xref: /titanic_50/usr/src/uts/i86pc/ml/syscall_asm_amd64.s (revision 27e6fb2101ae37ba3de6dbb1567bf7558ffaccad)
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#pragma ident	"%Z%%M%	%I%	%E% SMI"
27
28#include <sys/asm_linkage.h>
29#include <sys/asm_misc.h>
30#include <sys/regset.h>
31#include <sys/privregs.h>
32#include <sys/psw.h>
33#include <sys/machbrand.h>
34
35#if defined(__lint)
36
37#include <sys/types.h>
38#include <sys/thread.h>
39#include <sys/systm.h>
40
41#else	/* __lint */
42
43#include <sys/segments.h>
44#include <sys/pcb.h>
45#include <sys/trap.h>
46#include <sys/ftrace.h>
47#include <sys/traptrace.h>
48#include <sys/clock.h>
49#include <sys/model.h>
50#include <sys/panic.h>
51#include "assym.h"
52
53#endif	/* __lint */
54
55/*
56 * We implement five flavours of system call entry points
57 *
58 * -	syscall/sysretq		(amd64 generic)
59 * -	syscall/sysretl		(i386 plus SYSC bit)
60 * -	sysenter/sysexit	(i386 plus SEP bit)
61 * -	int/iret		(i386 generic)
62 * -	lcall/iret		(i386 generic)
63 *
64 * The current libc included in Solaris uses int/iret as the base unoptimized
65 * kernel entry method. Older libc implementations and legacy binaries may use
66 * the lcall call gate, so it must continue to be supported.
67 *
68 * System calls that use an lcall call gate are processed in trap() via a
69 * segment-not-present trap, i.e. lcalls are extremely slow(!).
70 *
71 * The basic pattern used in the 32-bit SYSC handler at this point in time is
72 * to have the bare minimum of assembler, and get to the C handlers as
73 * quickly as possible.
74 *
75 * The 64-bit handler is much closer to the sparcv9 handler; that's
76 * because of passing arguments in registers.  The 32-bit world still
77 * passes arguments on the stack -- that makes that handler substantially
78 * more complex.
79 *
80 * The two handlers share a few code fragments which are broken
81 * out into preprocessor macros below.
82 *
83 * XX64	come back and speed all this up later.  The 32-bit stuff looks
84 * especially easy to speed up the argument copying part ..
85 *
86 *
87 * Notes about segment register usage (c.f. the 32-bit kernel)
88 *
89 * In the 32-bit kernel, segment registers are dutifully saved and
90 * restored on all mode transitions because the kernel uses them directly.
91 * When the processor is running in 64-bit mode, segment registers are
92 * largely ignored.
93 *
94 * %cs and %ss
95 *	controlled by the hardware mechanisms that make mode transitions
96 *
97 * The remaining segment registers have to either be pointing at a valid
98 * descriptor i.e. with the 'present' bit set, or they can NULL descriptors
99 *
100 * %ds and %es
101 *	always ignored
102 *
103 * %fs and %gs
104 *	fsbase and gsbase are used to control the place they really point at.
105 *	The kernel only depends on %gs, and controls its own gsbase via swapgs
106 *
107 * Note that loading segment registers is still costly because the GDT
108 * lookup still happens (this is because the hardware can't know that we're
109 * not setting up these segment registers for a 32-bit program).  Thus we
110 * avoid doing this in the syscall path, and defer them to lwp context switch
111 * handlers, so the register values remain virtualized to the lwp.
112 */
113
114#if defined(SYSCALLTRACE)
115#define	ORL_SYSCALLTRACE(r32)		\
116	orl	syscalltrace(%rip), r32
117#else
118#define	ORL_SYSCALLTRACE(r32)
119#endif
120
121/*
122 * In the 32-bit kernel, we do absolutely nothing before getting into the
123 * brand callback checks.  In 64-bit land, we do swapgs and then come here.
124 * We assume that the %rsp- and %r15-stashing fields in the CPU structure
125 * are still unused.
126 *
127 * When the callback is invoked, we will be on the user's %gs and
128 * the stack will look like this:
129 *
130 * stack:  --------------------------------------
131 *         | callback pointer			|
132 *    |    | user stack pointer			|
133 *    |    | lwp brand data			|
134 *    |    | proc brand data			|
135 *    v    | userland return address		|
136 *         | callback wrapper return addr	|
137 *         --------------------------------------
138 *
139 */
140#define	BRAND_CALLBACK(callback_id)					    \
141	movq	%rsp, %gs:CPU_RTMP_RSP	/* save the stack pointer	*/ ;\
142	movq	%r15, %gs:CPU_RTMP_R15	/* save %r15			*/ ;\
143	movq	%gs:CPU_THREAD, %r15	/* load the thread pointer	*/ ;\
144	movq	T_STACK(%r15), %rsp	/* switch to the kernel stack	*/ ;\
145	subq	$16, %rsp		/* save space for two pointers	*/ ;\
146	pushq	%r14			/* save %r14			*/ ;\
147	movq	%gs:CPU_RTMP_RSP, %r14					   ;\
148	movq	%r14, 8(%rsp)		/* stash the user stack pointer	*/ ;\
149	popq	%r14			/* restore %r14			*/ ;\
150	movq	T_LWP(%r15), %r15	/* load the lwp pointer		*/ ;\
151	pushq	LWP_BRAND(%r15)		/* push the lwp's brand data	*/ ;\
152	movq	LWP_PROCP(%r15), %r15	/* load the proc pointer	*/ ;\
153	pushq	P_BRAND_DATA(%r15)	/* push the proc's brand data	*/ ;\
154	movq	P_BRAND(%r15), %r15	/* load the brand pointer	*/ ;\
155	movq	B_MACHOPS(%r15), %r15	/* load the machops pointer	*/ ;\
156	movq	_CONST(_MUL(callback_id, CPTRSIZE))(%r15), %r15		   ;\
157	cmpq	$0, %r15						   ;\
158	je	1f							   ;\
159	movq	%r15, 24(%rsp)		/* save the callback pointer	*/ ;\
160	movq	%gs:CPU_RTMP_RSP, %r15	/* grab the user stack pointer	*/ ;\
161	pushq	(%r15)			/* push the return address	*/ ;\
162	movq	%gs:CPU_RTMP_R15, %r15	/* restore %r15			*/ ;\
163	swapgs								   ;\
164	call	*32(%rsp)		/* call callback		*/ ;\
165	swapgs								   ;\
1661:	movq	%gs:CPU_RTMP_R15, %r15	/* restore %r15			*/ ;\
167	movq	%gs:CPU_RTMP_RSP, %rsp	/* restore the stack pointer	*/
168
169#define	MSTATE_TRANSITION(from, to)		\
170	movl	$from, %edi;			\
171	movl	$to, %esi;			\
172	call	syscall_mstate
173
174/*
175 * Check to see if a simple (direct) return is possible i.e.
176 *
177 *	if ((t->t_post_sys_ast | syscalltrace |
178 *	    (lwp->lwp_pcb.pcb_flags & RUPDATE_PENDING)) != 0)
179 *		do full version	;
180 *
181 * Preconditions:
182 * -	t is curthread
183 * Postconditions:
184 * -	condition code NE is set if post-sys is too complex
185 * -	rtmp is zeroed if it isn't (we rely on this!)
186 * -	ltmp is smashed
187 */
188#define	CHECK_POSTSYS_NE(t, ltmp, rtmp)			\
189	movq	T_LWP(t), ltmp;				\
190	movl	PCB_FLAGS(ltmp), rtmp;			\
191	andl	$RUPDATE_PENDING, rtmp;			\
192	ORL_SYSCALLTRACE(rtmp);				\
193	orl	T_POST_SYS_AST(t), rtmp;		\
194	cmpl	$0, rtmp
195
196/*
197 * Fix up the lwp, thread, and eflags for a successful return
198 *
199 * Preconditions:
200 * -	zwreg contains zero
201 */
202#define	SIMPLE_SYSCALL_POSTSYS(t, lwp, zwreg)		\
203	movb	$LWP_USER, LWP_STATE(lwp);		\
204	movw	zwreg, T_SYSNUM(t);			\
205	andb	$_CONST(0xffff - PS_C), REGOFF_RFL(%rsp)
206
207/*
208 * ASSERT(lwptoregs(lwp) == rp);
209 *
210 * This may seem obvious, but very odd things happen if this
211 * assertion is false
212 *
213 * Preconditions:
214 *	(%rsp is ready for normal call sequence)
215 * Postconditions (if assertion is true):
216 *	%r11 is smashed
217 *
218 * ASSERT(rp->r_cs == descnum)
219 *
220 * The code selector is written into the regs structure when the
221 * lwp stack is created.  We use this ASSERT to validate that
222 * the regs structure really matches how we came in.
223 *
224 * Preconditions:
225 *	(%rsp is ready for normal call sequence)
226 * Postconditions (if assertion is true):
227 *	-none-
228 *
229 * ASSERT((lwp->lwp_pcb.pcb_flags & RUPDATE_PENDING) == 0);
230 *
231 * If this is false, it meant that we returned to userland without
232 * updating the segment registers as we were supposed to.
233 *
234 * Note that we must ensure no interrupts or other traps intervene
235 * between entering privileged mode and performing the assertion,
236 * otherwise we may perform a context switch on the thread, which
237 * will end up setting the RUPDATE_PENDING bit again.
238 */
239#if defined(DEBUG)
240
241#if !defined(__lint)
242
243__lwptoregs_msg:
244	.string	"syscall_asm_amd64.s:%d lwptoregs(%p) [%p] != rp [%p]"
245
246__codesel_msg:
247	.string	"syscall_asm_amd64.s:%d rp->r_cs [%ld] != %ld"
248
249__no_rupdate_msg:
250	.string	"syscall_asm_amd64.s:%d lwp %p, pcb_flags & RUPDATE_PENDING != 0"
251
252#endif	/* !__lint */
253
254#define	ASSERT_LWPTOREGS(lwp, rp)			\
255	movq	LWP_REGS(lwp), %r11;			\
256	cmpq	rp, %r11;				\
257	je	7f;					\
258	leaq	__lwptoregs_msg(%rip), %rdi;		\
259	movl	$__LINE__, %esi;			\
260	movq	lwp, %rdx;				\
261	movq	%r11, %rcx;				\
262	movq	rp, %r8;				\
263	xorl	%eax, %eax;				\
264	call	panic;					\
2657:
266
267#define	ASSERT_NO_RUPDATE_PENDING(lwp)			\
268	testl	$RUPDATE_PENDING, PCB_FLAGS(lwp);	\
269	je	8f;					\
270	movq	lwp, %rdx;				\
271	leaq	__no_rupdate_msg(%rip), %rdi;		\
272	movl	$__LINE__, %esi;			\
273	xorl	%eax, %eax;				\
274	call	panic;					\
2758:
276
277#else
278#define	ASSERT_LWPTOREGS(lwp, rp)
279#define	ASSERT_NO_RUPDATE_PENDING(lwp)
280#endif
281
282/*
283 * Do the traptrace thing and restore any registers we used
284 * in situ.  Assumes that %rsp is pointing at the base of
285 * the struct regs, obviously ..
286 */
287#ifdef TRAPTRACE
288#define	SYSCALL_TRAPTRACE(ttype)				\
289	TRACE_PTR(%rdi, %rbx, %ebx, %rcx, ttype);		\
290	TRACE_REGS(%rdi, %rsp, %rbx, %rcx);			\
291	TRACE_STAMP(%rdi);	/* rdtsc clobbers %eax, %edx */	\
292	movq	REGOFF_RAX(%rsp), %rax;				\
293	movq	REGOFF_RBX(%rsp), %rbx;				\
294	movq	REGOFF_RCX(%rsp), %rcx;				\
295	movq	REGOFF_RDX(%rsp), %rdx;				\
296	movl	%eax, TTR_SYSNUM(%rdi);				\
297	movq	REGOFF_RDI(%rsp), %rdi
298
299#define	SYSCALL_TRAPTRACE32(ttype)				\
300	SYSCALL_TRAPTRACE(ttype);				\
301	/* paranoia: clean the top 32-bits of the registers */	\
302	orl	%eax, %eax;					\
303	orl	%ebx, %ebx;					\
304	orl	%ecx, %ecx;					\
305	orl	%edx, %edx;					\
306	orl	%edi, %edi
307#else	/* TRAPTRACE */
308#define	SYSCALL_TRAPTRACE(ttype)
309#define	SYSCALL_TRAPTRACE32(ttype)
310#endif	/* TRAPTRACE */
311
312/*
313 * The 64-bit libc syscall wrapper does this:
314 *
315 * fn(<args>)
316 * {
317 *	movq	%rcx, %r10	-- because syscall smashes %rcx
318 *	movl	$CODE, %eax
319 *	syscall
320 *	<error processing>
321 * }
322 *
323 * Thus when we come into the kernel:
324 *
325 *	%rdi, %rsi, %rdx, %r10, %r8, %r9 contain first six args
326 *	%rax is the syscall number
327 *	%r12-%r15 contain caller state
328 *
329 * The syscall instruction arranges that:
330 *
331 *	%rcx contains the return %rip
332 *	%r11d contains bottom 32-bits of %rflags
333 *	%rflags is masked (as determined by the SFMASK msr)
334 *	%cs is set to UCS_SEL (as determined by the STAR msr)
335 *	%ss is set to UDS_SEL (as determined by the STAR msr)
336 *	%rip is set to sys_syscall (as determined by the LSTAR msr)
337 *
338 * Or in other words, we have no registers available at all.
339 * Only swapgs can save us!
340 */
341
342#if defined(__lint)
343
344/*ARGSUSED*/
345void
346sys_syscall()
347{}
348
349void
350_allsyscalls()
351{}
352
353size_t _allsyscalls_size;
354
355#else	/* __lint */
356
357	ENTRY_NP2(brand_sys_syscall,_allsyscalls)
358	SWAPGS
359	BRAND_CALLBACK(BRAND_CB_SYSCALL)
360	SWAPGS
361
362	ALTENTRY(sys_syscall)
363	SWAPGS
364	movq	%rsp, %gs:CPU_RTMP_RSP
365	movq	%r15, %gs:CPU_RTMP_R15
366	movq	%gs:CPU_THREAD, %r15
367	movq	T_STACK(%r15), %rsp
368
369	movl	$UCS_SEL, REGOFF_CS(%rsp)
370	movq	%rcx, REGOFF_RIP(%rsp)		/* syscall: %rip -> %rcx */
371	movq	%r11, REGOFF_RFL(%rsp)		/* syscall: %rfl -> %r11d */
372	movl	$UDS_SEL, REGOFF_SS(%rsp)
373
374	movl	%eax, %eax			/* wrapper: sysc# -> %eax */
375	movq	%rdi, REGOFF_RDI(%rsp)
376	movq	%rsi, REGOFF_RSI(%rsp)
377	movq	%rdx, REGOFF_RDX(%rsp)
378	movq	%r10, REGOFF_RCX(%rsp)		/* wrapper: %rcx -> %r10 */
379	movq	%r10, %rcx			/* arg[3] for direct calls */
380
381	movq	%r8, REGOFF_R8(%rsp)
382	movq	%r9, REGOFF_R9(%rsp)
383	movq	%rax, REGOFF_RAX(%rsp)
384	movq	%rbx, REGOFF_RBX(%rsp)
385
386	movq	%rbp, REGOFF_RBP(%rsp)
387	movq	%r10, REGOFF_R10(%rsp)
388	movq	%gs:CPU_RTMP_RSP, %r11
389	movq	%r11, REGOFF_RSP(%rsp)
390	movq	%r12, REGOFF_R12(%rsp)
391
392	movq	%r13, REGOFF_R13(%rsp)
393	movq	%r14, REGOFF_R14(%rsp)
394	movq	%gs:CPU_RTMP_R15, %r10
395	movq	%r10, REGOFF_R15(%rsp)
396	movq	$0, REGOFF_SAVFP(%rsp)
397	movq	$0, REGOFF_SAVPC(%rsp)
398
399	/*
400	 * Copy these registers here in case we end up stopped with
401	 * someone (like, say, /proc) messing with our register state.
402	 * We don't -restore- them unless we have to in update_sregs.
403	 *
404	 * Since userland -can't- change fsbase or gsbase directly,
405	 * and capturing them involves two serializing instructions,
406	 * we don't bother to capture them here.
407	 */
408	xorl	%ebx, %ebx
409	movw	%ds, %bx
410	movq	%rbx, REGOFF_DS(%rsp)
411	movw	%es, %bx
412	movq	%rbx, REGOFF_ES(%rsp)
413	movw	%fs, %bx
414	movq	%rbx, REGOFF_FS(%rsp)
415	movw	%gs, %bx
416	movq	%rbx, REGOFF_GS(%rsp)
417
418	/*
419	 * Machine state saved in the regs structure on the stack
420	 * First six args in %rdi, %rsi, %rdx, %rcx, %r8, %r9
421	 * %eax is the syscall number
422	 * %rsp is the thread's stack, %r15 is curthread
423	 * REG_RSP(%rsp) is the user's stack
424	 */
425
426	SYSCALL_TRAPTRACE($TT_SYSC64)
427
428	movq	%rsp, %rbp
429
430	movq	T_LWP(%r15), %r14
431	ASSERT_NO_RUPDATE_PENDING(%r14)
432	ENABLE_INTR_FLAGS
433
434	MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
435	movl	REGOFF_RAX(%rsp), %eax	/* (%rax damaged by mstate call) */
436
437	ASSERT_LWPTOREGS(%r14, %rsp)
438
439	movb	$LWP_SYS, LWP_STATE(%r14)
440	incq	LWP_RU_SYSC(%r14)
441	movb	$NORMALRETURN, LWP_EOSYS(%r14)
442
443	incq	%gs:CPU_STATS_SYS_SYSCALL
444
445	movw	%ax, T_SYSNUM(%r15)
446	movzbl	T_PRE_SYS(%r15), %ebx
447	ORL_SYSCALLTRACE(%ebx)
448	testl	%ebx, %ebx
449	jne	_syscall_pre
450
451_syscall_invoke:
452	movq	REGOFF_RDI(%rbp), %rdi
453	movq	REGOFF_RSI(%rbp), %rsi
454	movq	REGOFF_RDX(%rbp), %rdx
455	movq	REGOFF_RCX(%rbp), %rcx
456	movq	REGOFF_R8(%rbp), %r8
457	movq	REGOFF_R9(%rbp), %r9
458
459	cmpl	$NSYSCALL, %eax
460	jae	_syscall_ill
461	shll	$SYSENT_SIZE_SHIFT, %eax
462	leaq	sysent(%rax), %rbx
463
464	call	*SY_CALLC(%rbx)
465
466	movq	%rax, %r12
467	movq	%rdx, %r13
468
469	/*
470	 * If the handler returns two ints, then we need to split the
471	 * 64-bit return value into two 32-bit values.
472	 */
473	testw	$SE_32RVAL2, SY_FLAGS(%rbx)
474	je	5f
475	movq	%r12, %r13
476	shrq	$32, %r13	/* upper 32-bits into %edx */
477	movl	%r12d, %r12d	/* lower 32-bits into %eax */
4785:
479	/*
480	 * Optimistically assume that there's no post-syscall
481	 * work to do.  (This is to avoid having to call syscall_mstate()
482	 * with interrupts disabled)
483	 */
484	MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
485
486	/*
487	 * We must protect ourselves from being descheduled here;
488	 * If we were, and we ended up on another cpu, or another
489	 * lwp got in ahead of us, it could change the segment
490	 * registers without us noticing before we return to userland.
491	 */
492	CLI(%r14)
493	CHECK_POSTSYS_NE(%r15, %r14, %ebx)
494	jne	_syscall_post
495	SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx)
496
497	movq	%r12, REGOFF_RAX(%rsp)
498	movq	%r13, REGOFF_RDX(%rsp)
499
500	/*
501	 * To get back to userland, we need the return %rip in %rcx and
502	 * the return %rfl in %r11d.  The sysretq instruction also arranges
503	 * to fix up %cs and %ss; everything else is our responsibility.
504	 */
505	movq	REGOFF_RDI(%rsp), %rdi
506	movq	REGOFF_RSI(%rsp), %rsi
507	movq	REGOFF_RDX(%rsp), %rdx
508	/* %rcx used to restore %rip value */
509
510	movq	REGOFF_R8(%rsp), %r8
511	movq	REGOFF_R9(%rsp), %r9
512	movq	REGOFF_RAX(%rsp), %rax
513	movq	REGOFF_RBX(%rsp), %rbx
514
515	movq	REGOFF_RBP(%rsp), %rbp
516	movq	REGOFF_R10(%rsp), %r10
517	/* %r11 used to restore %rfl value */
518	movq	REGOFF_R12(%rsp), %r12
519
520	movq	REGOFF_R13(%rsp), %r13
521	movq	REGOFF_R14(%rsp), %r14
522	movq	REGOFF_R15(%rsp), %r15
523
524	movq	REGOFF_RIP(%rsp), %rcx
525	movl	REGOFF_RFL(%rsp), %r11d
526	movq	REGOFF_RSP(%rsp), %rsp
527	SWAPGS
528	sysretq
529
530_syscall_pre:
531	call	pre_syscall
532	movl	%eax, %r12d
533	testl	%eax, %eax
534	jne	_syscall_post_call
535	/*
536	 * Didn't abort, so reload the syscall args and invoke the handler.
537	 */
538	movzwl	T_SYSNUM(%r15), %eax
539	jmp	_syscall_invoke
540
541_syscall_ill:
542	call	nosys
543	movq	%rax, %r12
544	movq	%rdx, %r13
545	jmp	_syscall_post_call
546
547_syscall_post:
548	STI
549	/*
550	 * Sigh, our optimism wasn't justified, put it back to LMS_SYSTEM
551	 * so that we can account for the extra work it takes us to finish.
552	 */
553	MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
554_syscall_post_call:
555	movq	%r12, %rdi
556	movq	%r13, %rsi
557	call	post_syscall
558	MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
559	jmp	_sys_rtt
560	SET_SIZE(sys_syscall)
561	SET_SIZE(brand_sys_syscall)
562
563#endif	/* __lint */
564
565#if defined(__lint)
566
567/*ARGSUSED*/
568void
569sys_syscall32()
570{}
571
572#else	/* __lint */
573
574	ENTRY_NP(brand_sys_syscall32)
575	SWAPGS
576	BRAND_CALLBACK(BRAND_CB_SYSCALL32)
577	SWAPGS
578
579	ALTENTRY(sys_syscall32)
580	SWAPGS
581	movl	%esp, %r10d
582	movq	%gs:CPU_THREAD, %r15
583	movq	T_STACK(%r15), %rsp
584	movl	%eax, %eax
585
586	movl	$U32CS_SEL, REGOFF_CS(%rsp)
587	movl	%ecx, REGOFF_RIP(%rsp)		/* syscall: %rip -> %rcx */
588	movq	%r11, REGOFF_RFL(%rsp)		/* syscall: %rfl -> %r11d */
589	movq	%r10, REGOFF_RSP(%rsp)
590	movl	$UDS_SEL, REGOFF_SS(%rsp)
591
592_syscall32_save:
593	movl	%edi, REGOFF_RDI(%rsp)
594	movl	%esi, REGOFF_RSI(%rsp)
595	movl	%ebp, REGOFF_RBP(%rsp)
596	movl	%ebx, REGOFF_RBX(%rsp)
597	movl	%edx, REGOFF_RDX(%rsp)
598	movl	%ecx, REGOFF_RCX(%rsp)
599	movl	%eax, REGOFF_RAX(%rsp)		/* wrapper: sysc# -> %eax */
600	movq	$0, REGOFF_SAVFP(%rsp)
601	movq	$0, REGOFF_SAVPC(%rsp)
602
603	/*
604	 * Copy these registers here in case we end up stopped with
605	 * someone (like, say, /proc) messing with our register state.
606	 * We don't -restore- them unless we have to in update_sregs.
607	 *
608	 * Since userland -can't- change fsbase or gsbase directly,
609	 * we don't bother to capture them here.
610	 */
611	xorl	%ebx, %ebx
612	movw	%ds, %bx
613	movq	%rbx, REGOFF_DS(%rsp)
614	movw	%es, %bx
615	movq	%rbx, REGOFF_ES(%rsp)
616	movw	%fs, %bx
617	movq	%rbx, REGOFF_FS(%rsp)
618	movw	%gs, %bx
619	movq	%rbx, REGOFF_GS(%rsp)
620
621	/*
622	 * Application state saved in the regs structure on the stack
623	 * %eax is the syscall number
624	 * %rsp is the thread's stack, %r15 is curthread
625	 * REG_RSP(%rsp) is the user's stack
626	 */
627
628	SYSCALL_TRAPTRACE32($TT_SYSC)
629
630	movq	%rsp, %rbp
631
632	movq	T_LWP(%r15), %r14
633	ASSERT_NO_RUPDATE_PENDING(%r14)
634
635	ENABLE_INTR_FLAGS
636
637	MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
638	movl	REGOFF_RAX(%rsp), %eax	/* (%rax damaged by mstate call) */
639
640	ASSERT_LWPTOREGS(%r14, %rsp)
641
642	incq	 %gs:CPU_STATS_SYS_SYSCALL
643
644	/*
645	 * Make some space for MAXSYSARGS (currently 8) 32-bit args placed
646	 * into 64-bit (long) arg slots, maintaining 16 byte alignment.  Or
647	 * more succinctly:
648	 *
649	 *	SA(MAXSYSARGS * sizeof (long)) == 64
650	 */
651#define	SYS_DROP	64			/* drop for args */
652	subq	$SYS_DROP, %rsp
653	movb	$LWP_SYS, LWP_STATE(%r14)
654	movq	%r15, %rdi
655	movq	%rsp, %rsi
656	call	syscall_entry
657
658	/*
659	 * Fetch the arguments copied onto the kernel stack and put
660	 * them in the right registers to invoke a C-style syscall handler.
661	 * %rax contains the handler address.
662	 *
663	 * Ideas for making all this go faster of course include simply
664	 * forcibly fetching 6 arguments from the user stack under lofault
665	 * protection, reverting to copyin_args only when watchpoints
666	 * are in effect.
667	 *
668	 * (If we do this, make sure that exec and libthread leave
669	 * enough space at the top of the stack to ensure that we'll
670	 * never do a fetch from an invalid page.)
671	 *
672	 * Lots of ideas here, but they won't really help with bringup B-)
673	 * Correctness can't wait, performance can wait a little longer ..
674	 */
675
676	movq	%rax, %rbx
677	movl	0(%rsp), %edi
678	movl	8(%rsp), %esi
679	movl	0x10(%rsp), %edx
680	movl	0x18(%rsp), %ecx
681	movl	0x20(%rsp), %r8d
682	movl	0x28(%rsp), %r9d
683
684	call	*SY_CALLC(%rbx)
685
686	movq	%rbp, %rsp	/* pop the args */
687
688	/*
689	 * amd64 syscall handlers -always- return a 64-bit value in %rax.
690	 * On the 32-bit kernel, they always return that value in %eax:%edx
691	 * as required by the 32-bit ABI.
692	 *
693	 * Simulate the same behaviour by unconditionally splitting the
694	 * return value in the same way.
695	 */
696	movq	%rax, %r13
697	shrq	$32, %r13	/* upper 32-bits into %edx */
698	movl	%eax, %r12d	/* lower 32-bits into %eax */
699
700	/*
701	 * Optimistically assume that there's no post-syscall
702	 * work to do.  (This is to avoid having to call syscall_mstate()
703	 * with interrupts disabled)
704	 */
705	MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
706
707	/*
708	 * We must protect ourselves from being descheduled here;
709	 * If we were, and we ended up on another cpu, or another
710	 * lwp got in ahead of us, it could change the segment
711	 * registers without us noticing before we return to userland.
712	 */
713	CLI(%r14)
714	CHECK_POSTSYS_NE(%r15, %r14, %ebx)
715	jne	_full_syscall_postsys32
716	SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx)
717
718	/*
719	 * To get back to userland, we need to put the return %rip in %rcx and
720	 * the return %rfl in %r11d.  The sysret instruction also arranges
721	 * to fix up %cs and %ss; everything else is our responsibility.
722	 */
723
724	movl	%r12d, %eax			/* %eax: rval1 */
725	movl	REGOFF_RBX(%rsp), %ebx
726	/* %ecx used for return pointer */
727	movl	%r13d, %edx			/* %edx: rval2 */
728	movl	REGOFF_RBP(%rsp), %ebp
729	movl	REGOFF_RSI(%rsp), %esi
730	movl	REGOFF_RDI(%rsp), %edi
731
732	movl	REGOFF_RFL(%rsp), %r11d		/* %r11 -> eflags */
733	movl	REGOFF_RIP(%rsp), %ecx		/* %ecx -> %eip */
734	movl	REGOFF_RSP(%rsp), %esp
735
736	swapgs
737	sysretl
738
739_full_syscall_postsys32:
740	STI
741	/*
742	 * Sigh, our optimism wasn't justified, put it back to LMS_SYSTEM
743	 * so that we can account for the extra work it takes us to finish.
744	 */
745	MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
746	movq	%r15, %rdi
747	movq	%r12, %rsi			/* rval1 - %eax */
748	movq	%r13, %rdx			/* rval2 - %edx */
749	call	syscall_exit
750	MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
751	jmp	_sys_rtt
752	SET_SIZE(sys_syscall32)
753	SET_SIZE(brand_sys_syscall32)
754
755#endif	/* __lint */
756
757/*
758 * System call handler via the sysenter instruction
759 * Used only for 32-bit system calls on the 64-bit kernel.
760 *
761 * The caller in userland has arranged that:
762 *
763 * -	%eax contains the syscall number
764 * -	%ecx contains the user %esp
765 * -	%edx contains the return %eip
766 * -	the user stack contains the args to the syscall
767 *
768 * Hardware and (privileged) initialization code have arranged that by
769 * the time the sysenter instructions completes:
770 *
771 * - %rip is pointing to sys_sysenter (below).
772 * - %cs and %ss are set to kernel text and stack (data) selectors.
773 * - %rsp is pointing at the lwp's stack
774 * - interrupts have been disabled.
775 *
776 * Note that we are unable to return both "rvals" to userland with
777 * this call, as %edx is used by the sysexit instruction.
778 *
779 * One final complication in this routine is its interaction with
780 * single-stepping in a debugger.  For most of the system call mechanisms,
781 * the CPU automatically clears the single-step flag before we enter the
782 * kernel.  The sysenter mechanism does not clear the flag, so a user
783 * single-stepping through a libc routine may suddenly find him/herself
784 * single-stepping through the kernel.  To detect this, kmdb compares the
785 * trap %pc to the [brand_]sys_enter addresses on each single-step trap.
786 * If it finds that we have single-stepped to a sysenter entry point, it
787 * explicitly clears the flag and executes the sys_sysenter routine.
788 *
789 * One final complication in this final complication is the fact that we
790 * have two different entry points for sysenter: brand_sys_sysenter and
791 * sys_sysenter.  If we enter at brand_sys_sysenter and start single-stepping
792 * through the kernel with kmdb, we will eventually hit the instruction at
793 * sys_sysenter.  kmdb cannot distinguish between that valid single-step
794 * and the undesirable one mentioned above.  To avoid this situation, we
795 * simply add a jump over the instruction at sys_sysenter to make it
796 * impossible to single-step to it.
797 */
798#if defined(__lint)
799
800void
801sys_sysenter()
802{}
803
804#else	/* __lint */
805
806	ENTRY_NP(brand_sys_sysenter)
807	SWAPGS
808
809	ALTENTRY(_brand_sys_sysenter_post_swapgs)
810	BRAND_CALLBACK(BRAND_CB_SYSENTER)
811	/*
812	 * Jump over sys_sysenter to allow single-stepping as described
813	 * above.
814	 */
815	jmp	_sys_sysenter_post_swapgs
816
817	ALTENTRY(sys_sysenter)
818	SWAPGS
819
820	ALTENTRY(_sys_sysenter_post_swapgs)
821	movq	%gs:CPU_THREAD, %r15
822
823	movl	$U32CS_SEL, REGOFF_CS(%rsp)
824	movl	%ecx, REGOFF_RSP(%rsp)		/* wrapper: %esp -> %ecx */
825	movl	%edx, REGOFF_RIP(%rsp)		/* wrapper: %eip -> %edx */
826	pushfq
827	popq	%r10
828	movl	$UDS_SEL, REGOFF_SS(%rsp)
829
830	/*
831	 * Set the interrupt flag before storing the flags to the
832	 * flags image on the stack so we can return to user with
833	 * interrupts enabled if we return via sys_rtt_syscall32
834	 */
835	orq	$PS_IE, %r10
836	movq	%r10, REGOFF_RFL(%rsp)
837
838	movl	%edi, REGOFF_RDI(%rsp)
839	movl	%esi, REGOFF_RSI(%rsp)
840	movl	%ebp, REGOFF_RBP(%rsp)
841	movl	%ebx, REGOFF_RBX(%rsp)
842	movl	%edx, REGOFF_RDX(%rsp)
843	movl	%ecx, REGOFF_RCX(%rsp)
844	movl	%eax, REGOFF_RAX(%rsp)		/* wrapper: sysc# -> %eax */
845	movq	$0, REGOFF_SAVFP(%rsp)
846	movq	$0, REGOFF_SAVPC(%rsp)
847
848	/*
849	 * Copy these registers here in case we end up stopped with
850	 * someone (like, say, /proc) messing with our register state.
851	 * We don't -restore- them unless we have to in update_sregs.
852	 *
853	 * Since userland -can't- change fsbase or gsbase directly,
854	 * we don't bother to capture them here.
855	 */
856	xorl	%ebx, %ebx
857	movw	%ds, %bx
858	movq	%rbx, REGOFF_DS(%rsp)
859	movw	%es, %bx
860	movq	%rbx, REGOFF_ES(%rsp)
861	movw	%fs, %bx
862	movq	%rbx, REGOFF_FS(%rsp)
863	movw	%gs, %bx
864	movq	%rbx, REGOFF_GS(%rsp)
865
866	/*
867	 * Application state saved in the regs structure on the stack
868	 * %eax is the syscall number
869	 * %rsp is the thread's stack, %r15 is curthread
870	 * REG_RSP(%rsp) is the user's stack
871	 */
872
873	SYSCALL_TRAPTRACE($TT_SYSENTER)
874
875	movq	%rsp, %rbp
876
877	movq	T_LWP(%r15), %r14
878	ASSERT_NO_RUPDATE_PENDING(%r14)
879
880	ENABLE_INTR_FLAGS
881
882	/*
883	 * Catch 64-bit process trying to issue sysenter instruction
884	 * on Nocona based systems.
885	 */
886	movq	LWP_PROCP(%r14), %rax
887	cmpq	$DATAMODEL_ILP32, P_MODEL(%rax)
888	je	7f
889
890	/*
891	 * For a non-32-bit process, simulate a #ud, since that's what
892	 * native hardware does.  The traptrace entry (above) will
893	 * let you know what really happened.
894	 */
895	movq	$T_ILLINST, REGOFF_TRAPNO(%rsp)
896	movq	REGOFF_CS(%rsp), %rdi
897	movq	%rdi, REGOFF_ERR(%rsp)
898	movq	%rsp, %rdi
899	movq	REGOFF_RIP(%rsp), %rsi
900	movl	%gs:CPU_ID, %edx
901	call	trap
902	jmp	_sys_rtt
9037:
904
905	MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
906	movl	REGOFF_RAX(%rsp), %eax	/* (%rax damaged by mstate calls) */
907
908	ASSERT_LWPTOREGS(%r14, %rsp)
909
910	incq	%gs:CPU_STATS_SYS_SYSCALL
911
912	/*
913	 * Make some space for MAXSYSARGS (currently 8) 32-bit args
914	 * placed into 64-bit (long) arg slots, plus one 64-bit
915	 * (long) arg count, maintaining 16 byte alignment.
916	 */
917	subq	$SYS_DROP, %rsp
918	movb	$LWP_SYS, LWP_STATE(%r14)
919	movq	%r15, %rdi
920	movq	%rsp, %rsi
921	call	syscall_entry
922
923	/*
924	 * Fetch the arguments copied onto the kernel stack and put
925	 * them in the right registers to invoke a C-style syscall handler.
926	 * %rax contains the handler address.
927	 */
928	movq	%rax, %rbx
929	movl	0(%rsp), %edi
930	movl	8(%rsp), %esi
931	movl	0x10(%rsp), %edx
932	movl	0x18(%rsp), %ecx
933	movl	0x20(%rsp), %r8d
934	movl	0x28(%rsp), %r9d
935
936	call	*SY_CALLC(%rbx)
937
938	movq	%rbp, %rsp	/* pop the args */
939
940	/*
941	 * amd64 syscall handlers -always- return a 64-bit value in %rax.
942	 * On the 32-bit kernel, the always return that value in %eax:%edx
943	 * as required by the 32-bit ABI.
944	 *
945	 * Simulate the same behaviour by unconditionally splitting the
946	 * return value in the same way.
947	 */
948	movq	%rax, %r13
949	shrq	$32, %r13	/* upper 32-bits into %edx */
950	movl	%eax, %r12d	/* lower 32-bits into %eax */
951
952	/*
953	 * Optimistically assume that there's no post-syscall
954	 * work to do.  (This is to avoid having to call syscall_mstate()
955	 * with interrupts disabled)
956	 */
957	MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
958
959	/*
960	 * We must protect ourselves from being descheduled here;
961	 * If we were, and we ended up on another cpu, or another
962	 * lwp got int ahead of us, it could change the segment
963	 * registers without us noticing before we return to userland.
964	 */
965	cli
966	CHECK_POSTSYS_NE(%r15, %r14, %ebx)
967	jne	_full_syscall_postsys32
968	SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx)
969
970	/*
971	 * To get back to userland, load up the 32-bit registers and
972	 * sysexit back where we came from.
973	 */
974
975	/*
976	 * Interrupts will be turned on by the 'sti' executed just before
977	 * sysexit.  The following ensures that restoring the user's rflags
978	 * doesn't enable interrupts too soon.
979	 */
980	andq	$_BITNOT(PS_IE), REGOFF_RFL(%rsp)
981
982	/*
983	 * (There's no point in loading up %edx because the sysexit
984	 * mechanism smashes it.)
985	 */
986	movl	%r12d, %eax
987	movl	REGOFF_RBX(%rsp), %ebx
988	movl	REGOFF_RBP(%rsp), %ebp
989	movl	REGOFF_RSI(%rsp), %esi
990	movl	REGOFF_RDI(%rsp), %edi
991
992	movl	REGOFF_RIP(%rsp), %edx	/* sysexit: %edx -> %eip */
993	pushq	REGOFF_RFL(%rsp)
994	popfq
995	movl	REGOFF_RSP(%rsp), %ecx	/* sysexit: %ecx -> %esp */
996	swapgs
997	sti
998	sysexit
999	SET_SIZE(sys_sysenter)
1000	SET_SIZE(_sys_sysenter_post_swapgs)
1001	SET_SIZE(brand_sys_sysenter)
1002
1003#endif	/* __lint */
1004
1005#if defined(__lint)
1006/*
1007 * System call via an int80.  This entry point is only used by the Linux
1008 * application environment.  Unlike the other entry points, there is no
1009 * default action to take if no callback is registered for this process.
1010 */
1011void
1012sys_int80()
1013{}
1014
1015#else	/* __lint */
1016
1017	ENTRY_NP(brand_sys_int80)
1018	swapgs
1019	BRAND_CALLBACK(BRAND_CB_INT80)
1020	swapgs
1021
1022	ENTRY_NP(sys_int80)
1023	/*
1024	 * We hit an int80, but this process isn't of a brand with an int80
1025	 * handler.  Bad process!  Make it look as if the INT failed.
1026	 * Modify %eip to point before the INT, push the expected error
1027	 * code and fake a GP fault.
1028	 *
1029	 */
1030	swapgs
1031	subq	$2, (%rsp)	/* int insn 2-bytes */
1032	pushq	$_CONST(_MUL(T_INT80, GATE_DESC_SIZE) + 2)
1033	jmp	gptrap			/ GP fault
1034	SET_SIZE(sys_int80)
1035	SET_SIZE(brand_sys_int80)
1036#endif	/* __lint */
1037
1038
1039/*
1040 * This is the destination of the "int $T_SYSCALLINT" interrupt gate, used by
1041 * the generic i386 libc to do system calls. We do a small amount of setup
1042 * before jumping into the existing sys_syscall32 path.
1043 */
1044#if defined(__lint)
1045
1046/*ARGSUSED*/
1047void
1048sys_syscall_int()
1049{}
1050
1051#else	/* __lint */
1052
1053	ENTRY_NP(brand_sys_syscall_int)
1054	SWAPGS
1055	BRAND_CALLBACK(BRAND_CB_INT91)
1056	swapgs
1057
1058	ALTENTRY(sys_syscall_int)
1059	swapgs
1060	movq	%gs:CPU_THREAD, %r15
1061	movq	T_STACK(%r15), %rsp
1062	movl	%eax, %eax
1063	/*
1064	 * Set t_post_sys on this thread to force ourselves out via the slow
1065	 * path. It might be possible at some later date to optimize this out
1066	 * and use a faster return mechanism.
1067	 */
1068	movb	$1, T_POST_SYS(%r15)
1069	CLEAN_CS
1070	jmp	_syscall32_save
1071	SET_SIZE(sys_syscall_int)
1072	SET_SIZE(brand_sys_syscall_int)
1073
1074#endif	/* __lint */
1075
1076/*
1077 * Legacy 32-bit applications and old libc implementations do lcalls;
1078 * we should never get here because the LDT entry containing the syscall
1079 * segment descriptor has the "segment present" bit cleared, which means
1080 * we end up processing those system calls in trap() via a not-present trap.
1081 *
1082 * We do it this way because a call gate unhelpfully does -nothing- to the
1083 * interrupt flag bit, so an interrupt can run us just after the lcall
1084 * completes, but just before the swapgs takes effect.   Thus the INTR_PUSH and
1085 * INTR_POP paths would have to be slightly more complex to dance around
1086 * this problem, and end up depending explicitly on the first
1087 * instruction of this handler being either swapgs or cli.
1088 */
1089
1090#if defined(__lint)
1091
1092/*ARGSUSED*/
1093void
1094sys_lcall32()
1095{}
1096
1097#else	/* __lint */
1098
1099	ENTRY_NP(sys_lcall32)
1100	SWAPGS
1101	pushq	$0
1102	pushq	%rbp
1103	movq	%rsp, %rbp
1104	leaq	__lcall_panic_str(%rip), %rdi
1105	xorl	%eax, %eax
1106	call	panic
1107	SET_SIZE(sys_lcall32)
1108
1109__lcall_panic_str:
1110	.string	"sys_lcall32: shouldn't be here!"
1111
1112/*
1113 * Declare a uintptr_t which covers the entire pc range of syscall
1114 * handlers for the stack walkers that need this.
1115 */
1116	.align	CPTRSIZE
1117	.globl	_allsyscalls_size
1118	.type	_allsyscalls_size, @object
1119_allsyscalls_size:
1120	.NWORD	. - _allsyscalls
1121	SET_SIZE(_allsyscalls_size)
1122
1123#endif	/* __lint */
1124
1125/*
1126 * These are the thread context handlers for lwps using sysenter/sysexit.
1127 */
1128
1129#if defined(__lint)
1130
1131/*ARGSUSED*/
1132void
1133sep_save(void *ksp)
1134{}
1135
1136/*ARGSUSED*/
1137void
1138sep_restore(void *ksp)
1139{}
1140
1141#else	/* __lint */
1142
1143	/*
1144	 * setting this value to zero as we switch away causes the
1145	 * stack-pointer-on-sysenter to be NULL, ensuring that we
1146	 * don't silently corrupt another (preempted) thread stack
1147	 * when running an lwp that (somehow) didn't get sep_restore'd
1148	 */
1149	ENTRY_NP(sep_save)
1150	xorl	%edx, %edx
1151	xorl	%eax, %eax
1152	movl	$MSR_INTC_SEP_ESP, %ecx
1153	wrmsr
1154	ret
1155	SET_SIZE(sep_save)
1156
1157	/*
1158	 * Update the kernel stack pointer as we resume onto this cpu.
1159	 */
1160	ENTRY_NP(sep_restore)
1161	movq	%rdi, %rdx
1162	shrq	$32, %rdx
1163	movl	%edi, %eax
1164	movl	$MSR_INTC_SEP_ESP, %ecx
1165	wrmsr
1166	ret
1167	SET_SIZE(sep_restore)
1168
1169#endif	/* __lint */
1170