xref: /titanic_50/usr/src/uts/i86pc/io/pcplusmp/apic_introp.c (revision 82722020b3918ce4d9594e3c6e0462bab345d102)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*
26  * apic_introp.c:
27  *	Has code for Advanced DDI interrupt framework support.
28  */
29 
30 #include <sys/cpuvar.h>
31 #include <sys/psm.h>
32 #include <sys/archsystm.h>
33 #include <sys/apic.h>
34 #include <sys/sunddi.h>
35 #include <sys/ddi_impldefs.h>
36 #include <sys/mach_intr.h>
37 #include <sys/sysmacros.h>
38 #include <sys/trap.h>
39 #include <sys/pci.h>
40 #include <sys/pci_intr_lib.h>
41 #include <sys/apic_common.h>
42 
43 extern struct av_head autovect[];
44 
45 /*
46  *	Local Function Prototypes
47  */
48 apic_irq_t	*apic_find_irq(dev_info_t *, struct intrspec *, int);
49 
50 /*
51  * apic_pci_msi_enable_vector:
52  *	Set the address/data fields in the MSI/X capability structure
53  *	XXX: MSI-X support
54  */
55 /* ARGSUSED */
56 void
57 apic_pci_msi_enable_vector(apic_irq_t *irq_ptr, int type, int inum, int vector,
58     int count, int target_apic_id)
59 {
60 	uint64_t		msi_addr, msi_data;
61 	ushort_t		msi_ctrl;
62 	dev_info_t		*dip = irq_ptr->airq_dip;
63 	int			cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip);
64 	ddi_acc_handle_t	handle = i_ddi_get_pci_config_handle(dip);
65 	msi_regs_t		msi_regs;
66 	int			irqno, i;
67 	void			*intrmap_tbl[PCI_MSI_MAX_INTRS];
68 
69 	DDI_INTR_IMPLDBG((CE_CONT, "apic_pci_msi_enable_vector: dip=0x%p\n"
70 	    "\tdriver = %s, inum=0x%x vector=0x%x apicid=0x%x\n", (void *)dip,
71 	    ddi_driver_name(dip), inum, vector, target_apic_id));
72 
73 	ASSERT((handle != NULL) && (cap_ptr != 0));
74 
75 	msi_regs.mr_data = vector;
76 	msi_regs.mr_addr = target_apic_id;
77 
78 	intrmap_tbl[0] = irq_ptr->airq_intrmap_private;
79 	apic_vt_ops->apic_intrmap_alloc_entry(intrmap_tbl, dip, type,
80 	    count, 0xff);
81 	for (i = 0; i < count; i++) {
82 		irqno = apic_vector_to_irq[vector + i];
83 		apic_irq_table[irqno]->airq_intrmap_private =
84 		    intrmap_tbl[i];
85 	}
86 
87 	apic_vt_ops->apic_intrmap_map_entry(irq_ptr->airq_intrmap_private,
88 	    (void *)&msi_regs, type, count);
89 	apic_vt_ops->apic_intrmap_record_msi(irq_ptr->airq_intrmap_private,
90 	    &msi_regs);
91 
92 	/* MSI Address */
93 	msi_addr = msi_regs.mr_addr;
94 
95 	/* MSI Data: MSI is edge triggered according to spec */
96 	msi_data = msi_regs.mr_data;
97 
98 	DDI_INTR_IMPLDBG((CE_CONT, "apic_pci_msi_enable_vector: addr=0x%lx "
99 	    "data=0x%lx\n", (long)msi_addr, (long)msi_data));
100 
101 	if (type == DDI_INTR_TYPE_MSI) {
102 		msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL);
103 
104 		/* Set the bits to inform how many MSIs are enabled */
105 		msi_ctrl |= ((highbit(count) -1) << PCI_MSI_MME_SHIFT);
106 		pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl);
107 
108 		/*
109 		 * Only set vector if not on hypervisor
110 		 */
111 		pci_config_put32(handle,
112 		    cap_ptr + PCI_MSI_ADDR_OFFSET, msi_addr);
113 
114 		if (msi_ctrl &  PCI_MSI_64BIT_MASK) {
115 			pci_config_put32(handle,
116 			    cap_ptr + PCI_MSI_ADDR_OFFSET + 4, msi_addr >> 32);
117 			pci_config_put16(handle,
118 			    cap_ptr + PCI_MSI_64BIT_DATA, msi_data);
119 		} else {
120 			pci_config_put16(handle,
121 			    cap_ptr + PCI_MSI_32BIT_DATA, msi_data);
122 		}
123 
124 	} else if (type == DDI_INTR_TYPE_MSIX) {
125 		uintptr_t	off;
126 		ddi_intr_msix_t	*msix_p = i_ddi_get_msix(dip);
127 
128 		ASSERT(msix_p != NULL);
129 
130 		/* Offset into the "inum"th entry in the MSI-X table */
131 		off = (uintptr_t)msix_p->msix_tbl_addr +
132 		    (inum  * PCI_MSIX_VECTOR_SIZE);
133 
134 		ddi_put32(msix_p->msix_tbl_hdl,
135 		    (uint32_t *)(off + PCI_MSIX_DATA_OFFSET), msi_data);
136 		ddi_put64(msix_p->msix_tbl_hdl,
137 		    (uint64_t *)(off + PCI_MSIX_LOWER_ADDR_OFFSET), msi_addr);
138 	}
139 }
140 
141 /*
142  * This function returns the no. of vectors available for the pri.
143  * dip is not used at this moment.  If we really don't need that,
144  * it will be removed.
145  */
146 /*ARGSUSED*/
147 int
148 apic_navail_vector(dev_info_t *dip, int pri)
149 {
150 	int	lowest, highest, i, navail, count;
151 
152 	DDI_INTR_IMPLDBG((CE_CONT, "apic_navail_vector: dip: %p, pri: %x\n",
153 	    (void *)dip, pri));
154 
155 	highest = apic_ipltopri[pri] + APIC_VECTOR_MASK;
156 	lowest = apic_ipltopri[pri - 1] + APIC_VECTOR_PER_IPL;
157 	navail = count = 0;
158 
159 	if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */
160 		lowest -= APIC_VECTOR_PER_IPL;
161 
162 	/* It has to be contiguous */
163 	for (i = lowest; i <= highest; i++) {
164 		count = 0;
165 		while ((apic_vector_to_irq[i] == APIC_RESV_IRQ) &&
166 		    (i <= highest)) {
167 			if (APIC_CHECK_RESERVE_VECTORS(i))
168 				break;
169 			count++;
170 			i++;
171 		}
172 		if (count > navail)
173 			navail = count;
174 	}
175 	return (navail);
176 }
177 
178 /*
179  * Finds "count" contiguous MSI vectors starting at the proper alignment
180  * at "pri".
181  * Caller needs to make sure that count has to be power of 2 and should not
182  * be < 1.
183  */
184 uchar_t
185 apic_find_multi_vectors(int pri, int count)
186 {
187 	int	lowest, highest, i, navail, start, msibits;
188 
189 	DDI_INTR_IMPLDBG((CE_CONT, "apic_find_mult: pri: %x, count: %x\n",
190 	    pri, count));
191 
192 	highest = apic_ipltopri[pri] + APIC_VECTOR_MASK;
193 	lowest = apic_ipltopri[pri - 1] + APIC_VECTOR_PER_IPL;
194 	navail = 0;
195 
196 	if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */
197 		lowest -= APIC_VECTOR_PER_IPL;
198 
199 	/*
200 	 * msibits is the no. of lower order message data bits for the
201 	 * allocated MSI vectors and is used to calculate the aligned
202 	 * starting vector
203 	 */
204 	msibits = count - 1;
205 
206 	/* It has to be contiguous */
207 	for (i = lowest; i <= highest; i++) {
208 		navail = 0;
209 
210 		/*
211 		 * starting vector has to be aligned accordingly for
212 		 * multiple MSIs
213 		 */
214 		if (msibits)
215 			i = (i + msibits) & ~msibits;
216 		start = i;
217 		while ((apic_vector_to_irq[i] == APIC_RESV_IRQ) &&
218 		    (i <= highest)) {
219 			if (APIC_CHECK_RESERVE_VECTORS(i))
220 				break;
221 			navail++;
222 			if (navail >= count)
223 				return (start);
224 			i++;
225 		}
226 	}
227 	return (0);
228 }
229 
230 
231 /*
232  * It finds the apic_irq_t associates with the dip, ispec and type.
233  */
234 apic_irq_t *
235 apic_find_irq(dev_info_t *dip, struct intrspec *ispec, int type)
236 {
237 	apic_irq_t	*irqp;
238 	int i;
239 
240 	DDI_INTR_IMPLDBG((CE_CONT, "apic_find_irq: dip=0x%p vec=0x%x "
241 	    "ipl=0x%x type=0x%x\n", (void *)dip, ispec->intrspec_vec,
242 	    ispec->intrspec_pri, type));
243 
244 	for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
245 		for (irqp = apic_irq_table[i]; irqp; irqp = irqp->airq_next) {
246 			if ((irqp->airq_dip == dip) &&
247 			    (irqp->airq_origirq == ispec->intrspec_vec) &&
248 			    (irqp->airq_ipl == ispec->intrspec_pri)) {
249 				if (type == DDI_INTR_TYPE_MSI) {
250 					if (irqp->airq_mps_intr_index ==
251 					    MSI_INDEX)
252 						return (irqp);
253 				} else if (type == DDI_INTR_TYPE_MSIX) {
254 					if (irqp->airq_mps_intr_index ==
255 					    MSIX_INDEX)
256 						return (irqp);
257 				} else
258 					return (irqp);
259 			}
260 		}
261 	}
262 	DDI_INTR_IMPLDBG((CE_CONT, "apic_find_irq: return NULL\n"));
263 	return (NULL);
264 }
265 
266 /*
267  * This function will return the pending bit of the irqp.
268  * It either comes from the IRR register of the APIC or the RDT
269  * entry of the I/O APIC.
270  * For the IRR to work, it needs to be to its binding CPU
271  */
272 static int
273 apic_get_pending(apic_irq_t *irqp, int type)
274 {
275 	int			bit, index, irr, pending;
276 	int			intin_no;
277 	int			apic_ix;
278 
279 	DDI_INTR_IMPLDBG((CE_CONT, "apic_get_pending: irqp: %p, cpuid: %x "
280 	    "type: %x\n", (void *)irqp, irqp->airq_cpu & ~IRQ_USER_BOUND,
281 	    type));
282 
283 	/* need to get on the bound cpu */
284 	mutex_enter(&cpu_lock);
285 	affinity_set(irqp->airq_cpu & ~IRQ_USER_BOUND);
286 
287 	index = irqp->airq_vector / 32;
288 	bit = irqp->airq_vector % 32;
289 	irr = apic_reg_ops->apic_read(APIC_IRR_REG + index);
290 
291 	affinity_clear();
292 	mutex_exit(&cpu_lock);
293 
294 	pending = (irr & (1 << bit)) ? 1 : 0;
295 	if (!pending && (type == DDI_INTR_TYPE_FIXED)) {
296 		/* check I/O APIC for fixed interrupt */
297 		intin_no = irqp->airq_intin_no;
298 		apic_ix = irqp->airq_ioapicindex;
299 		pending = (READ_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no) &
300 		    AV_PENDING) ? 1 : 0;
301 	}
302 	return (pending);
303 }
304 
305 
306 /*
307  * This function will clear the mask for the interrupt on the I/O APIC
308  */
309 static void
310 apic_clear_mask(apic_irq_t *irqp)
311 {
312 	int			intin_no;
313 	ulong_t			iflag;
314 	int32_t			rdt_entry;
315 	int 			apic_ix;
316 
317 	DDI_INTR_IMPLDBG((CE_CONT, "apic_clear_mask: irqp: %p\n",
318 	    (void *)irqp));
319 
320 	intin_no = irqp->airq_intin_no;
321 	apic_ix = irqp->airq_ioapicindex;
322 
323 	iflag = intr_clear();
324 	lock_set(&apic_ioapic_lock);
325 
326 	rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no);
327 
328 	/* clear mask */
329 	WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no,
330 	    ((~AV_MASK) & rdt_entry));
331 
332 	lock_clear(&apic_ioapic_lock);
333 	intr_restore(iflag);
334 }
335 
336 
337 /*
338  * This function will mask the interrupt on the I/O APIC
339  */
340 static void
341 apic_set_mask(apic_irq_t *irqp)
342 {
343 	int			intin_no;
344 	int 			apic_ix;
345 	ulong_t			iflag;
346 	int32_t			rdt_entry;
347 
348 	DDI_INTR_IMPLDBG((CE_CONT, "apic_set_mask: irqp: %p\n", (void *)irqp));
349 
350 	intin_no = irqp->airq_intin_no;
351 	apic_ix = irqp->airq_ioapicindex;
352 
353 	iflag = intr_clear();
354 
355 	lock_set(&apic_ioapic_lock);
356 
357 	rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no);
358 
359 	/* mask it */
360 	WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no,
361 	    (AV_MASK | rdt_entry));
362 
363 	lock_clear(&apic_ioapic_lock);
364 	intr_restore(iflag);
365 }
366 
367 
368 void
369 apic_free_vectors(dev_info_t *dip, int inum, int count, int pri, int type)
370 {
371 	int i;
372 	apic_irq_t *irqptr;
373 	struct intrspec ispec;
374 
375 	DDI_INTR_IMPLDBG((CE_CONT, "apic_free_vectors: dip: %p inum: %x "
376 	    "count: %x pri: %x type: %x\n",
377 	    (void *)dip, inum, count, pri, type));
378 
379 	/* for MSI/X only */
380 	if (!DDI_INTR_IS_MSI_OR_MSIX(type))
381 		return;
382 
383 	for (i = 0; i < count; i++) {
384 		DDI_INTR_IMPLDBG((CE_CONT, "apic_free_vectors: inum=0x%x "
385 		    "pri=0x%x count=0x%x\n", inum, pri, count));
386 		ispec.intrspec_vec = inum + i;
387 		ispec.intrspec_pri = pri;
388 		if ((irqptr = apic_find_irq(dip, &ispec, type)) == NULL) {
389 			DDI_INTR_IMPLDBG((CE_CONT, "apic_free_vectors: "
390 			    "dip=0x%p inum=0x%x pri=0x%x apic_find_irq() "
391 			    "failed\n", (void *)dip, inum, pri));
392 			continue;
393 		}
394 		irqptr->airq_mps_intr_index = FREE_INDEX;
395 		apic_vector_to_irq[irqptr->airq_vector] = APIC_RESV_IRQ;
396 	}
397 }
398 
399 /*
400  * apic_pci_msi_enable_mode:
401  */
402 void
403 apic_pci_msi_enable_mode(dev_info_t *rdip, int type, int inum)
404 {
405 	ushort_t		msi_ctrl;
406 	int			cap_ptr = i_ddi_get_msi_msix_cap_ptr(rdip);
407 	ddi_acc_handle_t	handle = i_ddi_get_pci_config_handle(rdip);
408 
409 	ASSERT((handle != NULL) && (cap_ptr != 0));
410 
411 	if (type == DDI_INTR_TYPE_MSI) {
412 		msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL);
413 		if ((msi_ctrl & PCI_MSI_ENABLE_BIT))
414 			return;
415 
416 		msi_ctrl |= PCI_MSI_ENABLE_BIT;
417 		pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl);
418 
419 	} else if (type == DDI_INTR_TYPE_MSIX) {
420 		uintptr_t	off;
421 		uint32_t	mask;
422 		ddi_intr_msix_t	*msix_p;
423 
424 		msix_p = i_ddi_get_msix(rdip);
425 
426 		ASSERT(msix_p != NULL);
427 
428 		/* Offset into "inum"th entry in the MSI-X table & clear mask */
429 		off = (uintptr_t)msix_p->msix_tbl_addr + (inum *
430 		    PCI_MSIX_VECTOR_SIZE) + PCI_MSIX_VECTOR_CTRL_OFFSET;
431 
432 		mask = ddi_get32(msix_p->msix_tbl_hdl, (uint32_t *)off);
433 
434 		ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, (mask & ~1));
435 
436 		msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSIX_CTRL);
437 
438 		if (!(msi_ctrl & PCI_MSIX_ENABLE_BIT)) {
439 			msi_ctrl |= PCI_MSIX_ENABLE_BIT;
440 			pci_config_put16(handle, cap_ptr + PCI_MSIX_CTRL,
441 			    msi_ctrl);
442 		}
443 	}
444 }
445 
446 static int
447 apic_set_cpu(int irqno, int cpu, int *result)
448 {
449 	apic_irq_t *irqp;
450 	ulong_t iflag;
451 	int ret;
452 
453 	DDI_INTR_IMPLDBG((CE_CONT, "APIC_SET_CPU\n"));
454 
455 	mutex_enter(&airq_mutex);
456 	irqp = apic_irq_table[irqno];
457 	mutex_exit(&airq_mutex);
458 
459 	if (irqp == NULL) {
460 		*result = ENXIO;
461 		return (PSM_FAILURE);
462 	}
463 
464 	/* Fail if this is an MSI intr and is part of a group. */
465 	if ((irqp->airq_mps_intr_index == MSI_INDEX) &&
466 	    (irqp->airq_intin_no > 1)) {
467 		*result = ENXIO;
468 		return (PSM_FAILURE);
469 	}
470 
471 	iflag = intr_clear();
472 	lock_set(&apic_ioapic_lock);
473 
474 	ret = apic_rebind_all(irqp, cpu);
475 
476 	lock_clear(&apic_ioapic_lock);
477 	intr_restore(iflag);
478 
479 	if (ret) {
480 		*result = EIO;
481 		return (PSM_FAILURE);
482 	}
483 	/*
484 	 * keep tracking the default interrupt cpu binding
485 	 */
486 	irqp->airq_cpu = cpu;
487 
488 	*result = 0;
489 	return (PSM_SUCCESS);
490 }
491 
492 static int
493 apic_grp_set_cpu(int irqno, int new_cpu, int *result)
494 {
495 	dev_info_t *orig_dip;
496 	uint32_t orig_cpu;
497 	ulong_t iflag;
498 	apic_irq_t *irqps[PCI_MSI_MAX_INTRS];
499 	int i;
500 	int cap_ptr;
501 	int msi_mask_off;
502 	ushort_t msi_ctrl;
503 	uint32_t msi_pvm;
504 	ddi_acc_handle_t handle;
505 	int num_vectors = 0;
506 	uint32_t vector;
507 
508 	DDI_INTR_IMPLDBG((CE_CONT, "APIC_GRP_SET_CPU\n"));
509 
510 	/*
511 	 * Take mutex to insure that table doesn't change out from underneath
512 	 * us while we're playing with it.
513 	 */
514 	mutex_enter(&airq_mutex);
515 	irqps[0] = apic_irq_table[irqno];
516 	orig_cpu = irqps[0]->airq_temp_cpu;
517 	orig_dip = irqps[0]->airq_dip;
518 	num_vectors = irqps[0]->airq_intin_no;
519 	vector = irqps[0]->airq_vector;
520 
521 	/* A "group" of 1 */
522 	if (num_vectors == 1) {
523 		mutex_exit(&airq_mutex);
524 		return (apic_set_cpu(irqno, new_cpu, result));
525 	}
526 
527 	*result = ENXIO;
528 
529 	if (irqps[0]->airq_mps_intr_index != MSI_INDEX) {
530 		mutex_exit(&airq_mutex);
531 		DDI_INTR_IMPLDBG((CE_CONT, "set_grp: intr not MSI\n"));
532 		goto set_grp_intr_done;
533 	}
534 	if ((num_vectors < 1) || ((num_vectors - 1) & vector)) {
535 		mutex_exit(&airq_mutex);
536 		DDI_INTR_IMPLDBG((CE_CONT,
537 		    "set_grp: base vec not part of a grp or not aligned: "
538 		    "vec:0x%x, num_vec:0x%x\n", vector, num_vectors));
539 		goto set_grp_intr_done;
540 	}
541 	DDI_INTR_IMPLDBG((CE_CONT, "set_grp: num intrs in grp: %d\n",
542 	    num_vectors));
543 
544 	ASSERT((num_vectors + vector) < APIC_MAX_VECTOR);
545 
546 	*result = EIO;
547 
548 	/*
549 	 * All IRQ entries in the table for the given device will be not
550 	 * shared.  Since they are not shared, the dip in the table will
551 	 * be true to the device of interest.
552 	 */
553 	for (i = 1; i < num_vectors; i++) {
554 		irqps[i] = apic_irq_table[apic_vector_to_irq[vector + i]];
555 		if (irqps[i] == NULL) {
556 			mutex_exit(&airq_mutex);
557 			goto set_grp_intr_done;
558 		}
559 #ifdef DEBUG
560 		/* Sanity check: CPU and dip is the same for all entries. */
561 		if ((irqps[i]->airq_dip != orig_dip) ||
562 		    (irqps[i]->airq_temp_cpu != orig_cpu)) {
563 			mutex_exit(&airq_mutex);
564 			DDI_INTR_IMPLDBG((CE_CONT,
565 			    "set_grp: cpu or dip for vec 0x%x difft than for "
566 			    "vec 0x%x\n", vector, vector + i));
567 			DDI_INTR_IMPLDBG((CE_CONT,
568 			    "  cpu: %d vs %d, dip: 0x%p vs 0x%p\n", orig_cpu,
569 			    irqps[i]->airq_temp_cpu, (void *)orig_dip,
570 			    (void *)irqps[i]->airq_dip));
571 			goto set_grp_intr_done;
572 		}
573 #endif /* DEBUG */
574 	}
575 	mutex_exit(&airq_mutex);
576 
577 	cap_ptr = i_ddi_get_msi_msix_cap_ptr(orig_dip);
578 	handle = i_ddi_get_pci_config_handle(orig_dip);
579 	msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL);
580 
581 	/* MSI Per vector masking is supported. */
582 	if (msi_ctrl & PCI_MSI_PVM_MASK) {
583 		if (msi_ctrl &  PCI_MSI_64BIT_MASK)
584 			msi_mask_off = cap_ptr + PCI_MSI_64BIT_MASKBITS;
585 		else
586 			msi_mask_off = cap_ptr + PCI_MSI_32BIT_MASK;
587 		msi_pvm = pci_config_get32(handle, msi_mask_off);
588 		pci_config_put32(handle, msi_mask_off, (uint32_t)-1);
589 		DDI_INTR_IMPLDBG((CE_CONT,
590 		    "set_grp: pvm supported.  Mask set to 0x%x\n",
591 		    pci_config_get32(handle, msi_mask_off)));
592 	}
593 
594 	iflag = intr_clear();
595 	lock_set(&apic_ioapic_lock);
596 
597 	/*
598 	 * Do the first rebind and check for errors.  Apic_rebind_all returns
599 	 * an error if the CPU is not accepting interrupts.  If the first one
600 	 * succeeds they all will.
601 	 */
602 	if (apic_rebind_all(irqps[0], new_cpu))
603 		(void) apic_rebind_all(irqps[0], orig_cpu);
604 	else {
605 		irqps[0]->airq_cpu = new_cpu;
606 
607 		for (i = 1; i < num_vectors; i++) {
608 			(void) apic_rebind_all(irqps[i], new_cpu);
609 			irqps[i]->airq_cpu = new_cpu;
610 		}
611 		*result = 0;	/* SUCCESS */
612 	}
613 
614 	lock_clear(&apic_ioapic_lock);
615 	intr_restore(iflag);
616 
617 	/* Reenable vectors if per vector masking is supported. */
618 	if (msi_ctrl & PCI_MSI_PVM_MASK) {
619 		pci_config_put32(handle, msi_mask_off, msi_pvm);
620 		DDI_INTR_IMPLDBG((CE_CONT,
621 		    "set_grp: pvm supported.  Mask restored to 0x%x\n",
622 		    pci_config_get32(handle, msi_mask_off)));
623 	}
624 
625 set_grp_intr_done:
626 	if (*result != 0)
627 		return (PSM_FAILURE);
628 
629 	return (PSM_SUCCESS);
630 }
631 
632 int
633 apic_get_vector_intr_info(int vecirq, apic_get_intr_t *intr_params_p)
634 {
635 	struct autovec *av_dev;
636 	uchar_t irqno;
637 	int i;
638 	apic_irq_t *irq_p;
639 
640 	/* Sanity check the vector/irq argument. */
641 	ASSERT((vecirq >= 0) || (vecirq <= APIC_MAX_VECTOR));
642 
643 	mutex_enter(&airq_mutex);
644 
645 	/*
646 	 * Convert the vecirq arg to an irq using vector_to_irq table
647 	 * if the arg is a vector.  Pass thru if already an irq.
648 	 */
649 	if ((intr_params_p->avgi_req_flags & PSMGI_INTRBY_FLAGS) ==
650 	    PSMGI_INTRBY_VEC)
651 		irqno = apic_vector_to_irq[vecirq];
652 	else
653 		irqno = vecirq;
654 
655 	irq_p = apic_irq_table[irqno];
656 
657 	if ((irq_p == NULL) ||
658 	    ((irq_p->airq_mps_intr_index != RESERVE_INDEX) &&
659 	    ((irq_p->airq_temp_cpu == IRQ_UNBOUND) ||
660 	    (irq_p->airq_temp_cpu == IRQ_UNINIT)))) {
661 		mutex_exit(&airq_mutex);
662 		return (PSM_FAILURE);
663 	}
664 
665 	if (intr_params_p->avgi_req_flags & PSMGI_REQ_CPUID) {
666 
667 		/* Get the (temp) cpu from apic_irq table, indexed by irq. */
668 		intr_params_p->avgi_cpu_id = irq_p->airq_temp_cpu;
669 
670 		/* Return user bound info for intrd. */
671 		if (intr_params_p->avgi_cpu_id & IRQ_USER_BOUND) {
672 			intr_params_p->avgi_cpu_id &= ~IRQ_USER_BOUND;
673 			intr_params_p->avgi_cpu_id |= PSMGI_CPU_USER_BOUND;
674 		}
675 	}
676 
677 	if (intr_params_p->avgi_req_flags & PSMGI_REQ_VECTOR)
678 		intr_params_p->avgi_vector = irq_p->airq_vector;
679 
680 	if (intr_params_p->avgi_req_flags &
681 	    (PSMGI_REQ_NUM_DEVS | PSMGI_REQ_GET_DEVS))
682 		/* Get number of devices from apic_irq table shared field. */
683 		intr_params_p->avgi_num_devs = irq_p->airq_share;
684 
685 	if (intr_params_p->avgi_req_flags &  PSMGI_REQ_GET_DEVS) {
686 
687 		intr_params_p->avgi_req_flags  |= PSMGI_REQ_NUM_DEVS;
688 
689 		/* Some devices have NULL dip.  Don't count these. */
690 		if (intr_params_p->avgi_num_devs > 0) {
691 			for (i = 0, av_dev = autovect[irqno].avh_link;
692 			    av_dev; av_dev = av_dev->av_link)
693 				if (av_dev->av_vector && av_dev->av_dip)
694 					i++;
695 			intr_params_p->avgi_num_devs =
696 			    MIN(intr_params_p->avgi_num_devs, i);
697 		}
698 
699 		/* There are no viable dips to return. */
700 		if (intr_params_p->avgi_num_devs == 0)
701 			intr_params_p->avgi_dip_list = NULL;
702 
703 		else {	/* Return list of dips */
704 
705 			/* Allocate space in array for that number of devs. */
706 			intr_params_p->avgi_dip_list = kmem_zalloc(
707 			    intr_params_p->avgi_num_devs *
708 			    sizeof (dev_info_t *),
709 			    KM_SLEEP);
710 
711 			/*
712 			 * Loop through the device list of the autovec table
713 			 * filling in the dip array.
714 			 *
715 			 * Note that the autovect table may have some special
716 			 * entries which contain NULL dips.  These will be
717 			 * ignored.
718 			 */
719 			for (i = 0, av_dev = autovect[irqno].avh_link;
720 			    av_dev; av_dev = av_dev->av_link)
721 				if (av_dev->av_vector && av_dev->av_dip)
722 					intr_params_p->avgi_dip_list[i++] =
723 					    av_dev->av_dip;
724 		}
725 	}
726 
727 	mutex_exit(&airq_mutex);
728 
729 	return (PSM_SUCCESS);
730 }
731 
732 /*
733  * This function provides external interface to the nexus for all
734  * functionalities related to the new DDI interrupt framework.
735  *
736  * Input:
737  * dip     - pointer to the dev_info structure of the requested device
738  * hdlp    - pointer to the internal interrupt handle structure for the
739  *	     requested interrupt
740  * intr_op - opcode for this call
741  * result  - pointer to the integer that will hold the result to be
742  *	     passed back if return value is PSM_SUCCESS
743  *
744  * Output:
745  * return value is either PSM_SUCCESS or PSM_FAILURE
746  */
747 int
748 apic_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp,
749     psm_intr_op_t intr_op, int *result)
750 {
751 	int		cap;
752 	int		count_vec;
753 	int		old_priority;
754 	int		new_priority;
755 	int		new_cpu;
756 	apic_irq_t	*irqp;
757 	struct intrspec *ispec, intr_spec;
758 
759 	DDI_INTR_IMPLDBG((CE_CONT, "apic_intr_ops: dip: %p hdlp: %p "
760 	    "intr_op: %x\n", (void *)dip, (void *)hdlp, intr_op));
761 
762 	ispec = &intr_spec;
763 	ispec->intrspec_pri = hdlp->ih_pri;
764 	ispec->intrspec_vec = hdlp->ih_inum;
765 	ispec->intrspec_func = hdlp->ih_cb_func;
766 
767 	switch (intr_op) {
768 	case PSM_INTR_OP_CHECK_MSI:
769 		/*
770 		 * Check MSI/X is supported or not at APIC level and
771 		 * masked off the MSI/X bits in hdlp->ih_type if not
772 		 * supported before return.  If MSI/X is supported,
773 		 * leave the ih_type unchanged and return.
774 		 *
775 		 * hdlp->ih_type passed in from the nexus has all the
776 		 * interrupt types supported by the device.
777 		 */
778 		if (apic_support_msi == 0) {
779 			/*
780 			 * if apic_support_msi is not set, call
781 			 * apic_check_msi_support() to check whether msi
782 			 * is supported first
783 			 */
784 			if (apic_check_msi_support() == PSM_SUCCESS)
785 				apic_support_msi = 1;
786 			else
787 				apic_support_msi = -1;
788 		}
789 		if (apic_support_msi == 1) {
790 			if (apic_msix_enable)
791 				*result = hdlp->ih_type;
792 			else
793 				*result = hdlp->ih_type & ~DDI_INTR_TYPE_MSIX;
794 		} else
795 			*result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI |
796 			    DDI_INTR_TYPE_MSIX);
797 		break;
798 	case PSM_INTR_OP_ALLOC_VECTORS:
799 		if (hdlp->ih_type == DDI_INTR_TYPE_MSI)
800 			*result = apic_alloc_msi_vectors(dip, hdlp->ih_inum,
801 			    hdlp->ih_scratch1, hdlp->ih_pri,
802 			    (int)(uintptr_t)hdlp->ih_scratch2);
803 		else
804 			*result = apic_alloc_msix_vectors(dip, hdlp->ih_inum,
805 			    hdlp->ih_scratch1, hdlp->ih_pri,
806 			    (int)(uintptr_t)hdlp->ih_scratch2);
807 		break;
808 	case PSM_INTR_OP_FREE_VECTORS:
809 		apic_free_vectors(dip, hdlp->ih_inum, hdlp->ih_scratch1,
810 		    hdlp->ih_pri, hdlp->ih_type);
811 		break;
812 	case PSM_INTR_OP_NAVAIL_VECTORS:
813 		*result = apic_navail_vector(dip, hdlp->ih_pri);
814 		break;
815 	case PSM_INTR_OP_XLATE_VECTOR:
816 		ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp;
817 		*result = apic_introp_xlate(dip, ispec, hdlp->ih_type);
818 		if (*result == -1)
819 			return (PSM_FAILURE);
820 		break;
821 	case PSM_INTR_OP_GET_PENDING:
822 		if ((irqp = apic_find_irq(dip, ispec, hdlp->ih_type)) == NULL)
823 			return (PSM_FAILURE);
824 		*result = apic_get_pending(irqp, hdlp->ih_type);
825 		break;
826 	case PSM_INTR_OP_CLEAR_MASK:
827 		if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
828 			return (PSM_FAILURE);
829 		irqp = apic_find_irq(dip, ispec, hdlp->ih_type);
830 		if (irqp == NULL)
831 			return (PSM_FAILURE);
832 		apic_clear_mask(irqp);
833 		break;
834 	case PSM_INTR_OP_SET_MASK:
835 		if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
836 			return (PSM_FAILURE);
837 		if ((irqp = apic_find_irq(dip, ispec, hdlp->ih_type)) == NULL)
838 			return (PSM_FAILURE);
839 		apic_set_mask(irqp);
840 		break;
841 	case PSM_INTR_OP_GET_CAP:
842 		cap = DDI_INTR_FLAG_PENDING;
843 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
844 			cap |= DDI_INTR_FLAG_MASKABLE;
845 		*result = cap;
846 		break;
847 	case PSM_INTR_OP_GET_SHARED:
848 		if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
849 			return (PSM_FAILURE);
850 		ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp;
851 		if ((irqp = apic_find_irq(dip, ispec, hdlp->ih_type)) == NULL)
852 			return (PSM_FAILURE);
853 		*result = (irqp->airq_share > 1) ? 1: 0;
854 		break;
855 	case PSM_INTR_OP_SET_PRI:
856 		old_priority = hdlp->ih_pri;	/* save old value */
857 		new_priority = *(int *)result;	/* try the new value */
858 
859 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) {
860 			return (PSM_SUCCESS);
861 		}
862 
863 		/* Now allocate the vectors */
864 		if (hdlp->ih_type == DDI_INTR_TYPE_MSI) {
865 			/* SET_PRI does not support the case of multiple MSI */
866 			if (i_ddi_intr_get_current_nintrs(hdlp->ih_dip) > 1)
867 				return (PSM_FAILURE);
868 
869 			count_vec = apic_alloc_msi_vectors(dip, hdlp->ih_inum,
870 			    1, new_priority,
871 			    DDI_INTR_ALLOC_STRICT);
872 		} else {
873 			count_vec = apic_alloc_msix_vectors(dip, hdlp->ih_inum,
874 			    1, new_priority,
875 			    DDI_INTR_ALLOC_STRICT);
876 		}
877 
878 		/* Did we get new vectors? */
879 		if (!count_vec)
880 			return (PSM_FAILURE);
881 
882 		/* Finally, free the previously allocated vectors */
883 		apic_free_vectors(dip, hdlp->ih_inum, count_vec,
884 		    old_priority, hdlp->ih_type);
885 		break;
886 	case PSM_INTR_OP_SET_CPU:
887 	case PSM_INTR_OP_GRP_SET_CPU:
888 		/*
889 		 * The interrupt handle given here has been allocated
890 		 * specifically for this command, and ih_private carries
891 		 * a CPU value.
892 		 */
893 		new_cpu = (int)(intptr_t)hdlp->ih_private;
894 		if (!apic_cpu_in_range(new_cpu)) {
895 			DDI_INTR_IMPLDBG((CE_CONT,
896 			    "[grp_]set_cpu: cpu out of range: %d\n", new_cpu));
897 			*result = EINVAL;
898 			return (PSM_FAILURE);
899 		}
900 		if (hdlp->ih_vector > APIC_MAX_VECTOR) {
901 			DDI_INTR_IMPLDBG((CE_CONT,
902 			    "[grp_]set_cpu: vector out of range: %d\n",
903 			    hdlp->ih_vector));
904 			*result = EINVAL;
905 			return (PSM_FAILURE);
906 		}
907 		if ((hdlp->ih_flags & PSMGI_INTRBY_FLAGS) == PSMGI_INTRBY_VEC)
908 			hdlp->ih_vector = apic_vector_to_irq[hdlp->ih_vector];
909 		if (intr_op == PSM_INTR_OP_SET_CPU) {
910 			if (apic_set_cpu(hdlp->ih_vector, new_cpu, result) !=
911 			    PSM_SUCCESS)
912 				return (PSM_FAILURE);
913 		} else {
914 			if (apic_grp_set_cpu(hdlp->ih_vector, new_cpu,
915 			    result) != PSM_SUCCESS)
916 				return (PSM_FAILURE);
917 		}
918 		break;
919 	case PSM_INTR_OP_GET_INTR:
920 		/*
921 		 * The interrupt handle given here has been allocated
922 		 * specifically for this command, and ih_private carries
923 		 * a pointer to a apic_get_intr_t.
924 		 */
925 		if (apic_get_vector_intr_info(
926 		    hdlp->ih_vector, hdlp->ih_private) != PSM_SUCCESS)
927 			return (PSM_FAILURE);
928 		break;
929 	case PSM_INTR_OP_APIC_TYPE:
930 		((apic_get_type_t *)(hdlp->ih_private))->avgi_type =
931 		    apic_get_apic_type();
932 		((apic_get_type_t *)(hdlp->ih_private))->avgi_num_intr =
933 		    APIC_MAX_VECTOR;
934 		((apic_get_type_t *)(hdlp->ih_private))->avgi_num_cpu =
935 		    boot_ncpus;
936 		hdlp->ih_ver = apic_get_apic_version();
937 		break;
938 	case PSM_INTR_OP_SET_CAP:
939 	default:
940 		return (PSM_FAILURE);
941 	}
942 	return (PSM_SUCCESS);
943 }
944