
4380 	if (create)
4381 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
4382 		    "cpuid-features-ecx", CPI_FEATURES_ECX(cpi));
4383 
4384 	/* ext-cpuid-features */
4385 	switch (cpi->cpi_vendor) {
4386 	case X86_VENDOR_Intel:
4387 	case X86_VENDOR_AMD:
4388 	case X86_VENDOR_Cyrix:
4389 	case X86_VENDOR_TM:
4390 	case X86_VENDOR_Centaur:
4391 		create = cpi->cpi_xmaxeax >= 0x80000001;
4392 		break;
4393 	default:
4394 		create = 0;
4395 		break;
4396 	}
4397 	if (create) {
4398 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
4399 		    "ext-cpuid-features", CPI_FEATURES_XTD_EDX(cpi));
4400 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
4401 		    "ext-cpuid-features-ecx", CPI_FEATURES_XTD_ECX(cpi));
4402 	}
4403 
4404 	/*
4405 	 * Brand String first appeared in Intel Pentium IV, AMD K5
4406 	 * model 1, and Cyrix GXm.  On earlier models we try and
4407 	 * simulate something similar .. so this string should always
4408 	 * same -something- about the processor, however lame.
4409 	 */
4410 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
4411 	    "brand-string", cpi->cpi_brandstr);
4412 
4413 	/*
4414 	 * Finally, cache and tlb information
4415 	 */
4416 	switch (x86_which_cacheinfo(cpi)) {
4417 	case X86_VENDOR_Intel:
4418 		intel_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
4419 		break;
4420 	case X86_VENDOR_Cyrix:
4421 		cyrix_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
4422 		break;
4423 	case X86_VENDOR_AMD:
4424 		amd_cache_info(cpi, cpu_devi);
4425 		break;
4426 	default:
4427 		break;
4428 	}
4429 }
4430 
4431 struct l2info {
4432 	int *l2i_csz;
4433 	int *l2i_lsz;
4434 	int *l2i_assoc;
4435 	int l2i_ret;
4436 };
4437 
4438 /*
4439  * A cacheinfo walker that fetches the size, line-size and associativity
4440  * of the L2 cache
4441  */
4442 static int
4443 intel_l2cinfo(void *arg, const struct cachetab *ct)
4444 {
4445 	struct l2info *l2i = arg;
4446 	int *ip;
4447 
4448 	if (ct->ct_label != l2_cache_str &&
4449 	    ct->ct_label != sl2_cache_str)
4450 		return (0);	/* not an L2 -- keep walking */
4451 
4452 	if ((ip = l2i->l2i_csz) != NULL)
4453 		*ip = ct->ct_size;
4454 	if ((ip = l2i->l2i_lsz) != NULL)
4455 		*ip = ct->ct_line_size;
4456 	if ((ip = l2i->l2i_assoc) != NULL)
4457 		*ip = ct->ct_assoc;
4458 	l2i->l2i_ret = ct->ct_size;
4459 	return (1);		/* was an L2 -- terminate walk */
4460 }
4461 
4462 /*
4463  * AMD L2/L3 Cache and TLB Associativity Field Definition:
4464  *
4465  *	Unlike the associativity for the L1 cache and tlb where the 8 bit
4466  *	value is the associativity, the associativity for the L2 cache and
4467  *	tlb is encoded in the following table. The 4 bit L2 value serves as
4468  *	an index into the amd_afd[] array to determine the associativity.
4469  *	-1 is undefined. 0 is fully associative.
4470  */
4471 
4472 static int amd_afd[] =
4473 	{-1, 1, 2, -1, 4, -1, 8, -1, 16, -1, 32, 48, 64, 96, 128, 0};
4474 
4475 static void
4476 amd_l2cacheinfo(struct cpuid_info *cpi, struct l2info *l2i)
4477 {
4478 	struct cpuid_regs *cp;
4479 	uint_t size, assoc;
4480 	int i;
4481 	int *ip;
4482 
4483 	if (cpi->cpi_xmaxeax < 0x80000006)
4484 		return;
4485 	cp = &cpi->cpi_extd[6];
4486 
4487 	if ((i = BITX(cp->cp_ecx, 15, 12)) != 0 &&
4488 	    (size = BITX(cp->cp_ecx, 31, 16)) != 0) {
4489 		uint_t cachesz = size * 1024;
4490 		assoc = amd_afd[i];
4491 
4492 		ASSERT(assoc != -1);
4493 
4494 		if ((ip = l2i->l2i_csz) != NULL)
4495 			*ip = cachesz;
4496 		if ((ip = l2i->l2i_lsz) != NULL)
4497 			*ip = BITX(cp->cp_ecx, 7, 0);
4498 		if ((ip = l2i->l2i_assoc) != NULL)
4499 			*ip = assoc;
4500 		l2i->l2i_ret = cachesz;
4501 	}
4502 }
4503 
4504 int
4505 getl2cacheinfo(cpu_t *cpu, int *csz, int *lsz, int *assoc)
4506 {
4507 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
4508 	struct l2info __l2info, *l2i = &__l2info;
4509 
4510 	l2i->l2i_csz = csz;
4511 	l2i->l2i_lsz = lsz;
4512 	l2i->l2i_assoc = assoc;
4513 	l2i->l2i_ret = -1;
4514 
4515 	switch (x86_which_cacheinfo(cpi)) {
4516 	case X86_VENDOR_Intel:
4517 		intel_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
4518 		break;
4519 	case X86_VENDOR_Cyrix:
4520 		cyrix_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
4521 		break;
4522 	case X86_VENDOR_AMD:
4523 		amd_l2cacheinfo(cpi, l2i);
4524 		break;
4525 	default:
4526 		break;
4527 	}
4528 	return (l2i->l2i_ret);
4529 }
4530 
4531 #if !defined(__xpv)
4532 
4533 uint32_t *
4534 cpuid_mwait_alloc(cpu_t *cpu)
4535 {
4536 	uint32_t	*ret;
4537 	size_t		mwait_size;
4538 
4539 	ASSERT(cpuid_checkpass(CPU, 2));
4540 
4541 	mwait_size = CPU->cpu_m.mcpu_cpi->cpi_mwait.mon_max;
4542 	if (mwait_size == 0)
4543 		return (NULL);
4544 
4545 	/*
4546 	 * kmem_alloc() returns cache line size aligned data for mwait_size
4547 	 * allocations.  mwait_size is currently cache line sized.  Neither
4548 	 * of these implementation details are guarantied to be true in the
4549 	 * future.
4550 	 *
4551 	 * First try allocating mwait_size as kmem_alloc() currently returns
4552 	 * correctly aligned memory.  If kmem_alloc() does not return
4553 	 * mwait_size aligned memory, then use mwait_size ROUNDUP.
4554 	 *
4555 	 * Set cpi_mwait.buf_actual and cpi_mwait.size_actual in case we
4556 	 * decide to free this memory.
4557 	 */
4558 	ret = kmem_zalloc(mwait_size, KM_SLEEP);
4559 	if (ret == (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size)) {
4560 		cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret;
4561 		cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size;
4562 		*ret = MWAIT_RUNNING;
4563 		return (ret);
4564 	} else {
4565 		kmem_free(ret, mwait_size);
4566 		ret = kmem_zalloc(mwait_size * 2, KM_SLEEP);
4567 		cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret;
4568 		cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size * 2;
4569 		ret = (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size);
4570 		*ret = MWAIT_RUNNING;
4571 		return (ret);
4572 	}
4573 }
4574 
4575 void
4576 cpuid_mwait_free(cpu_t *cpu)
4577 {
4578 	if (cpu->cpu_m.mcpu_cpi == NULL) {
4579 		return;
4580 	}
4581 
4582 	if (cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual != NULL &&
4583 	    cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual > 0) {
4584 		kmem_free(cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual,
4585 		    cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual);
4586 	}
4587 
4588 	cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = NULL;
4589 	cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = 0;
4590 }
4591 
4592 void
4593 patch_tsc_read(int flag)
4594 {
4595 	size_t cnt;
4596 
4597 	switch (flag) {
4598 	case TSC_NONE:
4599 		cnt = &_no_rdtsc_end - &_no_rdtsc_start;
4600 		(void) memcpy((void *)tsc_read, (void *)&_no_rdtsc_start, cnt);
4601 		break;
4602 	case TSC_RDTSC_MFENCE:
4603 		cnt = &_tsc_mfence_end - &_tsc_mfence_start;
4604 		(void) memcpy((void *)tsc_read,
4605 		    (void *)&_tsc_mfence_start, cnt);
4606 		break;
4607 	case TSC_RDTSC_LFENCE:
4608 		cnt = &_tsc_lfence_end - &_tsc_lfence_start;
4609 		(void) memcpy((void *)tsc_read,
4610 		    (void *)&_tsc_lfence_start, cnt);
4611 		break;
4612 	case TSC_TSCP:
4613 		cnt = &_tscp_end - &_tscp_start;
4614 		(void) memcpy((void *)tsc_read, (void *)&_tscp_start, cnt);
4615 		break;
4616 	default:
4617 		/* Bail for unexpected TSC types. (TSC_NONE covers 0) */
4618 		cmn_err(CE_PANIC, "Unrecogized TSC type: %d", flag);
4619 		break;
4620 	}
4621 	tsc_type = flag;
4622 }
4623 
4624 int
4625 cpuid_deep_cstates_supported(void)
4626 {
4627 	struct cpuid_info *cpi;
4628 	struct cpuid_regs regs;
4629 
4630 	ASSERT(cpuid_checkpass(CPU, 1));
4631 
4632 	cpi = CPU->cpu_m.mcpu_cpi;
4633 
4634 	if (!is_x86_feature(x86_featureset, X86FSET_CPUID))
4635 		return (0);
4636 
4637 	switch (cpi->cpi_vendor) {
4638 	case X86_VENDOR_Intel:
4639 		if (cpi->cpi_xmaxeax < 0x80000007)
4640 			return (0);
4641 
4642 		/*
4643 		 * TSC run at a constant rate in all ACPI C-states?
4644 		 */
4645 		regs.cp_eax = 0x80000007;
4646 		(void) __cpuid_insn(&regs);
4647 		return (regs.cp_edx & CPUID_TSC_CSTATE_INVARIANCE);
4648 
4649 	default:
4650 		return (0);
4651 	}
4652 }
4653 
4654 #endif	/* !__xpv */
4655 
4656 void
4657 post_startup_cpu_fixups(void)
4658 {
4659 #ifndef __xpv
4660 	/*
4661 	 * Some AMD processors support C1E state. Entering this state will
4662 	 * cause the local APIC timer to stop, which we can't deal with at
4663 	 * this time.
4664 	 */
4665 	if (cpuid_getvendor(CPU) == X86_VENDOR_AMD) {
4666 		on_trap_data_t otd;
4667 		uint64_t reg;
4668 
4669 		if (!on_trap(&otd, OT_DATA_ACCESS)) {
4670 			reg = rdmsr(MSR_AMD_INT_PENDING_CMP_HALT);
4671 			/* Disable C1E state if it is enabled by BIOS */
4672 			if ((reg >> AMD_ACTONCMPHALT_SHIFT) &
4673 			    AMD_ACTONCMPHALT_MASK) {
4674 				reg &= ~(AMD_ACTONCMPHALT_MASK <<
4675 				    AMD_ACTONCMPHALT_SHIFT);
4676 				wrmsr(MSR_AMD_INT_PENDING_CMP_HALT, reg);
4677 			}
4678 		}
4679 		no_trap();
4680 	}
4681 #endif	/* !__xpv */
4682 }
4683 
4684 /*
4685  * Setup necessary registers to enable XSAVE feature on this processor.
4686  * This function needs to be called early enough, so that no xsave/xrstor
4687  * ops will execute on the processor before the MSRs are properly set up.
4688  *
4689  * Current implementation has the following assumption:
4690  * - cpuid_pass1() is done, so that X86 features are known.
4691  * - fpu_probe() is done, so that fp_save_mech is chosen.
4692  */
4693 void
4694 xsave_setup_msr(cpu_t *cpu)
4695 {
4696 	ASSERT(fp_save_mech == FP_XSAVE);
4697 	ASSERT(is_x86_feature(x86_featureset, X86FSET_XSAVE));
4698 
4699 	/* Enable OSXSAVE in CR4. */
4700 	setcr4(getcr4() | CR4_OSXSAVE);
4701 	/*
4702 	 * Update SW copy of ECX, so that /dev/cpu/self/cpuid will report
4703 	 * correct value.
4704 	 */
4705 	cpu->cpu_m.mcpu_cpi->cpi_std[1].cp_ecx |= CPUID_INTC_ECX_OSXSAVE;
4706 	setup_xfem();
4707 }
4708 
4709 /*
4710  * Starting with the Westmere processor the local
4711  * APIC timer will continue running in all C-states,
4712  * including the deepest C-states.
4713  */
4714 int
4715 cpuid_arat_supported(void)
4716 {
4717 	struct cpuid_info *cpi;
4718 	struct cpuid_regs regs;
4719 
4720 	ASSERT(cpuid_checkpass(CPU, 1));
4721 	ASSERT(is_x86_feature(x86_featureset, X86FSET_CPUID));
4722 
4723 	cpi = CPU->cpu_m.mcpu_cpi;
4724 
4725 	switch (cpi->cpi_vendor) {
4726 	case X86_VENDOR_Intel:
4727 		/*
4728 		 * Always-running Local APIC Timer is
4729 		 * indicated by CPUID.6.EAX[2].
4730 		 */
4731 		if (cpi->cpi_maxeax >= 6) {
4732 			regs.cp_eax = 6;
4733 			(void) cpuid_insn(NULL, &regs);
4734 			return (regs.cp_eax & CPUID_CSTATE_ARAT);
4735 		} else {
4736 			return (0);
4737 		}
4738 	default:
4739 		return (0);
4740 	}
4741 }
4742 
4743 /*
4744  * Check support for Intel ENERGY_PERF_BIAS feature
4745  */
4746 int
4747 cpuid_iepb_supported(struct cpu *cp)
4748 {
4749 	struct cpuid_info *cpi = cp->cpu_m.mcpu_cpi;
4750 	struct cpuid_regs regs;
4751 
4752 	ASSERT(cpuid_checkpass(cp, 1));
4753 
4754 	if (!(is_x86_feature(x86_featureset, X86FSET_CPUID)) ||
4755 	    !(is_x86_feature(x86_featureset, X86FSET_MSR))) {
4756 		return (0);
4757 	}
4758 
4759 	/*
4760 	 * Intel ENERGY_PERF_BIAS MSR is indicated by
4761 	 * capability bit CPUID.6.ECX.3
4762 	 */
4763 	if ((cpi->cpi_vendor != X86_VENDOR_Intel) || (cpi->cpi_maxeax < 6))
4764 		return (0);
4765 
4766 	regs.cp_eax = 0x6;
4767 	(void) cpuid_insn(NULL, &regs);
4768 	return (regs.cp_ecx & CPUID_EPB_SUPPORT);
4769 }
4770 
4771 /*
4772  * Check support for TSC deadline timer
4773  *
4774  * TSC deadline timer provides a superior software programming
4775  * model over local APIC timer that eliminates "time drifts".
4776  * Instead of specifying a relative time, software specifies an
4777  * absolute time as the target at which the processor should
4778  * generate a timer event.
4779  */
4780 int
4781 cpuid_deadline_tsc_supported(void)
4782 {
4783 	struct cpuid_info *cpi = CPU->cpu_m.mcpu_cpi;
4784 	struct cpuid_regs regs;
4785 
4786 	ASSERT(cpuid_checkpass(CPU, 1));
4787 	ASSERT(is_x86_feature(x86_featureset, X86FSET_CPUID));
4788 
4789 	switch (cpi->cpi_vendor) {
4790 	case X86_VENDOR_Intel:
4791 		if (cpi->cpi_maxeax >= 1) {
4792 			regs.cp_eax = 1;
4793 			(void) cpuid_insn(NULL, &regs);
4794 			return (regs.cp_ecx & CPUID_DEADLINE_TSC);
4795 		} else {
4796 			return (0);
4797 		}
4798 	default:
4799 		return (0);
4800 	}
4801 }
4802 
4803 #if defined(__amd64) && !defined(__xpv)
4804 /*
4805  * Patch in versions of bcopy for high performance Intel Nhm processors
4806  * and later...
4807  */
4808 void
4809 patch_memops(uint_t vendor)
4810 {
4811 	size_t cnt, i;
4812 	caddr_t to, from;
4813 
4814 	if ((vendor == X86_VENDOR_Intel) &&
4815 	    is_x86_feature(x86_featureset, X86FSET_SSE4_2)) {
4816 		cnt = &bcopy_patch_end - &bcopy_patch_start;
4817 		to = &bcopy_ck_size;
4818 		from = &bcopy_patch_start;
4819 		for (i = 0; i < cnt; i++) {
4820 			*to++ = *from++;
4821 		}
4822 	}
4823 }
4824 #endif  /* __amd64 && !__xpv */
4825 
4826 /*
4827  * This function finds the number of bits to represent the number of cores per
4828  * chip and the number of strands per core for the Intel platforms.
4829  * It re-uses the x2APIC cpuid code of the cpuid_pass2().
4830  */
4831 void
4832 cpuid_get_ext_topo(uint_t vendor, uint_t *core_nbits, uint_t *strand_nbits)
4833 {
4834 	struct cpuid_regs regs;
4835 	struct cpuid_regs *cp = &regs;
4836 
4837 	if (vendor != X86_VENDOR_Intel) {
4838 		return;
4839 	}
4840 
4841 	/* if the cpuid level is 0xB, extended topo is available. */
4842 	cp->cp_eax = 0;
4843 	if (__cpuid_insn(cp) >= 0xB) {
4844 
4845 		cp->cp_eax = 0xB;
4846 		cp->cp_edx = cp->cp_ebx = cp->cp_ecx = 0;
4847 		(void) __cpuid_insn(cp);
4848 
4849 		/*
4850 		 * Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero, which
4851 		 * indicates that the extended topology enumeration leaf is
4852 		 * available.
4853 		 */
4854 		if (cp->cp_ebx) {
4855 			uint_t coreid_shift = 0;
4856 			uint_t chipid_shift = 0;
4857 			uint_t i;
4858 			uint_t level;
4859 
4860 			for (i = 0; i < CPI_FNB_ECX_MAX; i++) {
4861 				cp->cp_eax = 0xB;
4862 				cp->cp_ecx = i;
4863 
4864 				(void) __cpuid_insn(cp);
4865 				level = CPI_CPU_LEVEL_TYPE(cp);
4866 
4867 				if (level == 1) {
4868 					/*
4869 					 * Thread level processor topology
4870 					 * Number of bits shift right APIC ID
4871 					 * to get the coreid.
4872 					 */
4873 					coreid_shift = BITX(cp->cp_eax, 4, 0);
4874 				} else if (level == 2) {
4875 					/*
4876 					 * Core level processor topology
4877 					 * Number of bits shift right APIC ID
4878 					 * to get the chipid.
4879 					 */
4880 					chipid_shift = BITX(cp->cp_eax, 4, 0);
4881 				}
4882 			}
4883 
4884 			if (coreid_shift > 0 && chipid_shift > coreid_shift) {
4885 				*strand_nbits = coreid_shift;
4886 				*core_nbits = chipid_shift - coreid_shift;
4887 			}
4888 		}
4889 	}
4890 }
4891