xref: /titanic_50/usr/src/uts/i86pc/io/pcplusmp/apic.c (revision c93c462eec9d46f84d567abf52eb29a27c2e134b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * PSMI 1.1 extensions are supported only in 2.6 and later versions.
29  * PSMI 1.2 extensions are supported only in 2.7 and later versions.
30  * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
31  * PSMI 1.5 extensions are supported in Solaris Nevada.
32  * PSMI 1.6 extensions are supported in Solaris Nevada.
33  */
34 #define	PSMI_1_6
35 
36 #include <sys/processor.h>
37 #include <sys/time.h>
38 #include <sys/psm.h>
39 #include <sys/smp_impldefs.h>
40 #include <sys/cram.h>
41 #include <sys/acpi/acpi.h>
42 #include <sys/acpica.h>
43 #include <sys/psm_common.h>
44 #include <sys/apic.h>
45 #include <sys/pit.h>
46 #include <sys/ddi.h>
47 #include <sys/sunddi.h>
48 #include <sys/ddi_impldefs.h>
49 #include <sys/pci.h>
50 #include <sys/promif.h>
51 #include <sys/x86_archext.h>
52 #include <sys/cpc_impl.h>
53 #include <sys/uadmin.h>
54 #include <sys/panic.h>
55 #include <sys/debug.h>
56 #include <sys/archsystm.h>
57 #include <sys/trap.h>
58 #include <sys/machsystm.h>
59 #include <sys/sysmacros.h>
60 #include <sys/cpuvar.h>
61 #include <sys/rm_platter.h>
62 #include <sys/privregs.h>
63 #include <sys/note.h>
64 #include <sys/pci_intr_lib.h>
65 #include <sys/spl.h>
66 #include <sys/clock.h>
67 #include <sys/dditypes.h>
68 #include <sys/sunddi.h>
69 #include <sys/x_call.h>
70 #include <sys/reboot.h>
71 
72 /*
73  *	Local Function Prototypes
74  */
75 static void apic_init_intr();
76 static void apic_nmi_intr(caddr_t arg, struct regs *rp);
77 
78 /*
79  *	standard MP entries
80  */
81 static int	apic_probe();
82 static int	apic_clkinit();
83 static int	apic_getclkirq(int ipl);
84 static uint_t	apic_calibrate(volatile uint32_t *addr,
85     uint16_t *pit_ticks_adj);
86 static hrtime_t apic_gettime();
87 static hrtime_t apic_gethrtime();
88 static void	apic_init();
89 static void	apic_picinit(void);
90 static int	apic_cpu_start(processorid_t, caddr_t);
91 static int	apic_post_cpu_start(void);
92 static void	apic_send_ipi(int cpun, int ipl);
93 static void	apic_set_idlecpu(processorid_t cpun);
94 static void	apic_unset_idlecpu(processorid_t cpun);
95 static int	apic_intr_enter(int ipl, int *vect);
96 static void	apic_setspl(int ipl);
97 static void	x2apic_setspl(int ipl);
98 static int	apic_addspl(int ipl, int vector, int min_ipl, int max_ipl);
99 static int	apic_delspl(int ipl, int vector, int min_ipl, int max_ipl);
100 static void	apic_shutdown(int cmd, int fcn);
101 static void	apic_preshutdown(int cmd, int fcn);
102 static int	apic_disable_intr(processorid_t cpun);
103 static void	apic_enable_intr(processorid_t cpun);
104 static processorid_t	apic_get_next_processorid(processorid_t cpun);
105 static int		apic_get_ipivect(int ipl, int type);
106 static void	apic_timer_reprogram(hrtime_t time);
107 static void	apic_timer_enable(void);
108 static void	apic_timer_disable(void);
109 static void	apic_post_cyclic_setup(void *arg);
110 static void	apic_intrr_init(int apic_mode);
111 static void	apic_record_ioapic_rdt(apic_irq_t *irq_ptr, ioapic_rdt_t *irdt);
112 static void	apic_record_msi(apic_irq_t *irq_ptr, msi_regs_t *mregs);
113 
114 static int	apic_oneshot = 0;
115 int	apic_oneshot_enable = 1; /* to allow disabling one-shot capability */
116 
117 /* Now the ones for Dynamic Interrupt distribution */
118 int	apic_enable_dynamic_migration = 0;
119 
120 
121 /*
122  * These variables are frequently accessed in apic_intr_enter(),
123  * apic_intr_exit and apic_setspl, so group them together
124  */
125 volatile uint32_t *apicadr =  NULL;	/* virtual addr of local APIC	*/
126 int apic_setspl_delay = 1;		/* apic_setspl - delay enable	*/
127 int apic_clkvect;
128 
129 /* vector at which error interrupts come in */
130 int apic_errvect;
131 int apic_enable_error_intr = 1;
132 int apic_error_display_delay = 100;
133 
134 /* vector at which performance counter overflow interrupts come in */
135 int apic_cpcovf_vect;
136 int apic_enable_cpcovf_intr = 1;
137 
138 /* vector at which CMCI interrupts come in */
139 int apic_cmci_vect;
140 extern int cmi_enable_cmci;
141 extern void cmi_cmci_trap(void);
142 
143 static kmutex_t cmci_cpu_setup_lock;	/* protects cmci_cpu_setup_registered */
144 static int cmci_cpu_setup_registered;
145 
146 /*
147  * The following vector assignments influence the value of ipltopri and
148  * vectortoipl. Note that vectors 0 - 0x1f are not used. We can program
149  * idle to 0 and IPL 0 to 0xf to differentiate idle in case
150  * we care to do so in future. Note some IPLs which are rarely used
151  * will share the vector ranges and heavily used IPLs (5 and 6) have
152  * a wide range.
153  *
154  * This array is used to initialize apic_ipls[] (in apic_init()).
155  *
156  *	IPL		Vector range.		as passed to intr_enter
157  *	0		none.
158  *	1,2,3		0x20-0x2f		0x0-0xf
159  *	4		0x30-0x3f		0x10-0x1f
160  *	5		0x40-0x5f		0x20-0x3f
161  *	6		0x60-0x7f		0x40-0x5f
162  *	7,8,9		0x80-0x8f		0x60-0x6f
163  *	10		0x90-0x9f		0x70-0x7f
164  *	11		0xa0-0xaf		0x80-0x8f
165  *	...		...
166  *	15		0xe0-0xef		0xc0-0xcf
167  *	15		0xf0-0xff		0xd0-0xdf
168  */
169 uchar_t apic_vectortoipl[APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL] = {
170 	3, 4, 5, 5, 6, 6, 9, 10, 11, 12, 13, 14, 15, 15
171 };
172 	/*
173 	 * The ipl of an ISR at vector X is apic_vectortoipl[X>>4]
174 	 * NOTE that this is vector as passed into intr_enter which is
175 	 * programmed vector - 0x20 (APIC_BASE_VECT)
176 	 */
177 
178 uchar_t	apic_ipltopri[MAXIPL + 1];	/* unix ipl to apic pri	*/
179 	/* The taskpri to be programmed into apic to mask given ipl */
180 
181 #if defined(__amd64)
182 uchar_t	apic_cr8pri[MAXIPL + 1];	/* unix ipl to cr8 pri	*/
183 #endif
184 
185 /*
186  * Correlation of the hardware vector to the IPL in use, initialized
187  * from apic_vectortoipl[] in apic_init().  The final IPLs may not correlate
188  * to the IPLs in apic_vectortoipl on some systems that share interrupt lines
189  * connected to errata-stricken IOAPICs
190  */
191 uchar_t apic_ipls[APIC_AVAIL_VECTOR];
192 
193 /*
194  * Patchable global variables.
195  */
196 int	apic_forceload = 0;
197 
198 int	apic_coarse_hrtime = 1;		/* 0 - use accurate slow gethrtime() */
199 					/* 1 - use gettime() for performance */
200 int	apic_flat_model = 0;		/* 0 - clustered. 1 - flat */
201 int	apic_enable_hwsoftint = 0;	/* 0 - disable, 1 - enable	*/
202 int	apic_enable_bind_log = 1;	/* 1 - display interrupt binding log */
203 int	apic_panic_on_nmi = 0;
204 int	apic_panic_on_apic_error = 0;
205 
206 int	apic_verbose = 0;
207 
208 /* minimum number of timer ticks to program to */
209 int apic_min_timer_ticks = 1;
210 /*
211  *	Local static data
212  */
213 static struct	psm_ops apic_ops = {
214 	apic_probe,
215 
216 	apic_init,
217 	apic_picinit,
218 	apic_intr_enter,
219 	apic_intr_exit,
220 	apic_setspl,
221 	apic_addspl,
222 	apic_delspl,
223 	apic_disable_intr,
224 	apic_enable_intr,
225 	(int (*)(int))NULL,		/* psm_softlvl_to_irq */
226 	(void (*)(int))NULL,		/* psm_set_softintr */
227 
228 	apic_set_idlecpu,
229 	apic_unset_idlecpu,
230 
231 	apic_clkinit,
232 	apic_getclkirq,
233 	(void (*)(void))NULL,		/* psm_hrtimeinit */
234 	apic_gethrtime,
235 
236 	apic_get_next_processorid,
237 	apic_cpu_start,
238 	apic_post_cpu_start,
239 	apic_shutdown,
240 	apic_get_ipivect,
241 	apic_send_ipi,
242 
243 	(int (*)(dev_info_t *, int))NULL,	/* psm_translate_irq */
244 	(void (*)(int, char *))NULL,	/* psm_notify_error */
245 	(void (*)(int))NULL,		/* psm_notify_func */
246 	apic_timer_reprogram,
247 	apic_timer_enable,
248 	apic_timer_disable,
249 	apic_post_cyclic_setup,
250 	apic_preshutdown,
251 	apic_intr_ops,			/* Advanced DDI Interrupt framework */
252 	apic_state,			/* save, restore apic state for S3 */
253 };
254 
255 
256 static struct	psm_info apic_psm_info = {
257 	PSM_INFO_VER01_6,			/* version */
258 	PSM_OWN_EXCLUSIVE,			/* ownership */
259 	(struct psm_ops *)&apic_ops,		/* operation */
260 	APIC_PCPLUSMP_NAME,			/* machine name */
261 	"pcplusmp v1.4 compatible",
262 };
263 
264 static void *apic_hdlp;
265 
266 #ifdef DEBUG
267 int	apic_debug = 0;
268 int	apic_restrict_vector = 0;
269 
270 int	apic_debug_msgbuf[APIC_DEBUG_MSGBUFSIZE];
271 int	apic_debug_msgbufindex = 0;
272 
273 #endif /* DEBUG */
274 
275 apic_cpus_info_t	*apic_cpus;
276 
277 cpuset_t	apic_cpumask;
278 uint_t	apic_picinit_called;
279 
280 /* Flag to indicate that we need to shut down all processors */
281 static uint_t	apic_shutdown_processors;
282 
283 uint_t apic_nsec_per_intr = 0;
284 
285 /*
286  * apic_let_idle_redistribute can have the following values:
287  * 0 - If clock decremented it from 1 to 0, clock has to call redistribute.
288  * apic_redistribute_lock prevents multiple idle cpus from redistributing
289  */
290 int	apic_num_idle_redistributions = 0;
291 static	int apic_let_idle_redistribute = 0;
292 static	uint_t apic_nticks = 0;
293 static	uint_t apic_skipped_redistribute = 0;
294 
295 /* to gather intr data and redistribute */
296 static void apic_redistribute_compute(void);
297 
298 static	uint_t last_count_read = 0;
299 static	lock_t	apic_gethrtime_lock;
300 volatile int	apic_hrtime_stamp = 0;
301 volatile hrtime_t apic_nsec_since_boot = 0;
302 static uint_t apic_hertz_count;
303 
304 uint64_t apic_ticks_per_SFnsecs;	/* # of ticks in SF nsecs */
305 
306 static hrtime_t apic_nsec_max;
307 
308 static	hrtime_t	apic_last_hrtime = 0;
309 int		apic_hrtime_error = 0;
310 int		apic_remote_hrterr = 0;
311 int		apic_num_nmis = 0;
312 int		apic_apic_error = 0;
313 int		apic_num_apic_errors = 0;
314 int		apic_num_cksum_errors = 0;
315 
316 int	apic_error = 0;
317 static	int	apic_cmos_ssb_set = 0;
318 
319 /* use to make sure only one cpu handles the nmi */
320 static	lock_t	apic_nmi_lock;
321 /* use to make sure only one cpu handles the error interrupt */
322 static	lock_t	apic_error_lock;
323 
324 static	struct {
325 	uchar_t	cntl;
326 	uchar_t	data;
327 } aspen_bmc[] = {
328 	{ CC_SMS_WR_START,	0x18 },		/* NetFn/LUN */
329 	{ CC_SMS_WR_NEXT,	0x24 },		/* Cmd SET_WATCHDOG_TIMER */
330 	{ CC_SMS_WR_NEXT,	0x84 },		/* DataByte 1: SMS/OS no log */
331 	{ CC_SMS_WR_NEXT,	0x2 },		/* DataByte 2: Power Down */
332 	{ CC_SMS_WR_NEXT,	0x0 },		/* DataByte 3: no pre-timeout */
333 	{ CC_SMS_WR_NEXT,	0x0 },		/* DataByte 4: timer expir. */
334 	{ CC_SMS_WR_NEXT,	0xa },		/* DataByte 5: init countdown */
335 	{ CC_SMS_WR_END,	0x0 },		/* DataByte 6: init countdown */
336 
337 	{ CC_SMS_WR_START,	0x18 },		/* NetFn/LUN */
338 	{ CC_SMS_WR_END,	0x22 }		/* Cmd RESET_WATCHDOG_TIMER */
339 };
340 
341 static	struct {
342 	int	port;
343 	uchar_t	data;
344 } sitka_bmc[] = {
345 	{ SMS_COMMAND_REGISTER,	SMS_WRITE_START },
346 	{ SMS_DATA_REGISTER,	0x18 },		/* NetFn/LUN */
347 	{ SMS_DATA_REGISTER,	0x24 },		/* Cmd SET_WATCHDOG_TIMER */
348 	{ SMS_DATA_REGISTER,	0x84 },		/* DataByte 1: SMS/OS no log */
349 	{ SMS_DATA_REGISTER,	0x2 },		/* DataByte 2: Power Down */
350 	{ SMS_DATA_REGISTER,	0x0 },		/* DataByte 3: no pre-timeout */
351 	{ SMS_DATA_REGISTER,	0x0 },		/* DataByte 4: timer expir. */
352 	{ SMS_DATA_REGISTER,	0xa },		/* DataByte 5: init countdown */
353 	{ SMS_COMMAND_REGISTER,	SMS_WRITE_END },
354 	{ SMS_DATA_REGISTER,	0x0 },		/* DataByte 6: init countdown */
355 
356 	{ SMS_COMMAND_REGISTER,	SMS_WRITE_START },
357 	{ SMS_DATA_REGISTER,	0x18 },		/* NetFn/LUN */
358 	{ SMS_COMMAND_REGISTER,	SMS_WRITE_END },
359 	{ SMS_DATA_REGISTER,	0x22 }		/* Cmd RESET_WATCHDOG_TIMER */
360 };
361 
362 /* Patchable global variables. */
363 int		apic_kmdb_on_nmi = 0;		/* 0 - no, 1 - yes enter kmdb */
364 uint32_t	apic_divide_reg_init = 0;	/* 0 - divide by 2 */
365 
366 /* default apic ops without interrupt remapping */
367 static apic_intrr_ops_t apic_nointrr_ops = {
368 	(int (*)(int))return_instr,
369 	(void (*)(void))return_instr,
370 	(void (*)(apic_irq_t *))return_instr,
371 	(void (*)(apic_irq_t *, void *))return_instr,
372 	(void (*)(apic_irq_t *))return_instr,
373 	apic_record_ioapic_rdt,
374 	apic_record_msi,
375 };
376 
377 apic_intrr_ops_t *apic_vt_ops = &apic_nointrr_ops;
378 
379 /*
380  *	This is the loadable module wrapper
381  */
382 
383 int
384 _init(void)
385 {
386 	if (apic_coarse_hrtime)
387 		apic_ops.psm_gethrtime = &apic_gettime;
388 	return (psm_mod_init(&apic_hdlp, &apic_psm_info));
389 }
390 
391 int
392 _fini(void)
393 {
394 	return (psm_mod_fini(&apic_hdlp, &apic_psm_info));
395 }
396 
397 int
398 _info(struct modinfo *modinfop)
399 {
400 	return (psm_mod_info(&apic_hdlp, &apic_psm_info, modinfop));
401 }
402 
403 
404 static int
405 apic_probe()
406 {
407 	return (apic_probe_common(apic_psm_info.p_mach_idstring));
408 }
409 
410 void
411 apic_init()
412 {
413 	int i;
414 	int	j = 1;
415 
416 	apic_ipltopri[0] = APIC_VECTOR_PER_IPL; /* leave 0 for idle */
417 	for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) {
418 		if ((i < ((APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL) - 1)) &&
419 		    (apic_vectortoipl[i + 1] == apic_vectortoipl[i]))
420 			/* get to highest vector at the same ipl */
421 			continue;
422 		for (; j <= apic_vectortoipl[i]; j++) {
423 			apic_ipltopri[j] = (i << APIC_IPL_SHIFT) +
424 			    APIC_BASE_VECT;
425 		}
426 	}
427 	for (; j < MAXIPL + 1; j++)
428 		/* fill up any empty ipltopri slots */
429 		apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + APIC_BASE_VECT;
430 	apic_init_common();
431 #if defined(__amd64)
432 	/*
433 	 * Make cpu-specific interrupt info point to cr8pri vector
434 	 */
435 	for (i = 0; i <= MAXIPL; i++)
436 		apic_cr8pri[i] = apic_ipltopri[i] >> APIC_IPL_SHIFT;
437 	CPU->cpu_pri_data = apic_cr8pri;
438 #endif	/* __amd64 */
439 
440 	/*
441 	 * initialize interrupt remapping before apic
442 	 * hardware initialization
443 	 */
444 	apic_intrr_init(apic_mode);
445 }
446 
447 /*
448  * handler for APIC Error interrupt. Just print a warning and continue
449  */
450 static int
451 apic_error_intr()
452 {
453 	uint_t	error0, error1, error;
454 	uint_t	i;
455 
456 	/*
457 	 * We need to write before read as per 7.4.17 of system prog manual.
458 	 * We do both and or the results to be safe
459 	 */
460 	error0 = apic_reg_ops->apic_read(APIC_ERROR_STATUS);
461 	apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
462 	error1 = apic_reg_ops->apic_read(APIC_ERROR_STATUS);
463 	error = error0 | error1;
464 
465 	/*
466 	 * Clear the APIC error status (do this on all cpus that enter here)
467 	 * (two writes are required due to the semantics of accessing the
468 	 * error status register.)
469 	 */
470 	apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
471 	apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
472 
473 	/*
474 	 * Prevent more than 1 CPU from handling error interrupt causing
475 	 * double printing (interleave of characters from multiple
476 	 * CPU's when using prom_printf)
477 	 */
478 	if (lock_try(&apic_error_lock) == 0)
479 		return (error ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
480 	if (error) {
481 #if	DEBUG
482 		if (apic_debug)
483 			debug_enter("pcplusmp: APIC Error interrupt received");
484 #endif /* DEBUG */
485 		if (apic_panic_on_apic_error)
486 			cmn_err(CE_PANIC,
487 			    "APIC Error interrupt on CPU %d. Status = %x\n",
488 			    psm_get_cpu_id(), error);
489 		else {
490 			if ((error & ~APIC_CS_ERRORS) == 0) {
491 				/* cksum error only */
492 				apic_error |= APIC_ERR_APIC_ERROR;
493 				apic_apic_error |= error;
494 				apic_num_apic_errors++;
495 				apic_num_cksum_errors++;
496 			} else {
497 				/*
498 				 * prom_printf is the best shot we have of
499 				 * something which is problem free from
500 				 * high level/NMI type of interrupts
501 				 */
502 				prom_printf("APIC Error interrupt on CPU %d. "
503 				    "Status 0 = %x, Status 1 = %x\n",
504 				    psm_get_cpu_id(), error0, error1);
505 				apic_error |= APIC_ERR_APIC_ERROR;
506 				apic_apic_error |= error;
507 				apic_num_apic_errors++;
508 				for (i = 0; i < apic_error_display_delay; i++) {
509 					tenmicrosec();
510 				}
511 				/*
512 				 * provide more delay next time limited to
513 				 * roughly 1 clock tick time
514 				 */
515 				if (apic_error_display_delay < 500)
516 					apic_error_display_delay *= 2;
517 			}
518 		}
519 		lock_clear(&apic_error_lock);
520 		return (DDI_INTR_CLAIMED);
521 	} else {
522 		lock_clear(&apic_error_lock);
523 		return (DDI_INTR_UNCLAIMED);
524 	}
525 	/* NOTREACHED */
526 }
527 
528 /*
529  * Turn off the mask bit in the performance counter Local Vector Table entry.
530  */
531 static void
532 apic_cpcovf_mask_clear(void)
533 {
534 	apic_reg_ops->apic_write(APIC_PCINT_VECT,
535 	    (apic_reg_ops->apic_read(APIC_PCINT_VECT) & ~APIC_LVT_MASK));
536 }
537 
538 /*ARGSUSED*/
539 static int
540 apic_cmci_enable(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3)
541 {
542 	apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect);
543 	return (0);
544 }
545 
546 /*ARGSUSED*/
547 static int
548 apic_cmci_disable(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3)
549 {
550 	apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect | AV_MASK);
551 	return (0);
552 }
553 
554 /*ARGSUSED*/
555 static int
556 cmci_cpu_setup(cpu_setup_t what, int cpuid, void *arg)
557 {
558 	cpuset_t	cpu_set;
559 
560 	CPUSET_ONLY(cpu_set, cpuid);
561 
562 	switch (what) {
563 		case CPU_ON:
564 			xc_call(NULL, NULL, NULL, X_CALL_HIPRI, cpu_set,
565 			    (xc_func_t)apic_cmci_enable);
566 			break;
567 
568 		case CPU_OFF:
569 			xc_call(NULL, NULL, NULL, X_CALL_HIPRI, cpu_set,
570 			    (xc_func_t)apic_cmci_disable);
571 			break;
572 
573 		default:
574 			break;
575 	}
576 
577 	return (0);
578 }
579 
580 static void
581 apic_init_intr()
582 {
583 	processorid_t	cpun = psm_get_cpu_id();
584 	uint_t nlvt;
585 	uint32_t svr = AV_UNIT_ENABLE | APIC_SPUR_INTR;
586 
587 	apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL);
588 
589 	if (apic_mode == LOCAL_APIC) {
590 		/*
591 		 * We are running APIC in MMIO mode.
592 		 */
593 		if (apic_flat_model) {
594 			apic_reg_ops->apic_write(APIC_FORMAT_REG,
595 			    APIC_FLAT_MODEL);
596 		} else {
597 			apic_reg_ops->apic_write(APIC_FORMAT_REG,
598 			    APIC_CLUSTER_MODEL);
599 		}
600 
601 		apic_reg_ops->apic_write(APIC_DEST_REG,
602 		    AV_HIGH_ORDER >> cpun);
603 	}
604 
605 	if (apic_direct_EOI) {
606 		/*
607 		 * Set 12th bit in Spurious Interrupt Vector
608 		 * Register to support level triggered interrupt
609 		 * directed EOI.
610 		 */
611 		svr |= (0x1 << APIC_SVR);
612 	}
613 
614 	/* need to enable APIC before unmasking NMI */
615 	apic_reg_ops->apic_write(APIC_SPUR_INT_REG, svr);
616 
617 	/*
618 	 * Presence of an invalid vector with delivery mode AV_FIXED can
619 	 * cause an error interrupt, even if the entry is masked...so
620 	 * write a valid vector to LVT entries along with the mask bit
621 	 */
622 
623 	/* All APICs have timer and LINT0/1 */
624 	apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK|APIC_RESV_IRQ);
625 	apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK|APIC_RESV_IRQ);
626 	apic_reg_ops->apic_write(APIC_INT_VECT1, AV_NMI);	/* enable NMI */
627 
628 	/*
629 	 * On integrated APICs, the number of LVT entries is
630 	 * 'Max LVT entry' + 1; on 82489DX's (non-integrated
631 	 * APICs), nlvt is "3" (LINT0, LINT1, and timer)
632 	 */
633 
634 	if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) {
635 		nlvt = 3;
636 	} else {
637 		nlvt = ((apicadr[APIC_VERS_REG] >> 16) & 0xFF) + 1;
638 	}
639 
640 	if (nlvt >= 5) {
641 		/* Enable performance counter overflow interrupt */
642 
643 		if ((x86_feature & X86_MSR) != X86_MSR)
644 			apic_enable_cpcovf_intr = 0;
645 		if (apic_enable_cpcovf_intr) {
646 			if (apic_cpcovf_vect == 0) {
647 				int ipl = APIC_PCINT_IPL;
648 				int irq = apic_get_ipivect(ipl, -1);
649 
650 				ASSERT(irq != -1);
651 				apic_cpcovf_vect =
652 				    apic_irq_table[irq]->airq_vector;
653 				ASSERT(apic_cpcovf_vect);
654 				(void) add_avintr(NULL, ipl,
655 				    (avfunc)kcpc_hw_overflow_intr,
656 				    "apic pcint", irq, NULL, NULL, NULL, NULL);
657 				kcpc_hw_overflow_intr_installed = 1;
658 				kcpc_hw_enable_cpc_intr =
659 				    apic_cpcovf_mask_clear;
660 			}
661 			apic_reg_ops->apic_write(APIC_PCINT_VECT,
662 			    apic_cpcovf_vect);
663 		}
664 	}
665 
666 	if (nlvt >= 6) {
667 		/* Only mask TM intr if the BIOS apparently doesn't use it */
668 
669 		uint32_t lvtval;
670 
671 		lvtval = apic_reg_ops->apic_read(APIC_THERM_VECT);
672 		if (((lvtval & AV_MASK) == AV_MASK) ||
673 		    ((lvtval & AV_DELIV_MODE) != AV_SMI)) {
674 			apic_reg_ops->apic_write(APIC_THERM_VECT,
675 			    AV_MASK|APIC_RESV_IRQ);
676 		}
677 	}
678 
679 	/* Enable error interrupt */
680 
681 	if (nlvt >= 4 && apic_enable_error_intr) {
682 		if (apic_errvect == 0) {
683 			int ipl = 0xf;	/* get highest priority intr */
684 			int irq = apic_get_ipivect(ipl, -1);
685 
686 			ASSERT(irq != -1);
687 			apic_errvect = apic_irq_table[irq]->airq_vector;
688 			ASSERT(apic_errvect);
689 			/*
690 			 * Not PSMI compliant, but we are going to merge
691 			 * with ON anyway
692 			 */
693 			(void) add_avintr((void *)NULL, ipl,
694 			    (avfunc)apic_error_intr, "apic error intr",
695 			    irq, NULL, NULL, NULL, NULL);
696 		}
697 		apic_reg_ops->apic_write(APIC_ERR_VECT, apic_errvect);
698 		apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
699 		apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
700 	}
701 
702 	/* Enable CMCI interrupt */
703 	if (cmi_enable_cmci) {
704 
705 		mutex_enter(&cmci_cpu_setup_lock);
706 		if (cmci_cpu_setup_registered == 0) {
707 			mutex_enter(&cpu_lock);
708 			register_cpu_setup_func(cmci_cpu_setup, NULL);
709 			mutex_exit(&cpu_lock);
710 			cmci_cpu_setup_registered = 1;
711 		}
712 		mutex_exit(&cmci_cpu_setup_lock);
713 
714 		if (apic_cmci_vect == 0) {
715 			int ipl = 0x2;
716 			int irq = apic_get_ipivect(ipl, -1);
717 
718 			ASSERT(irq != -1);
719 			apic_cmci_vect = apic_irq_table[irq]->airq_vector;
720 			ASSERT(apic_cmci_vect);
721 
722 			(void) add_avintr(NULL, ipl,
723 			    (avfunc)cmi_cmci_trap,
724 			    "apic cmci intr", irq, NULL, NULL, NULL, NULL);
725 		}
726 		apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect);
727 	}
728 }
729 
730 static void
731 apic_disable_local_apic()
732 {
733 	apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL);
734 	apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK);
735 
736 	/* local intr reg 0 */
737 	apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK);
738 
739 	/* disable NMI */
740 	apic_reg_ops->apic_write(APIC_INT_VECT1, AV_MASK);
741 
742 	/* and error interrupt */
743 	apic_reg_ops->apic_write(APIC_ERR_VECT, AV_MASK);
744 
745 	/* and perf counter intr */
746 	apic_reg_ops->apic_write(APIC_PCINT_VECT, AV_MASK);
747 
748 	apic_reg_ops->apic_write(APIC_SPUR_INT_REG, APIC_SPUR_INTR);
749 }
750 
751 static void
752 apic_picinit(void)
753 {
754 	int i, j;
755 	uint_t isr;
756 	uint32_t ver;
757 
758 	/*
759 	 * On UniSys Model 6520, the BIOS leaves vector 0x20 isr
760 	 * bit on without clearing it with EOI.  Since softint
761 	 * uses vector 0x20 to interrupt itself, so softint will
762 	 * not work on this machine.  In order to fix this problem
763 	 * a check is made to verify all the isr bits are clear.
764 	 * If not, EOIs are issued to clear the bits.
765 	 */
766 	for (i = 7; i >= 1; i--) {
767 		isr = apic_reg_ops->apic_read(APIC_ISR_REG + (i * 4));
768 		if (isr != 0)
769 			for (j = 0; ((j < 32) && (isr != 0)); j++)
770 				if (isr & (1 << j)) {
771 					apic_reg_ops->apic_write(
772 					    APIC_EOI_REG, 0);
773 					isr &= ~(1 << j);
774 					apic_error |= APIC_ERR_BOOT_EOI;
775 				}
776 	}
777 
778 	/* set a flag so we know we have run apic_picinit() */
779 	apic_picinit_called = 1;
780 	LOCK_INIT_CLEAR(&apic_gethrtime_lock);
781 	LOCK_INIT_CLEAR(&apic_ioapic_lock);
782 	LOCK_INIT_CLEAR(&apic_error_lock);
783 
784 	picsetup();	 /* initialise the 8259 */
785 
786 	/* add nmi handler - least priority nmi handler */
787 	LOCK_INIT_CLEAR(&apic_nmi_lock);
788 
789 	if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr,
790 	    "pcplusmp NMI handler", (caddr_t)NULL))
791 		cmn_err(CE_WARN, "pcplusmp: Unable to add nmi handler");
792 
793 	ver = apic_reg_ops->apic_read(APIC_VERS_REG);
794 	/*
795 	 * In order to determine support for Directed EOI capability,
796 	 * we check for 24th bit in Local APIC Version Register.
797 	 */
798 	if (ver & (0x1 << APIC_DIRECTED_EOI)) {
799 		apic_direct_EOI = 1;
800 		apic_change_eoi();
801 	}
802 
803 	apic_init_intr();
804 
805 	/* enable apic mode if imcr present */
806 	if (apic_imcrp) {
807 		outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT);
808 		outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC);
809 	}
810 
811 	ioapic_init_intr(IOAPIC_MASK);
812 }
813 
814 
815 /*ARGSUSED1*/
816 static int
817 apic_cpu_start(processorid_t cpun, caddr_t arg)
818 {
819 	int		loop_count;
820 	uint32_t	vector;
821 	uint_t		cpu_id;
822 	ulong_t		iflag;
823 
824 	cpu_id =  apic_cpus[cpun].aci_local_id;
825 
826 	apic_cmos_ssb_set = 1;
827 
828 	/*
829 	 * Interrupts on BSP cpu will be disabled during these startup
830 	 * steps in order to avoid unwanted side effects from
831 	 * executing interrupt handlers on a problematic BIOS.
832 	 */
833 
834 	iflag = intr_clear();
835 	outb(CMOS_ADDR, SSB);
836 	outb(CMOS_DATA, BIOS_SHUTDOWN);
837 
838 	/*
839 	 * According to X2APIC specification in section '2.3.5.1' of
840 	 * Interrupt Command Register Semantics, the semantics of
841 	 * programming the Interrupt Command Register to dispatch an interrupt
842 	 * is simplified. A single MSR write to the 64-bit ICR is required
843 	 * for dispatching an interrupt. Specifically, with the 64-bit MSR
844 	 * interface to ICR, system software is not required to check the
845 	 * status of the delivery status bit prior to writing to the ICR
846 	 * to send an IPI. With the removal of the Delivery Status bit,
847 	 * system software no longer has a reason to read the ICR. It remains
848 	 * readable only to aid in debugging.
849 	 */
850 #ifdef	DEBUG
851 	APIC_AV_PENDING_SET();
852 #else
853 	if (apic_mode == LOCAL_APIC) {
854 		APIC_AV_PENDING_SET();
855 	}
856 #endif /* DEBUG */
857 
858 	/* for integrated - make sure there is one INIT IPI in buffer */
859 	/* for external - it will wake up the cpu */
860 	apic_reg_ops->apic_write_int_cmd(cpu_id, AV_ASSERT | AV_RESET);
861 
862 	/* If only 1 CPU is installed, PENDING bit will not go low */
863 	for (loop_count = 0x1000; loop_count; loop_count--) {
864 		if (apic_mode == LOCAL_APIC &&
865 		    apic_reg_ops->apic_read(APIC_INT_CMD1) & AV_PENDING)
866 			apic_ret();
867 		else
868 			break;
869 	}
870 
871 	apic_reg_ops->apic_write_int_cmd(cpu_id, AV_DEASSERT | AV_RESET);
872 
873 	drv_usecwait(20000);		/* 20 milli sec */
874 
875 	if (apic_cpus[cpun].aci_local_ver >= APIC_INTEGRATED_VERS) {
876 		/* integrated apic */
877 
878 		vector = (rm_platter_pa >> MMU_PAGESHIFT) &
879 		    (APIC_VECTOR_MASK | APIC_IPL_MASK);
880 
881 		/* to offset the INIT IPI queue up in the buffer */
882 		apic_reg_ops->apic_write_int_cmd(cpu_id, vector | AV_STARTUP);
883 
884 		drv_usecwait(200);		/* 20 micro sec */
885 
886 		apic_reg_ops->apic_write_int_cmd(cpu_id, vector | AV_STARTUP);
887 
888 		drv_usecwait(200);		/* 20 micro sec */
889 	}
890 	intr_restore(iflag);
891 	return (0);
892 }
893 
894 
895 #ifdef	DEBUG
896 int	apic_break_on_cpu = 9;
897 int	apic_stretch_interrupts = 0;
898 int	apic_stretch_ISR = 1 << 3;	/* IPL of 3 matches nothing now */
899 
900 void
901 apic_break()
902 {
903 }
904 #endif /* DEBUG */
905 
906 /*
907  * platform_intr_enter
908  *
909  *	Called at the beginning of the interrupt service routine to
910  *	mask all level equal to and below the interrupt priority
911  *	of the interrupting vector.  An EOI should be given to
912  *	the interrupt controller to enable other HW interrupts.
913  *
914  *	Return -1 for spurious interrupts
915  *
916  */
917 /*ARGSUSED*/
918 static int
919 apic_intr_enter(int ipl, int *vectorp)
920 {
921 	uchar_t vector;
922 	int nipl;
923 	int irq;
924 	ulong_t iflag;
925 	apic_cpus_info_t *cpu_infop;
926 
927 	/*
928 	 * The real vector delivered is (*vectorp + 0x20), but our caller
929 	 * subtracts 0x20 from the vector before passing it to us.
930 	 * (That's why APIC_BASE_VECT is 0x20.)
931 	 */
932 	vector = (uchar_t)*vectorp;
933 
934 	/* if interrupted by the clock, increment apic_nsec_since_boot */
935 	if (vector == apic_clkvect) {
936 		if (!apic_oneshot) {
937 			/* NOTE: this is not MT aware */
938 			apic_hrtime_stamp++;
939 			apic_nsec_since_boot += apic_nsec_per_intr;
940 			apic_hrtime_stamp++;
941 			last_count_read = apic_hertz_count;
942 			apic_redistribute_compute();
943 		}
944 
945 		/* We will avoid all the book keeping overhead for clock */
946 		nipl = apic_ipls[vector];
947 
948 		*vectorp = apic_vector_to_irq[vector + APIC_BASE_VECT];
949 		if (apic_mode == LOCAL_APIC) {
950 #if defined(__amd64)
951 			setcr8((ulong_t)(apic_ipltopri[nipl] >>
952 			    APIC_IPL_SHIFT));
953 #else
954 			LOCAL_APIC_WRITE_REG(APIC_TASK_REG,
955 			    (uint32_t)apic_ipltopri[nipl]);
956 #endif
957 			LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0);
958 		} else {
959 			X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[nipl]);
960 			X2APIC_WRITE(APIC_EOI_REG, 0);
961 		}
962 
963 		return (nipl);
964 	}
965 
966 	cpu_infop = &apic_cpus[psm_get_cpu_id()];
967 
968 	if (vector == (APIC_SPUR_INTR - APIC_BASE_VECT)) {
969 		cpu_infop->aci_spur_cnt++;
970 		return (APIC_INT_SPURIOUS);
971 	}
972 
973 	/* Check if the vector we got is really what we need */
974 	if (apic_revector_pending) {
975 		/*
976 		 * Disable interrupts for the duration of
977 		 * the vector translation to prevent a self-race for
978 		 * the apic_revector_lock.  This cannot be done
979 		 * in apic_xlate_vector because it is recursive and
980 		 * we want the vector translation to be atomic with
981 		 * respect to other (higher-priority) interrupts.
982 		 */
983 		iflag = intr_clear();
984 		vector = apic_xlate_vector(vector + APIC_BASE_VECT) -
985 		    APIC_BASE_VECT;
986 		intr_restore(iflag);
987 	}
988 
989 	nipl = apic_ipls[vector];
990 	*vectorp = irq = apic_vector_to_irq[vector + APIC_BASE_VECT];
991 
992 	if (apic_mode == LOCAL_APIC) {
993 #if defined(__amd64)
994 		setcr8((ulong_t)(apic_ipltopri[nipl] >> APIC_IPL_SHIFT));
995 #else
996 		LOCAL_APIC_WRITE_REG(APIC_TASK_REG,
997 		    (uint32_t)apic_ipltopri[nipl]);
998 #endif
999 	} else {
1000 		X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[nipl]);
1001 	}
1002 
1003 	cpu_infop->aci_current[nipl] = (uchar_t)irq;
1004 	cpu_infop->aci_curipl = (uchar_t)nipl;
1005 	cpu_infop->aci_ISR_in_progress |= 1 << nipl;
1006 
1007 	/*
1008 	 * apic_level_intr could have been assimilated into the irq struct.
1009 	 * but, having it as a character array is more efficient in terms of
1010 	 * cache usage. So, we leave it as is.
1011 	 */
1012 	if (!apic_level_intr[irq]) {
1013 		if (apic_mode == LOCAL_APIC)
1014 			LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0);
1015 		else
1016 			X2APIC_WRITE(APIC_EOI_REG, 0);
1017 	}
1018 
1019 #ifdef	DEBUG
1020 	APIC_DEBUG_BUF_PUT(vector);
1021 	APIC_DEBUG_BUF_PUT(irq);
1022 	APIC_DEBUG_BUF_PUT(nipl);
1023 	APIC_DEBUG_BUF_PUT(psm_get_cpu_id());
1024 	if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl)))
1025 		drv_usecwait(apic_stretch_interrupts);
1026 
1027 	if (apic_break_on_cpu == psm_get_cpu_id())
1028 		apic_break();
1029 #endif /* DEBUG */
1030 	return (nipl);
1031 }
1032 
1033 /*
1034  * This macro is a common code used by MMIO local apic and X2APIC
1035  * local apic.
1036  */
1037 #define	APIC_INTR_EXIT() \
1038 { \
1039 	cpu_infop = &apic_cpus[psm_get_cpu_id()]; \
1040 	if (apic_level_intr[irq]) \
1041 		apic_reg_ops->apic_send_eoi(irq); \
1042 	cpu_infop->aci_curipl = (uchar_t)prev_ipl; \
1043 	/* ISR above current pri could not be in progress */ \
1044 	cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1; \
1045 }
1046 
1047 /*
1048  * Any changes made to this function must also change X2APIC
1049  * version of intr_exit.
1050  */
1051 void
1052 apic_intr_exit(int prev_ipl, int irq)
1053 {
1054 	apic_cpus_info_t *cpu_infop;
1055 
1056 #if defined(__amd64)
1057 	setcr8((ulong_t)apic_cr8pri[prev_ipl]);
1058 #else
1059 	apicadr[APIC_TASK_REG] = apic_ipltopri[prev_ipl];
1060 #endif
1061 
1062 	APIC_INTR_EXIT();
1063 }
1064 
1065 /*
1066  * Same as apic_intr_exit() except it uses MSR rather than MMIO
1067  * to access local apic registers.
1068  */
1069 void
1070 x2apic_intr_exit(int prev_ipl, int irq)
1071 {
1072 	apic_cpus_info_t *cpu_infop;
1073 
1074 	X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[prev_ipl]);
1075 	APIC_INTR_EXIT();
1076 }
1077 
1078 intr_exit_fn_t
1079 psm_intr_exit_fn(void)
1080 {
1081 	if (apic_mode == LOCAL_X2APIC)
1082 		return (x2apic_intr_exit);
1083 
1084 	return (apic_intr_exit);
1085 }
1086 
1087 /*
1088  * Mask all interrupts below or equal to the given IPL.
1089  * Any changes made to this function must also change X2APIC
1090  * version of setspl.
1091  */
1092 static void
1093 apic_setspl(int ipl)
1094 {
1095 #if defined(__amd64)
1096 	setcr8((ulong_t)apic_cr8pri[ipl]);
1097 #else
1098 	apicadr[APIC_TASK_REG] = apic_ipltopri[ipl];
1099 #endif
1100 
1101 	/* interrupts at ipl above this cannot be in progress */
1102 	apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1;
1103 	/*
1104 	 * this is a patch fix for the ALR QSMP P5 machine, so that interrupts
1105 	 * have enough time to come in before the priority is raised again
1106 	 * during the idle() loop.
1107 	 */
1108 	if (apic_setspl_delay)
1109 		(void) apic_reg_ops->apic_get_pri();
1110 }
1111 
1112 /*
1113  * X2APIC version of setspl.
1114  * Mask all interrupts below or equal to the given IPL
1115  */
1116 static void
1117 x2apic_setspl(int ipl)
1118 {
1119 	X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[ipl]);
1120 
1121 	/* interrupts at ipl above this cannot be in progress */
1122 	apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1;
1123 }
1124 
1125 /*
1126  * generates an interprocessor interrupt to another CPU. Any changes made to
1127  * this routine must be accompanied by similar changes to
1128  * apic_common_send_ipi().
1129  */
1130 static void
1131 apic_send_ipi(int cpun, int ipl)
1132 {
1133 	int vector;
1134 	ulong_t flag;
1135 
1136 	vector = apic_resv_vector[ipl];
1137 
1138 	ASSERT((vector >= APIC_BASE_VECT) && (vector <= APIC_SPUR_INTR));
1139 
1140 	flag = intr_clear();
1141 
1142 	APIC_AV_PENDING_SET();
1143 
1144 	apic_reg_ops->apic_write_int_cmd(apic_cpus[cpun].aci_local_id,
1145 	    vector);
1146 
1147 	intr_restore(flag);
1148 }
1149 
1150 
1151 /*ARGSUSED*/
1152 static void
1153 apic_set_idlecpu(processorid_t cpun)
1154 {
1155 }
1156 
1157 /*ARGSUSED*/
1158 static void
1159 apic_unset_idlecpu(processorid_t cpun)
1160 {
1161 }
1162 
1163 
1164 void
1165 apic_ret()
1166 {
1167 }
1168 
1169 /*
1170  * If apic_coarse_time == 1, then apic_gettime() is used instead of
1171  * apic_gethrtime().  This is used for performance instead of accuracy.
1172  */
1173 
1174 static hrtime_t
1175 apic_gettime()
1176 {
1177 	int old_hrtime_stamp;
1178 	hrtime_t temp;
1179 
1180 	/*
1181 	 * In one-shot mode, we do not keep time, so if anyone
1182 	 * calls psm_gettime() directly, we vector over to
1183 	 * gethrtime().
1184 	 * one-shot mode MUST NOT be enabled if this psm is the source of
1185 	 * hrtime.
1186 	 */
1187 
1188 	if (apic_oneshot)
1189 		return (gethrtime());
1190 
1191 
1192 gettime_again:
1193 	while ((old_hrtime_stamp = apic_hrtime_stamp) & 1)
1194 		apic_ret();
1195 
1196 	temp = apic_nsec_since_boot;
1197 
1198 	if (apic_hrtime_stamp != old_hrtime_stamp) {	/* got an interrupt */
1199 		goto gettime_again;
1200 	}
1201 	return (temp);
1202 }
1203 
1204 /*
1205  * Here we return the number of nanoseconds since booting.  Note every
1206  * clock interrupt increments apic_nsec_since_boot by the appropriate
1207  * amount.
1208  */
1209 static hrtime_t
1210 apic_gethrtime()
1211 {
1212 	int curr_timeval, countval, elapsed_ticks;
1213 	int old_hrtime_stamp, status;
1214 	hrtime_t temp;
1215 	uint32_t cpun;
1216 	ulong_t oflags;
1217 
1218 	/*
1219 	 * In one-shot mode, we do not keep time, so if anyone
1220 	 * calls psm_gethrtime() directly, we vector over to
1221 	 * gethrtime().
1222 	 * one-shot mode MUST NOT be enabled if this psm is the source of
1223 	 * hrtime.
1224 	 */
1225 
1226 	if (apic_oneshot)
1227 		return (gethrtime());
1228 
1229 	oflags = intr_clear();	/* prevent migration */
1230 
1231 	cpun = apic_reg_ops->apic_read(APIC_LID_REG);
1232 	if (apic_mode == LOCAL_APIC)
1233 		cpun >>= APIC_ID_BIT_OFFSET;
1234 
1235 	lock_set(&apic_gethrtime_lock);
1236 
1237 gethrtime_again:
1238 	while ((old_hrtime_stamp = apic_hrtime_stamp) & 1)
1239 		apic_ret();
1240 
1241 	/*
1242 	 * Check to see which CPU we are on.  Note the time is kept on
1243 	 * the local APIC of CPU 0.  If on CPU 0, simply read the current
1244 	 * counter.  If on another CPU, issue a remote read command to CPU 0.
1245 	 */
1246 	if (cpun == apic_cpus[0].aci_local_id) {
1247 		countval = apic_reg_ops->apic_read(APIC_CURR_COUNT);
1248 	} else {
1249 #ifdef	DEBUG
1250 		APIC_AV_PENDING_SET();
1251 #else
1252 		if (apic_mode == LOCAL_APIC)
1253 			APIC_AV_PENDING_SET();
1254 #endif /* DEBUG */
1255 
1256 		apic_reg_ops->apic_write_int_cmd(
1257 		    apic_cpus[0].aci_local_id, APIC_CURR_ADD | AV_REMOTE);
1258 
1259 		while ((status = apic_reg_ops->apic_read(APIC_INT_CMD1))
1260 		    & AV_READ_PENDING) {
1261 			apic_ret();
1262 		}
1263 
1264 		if (status & AV_REMOTE_STATUS)	/* 1 = valid */
1265 			countval = apic_reg_ops->apic_read(APIC_REMOTE_READ);
1266 		else {	/* 0 = invalid */
1267 			apic_remote_hrterr++;
1268 			/*
1269 			 * return last hrtime right now, will need more
1270 			 * testing if change to retry
1271 			 */
1272 			temp = apic_last_hrtime;
1273 
1274 			lock_clear(&apic_gethrtime_lock);
1275 
1276 			intr_restore(oflags);
1277 
1278 			return (temp);
1279 		}
1280 	}
1281 	if (countval > last_count_read)
1282 		countval = 0;
1283 	else
1284 		last_count_read = countval;
1285 
1286 	elapsed_ticks = apic_hertz_count - countval;
1287 
1288 	curr_timeval = APIC_TICKS_TO_NSECS(elapsed_ticks);
1289 	temp = apic_nsec_since_boot + curr_timeval;
1290 
1291 	if (apic_hrtime_stamp != old_hrtime_stamp) {	/* got an interrupt */
1292 		/* we might have clobbered last_count_read. Restore it */
1293 		last_count_read = apic_hertz_count;
1294 		goto gethrtime_again;
1295 	}
1296 
1297 	if (temp < apic_last_hrtime) {
1298 		/* return last hrtime if error occurs */
1299 		apic_hrtime_error++;
1300 		temp = apic_last_hrtime;
1301 	}
1302 	else
1303 		apic_last_hrtime = temp;
1304 
1305 	lock_clear(&apic_gethrtime_lock);
1306 	intr_restore(oflags);
1307 
1308 	return (temp);
1309 }
1310 
1311 /* apic NMI handler */
1312 /*ARGSUSED*/
1313 static void
1314 apic_nmi_intr(caddr_t arg, struct regs *rp)
1315 {
1316 	if (apic_shutdown_processors) {
1317 		apic_disable_local_apic();
1318 		return;
1319 	}
1320 
1321 	apic_error |= APIC_ERR_NMI;
1322 
1323 	if (!lock_try(&apic_nmi_lock))
1324 		return;
1325 	apic_num_nmis++;
1326 
1327 	if (apic_kmdb_on_nmi && psm_debugger()) {
1328 		debug_enter("NMI received: entering kmdb\n");
1329 	} else if (apic_panic_on_nmi) {
1330 		/* Keep panic from entering kmdb. */
1331 		nopanicdebug = 1;
1332 		panic("NMI received\n");
1333 	} else {
1334 		/*
1335 		 * prom_printf is the best shot we have of something which is
1336 		 * problem free from high level/NMI type of interrupts
1337 		 */
1338 		prom_printf("NMI received\n");
1339 	}
1340 
1341 	lock_clear(&apic_nmi_lock);
1342 }
1343 
1344 /*ARGSUSED*/
1345 static int
1346 apic_addspl(int irqno, int ipl, int min_ipl, int max_ipl)
1347 {
1348 	return (apic_addspl_common(irqno, ipl, min_ipl, max_ipl));
1349 }
1350 
1351 static int
1352 apic_delspl(int irqno, int ipl, int min_ipl, int max_ipl)
1353 {
1354 	return (apic_delspl_common(irqno, ipl, min_ipl,  max_ipl));
1355 }
1356 
1357 static int
1358 apic_post_cpu_start()
1359 {
1360 	int cpun;
1361 	static int cpus_started = 1;
1362 	struct psm_ops *pops = &apic_ops;
1363 
1364 	/* We know this CPU + BSP  started successfully. */
1365 	cpus_started++;
1366 
1367 	/*
1368 	 * On BSP we would have enabled X2APIC, if supported by processor,
1369 	 * in acpi_probe(), but on AP we do it here.
1370 	 *
1371 	 * We enable X2APIC mode only if BSP is running in X2APIC & the
1372 	 * local APIC mode of the current CPU is MMIO (xAPIC).
1373 	 */
1374 	if (apic_mode == LOCAL_X2APIC && apic_detect_x2apic() &&
1375 	    apic_local_mode() == LOCAL_APIC) {
1376 		apic_enable_x2apic();
1377 	}
1378 
1379 	/*
1380 	 * We change psm_send_ipi and send_dirintf only if Solaris
1381 	 * is booted in kmdb & the current CPU is the last CPU being
1382 	 * brought up. We don't need to do anything if Solaris is running
1383 	 * in MMIO mode (xAPIC).
1384 	 */
1385 	if ((boothowto & RB_DEBUG) &&
1386 	    (cpus_started == boot_ncpus || cpus_started == apic_nproc) &&
1387 	    apic_mode == LOCAL_X2APIC) {
1388 		/*
1389 		 * We no longer need help from apic_common_send_ipi()
1390 		 * since we will not start any more CPUs.
1391 		 *
1392 		 * We will need to revisit this if we start supporting
1393 		 * hot-plugging of CPUs.
1394 		 */
1395 		pops->psm_send_ipi = x2apic_send_ipi;
1396 		send_dirintf = pops->psm_send_ipi;
1397 	}
1398 
1399 	splx(ipltospl(LOCK_LEVEL));
1400 	apic_init_intr();
1401 
1402 	/*
1403 	 * since some systems don't enable the internal cache on the non-boot
1404 	 * cpus, so we have to enable them here
1405 	 */
1406 	setcr0(getcr0() & ~(CR0_CD | CR0_NW));
1407 
1408 #ifdef	DEBUG
1409 	APIC_AV_PENDING_SET();
1410 #else
1411 	if (apic_mode == LOCAL_APIC)
1412 		APIC_AV_PENDING_SET();
1413 #endif	/* DEBUG */
1414 
1415 	/*
1416 	 * We may be booting, or resuming from suspend; aci_status will
1417 	 * be APIC_CPU_INTR_ENABLE if coming from suspend, so we add the
1418 	 * APIC_CPU_ONLINE flag here rather than setting aci_status completely.
1419 	 */
1420 	cpun = psm_get_cpu_id();
1421 	apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE;
1422 
1423 	apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init);
1424 	return (PSM_SUCCESS);
1425 }
1426 
1427 processorid_t
1428 apic_get_next_processorid(processorid_t cpu_id)
1429 {
1430 
1431 	int i;
1432 
1433 	if (cpu_id == -1)
1434 		return ((processorid_t)0);
1435 
1436 	for (i = cpu_id + 1; i < NCPU; i++) {
1437 		if (CPU_IN_SET(apic_cpumask, i))
1438 			return (i);
1439 	}
1440 
1441 	return ((processorid_t)-1);
1442 }
1443 
1444 
1445 /*
1446  * type == -1 indicates it is an internal request. Do not change
1447  * resv_vector for these requests
1448  */
1449 static int
1450 apic_get_ipivect(int ipl, int type)
1451 {
1452 	uchar_t vector;
1453 	int irq;
1454 
1455 	if (irq = apic_allocate_irq(APIC_VECTOR(ipl))) {
1456 		if (vector = apic_allocate_vector(ipl, irq, 1)) {
1457 			apic_irq_table[irq]->airq_mps_intr_index =
1458 			    RESERVE_INDEX;
1459 			apic_irq_table[irq]->airq_vector = vector;
1460 			if (type != -1) {
1461 				apic_resv_vector[ipl] = vector;
1462 			}
1463 			return (irq);
1464 		}
1465 	}
1466 	apic_error |= APIC_ERR_GET_IPIVECT_FAIL;
1467 	return (-1);	/* shouldn't happen */
1468 }
1469 
1470 static int
1471 apic_getclkirq(int ipl)
1472 {
1473 	int	irq;
1474 
1475 	if ((irq = apic_get_ipivect(ipl, -1)) == -1)
1476 		return (-1);
1477 	/*
1478 	 * Note the vector in apic_clkvect for per clock handling.
1479 	 */
1480 	apic_clkvect = apic_irq_table[irq]->airq_vector - APIC_BASE_VECT;
1481 	APIC_VERBOSE_IOAPIC((CE_NOTE, "get_clkirq: vector = %x\n",
1482 	    apic_clkvect));
1483 	return (irq);
1484 }
1485 
1486 
1487 /*
1488  * Return the number of APIC clock ticks elapsed for 8245 to decrement
1489  * (APIC_TIME_COUNT + pit_ticks_adj) ticks.
1490  */
1491 static uint_t
1492 apic_calibrate(volatile uint32_t *addr, uint16_t *pit_ticks_adj)
1493 {
1494 	uint8_t		pit_tick_lo;
1495 	uint16_t	pit_tick, target_pit_tick;
1496 	uint32_t	start_apic_tick, end_apic_tick;
1497 	ulong_t		iflag;
1498 	uint32_t	reg;
1499 
1500 	reg = addr + APIC_CURR_COUNT - apicadr;
1501 
1502 	iflag = intr_clear();
1503 
1504 	do {
1505 		pit_tick_lo = inb(PITCTR0_PORT);
1506 		pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo;
1507 	} while (pit_tick < APIC_TIME_MIN ||
1508 	    pit_tick_lo <= APIC_LB_MIN || pit_tick_lo >= APIC_LB_MAX);
1509 
1510 	/*
1511 	 * Wait for the 8254 to decrement by 5 ticks to ensure
1512 	 * we didn't start in the middle of a tick.
1513 	 * Compare with 0x10 for the wrap around case.
1514 	 */
1515 	target_pit_tick = pit_tick - 5;
1516 	do {
1517 		pit_tick_lo = inb(PITCTR0_PORT);
1518 		pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo;
1519 	} while (pit_tick > target_pit_tick || pit_tick_lo < 0x10);
1520 
1521 	start_apic_tick = apic_reg_ops->apic_read(reg);
1522 
1523 	/*
1524 	 * Wait for the 8254 to decrement by
1525 	 * (APIC_TIME_COUNT + pit_ticks_adj) ticks
1526 	 */
1527 	target_pit_tick = pit_tick - APIC_TIME_COUNT;
1528 	do {
1529 		pit_tick_lo = inb(PITCTR0_PORT);
1530 		pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo;
1531 	} while (pit_tick > target_pit_tick || pit_tick_lo < 0x10);
1532 
1533 	end_apic_tick = apic_reg_ops->apic_read(reg);
1534 
1535 	*pit_ticks_adj = target_pit_tick - pit_tick;
1536 
1537 	intr_restore(iflag);
1538 
1539 	return (start_apic_tick - end_apic_tick);
1540 }
1541 
1542 /*
1543  * Initialise the APIC timer on the local APIC of CPU 0 to the desired
1544  * frequency.  Note at this stage in the boot sequence, the boot processor
1545  * is the only active processor.
1546  * hertz value of 0 indicates a one-shot mode request.  In this case
1547  * the function returns the resolution (in nanoseconds) for the hardware
1548  * timer interrupt.  If one-shot mode capability is not available,
1549  * the return value will be 0. apic_enable_oneshot is a global switch
1550  * for disabling the functionality.
1551  * A non-zero positive value for hertz indicates a periodic mode request.
1552  * In this case the hardware will be programmed to generate clock interrupts
1553  * at hertz frequency and returns the resolution of interrupts in
1554  * nanosecond.
1555  */
1556 
1557 static int
1558 apic_clkinit(int hertz)
1559 {
1560 	uint_t		apic_ticks = 0;
1561 	uint_t		pit_ticks;
1562 	int		ret;
1563 	uint16_t	pit_ticks_adj;
1564 	static int	firsttime = 1;
1565 
1566 	if (firsttime) {
1567 		/* first time calibrate on CPU0 only */
1568 
1569 		apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init);
1570 		apic_reg_ops->apic_write(APIC_INIT_COUNT, APIC_MAXVAL);
1571 		apic_ticks = apic_calibrate(apicadr, &pit_ticks_adj);
1572 
1573 		/* total number of PIT ticks corresponding to apic_ticks */
1574 		pit_ticks = APIC_TIME_COUNT + pit_ticks_adj;
1575 
1576 		/*
1577 		 * Determine the number of nanoseconds per APIC clock tick
1578 		 * and then determine how many APIC ticks to interrupt at the
1579 		 * desired frequency
1580 		 * apic_ticks / (pitticks / PIT_HZ) = apic_ticks_per_s
1581 		 * (apic_ticks * PIT_HZ) / pitticks = apic_ticks_per_s
1582 		 * apic_ticks_per_ns = (apic_ticks * PIT_HZ) / (pitticks * 10^9)
1583 		 * pic_ticks_per_SFns =
1584 		 *   (SF * apic_ticks * PIT_HZ) / (pitticks * 10^9)
1585 		 */
1586 		apic_ticks_per_SFnsecs =
1587 		    ((SF * apic_ticks * PIT_HZ) /
1588 		    ((uint64_t)pit_ticks * NANOSEC));
1589 
1590 		/* the interval timer initial count is 32 bit max */
1591 		apic_nsec_max = APIC_TICKS_TO_NSECS(APIC_MAXVAL);
1592 		firsttime = 0;
1593 	}
1594 
1595 	if (hertz != 0) {
1596 		/* periodic */
1597 		apic_nsec_per_intr = NANOSEC / hertz;
1598 		apic_hertz_count = APIC_NSECS_TO_TICKS(apic_nsec_per_intr);
1599 	}
1600 
1601 	apic_int_busy_mark = (apic_int_busy_mark *
1602 	    apic_sample_factor_redistribution) / 100;
1603 	apic_int_free_mark = (apic_int_free_mark *
1604 	    apic_sample_factor_redistribution) / 100;
1605 	apic_diff_for_redistribution = (apic_diff_for_redistribution *
1606 	    apic_sample_factor_redistribution) / 100;
1607 
1608 	if (hertz == 0) {
1609 		/* requested one_shot */
1610 		if (!tsc_gethrtime_enable || !apic_oneshot_enable)
1611 			return (0);
1612 		apic_oneshot = 1;
1613 		ret = (int)APIC_TICKS_TO_NSECS(1);
1614 	} else {
1615 		/* program the local APIC to interrupt at the given frequency */
1616 		apic_reg_ops->apic_write(APIC_INIT_COUNT, apic_hertz_count);
1617 		apic_reg_ops->apic_write(APIC_LOCAL_TIMER,
1618 		    (apic_clkvect + APIC_BASE_VECT) | AV_TIME);
1619 		apic_oneshot = 0;
1620 		ret = NANOSEC / hertz;
1621 	}
1622 
1623 	return (ret);
1624 
1625 }
1626 
1627 /*
1628  * apic_preshutdown:
1629  * Called early in shutdown whilst we can still access filesystems to do
1630  * things like loading modules which will be required to complete shutdown
1631  * after filesystems are all unmounted.
1632  */
1633 static void
1634 apic_preshutdown(int cmd, int fcn)
1635 {
1636 	APIC_VERBOSE_POWEROFF(("apic_preshutdown(%d,%d); m=%d a=%d\n",
1637 	    cmd, fcn, apic_poweroff_method, apic_enable_acpi));
1638 
1639 	if ((cmd != A_SHUTDOWN) || (fcn != AD_POWEROFF)) {
1640 		return;
1641 	}
1642 }
1643 
1644 static void
1645 apic_shutdown(int cmd, int fcn)
1646 {
1647 	int restarts, attempts;
1648 	int i;
1649 	uchar_t	byte;
1650 	ulong_t iflag;
1651 
1652 	/* Send NMI to all CPUs except self to do per processor shutdown */
1653 	iflag = intr_clear();
1654 #ifdef	DEBUG
1655 	APIC_AV_PENDING_SET();
1656 #else
1657 	if (apic_mode == LOCAL_APIC)
1658 		APIC_AV_PENDING_SET();
1659 #endif /* DEBUG */
1660 	apic_shutdown_processors = 1;
1661 	apic_reg_ops->apic_write(APIC_INT_CMD1,
1662 	    AV_NMI | AV_LEVEL | AV_SH_ALL_EXCSELF);
1663 
1664 	/* restore cmos shutdown byte before reboot */
1665 	if (apic_cmos_ssb_set) {
1666 		outb(CMOS_ADDR, SSB);
1667 		outb(CMOS_DATA, 0);
1668 	}
1669 
1670 	ioapic_disable_redirection();
1671 
1672 	/*	disable apic mode if imcr present	*/
1673 	if (apic_imcrp) {
1674 		outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT);
1675 		outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_PIC);
1676 	}
1677 
1678 	apic_disable_local_apic();
1679 
1680 	intr_restore(iflag);
1681 
1682 	/* remainder of function is for shutdown cases only */
1683 	if (cmd != A_SHUTDOWN)
1684 		return;
1685 
1686 	/*
1687 	 * Switch system back into Legacy-Mode if using ACPI and
1688 	 * not powering-off.  Some BIOSes need to remain in ACPI-mode
1689 	 * for power-off to succeed (Dell Dimension 4600)
1690 	 * Do not disable ACPI while doing fastreboot
1691 	 */
1692 	if (apic_enable_acpi && fcn != AD_POWEROFF && fcn != AD_FASTREBOOT)
1693 		(void) AcpiDisable();
1694 
1695 	if (fcn == AD_FASTREBOOT) {
1696 		apicadr[APIC_INT_CMD1] = AV_ASSERT | AV_RESET |
1697 		    AV_SH_ALL_EXCSELF;
1698 	}
1699 
1700 	/* remainder of function is for shutdown+poweroff case only */
1701 	if (fcn != AD_POWEROFF)
1702 		return;
1703 
1704 	switch (apic_poweroff_method) {
1705 		case APIC_POWEROFF_VIA_RTC:
1706 
1707 			/* select the extended NVRAM bank in the RTC */
1708 			outb(CMOS_ADDR, RTC_REGA);
1709 			byte = inb(CMOS_DATA);
1710 			outb(CMOS_DATA, (byte | EXT_BANK));
1711 
1712 			outb(CMOS_ADDR, PFR_REG);
1713 
1714 			/* for Predator must toggle the PAB bit */
1715 			byte = inb(CMOS_DATA);
1716 
1717 			/*
1718 			 * clear power active bar, wakeup alarm and
1719 			 * kickstart
1720 			 */
1721 			byte &= ~(PAB_CBIT | WF_FLAG | KS_FLAG);
1722 			outb(CMOS_DATA, byte);
1723 
1724 			/* delay before next write */
1725 			drv_usecwait(1000);
1726 
1727 			/* for S40 the following would suffice */
1728 			byte = inb(CMOS_DATA);
1729 
1730 			/* power active bar control bit */
1731 			byte |= PAB_CBIT;
1732 			outb(CMOS_DATA, byte);
1733 
1734 			break;
1735 
1736 		case APIC_POWEROFF_VIA_ASPEN_BMC:
1737 			restarts = 0;
1738 restart_aspen_bmc:
1739 			if (++restarts == 3)
1740 				break;
1741 			attempts = 0;
1742 			do {
1743 				byte = inb(MISMIC_FLAG_REGISTER);
1744 				byte &= MISMIC_BUSY_MASK;
1745 				if (byte != 0) {
1746 					drv_usecwait(1000);
1747 					if (attempts >= 3)
1748 						goto restart_aspen_bmc;
1749 					++attempts;
1750 				}
1751 			} while (byte != 0);
1752 			outb(MISMIC_CNTL_REGISTER, CC_SMS_GET_STATUS);
1753 			byte = inb(MISMIC_FLAG_REGISTER);
1754 			byte |= 0x1;
1755 			outb(MISMIC_FLAG_REGISTER, byte);
1756 			i = 0;
1757 			for (; i < (sizeof (aspen_bmc)/sizeof (aspen_bmc[0]));
1758 			    i++) {
1759 				attempts = 0;
1760 				do {
1761 					byte = inb(MISMIC_FLAG_REGISTER);
1762 					byte &= MISMIC_BUSY_MASK;
1763 					if (byte != 0) {
1764 						drv_usecwait(1000);
1765 						if (attempts >= 3)
1766 							goto restart_aspen_bmc;
1767 						++attempts;
1768 					}
1769 				} while (byte != 0);
1770 				outb(MISMIC_CNTL_REGISTER, aspen_bmc[i].cntl);
1771 				outb(MISMIC_DATA_REGISTER, aspen_bmc[i].data);
1772 				byte = inb(MISMIC_FLAG_REGISTER);
1773 				byte |= 0x1;
1774 				outb(MISMIC_FLAG_REGISTER, byte);
1775 			}
1776 			break;
1777 
1778 		case APIC_POWEROFF_VIA_SITKA_BMC:
1779 			restarts = 0;
1780 restart_sitka_bmc:
1781 			if (++restarts == 3)
1782 				break;
1783 			attempts = 0;
1784 			do {
1785 				byte = inb(SMS_STATUS_REGISTER);
1786 				byte &= SMS_STATE_MASK;
1787 				if ((byte == SMS_READ_STATE) ||
1788 				    (byte == SMS_WRITE_STATE)) {
1789 					drv_usecwait(1000);
1790 					if (attempts >= 3)
1791 						goto restart_sitka_bmc;
1792 					++attempts;
1793 				}
1794 			} while ((byte == SMS_READ_STATE) ||
1795 			    (byte == SMS_WRITE_STATE));
1796 			outb(SMS_COMMAND_REGISTER, SMS_GET_STATUS);
1797 			i = 0;
1798 			for (; i < (sizeof (sitka_bmc)/sizeof (sitka_bmc[0]));
1799 			    i++) {
1800 				attempts = 0;
1801 				do {
1802 					byte = inb(SMS_STATUS_REGISTER);
1803 					byte &= SMS_IBF_MASK;
1804 					if (byte != 0) {
1805 						drv_usecwait(1000);
1806 						if (attempts >= 3)
1807 							goto restart_sitka_bmc;
1808 						++attempts;
1809 					}
1810 				} while (byte != 0);
1811 				outb(sitka_bmc[i].port, sitka_bmc[i].data);
1812 			}
1813 			break;
1814 
1815 		case APIC_POWEROFF_NONE:
1816 
1817 			/* If no APIC direct method, we will try using ACPI */
1818 			if (apic_enable_acpi) {
1819 				if (acpi_poweroff() == 1)
1820 					return;
1821 			} else
1822 				return;
1823 
1824 			break;
1825 	}
1826 	/*
1827 	 * Wait a limited time here for power to go off.
1828 	 * If the power does not go off, then there was a
1829 	 * problem and we should continue to the halt which
1830 	 * prints a message for the user to press a key to
1831 	 * reboot.
1832 	 */
1833 	drv_usecwait(7000000); /* wait seven seconds */
1834 
1835 }
1836 
1837 /*
1838  * Try and disable all interrupts. We just assign interrupts to other
1839  * processors based on policy. If any were bound by user request, we
1840  * let them continue and return failure. We do not bother to check
1841  * for cache affinity while rebinding.
1842  */
1843 
1844 static int
1845 apic_disable_intr(processorid_t cpun)
1846 {
1847 	int bind_cpu = 0, i, hardbound = 0;
1848 	apic_irq_t *irq_ptr;
1849 	ulong_t iflag;
1850 
1851 	iflag = intr_clear();
1852 	lock_set(&apic_ioapic_lock);
1853 
1854 	for (i = 0; i <= APIC_MAX_VECTOR; i++) {
1855 		if (apic_reprogram_info[i].done == B_FALSE) {
1856 			if (apic_reprogram_info[i].bindcpu == cpun) {
1857 				/*
1858 				 * CPU is busy -- it's the target of
1859 				 * a pending reprogramming attempt
1860 				 */
1861 				lock_clear(&apic_ioapic_lock);
1862 				intr_restore(iflag);
1863 				return (PSM_FAILURE);
1864 			}
1865 		}
1866 	}
1867 
1868 	apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE;
1869 
1870 	apic_cpus[cpun].aci_curipl = 0;
1871 
1872 	i = apic_min_device_irq;
1873 	for (; i <= apic_max_device_irq; i++) {
1874 		/*
1875 		 * If there are bound interrupts on this cpu, then
1876 		 * rebind them to other processors.
1877 		 */
1878 		if ((irq_ptr = apic_irq_table[i]) != NULL) {
1879 			ASSERT((irq_ptr->airq_temp_cpu == IRQ_UNBOUND) ||
1880 			    (irq_ptr->airq_temp_cpu == IRQ_UNINIT) ||
1881 			    ((irq_ptr->airq_temp_cpu & ~IRQ_USER_BOUND) <
1882 			    apic_nproc));
1883 
1884 			if (irq_ptr->airq_temp_cpu == (cpun | IRQ_USER_BOUND)) {
1885 				hardbound = 1;
1886 				continue;
1887 			}
1888 
1889 			if (irq_ptr->airq_temp_cpu == cpun) {
1890 				do {
1891 					bind_cpu = apic_next_bind_cpu++;
1892 					if (bind_cpu >= apic_nproc) {
1893 						apic_next_bind_cpu = 1;
1894 						bind_cpu = 0;
1895 
1896 					}
1897 				} while (apic_rebind_all(irq_ptr, bind_cpu));
1898 			}
1899 		}
1900 	}
1901 
1902 	lock_clear(&apic_ioapic_lock);
1903 	intr_restore(iflag);
1904 
1905 	if (hardbound) {
1906 		cmn_err(CE_WARN, "Could not disable interrupts on %d"
1907 		    "due to user bound interrupts", cpun);
1908 		return (PSM_FAILURE);
1909 	}
1910 	else
1911 		return (PSM_SUCCESS);
1912 }
1913 
1914 /*
1915  * Bind interrupts to the CPU's local APIC.
1916  * Interrupts should not be bound to a CPU's local APIC until the CPU
1917  * is ready to receive interrupts.
1918  */
1919 static void
1920 apic_enable_intr(processorid_t cpun)
1921 {
1922 	int	i;
1923 	apic_irq_t *irq_ptr;
1924 	ulong_t iflag;
1925 
1926 	iflag = intr_clear();
1927 	lock_set(&apic_ioapic_lock);
1928 
1929 	apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE;
1930 
1931 	i = apic_min_device_irq;
1932 	for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
1933 		if ((irq_ptr = apic_irq_table[i]) != NULL) {
1934 			if ((irq_ptr->airq_cpu & ~IRQ_USER_BOUND) == cpun) {
1935 				(void) apic_rebind_all(irq_ptr,
1936 				    irq_ptr->airq_cpu);
1937 			}
1938 		}
1939 	}
1940 
1941 	lock_clear(&apic_ioapic_lock);
1942 	intr_restore(iflag);
1943 }
1944 
1945 
1946 /*
1947  * This function will reprogram the timer.
1948  *
1949  * When in oneshot mode the argument is the absolute time in future to
1950  * generate the interrupt at.
1951  *
1952  * When in periodic mode, the argument is the interval at which the
1953  * interrupts should be generated. There is no need to support the periodic
1954  * mode timer change at this time.
1955  */
1956 static void
1957 apic_timer_reprogram(hrtime_t time)
1958 {
1959 	hrtime_t now;
1960 	uint_t ticks;
1961 	int64_t delta;
1962 
1963 	/*
1964 	 * We should be called from high PIL context (CBE_HIGH_PIL),
1965 	 * so kpreempt is disabled.
1966 	 */
1967 
1968 	if (!apic_oneshot) {
1969 		/* time is the interval for periodic mode */
1970 		ticks = APIC_NSECS_TO_TICKS(time);
1971 	} else {
1972 		/* one shot mode */
1973 
1974 		now = gethrtime();
1975 		delta = time - now;
1976 
1977 		if (delta <= 0) {
1978 			/*
1979 			 * requested to generate an interrupt in the past
1980 			 * generate an interrupt as soon as possible
1981 			 */
1982 			ticks = apic_min_timer_ticks;
1983 		} else if (delta > apic_nsec_max) {
1984 			/*
1985 			 * requested to generate an interrupt at a time
1986 			 * further than what we are capable of. Set to max
1987 			 * the hardware can handle
1988 			 */
1989 
1990 			ticks = APIC_MAXVAL;
1991 #ifdef DEBUG
1992 			cmn_err(CE_CONT, "apic_timer_reprogram, request at"
1993 			    "  %lld  too far in future, current time"
1994 			    "  %lld \n", time, now);
1995 #endif
1996 		} else
1997 			ticks = APIC_NSECS_TO_TICKS(delta);
1998 	}
1999 
2000 	if (ticks < apic_min_timer_ticks)
2001 		ticks = apic_min_timer_ticks;
2002 
2003 	apic_reg_ops->apic_write(APIC_INIT_COUNT, ticks);
2004 }
2005 
2006 /*
2007  * This function will enable timer interrupts.
2008  */
2009 static void
2010 apic_timer_enable(void)
2011 {
2012 	/*
2013 	 * We should be Called from high PIL context (CBE_HIGH_PIL),
2014 	 * so kpreempt is disabled.
2015 	 */
2016 
2017 	if (!apic_oneshot) {
2018 		apic_reg_ops->apic_write(APIC_LOCAL_TIMER,
2019 		    (apic_clkvect + APIC_BASE_VECT) | AV_TIME);
2020 	} else {
2021 		/* one shot */
2022 		apic_reg_ops->apic_write(APIC_LOCAL_TIMER,
2023 		    (apic_clkvect + APIC_BASE_VECT));
2024 	}
2025 }
2026 
2027 /*
2028  * This function will disable timer interrupts.
2029  */
2030 static void
2031 apic_timer_disable(void)
2032 {
2033 	/*
2034 	 * We should be Called from high PIL context (CBE_HIGH_PIL),
2035 	 * so kpreempt is disabled.
2036 	 */
2037 	apic_reg_ops->apic_write(APIC_LOCAL_TIMER,
2038 	    (apic_clkvect + APIC_BASE_VECT) | AV_MASK);
2039 }
2040 
2041 
2042 ddi_periodic_t apic_periodic_id;
2043 
2044 /*
2045  * If this module needs a periodic handler for the interrupt distribution, it
2046  * can be added here. The argument to the periodic handler is not currently
2047  * used, but is reserved for future.
2048  */
2049 static void
2050 apic_post_cyclic_setup(void *arg)
2051 {
2052 _NOTE(ARGUNUSED(arg))
2053 	/* cpu_lock is held */
2054 	/* set up a periodic handler for intr redistribution */
2055 
2056 	/*
2057 	 * In peridoc mode intr redistribution processing is done in
2058 	 * apic_intr_enter during clk intr processing
2059 	 */
2060 	if (!apic_oneshot)
2061 		return;
2062 	/*
2063 	 * Register a periodical handler for the redistribution processing.
2064 	 * On X86, CY_LOW_LEVEL is mapped to the level 2 interrupt, so
2065 	 * DDI_IPL_2 should be passed to ddi_periodic_add() here.
2066 	 */
2067 	apic_periodic_id = ddi_periodic_add(
2068 	    (void (*)(void *))apic_redistribute_compute, NULL,
2069 	    apic_redistribute_sample_interval, DDI_IPL_2);
2070 }
2071 
2072 static void
2073 apic_redistribute_compute(void)
2074 {
2075 	int	i, j, max_busy;
2076 
2077 	if (apic_enable_dynamic_migration) {
2078 		if (++apic_nticks == apic_sample_factor_redistribution) {
2079 			/*
2080 			 * Time to call apic_intr_redistribute().
2081 			 * reset apic_nticks. This will cause max_busy
2082 			 * to be calculated below and if it is more than
2083 			 * apic_int_busy, we will do the whole thing
2084 			 */
2085 			apic_nticks = 0;
2086 		}
2087 		max_busy = 0;
2088 		for (i = 0; i < apic_nproc; i++) {
2089 
2090 			/*
2091 			 * Check if curipl is non zero & if ISR is in
2092 			 * progress
2093 			 */
2094 			if (((j = apic_cpus[i].aci_curipl) != 0) &&
2095 			    (apic_cpus[i].aci_ISR_in_progress & (1 << j))) {
2096 
2097 				int	irq;
2098 				apic_cpus[i].aci_busy++;
2099 				irq = apic_cpus[i].aci_current[j];
2100 				apic_irq_table[irq]->airq_busy++;
2101 			}
2102 
2103 			if (!apic_nticks &&
2104 			    (apic_cpus[i].aci_busy > max_busy))
2105 				max_busy = apic_cpus[i].aci_busy;
2106 		}
2107 		if (!apic_nticks) {
2108 			if (max_busy > apic_int_busy_mark) {
2109 			/*
2110 			 * We could make the following check be
2111 			 * skipped > 1 in which case, we get a
2112 			 * redistribution at half the busy mark (due to
2113 			 * double interval). Need to be able to collect
2114 			 * more empirical data to decide if that is a
2115 			 * good strategy. Punt for now.
2116 			 */
2117 				if (apic_skipped_redistribute) {
2118 					apic_cleanup_busy();
2119 					apic_skipped_redistribute = 0;
2120 				} else {
2121 					apic_intr_redistribute();
2122 				}
2123 			} else
2124 				apic_skipped_redistribute++;
2125 		}
2126 	}
2127 }
2128 
2129 
2130 /*
2131  * The following functions are in the platform specific file so that they
2132  * can be different functions depending on whether we are running on
2133  * bare metal or a hypervisor.
2134  */
2135 
2136 /*
2137  * map an apic for memory-mapped access
2138  */
2139 uint32_t *
2140 mapin_apic(uint32_t addr, size_t len, int flags)
2141 {
2142 	/*LINTED: pointer cast may result in improper alignment */
2143 	return ((uint32_t *)psm_map_phys(addr, len, flags));
2144 }
2145 
2146 uint32_t *
2147 mapin_ioapic(uint32_t addr, size_t len, int flags)
2148 {
2149 	return (mapin_apic(addr, len, flags));
2150 }
2151 
2152 /*
2153  * unmap an apic
2154  */
2155 void
2156 mapout_apic(caddr_t addr, size_t len)
2157 {
2158 	psm_unmap_phys(addr, len);
2159 }
2160 
2161 void
2162 mapout_ioapic(caddr_t addr, size_t len)
2163 {
2164 	mapout_apic(addr, len);
2165 }
2166 
2167 /*
2168  * Check to make sure there are enough irq slots
2169  */
2170 int
2171 apic_check_free_irqs(int count)
2172 {
2173 	int i, avail;
2174 
2175 	avail = 0;
2176 	for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) {
2177 		if ((apic_irq_table[i] == NULL) ||
2178 		    apic_irq_table[i]->airq_mps_intr_index == FREE_INDEX) {
2179 			if (++avail >= count)
2180 				return (PSM_SUCCESS);
2181 		}
2182 	}
2183 	return (PSM_FAILURE);
2184 }
2185 
2186 /*
2187  * This function allocates "count" MSI vector(s) for the given "dip/pri/type"
2188  */
2189 int
2190 apic_alloc_msi_vectors(dev_info_t *dip, int inum, int count, int pri,
2191     int behavior)
2192 {
2193 	int	rcount, i;
2194 	uchar_t	start, irqno;
2195 	uint32_t cpu;
2196 	major_t	major;
2197 	apic_irq_t	*irqptr;
2198 
2199 	DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: dip=0x%p "
2200 	    "inum=0x%x  pri=0x%x count=0x%x behavior=%d\n",
2201 	    (void *)dip, inum, pri, count, behavior));
2202 
2203 	if (count > 1) {
2204 		if (behavior == DDI_INTR_ALLOC_STRICT &&
2205 		    (apic_multi_msi_enable == 0 || count > apic_multi_msi_max))
2206 			return (0);
2207 
2208 		if (apic_multi_msi_enable == 0)
2209 			count = 1;
2210 		else if (count > apic_multi_msi_max)
2211 			count = apic_multi_msi_max;
2212 	}
2213 
2214 	if ((rcount = apic_navail_vector(dip, pri)) > count)
2215 		rcount = count;
2216 	else if (rcount == 0 || (rcount < count &&
2217 	    behavior == DDI_INTR_ALLOC_STRICT))
2218 		return (0);
2219 
2220 	/* if not ISP2, then round it down */
2221 	if (!ISP2(rcount))
2222 		rcount = 1 << (highbit(rcount) - 1);
2223 
2224 	mutex_enter(&airq_mutex);
2225 
2226 	for (start = 0; rcount > 0; rcount >>= 1) {
2227 		if ((start = apic_find_multi_vectors(pri, rcount)) != 0 ||
2228 		    behavior == DDI_INTR_ALLOC_STRICT)
2229 			break;
2230 	}
2231 
2232 	if (start == 0) {
2233 		/* no vector available */
2234 		mutex_exit(&airq_mutex);
2235 		return (0);
2236 	}
2237 
2238 	if (apic_check_free_irqs(rcount) == PSM_FAILURE) {
2239 		/* not enough free irq slots available */
2240 		mutex_exit(&airq_mutex);
2241 		return (0);
2242 	}
2243 
2244 	major = (dip != NULL) ? ddi_driver_major(dip) : 0;
2245 	for (i = 0; i < rcount; i++) {
2246 		if ((irqno = apic_allocate_irq(apic_first_avail_irq)) ==
2247 		    (uchar_t)-1) {
2248 			/*
2249 			 * shouldn't happen because of the
2250 			 * apic_check_free_irqs() check earlier
2251 			 */
2252 			mutex_exit(&airq_mutex);
2253 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: "
2254 			    "apic_allocate_irq failed\n"));
2255 			return (i);
2256 		}
2257 		apic_max_device_irq = max(irqno, apic_max_device_irq);
2258 		apic_min_device_irq = min(irqno, apic_min_device_irq);
2259 		irqptr = apic_irq_table[irqno];
2260 #ifdef	DEBUG
2261 		if (apic_vector_to_irq[start + i] != APIC_RESV_IRQ)
2262 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: "
2263 			    "apic_vector_to_irq is not APIC_RESV_IRQ\n"));
2264 #endif
2265 		apic_vector_to_irq[start + i] = (uchar_t)irqno;
2266 
2267 		irqptr->airq_vector = (uchar_t)(start + i);
2268 		irqptr->airq_ioapicindex = (uchar_t)inum;	/* start */
2269 		irqptr->airq_intin_no = (uchar_t)rcount;
2270 		irqptr->airq_ipl = pri;
2271 		irqptr->airq_vector = start + i;
2272 		irqptr->airq_origirq = (uchar_t)(inum + i);
2273 		irqptr->airq_share_id = 0;
2274 		irqptr->airq_mps_intr_index = MSI_INDEX;
2275 		irqptr->airq_dip = dip;
2276 		irqptr->airq_major = major;
2277 		if (i == 0) /* they all bound to the same cpu */
2278 			cpu = irqptr->airq_cpu = apic_bind_intr(dip, irqno,
2279 			    0xff, 0xff);
2280 		else
2281 			irqptr->airq_cpu = cpu;
2282 		DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: irq=0x%x "
2283 		    "dip=0x%p vector=0x%x origirq=0x%x pri=0x%x\n", irqno,
2284 		    (void *)irqptr->airq_dip, irqptr->airq_vector,
2285 		    irqptr->airq_origirq, pri));
2286 	}
2287 	mutex_exit(&airq_mutex);
2288 	return (rcount);
2289 }
2290 
2291 /*
2292  * This function allocates "count" MSI-X vector(s) for the given "dip/pri/type"
2293  */
2294 int
2295 apic_alloc_msix_vectors(dev_info_t *dip, int inum, int count, int pri,
2296     int behavior)
2297 {
2298 	int	rcount, i;
2299 	major_t	major;
2300 
2301 	if (count > 1) {
2302 		if (behavior == DDI_INTR_ALLOC_STRICT) {
2303 			if (count > apic_msix_max)
2304 				return (0);
2305 		} else if (count > apic_msix_max)
2306 			count = apic_msix_max;
2307 	}
2308 
2309 	mutex_enter(&airq_mutex);
2310 
2311 	if ((rcount = apic_navail_vector(dip, pri)) > count)
2312 		rcount = count;
2313 	else if (rcount == 0 || (rcount < count &&
2314 	    behavior == DDI_INTR_ALLOC_STRICT)) {
2315 		rcount = 0;
2316 		goto out;
2317 	}
2318 
2319 	if (apic_check_free_irqs(rcount) == PSM_FAILURE) {
2320 		/* not enough free irq slots available */
2321 		rcount = 0;
2322 		goto out;
2323 	}
2324 
2325 	major = (dip != NULL) ? ddi_driver_major(dip) : 0;
2326 	for (i = 0; i < rcount; i++) {
2327 		uchar_t	vector, irqno;
2328 		apic_irq_t	*irqptr;
2329 
2330 		if ((irqno = apic_allocate_irq(apic_first_avail_irq)) ==
2331 		    (uchar_t)-1) {
2332 			/*
2333 			 * shouldn't happen because of the
2334 			 * apic_check_free_irqs() check earlier
2335 			 */
2336 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: "
2337 			    "apic_allocate_irq failed\n"));
2338 			rcount = i;
2339 			goto out;
2340 		}
2341 		if ((vector = apic_allocate_vector(pri, irqno, 1)) == 0) {
2342 			/*
2343 			 * shouldn't happen because of the
2344 			 * apic_navail_vector() call earlier
2345 			 */
2346 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: "
2347 			    "apic_allocate_vector failed\n"));
2348 			rcount = i;
2349 			goto out;
2350 		}
2351 		apic_max_device_irq = max(irqno, apic_max_device_irq);
2352 		apic_min_device_irq = min(irqno, apic_min_device_irq);
2353 		irqptr = apic_irq_table[irqno];
2354 		irqptr->airq_vector = (uchar_t)vector;
2355 		irqptr->airq_ipl = pri;
2356 		irqptr->airq_origirq = (uchar_t)(inum + i);
2357 		irqptr->airq_share_id = 0;
2358 		irqptr->airq_mps_intr_index = MSIX_INDEX;
2359 		irqptr->airq_dip = dip;
2360 		irqptr->airq_major = major;
2361 		irqptr->airq_cpu = apic_bind_intr(dip, irqno, 0xff, 0xff);
2362 	}
2363 out:
2364 	mutex_exit(&airq_mutex);
2365 	return (rcount);
2366 }
2367 
2368 /*
2369  * Allocate a free vector for irq at ipl. Takes care of merging of multiple
2370  * IPLs into a single APIC level as well as stretching some IPLs onto multiple
2371  * levels. APIC_HI_PRI_VECTS interrupts are reserved for high priority
2372  * requests and allocated only when pri is set.
2373  */
2374 uchar_t
2375 apic_allocate_vector(int ipl, int irq, int pri)
2376 {
2377 	int	lowest, highest, i;
2378 
2379 	highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK;
2380 	lowest = apic_ipltopri[ipl - 1] + APIC_VECTOR_PER_IPL;
2381 
2382 	if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */
2383 		lowest -= APIC_VECTOR_PER_IPL;
2384 
2385 #ifdef	DEBUG
2386 	if (apic_restrict_vector)	/* for testing shared interrupt logic */
2387 		highest = lowest + apic_restrict_vector + APIC_HI_PRI_VECTS;
2388 #endif /* DEBUG */
2389 	if (pri == 0)
2390 		highest -= APIC_HI_PRI_VECTS;
2391 
2392 	for (i = lowest; i < highest; i++) {
2393 		if (APIC_CHECK_RESERVE_VECTORS(i))
2394 			continue;
2395 		if (apic_vector_to_irq[i] == APIC_RESV_IRQ) {
2396 			apic_vector_to_irq[i] = (uchar_t)irq;
2397 			return (i);
2398 		}
2399 	}
2400 
2401 	return (0);
2402 }
2403 
2404 /* Mark vector as not being used by any irq */
2405 void
2406 apic_free_vector(uchar_t vector)
2407 {
2408 	apic_vector_to_irq[vector] = APIC_RESV_IRQ;
2409 }
2410 
2411 uint32_t
2412 ioapic_read(int ioapic_ix, uint32_t reg)
2413 {
2414 	volatile uint32_t *ioapic;
2415 
2416 	ioapic = apicioadr[ioapic_ix];
2417 	ioapic[APIC_IO_REG] = reg;
2418 	return (ioapic[APIC_IO_DATA]);
2419 }
2420 
2421 void
2422 ioapic_write(int ioapic_ix, uint32_t reg, uint32_t value)
2423 {
2424 	volatile uint32_t *ioapic;
2425 
2426 	ioapic = apicioadr[ioapic_ix];
2427 	ioapic[APIC_IO_REG] = reg;
2428 	ioapic[APIC_IO_DATA] = value;
2429 }
2430 
2431 void
2432 ioapic_write_eoi(int ioapic_ix, uint32_t value)
2433 {
2434 	volatile uint32_t *ioapic;
2435 
2436 	ioapic = apicioadr[ioapic_ix];
2437 	ioapic[APIC_IO_EOI] = value;
2438 }
2439 
2440 static processorid_t
2441 apic_find_cpu(int flag)
2442 {
2443 	processorid_t acid = 0;
2444 	int i;
2445 
2446 	/* Find the first CPU with the passed-in flag set */
2447 	for (i = 0; i < apic_nproc; i++) {
2448 		if (apic_cpus[i].aci_status & flag) {
2449 			acid = i;
2450 			break;
2451 		}
2452 	}
2453 
2454 	ASSERT((apic_cpus[acid].aci_status & flag) != 0);
2455 	return (acid);
2456 }
2457 
2458 /*
2459  * Call rebind to do the actual programming.
2460  * Must be called with interrupts disabled and apic_ioapic_lock held
2461  * 'p' is polymorphic -- if this function is called to process a deferred
2462  * reprogramming, p is of type 'struct ioapic_reprogram_data *', from which
2463  * the irq pointer is retrieved.  If not doing deferred reprogramming,
2464  * p is of the type 'apic_irq_t *'.
2465  *
2466  * apic_ioapic_lock must be held across this call, as it protects apic_rebind
2467  * and it protects apic_find_cpu() from a race in which a CPU can be taken
2468  * offline after a cpu is selected, but before apic_rebind is called to
2469  * bind interrupts to it.
2470  */
2471 int
2472 apic_setup_io_intr(void *p, int irq, boolean_t deferred)
2473 {
2474 	apic_irq_t *irqptr;
2475 	struct ioapic_reprogram_data *drep = NULL;
2476 	int rv;
2477 
2478 	if (deferred) {
2479 		drep = (struct ioapic_reprogram_data *)p;
2480 		ASSERT(drep != NULL);
2481 		irqptr = drep->irqp;
2482 	} else
2483 		irqptr = (apic_irq_t *)p;
2484 
2485 	ASSERT(irqptr != NULL);
2486 
2487 	rv = apic_rebind(irqptr, apic_irq_table[irq]->airq_cpu, drep);
2488 	if (rv) {
2489 		/*
2490 		 * CPU is not up or interrupts are disabled. Fall back to
2491 		 * the first available CPU
2492 		 */
2493 		rv = apic_rebind(irqptr, apic_find_cpu(APIC_CPU_INTR_ENABLE),
2494 		    drep);
2495 	}
2496 
2497 	return (rv);
2498 }
2499 
2500 
2501 uchar_t
2502 apic_modify_vector(uchar_t vector, int irq)
2503 {
2504 	apic_vector_to_irq[vector] = (uchar_t)irq;
2505 	return (vector);
2506 }
2507 
2508 char *
2509 apic_get_apic_type()
2510 {
2511 	return (apic_psm_info.p_mach_idstring);
2512 }
2513 
2514 void
2515 x2apic_update_psm()
2516 {
2517 	struct psm_ops *pops = &apic_ops;
2518 
2519 	ASSERT(pops != NULL);
2520 
2521 	/*
2522 	 * We don't need to do any magic if one of the following
2523 	 * conditions is true :
2524 	 * - Not being run under kernel debugger.
2525 	 * - MP is not set.
2526 	 * - Booted with one CPU only.
2527 	 * - One CPU configured.
2528 	 *
2529 	 * We set apic_common_send_ipi() since kernel debuggers
2530 	 * attempt to send IPIs to other slave CPUs during
2531 	 * entry (exit) from (to) debugger.
2532 	 */
2533 	if (!(boothowto & RB_DEBUG) || use_mp == 0 ||
2534 	    apic_nproc == 1 || boot_ncpus == 1) {
2535 		pops->psm_send_ipi =  x2apic_send_ipi;
2536 	} else {
2537 		pops->psm_send_ipi =  apic_common_send_ipi;
2538 	}
2539 
2540 	pops->psm_intr_exit = x2apic_intr_exit;
2541 	pops->psm_setspl = x2apic_setspl;
2542 
2543 	send_dirintf = pops->psm_send_ipi;
2544 
2545 	apic_mode = LOCAL_X2APIC;
2546 	apic_change_ops();
2547 }
2548 
2549 static void
2550 apic_intrr_init(int apic_mode)
2551 {
2552 	if (psm_vt_ops != NULL) {
2553 		if (((apic_intrr_ops_t *)psm_vt_ops)->apic_intrr_init(apic_mode)
2554 		    == DDI_SUCCESS) {
2555 			apic_vt_ops = psm_vt_ops;
2556 			apic_vt_ops->apic_intrr_enable();
2557 		}
2558 	}
2559 }
2560 
2561 /*ARGSUSED*/
2562 static void
2563 apic_record_ioapic_rdt(apic_irq_t *irq_ptr, ioapic_rdt_t *irdt)
2564 {
2565 	irdt->ir_hi <<= APIC_ID_BIT_OFFSET;
2566 }
2567 
2568 /*ARGSUSED*/
2569 static void
2570 apic_record_msi(apic_irq_t *irq_ptr, msi_regs_t *mregs)
2571 {
2572 	mregs->mr_addr = MSI_ADDR_HDR |
2573 	    (MSI_ADDR_RH_FIXED << MSI_ADDR_RH_SHIFT) |
2574 	    (MSI_ADDR_DM_PHYSICAL << MSI_ADDR_DM_SHIFT) |
2575 	    (mregs->mr_addr << MSI_ADDR_DEST_SHIFT);
2576 	mregs->mr_data = (MSI_DATA_TM_EDGE << MSI_DATA_TM_SHIFT) |
2577 	    mregs->mr_data;
2578 }
2579