xref: /titanic_50/usr/src/uts/i86pc/ml/syscall_asm_amd64.s (revision 5c51f1241dbbdf2656d0e10011981411ed0c9673)
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#include <sys/asm_linkage.h>
27#include <sys/asm_misc.h>
28#include <sys/regset.h>
29#include <sys/privregs.h>
30#include <sys/psw.h>
31#include <sys/machbrand.h>
32
33#if defined(__lint)
34
35#include <sys/types.h>
36#include <sys/thread.h>
37#include <sys/systm.h>
38
39#else	/* __lint */
40
41#include <sys/segments.h>
42#include <sys/pcb.h>
43#include <sys/trap.h>
44#include <sys/ftrace.h>
45#include <sys/traptrace.h>
46#include <sys/clock.h>
47#include <sys/model.h>
48#include <sys/panic.h>
49
50#if defined(__xpv)
51#include <sys/hypervisor.h>
52#endif
53
54#include "assym.h"
55
56#endif	/* __lint */
57
58/*
59 * We implement five flavours of system call entry points
60 *
61 * -	syscall/sysretq		(amd64 generic)
62 * -	syscall/sysretl		(i386 plus SYSC bit)
63 * -	sysenter/sysexit	(i386 plus SEP bit)
64 * -	int/iret		(i386 generic)
65 * -	lcall/iret		(i386 generic)
66 *
67 * The current libc included in Solaris uses int/iret as the base unoptimized
68 * kernel entry method. Older libc implementations and legacy binaries may use
69 * the lcall call gate, so it must continue to be supported.
70 *
71 * System calls that use an lcall call gate are processed in trap() via a
72 * segment-not-present trap, i.e. lcalls are extremely slow(!).
73 *
74 * The basic pattern used in the 32-bit SYSC handler at this point in time is
75 * to have the bare minimum of assembler, and get to the C handlers as
76 * quickly as possible.
77 *
78 * The 64-bit handler is much closer to the sparcv9 handler; that's
79 * because of passing arguments in registers.  The 32-bit world still
80 * passes arguments on the stack -- that makes that handler substantially
81 * more complex.
82 *
83 * The two handlers share a few code fragments which are broken
84 * out into preprocessor macros below.
85 *
86 * XX64	come back and speed all this up later.  The 32-bit stuff looks
87 * especially easy to speed up the argument copying part ..
88 *
89 *
90 * Notes about segment register usage (c.f. the 32-bit kernel)
91 *
92 * In the 32-bit kernel, segment registers are dutifully saved and
93 * restored on all mode transitions because the kernel uses them directly.
94 * When the processor is running in 64-bit mode, segment registers are
95 * largely ignored.
96 *
97 * %cs and %ss
98 *	controlled by the hardware mechanisms that make mode transitions
99 *
100 * The remaining segment registers have to either be pointing at a valid
101 * descriptor i.e. with the 'present' bit set, or they can NULL descriptors
102 *
103 * %ds and %es
104 *	always ignored
105 *
106 * %fs and %gs
107 *	fsbase and gsbase are used to control the place they really point at.
108 *	The kernel only depends on %gs, and controls its own gsbase via swapgs
109 *
110 * Note that loading segment registers is still costly because the GDT
111 * lookup still happens (this is because the hardware can't know that we're
112 * not setting up these segment registers for a 32-bit program).  Thus we
113 * avoid doing this in the syscall path, and defer them to lwp context switch
114 * handlers, so the register values remain virtualized to the lwp.
115 */
116
117#if defined(SYSCALLTRACE)
118#define	ORL_SYSCALLTRACE(r32)		\
119	orl	syscalltrace(%rip), r32
120#else
121#define	ORL_SYSCALLTRACE(r32)
122#endif
123
124/*
125 * In the 32-bit kernel, we do absolutely nothing before getting into the
126 * brand callback checks.  In 64-bit land, we do swapgs and then come here.
127 * We assume that the %rsp- and %r15-stashing fields in the CPU structure
128 * are still unused.
129 *
130 * When the callback is invoked, we will be on the user's %gs and
131 * the stack will look like this:
132 *
133 * stack:  --------------------------------------
134 *         | callback pointer			|
135 *    |    | user stack pointer			|
136 *    |    | lwp pointer			|
137 *    v    | userland return address		|
138 *         | callback wrapper return addr	|
139 *         --------------------------------------
140 *
141 */
142#define	BRAND_CALLBACK(callback_id)					    \
143	movq	%rsp, %gs:CPU_RTMP_RSP	/* save the stack pointer	*/ ;\
144	movq	%r15, %gs:CPU_RTMP_R15	/* save %r15			*/ ;\
145	movq	%gs:CPU_THREAD, %r15	/* load the thread pointer	*/ ;\
146	movq	T_STACK(%r15), %rsp	/* switch to the kernel stack	*/ ;\
147	subq	$16, %rsp		/* save space for two pointers	*/ ;\
148	pushq	%r14			/* save %r14			*/ ;\
149	movq	%gs:CPU_RTMP_RSP, %r14					   ;\
150	movq	%r14, 8(%rsp)		/* stash the user stack pointer	*/ ;\
151	popq	%r14			/* restore %r14			*/ ;\
152	movq	T_LWP(%r15), %r15	/* load the lwp pointer		*/ ;\
153	pushq	%r15			/* push the lwp pointer		*/ ;\
154	movq	LWP_PROCP(%r15), %r15	/* load the proc pointer	*/ ;\
155	movq	P_BRAND(%r15), %r15	/* load the brand pointer	*/ ;\
156	movq	B_MACHOPS(%r15), %r15	/* load the machops pointer	*/ ;\
157	movq	_CONST(_MUL(callback_id, CPTRSIZE))(%r15), %r15		   ;\
158	cmpq	$0, %r15						   ;\
159	je	1f							   ;\
160	movq	%r15, 16(%rsp)		/* save the callback pointer	*/ ;\
161	movq	%gs:CPU_RTMP_RSP, %r15	/* grab the user stack pointer	*/ ;\
162	pushq	(%r15)			/* push the return address	*/ ;\
163	movq	%gs:CPU_RTMP_R15, %r15	/* restore %r15			*/ ;\
164	SWAPGS				/* user gsbase                  */ ;\
165	call	*24(%rsp)		/* call callback		*/ ;\
166	SWAPGS				/* kernel gsbase		*/ ;\
1671:	movq	%gs:CPU_RTMP_R15, %r15	/* restore %r15			*/ ;\
168	movq	%gs:CPU_RTMP_RSP, %rsp	/* restore the stack pointer	*/
169
170#define	MSTATE_TRANSITION(from, to)		\
171	movl	$from, %edi;			\
172	movl	$to, %esi;			\
173	call	syscall_mstate
174
175/*
176 * Check to see if a simple (direct) return is possible i.e.
177 *
178 *	if (t->t_post_sys_ast | syscalltrace |
179 *	    lwp->lwp_pcb.pcb_rupdate == 1)
180 *		do full version	;
181 *
182 * Preconditions:
183 * -	t is curthread
184 * Postconditions:
185 * -	condition code NE is set if post-sys is too complex
186 * -	rtmp is zeroed if it isn't (we rely on this!)
187 * -	ltmp is smashed
188 */
189#define	CHECK_POSTSYS_NE(t, ltmp, rtmp)			\
190	movq	T_LWP(t), ltmp;				\
191	movzbl	PCB_RUPDATE(ltmp), rtmp;		\
192	ORL_SYSCALLTRACE(rtmp);				\
193	orl	T_POST_SYS_AST(t), rtmp;		\
194	cmpl	$0, rtmp
195
196/*
197 * Fix up the lwp, thread, and eflags for a successful return
198 *
199 * Preconditions:
200 * -	zwreg contains zero
201 */
202#define	SIMPLE_SYSCALL_POSTSYS(t, lwp, zwreg)		\
203	movb	$LWP_USER, LWP_STATE(lwp);		\
204	movw	zwreg, T_SYSNUM(t);			\
205	andb	$_CONST(0xffff - PS_C), REGOFF_RFL(%rsp)
206
207/*
208 * ASSERT(lwptoregs(lwp) == rp);
209 *
210 * This may seem obvious, but very odd things happen if this
211 * assertion is false
212 *
213 * Preconditions:
214 *	(%rsp is ready for normal call sequence)
215 * Postconditions (if assertion is true):
216 *	%r11 is smashed
217 *
218 * ASSERT(rp->r_cs == descnum)
219 *
220 * The code selector is written into the regs structure when the
221 * lwp stack is created.  We use this ASSERT to validate that
222 * the regs structure really matches how we came in.
223 *
224 * Preconditions:
225 *	(%rsp is ready for normal call sequence)
226 * Postconditions (if assertion is true):
227 *	-none-
228 *
229 * ASSERT(lwp->lwp_pcb.pcb_rupdate == 0);
230 *
231 * If this is false, it meant that we returned to userland without
232 * updating the segment registers as we were supposed to.
233 *
234 * Note that we must ensure no interrupts or other traps intervene
235 * between entering privileged mode and performing the assertion,
236 * otherwise we may perform a context switch on the thread, which
237 * will end up setting pcb_rupdate to 1 again.
238 */
239#if defined(DEBUG)
240
241#if !defined(__lint)
242
243__lwptoregs_msg:
244	.string	"syscall_asm_amd64.s:%d lwptoregs(%p) [%p] != rp [%p]"
245
246__codesel_msg:
247	.string	"syscall_asm_amd64.s:%d rp->r_cs [%ld] != %ld"
248
249__no_rupdate_msg:
250	.string	"syscall_asm_amd64.s:%d lwp %p, pcb_rupdate != 0"
251
252#endif	/* !__lint */
253
254#define	ASSERT_LWPTOREGS(lwp, rp)			\
255	movq	LWP_REGS(lwp), %r11;			\
256	cmpq	rp, %r11;				\
257	je	7f;					\
258	leaq	__lwptoregs_msg(%rip), %rdi;		\
259	movl	$__LINE__, %esi;			\
260	movq	lwp, %rdx;				\
261	movq	%r11, %rcx;				\
262	movq	rp, %r8;				\
263	xorl	%eax, %eax;				\
264	call	panic;					\
2657:
266
267#define	ASSERT_NO_RUPDATE_PENDING(lwp)			\
268	testb	$0x1, PCB_RUPDATE(lwp);			\
269	je	8f;					\
270	movq	lwp, %rdx;				\
271	leaq	__no_rupdate_msg(%rip), %rdi;		\
272	movl	$__LINE__, %esi;			\
273	xorl	%eax, %eax;				\
274	call	panic;					\
2758:
276
277#else
278#define	ASSERT_LWPTOREGS(lwp, rp)
279#define	ASSERT_NO_RUPDATE_PENDING(lwp)
280#endif
281
282/*
283 * Do the traptrace thing and restore any registers we used
284 * in situ.  Assumes that %rsp is pointing at the base of
285 * the struct regs, obviously ..
286 */
287#ifdef TRAPTRACE
288#define	SYSCALL_TRAPTRACE(ttype)				\
289	TRACE_PTR(%rdi, %rbx, %ebx, %rcx, ttype);		\
290	TRACE_REGS(%rdi, %rsp, %rbx, %rcx);			\
291	TRACE_STAMP(%rdi);	/* rdtsc clobbers %eax, %edx */	\
292	movq	REGOFF_RAX(%rsp), %rax;				\
293	movq	REGOFF_RBX(%rsp), %rbx;				\
294	movq	REGOFF_RCX(%rsp), %rcx;				\
295	movq	REGOFF_RDX(%rsp), %rdx;				\
296	movl	%eax, TTR_SYSNUM(%rdi);				\
297	movq	REGOFF_RDI(%rsp), %rdi
298
299#define	SYSCALL_TRAPTRACE32(ttype)				\
300	SYSCALL_TRAPTRACE(ttype);				\
301	/* paranoia: clean the top 32-bits of the registers */	\
302	orl	%eax, %eax;					\
303	orl	%ebx, %ebx;					\
304	orl	%ecx, %ecx;					\
305	orl	%edx, %edx;					\
306	orl	%edi, %edi
307#else	/* TRAPTRACE */
308#define	SYSCALL_TRAPTRACE(ttype)
309#define	SYSCALL_TRAPTRACE32(ttype)
310#endif	/* TRAPTRACE */
311
312/*
313 * The 64-bit libc syscall wrapper does this:
314 *
315 * fn(<args>)
316 * {
317 *	movq	%rcx, %r10	-- because syscall smashes %rcx
318 *	movl	$CODE, %eax
319 *	syscall
320 *	<error processing>
321 * }
322 *
323 * Thus when we come into the kernel:
324 *
325 *	%rdi, %rsi, %rdx, %r10, %r8, %r9 contain first six args
326 *	%rax is the syscall number
327 *	%r12-%r15 contain caller state
328 *
329 * The syscall instruction arranges that:
330 *
331 *	%rcx contains the return %rip
332 *	%r11d contains bottom 32-bits of %rflags
333 *	%rflags is masked (as determined by the SFMASK msr)
334 *	%cs is set to UCS_SEL (as determined by the STAR msr)
335 *	%ss is set to UDS_SEL (as determined by the STAR msr)
336 *	%rip is set to sys_syscall (as determined by the LSTAR msr)
337 *
338 * Or in other words, we have no registers available at all.
339 * Only swapgs can save us!
340 *
341 * Under the hypervisor, the swapgs has happened already.  However, the
342 * state of the world is very different from that we're familiar with.
343 *
344 * In particular, we have a stack structure like that for interrupt
345 * gates, except that the %cs and %ss registers are modified for reasons
346 * that are not entirely clear.  Critically, the %rcx/%r11 values do
347 * *not* reflect the usage of those registers under a 'real' syscall[1];
348 * the stack, therefore, looks like this:
349 *
350 *	0x0(rsp)	potentially junk %rcx
351 *	0x8(rsp)	potentially junk %r11
352 *	0x10(rsp)	user %rip
353 *	0x18(rsp)	modified %cs
354 *	0x20(rsp)	user %rflags
355 *	0x28(rsp)	user %rsp
356 *	0x30(rsp)	modified %ss
357 *
358 *
359 * and before continuing on, we must load the %rip into %rcx and the
360 * %rflags into %r11.
361 *
362 * [1] They used to, and we relied on it, but this was broken in 3.1.1.
363 * Sigh.
364 */
365
366#if defined(__xpv)
367#define	XPV_SYSCALL_PROD		\
368	XPV_TRAP_POP;			\
369	movq	(%rsp), %rcx;		\
370	movq	0x10(%rsp), %r11
371#else
372#define	XPV_SYSCALL_PROD /* nothing */
373#endif
374
375#if defined(__lint)
376
377/*ARGSUSED*/
378void
379sys_syscall()
380{}
381
382void
383_allsyscalls()
384{}
385
386size_t _allsyscalls_size;
387
388#else	/* __lint */
389
390	ENTRY_NP2(brand_sys_syscall,_allsyscalls)
391	SWAPGS				/* kernel gsbase */
392	XPV_SYSCALL_PROD
393	BRAND_CALLBACK(BRAND_CB_SYSCALL)
394	SWAPGS				/* user gsbase */
395
396#if defined(__xpv)
397	jmp	noprod_sys_syscall
398#endif
399
400	ALTENTRY(sys_syscall)
401	SWAPGS				/* kernel gsbase */
402	XPV_SYSCALL_PROD
403
404noprod_sys_syscall:
405	ASSERT_UPCALL_MASK_IS_SET
406
407	movq	%r15, %gs:CPU_RTMP_R15
408#if defined(__xpv)
409	movq	0x18(%rsp), %r15		/* save user stack */
410	movq	%r15, %gs:CPU_RTMP_RSP
411#else
412	movq	%rsp, %gs:CPU_RTMP_RSP
413#endif	/* __xpv */
414
415	movq	%gs:CPU_THREAD, %r15
416	movq	T_STACK(%r15), %rsp
417
418	movl	$UCS_SEL, REGOFF_CS(%rsp)
419	movq	%rcx, REGOFF_RIP(%rsp)		/* syscall: %rip -> %rcx */
420	movq	%r11, REGOFF_RFL(%rsp)		/* syscall: %rfl -> %r11d */
421	movl	$UDS_SEL, REGOFF_SS(%rsp)
422
423	movl	%eax, %eax			/* wrapper: sysc# -> %eax */
424	movq	%rdi, REGOFF_RDI(%rsp)
425	movq	%rsi, REGOFF_RSI(%rsp)
426	movq	%rdx, REGOFF_RDX(%rsp)
427	movq	%r10, REGOFF_RCX(%rsp)		/* wrapper: %rcx -> %r10 */
428	movq	%r10, %rcx			/* arg[3] for direct calls */
429
430	movq	%r8, REGOFF_R8(%rsp)
431	movq	%r9, REGOFF_R9(%rsp)
432	movq	%rax, REGOFF_RAX(%rsp)
433	movq	%rbx, REGOFF_RBX(%rsp)
434
435	movq	%rbp, REGOFF_RBP(%rsp)
436	movq	%r10, REGOFF_R10(%rsp)
437	movq	%gs:CPU_RTMP_RSP, %r11
438	movq	%r11, REGOFF_RSP(%rsp)
439	movq	%r12, REGOFF_R12(%rsp)
440
441	movq	%r13, REGOFF_R13(%rsp)
442	movq	%r14, REGOFF_R14(%rsp)
443	movq	%gs:CPU_RTMP_R15, %r10
444	movq	%r10, REGOFF_R15(%rsp)
445	movq	$0, REGOFF_SAVFP(%rsp)
446	movq	$0, REGOFF_SAVPC(%rsp)
447
448	/*
449	 * Copy these registers here in case we end up stopped with
450	 * someone (like, say, /proc) messing with our register state.
451	 * We don't -restore- them unless we have to in update_sregs.
452	 *
453	 * Since userland -can't- change fsbase or gsbase directly,
454	 * and capturing them involves two serializing instructions,
455	 * we don't bother to capture them here.
456	 */
457	xorl	%ebx, %ebx
458	movw	%ds, %bx
459	movq	%rbx, REGOFF_DS(%rsp)
460	movw	%es, %bx
461	movq	%rbx, REGOFF_ES(%rsp)
462	movw	%fs, %bx
463	movq	%rbx, REGOFF_FS(%rsp)
464	movw	%gs, %bx
465	movq	%rbx, REGOFF_GS(%rsp)
466
467	/*
468	 * Machine state saved in the regs structure on the stack
469	 * First six args in %rdi, %rsi, %rdx, %rcx, %r8, %r9
470	 * %eax is the syscall number
471	 * %rsp is the thread's stack, %r15 is curthread
472	 * REG_RSP(%rsp) is the user's stack
473	 */
474
475	SYSCALL_TRAPTRACE($TT_SYSC64)
476
477	movq	%rsp, %rbp
478
479	movq	T_LWP(%r15), %r14
480	ASSERT_NO_RUPDATE_PENDING(%r14)
481	ENABLE_INTR_FLAGS
482
483	MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
484	movl	REGOFF_RAX(%rsp), %eax	/* (%rax damaged by mstate call) */
485
486	ASSERT_LWPTOREGS(%r14, %rsp)
487
488	movb	$LWP_SYS, LWP_STATE(%r14)
489	incq	LWP_RU_SYSC(%r14)
490	movb	$NORMALRETURN, LWP_EOSYS(%r14)
491
492	incq	%gs:CPU_STATS_SYS_SYSCALL
493
494	movw	%ax, T_SYSNUM(%r15)
495	movzbl	T_PRE_SYS(%r15), %ebx
496	ORL_SYSCALLTRACE(%ebx)
497	testl	%ebx, %ebx
498	jne	_syscall_pre
499
500_syscall_invoke:
501	movq	REGOFF_RDI(%rbp), %rdi
502	movq	REGOFF_RSI(%rbp), %rsi
503	movq	REGOFF_RDX(%rbp), %rdx
504	movq	REGOFF_RCX(%rbp), %rcx
505	movq	REGOFF_R8(%rbp), %r8
506	movq	REGOFF_R9(%rbp), %r9
507
508	cmpl	$NSYSCALL, %eax
509	jae	_syscall_ill
510	shll	$SYSENT_SIZE_SHIFT, %eax
511	leaq	sysent(%rax), %rbx
512
513	call	*SY_CALLC(%rbx)
514
515	movq	%rax, %r12
516	movq	%rdx, %r13
517
518	/*
519	 * If the handler returns two ints, then we need to split the
520	 * 64-bit return value into two 32-bit values.
521	 */
522	testw	$SE_32RVAL2, SY_FLAGS(%rbx)
523	je	5f
524	movq	%r12, %r13
525	shrq	$32, %r13	/* upper 32-bits into %edx */
526	movl	%r12d, %r12d	/* lower 32-bits into %eax */
5275:
528	/*
529	 * Optimistically assume that there's no post-syscall
530	 * work to do.  (This is to avoid having to call syscall_mstate()
531	 * with interrupts disabled)
532	 */
533	MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
534
535	/*
536	 * We must protect ourselves from being descheduled here;
537	 * If we were, and we ended up on another cpu, or another
538	 * lwp got in ahead of us, it could change the segment
539	 * registers without us noticing before we return to userland.
540	 */
541	CLI(%r14)
542	CHECK_POSTSYS_NE(%r15, %r14, %ebx)
543	jne	_syscall_post
544	SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx)
545
546	movq	%r12, REGOFF_RAX(%rsp)
547	movq	%r13, REGOFF_RDX(%rsp)
548
549	/*
550	 * To get back to userland, we need the return %rip in %rcx and
551	 * the return %rfl in %r11d.  The sysretq instruction also arranges
552	 * to fix up %cs and %ss; everything else is our responsibility.
553	 */
554	movq	REGOFF_RDI(%rsp), %rdi
555	movq	REGOFF_RSI(%rsp), %rsi
556	movq	REGOFF_RDX(%rsp), %rdx
557	/* %rcx used to restore %rip value */
558
559	movq	REGOFF_R8(%rsp), %r8
560	movq	REGOFF_R9(%rsp), %r9
561	movq	REGOFF_RAX(%rsp), %rax
562	movq	REGOFF_RBX(%rsp), %rbx
563
564	movq	REGOFF_RBP(%rsp), %rbp
565	movq	REGOFF_R10(%rsp), %r10
566	/* %r11 used to restore %rfl value */
567	movq	REGOFF_R12(%rsp), %r12
568
569	movq	REGOFF_R13(%rsp), %r13
570	movq	REGOFF_R14(%rsp), %r14
571	movq	REGOFF_R15(%rsp), %r15
572
573	movq	REGOFF_RIP(%rsp), %rcx
574	movl	REGOFF_RFL(%rsp), %r11d
575
576#if defined(__xpv)
577	addq	$REGOFF_RIP, %rsp
578#else
579	movq	REGOFF_RSP(%rsp), %rsp
580#endif
581
582        /*
583         * There can be no instructions between the ALTENTRY below and
584	 * SYSRET or we could end up breaking brand support. See label usage
585         * in sn1_brand_syscall_callback for an example.
586         */
587	ASSERT_UPCALL_MASK_IS_SET
588	SWAPGS				/* user gsbase */
589        ALTENTRY(nopop_sys_syscall_sysretq)
590	SYSRETQ
591        /*NOTREACHED*/
592        SET_SIZE(nopop_sys_syscall_sysretq)
593
594_syscall_pre:
595	call	pre_syscall
596	movl	%eax, %r12d
597	testl	%eax, %eax
598	jne	_syscall_post_call
599	/*
600	 * Didn't abort, so reload the syscall args and invoke the handler.
601	 */
602	movzwl	T_SYSNUM(%r15), %eax
603	jmp	_syscall_invoke
604
605_syscall_ill:
606	call	nosys
607	movq	%rax, %r12
608	movq	%rdx, %r13
609	jmp	_syscall_post_call
610
611_syscall_post:
612	STI
613	/*
614	 * Sigh, our optimism wasn't justified, put it back to LMS_SYSTEM
615	 * so that we can account for the extra work it takes us to finish.
616	 */
617	MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
618_syscall_post_call:
619	movq	%r12, %rdi
620	movq	%r13, %rsi
621	call	post_syscall
622	MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
623	jmp	_sys_rtt
624	SET_SIZE(sys_syscall)
625	SET_SIZE(brand_sys_syscall)
626
627#endif	/* __lint */
628
629#if defined(__lint)
630
631/*ARGSUSED*/
632void
633sys_syscall32()
634{}
635
636#else	/* __lint */
637
638	ENTRY_NP(brand_sys_syscall32)
639	SWAPGS				/* kernel gsbase */
640	XPV_TRAP_POP
641	BRAND_CALLBACK(BRAND_CB_SYSCALL32)
642	SWAPGS				/* user gsbase */
643
644#if defined(__xpv)
645	jmp	nopop_sys_syscall32
646#endif
647
648	ALTENTRY(sys_syscall32)
649	SWAPGS				/* kernel gsbase */
650
651#if defined(__xpv)
652	XPV_TRAP_POP
653nopop_sys_syscall32:
654#endif
655
656	movl	%esp, %r10d
657	movq	%gs:CPU_THREAD, %r15
658	movq	T_STACK(%r15), %rsp
659	movl	%eax, %eax
660
661	movl	$U32CS_SEL, REGOFF_CS(%rsp)
662	movl	%ecx, REGOFF_RIP(%rsp)		/* syscall: %rip -> %rcx */
663	movq	%r11, REGOFF_RFL(%rsp)		/* syscall: %rfl -> %r11d */
664	movq	%r10, REGOFF_RSP(%rsp)
665	movl	$UDS_SEL, REGOFF_SS(%rsp)
666
667_syscall32_save:
668	movl	%edi, REGOFF_RDI(%rsp)
669	movl	%esi, REGOFF_RSI(%rsp)
670	movl	%ebp, REGOFF_RBP(%rsp)
671	movl	%ebx, REGOFF_RBX(%rsp)
672	movl	%edx, REGOFF_RDX(%rsp)
673	movl	%ecx, REGOFF_RCX(%rsp)
674	movl	%eax, REGOFF_RAX(%rsp)		/* wrapper: sysc# -> %eax */
675	movq	$0, REGOFF_SAVFP(%rsp)
676	movq	$0, REGOFF_SAVPC(%rsp)
677
678	/*
679	 * Copy these registers here in case we end up stopped with
680	 * someone (like, say, /proc) messing with our register state.
681	 * We don't -restore- them unless we have to in update_sregs.
682	 *
683	 * Since userland -can't- change fsbase or gsbase directly,
684	 * we don't bother to capture them here.
685	 */
686	xorl	%ebx, %ebx
687	movw	%ds, %bx
688	movq	%rbx, REGOFF_DS(%rsp)
689	movw	%es, %bx
690	movq	%rbx, REGOFF_ES(%rsp)
691	movw	%fs, %bx
692	movq	%rbx, REGOFF_FS(%rsp)
693	movw	%gs, %bx
694	movq	%rbx, REGOFF_GS(%rsp)
695
696	/*
697	 * Application state saved in the regs structure on the stack
698	 * %eax is the syscall number
699	 * %rsp is the thread's stack, %r15 is curthread
700	 * REG_RSP(%rsp) is the user's stack
701	 */
702
703	SYSCALL_TRAPTRACE32($TT_SYSC)
704
705	movq	%rsp, %rbp
706
707	movq	T_LWP(%r15), %r14
708	ASSERT_NO_RUPDATE_PENDING(%r14)
709
710	ENABLE_INTR_FLAGS
711
712	MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
713	movl	REGOFF_RAX(%rsp), %eax	/* (%rax damaged by mstate call) */
714
715	ASSERT_LWPTOREGS(%r14, %rsp)
716
717	incq	 %gs:CPU_STATS_SYS_SYSCALL
718
719	/*
720	 * Make some space for MAXSYSARGS (currently 8) 32-bit args placed
721	 * into 64-bit (long) arg slots, maintaining 16 byte alignment.  Or
722	 * more succinctly:
723	 *
724	 *	SA(MAXSYSARGS * sizeof (long)) == 64
725	 */
726#define	SYS_DROP	64			/* drop for args */
727	subq	$SYS_DROP, %rsp
728	movb	$LWP_SYS, LWP_STATE(%r14)
729	movq	%r15, %rdi
730	movq	%rsp, %rsi
731	call	syscall_entry
732
733	/*
734	 * Fetch the arguments copied onto the kernel stack and put
735	 * them in the right registers to invoke a C-style syscall handler.
736	 * %rax contains the handler address.
737	 *
738	 * Ideas for making all this go faster of course include simply
739	 * forcibly fetching 6 arguments from the user stack under lofault
740	 * protection, reverting to copyin_args only when watchpoints
741	 * are in effect.
742	 *
743	 * (If we do this, make sure that exec and libthread leave
744	 * enough space at the top of the stack to ensure that we'll
745	 * never do a fetch from an invalid page.)
746	 *
747	 * Lots of ideas here, but they won't really help with bringup B-)
748	 * Correctness can't wait, performance can wait a little longer ..
749	 */
750
751	movq	%rax, %rbx
752	movl	0(%rsp), %edi
753	movl	8(%rsp), %esi
754	movl	0x10(%rsp), %edx
755	movl	0x18(%rsp), %ecx
756	movl	0x20(%rsp), %r8d
757	movl	0x28(%rsp), %r9d
758
759	call	*SY_CALLC(%rbx)
760
761	movq	%rbp, %rsp	/* pop the args */
762
763	/*
764	 * amd64 syscall handlers -always- return a 64-bit value in %rax.
765	 * On the 32-bit kernel, they always return that value in %eax:%edx
766	 * as required by the 32-bit ABI.
767	 *
768	 * Simulate the same behaviour by unconditionally splitting the
769	 * return value in the same way.
770	 */
771	movq	%rax, %r13
772	shrq	$32, %r13	/* upper 32-bits into %edx */
773	movl	%eax, %r12d	/* lower 32-bits into %eax */
774
775	/*
776	 * Optimistically assume that there's no post-syscall
777	 * work to do.  (This is to avoid having to call syscall_mstate()
778	 * with interrupts disabled)
779	 */
780	MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
781
782	/*
783	 * We must protect ourselves from being descheduled here;
784	 * If we were, and we ended up on another cpu, or another
785	 * lwp got in ahead of us, it could change the segment
786	 * registers without us noticing before we return to userland.
787	 */
788	CLI(%r14)
789	CHECK_POSTSYS_NE(%r15, %r14, %ebx)
790	jne	_full_syscall_postsys32
791	SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx)
792
793	/*
794	 * To get back to userland, we need to put the return %rip in %rcx and
795	 * the return %rfl in %r11d.  The sysret instruction also arranges
796	 * to fix up %cs and %ss; everything else is our responsibility.
797	 */
798
799	movl	%r12d, %eax			/* %eax: rval1 */
800	movl	REGOFF_RBX(%rsp), %ebx
801	/* %ecx used for return pointer */
802	movl	%r13d, %edx			/* %edx: rval2 */
803	movl	REGOFF_RBP(%rsp), %ebp
804	movl	REGOFF_RSI(%rsp), %esi
805	movl	REGOFF_RDI(%rsp), %edi
806
807	movl	REGOFF_RFL(%rsp), %r11d		/* %r11 -> eflags */
808	movl	REGOFF_RIP(%rsp), %ecx		/* %ecx -> %eip */
809	movl	REGOFF_RSP(%rsp), %esp
810
811	ASSERT_UPCALL_MASK_IS_SET
812	SWAPGS				/* user gsbase */
813        ALTENTRY(nopop_sys_syscall32_sysretl)
814	SYSRETL
815        SET_SIZE(nopop_sys_syscall32_sysretl)
816	/*NOTREACHED*/
817
818_full_syscall_postsys32:
819	STI
820	/*
821	 * Sigh, our optimism wasn't justified, put it back to LMS_SYSTEM
822	 * so that we can account for the extra work it takes us to finish.
823	 */
824	MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
825	movq	%r15, %rdi
826	movq	%r12, %rsi			/* rval1 - %eax */
827	movq	%r13, %rdx			/* rval2 - %edx */
828	call	syscall_exit
829	MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
830	jmp	_sys_rtt
831	SET_SIZE(sys_syscall32)
832	SET_SIZE(brand_sys_syscall32)
833
834#endif	/* __lint */
835
836/*
837 * System call handler via the sysenter instruction
838 * Used only for 32-bit system calls on the 64-bit kernel.
839 *
840 * The caller in userland has arranged that:
841 *
842 * -	%eax contains the syscall number
843 * -	%ecx contains the user %esp
844 * -	%edx contains the return %eip
845 * -	the user stack contains the args to the syscall
846 *
847 * Hardware and (privileged) initialization code have arranged that by
848 * the time the sysenter instructions completes:
849 *
850 * - %rip is pointing to sys_sysenter (below).
851 * - %cs and %ss are set to kernel text and stack (data) selectors.
852 * - %rsp is pointing at the lwp's stack
853 * - interrupts have been disabled.
854 *
855 * Note that we are unable to return both "rvals" to userland with
856 * this call, as %edx is used by the sysexit instruction.
857 *
858 * One final complication in this routine is its interaction with
859 * single-stepping in a debugger.  For most of the system call mechanisms,
860 * the CPU automatically clears the single-step flag before we enter the
861 * kernel.  The sysenter mechanism does not clear the flag, so a user
862 * single-stepping through a libc routine may suddenly find him/herself
863 * single-stepping through the kernel.  To detect this, kmdb compares the
864 * trap %pc to the [brand_]sys_enter addresses on each single-step trap.
865 * If it finds that we have single-stepped to a sysenter entry point, it
866 * explicitly clears the flag and executes the sys_sysenter routine.
867 *
868 * One final complication in this final complication is the fact that we
869 * have two different entry points for sysenter: brand_sys_sysenter and
870 * sys_sysenter.  If we enter at brand_sys_sysenter and start single-stepping
871 * through the kernel with kmdb, we will eventually hit the instruction at
872 * sys_sysenter.  kmdb cannot distinguish between that valid single-step
873 * and the undesirable one mentioned above.  To avoid this situation, we
874 * simply add a jump over the instruction at sys_sysenter to make it
875 * impossible to single-step to it.
876 */
877#if defined(__lint)
878
879void
880sys_sysenter()
881{}
882
883#else	/* __lint */
884
885	ENTRY_NP(brand_sys_sysenter)
886	SWAPGS				/* kernel gsbase */
887	ALTENTRY(_brand_sys_sysenter_post_swapgs)
888	BRAND_CALLBACK(BRAND_CB_SYSENTER)
889	/*
890	 * Jump over sys_sysenter to allow single-stepping as described
891	 * above.
892	 */
893	jmp	_sys_sysenter_post_swapgs
894
895	ALTENTRY(sys_sysenter)
896	SWAPGS				/* kernel gsbase */
897
898	ALTENTRY(_sys_sysenter_post_swapgs)
899	movq	%gs:CPU_THREAD, %r15
900
901	movl	$U32CS_SEL, REGOFF_CS(%rsp)
902	movl	%ecx, REGOFF_RSP(%rsp)		/* wrapper: %esp -> %ecx */
903	movl	%edx, REGOFF_RIP(%rsp)		/* wrapper: %eip -> %edx */
904	pushfq
905	popq	%r10
906	movl	$UDS_SEL, REGOFF_SS(%rsp)
907
908	/*
909	 * Set the interrupt flag before storing the flags to the
910	 * flags image on the stack so we can return to user with
911	 * interrupts enabled if we return via sys_rtt_syscall32
912	 */
913	orq	$PS_IE, %r10
914	movq	%r10, REGOFF_RFL(%rsp)
915
916	movl	%edi, REGOFF_RDI(%rsp)
917	movl	%esi, REGOFF_RSI(%rsp)
918	movl	%ebp, REGOFF_RBP(%rsp)
919	movl	%ebx, REGOFF_RBX(%rsp)
920	movl	%edx, REGOFF_RDX(%rsp)
921	movl	%ecx, REGOFF_RCX(%rsp)
922	movl	%eax, REGOFF_RAX(%rsp)		/* wrapper: sysc# -> %eax */
923	movq	$0, REGOFF_SAVFP(%rsp)
924	movq	$0, REGOFF_SAVPC(%rsp)
925
926	/*
927	 * Copy these registers here in case we end up stopped with
928	 * someone (like, say, /proc) messing with our register state.
929	 * We don't -restore- them unless we have to in update_sregs.
930	 *
931	 * Since userland -can't- change fsbase or gsbase directly,
932	 * we don't bother to capture them here.
933	 */
934	xorl	%ebx, %ebx
935	movw	%ds, %bx
936	movq	%rbx, REGOFF_DS(%rsp)
937	movw	%es, %bx
938	movq	%rbx, REGOFF_ES(%rsp)
939	movw	%fs, %bx
940	movq	%rbx, REGOFF_FS(%rsp)
941	movw	%gs, %bx
942	movq	%rbx, REGOFF_GS(%rsp)
943
944	/*
945	 * Application state saved in the regs structure on the stack
946	 * %eax is the syscall number
947	 * %rsp is the thread's stack, %r15 is curthread
948	 * REG_RSP(%rsp) is the user's stack
949	 */
950
951	SYSCALL_TRAPTRACE($TT_SYSENTER)
952
953	movq	%rsp, %rbp
954
955	movq	T_LWP(%r15), %r14
956	ASSERT_NO_RUPDATE_PENDING(%r14)
957
958	ENABLE_INTR_FLAGS
959
960	/*
961	 * Catch 64-bit process trying to issue sysenter instruction
962	 * on Nocona based systems.
963	 */
964	movq	LWP_PROCP(%r14), %rax
965	cmpq	$DATAMODEL_ILP32, P_MODEL(%rax)
966	je	7f
967
968	/*
969	 * For a non-32-bit process, simulate a #ud, since that's what
970	 * native hardware does.  The traptrace entry (above) will
971	 * let you know what really happened.
972	 */
973	movq	$T_ILLINST, REGOFF_TRAPNO(%rsp)
974	movq	REGOFF_CS(%rsp), %rdi
975	movq	%rdi, REGOFF_ERR(%rsp)
976	movq	%rsp, %rdi
977	movq	REGOFF_RIP(%rsp), %rsi
978	movl	%gs:CPU_ID, %edx
979	call	trap
980	jmp	_sys_rtt
9817:
982
983	MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
984	movl	REGOFF_RAX(%rsp), %eax	/* (%rax damaged by mstate calls) */
985
986	ASSERT_LWPTOREGS(%r14, %rsp)
987
988	incq	%gs:CPU_STATS_SYS_SYSCALL
989
990	/*
991	 * Make some space for MAXSYSARGS (currently 8) 32-bit args
992	 * placed into 64-bit (long) arg slots, plus one 64-bit
993	 * (long) arg count, maintaining 16 byte alignment.
994	 */
995	subq	$SYS_DROP, %rsp
996	movb	$LWP_SYS, LWP_STATE(%r14)
997	movq	%r15, %rdi
998	movq	%rsp, %rsi
999	call	syscall_entry
1000
1001	/*
1002	 * Fetch the arguments copied onto the kernel stack and put
1003	 * them in the right registers to invoke a C-style syscall handler.
1004	 * %rax contains the handler address.
1005	 */
1006	movq	%rax, %rbx
1007	movl	0(%rsp), %edi
1008	movl	8(%rsp), %esi
1009	movl	0x10(%rsp), %edx
1010	movl	0x18(%rsp), %ecx
1011	movl	0x20(%rsp), %r8d
1012	movl	0x28(%rsp), %r9d
1013
1014	call	*SY_CALLC(%rbx)
1015
1016	movq	%rbp, %rsp	/* pop the args */
1017
1018	/*
1019	 * amd64 syscall handlers -always- return a 64-bit value in %rax.
1020	 * On the 32-bit kernel, the always return that value in %eax:%edx
1021	 * as required by the 32-bit ABI.
1022	 *
1023	 * Simulate the same behaviour by unconditionally splitting the
1024	 * return value in the same way.
1025	 */
1026	movq	%rax, %r13
1027	shrq	$32, %r13	/* upper 32-bits into %edx */
1028	movl	%eax, %r12d	/* lower 32-bits into %eax */
1029
1030	/*
1031	 * Optimistically assume that there's no post-syscall
1032	 * work to do.  (This is to avoid having to call syscall_mstate()
1033	 * with interrupts disabled)
1034	 */
1035	MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
1036
1037	/*
1038	 * We must protect ourselves from being descheduled here;
1039	 * If we were, and we ended up on another cpu, or another
1040	 * lwp got int ahead of us, it could change the segment
1041	 * registers without us noticing before we return to userland.
1042	 */
1043	cli
1044	CHECK_POSTSYS_NE(%r15, %r14, %ebx)
1045	jne	_full_syscall_postsys32
1046	SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx)
1047
1048	/*
1049	 * To get back to userland, load up the 32-bit registers and
1050	 * sysexit back where we came from.
1051	 */
1052
1053	/*
1054	 * Interrupts will be turned on by the 'sti' executed just before
1055	 * sysexit.  The following ensures that restoring the user's rflags
1056	 * doesn't enable interrupts too soon.
1057	 */
1058	andq	$_BITNOT(PS_IE), REGOFF_RFL(%rsp)
1059
1060	/*
1061	 * (There's no point in loading up %edx because the sysexit
1062	 * mechanism smashes it.)
1063	 */
1064	movl	%r12d, %eax
1065	movl	REGOFF_RBX(%rsp), %ebx
1066	movl	REGOFF_RBP(%rsp), %ebp
1067	movl	REGOFF_RSI(%rsp), %esi
1068	movl	REGOFF_RDI(%rsp), %edi
1069
1070	movl	REGOFF_RIP(%rsp), %edx	/* sysexit: %edx -> %eip */
1071	pushq	REGOFF_RFL(%rsp)
1072	popfq
1073	movl	REGOFF_RSP(%rsp), %ecx	/* sysexit: %ecx -> %esp */
1074	swapgs
1075	sti
1076	sysexit
1077	SET_SIZE(sys_sysenter)
1078	SET_SIZE(_sys_sysenter_post_swapgs)
1079	SET_SIZE(brand_sys_sysenter)
1080
1081#endif	/* __lint */
1082
1083#if defined(__lint)
1084/*
1085 * System call via an int80.  This entry point is only used by the Linux
1086 * application environment.  Unlike the other entry points, there is no
1087 * default action to take if no callback is registered for this process.
1088 */
1089void
1090sys_int80()
1091{}
1092
1093#else	/* __lint */
1094
1095	ENTRY_NP(brand_sys_int80)
1096	SWAPGS				/* kernel gsbase */
1097	XPV_TRAP_POP
1098	BRAND_CALLBACK(BRAND_CB_INT80)
1099	SWAPGS				/* user gsbase */
1100#if defined(__xpv)
1101	jmp	nopop_int80
1102#endif
1103
1104	ENTRY_NP(sys_int80)
1105	/*
1106	 * We hit an int80, but this process isn't of a brand with an int80
1107	 * handler.  Bad process!  Make it look as if the INT failed.
1108	 * Modify %rip to point before the INT, push the expected error
1109	 * code and fake a GP fault. Note on 64-bit hypervisor we need
1110	 * to undo the XPV_TRAP_POP and push rcx and r11 back on the stack
1111	 * because gptrap will pop them again with its own XPV_TRAP_POP.
1112	 */
1113#if defined(__xpv)
1114	XPV_TRAP_POP
1115nopop_int80:
1116#endif
1117	subq	$2, (%rsp)	/* int insn 2-bytes */
1118	pushq	$_CONST(_MUL(T_INT80, GATE_DESC_SIZE) + 2)
1119#if defined(__xpv)
1120	push	%r11
1121	push	%rcx
1122#endif
1123	jmp	gptrap			/ GP fault
1124	SET_SIZE(sys_int80)
1125	SET_SIZE(brand_sys_int80)
1126#endif	/* __lint */
1127
1128
1129/*
1130 * This is the destination of the "int $T_SYSCALLINT" interrupt gate, used by
1131 * the generic i386 libc to do system calls. We do a small amount of setup
1132 * before jumping into the existing sys_syscall32 path.
1133 */
1134#if defined(__lint)
1135
1136/*ARGSUSED*/
1137void
1138sys_syscall_int()
1139{}
1140
1141#else	/* __lint */
1142
1143	ENTRY_NP(brand_sys_syscall_int)
1144	SWAPGS				/* kernel gsbase */
1145	XPV_TRAP_POP
1146	BRAND_CALLBACK(BRAND_CB_INT91)
1147	SWAPGS				/* user gsbase */
1148
1149#if defined(__xpv)
1150	jmp	nopop_syscall_int
1151#endif
1152
1153	ALTENTRY(sys_syscall_int)
1154	SWAPGS				/* kernel gsbase */
1155
1156#if defined(__xpv)
1157	XPV_TRAP_POP
1158nopop_syscall_int:
1159#endif
1160
1161	movq	%gs:CPU_THREAD, %r15
1162	movq	T_STACK(%r15), %rsp
1163	movl	%eax, %eax
1164	/*
1165	 * Set t_post_sys on this thread to force ourselves out via the slow
1166	 * path. It might be possible at some later date to optimize this out
1167	 * and use a faster return mechanism.
1168	 */
1169	movb	$1, T_POST_SYS(%r15)
1170	CLEAN_CS
1171	jmp	_syscall32_save
1172	SET_SIZE(sys_syscall_int)
1173	SET_SIZE(brand_sys_syscall_int)
1174
1175#endif	/* __lint */
1176
1177/*
1178 * Legacy 32-bit applications and old libc implementations do lcalls;
1179 * we should never get here because the LDT entry containing the syscall
1180 * segment descriptor has the "segment present" bit cleared, which means
1181 * we end up processing those system calls in trap() via a not-present trap.
1182 *
1183 * We do it this way because a call gate unhelpfully does -nothing- to the
1184 * interrupt flag bit, so an interrupt can run us just after the lcall
1185 * completes, but just before the swapgs takes effect.   Thus the INTR_PUSH and
1186 * INTR_POP paths would have to be slightly more complex to dance around
1187 * this problem, and end up depending explicitly on the first
1188 * instruction of this handler being either swapgs or cli.
1189 */
1190
1191#if defined(__lint)
1192
1193/*ARGSUSED*/
1194void
1195sys_lcall32()
1196{}
1197
1198#else	/* __lint */
1199
1200	ENTRY_NP(sys_lcall32)
1201	SWAPGS				/* kernel gsbase */
1202	pushq	$0
1203	pushq	%rbp
1204	movq	%rsp, %rbp
1205	leaq	__lcall_panic_str(%rip), %rdi
1206	xorl	%eax, %eax
1207	call	panic
1208	SET_SIZE(sys_lcall32)
1209
1210__lcall_panic_str:
1211	.string	"sys_lcall32: shouldn't be here!"
1212
1213/*
1214 * Declare a uintptr_t which covers the entire pc range of syscall
1215 * handlers for the stack walkers that need this.
1216 */
1217	.align	CPTRSIZE
1218	.globl	_allsyscalls_size
1219	.type	_allsyscalls_size, @object
1220_allsyscalls_size:
1221	.NWORD	. - _allsyscalls
1222	SET_SIZE(_allsyscalls_size)
1223
1224#endif	/* __lint */
1225
1226/*
1227 * These are the thread context handlers for lwps using sysenter/sysexit.
1228 */
1229
1230#if defined(__lint)
1231
1232/*ARGSUSED*/
1233void
1234sep_save(void *ksp)
1235{}
1236
1237/*ARGSUSED*/
1238void
1239sep_restore(void *ksp)
1240{}
1241
1242#else	/* __lint */
1243
1244	/*
1245	 * setting this value to zero as we switch away causes the
1246	 * stack-pointer-on-sysenter to be NULL, ensuring that we
1247	 * don't silently corrupt another (preempted) thread stack
1248	 * when running an lwp that (somehow) didn't get sep_restore'd
1249	 */
1250	ENTRY_NP(sep_save)
1251	xorl	%edx, %edx
1252	xorl	%eax, %eax
1253	movl	$MSR_INTC_SEP_ESP, %ecx
1254	wrmsr
1255	ret
1256	SET_SIZE(sep_save)
1257
1258	/*
1259	 * Update the kernel stack pointer as we resume onto this cpu.
1260	 */
1261	ENTRY_NP(sep_restore)
1262	movq	%rdi, %rdx
1263	shrq	$32, %rdx
1264	movl	%edi, %eax
1265	movl	$MSR_INTC_SEP_ESP, %ecx
1266	wrmsr
1267	ret
1268	SET_SIZE(sep_restore)
1269
1270#endif	/* __lint */
1271