xref: /titanic_50/usr/src/uts/i86pc/ml/syscall_asm.s (revision c3a558e7c77127215b010652905be7916ec5a080)
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*	Copyright (c) 1990, 1991 UNIX System Laboratories, Inc.	*/
27/*	Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T	*/
28/*	  All Rights Reserved					*/
29
30/*	Copyright (c) 1987, 1988 Microsoft Corporation		*/
31/*	  All Rights Reserved					*/
32
33#include <sys/asm_linkage.h>
34#include <sys/asm_misc.h>
35#include <sys/regset.h>
36#include <sys/psw.h>
37#include <sys/x86_archext.h>
38#include <sys/machbrand.h>
39#include <sys/privregs.h>
40
41#if defined(__lint)
42
43#include <sys/types.h>
44#include <sys/thread.h>
45#include <sys/systm.h>
46
47#else	/* __lint */
48
49#include <sys/segments.h>
50#include <sys/pcb.h>
51#include <sys/trap.h>
52#include <sys/ftrace.h>
53#include <sys/traptrace.h>
54#include <sys/clock.h>
55#include <sys/panic.h>
56#include "assym.h"
57
58#endif	/* __lint */
59
60/*
61 * We implement two flavours of system call entry points
62 *
63 * -	{int,lcall}/iret	(i386)
64 * -	sysenter/sysexit	(Pentium II and beyond)
65 *
66 * The basic pattern used in the handlers is to check to see if we can
67 * do fast (simple) version of the system call; if we can't we use various
68 * C routines that handle corner cases and debugging.
69 *
70 * To reduce the amount of assembler replication, yet keep the system call
71 * implementations vaguely comprehensible, the common code in the body
72 * of the handlers is broken up into a set of preprocessor definitions
73 * below.
74 */
75
76/*
77 * When we have SYSCALLTRACE defined, we sneak an extra
78 * predicate into a couple of tests.
79 */
80#if defined(SYSCALLTRACE)
81#define	ORL_SYSCALLTRACE(r32)	\
82	orl	syscalltrace, r32
83#else
84#define	ORL_SYSCALLTRACE(r32)
85#endif
86
87/*
88 * This check is false whenever we want to go fast i.e.
89 *
90 *	if (code >= NSYSCALL ||
91 *	    t->t_pre_sys || (t->t_proc_flag & TP_WATCHPT) != 0)
92 *		do full version
93 * #ifdef SYSCALLTRACE
94 *	if (syscalltrace)
95 *		do full version
96 * #endif
97 *
98 * Preconditions:
99 * -	t	curthread
100 * -	code	contains the syscall number
101 * Postconditions:
102 * -	%ecx and %edi are smashed
103 * -	condition code flag ZF is cleared if pre-sys is too complex
104 */
105#define	CHECK_PRESYS_NE(t, code)		\
106	movzbl	T_PRE_SYS(t), %edi;		\
107	movzwl	T_PROC_FLAG(t), %ecx;		\
108	andl	$TP_WATCHPT, %ecx;		\
109	orl	%ecx, %edi;			\
110	cmpl	$NSYSCALL, code;		\
111	setae	%cl;				\
112	movzbl	%cl, %ecx;			\
113	orl	%ecx, %edi;			\
114	ORL_SYSCALLTRACE(%edi)
115
116/*
117 * Check if a brand_mach_ops callback is defined for the specified callback_id
118 * type.  If so invoke it with the user's %gs value loaded and the following
119 * data on the stack:
120 *	   --------------------------------------
121 *         | user's %ss                         |
122 *    |    | user's %esp                        |
123 *    |    | EFLAGS register                    |
124 *    |    | user's %cs                         |
125 *    |    | user's %eip (user return address)  |
126 *    |    | 'scratch space'			|
127 *    |    | user's %ebx			|
128 *    |    | user's %gs selector		|
129 *    v    | lwp pointer			|
130 *         | callback wrapper return addr 	|
131 *         --------------------------------------
132 *
133 * If the brand code returns, we assume that we are meant to execute the
134 * normal system call path.
135 *
136 * The interface to the brand callbacks on the 32-bit kernel assumes %ebx
137 * is available as a scratch register within the callback.  If the callback
138 * returns within the kernel then this macro will restore %ebx.  If the
139 * callback is going to return directly to userland then it should restore
140 * %ebx before returning to userland.
141 */
142#define	BRAND_CALLBACK(callback_id)					    \
143	subl	$4, %esp		/* save some scratch space	*/ ;\
144	pushl	%ebx			/* save %ebx to use for scratch	*/ ;\
145	pushl	%gs			/* save the user %gs		*/ ;\
146	movl	$KGS_SEL, %ebx						   ;\
147	movw	%bx, %gs		/* switch to the kernel's %gs	*/ ;\
148	movl	%gs:CPU_THREAD, %ebx	/* load the thread pointer	*/ ;\
149	movl	T_LWP(%ebx), %ebx	/* load the lwp pointer		*/ ;\
150	pushl	%ebx			/* push the lwp pointer		*/ ;\
151	movl	LWP_PROCP(%ebx), %ebx	/* load the proc pointer	*/ ;\
152	movl	P_BRAND(%ebx), %ebx	/* load the brand pointer	*/ ;\
153	movl	B_MACHOPS(%ebx), %ebx	/* load the machops pointer	*/ ;\
154	movl	_CONST(_MUL(callback_id, CPTRSIZE))(%ebx), %ebx		   ;\
155	cmpl	$0, %ebx						   ;\
156	je	1f							   ;\
157	movl	%ebx, 12(%esp)		/* save callback to scratch	*/ ;\
158	movl	4(%esp), %ebx		/* grab the user %gs		*/ ;\
159	movw	%bx, %gs		/* restore the user %gs		*/ ;\
160	call	*12(%esp)		/* call callback in scratch	*/ ;\
1611:	movl	4(%esp), %ebx		/* restore user %gs (re-do if	*/ ;\
162	movw	%bx, %gs		/* branch due to no callback)	*/ ;\
163	movl	8(%esp), %ebx		/* restore user's %ebx		*/ ;\
164	addl	$16, %esp		/* restore stack ptr		*/
165
166#define	MSTATE_TRANSITION(from, to)		\
167	pushl	$to;				\
168	pushl	$from;				\
169	call	syscall_mstate;			\
170	addl	$0x8, %esp
171
172/*
173 * aka CPU_STATS_ADDQ(CPU, sys.syscall, 1)
174 * This must be called with interrupts or preemption disabled.
175 */
176#define	CPU_STATS_SYS_SYSCALL_INC			\
177	addl	$1, %gs:CPU_STATS_SYS_SYSCALL;		\
178	adcl	$0, %gs:CPU_STATS_SYS_SYSCALL+4;
179
180#if !defined(__lint)
181
182/*
183 * ASSERT(lwptoregs(lwp) == rp);
184 *
185 * this may seem obvious, but very odd things happen if this
186 * assertion is false
187 *
188 * Preconditions:
189 *	-none-
190 * Postconditions (if assertion is true):
191 *	%esi and %edi are smashed
192 */
193#if defined(DEBUG)
194
195__lwptoregs_msg:
196	.string	"syscall_asm.s:%d lwptoregs(%p) [%p] != rp [%p]"
197
198#define	ASSERT_LWPTOREGS(t, rp)				\
199	movl	T_LWP(t), %esi;				\
200	movl	LWP_REGS(%esi), %edi;			\
201	cmpl	rp, %edi;				\
202	je	7f;					\
203	pushl	rp;					\
204	pushl	%edi;					\
205	pushl	%esi;					\
206	pushl	$__LINE__;				\
207	pushl	$__lwptoregs_msg;			\
208	call	panic;					\
2097:
210#else
211#define	ASSERT_LWPTOREGS(t, rp)
212#endif
213
214#endif	/* __lint */
215
216/*
217 * This is an assembler version of this fragment:
218 *
219 * lwp->lwp_state = LWP_SYS;
220 * lwp->lwp_ru.sysc++;
221 * lwp->lwp_eosys = NORMALRETURN;
222 * lwp->lwp_ap = argp;
223 *
224 * Preconditions:
225 *	-none-
226 * Postconditions:
227 *	-none-
228 */
229#define	SET_LWP(lwp, argp)				\
230	movb	$LWP_SYS, LWP_STATE(lwp);		\
231	addl	$1, LWP_RU_SYSC(lwp);			\
232	adcl	$0, LWP_RU_SYSC+4(lwp);			\
233	movb	$NORMALRETURN, LWP_EOSYS(lwp);		\
234	movl	argp, LWP_AP(lwp)
235
236/*
237 * Set up the thread, lwp, find the handler, and copy
238 * in the arguments from userland to the kernel stack.
239 *
240 * Preconditions:
241 * -	%eax contains the syscall number
242 * Postconditions:
243 * -	%eax contains a pointer to the sysent structure
244 * -	%ecx is zeroed
245 * -	%esi, %edi are smashed
246 * -	%esp is SYS_DROPped ready for the syscall
247 */
248#define	SIMPLE_SYSCALL_PRESYS(t, faultlabel)		\
249	movl	T_LWP(t), %esi;				\
250	movw	%ax, T_SYSNUM(t);			\
251	subl	$SYS_DROP, %esp;			\
252	shll	$SYSENT_SIZE_SHIFT, %eax;			\
253	SET_LWP(%esi, %esp);				\
254	leal	sysent(%eax), %eax;			\
255	movzbl	SY_NARG(%eax), %ecx;			\
256	testl	%ecx, %ecx;				\
257	jz	4f;					\
258	movl	%esp, %edi;				\
259	movl	SYS_DROP + REGOFF_UESP(%esp), %esi;	\
260	movl	$faultlabel, T_LOFAULT(t);		\
261	addl	$4, %esi;				\
262	rep;						\
263	  smovl;					\
264	movl	%ecx, T_LOFAULT(t);			\
2654:
266
267/*
268 * Check to see if a simple return is possible i.e.
269 *
270 *	if ((t->t_post_sys_ast | syscalltrace) != 0)
271 *		do full version;
272 *
273 * Preconditions:
274 * -	t is curthread
275 * Postconditions:
276 * -	condition code NE is set if post-sys is too complex
277 * -	rtmp is zeroed if it isn't (we rely on this!)
278 */
279#define	CHECK_POSTSYS_NE(t, rtmp)			\
280	xorl	rtmp, rtmp;				\
281	ORL_SYSCALLTRACE(rtmp);				\
282	orl	T_POST_SYS_AST(t), rtmp;		\
283	cmpl	$0, rtmp
284
285/*
286 * Fix up the lwp, thread, and eflags for a successful return
287 *
288 * Preconditions:
289 * -	zwreg contains zero
290 * Postconditions:
291 * -	%esp has been unSYS_DROPped
292 * -	%esi is smashed (points to lwp)
293 */
294#define	SIMPLE_SYSCALL_POSTSYS(t, zwreg)		\
295	movl	T_LWP(t), %esi;				\
296	addl	$SYS_DROP, %esp;			\
297	movw	zwreg, T_SYSNUM(t);			\
298	movb	$LWP_USER, LWP_STATE(%esi);		\
299	andb	$_CONST(0xffff - PS_C), REGOFF_EFL(%esp)
300
301/*
302 * System call handler.  This is the destination of both the call
303 * gate (lcall 0x27) _and_ the interrupt gate (int 0x91). For our purposes,
304 * there are two significant differences between an interrupt gate and a call
305 * gate:
306 *
307 * 1) An interrupt gate runs the handler with interrupts disabled, whereas a
308 * call gate runs the handler with whatever EFLAGS settings were in effect at
309 * the time of the call.
310 *
311 * 2) An interrupt gate pushes the contents of the EFLAGS register at the time
312 * of the interrupt onto the stack, whereas a call gate does not.
313 *
314 * Because we use the following code sequence to handle system calls made from
315 * _both_ a call gate _and_ an interrupt gate, these two differences must be
316 * respected. In regards to number 1) above, the handler must ensure that a sane
317 * EFLAGS snapshot is stored on the stack so that when the kernel returns back
318 * to the user via iret (which returns to user with the EFLAGS value saved on
319 * the stack), interrupts are re-enabled.
320 *
321 * In regards to number 2) above, the handler must always put a current snapshot
322 * of EFLAGS onto the stack in the appropriate place. If we came in via an
323 * interrupt gate, we will be clobbering the EFLAGS value that was pushed by
324 * the interrupt gate. This is OK, as the only bit that was changed by the
325 * hardware was the IE (interrupt enable) bit, which for an interrupt gate is
326 * now off. If we were to do nothing, the stack would contain an EFLAGS with
327 * IE off, resulting in us eventually returning back to the user with interrupts
328 * disabled. The solution is to turn on the IE bit in the EFLAGS value saved on
329 * the stack.
330 *
331 * Another subtlety which deserves mention is the difference between the two
332 * descriptors. The call gate descriptor is set to instruct the hardware to copy
333 * one parameter from the user stack to the kernel stack, whereas the interrupt
334 * gate descriptor doesn't use the parameter passing mechanism at all. The
335 * kernel doesn't actually use the parameter that is copied by the hardware; the
336 * only reason it does this is so that there is a space on the stack large
337 * enough to hold an EFLAGS register value, which happens to be in the correct
338 * place for use by iret when we go back to userland. How convenient.
339 *
340 * Stack frame description in syscall() and callees.
341 *
342 * |------------|
343 * | regs	| +(8*4)+4	registers
344 * |------------|
345 * | 8 args	| <- %esp	MAXSYSARGS (currently 8) arguments
346 * |------------|
347 *
348 */
349#define	SYS_DROP	_CONST(_MUL(MAXSYSARGS, 4))
350
351#if defined(__lint)
352
353/*ARGSUSED*/
354void
355sys_call()
356{}
357
358void
359_allsyscalls()
360{}
361
362size_t _allsyscalls_size;
363
364#else	/* __lint */
365
366	ENTRY_NP2(brand_sys_call, _allsyscalls)
367	BRAND_CALLBACK(BRAND_CB_SYSCALL)
368
369	ALTENTRY(sys_call)
370	/ on entry	eax = system call number
371
372	/ set up the stack to look as in reg.h
373	subl    $8, %esp        / pad the stack with ERRCODE and TRAPNO
374
375	SYSCALL_PUSH
376
377#ifdef TRAPTRACE
378	TRACE_PTR(%edi, %ebx, %ebx, %ecx, $TT_SYSCALL) / Uses labels "8" and "9"
379	TRACE_REGS(%edi, %esp, %ebx, %ecx)	/ Uses label "9"
380	pushl	%eax
381	TRACE_STAMP(%edi)		/ Clobbers %eax, %edx, uses "9"
382	popl	%eax
383	movl	%eax, TTR_SYSNUM(%edi)
384#endif
385
386_watch_do_syscall:
387	movl	%esp, %ebp
388
389	/ Interrupts may be enabled here, so we must make sure this thread
390	/ doesn't migrate off the CPU while it updates the CPU stats.
391	/
392	/ XXX This is only true if we got here via call gate thru the LDT for
393	/ old style syscalls. Perhaps this preempt++-- will go away soon?
394	movl	%gs:CPU_THREAD, %ebx
395	addb	$1, T_PREEMPT(%ebx)
396	CPU_STATS_SYS_SYSCALL_INC
397	subb	$1, T_PREEMPT(%ebx)
398
399	ENABLE_INTR_FLAGS
400
401	pushl	%eax				/ preserve across mstate call
402	MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
403	popl	%eax
404
405	movl	%gs:CPU_THREAD, %ebx
406
407	ASSERT_LWPTOREGS(%ebx, %esp)
408
409	CHECK_PRESYS_NE(%ebx, %eax)
410	jne	_full_syscall_presys
411	SIMPLE_SYSCALL_PRESYS(%ebx, _syscall_fault)
412
413_syslcall_call:
414	call	*SY_CALLC(%eax)
415
416_syslcall_done:
417	CHECK_POSTSYS_NE(%ebx, %ecx)
418	jne	_full_syscall_postsys
419	SIMPLE_SYSCALL_POSTSYS(%ebx, %cx)
420	movl	%eax, REGOFF_EAX(%esp)
421	movl	%edx, REGOFF_EDX(%esp)
422
423	MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
424
425	/
426	/ get back via iret
427	/
428	CLI(%edx)
429	jmp	sys_rtt_syscall
430
431_full_syscall_presys:
432	movl	T_LWP(%ebx), %esi
433	subl	$SYS_DROP, %esp
434	movb	$LWP_SYS, LWP_STATE(%esi)
435	pushl	%esp
436	pushl	%ebx
437	call	syscall_entry
438	addl	$8, %esp
439	jmp	_syslcall_call
440
441_full_syscall_postsys:
442	addl	$SYS_DROP, %esp
443	pushl	%edx
444	pushl	%eax
445	pushl	%ebx
446	call	syscall_exit
447	addl	$12, %esp
448	MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
449	jmp	_sys_rtt
450
451_syscall_fault:
452	push	$0xe			/ EFAULT
453	call	set_errno
454	addl	$4, %esp
455	xorl	%eax, %eax		/ fake syscall_err()
456	xorl	%edx, %edx
457	jmp	_syslcall_done
458	SET_SIZE(sys_call)
459	SET_SIZE(brand_sys_call)
460
461#endif	/* __lint */
462
463/*
464 * System call handler via the sysenter instruction
465 *
466 * Here's how syscall entry usually works (see sys_call for details).
467 *
468 * There, the caller (lcall or int) in userland has arranged that:
469 *
470 * -	%eax contains the syscall number
471 * -	the user stack contains the args to the syscall
472 *
473 * Normally the lcall instruction into the call gate causes the processor
474 * to push %ss, %esp, <top-of-stack>, %cs, %eip onto the kernel stack.
475 * The sys_call handler then leaves space for r_trapno and r_err, and
476 * pusha's {%eax, %ecx, %edx, %ebx, %esp, %ebp, %esi, %edi}, followed
477 * by %ds, %es, %fs and %gs to capture a 'struct regs' on the stack.
478 * Then the kernel sets %ds, %es and %gs to kernel selectors, and finally
479 * extracts %efl and puts it into r_efl (which happens to live at the offset
480 * that <top-of-stack> was copied into). Note that the value in r_efl has
481 * the IF (interrupt enable) flag turned on. (The int instruction into the
482 * interrupt gate does essentially the same thing, only instead of
483 * <top-of-stack> we get eflags - see comment above.)
484 *
485 * In the sysenter case, things are a lot more primitive.
486 *
487 * The caller in userland has arranged that:
488 *
489 * -	%eax contains the syscall number
490 * -	%ecx contains the user %esp
491 * -	%edx contains the return %eip
492 * -	the user stack contains the args to the syscall
493 *
494 * e.g.
495 *	<args on the stack>
496 *	mov	$SYS_callnum, %eax
497 *	mov	$1f, %edx	/ return %eip
498 *	mov	%esp, %ecx	/ return %esp
499 *	sysenter
500 * 1:
501 *
502 * Hardware and (privileged) initialization code have arranged that by
503 * the time the sysenter instructions completes:
504 *
505 * - %eip is pointing to sys_sysenter (below).
506 * - %cs and %ss are set to kernel text and stack (data) selectors.
507 * - %esp is pointing at the lwp's stack
508 * - Interrupts have been disabled.
509 *
510 * The task for the sysenter handler is:
511 *
512 * -	recreate the same regs structure on the stack and the same
513 *	kernel state as if we'd come in on an lcall
514 * -	do the normal work of a syscall
515 * -	execute the system call epilogue, use sysexit to return to userland.
516 *
517 * Note that we are unable to return both "rvals" to userland with this
518 * call, as %edx is used by the sysexit instruction.
519 *
520 * One final complication in this routine is its interaction with
521 * single-stepping in a debugger.  For most of the system call mechanisms,
522 * the CPU automatically clears the single-step flag before we enter the
523 * kernel.  The sysenter mechanism does not clear the flag, so a user
524 * single-stepping through a libc routine may suddenly find him/herself
525 * single-stepping through the kernel.  To detect this, kmdb compares the
526 * trap %pc to the [brand_]sys_enter addresses on each single-step trap.
527 * If it finds that we have single-stepped to a sysenter entry point, it
528 * explicitly clears the flag and executes the sys_sysenter routine.
529 *
530 * One final complication in this final complication is the fact that we
531 * have two different entry points for sysenter: brand_sys_sysenter and
532 * sys_sysenter.  If we enter at brand_sys_sysenter and start single-stepping
533 * through the kernel with kmdb, we will eventually hit the instruction at
534 * sys_sysenter.  kmdb cannot distinguish between that valid single-step
535 * and the undesirable one mentioned above.  To avoid this situation, we
536 * simply add a jump over the instruction at sys_sysenter to make it
537 * impossible to single-step to it.
538 */
539#if defined(__lint)
540
541void
542sys_sysenter()
543{}
544
545#else	/* __lint */
546
547	ENTRY_NP(brand_sys_sysenter)
548	pushl	%edx
549	BRAND_CALLBACK(BRAND_CB_SYSENTER)
550	popl	%edx
551	/*
552	 * Jump over sys_sysenter to allow single-stepping as described
553	 * above.
554	 */
555	ja	1f
556
557	ALTENTRY(sys_sysenter)
558	nop
5591:
560	/
561	/ do what the call gate would've done to the stack ..
562	/
563	pushl	$UDS_SEL	/ (really %ss, but it's the same ..)
564	pushl	%ecx		/ userland makes this a copy of %esp
565	pushfl
566	orl	$PS_IE, (%esp)	/ turn interrupts on when we return to user
567	pushl	$UCS_SEL
568	pushl	%edx		/ userland makes this a copy of %eip
569	/
570	/ done.  finish building the stack frame
571	/
572	subl	$8, %esp	/ leave space for ERR and TRAPNO
573
574	SYSENTER_PUSH
575
576#ifdef TRAPTRACE
577	TRACE_PTR(%edi, %ebx, %ebx, %ecx, $TT_SYSENTER)	/ uses labels 8 and 9
578	TRACE_REGS(%edi, %esp, %ebx, %ecx)		/ uses label 9
579	pushl	%eax
580	TRACE_STAMP(%edi)		/ clobbers %eax, %edx, uses label 9
581	popl	%eax
582	movl	%eax, TTR_SYSNUM(%edi)
583#endif
584	movl	%esp, %ebp
585
586	CPU_STATS_SYS_SYSCALL_INC
587
588	ENABLE_INTR_FLAGS
589
590	pushl	%eax				/ preserve across mstate call
591	MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
592	popl	%eax
593
594	movl	%gs:CPU_THREAD, %ebx
595
596	ASSERT_LWPTOREGS(%ebx, %esp)
597
598	CHECK_PRESYS_NE(%ebx, %eax)
599	jne	_full_syscall_presys
600	SIMPLE_SYSCALL_PRESYS(%ebx, _syscall_fault)
601
602_sysenter_call:
603	call	*SY_CALLC(%eax)
604
605_sysenter_done:
606	CHECK_POSTSYS_NE(%ebx, %ecx)
607	jne	_full_syscall_postsys
608	SIMPLE_SYSCALL_POSTSYS(%ebx, %cx)
609	/
610	/ sysexit uses %edx to restore %eip, so we can't use it
611	/ to return a value, sigh.
612	/
613	movl	%eax, REGOFF_EAX(%esp)
614	/ movl	%edx, REGOFF_EDX(%esp)
615
616	/ Interrupts will be turned on by the 'sti' executed just before
617	/ sysexit. The following ensures that restoring the user's EFLAGS
618	/ doesn't enable interrupts too soon.
619	andl	$_BITNOT(PS_IE), REGOFF_EFL(%esp)
620
621	MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
622
623	cli
624
625	SYSCALL_POP
626
627	popl	%edx			/ sysexit: %edx -> %eip
628	addl	$4, %esp		/ get CS off the stack
629	popfl				/ EFL
630	popl	%ecx			/ sysexit: %ecx -> %esp
631	sti
632	sysexit
633	SET_SIZE(sys_sysenter)
634	SET_SIZE(brand_sys_sysenter)
635
636#endif	/* __lint */
637
638#if defined(__lint)
639/*
640 * System call via an int80.  This entry point is only used by the Linux
641 * application environment.  Unlike the sysenter path, there is no default
642 * action to take if no callback is registered for this process.
643 */
644void
645sys_int80()
646{}
647
648#else	/* __lint */
649
650	ENTRY_NP(brand_sys_int80)
651	BRAND_CALLBACK(BRAND_CB_INT80)
652
653	ALTENTRY(sys_int80)
654	/*
655	 * We hit an int80, but this process isn't of a brand with an int80
656	 * handler.  Bad process!  Make it look as if the INT failed.
657	 * Modify %eip to point before the INT, push the expected error
658	 * code and fake a GP fault.
659	 *
660	 */
661	subl	$2, (%esp)	/* int insn 2-bytes */
662	pushl	$_CONST(_MUL(T_INT80, GATE_DESC_SIZE) + 2)
663	jmp	gptrap			/ GP fault
664	SET_SIZE(sys_int80)
665	SET_SIZE(brand_sys_int80)
666
667/*
668 * Declare a uintptr_t which covers the entire pc range of syscall
669 * handlers for the stack walkers that need this.
670 */
671	.align	CPTRSIZE
672	.globl	_allsyscalls_size
673	.type	_allsyscalls_size, @object
674_allsyscalls_size:
675	.NWORD	. - _allsyscalls
676	SET_SIZE(_allsyscalls_size)
677
678#endif	/* __lint */
679
680/*
681 * These are the thread context handlers for lwps using sysenter/sysexit.
682 */
683
684#if defined(__lint)
685
686/*ARGSUSED*/
687void
688sep_save(void *ksp)
689{}
690
691/*ARGSUSED*/
692void
693sep_restore(void *ksp)
694{}
695
696#else	/* __lint */
697
698	/*
699	 * setting this value to zero as we switch away causes the
700	 * stack-pointer-on-sysenter to be NULL, ensuring that we
701	 * don't silently corrupt another (preempted) thread stack
702	 * when running an lwp that (somehow) didn't get sep_restore'd
703	 */
704	ENTRY_NP(sep_save)
705	xorl	%edx, %edx
706	xorl	%eax, %eax
707	movl	$MSR_INTC_SEP_ESP, %ecx
708	wrmsr
709	ret
710	SET_SIZE(sep_save)
711
712	/*
713	 * Update the kernel stack pointer as we resume onto this cpu.
714	 */
715	ENTRY_NP(sep_restore)
716	movl	4(%esp), %eax			/* per-lwp kernel sp */
717	xorl	%edx, %edx
718	movl	$MSR_INTC_SEP_ESP, %ecx
719	wrmsr
720	ret
721	SET_SIZE(sep_restore)
722
723#endif	/* __lint */
724
725/*
726 * Call syscall().  Called from trap() on watchpoint at lcall 0,7
727 */
728
729#if defined(__lint)
730
731void
732watch_syscall(void)
733{}
734
735#else	/* __lint */
736
737	ENTRY_NP(watch_syscall)
738	CLI(%eax)
739	movl	%gs:CPU_THREAD, %ebx
740	movl	T_STACK(%ebx), %esp		/ switch to the thread stack
741	movl	REGOFF_EAX(%esp), %eax		/ recover original syscall#
742	jmp	_watch_do_syscall
743	SET_SIZE(watch_syscall)
744
745#endif	/* __lint */
746