xref: /titanic_50/usr/src/uts/i86pc/ml/syscall_asm_amd64.s (revision efd31e1d839d4665462b5c267a1c654548082663)
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25#include <sys/asm_linkage.h>
26#include <sys/asm_misc.h>
27#include <sys/regset.h>
28#include <sys/privregs.h>
29#include <sys/psw.h>
30#include <sys/machbrand.h>
31
32#if defined(__lint)
33
34#include <sys/types.h>
35#include <sys/thread.h>
36#include <sys/systm.h>
37
38#else	/* __lint */
39
40#include <sys/segments.h>
41#include <sys/pcb.h>
42#include <sys/trap.h>
43#include <sys/ftrace.h>
44#include <sys/traptrace.h>
45#include <sys/clock.h>
46#include <sys/model.h>
47#include <sys/panic.h>
48
49#if defined(__xpv)
50#include <sys/hypervisor.h>
51#endif
52
53#include "assym.h"
54
55#endif	/* __lint */
56
57/*
58 * We implement five flavours of system call entry points
59 *
60 * -	syscall/sysretq		(amd64 generic)
61 * -	syscall/sysretl		(i386 plus SYSC bit)
62 * -	sysenter/sysexit	(i386 plus SEP bit)
63 * -	int/iret		(i386 generic)
64 * -	lcall/iret		(i386 generic)
65 *
66 * The current libc included in Solaris uses int/iret as the base unoptimized
67 * kernel entry method. Older libc implementations and legacy binaries may use
68 * the lcall call gate, so it must continue to be supported.
69 *
70 * System calls that use an lcall call gate are processed in trap() via a
71 * segment-not-present trap, i.e. lcalls are extremely slow(!).
72 *
73 * The basic pattern used in the 32-bit SYSC handler at this point in time is
74 * to have the bare minimum of assembler, and get to the C handlers as
75 * quickly as possible.
76 *
77 * The 64-bit handler is much closer to the sparcv9 handler; that's
78 * because of passing arguments in registers.  The 32-bit world still
79 * passes arguments on the stack -- that makes that handler substantially
80 * more complex.
81 *
82 * The two handlers share a few code fragments which are broken
83 * out into preprocessor macros below.
84 *
85 * XX64	come back and speed all this up later.  The 32-bit stuff looks
86 * especially easy to speed up the argument copying part ..
87 *
88 *
89 * Notes about segment register usage (c.f. the 32-bit kernel)
90 *
91 * In the 32-bit kernel, segment registers are dutifully saved and
92 * restored on all mode transitions because the kernel uses them directly.
93 * When the processor is running in 64-bit mode, segment registers are
94 * largely ignored.
95 *
96 * %cs and %ss
97 *	controlled by the hardware mechanisms that make mode transitions
98 *
99 * The remaining segment registers have to either be pointing at a valid
100 * descriptor i.e. with the 'present' bit set, or they can NULL descriptors
101 *
102 * %ds and %es
103 *	always ignored
104 *
105 * %fs and %gs
106 *	fsbase and gsbase are used to control the place they really point at.
107 *	The kernel only depends on %gs, and controls its own gsbase via swapgs
108 *
109 * Note that loading segment registers is still costly because the GDT
110 * lookup still happens (this is because the hardware can't know that we're
111 * not setting up these segment registers for a 32-bit program).  Thus we
112 * avoid doing this in the syscall path, and defer them to lwp context switch
113 * handlers, so the register values remain virtualized to the lwp.
114 */
115
116#if defined(SYSCALLTRACE)
117#define	ORL_SYSCALLTRACE(r32)		\
118	orl	syscalltrace(%rip), r32
119#else
120#define	ORL_SYSCALLTRACE(r32)
121#endif
122
123/*
124 * In the 32-bit kernel, we do absolutely nothing before getting into the
125 * brand callback checks.  In 64-bit land, we do swapgs and then come here.
126 * We assume that the %rsp- and %r15-stashing fields in the CPU structure
127 * are still unused.
128 *
129 * Check if a brand_mach_ops callback is defined for the specified callback_id
130 * type.  If so invoke it with the kernel's %gs value loaded and the following
131 * data on the stack:
132 *
133 * stack:  --------------------------------------
134 *      32 | callback pointer			|
135 *    | 24 | user (or interrupt) stack pointer	|
136 *    | 16 | lwp pointer			|
137 *    v  8 | userland return address		|
138 *       0 | callback wrapper return addr	|
139 *         --------------------------------------
140 *
141 * Since we're pushing the userland return address onto the kernel stack
142 * we need to get that address without accessing the user's stack (since we
143 * can't trust that data).  There are different ways to get the userland
144 * return address depending on how the syscall trap was made:
145 *
146 * a) For sys_syscall and sys_syscall32 the return address is in %rcx.
147 * b) For sys_sysenter the return address is in %rdx.
148 * c) For sys_int80 and sys_syscall_int (int91), upon entry into the macro,
149 *    the stack pointer points at the state saved when we took the interrupt:
150 *	 ------------------------
151 *    |  | user's %ss		|
152 *    |  | user's %esp		|
153 *    |  | EFLAGS register	|
154 *    v  | user's %cs		|
155 *       | user's %eip		|
156 *	 ------------------------
157 *
158 * The 2nd parameter to the BRAND_CALLBACK macro is either the
159 * BRAND_URET_FROM_REG or BRAND_URET_FROM_INTR_STACK macro.  These macros are
160 * used to generate the proper code to get the userland return address for
161 * each syscall entry point.
162 *
163 * The interface to the brand callbacks on the 64-bit kernel assumes %r15
164 * is available as a scratch register within the callback.  If the callback
165 * returns within the kernel then this macro will restore %r15.  If the
166 * callback is going to return directly to userland then it should restore
167 * %r15 before returning to userland.
168 */
169#define BRAND_URET_FROM_REG(rip_reg)					\
170	pushq	rip_reg			/* push the return address	*/
171
172/*
173 * The interrupt stack pointer we saved on entry to the BRAND_CALLBACK macro
174 * is currently pointing at the user return address (%eip).
175 */
176#define BRAND_URET_FROM_INTR_STACK()					\
177	movq	%gs:CPU_RTMP_RSP, %r15	/* grab the intr. stack pointer	*/ ;\
178	pushq	(%r15)			/* push the return address	*/
179
180#define	BRAND_CALLBACK(callback_id, push_userland_ret)			    \
181	movq	%rsp, %gs:CPU_RTMP_RSP	/* save the stack pointer	*/ ;\
182	movq	%r15, %gs:CPU_RTMP_R15	/* save %r15			*/ ;\
183	movq	%gs:CPU_THREAD, %r15	/* load the thread pointer	*/ ;\
184	movq	T_STACK(%r15), %rsp	/* switch to the kernel stack	*/ ;\
185	subq	$16, %rsp		/* save space for 2 pointers	*/ ;\
186	pushq	%r14			/* save %r14			*/ ;\
187	movq	%gs:CPU_RTMP_RSP, %r14					   ;\
188	movq	%r14, 8(%rsp)		/* stash the user stack pointer	*/ ;\
189	popq	%r14			/* restore %r14			*/ ;\
190	movq	T_LWP(%r15), %r15	/* load the lwp pointer		*/ ;\
191	pushq	%r15			/* push the lwp pointer		*/ ;\
192	movq	LWP_PROCP(%r15), %r15	/* load the proc pointer	*/ ;\
193	movq	P_BRAND(%r15), %r15	/* load the brand pointer	*/ ;\
194	movq	B_MACHOPS(%r15), %r15	/* load the machops pointer	*/ ;\
195	movq	_CONST(_MUL(callback_id, CPTRSIZE))(%r15), %r15		   ;\
196	cmpq	$0, %r15						   ;\
197	je	1f							   ;\
198	movq	%r15, 16(%rsp)		/* save the callback pointer	*/ ;\
199	push_userland_ret		/* push the return address	*/ ;\
200	call	*24(%rsp)		/* call callback		*/ ;\
2011:	movq	%gs:CPU_RTMP_R15, %r15	/* restore %r15			*/ ;\
202	movq	%gs:CPU_RTMP_RSP, %rsp	/* restore the stack pointer	*/
203
204#define	MSTATE_TRANSITION(from, to)		\
205	movl	$from, %edi;			\
206	movl	$to, %esi;			\
207	call	syscall_mstate
208
209/*
210 * Check to see if a simple (direct) return is possible i.e.
211 *
212 *	if (t->t_post_sys_ast | syscalltrace |
213 *	    lwp->lwp_pcb.pcb_rupdate == 1)
214 *		do full version	;
215 *
216 * Preconditions:
217 * -	t is curthread
218 * Postconditions:
219 * -	condition code NE is set if post-sys is too complex
220 * -	rtmp is zeroed if it isn't (we rely on this!)
221 * -	ltmp is smashed
222 */
223#define	CHECK_POSTSYS_NE(t, ltmp, rtmp)			\
224	movq	T_LWP(t), ltmp;				\
225	movzbl	PCB_RUPDATE(ltmp), rtmp;		\
226	ORL_SYSCALLTRACE(rtmp);				\
227	orl	T_POST_SYS_AST(t), rtmp;		\
228	cmpl	$0, rtmp
229
230/*
231 * Fix up the lwp, thread, and eflags for a successful return
232 *
233 * Preconditions:
234 * -	zwreg contains zero
235 */
236#define	SIMPLE_SYSCALL_POSTSYS(t, lwp, zwreg)		\
237	movb	$LWP_USER, LWP_STATE(lwp);		\
238	movw	zwreg, T_SYSNUM(t);			\
239	andb	$_CONST(0xffff - PS_C), REGOFF_RFL(%rsp)
240
241/*
242 * ASSERT(lwptoregs(lwp) == rp);
243 *
244 * This may seem obvious, but very odd things happen if this
245 * assertion is false
246 *
247 * Preconditions:
248 *	(%rsp is ready for normal call sequence)
249 * Postconditions (if assertion is true):
250 *	%r11 is smashed
251 *
252 * ASSERT(rp->r_cs == descnum)
253 *
254 * The code selector is written into the regs structure when the
255 * lwp stack is created.  We use this ASSERT to validate that
256 * the regs structure really matches how we came in.
257 *
258 * Preconditions:
259 *	(%rsp is ready for normal call sequence)
260 * Postconditions (if assertion is true):
261 *	-none-
262 *
263 * ASSERT(lwp->lwp_pcb.pcb_rupdate == 0);
264 *
265 * If this is false, it meant that we returned to userland without
266 * updating the segment registers as we were supposed to.
267 *
268 * Note that we must ensure no interrupts or other traps intervene
269 * between entering privileged mode and performing the assertion,
270 * otherwise we may perform a context switch on the thread, which
271 * will end up setting pcb_rupdate to 1 again.
272 */
273#if defined(DEBUG)
274
275#if !defined(__lint)
276
277__lwptoregs_msg:
278	.string	"syscall_asm_amd64.s:%d lwptoregs(%p) [%p] != rp [%p]"
279
280__codesel_msg:
281	.string	"syscall_asm_amd64.s:%d rp->r_cs [%ld] != %ld"
282
283__no_rupdate_msg:
284	.string	"syscall_asm_amd64.s:%d lwp %p, pcb_rupdate != 0"
285
286#endif	/* !__lint */
287
288#define	ASSERT_LWPTOREGS(lwp, rp)			\
289	movq	LWP_REGS(lwp), %r11;			\
290	cmpq	rp, %r11;				\
291	je	7f;					\
292	leaq	__lwptoregs_msg(%rip), %rdi;		\
293	movl	$__LINE__, %esi;			\
294	movq	lwp, %rdx;				\
295	movq	%r11, %rcx;				\
296	movq	rp, %r8;				\
297	xorl	%eax, %eax;				\
298	call	panic;					\
2997:
300
301#define	ASSERT_NO_RUPDATE_PENDING(lwp)			\
302	testb	$0x1, PCB_RUPDATE(lwp);			\
303	je	8f;					\
304	movq	lwp, %rdx;				\
305	leaq	__no_rupdate_msg(%rip), %rdi;		\
306	movl	$__LINE__, %esi;			\
307	xorl	%eax, %eax;				\
308	call	panic;					\
3098:
310
311#else
312#define	ASSERT_LWPTOREGS(lwp, rp)
313#define	ASSERT_NO_RUPDATE_PENDING(lwp)
314#endif
315
316/*
317 * Do the traptrace thing and restore any registers we used
318 * in situ.  Assumes that %rsp is pointing at the base of
319 * the struct regs, obviously ..
320 */
321#ifdef TRAPTRACE
322#define	SYSCALL_TRAPTRACE(ttype)				\
323	TRACE_PTR(%rdi, %rbx, %ebx, %rcx, ttype);		\
324	TRACE_REGS(%rdi, %rsp, %rbx, %rcx);			\
325	TRACE_STAMP(%rdi);	/* rdtsc clobbers %eax, %edx */	\
326	movq	REGOFF_RAX(%rsp), %rax;				\
327	movq	REGOFF_RBX(%rsp), %rbx;				\
328	movq	REGOFF_RCX(%rsp), %rcx;				\
329	movq	REGOFF_RDX(%rsp), %rdx;				\
330	movl	%eax, TTR_SYSNUM(%rdi);				\
331	movq	REGOFF_RDI(%rsp), %rdi
332
333#define	SYSCALL_TRAPTRACE32(ttype)				\
334	SYSCALL_TRAPTRACE(ttype);				\
335	/* paranoia: clean the top 32-bits of the registers */	\
336	orl	%eax, %eax;					\
337	orl	%ebx, %ebx;					\
338	orl	%ecx, %ecx;					\
339	orl	%edx, %edx;					\
340	orl	%edi, %edi
341#else	/* TRAPTRACE */
342#define	SYSCALL_TRAPTRACE(ttype)
343#define	SYSCALL_TRAPTRACE32(ttype)
344#endif	/* TRAPTRACE */
345
346/*
347 * The 64-bit libc syscall wrapper does this:
348 *
349 * fn(<args>)
350 * {
351 *	movq	%rcx, %r10	-- because syscall smashes %rcx
352 *	movl	$CODE, %eax
353 *	syscall
354 *	<error processing>
355 * }
356 *
357 * Thus when we come into the kernel:
358 *
359 *	%rdi, %rsi, %rdx, %r10, %r8, %r9 contain first six args
360 *	%rax is the syscall number
361 *	%r12-%r15 contain caller state
362 *
363 * The syscall instruction arranges that:
364 *
365 *	%rcx contains the return %rip
366 *	%r11d contains bottom 32-bits of %rflags
367 *	%rflags is masked (as determined by the SFMASK msr)
368 *	%cs is set to UCS_SEL (as determined by the STAR msr)
369 *	%ss is set to UDS_SEL (as determined by the STAR msr)
370 *	%rip is set to sys_syscall (as determined by the LSTAR msr)
371 *
372 * Or in other words, we have no registers available at all.
373 * Only swapgs can save us!
374 *
375 * Under the hypervisor, the swapgs has happened already.  However, the
376 * state of the world is very different from that we're familiar with.
377 *
378 * In particular, we have a stack structure like that for interrupt
379 * gates, except that the %cs and %ss registers are modified for reasons
380 * that are not entirely clear.  Critically, the %rcx/%r11 values do
381 * *not* reflect the usage of those registers under a 'real' syscall[1];
382 * the stack, therefore, looks like this:
383 *
384 *	0x0(rsp)	potentially junk %rcx
385 *	0x8(rsp)	potentially junk %r11
386 *	0x10(rsp)	user %rip
387 *	0x18(rsp)	modified %cs
388 *	0x20(rsp)	user %rflags
389 *	0x28(rsp)	user %rsp
390 *	0x30(rsp)	modified %ss
391 *
392 *
393 * and before continuing on, we must load the %rip into %rcx and the
394 * %rflags into %r11.
395 *
396 * [1] They used to, and we relied on it, but this was broken in 3.1.1.
397 * Sigh.
398 */
399#if defined(__xpv)
400#define	XPV_SYSCALL_PROD						\
401	movq	0x10(%rsp), %rcx;					\
402	movq	0x20(%rsp), %r11;					\
403	movq	0x28(%rsp), %rsp
404#else
405#define	XPV_SYSCALL_PROD /* nothing */
406#endif
407
408#if defined(__lint)
409
410/*ARGSUSED*/
411void
412sys_syscall()
413{}
414
415void
416_allsyscalls()
417{}
418
419size_t _allsyscalls_size;
420
421#else	/* __lint */
422
423	ENTRY_NP2(brand_sys_syscall,_allsyscalls)
424	SWAPGS				/* kernel gsbase */
425	XPV_SYSCALL_PROD
426	BRAND_CALLBACK(BRAND_CB_SYSCALL, BRAND_URET_FROM_REG(%rcx))
427	jmp	noprod_sys_syscall
428
429	ALTENTRY(sys_syscall)
430	SWAPGS				/* kernel gsbase */
431	XPV_SYSCALL_PROD
432
433noprod_sys_syscall:
434	movq	%r15, %gs:CPU_RTMP_R15
435	movq	%rsp, %gs:CPU_RTMP_RSP
436
437	movq	%gs:CPU_THREAD, %r15
438	movq	T_STACK(%r15), %rsp	/* switch from user to kernel stack */
439
440	ASSERT_UPCALL_MASK_IS_SET
441
442	movl	$UCS_SEL, REGOFF_CS(%rsp)
443	movq	%rcx, REGOFF_RIP(%rsp)		/* syscall: %rip -> %rcx */
444	movq	%r11, REGOFF_RFL(%rsp)		/* syscall: %rfl -> %r11d */
445	movl	$UDS_SEL, REGOFF_SS(%rsp)
446
447	movl	%eax, %eax			/* wrapper: sysc# -> %eax */
448	movq	%rdi, REGOFF_RDI(%rsp)
449	movq	%rsi, REGOFF_RSI(%rsp)
450	movq	%rdx, REGOFF_RDX(%rsp)
451	movq	%r10, REGOFF_RCX(%rsp)		/* wrapper: %rcx -> %r10 */
452	movq	%r10, %rcx			/* arg[3] for direct calls */
453
454	movq	%r8, REGOFF_R8(%rsp)
455	movq	%r9, REGOFF_R9(%rsp)
456	movq	%rax, REGOFF_RAX(%rsp)
457	movq	%rbx, REGOFF_RBX(%rsp)
458
459	movq	%rbp, REGOFF_RBP(%rsp)
460	movq	%r10, REGOFF_R10(%rsp)
461	movq	%gs:CPU_RTMP_RSP, %r11
462	movq	%r11, REGOFF_RSP(%rsp)
463	movq	%r12, REGOFF_R12(%rsp)
464
465	movq	%r13, REGOFF_R13(%rsp)
466	movq	%r14, REGOFF_R14(%rsp)
467	movq	%gs:CPU_RTMP_R15, %r10
468	movq	%r10, REGOFF_R15(%rsp)
469	movq	$0, REGOFF_SAVFP(%rsp)
470	movq	$0, REGOFF_SAVPC(%rsp)
471
472	/*
473	 * Copy these registers here in case we end up stopped with
474	 * someone (like, say, /proc) messing with our register state.
475	 * We don't -restore- them unless we have to in update_sregs.
476	 *
477	 * Since userland -can't- change fsbase or gsbase directly,
478	 * and capturing them involves two serializing instructions,
479	 * we don't bother to capture them here.
480	 */
481	xorl	%ebx, %ebx
482	movw	%ds, %bx
483	movq	%rbx, REGOFF_DS(%rsp)
484	movw	%es, %bx
485	movq	%rbx, REGOFF_ES(%rsp)
486	movw	%fs, %bx
487	movq	%rbx, REGOFF_FS(%rsp)
488	movw	%gs, %bx
489	movq	%rbx, REGOFF_GS(%rsp)
490
491	/*
492	 * Machine state saved in the regs structure on the stack
493	 * First six args in %rdi, %rsi, %rdx, %rcx, %r8, %r9
494	 * %eax is the syscall number
495	 * %rsp is the thread's stack, %r15 is curthread
496	 * REG_RSP(%rsp) is the user's stack
497	 */
498
499	SYSCALL_TRAPTRACE($TT_SYSC64)
500
501	movq	%rsp, %rbp
502
503	movq	T_LWP(%r15), %r14
504	ASSERT_NO_RUPDATE_PENDING(%r14)
505	ENABLE_INTR_FLAGS
506
507	MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
508	movl	REGOFF_RAX(%rsp), %eax	/* (%rax damaged by mstate call) */
509
510	ASSERT_LWPTOREGS(%r14, %rsp)
511
512	movb	$LWP_SYS, LWP_STATE(%r14)
513	incq	LWP_RU_SYSC(%r14)
514	movb	$NORMALRETURN, LWP_EOSYS(%r14)
515
516	incq	%gs:CPU_STATS_SYS_SYSCALL
517
518	movw	%ax, T_SYSNUM(%r15)
519	movzbl	T_PRE_SYS(%r15), %ebx
520	ORL_SYSCALLTRACE(%ebx)
521	testl	%ebx, %ebx
522	jne	_syscall_pre
523
524_syscall_invoke:
525	movq	REGOFF_RDI(%rbp), %rdi
526	movq	REGOFF_RSI(%rbp), %rsi
527	movq	REGOFF_RDX(%rbp), %rdx
528	movq	REGOFF_RCX(%rbp), %rcx
529	movq	REGOFF_R8(%rbp), %r8
530	movq	REGOFF_R9(%rbp), %r9
531
532	cmpl	$NSYSCALL, %eax
533	jae	_syscall_ill
534	shll	$SYSENT_SIZE_SHIFT, %eax
535	leaq	sysent(%rax), %rbx
536
537	call	*SY_CALLC(%rbx)
538
539	movq	%rax, %r12
540	movq	%rdx, %r13
541
542	/*
543	 * If the handler returns two ints, then we need to split the
544	 * 64-bit return value into two 32-bit values.
545	 */
546	testw	$SE_32RVAL2, SY_FLAGS(%rbx)
547	je	5f
548	movq	%r12, %r13
549	shrq	$32, %r13	/* upper 32-bits into %edx */
550	movl	%r12d, %r12d	/* lower 32-bits into %eax */
5515:
552	/*
553	 * Optimistically assume that there's no post-syscall
554	 * work to do.  (This is to avoid having to call syscall_mstate()
555	 * with interrupts disabled)
556	 */
557	MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
558
559	/*
560	 * We must protect ourselves from being descheduled here;
561	 * If we were, and we ended up on another cpu, or another
562	 * lwp got in ahead of us, it could change the segment
563	 * registers without us noticing before we return to userland.
564	 */
565	CLI(%r14)
566	CHECK_POSTSYS_NE(%r15, %r14, %ebx)
567	jne	_syscall_post
568	SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx)
569
570	movq	%r12, REGOFF_RAX(%rsp)
571	movq	%r13, REGOFF_RDX(%rsp)
572
573	/*
574	 * To get back to userland, we need the return %rip in %rcx and
575	 * the return %rfl in %r11d.  The sysretq instruction also arranges
576	 * to fix up %cs and %ss; everything else is our responsibility.
577	 */
578	movq	REGOFF_RDI(%rsp), %rdi
579	movq	REGOFF_RSI(%rsp), %rsi
580	movq	REGOFF_RDX(%rsp), %rdx
581	/* %rcx used to restore %rip value */
582
583	movq	REGOFF_R8(%rsp), %r8
584	movq	REGOFF_R9(%rsp), %r9
585	movq	REGOFF_RAX(%rsp), %rax
586	movq	REGOFF_RBX(%rsp), %rbx
587
588	movq	REGOFF_RBP(%rsp), %rbp
589	movq	REGOFF_R10(%rsp), %r10
590	/* %r11 used to restore %rfl value */
591	movq	REGOFF_R12(%rsp), %r12
592
593	movq	REGOFF_R13(%rsp), %r13
594	movq	REGOFF_R14(%rsp), %r14
595	movq	REGOFF_R15(%rsp), %r15
596
597	movq	REGOFF_RIP(%rsp), %rcx
598	movl	REGOFF_RFL(%rsp), %r11d
599
600#if defined(__xpv)
601	addq	$REGOFF_RIP, %rsp
602#else
603	movq	REGOFF_RSP(%rsp), %rsp
604#endif
605
606        /*
607         * There can be no instructions between the ALTENTRY below and
608	 * SYSRET or we could end up breaking brand support. See label usage
609         * in sn1_brand_syscall_callback for an example.
610         */
611	ASSERT_UPCALL_MASK_IS_SET
612#if defined(__xpv)
613	SYSRETQ
614        ALTENTRY(nopop_sys_syscall_swapgs_sysretq)
615
616	/*
617	 * We can only get here after executing a brand syscall
618	 * interposition callback handler and simply need to
619	 * "sysretq" back to userland. On the hypervisor this
620	 * involves the iret hypercall which requires us to construct
621	 * just enough of the stack needed for the hypercall.
622	 * (rip, cs, rflags, rsp, ss).
623	 */
624	movq    %rsp, %gs:CPU_RTMP_RSP		/* save user's rsp */
625	movq	%gs:CPU_THREAD, %r11
626	movq	T_STACK(%r11), %rsp
627
628	movq	%rcx, REGOFF_RIP(%rsp)
629	movl	$UCS_SEL, REGOFF_CS(%rsp)
630	movq	%gs:CPU_RTMP_RSP, %r11
631	movq	%r11, REGOFF_RSP(%rsp)
632	pushfq
633	popq	%r11				/* hypercall enables ints */
634	movq	%r11, REGOFF_RFL(%rsp)
635	movl	$UDS_SEL, REGOFF_SS(%rsp)
636	addq	$REGOFF_RIP, %rsp
637	/*
638	 * XXPV: see comment in SYSRETQ definition for future optimization
639	 *       we could take.
640	 */
641	ASSERT_UPCALL_MASK_IS_SET
642	SYSRETQ
643#else
644        ALTENTRY(nopop_sys_syscall_swapgs_sysretq)
645	SWAPGS				/* user gsbase */
646	SYSRETQ
647#endif
648        /*NOTREACHED*/
649        SET_SIZE(nopop_sys_syscall_swapgs_sysretq)
650
651_syscall_pre:
652	call	pre_syscall
653	movl	%eax, %r12d
654	testl	%eax, %eax
655	jne	_syscall_post_call
656	/*
657	 * Didn't abort, so reload the syscall args and invoke the handler.
658	 */
659	movzwl	T_SYSNUM(%r15), %eax
660	jmp	_syscall_invoke
661
662_syscall_ill:
663	call	nosys
664	movq	%rax, %r12
665	movq	%rdx, %r13
666	jmp	_syscall_post_call
667
668_syscall_post:
669	STI
670	/*
671	 * Sigh, our optimism wasn't justified, put it back to LMS_SYSTEM
672	 * so that we can account for the extra work it takes us to finish.
673	 */
674	MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
675_syscall_post_call:
676	movq	%r12, %rdi
677	movq	%r13, %rsi
678	call	post_syscall
679	MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
680	jmp	_sys_rtt
681	SET_SIZE(sys_syscall)
682	SET_SIZE(brand_sys_syscall)
683
684#endif	/* __lint */
685
686#if defined(__lint)
687
688/*ARGSUSED*/
689void
690sys_syscall32()
691{}
692
693#else	/* __lint */
694
695	ENTRY_NP(brand_sys_syscall32)
696	SWAPGS				/* kernel gsbase */
697	XPV_TRAP_POP
698	BRAND_CALLBACK(BRAND_CB_SYSCALL32, BRAND_URET_FROM_REG(%rcx))
699	jmp	nopop_sys_syscall32
700
701	ALTENTRY(sys_syscall32)
702	SWAPGS				/* kernel gsbase */
703	XPV_TRAP_POP
704
705nopop_sys_syscall32:
706	movl	%esp, %r10d
707	movq	%gs:CPU_THREAD, %r15
708	movq	T_STACK(%r15), %rsp
709	movl	%eax, %eax
710
711	movl	$U32CS_SEL, REGOFF_CS(%rsp)
712	movl	%ecx, REGOFF_RIP(%rsp)		/* syscall: %rip -> %rcx */
713	movq	%r11, REGOFF_RFL(%rsp)		/* syscall: %rfl -> %r11d */
714	movq	%r10, REGOFF_RSP(%rsp)
715	movl	$UDS_SEL, REGOFF_SS(%rsp)
716
717_syscall32_save:
718	movl	%edi, REGOFF_RDI(%rsp)
719	movl	%esi, REGOFF_RSI(%rsp)
720	movl	%ebp, REGOFF_RBP(%rsp)
721	movl	%ebx, REGOFF_RBX(%rsp)
722	movl	%edx, REGOFF_RDX(%rsp)
723	movl	%ecx, REGOFF_RCX(%rsp)
724	movl	%eax, REGOFF_RAX(%rsp)		/* wrapper: sysc# -> %eax */
725	movq	$0, REGOFF_SAVFP(%rsp)
726	movq	$0, REGOFF_SAVPC(%rsp)
727
728	/*
729	 * Copy these registers here in case we end up stopped with
730	 * someone (like, say, /proc) messing with our register state.
731	 * We don't -restore- them unless we have to in update_sregs.
732	 *
733	 * Since userland -can't- change fsbase or gsbase directly,
734	 * we don't bother to capture them here.
735	 */
736	xorl	%ebx, %ebx
737	movw	%ds, %bx
738	movq	%rbx, REGOFF_DS(%rsp)
739	movw	%es, %bx
740	movq	%rbx, REGOFF_ES(%rsp)
741	movw	%fs, %bx
742	movq	%rbx, REGOFF_FS(%rsp)
743	movw	%gs, %bx
744	movq	%rbx, REGOFF_GS(%rsp)
745
746	/*
747	 * Application state saved in the regs structure on the stack
748	 * %eax is the syscall number
749	 * %rsp is the thread's stack, %r15 is curthread
750	 * REG_RSP(%rsp) is the user's stack
751	 */
752
753	SYSCALL_TRAPTRACE32($TT_SYSC)
754
755	movq	%rsp, %rbp
756
757	movq	T_LWP(%r15), %r14
758	ASSERT_NO_RUPDATE_PENDING(%r14)
759
760	ENABLE_INTR_FLAGS
761
762	MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
763	movl	REGOFF_RAX(%rsp), %eax	/* (%rax damaged by mstate call) */
764
765	ASSERT_LWPTOREGS(%r14, %rsp)
766
767	incq	 %gs:CPU_STATS_SYS_SYSCALL
768
769	/*
770	 * Make some space for MAXSYSARGS (currently 8) 32-bit args placed
771	 * into 64-bit (long) arg slots, maintaining 16 byte alignment.  Or
772	 * more succinctly:
773	 *
774	 *	SA(MAXSYSARGS * sizeof (long)) == 64
775	 */
776#define	SYS_DROP	64			/* drop for args */
777	subq	$SYS_DROP, %rsp
778	movb	$LWP_SYS, LWP_STATE(%r14)
779	movq	%r15, %rdi
780	movq	%rsp, %rsi
781	call	syscall_entry
782
783	/*
784	 * Fetch the arguments copied onto the kernel stack and put
785	 * them in the right registers to invoke a C-style syscall handler.
786	 * %rax contains the handler address.
787	 *
788	 * Ideas for making all this go faster of course include simply
789	 * forcibly fetching 6 arguments from the user stack under lofault
790	 * protection, reverting to copyin_args only when watchpoints
791	 * are in effect.
792	 *
793	 * (If we do this, make sure that exec and libthread leave
794	 * enough space at the top of the stack to ensure that we'll
795	 * never do a fetch from an invalid page.)
796	 *
797	 * Lots of ideas here, but they won't really help with bringup B-)
798	 * Correctness can't wait, performance can wait a little longer ..
799	 */
800
801	movq	%rax, %rbx
802	movl	0(%rsp), %edi
803	movl	8(%rsp), %esi
804	movl	0x10(%rsp), %edx
805	movl	0x18(%rsp), %ecx
806	movl	0x20(%rsp), %r8d
807	movl	0x28(%rsp), %r9d
808
809	call	*SY_CALLC(%rbx)
810
811	movq	%rbp, %rsp	/* pop the args */
812
813	/*
814	 * amd64 syscall handlers -always- return a 64-bit value in %rax.
815	 * On the 32-bit kernel, they always return that value in %eax:%edx
816	 * as required by the 32-bit ABI.
817	 *
818	 * Simulate the same behaviour by unconditionally splitting the
819	 * return value in the same way.
820	 */
821	movq	%rax, %r13
822	shrq	$32, %r13	/* upper 32-bits into %edx */
823	movl	%eax, %r12d	/* lower 32-bits into %eax */
824
825	/*
826	 * Optimistically assume that there's no post-syscall
827	 * work to do.  (This is to avoid having to call syscall_mstate()
828	 * with interrupts disabled)
829	 */
830	MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
831
832	/*
833	 * We must protect ourselves from being descheduled here;
834	 * If we were, and we ended up on another cpu, or another
835	 * lwp got in ahead of us, it could change the segment
836	 * registers without us noticing before we return to userland.
837	 */
838	CLI(%r14)
839	CHECK_POSTSYS_NE(%r15, %r14, %ebx)
840	jne	_full_syscall_postsys32
841	SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx)
842
843	/*
844	 * To get back to userland, we need to put the return %rip in %rcx and
845	 * the return %rfl in %r11d.  The sysret instruction also arranges
846	 * to fix up %cs and %ss; everything else is our responsibility.
847	 */
848
849	movl	%r12d, %eax			/* %eax: rval1 */
850	movl	REGOFF_RBX(%rsp), %ebx
851	/* %ecx used for return pointer */
852	movl	%r13d, %edx			/* %edx: rval2 */
853	movl	REGOFF_RBP(%rsp), %ebp
854	movl	REGOFF_RSI(%rsp), %esi
855	movl	REGOFF_RDI(%rsp), %edi
856
857	movl	REGOFF_RFL(%rsp), %r11d		/* %r11 -> eflags */
858	movl	REGOFF_RIP(%rsp), %ecx		/* %ecx -> %eip */
859	movl	REGOFF_RSP(%rsp), %esp
860
861	ASSERT_UPCALL_MASK_IS_SET
862        ALTENTRY(nopop_sys_syscall32_swapgs_sysretl)
863	SWAPGS				/* user gsbase */
864	SYSRETL
865        SET_SIZE(nopop_sys_syscall32_swapgs_sysretl)
866	/*NOTREACHED*/
867
868_full_syscall_postsys32:
869	STI
870	/*
871	 * Sigh, our optimism wasn't justified, put it back to LMS_SYSTEM
872	 * so that we can account for the extra work it takes us to finish.
873	 */
874	MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
875	movq	%r15, %rdi
876	movq	%r12, %rsi			/* rval1 - %eax */
877	movq	%r13, %rdx			/* rval2 - %edx */
878	call	syscall_exit
879	MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
880	jmp	_sys_rtt
881	SET_SIZE(sys_syscall32)
882	SET_SIZE(brand_sys_syscall32)
883
884#endif	/* __lint */
885
886/*
887 * System call handler via the sysenter instruction
888 * Used only for 32-bit system calls on the 64-bit kernel.
889 *
890 * The caller in userland has arranged that:
891 *
892 * -	%eax contains the syscall number
893 * -	%ecx contains the user %esp
894 * -	%edx contains the return %eip
895 * -	the user stack contains the args to the syscall
896 *
897 * Hardware and (privileged) initialization code have arranged that by
898 * the time the sysenter instructions completes:
899 *
900 * - %rip is pointing to sys_sysenter (below).
901 * - %cs and %ss are set to kernel text and stack (data) selectors.
902 * - %rsp is pointing at the lwp's stack
903 * - interrupts have been disabled.
904 *
905 * Note that we are unable to return both "rvals" to userland with
906 * this call, as %edx is used by the sysexit instruction.
907 *
908 * One final complication in this routine is its interaction with
909 * single-stepping in a debugger.  For most of the system call mechanisms,
910 * the CPU automatically clears the single-step flag before we enter the
911 * kernel.  The sysenter mechanism does not clear the flag, so a user
912 * single-stepping through a libc routine may suddenly find him/herself
913 * single-stepping through the kernel.  To detect this, kmdb compares the
914 * trap %pc to the [brand_]sys_enter addresses on each single-step trap.
915 * If it finds that we have single-stepped to a sysenter entry point, it
916 * explicitly clears the flag and executes the sys_sysenter routine.
917 *
918 * One final complication in this final complication is the fact that we
919 * have two different entry points for sysenter: brand_sys_sysenter and
920 * sys_sysenter.  If we enter at brand_sys_sysenter and start single-stepping
921 * through the kernel with kmdb, we will eventually hit the instruction at
922 * sys_sysenter.  kmdb cannot distinguish between that valid single-step
923 * and the undesirable one mentioned above.  To avoid this situation, we
924 * simply add a jump over the instruction at sys_sysenter to make it
925 * impossible to single-step to it.
926 */
927#if defined(__lint)
928
929void
930sys_sysenter()
931{}
932
933#else	/* __lint */
934
935	ENTRY_NP(brand_sys_sysenter)
936	SWAPGS				/* kernel gsbase */
937	ALTENTRY(_brand_sys_sysenter_post_swapgs)
938	BRAND_CALLBACK(BRAND_CB_SYSENTER, BRAND_URET_FROM_REG(%rdx))
939	/*
940	 * Jump over sys_sysenter to allow single-stepping as described
941	 * above.
942	 */
943	jmp	_sys_sysenter_post_swapgs
944
945	ALTENTRY(sys_sysenter)
946	SWAPGS				/* kernel gsbase */
947
948	ALTENTRY(_sys_sysenter_post_swapgs)
949	movq	%gs:CPU_THREAD, %r15
950
951	movl	$U32CS_SEL, REGOFF_CS(%rsp)
952	movl	%ecx, REGOFF_RSP(%rsp)		/* wrapper: %esp -> %ecx */
953	movl	%edx, REGOFF_RIP(%rsp)		/* wrapper: %eip -> %edx */
954	pushfq
955	popq	%r10
956	movl	$UDS_SEL, REGOFF_SS(%rsp)
957
958	/*
959	 * Set the interrupt flag before storing the flags to the
960	 * flags image on the stack so we can return to user with
961	 * interrupts enabled if we return via sys_rtt_syscall32
962	 */
963	orq	$PS_IE, %r10
964	movq	%r10, REGOFF_RFL(%rsp)
965
966	movl	%edi, REGOFF_RDI(%rsp)
967	movl	%esi, REGOFF_RSI(%rsp)
968	movl	%ebp, REGOFF_RBP(%rsp)
969	movl	%ebx, REGOFF_RBX(%rsp)
970	movl	%edx, REGOFF_RDX(%rsp)
971	movl	%ecx, REGOFF_RCX(%rsp)
972	movl	%eax, REGOFF_RAX(%rsp)		/* wrapper: sysc# -> %eax */
973	movq	$0, REGOFF_SAVFP(%rsp)
974	movq	$0, REGOFF_SAVPC(%rsp)
975
976	/*
977	 * Copy these registers here in case we end up stopped with
978	 * someone (like, say, /proc) messing with our register state.
979	 * We don't -restore- them unless we have to in update_sregs.
980	 *
981	 * Since userland -can't- change fsbase or gsbase directly,
982	 * we don't bother to capture them here.
983	 */
984	xorl	%ebx, %ebx
985	movw	%ds, %bx
986	movq	%rbx, REGOFF_DS(%rsp)
987	movw	%es, %bx
988	movq	%rbx, REGOFF_ES(%rsp)
989	movw	%fs, %bx
990	movq	%rbx, REGOFF_FS(%rsp)
991	movw	%gs, %bx
992	movq	%rbx, REGOFF_GS(%rsp)
993
994	/*
995	 * Application state saved in the regs structure on the stack
996	 * %eax is the syscall number
997	 * %rsp is the thread's stack, %r15 is curthread
998	 * REG_RSP(%rsp) is the user's stack
999	 */
1000
1001	SYSCALL_TRAPTRACE($TT_SYSENTER)
1002
1003	movq	%rsp, %rbp
1004
1005	movq	T_LWP(%r15), %r14
1006	ASSERT_NO_RUPDATE_PENDING(%r14)
1007
1008	ENABLE_INTR_FLAGS
1009
1010	/*
1011	 * Catch 64-bit process trying to issue sysenter instruction
1012	 * on Nocona based systems.
1013	 */
1014	movq	LWP_PROCP(%r14), %rax
1015	cmpq	$DATAMODEL_ILP32, P_MODEL(%rax)
1016	je	7f
1017
1018	/*
1019	 * For a non-32-bit process, simulate a #ud, since that's what
1020	 * native hardware does.  The traptrace entry (above) will
1021	 * let you know what really happened.
1022	 */
1023	movq	$T_ILLINST, REGOFF_TRAPNO(%rsp)
1024	movq	REGOFF_CS(%rsp), %rdi
1025	movq	%rdi, REGOFF_ERR(%rsp)
1026	movq	%rsp, %rdi
1027	movq	REGOFF_RIP(%rsp), %rsi
1028	movl	%gs:CPU_ID, %edx
1029	call	trap
1030	jmp	_sys_rtt
10317:
1032
1033	MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
1034	movl	REGOFF_RAX(%rsp), %eax	/* (%rax damaged by mstate calls) */
1035
1036	ASSERT_LWPTOREGS(%r14, %rsp)
1037
1038	incq	%gs:CPU_STATS_SYS_SYSCALL
1039
1040	/*
1041	 * Make some space for MAXSYSARGS (currently 8) 32-bit args
1042	 * placed into 64-bit (long) arg slots, plus one 64-bit
1043	 * (long) arg count, maintaining 16 byte alignment.
1044	 */
1045	subq	$SYS_DROP, %rsp
1046	movb	$LWP_SYS, LWP_STATE(%r14)
1047	movq	%r15, %rdi
1048	movq	%rsp, %rsi
1049	call	syscall_entry
1050
1051	/*
1052	 * Fetch the arguments copied onto the kernel stack and put
1053	 * them in the right registers to invoke a C-style syscall handler.
1054	 * %rax contains the handler address.
1055	 */
1056	movq	%rax, %rbx
1057	movl	0(%rsp), %edi
1058	movl	8(%rsp), %esi
1059	movl	0x10(%rsp), %edx
1060	movl	0x18(%rsp), %ecx
1061	movl	0x20(%rsp), %r8d
1062	movl	0x28(%rsp), %r9d
1063
1064	call	*SY_CALLC(%rbx)
1065
1066	movq	%rbp, %rsp	/* pop the args */
1067
1068	/*
1069	 * amd64 syscall handlers -always- return a 64-bit value in %rax.
1070	 * On the 32-bit kernel, the always return that value in %eax:%edx
1071	 * as required by the 32-bit ABI.
1072	 *
1073	 * Simulate the same behaviour by unconditionally splitting the
1074	 * return value in the same way.
1075	 */
1076	movq	%rax, %r13
1077	shrq	$32, %r13	/* upper 32-bits into %edx */
1078	movl	%eax, %r12d	/* lower 32-bits into %eax */
1079
1080	/*
1081	 * Optimistically assume that there's no post-syscall
1082	 * work to do.  (This is to avoid having to call syscall_mstate()
1083	 * with interrupts disabled)
1084	 */
1085	MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
1086
1087	/*
1088	 * We must protect ourselves from being descheduled here;
1089	 * If we were, and we ended up on another cpu, or another
1090	 * lwp got int ahead of us, it could change the segment
1091	 * registers without us noticing before we return to userland.
1092	 */
1093	cli
1094	CHECK_POSTSYS_NE(%r15, %r14, %ebx)
1095	jne	_full_syscall_postsys32
1096	SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx)
1097
1098	/*
1099	 * To get back to userland, load up the 32-bit registers and
1100	 * sysexit back where we came from.
1101	 */
1102
1103	/*
1104	 * Interrupts will be turned on by the 'sti' executed just before
1105	 * sysexit.  The following ensures that restoring the user's rflags
1106	 * doesn't enable interrupts too soon.
1107	 */
1108	andq	$_BITNOT(PS_IE), REGOFF_RFL(%rsp)
1109
1110	/*
1111	 * (There's no point in loading up %edx because the sysexit
1112	 * mechanism smashes it.)
1113	 */
1114	movl	%r12d, %eax
1115	movl	REGOFF_RBX(%rsp), %ebx
1116	movl	REGOFF_RBP(%rsp), %ebp
1117	movl	REGOFF_RSI(%rsp), %esi
1118	movl	REGOFF_RDI(%rsp), %edi
1119
1120	movl	REGOFF_RIP(%rsp), %edx	/* sysexit: %edx -> %eip */
1121	pushq	REGOFF_RFL(%rsp)
1122	popfq
1123	movl	REGOFF_RSP(%rsp), %ecx	/* sysexit: %ecx -> %esp */
1124        ALTENTRY(sys_sysenter_swapgs_sysexit)
1125	swapgs
1126	sti
1127	sysexit
1128	SET_SIZE(sys_sysenter_swapgs_sysexit)
1129	SET_SIZE(sys_sysenter)
1130	SET_SIZE(_sys_sysenter_post_swapgs)
1131	SET_SIZE(brand_sys_sysenter)
1132
1133#endif	/* __lint */
1134
1135/*
1136 * This is the destination of the "int $T_SYSCALLINT" interrupt gate, used by
1137 * the generic i386 libc to do system calls. We do a small amount of setup
1138 * before jumping into the existing sys_syscall32 path.
1139 */
1140#if defined(__lint)
1141
1142/*ARGSUSED*/
1143void
1144sys_syscall_int()
1145{}
1146
1147#else	/* __lint */
1148
1149	ENTRY_NP(brand_sys_syscall_int)
1150	SWAPGS				/* kernel gsbase */
1151	XPV_TRAP_POP
1152	BRAND_CALLBACK(BRAND_CB_INT91, BRAND_URET_FROM_INTR_STACK())
1153	jmp	nopop_syscall_int
1154
1155	ALTENTRY(sys_syscall_int)
1156	SWAPGS				/* kernel gsbase */
1157	XPV_TRAP_POP
1158
1159nopop_syscall_int:
1160	movq	%gs:CPU_THREAD, %r15
1161	movq	T_STACK(%r15), %rsp
1162	movl	%eax, %eax
1163	/*
1164	 * Set t_post_sys on this thread to force ourselves out via the slow
1165	 * path. It might be possible at some later date to optimize this out
1166	 * and use a faster return mechanism.
1167	 */
1168	movb	$1, T_POST_SYS(%r15)
1169	CLEAN_CS
1170	jmp	_syscall32_save
1171	/*
1172	 * There should be no instructions between this label and SWAPGS/IRET
1173	 * or we could end up breaking branded zone support. See the usage of
1174	 * this label in lx_brand_int80_callback and sn1_brand_int91_callback
1175	 * for examples.
1176	 */
1177        ALTENTRY(sys_sysint_swapgs_iret)
1178	SWAPGS				/* user gsbase */
1179	IRET
1180	/*NOTREACHED*/
1181	SET_SIZE(sys_sysint_swapgs_iret)
1182	SET_SIZE(sys_syscall_int)
1183	SET_SIZE(brand_sys_syscall_int)
1184
1185#endif	/* __lint */
1186
1187/*
1188 * Legacy 32-bit applications and old libc implementations do lcalls;
1189 * we should never get here because the LDT entry containing the syscall
1190 * segment descriptor has the "segment present" bit cleared, which means
1191 * we end up processing those system calls in trap() via a not-present trap.
1192 *
1193 * We do it this way because a call gate unhelpfully does -nothing- to the
1194 * interrupt flag bit, so an interrupt can run us just after the lcall
1195 * completes, but just before the swapgs takes effect.   Thus the INTR_PUSH and
1196 * INTR_POP paths would have to be slightly more complex to dance around
1197 * this problem, and end up depending explicitly on the first
1198 * instruction of this handler being either swapgs or cli.
1199 */
1200
1201#if defined(__lint)
1202
1203/*ARGSUSED*/
1204void
1205sys_lcall32()
1206{}
1207
1208#else	/* __lint */
1209
1210	ENTRY_NP(sys_lcall32)
1211	SWAPGS				/* kernel gsbase */
1212	pushq	$0
1213	pushq	%rbp
1214	movq	%rsp, %rbp
1215	leaq	__lcall_panic_str(%rip), %rdi
1216	xorl	%eax, %eax
1217	call	panic
1218	SET_SIZE(sys_lcall32)
1219
1220__lcall_panic_str:
1221	.string	"sys_lcall32: shouldn't be here!"
1222
1223/*
1224 * Declare a uintptr_t which covers the entire pc range of syscall
1225 * handlers for the stack walkers that need this.
1226 */
1227	.align	CPTRSIZE
1228	.globl	_allsyscalls_size
1229	.type	_allsyscalls_size, @object
1230_allsyscalls_size:
1231	.NWORD	. - _allsyscalls
1232	SET_SIZE(_allsyscalls_size)
1233
1234#endif	/* __lint */
1235
1236/*
1237 * These are the thread context handlers for lwps using sysenter/sysexit.
1238 */
1239
1240#if defined(__lint)
1241
1242/*ARGSUSED*/
1243void
1244sep_save(void *ksp)
1245{}
1246
1247/*ARGSUSED*/
1248void
1249sep_restore(void *ksp)
1250{}
1251
1252#else	/* __lint */
1253
1254	/*
1255	 * setting this value to zero as we switch away causes the
1256	 * stack-pointer-on-sysenter to be NULL, ensuring that we
1257	 * don't silently corrupt another (preempted) thread stack
1258	 * when running an lwp that (somehow) didn't get sep_restore'd
1259	 */
1260	ENTRY_NP(sep_save)
1261	xorl	%edx, %edx
1262	xorl	%eax, %eax
1263	movl	$MSR_INTC_SEP_ESP, %ecx
1264	wrmsr
1265	ret
1266	SET_SIZE(sep_save)
1267
1268	/*
1269	 * Update the kernel stack pointer as we resume onto this cpu.
1270	 */
1271	ENTRY_NP(sep_restore)
1272	movq	%rdi, %rdx
1273	shrq	$32, %rdx
1274	movl	%edi, %eax
1275	movl	$MSR_INTC_SEP_ESP, %ecx
1276	wrmsr
1277	ret
1278	SET_SIZE(sep_restore)
1279
1280#endif	/* __lint */
1281