xref: /titanic_50/usr/src/uts/i86pc/io/pcplusmp/apic.c (revision 64d1d4ab72834b7483c7962efc738b568ca8792e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * PSMI 1.1 extensions are supported only in 2.6 and later versions.
29  * PSMI 1.2 extensions are supported only in 2.7 and later versions.
30  * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
31  * PSMI 1.5 extensions are supported in Solaris Nevada.
32  * PSMI 1.6 extensions are supported in Solaris Nevada.
33  */
34 #define	PSMI_1_6
35 
36 #include <sys/processor.h>
37 #include <sys/time.h>
38 #include <sys/psm.h>
39 #include <sys/smp_impldefs.h>
40 #include <sys/cram.h>
41 #include <sys/acpi/acpi.h>
42 #include <sys/acpica.h>
43 #include <sys/psm_common.h>
44 #include <sys/apic.h>
45 #include <sys/pit.h>
46 #include <sys/ddi.h>
47 #include <sys/sunddi.h>
48 #include <sys/ddi_impldefs.h>
49 #include <sys/pci.h>
50 #include <sys/promif.h>
51 #include <sys/x86_archext.h>
52 #include <sys/cpc_impl.h>
53 #include <sys/uadmin.h>
54 #include <sys/panic.h>
55 #include <sys/debug.h>
56 #include <sys/archsystm.h>
57 #include <sys/trap.h>
58 #include <sys/machsystm.h>
59 #include <sys/sysmacros.h>
60 #include <sys/cpuvar.h>
61 #include <sys/rm_platter.h>
62 #include <sys/privregs.h>
63 #include <sys/note.h>
64 #include <sys/pci_intr_lib.h>
65 #include <sys/spl.h>
66 #include <sys/clock.h>
67 #include <sys/dditypes.h>
68 #include <sys/sunddi.h>
69 #include <sys/x_call.h>
70 #include <sys/reboot.h>
71 
72 /*
73  *	Local Function Prototypes
74  */
75 static void apic_init_intr();
76 static void apic_nmi_intr(caddr_t arg, struct regs *rp);
77 
78 /*
79  *	standard MP entries
80  */
81 static int	apic_probe();
82 static int	apic_clkinit();
83 static int	apic_getclkirq(int ipl);
84 static uint_t	apic_calibrate(volatile uint32_t *addr,
85     uint16_t *pit_ticks_adj);
86 static hrtime_t apic_gettime();
87 static hrtime_t apic_gethrtime();
88 static void	apic_init();
89 static void	apic_picinit(void);
90 static int	apic_cpu_start(processorid_t, caddr_t);
91 static int	apic_post_cpu_start(void);
92 static void	apic_send_ipi(int cpun, int ipl);
93 static void	apic_set_idlecpu(processorid_t cpun);
94 static void	apic_unset_idlecpu(processorid_t cpun);
95 static int	apic_intr_enter(int ipl, int *vect);
96 static void	apic_setspl(int ipl);
97 static void	x2apic_setspl(int ipl);
98 static int	apic_addspl(int ipl, int vector, int min_ipl, int max_ipl);
99 static int	apic_delspl(int ipl, int vector, int min_ipl, int max_ipl);
100 static void	apic_shutdown(int cmd, int fcn);
101 static void	apic_preshutdown(int cmd, int fcn);
102 static int	apic_disable_intr(processorid_t cpun);
103 static void	apic_enable_intr(processorid_t cpun);
104 static processorid_t	apic_get_next_processorid(processorid_t cpun);
105 static int		apic_get_ipivect(int ipl, int type);
106 static void	apic_timer_reprogram(hrtime_t time);
107 static void	apic_timer_enable(void);
108 static void	apic_timer_disable(void);
109 static void	apic_post_cyclic_setup(void *arg);
110 
111 static int	apic_oneshot = 0;
112 int	apic_oneshot_enable = 1; /* to allow disabling one-shot capability */
113 
114 /* Now the ones for Dynamic Interrupt distribution */
115 int	apic_enable_dynamic_migration = 0;
116 
117 
118 /*
119  * These variables are frequently accessed in apic_intr_enter(),
120  * apic_intr_exit and apic_setspl, so group them together
121  */
122 volatile uint32_t *apicadr =  NULL;	/* virtual addr of local APIC	*/
123 int apic_setspl_delay = 1;		/* apic_setspl - delay enable	*/
124 int apic_clkvect;
125 
126 /* vector at which error interrupts come in */
127 int apic_errvect;
128 int apic_enable_error_intr = 1;
129 int apic_error_display_delay = 100;
130 
131 /* vector at which performance counter overflow interrupts come in */
132 int apic_cpcovf_vect;
133 int apic_enable_cpcovf_intr = 1;
134 
135 /* vector at which CMCI interrupts come in */
136 int apic_cmci_vect;
137 extern int cmi_enable_cmci;
138 extern void cmi_cmci_trap(void);
139 
140 static kmutex_t cmci_cpu_setup_lock;	/* protects cmci_cpu_setup_registered */
141 static int cmci_cpu_setup_registered;
142 
143 /*
144  * The following vector assignments influence the value of ipltopri and
145  * vectortoipl. Note that vectors 0 - 0x1f are not used. We can program
146  * idle to 0 and IPL 0 to 0xf to differentiate idle in case
147  * we care to do so in future. Note some IPLs which are rarely used
148  * will share the vector ranges and heavily used IPLs (5 and 6) have
149  * a wide range.
150  *
151  * This array is used to initialize apic_ipls[] (in apic_init()).
152  *
153  *	IPL		Vector range.		as passed to intr_enter
154  *	0		none.
155  *	1,2,3		0x20-0x2f		0x0-0xf
156  *	4		0x30-0x3f		0x10-0x1f
157  *	5		0x40-0x5f		0x20-0x3f
158  *	6		0x60-0x7f		0x40-0x5f
159  *	7,8,9		0x80-0x8f		0x60-0x6f
160  *	10		0x90-0x9f		0x70-0x7f
161  *	11		0xa0-0xaf		0x80-0x8f
162  *	...		...
163  *	15		0xe0-0xef		0xc0-0xcf
164  *	15		0xf0-0xff		0xd0-0xdf
165  */
166 uchar_t apic_vectortoipl[APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL] = {
167 	3, 4, 5, 5, 6, 6, 9, 10, 11, 12, 13, 14, 15, 15
168 };
169 	/*
170 	 * The ipl of an ISR at vector X is apic_vectortoipl[X>>4]
171 	 * NOTE that this is vector as passed into intr_enter which is
172 	 * programmed vector - 0x20 (APIC_BASE_VECT)
173 	 */
174 
175 uchar_t	apic_ipltopri[MAXIPL + 1];	/* unix ipl to apic pri	*/
176 	/* The taskpri to be programmed into apic to mask given ipl */
177 
178 #if defined(__amd64)
179 uchar_t	apic_cr8pri[MAXIPL + 1];	/* unix ipl to cr8 pri	*/
180 #endif
181 
182 /*
183  * Correlation of the hardware vector to the IPL in use, initialized
184  * from apic_vectortoipl[] in apic_init().  The final IPLs may not correlate
185  * to the IPLs in apic_vectortoipl on some systems that share interrupt lines
186  * connected to errata-stricken IOAPICs
187  */
188 uchar_t apic_ipls[APIC_AVAIL_VECTOR];
189 
190 /*
191  * Patchable global variables.
192  */
193 int	apic_forceload = 0;
194 
195 int	apic_coarse_hrtime = 1;		/* 0 - use accurate slow gethrtime() */
196 					/* 1 - use gettime() for performance */
197 int	apic_flat_model = 0;		/* 0 - clustered. 1 - flat */
198 int	apic_enable_hwsoftint = 0;	/* 0 - disable, 1 - enable	*/
199 int	apic_enable_bind_log = 1;	/* 1 - display interrupt binding log */
200 int	apic_panic_on_nmi = 0;
201 int	apic_panic_on_apic_error = 0;
202 
203 int	apic_verbose = 0;
204 
205 /* minimum number of timer ticks to program to */
206 int apic_min_timer_ticks = 1;
207 /*
208  *	Local static data
209  */
210 static struct	psm_ops apic_ops = {
211 	apic_probe,
212 
213 	apic_init,
214 	apic_picinit,
215 	apic_intr_enter,
216 	apic_intr_exit,
217 	apic_setspl,
218 	apic_addspl,
219 	apic_delspl,
220 	apic_disable_intr,
221 	apic_enable_intr,
222 	(int (*)(int))NULL,		/* psm_softlvl_to_irq */
223 	(void (*)(int))NULL,		/* psm_set_softintr */
224 
225 	apic_set_idlecpu,
226 	apic_unset_idlecpu,
227 
228 	apic_clkinit,
229 	apic_getclkirq,
230 	(void (*)(void))NULL,		/* psm_hrtimeinit */
231 	apic_gethrtime,
232 
233 	apic_get_next_processorid,
234 	apic_cpu_start,
235 	apic_post_cpu_start,
236 	apic_shutdown,
237 	apic_get_ipivect,
238 	apic_send_ipi,
239 
240 	(int (*)(dev_info_t *, int))NULL,	/* psm_translate_irq */
241 	(void (*)(int, char *))NULL,	/* psm_notify_error */
242 	(void (*)(int))NULL,		/* psm_notify_func */
243 	apic_timer_reprogram,
244 	apic_timer_enable,
245 	apic_timer_disable,
246 	apic_post_cyclic_setup,
247 	apic_preshutdown,
248 	apic_intr_ops,			/* Advanced DDI Interrupt framework */
249 	apic_state,			/* save, restore apic state for S3 */
250 };
251 
252 
253 static struct	psm_info apic_psm_info = {
254 	PSM_INFO_VER01_6,			/* version */
255 	PSM_OWN_EXCLUSIVE,			/* ownership */
256 	(struct psm_ops *)&apic_ops,		/* operation */
257 	APIC_PCPLUSMP_NAME,			/* machine name */
258 	"pcplusmp v1.4 compatible",
259 };
260 
261 static void *apic_hdlp;
262 
263 #ifdef DEBUG
264 int	apic_debug = 0;
265 int	apic_restrict_vector = 0;
266 
267 int	apic_debug_msgbuf[APIC_DEBUG_MSGBUFSIZE];
268 int	apic_debug_msgbufindex = 0;
269 
270 #endif /* DEBUG */
271 
272 apic_cpus_info_t	*apic_cpus;
273 
274 cpuset_t	apic_cpumask;
275 uint_t	apic_picinit_called;
276 
277 /* Flag to indicate that we need to shut down all processors */
278 static uint_t	apic_shutdown_processors;
279 
280 uint_t apic_nsec_per_intr = 0;
281 
282 /*
283  * apic_let_idle_redistribute can have the following values:
284  * 0 - If clock decremented it from 1 to 0, clock has to call redistribute.
285  * apic_redistribute_lock prevents multiple idle cpus from redistributing
286  */
287 int	apic_num_idle_redistributions = 0;
288 static	int apic_let_idle_redistribute = 0;
289 static	uint_t apic_nticks = 0;
290 static	uint_t apic_skipped_redistribute = 0;
291 
292 /* to gather intr data and redistribute */
293 static void apic_redistribute_compute(void);
294 
295 static	uint_t last_count_read = 0;
296 static	lock_t	apic_gethrtime_lock;
297 volatile int	apic_hrtime_stamp = 0;
298 volatile hrtime_t apic_nsec_since_boot = 0;
299 static uint_t apic_hertz_count;
300 
301 uint64_t apic_ticks_per_SFnsecs;	/* # of ticks in SF nsecs */
302 
303 static hrtime_t apic_nsec_max;
304 
305 static	hrtime_t	apic_last_hrtime = 0;
306 int		apic_hrtime_error = 0;
307 int		apic_remote_hrterr = 0;
308 int		apic_num_nmis = 0;
309 int		apic_apic_error = 0;
310 int		apic_num_apic_errors = 0;
311 int		apic_num_cksum_errors = 0;
312 
313 int	apic_error = 0;
314 static	int	apic_cmos_ssb_set = 0;
315 
316 /* use to make sure only one cpu handles the nmi */
317 static	lock_t	apic_nmi_lock;
318 /* use to make sure only one cpu handles the error interrupt */
319 static	lock_t	apic_error_lock;
320 
321 static	struct {
322 	uchar_t	cntl;
323 	uchar_t	data;
324 } aspen_bmc[] = {
325 	{ CC_SMS_WR_START,	0x18 },		/* NetFn/LUN */
326 	{ CC_SMS_WR_NEXT,	0x24 },		/* Cmd SET_WATCHDOG_TIMER */
327 	{ CC_SMS_WR_NEXT,	0x84 },		/* DataByte 1: SMS/OS no log */
328 	{ CC_SMS_WR_NEXT,	0x2 },		/* DataByte 2: Power Down */
329 	{ CC_SMS_WR_NEXT,	0x0 },		/* DataByte 3: no pre-timeout */
330 	{ CC_SMS_WR_NEXT,	0x0 },		/* DataByte 4: timer expir. */
331 	{ CC_SMS_WR_NEXT,	0xa },		/* DataByte 5: init countdown */
332 	{ CC_SMS_WR_END,	0x0 },		/* DataByte 6: init countdown */
333 
334 	{ CC_SMS_WR_START,	0x18 },		/* NetFn/LUN */
335 	{ CC_SMS_WR_END,	0x22 }		/* Cmd RESET_WATCHDOG_TIMER */
336 };
337 
338 static	struct {
339 	int	port;
340 	uchar_t	data;
341 } sitka_bmc[] = {
342 	{ SMS_COMMAND_REGISTER,	SMS_WRITE_START },
343 	{ SMS_DATA_REGISTER,	0x18 },		/* NetFn/LUN */
344 	{ SMS_DATA_REGISTER,	0x24 },		/* Cmd SET_WATCHDOG_TIMER */
345 	{ SMS_DATA_REGISTER,	0x84 },		/* DataByte 1: SMS/OS no log */
346 	{ SMS_DATA_REGISTER,	0x2 },		/* DataByte 2: Power Down */
347 	{ SMS_DATA_REGISTER,	0x0 },		/* DataByte 3: no pre-timeout */
348 	{ SMS_DATA_REGISTER,	0x0 },		/* DataByte 4: timer expir. */
349 	{ SMS_DATA_REGISTER,	0xa },		/* DataByte 5: init countdown */
350 	{ SMS_COMMAND_REGISTER,	SMS_WRITE_END },
351 	{ SMS_DATA_REGISTER,	0x0 },		/* DataByte 6: init countdown */
352 
353 	{ SMS_COMMAND_REGISTER,	SMS_WRITE_START },
354 	{ SMS_DATA_REGISTER,	0x18 },		/* NetFn/LUN */
355 	{ SMS_COMMAND_REGISTER,	SMS_WRITE_END },
356 	{ SMS_DATA_REGISTER,	0x22 }		/* Cmd RESET_WATCHDOG_TIMER */
357 };
358 
359 /* Patchable global variables. */
360 int		apic_kmdb_on_nmi = 0;		/* 0 - no, 1 - yes enter kmdb */
361 uint32_t	apic_divide_reg_init = 0;	/* 0 - divide by 2 */
362 
363 /*
364  *	This is the loadable module wrapper
365  */
366 
367 int
368 _init(void)
369 {
370 	if (apic_coarse_hrtime)
371 		apic_ops.psm_gethrtime = &apic_gettime;
372 	return (psm_mod_init(&apic_hdlp, &apic_psm_info));
373 }
374 
375 int
376 _fini(void)
377 {
378 	return (psm_mod_fini(&apic_hdlp, &apic_psm_info));
379 }
380 
381 int
382 _info(struct modinfo *modinfop)
383 {
384 	return (psm_mod_info(&apic_hdlp, &apic_psm_info, modinfop));
385 }
386 
387 
388 static int
389 apic_probe()
390 {
391 	return (apic_probe_common(apic_psm_info.p_mach_idstring));
392 }
393 
394 void
395 apic_init()
396 {
397 	int i;
398 	int	j = 1;
399 
400 	apic_ipltopri[0] = APIC_VECTOR_PER_IPL; /* leave 0 for idle */
401 	for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) {
402 		if ((i < ((APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL) - 1)) &&
403 		    (apic_vectortoipl[i + 1] == apic_vectortoipl[i]))
404 			/* get to highest vector at the same ipl */
405 			continue;
406 		for (; j <= apic_vectortoipl[i]; j++) {
407 			apic_ipltopri[j] = (i << APIC_IPL_SHIFT) +
408 			    APIC_BASE_VECT;
409 		}
410 	}
411 	for (; j < MAXIPL + 1; j++)
412 		/* fill up any empty ipltopri slots */
413 		apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + APIC_BASE_VECT;
414 	apic_init_common();
415 #if defined(__amd64)
416 	/*
417 	 * Make cpu-specific interrupt info point to cr8pri vector
418 	 */
419 	for (i = 0; i <= MAXIPL; i++)
420 		apic_cr8pri[i] = apic_ipltopri[i] >> APIC_IPL_SHIFT;
421 	CPU->cpu_pri_data = apic_cr8pri;
422 #endif	/* __amd64 */
423 }
424 
425 /*
426  * handler for APIC Error interrupt. Just print a warning and continue
427  */
428 static int
429 apic_error_intr()
430 {
431 	uint_t	error0, error1, error;
432 	uint_t	i;
433 
434 	/*
435 	 * We need to write before read as per 7.4.17 of system prog manual.
436 	 * We do both and or the results to be safe
437 	 */
438 	error0 = apic_reg_ops->apic_read(APIC_ERROR_STATUS);
439 	apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
440 	error1 = apic_reg_ops->apic_read(APIC_ERROR_STATUS);
441 	error = error0 | error1;
442 
443 	/*
444 	 * Clear the APIC error status (do this on all cpus that enter here)
445 	 * (two writes are required due to the semantics of accessing the
446 	 * error status register.)
447 	 */
448 	apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
449 	apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
450 
451 	/*
452 	 * Prevent more than 1 CPU from handling error interrupt causing
453 	 * double printing (interleave of characters from multiple
454 	 * CPU's when using prom_printf)
455 	 */
456 	if (lock_try(&apic_error_lock) == 0)
457 		return (error ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
458 	if (error) {
459 #if	DEBUG
460 		if (apic_debug)
461 			debug_enter("pcplusmp: APIC Error interrupt received");
462 #endif /* DEBUG */
463 		if (apic_panic_on_apic_error)
464 			cmn_err(CE_PANIC,
465 			    "APIC Error interrupt on CPU %d. Status = %x\n",
466 			    psm_get_cpu_id(), error);
467 		else {
468 			if ((error & ~APIC_CS_ERRORS) == 0) {
469 				/* cksum error only */
470 				apic_error |= APIC_ERR_APIC_ERROR;
471 				apic_apic_error |= error;
472 				apic_num_apic_errors++;
473 				apic_num_cksum_errors++;
474 			} else {
475 				/*
476 				 * prom_printf is the best shot we have of
477 				 * something which is problem free from
478 				 * high level/NMI type of interrupts
479 				 */
480 				prom_printf("APIC Error interrupt on CPU %d. "
481 				    "Status 0 = %x, Status 1 = %x\n",
482 				    psm_get_cpu_id(), error0, error1);
483 				apic_error |= APIC_ERR_APIC_ERROR;
484 				apic_apic_error |= error;
485 				apic_num_apic_errors++;
486 				for (i = 0; i < apic_error_display_delay; i++) {
487 					tenmicrosec();
488 				}
489 				/*
490 				 * provide more delay next time limited to
491 				 * roughly 1 clock tick time
492 				 */
493 				if (apic_error_display_delay < 500)
494 					apic_error_display_delay *= 2;
495 			}
496 		}
497 		lock_clear(&apic_error_lock);
498 		return (DDI_INTR_CLAIMED);
499 	} else {
500 		lock_clear(&apic_error_lock);
501 		return (DDI_INTR_UNCLAIMED);
502 	}
503 	/* NOTREACHED */
504 }
505 
506 /*
507  * Turn off the mask bit in the performance counter Local Vector Table entry.
508  */
509 static void
510 apic_cpcovf_mask_clear(void)
511 {
512 	apic_reg_ops->apic_write(APIC_PCINT_VECT,
513 	    (apic_reg_ops->apic_read(APIC_PCINT_VECT) & ~APIC_LVT_MASK));
514 }
515 
516 /*ARGSUSED*/
517 static int
518 apic_cmci_enable(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3)
519 {
520 	apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect);
521 	return (0);
522 }
523 
524 /*ARGSUSED*/
525 static int
526 apic_cmci_disable(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3)
527 {
528 	apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect | AV_MASK);
529 	return (0);
530 }
531 
532 /*ARGSUSED*/
533 static int
534 cmci_cpu_setup(cpu_setup_t what, int cpuid, void *arg)
535 {
536 	cpuset_t	cpu_set;
537 
538 	CPUSET_ONLY(cpu_set, cpuid);
539 
540 	switch (what) {
541 		case CPU_ON:
542 			xc_call(NULL, NULL, NULL, X_CALL_HIPRI, cpu_set,
543 			    (xc_func_t)apic_cmci_enable);
544 			break;
545 
546 		case CPU_OFF:
547 			xc_call(NULL, NULL, NULL, X_CALL_HIPRI, cpu_set,
548 			    (xc_func_t)apic_cmci_disable);
549 			break;
550 
551 		default:
552 			break;
553 	}
554 
555 	return (0);
556 }
557 
558 static void
559 apic_init_intr()
560 {
561 	processorid_t	cpun = psm_get_cpu_id();
562 	uint_t nlvt;
563 	uint32_t svr = AV_UNIT_ENABLE | APIC_SPUR_INTR;
564 
565 	apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL);
566 
567 	if (apic_mode == LOCAL_APIC) {
568 		/*
569 		 * We are running APIC in MMIO mode.
570 		 */
571 		if (apic_flat_model) {
572 			apic_reg_ops->apic_write(APIC_FORMAT_REG,
573 			    APIC_FLAT_MODEL);
574 		} else {
575 			apic_reg_ops->apic_write(APIC_FORMAT_REG,
576 			    APIC_CLUSTER_MODEL);
577 		}
578 
579 		apic_reg_ops->apic_write(APIC_DEST_REG,
580 		    AV_HIGH_ORDER >> cpun);
581 	}
582 
583 	if (apic_direct_EOI) {
584 		/*
585 		 * Set 12th bit in Spurious Interrupt Vector
586 		 * Register to support level triggered interrupt
587 		 * directed EOI.
588 		 */
589 		svr |= (0x1 << APIC_SVR);
590 	}
591 
592 	/* need to enable APIC before unmasking NMI */
593 	apic_reg_ops->apic_write(APIC_SPUR_INT_REG, svr);
594 
595 	/*
596 	 * Presence of an invalid vector with delivery mode AV_FIXED can
597 	 * cause an error interrupt, even if the entry is masked...so
598 	 * write a valid vector to LVT entries along with the mask bit
599 	 */
600 
601 	/* All APICs have timer and LINT0/1 */
602 	apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK|APIC_RESV_IRQ);
603 	apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK|APIC_RESV_IRQ);
604 	apic_reg_ops->apic_write(APIC_INT_VECT1, AV_NMI);	/* enable NMI */
605 
606 	/*
607 	 * On integrated APICs, the number of LVT entries is
608 	 * 'Max LVT entry' + 1; on 82489DX's (non-integrated
609 	 * APICs), nlvt is "3" (LINT0, LINT1, and timer)
610 	 */
611 
612 	if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) {
613 		nlvt = 3;
614 	} else {
615 		nlvt = ((apicadr[APIC_VERS_REG] >> 16) & 0xFF) + 1;
616 	}
617 
618 	if (nlvt >= 5) {
619 		/* Enable performance counter overflow interrupt */
620 
621 		if ((x86_feature & X86_MSR) != X86_MSR)
622 			apic_enable_cpcovf_intr = 0;
623 		if (apic_enable_cpcovf_intr) {
624 			if (apic_cpcovf_vect == 0) {
625 				int ipl = APIC_PCINT_IPL;
626 				int irq = apic_get_ipivect(ipl, -1);
627 
628 				ASSERT(irq != -1);
629 				apic_cpcovf_vect =
630 				    apic_irq_table[irq]->airq_vector;
631 				ASSERT(apic_cpcovf_vect);
632 				(void) add_avintr(NULL, ipl,
633 				    (avfunc)kcpc_hw_overflow_intr,
634 				    "apic pcint", irq, NULL, NULL, NULL, NULL);
635 				kcpc_hw_overflow_intr_installed = 1;
636 				kcpc_hw_enable_cpc_intr =
637 				    apic_cpcovf_mask_clear;
638 			}
639 			apic_reg_ops->apic_write(APIC_PCINT_VECT,
640 			    apic_cpcovf_vect);
641 		}
642 	}
643 
644 	if (nlvt >= 6) {
645 		/* Only mask TM intr if the BIOS apparently doesn't use it */
646 
647 		uint32_t lvtval;
648 
649 		lvtval = apic_reg_ops->apic_read(APIC_THERM_VECT);
650 		if (((lvtval & AV_MASK) == AV_MASK) ||
651 		    ((lvtval & AV_DELIV_MODE) != AV_SMI)) {
652 			apic_reg_ops->apic_write(APIC_THERM_VECT,
653 			    AV_MASK|APIC_RESV_IRQ);
654 		}
655 	}
656 
657 	/* Enable error interrupt */
658 
659 	if (nlvt >= 4 && apic_enable_error_intr) {
660 		if (apic_errvect == 0) {
661 			int ipl = 0xf;	/* get highest priority intr */
662 			int irq = apic_get_ipivect(ipl, -1);
663 
664 			ASSERT(irq != -1);
665 			apic_errvect = apic_irq_table[irq]->airq_vector;
666 			ASSERT(apic_errvect);
667 			/*
668 			 * Not PSMI compliant, but we are going to merge
669 			 * with ON anyway
670 			 */
671 			(void) add_avintr((void *)NULL, ipl,
672 			    (avfunc)apic_error_intr, "apic error intr",
673 			    irq, NULL, NULL, NULL, NULL);
674 		}
675 		apic_reg_ops->apic_write(APIC_ERR_VECT, apic_errvect);
676 		apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
677 		apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
678 	}
679 
680 	/* Enable CMCI interrupt */
681 	if (cmi_enable_cmci) {
682 
683 		mutex_enter(&cmci_cpu_setup_lock);
684 		if (cmci_cpu_setup_registered == 0) {
685 			mutex_enter(&cpu_lock);
686 			register_cpu_setup_func(cmci_cpu_setup, NULL);
687 			mutex_exit(&cpu_lock);
688 			cmci_cpu_setup_registered = 1;
689 		}
690 		mutex_exit(&cmci_cpu_setup_lock);
691 
692 		if (apic_cmci_vect == 0) {
693 			int ipl = 0x2;
694 			int irq = apic_get_ipivect(ipl, -1);
695 
696 			ASSERT(irq != -1);
697 			apic_cmci_vect = apic_irq_table[irq]->airq_vector;
698 			ASSERT(apic_cmci_vect);
699 
700 			(void) add_avintr(NULL, ipl,
701 			    (avfunc)cmi_cmci_trap,
702 			    "apic cmci intr", irq, NULL, NULL, NULL, NULL);
703 		}
704 		apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect);
705 	}
706 }
707 
708 static void
709 apic_disable_local_apic()
710 {
711 	apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL);
712 	apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK);
713 
714 	/* local intr reg 0 */
715 	apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK);
716 
717 	/* disable NMI */
718 	apic_reg_ops->apic_write(APIC_INT_VECT1, AV_MASK);
719 
720 	/* and error interrupt */
721 	apic_reg_ops->apic_write(APIC_ERR_VECT, AV_MASK);
722 
723 	/* and perf counter intr */
724 	apic_reg_ops->apic_write(APIC_PCINT_VECT, AV_MASK);
725 
726 	apic_reg_ops->apic_write(APIC_SPUR_INT_REG, APIC_SPUR_INTR);
727 }
728 
729 static void
730 apic_picinit(void)
731 {
732 	int i, j;
733 	uint_t isr;
734 	uint32_t ver;
735 
736 	/*
737 	 * On UniSys Model 6520, the BIOS leaves vector 0x20 isr
738 	 * bit on without clearing it with EOI.  Since softint
739 	 * uses vector 0x20 to interrupt itself, so softint will
740 	 * not work on this machine.  In order to fix this problem
741 	 * a check is made to verify all the isr bits are clear.
742 	 * If not, EOIs are issued to clear the bits.
743 	 */
744 	for (i = 7; i >= 1; i--) {
745 		isr = apic_reg_ops->apic_read(APIC_ISR_REG + (i * 4));
746 		if (isr != 0)
747 			for (j = 0; ((j < 32) && (isr != 0)); j++)
748 				if (isr & (1 << j)) {
749 					apic_reg_ops->apic_write(
750 					    APIC_EOI_REG, 0);
751 					isr &= ~(1 << j);
752 					apic_error |= APIC_ERR_BOOT_EOI;
753 				}
754 	}
755 
756 	/* set a flag so we know we have run apic_picinit() */
757 	apic_picinit_called = 1;
758 	LOCK_INIT_CLEAR(&apic_gethrtime_lock);
759 	LOCK_INIT_CLEAR(&apic_ioapic_lock);
760 	LOCK_INIT_CLEAR(&apic_error_lock);
761 
762 	picsetup();	 /* initialise the 8259 */
763 
764 	/* add nmi handler - least priority nmi handler */
765 	LOCK_INIT_CLEAR(&apic_nmi_lock);
766 
767 	if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr,
768 	    "pcplusmp NMI handler", (caddr_t)NULL))
769 		cmn_err(CE_WARN, "pcplusmp: Unable to add nmi handler");
770 
771 	ver = apic_reg_ops->apic_read(APIC_VERS_REG);
772 	/*
773 	 * In order to determine support for Directed EOI capability,
774 	 * we check for 24th bit in Local APIC Version Register.
775 	 */
776 	if (ver & (0x1 << APIC_DIRECTED_EOI)) {
777 		apic_direct_EOI = 1;
778 		apic_change_eoi();
779 	}
780 
781 	apic_init_intr();
782 
783 	/* enable apic mode if imcr present */
784 	if (apic_imcrp) {
785 		outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT);
786 		outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC);
787 	}
788 
789 	ioapic_init_intr(IOAPIC_MASK);
790 }
791 
792 
793 /*ARGSUSED1*/
794 static int
795 apic_cpu_start(processorid_t cpun, caddr_t arg)
796 {
797 	int		loop_count;
798 	uint32_t	vector;
799 	uint_t		cpu_id;
800 	ulong_t		iflag;
801 
802 	cpu_id =  apic_cpus[cpun].aci_local_id;
803 
804 	apic_cmos_ssb_set = 1;
805 
806 	/*
807 	 * Interrupts on BSP cpu will be disabled during these startup
808 	 * steps in order to avoid unwanted side effects from
809 	 * executing interrupt handlers on a problematic BIOS.
810 	 */
811 
812 	iflag = intr_clear();
813 	outb(CMOS_ADDR, SSB);
814 	outb(CMOS_DATA, BIOS_SHUTDOWN);
815 
816 	/*
817 	 * According to X2APIC specification in section '2.3.5.1' of
818 	 * Interrupt Command Register Semantics, the semantics of
819 	 * programming the Interrupt Command Register to dispatch an interrupt
820 	 * is simplified. A single MSR write to the 64-bit ICR is required
821 	 * for dispatching an interrupt. Specifically, with the 64-bit MSR
822 	 * interface to ICR, system software is not required to check the
823 	 * status of the delivery status bit prior to writing to the ICR
824 	 * to send an IPI. With the removal of the Delivery Status bit,
825 	 * system software no longer has a reason to read the ICR. It remains
826 	 * readable only to aid in debugging.
827 	 */
828 #ifdef	DEBUG
829 	APIC_AV_PENDING_SET();
830 #else
831 	if (apic_mode == LOCAL_APIC) {
832 		APIC_AV_PENDING_SET();
833 	}
834 #endif /* DEBUG */
835 
836 	/* for integrated - make sure there is one INIT IPI in buffer */
837 	/* for external - it will wake up the cpu */
838 	apic_reg_ops->apic_write_int_cmd(cpu_id, AV_ASSERT | AV_RESET);
839 
840 	/* If only 1 CPU is installed, PENDING bit will not go low */
841 	for (loop_count = 0x1000; loop_count; loop_count--) {
842 		if (apic_mode == LOCAL_APIC &&
843 		    apic_reg_ops->apic_read(APIC_INT_CMD1) & AV_PENDING)
844 			apic_ret();
845 		else
846 			break;
847 	}
848 
849 	apic_reg_ops->apic_write_int_cmd(cpu_id, AV_DEASSERT | AV_RESET);
850 
851 	drv_usecwait(20000);		/* 20 milli sec */
852 
853 	if (apic_cpus[cpun].aci_local_ver >= APIC_INTEGRATED_VERS) {
854 		/* integrated apic */
855 
856 		vector = (rm_platter_pa >> MMU_PAGESHIFT) &
857 		    (APIC_VECTOR_MASK | APIC_IPL_MASK);
858 
859 		/* to offset the INIT IPI queue up in the buffer */
860 		apic_reg_ops->apic_write_int_cmd(cpu_id, vector | AV_STARTUP);
861 
862 		drv_usecwait(200);		/* 20 micro sec */
863 
864 		apic_reg_ops->apic_write_int_cmd(cpu_id, vector | AV_STARTUP);
865 
866 		drv_usecwait(200);		/* 20 micro sec */
867 	}
868 	intr_restore(iflag);
869 	return (0);
870 }
871 
872 
873 #ifdef	DEBUG
874 int	apic_break_on_cpu = 9;
875 int	apic_stretch_interrupts = 0;
876 int	apic_stretch_ISR = 1 << 3;	/* IPL of 3 matches nothing now */
877 
878 void
879 apic_break()
880 {
881 }
882 #endif /* DEBUG */
883 
884 /*
885  * platform_intr_enter
886  *
887  *	Called at the beginning of the interrupt service routine to
888  *	mask all level equal to and below the interrupt priority
889  *	of the interrupting vector.  An EOI should be given to
890  *	the interrupt controller to enable other HW interrupts.
891  *
892  *	Return -1 for spurious interrupts
893  *
894  */
895 /*ARGSUSED*/
896 static int
897 apic_intr_enter(int ipl, int *vectorp)
898 {
899 	uchar_t vector;
900 	int nipl;
901 	int irq;
902 	ulong_t iflag;
903 	apic_cpus_info_t *cpu_infop;
904 
905 	/*
906 	 * The real vector delivered is (*vectorp + 0x20), but our caller
907 	 * subtracts 0x20 from the vector before passing it to us.
908 	 * (That's why APIC_BASE_VECT is 0x20.)
909 	 */
910 	vector = (uchar_t)*vectorp;
911 
912 	/* if interrupted by the clock, increment apic_nsec_since_boot */
913 	if (vector == apic_clkvect) {
914 		if (!apic_oneshot) {
915 			/* NOTE: this is not MT aware */
916 			apic_hrtime_stamp++;
917 			apic_nsec_since_boot += apic_nsec_per_intr;
918 			apic_hrtime_stamp++;
919 			last_count_read = apic_hertz_count;
920 			apic_redistribute_compute();
921 		}
922 
923 		/* We will avoid all the book keeping overhead for clock */
924 		nipl = apic_ipls[vector];
925 
926 		*vectorp = apic_vector_to_irq[vector + APIC_BASE_VECT];
927 		if (apic_mode == LOCAL_APIC) {
928 #if defined(__amd64)
929 			setcr8((ulong_t)(apic_ipltopri[nipl] >>
930 			    APIC_IPL_SHIFT));
931 #else
932 			LOCAL_APIC_WRITE_REG(APIC_TASK_REG,
933 			    (uint32_t)apic_ipltopri[nipl]);
934 #endif
935 			LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0);
936 		} else {
937 			X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[nipl]);
938 			X2APIC_WRITE(APIC_EOI_REG, 0);
939 		}
940 
941 		return (nipl);
942 	}
943 
944 	cpu_infop = &apic_cpus[psm_get_cpu_id()];
945 
946 	if (vector == (APIC_SPUR_INTR - APIC_BASE_VECT)) {
947 		cpu_infop->aci_spur_cnt++;
948 		return (APIC_INT_SPURIOUS);
949 	}
950 
951 	/* Check if the vector we got is really what we need */
952 	if (apic_revector_pending) {
953 		/*
954 		 * Disable interrupts for the duration of
955 		 * the vector translation to prevent a self-race for
956 		 * the apic_revector_lock.  This cannot be done
957 		 * in apic_xlate_vector because it is recursive and
958 		 * we want the vector translation to be atomic with
959 		 * respect to other (higher-priority) interrupts.
960 		 */
961 		iflag = intr_clear();
962 		vector = apic_xlate_vector(vector + APIC_BASE_VECT) -
963 		    APIC_BASE_VECT;
964 		intr_restore(iflag);
965 	}
966 
967 	nipl = apic_ipls[vector];
968 	*vectorp = irq = apic_vector_to_irq[vector + APIC_BASE_VECT];
969 
970 	if (apic_mode == LOCAL_APIC) {
971 #if defined(__amd64)
972 		setcr8((ulong_t)(apic_ipltopri[nipl] >> APIC_IPL_SHIFT));
973 #else
974 		LOCAL_APIC_WRITE_REG(APIC_TASK_REG,
975 		    (uint32_t)apic_ipltopri[nipl]);
976 #endif
977 	} else {
978 		X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[nipl]);
979 	}
980 
981 	cpu_infop->aci_current[nipl] = (uchar_t)irq;
982 	cpu_infop->aci_curipl = (uchar_t)nipl;
983 	cpu_infop->aci_ISR_in_progress |= 1 << nipl;
984 
985 	/*
986 	 * apic_level_intr could have been assimilated into the irq struct.
987 	 * but, having it as a character array is more efficient in terms of
988 	 * cache usage. So, we leave it as is.
989 	 */
990 	if (!apic_level_intr[irq]) {
991 		if (apic_mode == LOCAL_APIC)
992 			LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0);
993 		else
994 			X2APIC_WRITE(APIC_EOI_REG, 0);
995 	}
996 
997 #ifdef	DEBUG
998 	APIC_DEBUG_BUF_PUT(vector);
999 	APIC_DEBUG_BUF_PUT(irq);
1000 	APIC_DEBUG_BUF_PUT(nipl);
1001 	APIC_DEBUG_BUF_PUT(psm_get_cpu_id());
1002 	if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl)))
1003 		drv_usecwait(apic_stretch_interrupts);
1004 
1005 	if (apic_break_on_cpu == psm_get_cpu_id())
1006 		apic_break();
1007 #endif /* DEBUG */
1008 	return (nipl);
1009 }
1010 
1011 /*
1012  * This macro is a common code used by MMIO local apic and X2APIC
1013  * local apic.
1014  */
1015 #define	APIC_INTR_EXIT() \
1016 { \
1017 	cpu_infop = &apic_cpus[psm_get_cpu_id()]; \
1018 	if (apic_level_intr[irq]) \
1019 		apic_reg_ops->apic_send_eoi(irq); \
1020 	cpu_infop->aci_curipl = (uchar_t)prev_ipl; \
1021 	/* ISR above current pri could not be in progress */ \
1022 	cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1; \
1023 }
1024 
1025 /*
1026  * Any changes made to this function must also change X2APIC
1027  * version of intr_exit.
1028  */
1029 void
1030 apic_intr_exit(int prev_ipl, int irq)
1031 {
1032 	apic_cpus_info_t *cpu_infop;
1033 
1034 #if defined(__amd64)
1035 	setcr8((ulong_t)apic_cr8pri[prev_ipl]);
1036 #else
1037 	apicadr[APIC_TASK_REG] = apic_ipltopri[prev_ipl];
1038 #endif
1039 
1040 	APIC_INTR_EXIT();
1041 }
1042 
1043 /*
1044  * Same as apic_intr_exit() except it uses MSR rather than MMIO
1045  * to access local apic registers.
1046  */
1047 void
1048 x2apic_intr_exit(int prev_ipl, int irq)
1049 {
1050 	apic_cpus_info_t *cpu_infop;
1051 
1052 	X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[prev_ipl]);
1053 	APIC_INTR_EXIT();
1054 }
1055 
1056 intr_exit_fn_t
1057 psm_intr_exit_fn(void)
1058 {
1059 	if (apic_mode == LOCAL_X2APIC)
1060 		return (x2apic_intr_exit);
1061 
1062 	return (apic_intr_exit);
1063 }
1064 
1065 /*
1066  * Mask all interrupts below or equal to the given IPL.
1067  * Any changes made to this function must also change X2APIC
1068  * version of setspl.
1069  */
1070 static void
1071 apic_setspl(int ipl)
1072 {
1073 #if defined(__amd64)
1074 	setcr8((ulong_t)apic_cr8pri[ipl]);
1075 #else
1076 	apicadr[APIC_TASK_REG] = apic_ipltopri[ipl];
1077 #endif
1078 
1079 	/* interrupts at ipl above this cannot be in progress */
1080 	apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1;
1081 	/*
1082 	 * this is a patch fix for the ALR QSMP P5 machine, so that interrupts
1083 	 * have enough time to come in before the priority is raised again
1084 	 * during the idle() loop.
1085 	 */
1086 	if (apic_setspl_delay)
1087 		(void) apic_reg_ops->apic_get_pri();
1088 }
1089 
1090 /*
1091  * X2APIC version of setspl.
1092  * Mask all interrupts below or equal to the given IPL
1093  */
1094 static void
1095 x2apic_setspl(int ipl)
1096 {
1097 	X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[ipl]);
1098 
1099 	/* interrupts at ipl above this cannot be in progress */
1100 	apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1;
1101 }
1102 
1103 /*
1104  * generates an interprocessor interrupt to another CPU. Any changes made to
1105  * this routine must be accompanied by similar changes to
1106  * apic_common_send_ipi().
1107  */
1108 static void
1109 apic_send_ipi(int cpun, int ipl)
1110 {
1111 	int vector;
1112 	ulong_t flag;
1113 
1114 	vector = apic_resv_vector[ipl];
1115 
1116 	ASSERT((vector >= APIC_BASE_VECT) && (vector <= APIC_SPUR_INTR));
1117 
1118 	flag = intr_clear();
1119 
1120 	APIC_AV_PENDING_SET();
1121 
1122 	apic_reg_ops->apic_write_int_cmd(apic_cpus[cpun].aci_local_id,
1123 	    vector);
1124 
1125 	intr_restore(flag);
1126 }
1127 
1128 
1129 /*ARGSUSED*/
1130 static void
1131 apic_set_idlecpu(processorid_t cpun)
1132 {
1133 }
1134 
1135 /*ARGSUSED*/
1136 static void
1137 apic_unset_idlecpu(processorid_t cpun)
1138 {
1139 }
1140 
1141 
1142 void
1143 apic_ret()
1144 {
1145 }
1146 
1147 /*
1148  * If apic_coarse_time == 1, then apic_gettime() is used instead of
1149  * apic_gethrtime().  This is used for performance instead of accuracy.
1150  */
1151 
1152 static hrtime_t
1153 apic_gettime()
1154 {
1155 	int old_hrtime_stamp;
1156 	hrtime_t temp;
1157 
1158 	/*
1159 	 * In one-shot mode, we do not keep time, so if anyone
1160 	 * calls psm_gettime() directly, we vector over to
1161 	 * gethrtime().
1162 	 * one-shot mode MUST NOT be enabled if this psm is the source of
1163 	 * hrtime.
1164 	 */
1165 
1166 	if (apic_oneshot)
1167 		return (gethrtime());
1168 
1169 
1170 gettime_again:
1171 	while ((old_hrtime_stamp = apic_hrtime_stamp) & 1)
1172 		apic_ret();
1173 
1174 	temp = apic_nsec_since_boot;
1175 
1176 	if (apic_hrtime_stamp != old_hrtime_stamp) {	/* got an interrupt */
1177 		goto gettime_again;
1178 	}
1179 	return (temp);
1180 }
1181 
1182 /*
1183  * Here we return the number of nanoseconds since booting.  Note every
1184  * clock interrupt increments apic_nsec_since_boot by the appropriate
1185  * amount.
1186  */
1187 static hrtime_t
1188 apic_gethrtime()
1189 {
1190 	int curr_timeval, countval, elapsed_ticks;
1191 	int old_hrtime_stamp, status;
1192 	hrtime_t temp;
1193 	uint32_t cpun;
1194 	ulong_t oflags;
1195 
1196 	/*
1197 	 * In one-shot mode, we do not keep time, so if anyone
1198 	 * calls psm_gethrtime() directly, we vector over to
1199 	 * gethrtime().
1200 	 * one-shot mode MUST NOT be enabled if this psm is the source of
1201 	 * hrtime.
1202 	 */
1203 
1204 	if (apic_oneshot)
1205 		return (gethrtime());
1206 
1207 	oflags = intr_clear();	/* prevent migration */
1208 
1209 	cpun = apic_reg_ops->apic_read(APIC_LID_REG);
1210 	if (apic_mode == LOCAL_APIC)
1211 		cpun >>= APIC_ID_BIT_OFFSET;
1212 
1213 	lock_set(&apic_gethrtime_lock);
1214 
1215 gethrtime_again:
1216 	while ((old_hrtime_stamp = apic_hrtime_stamp) & 1)
1217 		apic_ret();
1218 
1219 	/*
1220 	 * Check to see which CPU we are on.  Note the time is kept on
1221 	 * the local APIC of CPU 0.  If on CPU 0, simply read the current
1222 	 * counter.  If on another CPU, issue a remote read command to CPU 0.
1223 	 */
1224 	if (cpun == apic_cpus[0].aci_local_id) {
1225 		countval = apic_reg_ops->apic_read(APIC_CURR_COUNT);
1226 	} else {
1227 #ifdef	DEBUG
1228 		APIC_AV_PENDING_SET();
1229 #else
1230 		if (apic_mode == LOCAL_APIC)
1231 			APIC_AV_PENDING_SET();
1232 #endif /* DEBUG */
1233 
1234 		apic_reg_ops->apic_write_int_cmd(
1235 		    apic_cpus[0].aci_local_id, APIC_CURR_ADD | AV_REMOTE);
1236 
1237 		while ((status = apic_reg_ops->apic_read(APIC_INT_CMD1))
1238 		    & AV_READ_PENDING) {
1239 			apic_ret();
1240 		}
1241 
1242 		if (status & AV_REMOTE_STATUS)	/* 1 = valid */
1243 			countval = apic_reg_ops->apic_read(APIC_REMOTE_READ);
1244 		else {	/* 0 = invalid */
1245 			apic_remote_hrterr++;
1246 			/*
1247 			 * return last hrtime right now, will need more
1248 			 * testing if change to retry
1249 			 */
1250 			temp = apic_last_hrtime;
1251 
1252 			lock_clear(&apic_gethrtime_lock);
1253 
1254 			intr_restore(oflags);
1255 
1256 			return (temp);
1257 		}
1258 	}
1259 	if (countval > last_count_read)
1260 		countval = 0;
1261 	else
1262 		last_count_read = countval;
1263 
1264 	elapsed_ticks = apic_hertz_count - countval;
1265 
1266 	curr_timeval = APIC_TICKS_TO_NSECS(elapsed_ticks);
1267 	temp = apic_nsec_since_boot + curr_timeval;
1268 
1269 	if (apic_hrtime_stamp != old_hrtime_stamp) {	/* got an interrupt */
1270 		/* we might have clobbered last_count_read. Restore it */
1271 		last_count_read = apic_hertz_count;
1272 		goto gethrtime_again;
1273 	}
1274 
1275 	if (temp < apic_last_hrtime) {
1276 		/* return last hrtime if error occurs */
1277 		apic_hrtime_error++;
1278 		temp = apic_last_hrtime;
1279 	}
1280 	else
1281 		apic_last_hrtime = temp;
1282 
1283 	lock_clear(&apic_gethrtime_lock);
1284 	intr_restore(oflags);
1285 
1286 	return (temp);
1287 }
1288 
1289 /* apic NMI handler */
1290 /*ARGSUSED*/
1291 static void
1292 apic_nmi_intr(caddr_t arg, struct regs *rp)
1293 {
1294 	if (apic_shutdown_processors) {
1295 		apic_disable_local_apic();
1296 		return;
1297 	}
1298 
1299 	apic_error |= APIC_ERR_NMI;
1300 
1301 	if (!lock_try(&apic_nmi_lock))
1302 		return;
1303 	apic_num_nmis++;
1304 
1305 	if (apic_kmdb_on_nmi && psm_debugger()) {
1306 		debug_enter("NMI received: entering kmdb\n");
1307 	} else if (apic_panic_on_nmi) {
1308 		/* Keep panic from entering kmdb. */
1309 		nopanicdebug = 1;
1310 		panic("NMI received\n");
1311 	} else {
1312 		/*
1313 		 * prom_printf is the best shot we have of something which is
1314 		 * problem free from high level/NMI type of interrupts
1315 		 */
1316 		prom_printf("NMI received\n");
1317 	}
1318 
1319 	lock_clear(&apic_nmi_lock);
1320 }
1321 
1322 /*ARGSUSED*/
1323 static int
1324 apic_addspl(int irqno, int ipl, int min_ipl, int max_ipl)
1325 {
1326 	return (apic_addspl_common(irqno, ipl, min_ipl, max_ipl));
1327 }
1328 
1329 static int
1330 apic_delspl(int irqno, int ipl, int min_ipl, int max_ipl)
1331 {
1332 	return (apic_delspl_common(irqno, ipl, min_ipl,  max_ipl));
1333 }
1334 
1335 static int
1336 apic_post_cpu_start()
1337 {
1338 	int cpun;
1339 	static int cpus_started = 1;
1340 	struct psm_ops *pops = &apic_ops;
1341 
1342 	/* We know this CPU + BSP  started successfully. */
1343 	cpus_started++;
1344 
1345 	/*
1346 	 * On BSP we would have enabled X2APIC, if supported by processor,
1347 	 * in acpi_probe(), but on AP we do it here.
1348 	 *
1349 	 * We enable X2APIC mode only if BSP is running in X2APIC & the
1350 	 * local APIC mode of the current CPU is MMIO (xAPIC).
1351 	 */
1352 	if (apic_mode == LOCAL_X2APIC && apic_detect_x2apic() &&
1353 	    apic_local_mode() == LOCAL_APIC) {
1354 		apic_enable_x2apic();
1355 	}
1356 
1357 	/*
1358 	 * We change psm_send_ipi and send_dirintf only if Solaris
1359 	 * is booted in kmdb & the current CPU is the last CPU being
1360 	 * brought up. We don't need to do anything if Solaris is running
1361 	 * in MMIO mode (xAPIC).
1362 	 */
1363 	if ((boothowto & RB_DEBUG) &&
1364 	    (cpus_started == boot_ncpus || cpus_started == apic_nproc) &&
1365 	    apic_mode == LOCAL_X2APIC) {
1366 		/*
1367 		 * We no longer need help from apic_common_send_ipi()
1368 		 * since we will not start any more CPUs.
1369 		 *
1370 		 * We will need to revisit this if we start supporting
1371 		 * hot-plugging of CPUs.
1372 		 */
1373 		pops->psm_send_ipi = x2apic_send_ipi;
1374 		send_dirintf = pops->psm_send_ipi;
1375 	}
1376 
1377 	splx(ipltospl(LOCK_LEVEL));
1378 	apic_init_intr();
1379 
1380 	/*
1381 	 * since some systems don't enable the internal cache on the non-boot
1382 	 * cpus, so we have to enable them here
1383 	 */
1384 	setcr0(getcr0() & ~(CR0_CD | CR0_NW));
1385 
1386 #ifdef	DEBUG
1387 	APIC_AV_PENDING_SET();
1388 #else
1389 	if (apic_mode == LOCAL_APIC)
1390 		APIC_AV_PENDING_SET();
1391 #endif	/* DEBUG */
1392 
1393 	/*
1394 	 * We may be booting, or resuming from suspend; aci_status will
1395 	 * be APIC_CPU_INTR_ENABLE if coming from suspend, so we add the
1396 	 * APIC_CPU_ONLINE flag here rather than setting aci_status completely.
1397 	 */
1398 	cpun = psm_get_cpu_id();
1399 	apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE;
1400 
1401 	apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init);
1402 	return (PSM_SUCCESS);
1403 }
1404 
1405 processorid_t
1406 apic_get_next_processorid(processorid_t cpu_id)
1407 {
1408 
1409 	int i;
1410 
1411 	if (cpu_id == -1)
1412 		return ((processorid_t)0);
1413 
1414 	for (i = cpu_id + 1; i < NCPU; i++) {
1415 		if (CPU_IN_SET(apic_cpumask, i))
1416 			return (i);
1417 	}
1418 
1419 	return ((processorid_t)-1);
1420 }
1421 
1422 
1423 /*
1424  * type == -1 indicates it is an internal request. Do not change
1425  * resv_vector for these requests
1426  */
1427 static int
1428 apic_get_ipivect(int ipl, int type)
1429 {
1430 	uchar_t vector;
1431 	int irq;
1432 
1433 	if (irq = apic_allocate_irq(APIC_VECTOR(ipl))) {
1434 		if (vector = apic_allocate_vector(ipl, irq, 1)) {
1435 			apic_irq_table[irq]->airq_mps_intr_index =
1436 			    RESERVE_INDEX;
1437 			apic_irq_table[irq]->airq_vector = vector;
1438 			if (type != -1) {
1439 				apic_resv_vector[ipl] = vector;
1440 			}
1441 			return (irq);
1442 		}
1443 	}
1444 	apic_error |= APIC_ERR_GET_IPIVECT_FAIL;
1445 	return (-1);	/* shouldn't happen */
1446 }
1447 
1448 static int
1449 apic_getclkirq(int ipl)
1450 {
1451 	int	irq;
1452 
1453 	if ((irq = apic_get_ipivect(ipl, -1)) == -1)
1454 		return (-1);
1455 	/*
1456 	 * Note the vector in apic_clkvect for per clock handling.
1457 	 */
1458 	apic_clkvect = apic_irq_table[irq]->airq_vector - APIC_BASE_VECT;
1459 	APIC_VERBOSE_IOAPIC((CE_NOTE, "get_clkirq: vector = %x\n",
1460 	    apic_clkvect));
1461 	return (irq);
1462 }
1463 
1464 
1465 /*
1466  * Return the number of APIC clock ticks elapsed for 8245 to decrement
1467  * (APIC_TIME_COUNT + pit_ticks_adj) ticks.
1468  */
1469 static uint_t
1470 apic_calibrate(volatile uint32_t *addr, uint16_t *pit_ticks_adj)
1471 {
1472 	uint8_t		pit_tick_lo;
1473 	uint16_t	pit_tick, target_pit_tick;
1474 	uint32_t	start_apic_tick, end_apic_tick;
1475 	ulong_t		iflag;
1476 	uint32_t	reg;
1477 
1478 	reg = addr + APIC_CURR_COUNT - apicadr;
1479 
1480 	iflag = intr_clear();
1481 
1482 	do {
1483 		pit_tick_lo = inb(PITCTR0_PORT);
1484 		pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo;
1485 	} while (pit_tick < APIC_TIME_MIN ||
1486 	    pit_tick_lo <= APIC_LB_MIN || pit_tick_lo >= APIC_LB_MAX);
1487 
1488 	/*
1489 	 * Wait for the 8254 to decrement by 5 ticks to ensure
1490 	 * we didn't start in the middle of a tick.
1491 	 * Compare with 0x10 for the wrap around case.
1492 	 */
1493 	target_pit_tick = pit_tick - 5;
1494 	do {
1495 		pit_tick_lo = inb(PITCTR0_PORT);
1496 		pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo;
1497 	} while (pit_tick > target_pit_tick || pit_tick_lo < 0x10);
1498 
1499 	start_apic_tick = apic_reg_ops->apic_read(reg);
1500 
1501 	/*
1502 	 * Wait for the 8254 to decrement by
1503 	 * (APIC_TIME_COUNT + pit_ticks_adj) ticks
1504 	 */
1505 	target_pit_tick = pit_tick - APIC_TIME_COUNT;
1506 	do {
1507 		pit_tick_lo = inb(PITCTR0_PORT);
1508 		pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo;
1509 	} while (pit_tick > target_pit_tick || pit_tick_lo < 0x10);
1510 
1511 	end_apic_tick = apic_reg_ops->apic_read(reg);
1512 
1513 	*pit_ticks_adj = target_pit_tick - pit_tick;
1514 
1515 	intr_restore(iflag);
1516 
1517 	return (start_apic_tick - end_apic_tick);
1518 }
1519 
1520 /*
1521  * Initialise the APIC timer on the local APIC of CPU 0 to the desired
1522  * frequency.  Note at this stage in the boot sequence, the boot processor
1523  * is the only active processor.
1524  * hertz value of 0 indicates a one-shot mode request.  In this case
1525  * the function returns the resolution (in nanoseconds) for the hardware
1526  * timer interrupt.  If one-shot mode capability is not available,
1527  * the return value will be 0. apic_enable_oneshot is a global switch
1528  * for disabling the functionality.
1529  * A non-zero positive value for hertz indicates a periodic mode request.
1530  * In this case the hardware will be programmed to generate clock interrupts
1531  * at hertz frequency and returns the resolution of interrupts in
1532  * nanosecond.
1533  */
1534 
1535 static int
1536 apic_clkinit(int hertz)
1537 {
1538 	uint_t		apic_ticks = 0;
1539 	uint_t		pit_ticks;
1540 	int		ret;
1541 	uint16_t	pit_ticks_adj;
1542 	static int	firsttime = 1;
1543 
1544 	if (firsttime) {
1545 		/* first time calibrate on CPU0 only */
1546 
1547 		apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init);
1548 		apic_reg_ops->apic_write(APIC_INIT_COUNT, APIC_MAXVAL);
1549 		apic_ticks = apic_calibrate(apicadr, &pit_ticks_adj);
1550 
1551 		/* total number of PIT ticks corresponding to apic_ticks */
1552 		pit_ticks = APIC_TIME_COUNT + pit_ticks_adj;
1553 
1554 		/*
1555 		 * Determine the number of nanoseconds per APIC clock tick
1556 		 * and then determine how many APIC ticks to interrupt at the
1557 		 * desired frequency
1558 		 * apic_ticks / (pitticks / PIT_HZ) = apic_ticks_per_s
1559 		 * (apic_ticks * PIT_HZ) / pitticks = apic_ticks_per_s
1560 		 * apic_ticks_per_ns = (apic_ticks * PIT_HZ) / (pitticks * 10^9)
1561 		 * pic_ticks_per_SFns =
1562 		 *   (SF * apic_ticks * PIT_HZ) / (pitticks * 10^9)
1563 		 */
1564 		apic_ticks_per_SFnsecs =
1565 		    ((SF * apic_ticks * PIT_HZ) /
1566 		    ((uint64_t)pit_ticks * NANOSEC));
1567 
1568 		/* the interval timer initial count is 32 bit max */
1569 		apic_nsec_max = APIC_TICKS_TO_NSECS(APIC_MAXVAL);
1570 		firsttime = 0;
1571 	}
1572 
1573 	if (hertz != 0) {
1574 		/* periodic */
1575 		apic_nsec_per_intr = NANOSEC / hertz;
1576 		apic_hertz_count = APIC_NSECS_TO_TICKS(apic_nsec_per_intr);
1577 	}
1578 
1579 	apic_int_busy_mark = (apic_int_busy_mark *
1580 	    apic_sample_factor_redistribution) / 100;
1581 	apic_int_free_mark = (apic_int_free_mark *
1582 	    apic_sample_factor_redistribution) / 100;
1583 	apic_diff_for_redistribution = (apic_diff_for_redistribution *
1584 	    apic_sample_factor_redistribution) / 100;
1585 
1586 	if (hertz == 0) {
1587 		/* requested one_shot */
1588 		if (!tsc_gethrtime_enable || !apic_oneshot_enable)
1589 			return (0);
1590 		apic_oneshot = 1;
1591 		ret = (int)APIC_TICKS_TO_NSECS(1);
1592 	} else {
1593 		/* program the local APIC to interrupt at the given frequency */
1594 		apic_reg_ops->apic_write(APIC_INIT_COUNT, apic_hertz_count);
1595 		apic_reg_ops->apic_write(APIC_LOCAL_TIMER,
1596 		    (apic_clkvect + APIC_BASE_VECT) | AV_TIME);
1597 		apic_oneshot = 0;
1598 		ret = NANOSEC / hertz;
1599 	}
1600 
1601 	return (ret);
1602 
1603 }
1604 
1605 /*
1606  * apic_preshutdown:
1607  * Called early in shutdown whilst we can still access filesystems to do
1608  * things like loading modules which will be required to complete shutdown
1609  * after filesystems are all unmounted.
1610  */
1611 static void
1612 apic_preshutdown(int cmd, int fcn)
1613 {
1614 	APIC_VERBOSE_POWEROFF(("apic_preshutdown(%d,%d); m=%d a=%d\n",
1615 	    cmd, fcn, apic_poweroff_method, apic_enable_acpi));
1616 
1617 	if ((cmd != A_SHUTDOWN) || (fcn != AD_POWEROFF)) {
1618 		return;
1619 	}
1620 }
1621 
1622 static void
1623 apic_shutdown(int cmd, int fcn)
1624 {
1625 	int restarts, attempts;
1626 	int i;
1627 	uchar_t	byte;
1628 	ulong_t iflag;
1629 
1630 	/* Send NMI to all CPUs except self to do per processor shutdown */
1631 	iflag = intr_clear();
1632 #ifdef	DEBUG
1633 	APIC_AV_PENDING_SET();
1634 #else
1635 	if (apic_mode == LOCAL_APIC)
1636 		APIC_AV_PENDING_SET();
1637 #endif /* DEBUG */
1638 	apic_shutdown_processors = 1;
1639 	apic_reg_ops->apic_write(APIC_INT_CMD1,
1640 	    AV_NMI | AV_LEVEL | AV_SH_ALL_EXCSELF);
1641 
1642 	/* restore cmos shutdown byte before reboot */
1643 	if (apic_cmos_ssb_set) {
1644 		outb(CMOS_ADDR, SSB);
1645 		outb(CMOS_DATA, 0);
1646 	}
1647 
1648 	ioapic_disable_redirection();
1649 
1650 	/*	disable apic mode if imcr present	*/
1651 	if (apic_imcrp) {
1652 		outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT);
1653 		outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_PIC);
1654 	}
1655 
1656 	apic_disable_local_apic();
1657 
1658 	intr_restore(iflag);
1659 
1660 	/* remainder of function is for shutdown cases only */
1661 	if (cmd != A_SHUTDOWN)
1662 		return;
1663 
1664 	/*
1665 	 * Switch system back into Legacy-Mode if using ACPI and
1666 	 * not powering-off.  Some BIOSes need to remain in ACPI-mode
1667 	 * for power-off to succeed (Dell Dimension 4600)
1668 	 * Do not disable ACPI while doing fastreboot
1669 	 */
1670 	if (apic_enable_acpi && fcn != AD_POWEROFF && fcn != AD_FASTREBOOT)
1671 		(void) AcpiDisable();
1672 
1673 	if (fcn == AD_FASTREBOOT) {
1674 		apicadr[APIC_INT_CMD1] = AV_ASSERT | AV_RESET |
1675 		    AV_SH_ALL_EXCSELF;
1676 	}
1677 
1678 	/* remainder of function is for shutdown+poweroff case only */
1679 	if (fcn != AD_POWEROFF)
1680 		return;
1681 
1682 	switch (apic_poweroff_method) {
1683 		case APIC_POWEROFF_VIA_RTC:
1684 
1685 			/* select the extended NVRAM bank in the RTC */
1686 			outb(CMOS_ADDR, RTC_REGA);
1687 			byte = inb(CMOS_DATA);
1688 			outb(CMOS_DATA, (byte | EXT_BANK));
1689 
1690 			outb(CMOS_ADDR, PFR_REG);
1691 
1692 			/* for Predator must toggle the PAB bit */
1693 			byte = inb(CMOS_DATA);
1694 
1695 			/*
1696 			 * clear power active bar, wakeup alarm and
1697 			 * kickstart
1698 			 */
1699 			byte &= ~(PAB_CBIT | WF_FLAG | KS_FLAG);
1700 			outb(CMOS_DATA, byte);
1701 
1702 			/* delay before next write */
1703 			drv_usecwait(1000);
1704 
1705 			/* for S40 the following would suffice */
1706 			byte = inb(CMOS_DATA);
1707 
1708 			/* power active bar control bit */
1709 			byte |= PAB_CBIT;
1710 			outb(CMOS_DATA, byte);
1711 
1712 			break;
1713 
1714 		case APIC_POWEROFF_VIA_ASPEN_BMC:
1715 			restarts = 0;
1716 restart_aspen_bmc:
1717 			if (++restarts == 3)
1718 				break;
1719 			attempts = 0;
1720 			do {
1721 				byte = inb(MISMIC_FLAG_REGISTER);
1722 				byte &= MISMIC_BUSY_MASK;
1723 				if (byte != 0) {
1724 					drv_usecwait(1000);
1725 					if (attempts >= 3)
1726 						goto restart_aspen_bmc;
1727 					++attempts;
1728 				}
1729 			} while (byte != 0);
1730 			outb(MISMIC_CNTL_REGISTER, CC_SMS_GET_STATUS);
1731 			byte = inb(MISMIC_FLAG_REGISTER);
1732 			byte |= 0x1;
1733 			outb(MISMIC_FLAG_REGISTER, byte);
1734 			i = 0;
1735 			for (; i < (sizeof (aspen_bmc)/sizeof (aspen_bmc[0]));
1736 			    i++) {
1737 				attempts = 0;
1738 				do {
1739 					byte = inb(MISMIC_FLAG_REGISTER);
1740 					byte &= MISMIC_BUSY_MASK;
1741 					if (byte != 0) {
1742 						drv_usecwait(1000);
1743 						if (attempts >= 3)
1744 							goto restart_aspen_bmc;
1745 						++attempts;
1746 					}
1747 				} while (byte != 0);
1748 				outb(MISMIC_CNTL_REGISTER, aspen_bmc[i].cntl);
1749 				outb(MISMIC_DATA_REGISTER, aspen_bmc[i].data);
1750 				byte = inb(MISMIC_FLAG_REGISTER);
1751 				byte |= 0x1;
1752 				outb(MISMIC_FLAG_REGISTER, byte);
1753 			}
1754 			break;
1755 
1756 		case APIC_POWEROFF_VIA_SITKA_BMC:
1757 			restarts = 0;
1758 restart_sitka_bmc:
1759 			if (++restarts == 3)
1760 				break;
1761 			attempts = 0;
1762 			do {
1763 				byte = inb(SMS_STATUS_REGISTER);
1764 				byte &= SMS_STATE_MASK;
1765 				if ((byte == SMS_READ_STATE) ||
1766 				    (byte == SMS_WRITE_STATE)) {
1767 					drv_usecwait(1000);
1768 					if (attempts >= 3)
1769 						goto restart_sitka_bmc;
1770 					++attempts;
1771 				}
1772 			} while ((byte == SMS_READ_STATE) ||
1773 			    (byte == SMS_WRITE_STATE));
1774 			outb(SMS_COMMAND_REGISTER, SMS_GET_STATUS);
1775 			i = 0;
1776 			for (; i < (sizeof (sitka_bmc)/sizeof (sitka_bmc[0]));
1777 			    i++) {
1778 				attempts = 0;
1779 				do {
1780 					byte = inb(SMS_STATUS_REGISTER);
1781 					byte &= SMS_IBF_MASK;
1782 					if (byte != 0) {
1783 						drv_usecwait(1000);
1784 						if (attempts >= 3)
1785 							goto restart_sitka_bmc;
1786 						++attempts;
1787 					}
1788 				} while (byte != 0);
1789 				outb(sitka_bmc[i].port, sitka_bmc[i].data);
1790 			}
1791 			break;
1792 
1793 		case APIC_POWEROFF_NONE:
1794 
1795 			/* If no APIC direct method, we will try using ACPI */
1796 			if (apic_enable_acpi) {
1797 				if (acpi_poweroff() == 1)
1798 					return;
1799 			} else
1800 				return;
1801 
1802 			break;
1803 	}
1804 	/*
1805 	 * Wait a limited time here for power to go off.
1806 	 * If the power does not go off, then there was a
1807 	 * problem and we should continue to the halt which
1808 	 * prints a message for the user to press a key to
1809 	 * reboot.
1810 	 */
1811 	drv_usecwait(7000000); /* wait seven seconds */
1812 
1813 }
1814 
1815 /*
1816  * Try and disable all interrupts. We just assign interrupts to other
1817  * processors based on policy. If any were bound by user request, we
1818  * let them continue and return failure. We do not bother to check
1819  * for cache affinity while rebinding.
1820  */
1821 
1822 static int
1823 apic_disable_intr(processorid_t cpun)
1824 {
1825 	int bind_cpu = 0, i, hardbound = 0;
1826 	apic_irq_t *irq_ptr;
1827 	ulong_t iflag;
1828 
1829 	iflag = intr_clear();
1830 	lock_set(&apic_ioapic_lock);
1831 
1832 	for (i = 0; i <= APIC_MAX_VECTOR; i++) {
1833 		if (apic_reprogram_info[i].done == B_FALSE) {
1834 			if (apic_reprogram_info[i].bindcpu == cpun) {
1835 				/*
1836 				 * CPU is busy -- it's the target of
1837 				 * a pending reprogramming attempt
1838 				 */
1839 				lock_clear(&apic_ioapic_lock);
1840 				intr_restore(iflag);
1841 				return (PSM_FAILURE);
1842 			}
1843 		}
1844 	}
1845 
1846 	apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE;
1847 
1848 	apic_cpus[cpun].aci_curipl = 0;
1849 
1850 	i = apic_min_device_irq;
1851 	for (; i <= apic_max_device_irq; i++) {
1852 		/*
1853 		 * If there are bound interrupts on this cpu, then
1854 		 * rebind them to other processors.
1855 		 */
1856 		if ((irq_ptr = apic_irq_table[i]) != NULL) {
1857 			ASSERT((irq_ptr->airq_temp_cpu == IRQ_UNBOUND) ||
1858 			    (irq_ptr->airq_temp_cpu == IRQ_UNINIT) ||
1859 			    ((irq_ptr->airq_temp_cpu & ~IRQ_USER_BOUND) <
1860 			    apic_nproc));
1861 
1862 			if (irq_ptr->airq_temp_cpu == (cpun | IRQ_USER_BOUND)) {
1863 				hardbound = 1;
1864 				continue;
1865 			}
1866 
1867 			if (irq_ptr->airq_temp_cpu == cpun) {
1868 				do {
1869 					bind_cpu = apic_next_bind_cpu++;
1870 					if (bind_cpu >= apic_nproc) {
1871 						apic_next_bind_cpu = 1;
1872 						bind_cpu = 0;
1873 
1874 					}
1875 				} while (apic_rebind_all(irq_ptr, bind_cpu));
1876 			}
1877 		}
1878 	}
1879 
1880 	lock_clear(&apic_ioapic_lock);
1881 	intr_restore(iflag);
1882 
1883 	if (hardbound) {
1884 		cmn_err(CE_WARN, "Could not disable interrupts on %d"
1885 		    "due to user bound interrupts", cpun);
1886 		return (PSM_FAILURE);
1887 	}
1888 	else
1889 		return (PSM_SUCCESS);
1890 }
1891 
1892 /*
1893  * Bind interrupts to the CPU's local APIC.
1894  * Interrupts should not be bound to a CPU's local APIC until the CPU
1895  * is ready to receive interrupts.
1896  */
1897 static void
1898 apic_enable_intr(processorid_t cpun)
1899 {
1900 	int	i;
1901 	apic_irq_t *irq_ptr;
1902 	ulong_t iflag;
1903 
1904 	iflag = intr_clear();
1905 	lock_set(&apic_ioapic_lock);
1906 
1907 	apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE;
1908 
1909 	i = apic_min_device_irq;
1910 	for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
1911 		if ((irq_ptr = apic_irq_table[i]) != NULL) {
1912 			if ((irq_ptr->airq_cpu & ~IRQ_USER_BOUND) == cpun) {
1913 				(void) apic_rebind_all(irq_ptr,
1914 				    irq_ptr->airq_cpu);
1915 			}
1916 		}
1917 	}
1918 
1919 	lock_clear(&apic_ioapic_lock);
1920 	intr_restore(iflag);
1921 }
1922 
1923 
1924 /*
1925  * This function will reprogram the timer.
1926  *
1927  * When in oneshot mode the argument is the absolute time in future to
1928  * generate the interrupt at.
1929  *
1930  * When in periodic mode, the argument is the interval at which the
1931  * interrupts should be generated. There is no need to support the periodic
1932  * mode timer change at this time.
1933  */
1934 static void
1935 apic_timer_reprogram(hrtime_t time)
1936 {
1937 	hrtime_t now;
1938 	uint_t ticks;
1939 	int64_t delta;
1940 
1941 	/*
1942 	 * We should be called from high PIL context (CBE_HIGH_PIL),
1943 	 * so kpreempt is disabled.
1944 	 */
1945 
1946 	if (!apic_oneshot) {
1947 		/* time is the interval for periodic mode */
1948 		ticks = APIC_NSECS_TO_TICKS(time);
1949 	} else {
1950 		/* one shot mode */
1951 
1952 		now = gethrtime();
1953 		delta = time - now;
1954 
1955 		if (delta <= 0) {
1956 			/*
1957 			 * requested to generate an interrupt in the past
1958 			 * generate an interrupt as soon as possible
1959 			 */
1960 			ticks = apic_min_timer_ticks;
1961 		} else if (delta > apic_nsec_max) {
1962 			/*
1963 			 * requested to generate an interrupt at a time
1964 			 * further than what we are capable of. Set to max
1965 			 * the hardware can handle
1966 			 */
1967 
1968 			ticks = APIC_MAXVAL;
1969 #ifdef DEBUG
1970 			cmn_err(CE_CONT, "apic_timer_reprogram, request at"
1971 			    "  %lld  too far in future, current time"
1972 			    "  %lld \n", time, now);
1973 #endif
1974 		} else
1975 			ticks = APIC_NSECS_TO_TICKS(delta);
1976 	}
1977 
1978 	if (ticks < apic_min_timer_ticks)
1979 		ticks = apic_min_timer_ticks;
1980 
1981 	apic_reg_ops->apic_write(APIC_INIT_COUNT, ticks);
1982 }
1983 
1984 /*
1985  * This function will enable timer interrupts.
1986  */
1987 static void
1988 apic_timer_enable(void)
1989 {
1990 	/*
1991 	 * We should be Called from high PIL context (CBE_HIGH_PIL),
1992 	 * so kpreempt is disabled.
1993 	 */
1994 
1995 	if (!apic_oneshot) {
1996 		apic_reg_ops->apic_write(APIC_LOCAL_TIMER,
1997 		    (apic_clkvect + APIC_BASE_VECT) | AV_TIME);
1998 	} else {
1999 		/* one shot */
2000 		apic_reg_ops->apic_write(APIC_LOCAL_TIMER,
2001 		    (apic_clkvect + APIC_BASE_VECT));
2002 	}
2003 }
2004 
2005 /*
2006  * This function will disable timer interrupts.
2007  */
2008 static void
2009 apic_timer_disable(void)
2010 {
2011 	/*
2012 	 * We should be Called from high PIL context (CBE_HIGH_PIL),
2013 	 * so kpreempt is disabled.
2014 	 */
2015 	apic_reg_ops->apic_write(APIC_LOCAL_TIMER,
2016 	    (apic_clkvect + APIC_BASE_VECT) | AV_MASK);
2017 }
2018 
2019 
2020 ddi_periodic_t apic_periodic_id;
2021 
2022 /*
2023  * If this module needs a periodic handler for the interrupt distribution, it
2024  * can be added here. The argument to the periodic handler is not currently
2025  * used, but is reserved for future.
2026  */
2027 static void
2028 apic_post_cyclic_setup(void *arg)
2029 {
2030 _NOTE(ARGUNUSED(arg))
2031 	/* cpu_lock is held */
2032 	/* set up a periodic handler for intr redistribution */
2033 
2034 	/*
2035 	 * In peridoc mode intr redistribution processing is done in
2036 	 * apic_intr_enter during clk intr processing
2037 	 */
2038 	if (!apic_oneshot)
2039 		return;
2040 	/*
2041 	 * Register a periodical handler for the redistribution processing.
2042 	 * On X86, CY_LOW_LEVEL is mapped to the level 2 interrupt, so
2043 	 * DDI_IPL_2 should be passed to ddi_periodic_add() here.
2044 	 */
2045 	apic_periodic_id = ddi_periodic_add(
2046 	    (void (*)(void *))apic_redistribute_compute, NULL,
2047 	    apic_redistribute_sample_interval, DDI_IPL_2);
2048 }
2049 
2050 static void
2051 apic_redistribute_compute(void)
2052 {
2053 	int	i, j, max_busy;
2054 
2055 	if (apic_enable_dynamic_migration) {
2056 		if (++apic_nticks == apic_sample_factor_redistribution) {
2057 			/*
2058 			 * Time to call apic_intr_redistribute().
2059 			 * reset apic_nticks. This will cause max_busy
2060 			 * to be calculated below and if it is more than
2061 			 * apic_int_busy, we will do the whole thing
2062 			 */
2063 			apic_nticks = 0;
2064 		}
2065 		max_busy = 0;
2066 		for (i = 0; i < apic_nproc; i++) {
2067 
2068 			/*
2069 			 * Check if curipl is non zero & if ISR is in
2070 			 * progress
2071 			 */
2072 			if (((j = apic_cpus[i].aci_curipl) != 0) &&
2073 			    (apic_cpus[i].aci_ISR_in_progress & (1 << j))) {
2074 
2075 				int	irq;
2076 				apic_cpus[i].aci_busy++;
2077 				irq = apic_cpus[i].aci_current[j];
2078 				apic_irq_table[irq]->airq_busy++;
2079 			}
2080 
2081 			if (!apic_nticks &&
2082 			    (apic_cpus[i].aci_busy > max_busy))
2083 				max_busy = apic_cpus[i].aci_busy;
2084 		}
2085 		if (!apic_nticks) {
2086 			if (max_busy > apic_int_busy_mark) {
2087 			/*
2088 			 * We could make the following check be
2089 			 * skipped > 1 in which case, we get a
2090 			 * redistribution at half the busy mark (due to
2091 			 * double interval). Need to be able to collect
2092 			 * more empirical data to decide if that is a
2093 			 * good strategy. Punt for now.
2094 			 */
2095 				if (apic_skipped_redistribute) {
2096 					apic_cleanup_busy();
2097 					apic_skipped_redistribute = 0;
2098 				} else {
2099 					apic_intr_redistribute();
2100 				}
2101 			} else
2102 				apic_skipped_redistribute++;
2103 		}
2104 	}
2105 }
2106 
2107 
2108 /*
2109  * The following functions are in the platform specific file so that they
2110  * can be different functions depending on whether we are running on
2111  * bare metal or a hypervisor.
2112  */
2113 
2114 /*
2115  * map an apic for memory-mapped access
2116  */
2117 uint32_t *
2118 mapin_apic(uint32_t addr, size_t len, int flags)
2119 {
2120 	/*LINTED: pointer cast may result in improper alignment */
2121 	return ((uint32_t *)psm_map_phys(addr, len, flags));
2122 }
2123 
2124 uint32_t *
2125 mapin_ioapic(uint32_t addr, size_t len, int flags)
2126 {
2127 	return (mapin_apic(addr, len, flags));
2128 }
2129 
2130 /*
2131  * unmap an apic
2132  */
2133 void
2134 mapout_apic(caddr_t addr, size_t len)
2135 {
2136 	psm_unmap_phys(addr, len);
2137 }
2138 
2139 void
2140 mapout_ioapic(caddr_t addr, size_t len)
2141 {
2142 	mapout_apic(addr, len);
2143 }
2144 
2145 /*
2146  * Check to make sure there are enough irq slots
2147  */
2148 int
2149 apic_check_free_irqs(int count)
2150 {
2151 	int i, avail;
2152 
2153 	avail = 0;
2154 	for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) {
2155 		if ((apic_irq_table[i] == NULL) ||
2156 		    apic_irq_table[i]->airq_mps_intr_index == FREE_INDEX) {
2157 			if (++avail >= count)
2158 				return (PSM_SUCCESS);
2159 		}
2160 	}
2161 	return (PSM_FAILURE);
2162 }
2163 
2164 /*
2165  * This function allocates "count" MSI vector(s) for the given "dip/pri/type"
2166  */
2167 int
2168 apic_alloc_msi_vectors(dev_info_t *dip, int inum, int count, int pri,
2169     int behavior)
2170 {
2171 	int	rcount, i;
2172 	uchar_t	start, irqno;
2173 	uint32_t cpu;
2174 	major_t	major;
2175 	apic_irq_t	*irqptr;
2176 
2177 	DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: dip=0x%p "
2178 	    "inum=0x%x  pri=0x%x count=0x%x behavior=%d\n",
2179 	    (void *)dip, inum, pri, count, behavior));
2180 
2181 	if (count > 1) {
2182 		if (behavior == DDI_INTR_ALLOC_STRICT &&
2183 		    (apic_multi_msi_enable == 0 || count > apic_multi_msi_max))
2184 			return (0);
2185 
2186 		if (apic_multi_msi_enable == 0)
2187 			count = 1;
2188 		else if (count > apic_multi_msi_max)
2189 			count = apic_multi_msi_max;
2190 	}
2191 
2192 	if ((rcount = apic_navail_vector(dip, pri)) > count)
2193 		rcount = count;
2194 	else if (rcount == 0 || (rcount < count &&
2195 	    behavior == DDI_INTR_ALLOC_STRICT))
2196 		return (0);
2197 
2198 	/* if not ISP2, then round it down */
2199 	if (!ISP2(rcount))
2200 		rcount = 1 << (highbit(rcount) - 1);
2201 
2202 	mutex_enter(&airq_mutex);
2203 
2204 	for (start = 0; rcount > 0; rcount >>= 1) {
2205 		if ((start = apic_find_multi_vectors(pri, rcount)) != 0 ||
2206 		    behavior == DDI_INTR_ALLOC_STRICT)
2207 			break;
2208 	}
2209 
2210 	if (start == 0) {
2211 		/* no vector available */
2212 		mutex_exit(&airq_mutex);
2213 		return (0);
2214 	}
2215 
2216 	if (apic_check_free_irqs(rcount) == PSM_FAILURE) {
2217 		/* not enough free irq slots available */
2218 		mutex_exit(&airq_mutex);
2219 		return (0);
2220 	}
2221 
2222 	major = (dip != NULL) ? ddi_name_to_major(ddi_get_name(dip)) : 0;
2223 	for (i = 0; i < rcount; i++) {
2224 		if ((irqno = apic_allocate_irq(apic_first_avail_irq)) ==
2225 		    (uchar_t)-1) {
2226 			/*
2227 			 * shouldn't happen because of the
2228 			 * apic_check_free_irqs() check earlier
2229 			 */
2230 			mutex_exit(&airq_mutex);
2231 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: "
2232 			    "apic_allocate_irq failed\n"));
2233 			return (i);
2234 		}
2235 		apic_max_device_irq = max(irqno, apic_max_device_irq);
2236 		apic_min_device_irq = min(irqno, apic_min_device_irq);
2237 		irqptr = apic_irq_table[irqno];
2238 #ifdef	DEBUG
2239 		if (apic_vector_to_irq[start + i] != APIC_RESV_IRQ)
2240 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: "
2241 			    "apic_vector_to_irq is not APIC_RESV_IRQ\n"));
2242 #endif
2243 		apic_vector_to_irq[start + i] = (uchar_t)irqno;
2244 
2245 		irqptr->airq_vector = (uchar_t)(start + i);
2246 		irqptr->airq_ioapicindex = (uchar_t)inum;	/* start */
2247 		irqptr->airq_intin_no = (uchar_t)rcount;
2248 		irqptr->airq_ipl = pri;
2249 		irqptr->airq_vector = start + i;
2250 		irqptr->airq_origirq = (uchar_t)(inum + i);
2251 		irqptr->airq_share_id = 0;
2252 		irqptr->airq_mps_intr_index = MSI_INDEX;
2253 		irqptr->airq_dip = dip;
2254 		irqptr->airq_major = major;
2255 		if (i == 0) /* they all bound to the same cpu */
2256 			cpu = irqptr->airq_cpu = apic_bind_intr(dip, irqno,
2257 			    0xff, 0xff);
2258 		else
2259 			irqptr->airq_cpu = cpu;
2260 		DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: irq=0x%x "
2261 		    "dip=0x%p vector=0x%x origirq=0x%x pri=0x%x\n", irqno,
2262 		    (void *)irqptr->airq_dip, irqptr->airq_vector,
2263 		    irqptr->airq_origirq, pri));
2264 	}
2265 	mutex_exit(&airq_mutex);
2266 	return (rcount);
2267 }
2268 
2269 /*
2270  * This function allocates "count" MSI-X vector(s) for the given "dip/pri/type"
2271  */
2272 int
2273 apic_alloc_msix_vectors(dev_info_t *dip, int inum, int count, int pri,
2274     int behavior)
2275 {
2276 	int	rcount, i;
2277 	major_t	major;
2278 
2279 	if (count > 1) {
2280 		if (behavior == DDI_INTR_ALLOC_STRICT) {
2281 			if (count > apic_msix_max)
2282 				return (0);
2283 		} else if (count > apic_msix_max)
2284 			count = apic_msix_max;
2285 	}
2286 
2287 	mutex_enter(&airq_mutex);
2288 
2289 	if ((rcount = apic_navail_vector(dip, pri)) > count)
2290 		rcount = count;
2291 	else if (rcount == 0 || (rcount < count &&
2292 	    behavior == DDI_INTR_ALLOC_STRICT)) {
2293 		rcount = 0;
2294 		goto out;
2295 	}
2296 
2297 	if (apic_check_free_irqs(rcount) == PSM_FAILURE) {
2298 		/* not enough free irq slots available */
2299 		rcount = 0;
2300 		goto out;
2301 	}
2302 
2303 	major = (dip != NULL) ? ddi_name_to_major(ddi_get_name(dip)) : 0;
2304 	for (i = 0; i < rcount; i++) {
2305 		uchar_t	vector, irqno;
2306 		apic_irq_t	*irqptr;
2307 
2308 		if ((irqno = apic_allocate_irq(apic_first_avail_irq)) ==
2309 		    (uchar_t)-1) {
2310 			/*
2311 			 * shouldn't happen because of the
2312 			 * apic_check_free_irqs() check earlier
2313 			 */
2314 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: "
2315 			    "apic_allocate_irq failed\n"));
2316 			rcount = i;
2317 			goto out;
2318 		}
2319 		if ((vector = apic_allocate_vector(pri, irqno, 1)) == 0) {
2320 			/*
2321 			 * shouldn't happen because of the
2322 			 * apic_navail_vector() call earlier
2323 			 */
2324 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: "
2325 			    "apic_allocate_vector failed\n"));
2326 			rcount = i;
2327 			goto out;
2328 		}
2329 		apic_max_device_irq = max(irqno, apic_max_device_irq);
2330 		apic_min_device_irq = min(irqno, apic_min_device_irq);
2331 		irqptr = apic_irq_table[irqno];
2332 		irqptr->airq_vector = (uchar_t)vector;
2333 		irqptr->airq_ipl = pri;
2334 		irqptr->airq_origirq = (uchar_t)(inum + i);
2335 		irqptr->airq_share_id = 0;
2336 		irqptr->airq_mps_intr_index = MSIX_INDEX;
2337 		irqptr->airq_dip = dip;
2338 		irqptr->airq_major = major;
2339 		irqptr->airq_cpu = apic_bind_intr(dip, irqno, 0xff, 0xff);
2340 	}
2341 out:
2342 	mutex_exit(&airq_mutex);
2343 	return (rcount);
2344 }
2345 
2346 /*
2347  * Allocate a free vector for irq at ipl. Takes care of merging of multiple
2348  * IPLs into a single APIC level as well as stretching some IPLs onto multiple
2349  * levels. APIC_HI_PRI_VECTS interrupts are reserved for high priority
2350  * requests and allocated only when pri is set.
2351  */
2352 uchar_t
2353 apic_allocate_vector(int ipl, int irq, int pri)
2354 {
2355 	int	lowest, highest, i;
2356 
2357 	highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK;
2358 	lowest = apic_ipltopri[ipl - 1] + APIC_VECTOR_PER_IPL;
2359 
2360 	if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */
2361 		lowest -= APIC_VECTOR_PER_IPL;
2362 
2363 #ifdef	DEBUG
2364 	if (apic_restrict_vector)	/* for testing shared interrupt logic */
2365 		highest = lowest + apic_restrict_vector + APIC_HI_PRI_VECTS;
2366 #endif /* DEBUG */
2367 	if (pri == 0)
2368 		highest -= APIC_HI_PRI_VECTS;
2369 
2370 	for (i = lowest; i < highest; i++) {
2371 		if (APIC_CHECK_RESERVE_VECTORS(i))
2372 			continue;
2373 		if (apic_vector_to_irq[i] == APIC_RESV_IRQ) {
2374 			apic_vector_to_irq[i] = (uchar_t)irq;
2375 			return (i);
2376 		}
2377 	}
2378 
2379 	return (0);
2380 }
2381 
2382 /* Mark vector as not being used by any irq */
2383 void
2384 apic_free_vector(uchar_t vector)
2385 {
2386 	apic_vector_to_irq[vector] = APIC_RESV_IRQ;
2387 }
2388 
2389 uint32_t
2390 ioapic_read(int ioapic_ix, uint32_t reg)
2391 {
2392 	volatile uint32_t *ioapic;
2393 
2394 	ioapic = apicioadr[ioapic_ix];
2395 	ioapic[APIC_IO_REG] = reg;
2396 	return (ioapic[APIC_IO_DATA]);
2397 }
2398 
2399 void
2400 ioapic_write(int ioapic_ix, uint32_t reg, uint32_t value)
2401 {
2402 	volatile uint32_t *ioapic;
2403 
2404 	ioapic = apicioadr[ioapic_ix];
2405 	ioapic[APIC_IO_REG] = reg;
2406 	ioapic[APIC_IO_DATA] = value;
2407 }
2408 
2409 void
2410 ioapic_write_eoi(int ioapic_ix, uint32_t value)
2411 {
2412 	volatile uint32_t *ioapic;
2413 
2414 	ioapic = apicioadr[ioapic_ix];
2415 	ioapic[APIC_IO_EOI] = value;
2416 }
2417 
2418 static processorid_t
2419 apic_find_cpu(int flag)
2420 {
2421 	processorid_t acid = 0;
2422 	int i;
2423 
2424 	/* Find the first CPU with the passed-in flag set */
2425 	for (i = 0; i < apic_nproc; i++) {
2426 		if (apic_cpus[i].aci_status & flag) {
2427 			acid = i;
2428 			break;
2429 		}
2430 	}
2431 
2432 	ASSERT((apic_cpus[acid].aci_status & flag) != 0);
2433 	return (acid);
2434 }
2435 
2436 /*
2437  * Call rebind to do the actual programming.
2438  * Must be called with interrupts disabled and apic_ioapic_lock held
2439  * 'p' is polymorphic -- if this function is called to process a deferred
2440  * reprogramming, p is of type 'struct ioapic_reprogram_data *', from which
2441  * the irq pointer is retrieved.  If not doing deferred reprogramming,
2442  * p is of the type 'apic_irq_t *'.
2443  *
2444  * apic_ioapic_lock must be held across this call, as it protects apic_rebind
2445  * and it protects apic_find_cpu() from a race in which a CPU can be taken
2446  * offline after a cpu is selected, but before apic_rebind is called to
2447  * bind interrupts to it.
2448  */
2449 int
2450 apic_setup_io_intr(void *p, int irq, boolean_t deferred)
2451 {
2452 	apic_irq_t *irqptr;
2453 	struct ioapic_reprogram_data *drep = NULL;
2454 	int rv;
2455 
2456 	if (deferred) {
2457 		drep = (struct ioapic_reprogram_data *)p;
2458 		ASSERT(drep != NULL);
2459 		irqptr = drep->irqp;
2460 	} else
2461 		irqptr = (apic_irq_t *)p;
2462 
2463 	ASSERT(irqptr != NULL);
2464 
2465 	rv = apic_rebind(irqptr, apic_irq_table[irq]->airq_cpu, drep);
2466 	if (rv) {
2467 		/*
2468 		 * CPU is not up or interrupts are disabled. Fall back to
2469 		 * the first available CPU
2470 		 */
2471 		rv = apic_rebind(irqptr, apic_find_cpu(APIC_CPU_INTR_ENABLE),
2472 		    drep);
2473 	}
2474 
2475 	return (rv);
2476 }
2477 
2478 
2479 uchar_t
2480 apic_modify_vector(uchar_t vector, int irq)
2481 {
2482 	apic_vector_to_irq[vector] = (uchar_t)irq;
2483 	return (vector);
2484 }
2485 
2486 char *
2487 apic_get_apic_type()
2488 {
2489 	return (apic_psm_info.p_mach_idstring);
2490 }
2491 
2492 void
2493 x2apic_update_psm()
2494 {
2495 	struct psm_ops *pops = &apic_ops;
2496 
2497 	ASSERT(pops != NULL);
2498 
2499 	/*
2500 	 * We don't need to do any magic if one of the following
2501 	 * conditions is true :
2502 	 * - Not being run under kernel debugger.
2503 	 * - MP is not set.
2504 	 * - Booted with one CPU only.
2505 	 * - One CPU configured.
2506 	 *
2507 	 * We set apic_common_send_ipi() since kernel debuggers
2508 	 * attempt to send IPIs to other slave CPUs during
2509 	 * entry (exit) from (to) debugger.
2510 	 */
2511 	if (!(boothowto & RB_DEBUG) || use_mp == 0 ||
2512 	    apic_nproc == 1 || boot_ncpus == 1) {
2513 		pops->psm_send_ipi =  x2apic_send_ipi;
2514 	} else {
2515 		pops->psm_send_ipi =  apic_common_send_ipi;
2516 	}
2517 
2518 	pops->psm_intr_exit = x2apic_intr_exit;
2519 	pops->psm_setspl = x2apic_setspl;
2520 
2521 	send_dirintf = pops->psm_send_ipi;
2522 
2523 	apic_mode = LOCAL_X2APIC;
2524 	apic_change_ops();
2525 }
2526