xref: /titanic_50/usr/src/uts/i86pc/io/pcplusmp/apic_introp.c (revision cbcb6089bf49be7bed77b8c9c1727b26f2e9c913)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * apic_introp.c:
31  *	Has code for Advanced DDI interrupt framework support.
32  */
33 
34 #include <sys/cpuvar.h>
35 #include <sys/psm.h>
36 #include "apic.h"
37 #include <sys/sunddi.h>
38 #include <sys/ddi_impldefs.h>
39 #include <sys/trap.h>
40 #include <sys/pci.h>
41 #include <sys/pci_intr_lib.h>
42 
43 /*
44  *	Local Function Prototypes
45  */
46 int		apic_pci_msi_enable_vector(dev_info_t *, int, int,
47 		    int, int, int);
48 apic_irq_t	*apic_find_irq(dev_info_t *, struct intrspec *, int);
49 static int	apic_get_pending(apic_irq_t *, int);
50 static void	apic_clear_mask(apic_irq_t *);
51 static void	apic_set_mask(apic_irq_t *);
52 static uchar_t	apic_find_multi_vectors(int, int);
53 int		apic_navail_vector(dev_info_t *, int);
54 int		apic_alloc_vectors(dev_info_t *, int, int, int, int);
55 void		apic_free_vectors(dev_info_t *, int, int, int, int);
56 int		apic_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *,
57 		    psm_intr_op_t, int *);
58 
59 extern int	intr_clear(void);
60 extern void	intr_restore(uint_t);
61 extern uchar_t	apic_bind_intr(dev_info_t *, int, uchar_t, uchar_t);
62 extern int	apic_allocate_irq(int);
63 extern int	apic_introp_xlate(dev_info_t *, struct intrspec *, int);
64 
65 /*
66  * MSI support flag:
67  * reflects whether MSI is supported at APIC level
68  * it can also be patched through /etc/system
69  *
70  *  0 = default value - don't know and need to call apic_check_msi_support()
71  *      to find out then set it accordingly
72  *  1 = supported
73  * -1 = not supported
74  */
75 int	apic_support_msi = 0;
76 
77 /* Multiple vector support for MSI */
78 int	apic_multi_msi_enable = 1;
79 int	apic_multi_msi_max = 2;
80 
81 extern uchar_t		apic_ipltopri[MAXIPL+1];
82 extern uchar_t		apic_vector_to_irq[APIC_MAX_VECTOR+1];
83 extern int		apic_max_device_irq;
84 extern int		apic_min_device_irq;
85 extern apic_irq_t	*apic_irq_table[APIC_MAX_VECTOR+1];
86 extern volatile uint32_t *apicadr; /* virtual addr of local APIC */
87 extern volatile int32_t	*apicioadr[MAX_IO_APIC];
88 extern lock_t		apic_ioapic_lock;
89 extern kmutex_t		airq_mutex;
90 extern apic_cpus_info_t	*apic_cpus;
91 extern int apic_first_avail_irq;
92 
93 
94 /*
95  * apic_pci_msi_enable_vector:
96  *	Set the address/data fields in the MSI/X capability structure
97  *	XXX: MSI-X support
98  */
99 /* ARGSUSED */
100 int
101 apic_pci_msi_enable_vector(dev_info_t *dip, int type, int inum, int vector,
102     int count, int target_apic_id)
103 {
104 	uint64_t	msi_addr, msi_data;
105 
106 	DDI_INTR_IMPLDBG((CE_CONT, "apic_pci_msi_enable_vector: dip=0x%p\n"
107 	    "\tdriver = %s, inum=0x%x vector=0x%x apicid=0x%x\n", (void *)dip,
108 	    ddi_driver_name(dip), inum, vector, target_apic_id));
109 
110 	/* MSI Address */
111 	msi_addr = (MSI_ADDR_HDR | (target_apic_id << MSI_ADDR_DEST_SHIFT));
112 	msi_addr |= ((MSI_ADDR_RH_FIXED << MSI_ADDR_RH_SHIFT) |
113 		    (MSI_ADDR_DM_PHYSICAL << MSI_ADDR_DM_SHIFT));
114 
115 	/* MSI Data: MSI is edge triggered according to spec */
116 	msi_data = ((MSI_DATA_TM_EDGE << MSI_DATA_TM_SHIFT) | vector);
117 
118 	DDI_INTR_IMPLDBG((CE_CONT, "apic_pci_msi_enable_vector: addr=0x%lx "
119 	    "data=0x%lx\n", (long)msi_addr, (long)msi_data));
120 
121 	if (pci_msi_configure(dip, type, count, inum, msi_addr, msi_data) !=
122 	    DDI_SUCCESS) {
123 		DDI_INTR_IMPLDBG((CE_CONT, "apic_pci_msi_enable_vector: "
124 		    "pci_msi_configure failed\n"));
125 		return (PSM_FAILURE);
126 	}
127 
128 	return (PSM_SUCCESS);
129 }
130 
131 
132 /*
133  * This function returns the no. of vectors available for the pri.
134  * dip is not used at this moment.  If we really don't need that,
135  * it will be removed.
136  */
137 /*ARGSUSED*/
138 int
139 apic_navail_vector(dev_info_t *dip, int pri)
140 {
141 	int	lowest, highest, i, navail, count;
142 
143 	DDI_INTR_IMPLDBG((CE_CONT, "apic_navail_vector: dip: %p, pri: %x\n",
144 	    (void *)dip, pri));
145 
146 	highest = apic_ipltopri[pri] + APIC_VECTOR_MASK;
147 	lowest = apic_ipltopri[pri - 1] + APIC_VECTOR_PER_IPL;
148 	navail = count = 0;
149 
150 	/* It has to be contiguous */
151 	for (i = lowest; i < highest; i++) {
152 		count = 0;
153 		while ((apic_vector_to_irq[i] == APIC_RESV_IRQ) &&
154 			(i < highest)) {
155 			if ((i == T_FASTTRAP) || (i == APIC_SPUR_INTR))
156 				break;
157 			count++;
158 			i++;
159 		}
160 		if (count > navail)
161 			navail = count;
162 	}
163 	return (navail);
164 }
165 
166 static uchar_t
167 apic_find_multi_vectors(int pri, int count)
168 {
169 	int	lowest, highest, i, navail, start;
170 
171 	DDI_INTR_IMPLDBG((CE_CONT, "apic_find_mult: pri: %x, count: %x\n",
172 	    pri, count));
173 
174 	highest = apic_ipltopri[pri] + APIC_VECTOR_MASK;
175 	lowest = apic_ipltopri[pri - 1] + APIC_VECTOR_PER_IPL;
176 	navail = 0;
177 
178 	/* It has to be contiguous */
179 	for (i = lowest; i < highest; i++) {
180 		navail = 0;
181 		start = i;
182 		while ((apic_vector_to_irq[i] == APIC_RESV_IRQ) &&
183 			(i < highest)) {
184 			if ((i == T_FASTTRAP) || (i == APIC_SPUR_INTR))
185 				break;
186 			navail++;
187 			if (navail >= count)
188 				return (start);
189 			i++;
190 		}
191 	}
192 	return (0);
193 }
194 
195 
196 /*
197  * It finds the apic_irq_t associates with the dip, ispec and type.
198  */
199 apic_irq_t *
200 apic_find_irq(dev_info_t *dip, struct intrspec *ispec, int type)
201 {
202 	apic_irq_t	*irqp;
203 	int i;
204 
205 	DDI_INTR_IMPLDBG((CE_CONT, "apic_find_irq: dip=0x%p vec=0x%x "
206 	    "ipl=0x%x type=0x%x\n", (void *)dip, ispec->intrspec_vec,
207 	    ispec->intrspec_pri, type));
208 
209 	for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
210 		if ((irqp = apic_irq_table[i]) == NULL)
211 			continue;
212 		if ((irqp->airq_dip == dip) &&
213 		    (irqp->airq_origirq == ispec->intrspec_vec) &&
214 		    (irqp->airq_ipl == ispec->intrspec_pri)) {
215 			if (DDI_INTR_IS_MSI_OR_MSIX(type)) {
216 				if (APIC_IS_MSI_OR_MSIX_INDEX(irqp->
217 				    airq_mps_intr_index))
218 					return (irqp);
219 			} else
220 				return (irqp);
221 		}
222 	}
223 	DDI_INTR_IMPLDBG((CE_CONT, "apic_find_irq: return NULL\n"));
224 	return (NULL);
225 }
226 
227 
228 /*
229  * This function will return the pending bit of the irqp.
230  * It either comes from the IRR register of the APIC or the RDT
231  * entry of the I/O APIC.
232  * For the IRR to work, it needs to be to its binding CPU
233  */
234 static int
235 apic_get_pending(apic_irq_t *irqp, int type)
236 {
237 	int			bit, index, irr, pending;
238 	int			intin_no;
239 	volatile int32_t 	*ioapic;
240 
241 	DDI_INTR_IMPLDBG((CE_CONT, "apic_get_pending: irqp: %p, cpuid: %x "
242 	    "type: %x\n", (void *)irqp, irqp->airq_cpu & ~IRQ_USER_BOUND,
243 	    type));
244 
245 	/* need to get on the bound cpu */
246 	mutex_enter(&cpu_lock);
247 	affinity_set(irqp->airq_cpu & ~IRQ_USER_BOUND);
248 
249 	index = irqp->airq_vector / 32;
250 	bit = irqp->airq_vector % 32;
251 	irr = apicadr[APIC_IRR_REG + index];
252 
253 	affinity_clear();
254 	mutex_exit(&cpu_lock);
255 
256 	pending = (irr & (1 << bit)) ? 1 : 0;
257 	if (!pending && (type == DDI_INTR_TYPE_FIXED)) {
258 		/* check I/O APIC for fixed interrupt */
259 		intin_no = irqp->airq_intin_no;
260 		ioapic = apicioadr[irqp->airq_ioapicindex];
261 		pending = (READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no) &
262 		    AV_PENDING) ? 1 : 0;
263 	}
264 	return (pending);
265 }
266 
267 
268 /*
269  * This function will clear the mask for the interrupt on the I/O APIC
270  */
271 static void
272 apic_clear_mask(apic_irq_t *irqp)
273 {
274 	int			intin_no;
275 	int			iflag;
276 	int32_t			rdt_entry;
277 	volatile int32_t 	*ioapic;
278 
279 	DDI_INTR_IMPLDBG((CE_CONT, "apic_clear_mask: irqp: %p\n",
280 	    (void *)irqp));
281 
282 	intin_no = irqp->airq_intin_no;
283 	ioapic = apicioadr[irqp->airq_ioapicindex];
284 
285 	iflag = intr_clear();
286 	lock_set(&apic_ioapic_lock);
287 
288 	rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no);
289 
290 	/* clear mask */
291 	WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no,
292 	    ((~AV_MASK) & rdt_entry));
293 
294 	lock_clear(&apic_ioapic_lock);
295 	intr_restore(iflag);
296 }
297 
298 
299 /*
300  * This function will mask the interrupt on the I/O APIC
301  */
302 static void
303 apic_set_mask(apic_irq_t *irqp)
304 {
305 	int			intin_no;
306 	volatile int32_t 	*ioapic;
307 	int			iflag;
308 	int32_t			rdt_entry;
309 
310 	DDI_INTR_IMPLDBG((CE_CONT, "apic_set_mask: irqp: %p\n", (void *)irqp));
311 
312 	intin_no = irqp->airq_intin_no;
313 	ioapic = apicioadr[irqp->airq_ioapicindex];
314 
315 	iflag = intr_clear();
316 
317 	lock_set(&apic_ioapic_lock);
318 
319 	rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no);
320 
321 	/* mask it */
322 	WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no,
323 	    (AV_MASK | rdt_entry));
324 
325 	lock_clear(&apic_ioapic_lock);
326 	intr_restore(iflag);
327 }
328 
329 
330 /*
331  * This function allocate "count" vector(s) for the given "dip/pri/type"
332  */
333 int
334 apic_alloc_vectors(dev_info_t *dip, int inum, int count, int pri, int type)
335 {
336 	int	rcount, i;
337 	uchar_t	start, irqno, cpu;
338 	short	idx;
339 	major_t	major;
340 	apic_irq_t	*irqptr;
341 
342 	/* for MSI/X only */
343 	if (!DDI_INTR_IS_MSI_OR_MSIX(type))
344 		return (0);
345 
346 	DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_vectors: dip=0x%p type=%d "
347 	    "inum=0x%x  pri=0x%x count=0x%x\n",
348 	    (void *)dip, type, inum, pri, count));
349 
350 	if (count > 1) {
351 		if (apic_multi_msi_enable == 0)
352 			count = 1;
353 		else if (count > apic_multi_msi_max)
354 			count = apic_multi_msi_max;
355 	}
356 
357 	if ((rcount = apic_navail_vector(dip, pri)) > count)
358 		rcount = count;
359 
360 	mutex_enter(&airq_mutex);
361 
362 	for (start = 0; rcount > 0; rcount--) {
363 		if ((start = apic_find_multi_vectors(pri, rcount)) != 0)
364 			break;
365 	}
366 
367 	if (start == 0) {
368 		/* no vector available */
369 		mutex_exit(&airq_mutex);
370 		return (0);
371 	}
372 
373 	idx = (short)((type == DDI_INTR_TYPE_MSI) ? MSI_INDEX : MSIX_INDEX);
374 	major = (dip != NULL) ? ddi_name_to_major(ddi_get_name(dip)) : 0;
375 	for (i = 0; i < rcount; i++) {
376 		if ((irqno = apic_allocate_irq(apic_first_avail_irq)) ==
377 		    (uchar_t)-1) {
378 			mutex_exit(&airq_mutex);
379 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_vectors: "
380 			    "apic_allocate_irq failed\n"));
381 			return (i);
382 		}
383 		apic_max_device_irq = max(irqno, apic_max_device_irq);
384 		apic_min_device_irq = min(irqno, apic_min_device_irq);
385 		irqptr = apic_irq_table[irqno];
386 #ifdef	DEBUG
387 		if (apic_vector_to_irq[start + i] != APIC_RESV_IRQ)
388 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_vectors: "
389 			    "apic_vector_to_irq is not APIC_RESV_IRQ\n"));
390 #endif
391 		apic_vector_to_irq[start + i] = (uchar_t)irqno;
392 
393 		irqptr->airq_vector = (uchar_t)(start + i);
394 		irqptr->airq_ioapicindex = (uchar_t)inum;	/* start */
395 		irqptr->airq_intin_no = (uchar_t)rcount;
396 		irqptr->airq_ipl = pri;
397 		irqptr->airq_vector = start + i;
398 		irqptr->airq_origirq = (uchar_t)(inum + i);
399 		irqptr->airq_share_id = 0;
400 		irqptr->airq_mps_intr_index = idx;
401 		irqptr->airq_dip = dip;
402 		irqptr->airq_major = major;
403 		if (i == 0) /* they all bound to the same cpu */
404 			cpu = irqptr->airq_cpu = apic_bind_intr(dip, irqno,
405 				0xff, 0xff);
406 		else
407 			irqptr->airq_cpu = cpu;
408 		DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_vectors: irq=0x%x "
409 		    "dip=0x%p vector=0x%x origirq=0x%x pri=0x%x\n", irqno,
410 		    (void *)irqptr->airq_dip, irqptr->airq_vector,
411 		    irqptr->airq_origirq, pri));
412 	}
413 	mutex_exit(&airq_mutex);
414 	return (rcount);
415 }
416 
417 
418 void
419 apic_free_vectors(dev_info_t *dip, int inum, int count, int pri, int type)
420 {
421 	int i;
422 	apic_irq_t *irqptr;
423 	struct intrspec ispec;
424 
425 	DDI_INTR_IMPLDBG((CE_CONT, "apic_free_vectors: dip: %p inum: %x "
426 	    "count: %x pri: %x type: %x\n",
427 	    (void *)dip, inum, count, pri, type));
428 
429 	/* for MSI/X only */
430 	if (!DDI_INTR_IS_MSI_OR_MSIX(type))
431 		return;
432 
433 	for (i = 0; i < count; i++) {
434 		DDI_INTR_IMPLDBG((CE_CONT, "apic_free_vectors: inum=0x%x "
435 		    "pri=0x%x count=0x%x\n", inum, pri, count));
436 		ispec.intrspec_vec = inum + i;
437 		ispec.intrspec_pri = pri;
438 		if ((irqptr = apic_find_irq(dip, &ispec, type)) == NULL) {
439 			DDI_INTR_IMPLDBG((CE_CONT, "apic_free_vectors: "
440 			    "dip=0x%p inum=0x%x pri=0x%x apic_find_irq() "
441 			    "failed\n", (void *)dip, inum, pri));
442 			continue;
443 		}
444 		irqptr->airq_mps_intr_index = FREE_INDEX;
445 		apic_vector_to_irq[irqptr->airq_vector] = APIC_RESV_IRQ;
446 	}
447 }
448 
449 
450 /*
451  * check whether the system supports MSI
452  *
453  * If PCI-E capability is found, then this must be a PCI-E system.
454  * Since MSI is required for PCI-E system, it returns PSM_SUCCESS
455  * to indicate this system supports MSI.
456  */
457 int
458 apic_check_msi_support(dev_info_t *dip)
459 {
460 
461 	dev_info_t *rootdip;
462 	char dev_type[16];
463 	int dev_len;
464 
465 	DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support: dip: 0x%p\n",
466 	    (void *)dip));
467 
468 	/* check whether the device or its ancestors have PCI-E capability */
469 	for (rootdip = ddi_root_node(); dip != rootdip;
470 	    dip = ddi_get_parent(dip)) {
471 
472 		DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support: dip: 0x%p,"
473 		    " driver: %s, binding: %s, nodename: %s\n", (void *)dip,
474 		    ddi_driver_name(dip), ddi_binding_name(dip),
475 		    ddi_node_name(dip)));
476 		dev_len = sizeof (dev_type);
477 		if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
478 		    "device_type", (caddr_t)dev_type, &dev_len)
479 		    != DDI_PROP_SUCCESS)
480 			continue;
481 		if (strcmp(dev_type, "pciex") == 0)
482 			return (PSM_SUCCESS);
483 	}
484 
485 	/* MSI is not supported on this system */
486 	DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support: no 'pciex' "
487 	    "device_type found\n"));
488 	return (PSM_FAILURE);
489 }
490 
491 /*
492  * This function provides external interface to the nexus for all
493  * functionalities related to the new DDI interrupt framework.
494  *
495  * Input:
496  * dip     - pointer to the dev_info structure of the requested device
497  * hdlp    - pointer to the internal interrupt handle structure for the
498  *	     requested interrupt
499  * intr_op - opcode for this call
500  * result  - pointer to the integer that will hold the result to be
501  *	     passed back if return value is PSM_SUCCESS
502  *
503  * Output:
504  * return value is either PSM_SUCCESS or PSM_FAILURE
505  */
506 int
507 apic_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp,
508     psm_intr_op_t intr_op, int *result)
509 {
510 	int		cap;
511 	int		count_vec;
512 	int		old_priority;
513 	int		new_priority;
514 	apic_irq_t	*irqp;
515 	struct intrspec *ispec, intr_spec;
516 
517 	DDI_INTR_IMPLDBG((CE_CONT, "apic_intr_ops: dip: %p hdlp: %p "
518 	    "intr_op: %x\n", (void *)dip, (void *)hdlp, intr_op));
519 
520 	ispec = &intr_spec;
521 	ispec->intrspec_pri = hdlp->ih_pri;
522 	ispec->intrspec_vec = hdlp->ih_inum;
523 	ispec->intrspec_func = hdlp->ih_cb_func;
524 
525 	switch (intr_op) {
526 	case PSM_INTR_OP_CHECK_MSI:
527 		/*
528 		 * Check MSI/X is supported or not at APIC level and
529 		 * masked off the MSI/X bits in hdlp->ih_type if not
530 		 * supported before return.  If MSI/X is supported,
531 		 * leave the ih_type unchanged and return.
532 		 *
533 		 * hdlp->ih_type passed in from the nexus has all the
534 		 * interrupt types supported by the device.
535 		 */
536 		if (apic_support_msi == 0) {
537 			/*
538 			 * if apic_support_msi is not set, call
539 			 * apic_check_msi_support() to check whether msi
540 			 * is supported first
541 			 */
542 			if (apic_check_msi_support(dip) == PSM_SUCCESS)
543 				apic_support_msi = 1;
544 			else
545 				apic_support_msi = -1;
546 		}
547 		if (apic_support_msi == 1)
548 			*result = hdlp->ih_type;
549 		else
550 			*result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI |
551 			    DDI_INTR_TYPE_MSIX);
552 		break;
553 	case PSM_INTR_OP_ALLOC_VECTORS:
554 		*result = apic_alloc_vectors(dip, hdlp->ih_inum,
555 		    hdlp->ih_scratch1, hdlp->ih_pri, hdlp->ih_type);
556 		break;
557 	case PSM_INTR_OP_FREE_VECTORS:
558 		apic_free_vectors(dip, hdlp->ih_inum, hdlp->ih_scratch1,
559 		    hdlp->ih_pri, hdlp->ih_type);
560 		break;
561 	case PSM_INTR_OP_NAVAIL_VECTORS:
562 		*result = apic_navail_vector(dip, hdlp->ih_pri);
563 		break;
564 	case PSM_INTR_OP_XLATE_VECTOR:
565 		ispec = (struct intrspec *)hdlp->ih_private;
566 		*result = apic_introp_xlate(dip, ispec, hdlp->ih_type);
567 		break;
568 	case PSM_INTR_OP_GET_PENDING:
569 		if ((irqp = apic_find_irq(dip, ispec, hdlp->ih_type)) == NULL)
570 			return (PSM_FAILURE);
571 		*result = apic_get_pending(irqp, hdlp->ih_type);
572 		break;
573 	case PSM_INTR_OP_CLEAR_MASK:
574 		if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
575 			return (PSM_FAILURE);
576 		irqp = apic_find_irq(dip, ispec, hdlp->ih_type);
577 		if (irqp == NULL)
578 			return (PSM_FAILURE);
579 		apic_clear_mask(irqp);
580 		break;
581 	case PSM_INTR_OP_SET_MASK:
582 		if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
583 			return (PSM_FAILURE);
584 		if ((irqp = apic_find_irq(dip, ispec, hdlp->ih_type)) == NULL)
585 			return (PSM_FAILURE);
586 		apic_set_mask(irqp);
587 		break;
588 	case PSM_INTR_OP_GET_CAP:
589 		cap = DDI_INTR_FLAG_PENDING;
590 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
591 			cap |= DDI_INTR_FLAG_MASKABLE;
592 		*result = cap;
593 		break;
594 	case PSM_INTR_OP_GET_SHARED:
595 		if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
596 			return (PSM_FAILURE);
597 		if ((irqp = apic_find_irq(dip, ispec, hdlp->ih_type)) == NULL)
598 			return (PSM_FAILURE);
599 		*result = irqp->airq_share ? 1: 0;
600 		break;
601 	case PSM_INTR_OP_SET_PRI:
602 		old_priority = hdlp->ih_pri;	/* save old value */
603 		new_priority = *(int *)result;	/* try the new value */
604 
605 		/* First, check if "hdlp->ih_scratch1" vectors exist? */
606 		if (apic_navail_vector(dip, new_priority) < hdlp->ih_scratch1)
607 			return (PSM_FAILURE);
608 
609 		/* Now allocate the vectors */
610 		count_vec = apic_alloc_vectors(dip, hdlp->ih_inum,
611 		    hdlp->ih_scratch1, new_priority, hdlp->ih_type);
612 
613 		/* Did we get fewer vectors? */
614 		if (count_vec != hdlp->ih_scratch1) {
615 			apic_free_vectors(dip, hdlp->ih_inum, count_vec,
616 			    new_priority, hdlp->ih_type);
617 			return (PSM_FAILURE);
618 		}
619 
620 		/* Finally, free the previously allocated vectors */
621 		apic_free_vectors(dip, hdlp->ih_inum, count_vec,
622 		    old_priority, hdlp->ih_type);
623 		hdlp->ih_pri = new_priority; /* set the new value */
624 		break;
625 	case PSM_INTR_OP_SET_CAP:
626 	default:
627 		return (PSM_FAILURE);
628 	}
629 	return (PSM_SUCCESS);
630 }
631