1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * PSMI 1.1 extensions are supported only in 2.6 and later versions. 29 * PSMI 1.2 extensions are supported only in 2.7 and later versions. 30 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10. 31 * PSMI 1.5 extensions are supported in Solaris Nevada. 32 * PSMI 1.6 extensions are supported in Solaris Nevada. 33 */ 34 #define PSMI_1_6 35 36 #include <sys/processor.h> 37 #include <sys/time.h> 38 #include <sys/psm.h> 39 #include <sys/smp_impldefs.h> 40 #include <sys/cram.h> 41 #include <sys/acpi/acpi.h> 42 #include <sys/acpica.h> 43 #include <sys/psm_common.h> 44 #include <sys/apic.h> 45 #include <sys/pit.h> 46 #include <sys/ddi.h> 47 #include <sys/sunddi.h> 48 #include <sys/ddi_impldefs.h> 49 #include <sys/pci.h> 50 #include <sys/promif.h> 51 #include <sys/x86_archext.h> 52 #include <sys/cpc_impl.h> 53 #include <sys/uadmin.h> 54 #include <sys/panic.h> 55 #include <sys/debug.h> 56 #include <sys/archsystm.h> 57 #include <sys/trap.h> 58 #include <sys/machsystm.h> 59 #include <sys/sysmacros.h> 60 #include <sys/cpuvar.h> 61 #include <sys/rm_platter.h> 62 #include <sys/privregs.h> 63 #include <sys/note.h> 64 #include <sys/pci_intr_lib.h> 65 #include <sys/spl.h> 66 #include <sys/clock.h> 67 #include <sys/dditypes.h> 68 #include <sys/sunddi.h> 69 #include <sys/x_call.h> 70 #include <sys/reboot.h> 71 #include <sys/hpet.h> 72 73 /* 74 * Local Function Prototypes 75 */ 76 static void apic_init_intr(); 77 static void apic_nmi_intr(caddr_t arg, struct regs *rp); 78 79 /* 80 * standard MP entries 81 */ 82 static int apic_probe(); 83 static int apic_clkinit(); 84 static int apic_getclkirq(int ipl); 85 static uint_t apic_calibrate(volatile uint32_t *addr, 86 uint16_t *pit_ticks_adj); 87 static hrtime_t apic_gettime(); 88 static hrtime_t apic_gethrtime(); 89 static void apic_init(); 90 static void apic_picinit(void); 91 static int apic_cpu_start(processorid_t, caddr_t); 92 static int apic_post_cpu_start(void); 93 static void apic_send_ipi(int cpun, int ipl); 94 static void apic_set_idlecpu(processorid_t cpun); 95 static void apic_unset_idlecpu(processorid_t cpun); 96 static int apic_intr_enter(int ipl, int *vect); 97 static void apic_setspl(int ipl); 98 static void x2apic_setspl(int ipl); 99 static int apic_addspl(int ipl, int vector, int min_ipl, int max_ipl); 100 static int apic_delspl(int ipl, int vector, int min_ipl, int max_ipl); 101 static void apic_shutdown(int cmd, int fcn); 102 static void apic_preshutdown(int cmd, int fcn); 103 static int apic_disable_intr(processorid_t cpun); 104 static void apic_enable_intr(processorid_t cpun); 105 static processorid_t apic_get_next_processorid(processorid_t cpun); 106 static int apic_get_ipivect(int ipl, int type); 107 static void apic_timer_reprogram(hrtime_t time); 108 static void apic_timer_enable(void); 109 static void apic_timer_disable(void); 110 static void apic_post_cyclic_setup(void *arg); 111 static void apic_intrr_init(int apic_mode); 112 static void apic_record_ioapic_rdt(apic_irq_t *irq_ptr, ioapic_rdt_t *irdt); 113 static void apic_record_msi(apic_irq_t *irq_ptr, msi_regs_t *mregs); 114 115 static int apic_oneshot = 0; 116 int apic_oneshot_enable = 1; /* to allow disabling one-shot capability */ 117 118 /* Now the ones for Dynamic Interrupt distribution */ 119 int apic_enable_dynamic_migration = 0; 120 121 122 /* 123 * These variables are frequently accessed in apic_intr_enter(), 124 * apic_intr_exit and apic_setspl, so group them together 125 */ 126 volatile uint32_t *apicadr = NULL; /* virtual addr of local APIC */ 127 int apic_setspl_delay = 1; /* apic_setspl - delay enable */ 128 int apic_clkvect; 129 130 /* vector at which error interrupts come in */ 131 int apic_errvect; 132 int apic_enable_error_intr = 1; 133 int apic_error_display_delay = 100; 134 135 /* vector at which performance counter overflow interrupts come in */ 136 int apic_cpcovf_vect; 137 int apic_enable_cpcovf_intr = 1; 138 139 /* vector at which CMCI interrupts come in */ 140 int apic_cmci_vect; 141 extern int cmi_enable_cmci; 142 extern void cmi_cmci_trap(void); 143 144 static kmutex_t cmci_cpu_setup_lock; /* protects cmci_cpu_setup_registered */ 145 static int cmci_cpu_setup_registered; 146 147 /* 148 * The following vector assignments influence the value of ipltopri and 149 * vectortoipl. Note that vectors 0 - 0x1f are not used. We can program 150 * idle to 0 and IPL 0 to 0xf to differentiate idle in case 151 * we care to do so in future. Note some IPLs which are rarely used 152 * will share the vector ranges and heavily used IPLs (5 and 6) have 153 * a wide range. 154 * 155 * This array is used to initialize apic_ipls[] (in apic_init()). 156 * 157 * IPL Vector range. as passed to intr_enter 158 * 0 none. 159 * 1,2,3 0x20-0x2f 0x0-0xf 160 * 4 0x30-0x3f 0x10-0x1f 161 * 5 0x40-0x5f 0x20-0x3f 162 * 6 0x60-0x7f 0x40-0x5f 163 * 7,8,9 0x80-0x8f 0x60-0x6f 164 * 10 0x90-0x9f 0x70-0x7f 165 * 11 0xa0-0xaf 0x80-0x8f 166 * ... ... 167 * 15 0xe0-0xef 0xc0-0xcf 168 * 15 0xf0-0xff 0xd0-0xdf 169 */ 170 uchar_t apic_vectortoipl[APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL] = { 171 3, 4, 5, 5, 6, 6, 9, 10, 11, 12, 13, 14, 15, 15 172 }; 173 /* 174 * The ipl of an ISR at vector X is apic_vectortoipl[X>>4] 175 * NOTE that this is vector as passed into intr_enter which is 176 * programmed vector - 0x20 (APIC_BASE_VECT) 177 */ 178 179 uchar_t apic_ipltopri[MAXIPL + 1]; /* unix ipl to apic pri */ 180 /* The taskpri to be programmed into apic to mask given ipl */ 181 182 #if defined(__amd64) 183 uchar_t apic_cr8pri[MAXIPL + 1]; /* unix ipl to cr8 pri */ 184 #endif 185 186 /* 187 * Correlation of the hardware vector to the IPL in use, initialized 188 * from apic_vectortoipl[] in apic_init(). The final IPLs may not correlate 189 * to the IPLs in apic_vectortoipl on some systems that share interrupt lines 190 * connected to errata-stricken IOAPICs 191 */ 192 uchar_t apic_ipls[APIC_AVAIL_VECTOR]; 193 194 /* 195 * Patchable global variables. 196 */ 197 int apic_forceload = 0; 198 199 int apic_coarse_hrtime = 1; /* 0 - use accurate slow gethrtime() */ 200 /* 1 - use gettime() for performance */ 201 int apic_flat_model = 0; /* 0 - clustered. 1 - flat */ 202 int apic_enable_hwsoftint = 0; /* 0 - disable, 1 - enable */ 203 int apic_enable_bind_log = 1; /* 1 - display interrupt binding log */ 204 int apic_panic_on_nmi = 0; 205 int apic_panic_on_apic_error = 0; 206 207 int apic_verbose = 0; 208 209 /* minimum number of timer ticks to program to */ 210 int apic_min_timer_ticks = 1; 211 /* 212 * Local static data 213 */ 214 static struct psm_ops apic_ops = { 215 apic_probe, 216 217 apic_init, 218 apic_picinit, 219 apic_intr_enter, 220 apic_intr_exit, 221 apic_setspl, 222 apic_addspl, 223 apic_delspl, 224 apic_disable_intr, 225 apic_enable_intr, 226 (int (*)(int))NULL, /* psm_softlvl_to_irq */ 227 (void (*)(int))NULL, /* psm_set_softintr */ 228 229 apic_set_idlecpu, 230 apic_unset_idlecpu, 231 232 apic_clkinit, 233 apic_getclkirq, 234 (void (*)(void))NULL, /* psm_hrtimeinit */ 235 apic_gethrtime, 236 237 apic_get_next_processorid, 238 apic_cpu_start, 239 apic_post_cpu_start, 240 apic_shutdown, 241 apic_get_ipivect, 242 apic_send_ipi, 243 244 (int (*)(dev_info_t *, int))NULL, /* psm_translate_irq */ 245 (void (*)(int, char *))NULL, /* psm_notify_error */ 246 (void (*)(int))NULL, /* psm_notify_func */ 247 apic_timer_reprogram, 248 apic_timer_enable, 249 apic_timer_disable, 250 apic_post_cyclic_setup, 251 apic_preshutdown, 252 apic_intr_ops, /* Advanced DDI Interrupt framework */ 253 apic_state, /* save, restore apic state for S3 */ 254 }; 255 256 257 static struct psm_info apic_psm_info = { 258 PSM_INFO_VER01_6, /* version */ 259 PSM_OWN_EXCLUSIVE, /* ownership */ 260 (struct psm_ops *)&apic_ops, /* operation */ 261 APIC_PCPLUSMP_NAME, /* machine name */ 262 "pcplusmp v1.4 compatible", 263 }; 264 265 static void *apic_hdlp; 266 267 #ifdef DEBUG 268 int apic_debug = 0; 269 int apic_restrict_vector = 0; 270 271 int apic_debug_msgbuf[APIC_DEBUG_MSGBUFSIZE]; 272 int apic_debug_msgbufindex = 0; 273 274 #endif /* DEBUG */ 275 276 apic_cpus_info_t *apic_cpus; 277 278 cpuset_t apic_cpumask; 279 uint_t apic_picinit_called; 280 281 /* Flag to indicate that we need to shut down all processors */ 282 static uint_t apic_shutdown_processors; 283 284 uint_t apic_nsec_per_intr = 0; 285 286 /* 287 * apic_let_idle_redistribute can have the following values: 288 * 0 - If clock decremented it from 1 to 0, clock has to call redistribute. 289 * apic_redistribute_lock prevents multiple idle cpus from redistributing 290 */ 291 int apic_num_idle_redistributions = 0; 292 static int apic_let_idle_redistribute = 0; 293 static uint_t apic_nticks = 0; 294 static uint_t apic_skipped_redistribute = 0; 295 296 /* to gather intr data and redistribute */ 297 static void apic_redistribute_compute(void); 298 299 static uint_t last_count_read = 0; 300 static lock_t apic_gethrtime_lock; 301 volatile int apic_hrtime_stamp = 0; 302 volatile hrtime_t apic_nsec_since_boot = 0; 303 static uint_t apic_hertz_count; 304 305 uint64_t apic_ticks_per_SFnsecs; /* # of ticks in SF nsecs */ 306 307 static hrtime_t apic_nsec_max; 308 309 static hrtime_t apic_last_hrtime = 0; 310 int apic_hrtime_error = 0; 311 int apic_remote_hrterr = 0; 312 int apic_num_nmis = 0; 313 int apic_apic_error = 0; 314 int apic_num_apic_errors = 0; 315 int apic_num_cksum_errors = 0; 316 317 int apic_error = 0; 318 static int apic_cmos_ssb_set = 0; 319 320 /* use to make sure only one cpu handles the nmi */ 321 static lock_t apic_nmi_lock; 322 /* use to make sure only one cpu handles the error interrupt */ 323 static lock_t apic_error_lock; 324 325 static struct { 326 uchar_t cntl; 327 uchar_t data; 328 } aspen_bmc[] = { 329 { CC_SMS_WR_START, 0x18 }, /* NetFn/LUN */ 330 { CC_SMS_WR_NEXT, 0x24 }, /* Cmd SET_WATCHDOG_TIMER */ 331 { CC_SMS_WR_NEXT, 0x84 }, /* DataByte 1: SMS/OS no log */ 332 { CC_SMS_WR_NEXT, 0x2 }, /* DataByte 2: Power Down */ 333 { CC_SMS_WR_NEXT, 0x0 }, /* DataByte 3: no pre-timeout */ 334 { CC_SMS_WR_NEXT, 0x0 }, /* DataByte 4: timer expir. */ 335 { CC_SMS_WR_NEXT, 0xa }, /* DataByte 5: init countdown */ 336 { CC_SMS_WR_END, 0x0 }, /* DataByte 6: init countdown */ 337 338 { CC_SMS_WR_START, 0x18 }, /* NetFn/LUN */ 339 { CC_SMS_WR_END, 0x22 } /* Cmd RESET_WATCHDOG_TIMER */ 340 }; 341 342 static struct { 343 int port; 344 uchar_t data; 345 } sitka_bmc[] = { 346 { SMS_COMMAND_REGISTER, SMS_WRITE_START }, 347 { SMS_DATA_REGISTER, 0x18 }, /* NetFn/LUN */ 348 { SMS_DATA_REGISTER, 0x24 }, /* Cmd SET_WATCHDOG_TIMER */ 349 { SMS_DATA_REGISTER, 0x84 }, /* DataByte 1: SMS/OS no log */ 350 { SMS_DATA_REGISTER, 0x2 }, /* DataByte 2: Power Down */ 351 { SMS_DATA_REGISTER, 0x0 }, /* DataByte 3: no pre-timeout */ 352 { SMS_DATA_REGISTER, 0x0 }, /* DataByte 4: timer expir. */ 353 { SMS_DATA_REGISTER, 0xa }, /* DataByte 5: init countdown */ 354 { SMS_COMMAND_REGISTER, SMS_WRITE_END }, 355 { SMS_DATA_REGISTER, 0x0 }, /* DataByte 6: init countdown */ 356 357 { SMS_COMMAND_REGISTER, SMS_WRITE_START }, 358 { SMS_DATA_REGISTER, 0x18 }, /* NetFn/LUN */ 359 { SMS_COMMAND_REGISTER, SMS_WRITE_END }, 360 { SMS_DATA_REGISTER, 0x22 } /* Cmd RESET_WATCHDOG_TIMER */ 361 }; 362 363 /* Patchable global variables. */ 364 int apic_kmdb_on_nmi = 0; /* 0 - no, 1 - yes enter kmdb */ 365 uint32_t apic_divide_reg_init = 0; /* 0 - divide by 2 */ 366 367 /* default apic ops without interrupt remapping */ 368 static apic_intrr_ops_t apic_nointrr_ops = { 369 (int (*)(int))return_instr, 370 (void (*)(void))return_instr, 371 (void (*)(apic_irq_t *))return_instr, 372 (void (*)(apic_irq_t *, void *))return_instr, 373 (void (*)(apic_irq_t *))return_instr, 374 apic_record_ioapic_rdt, 375 apic_record_msi, 376 }; 377 378 apic_intrr_ops_t *apic_vt_ops = &apic_nointrr_ops; 379 380 /* 381 * This is the loadable module wrapper 382 */ 383 384 int 385 _init(void) 386 { 387 if (apic_coarse_hrtime) 388 apic_ops.psm_gethrtime = &apic_gettime; 389 return (psm_mod_init(&apic_hdlp, &apic_psm_info)); 390 } 391 392 int 393 _fini(void) 394 { 395 return (psm_mod_fini(&apic_hdlp, &apic_psm_info)); 396 } 397 398 int 399 _info(struct modinfo *modinfop) 400 { 401 return (psm_mod_info(&apic_hdlp, &apic_psm_info, modinfop)); 402 } 403 404 405 static int 406 apic_probe() 407 { 408 return (apic_probe_common(apic_psm_info.p_mach_idstring)); 409 } 410 411 void 412 apic_init() 413 { 414 int i; 415 int j = 1; 416 417 apic_ipltopri[0] = APIC_VECTOR_PER_IPL; /* leave 0 for idle */ 418 for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) { 419 if ((i < ((APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL) - 1)) && 420 (apic_vectortoipl[i + 1] == apic_vectortoipl[i])) 421 /* get to highest vector at the same ipl */ 422 continue; 423 for (; j <= apic_vectortoipl[i]; j++) { 424 apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + 425 APIC_BASE_VECT; 426 } 427 } 428 for (; j < MAXIPL + 1; j++) 429 /* fill up any empty ipltopri slots */ 430 apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + APIC_BASE_VECT; 431 apic_init_common(); 432 #if defined(__amd64) 433 /* 434 * Make cpu-specific interrupt info point to cr8pri vector 435 */ 436 for (i = 0; i <= MAXIPL; i++) 437 apic_cr8pri[i] = apic_ipltopri[i] >> APIC_IPL_SHIFT; 438 CPU->cpu_pri_data = apic_cr8pri; 439 #endif /* __amd64 */ 440 441 /* 442 * initialize interrupt remapping before apic 443 * hardware initialization 444 */ 445 apic_intrr_init(apic_mode); 446 } 447 448 /* 449 * handler for APIC Error interrupt. Just print a warning and continue 450 */ 451 static int 452 apic_error_intr() 453 { 454 uint_t error0, error1, error; 455 uint_t i; 456 457 /* 458 * We need to write before read as per 7.4.17 of system prog manual. 459 * We do both and or the results to be safe 460 */ 461 error0 = apic_reg_ops->apic_read(APIC_ERROR_STATUS); 462 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 463 error1 = apic_reg_ops->apic_read(APIC_ERROR_STATUS); 464 error = error0 | error1; 465 466 /* 467 * Clear the APIC error status (do this on all cpus that enter here) 468 * (two writes are required due to the semantics of accessing the 469 * error status register.) 470 */ 471 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 472 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 473 474 /* 475 * Prevent more than 1 CPU from handling error interrupt causing 476 * double printing (interleave of characters from multiple 477 * CPU's when using prom_printf) 478 */ 479 if (lock_try(&apic_error_lock) == 0) 480 return (error ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED); 481 if (error) { 482 #if DEBUG 483 if (apic_debug) 484 debug_enter("pcplusmp: APIC Error interrupt received"); 485 #endif /* DEBUG */ 486 if (apic_panic_on_apic_error) 487 cmn_err(CE_PANIC, 488 "APIC Error interrupt on CPU %d. Status = %x\n", 489 psm_get_cpu_id(), error); 490 else { 491 if ((error & ~APIC_CS_ERRORS) == 0) { 492 /* cksum error only */ 493 apic_error |= APIC_ERR_APIC_ERROR; 494 apic_apic_error |= error; 495 apic_num_apic_errors++; 496 apic_num_cksum_errors++; 497 } else { 498 /* 499 * prom_printf is the best shot we have of 500 * something which is problem free from 501 * high level/NMI type of interrupts 502 */ 503 prom_printf("APIC Error interrupt on CPU %d. " 504 "Status 0 = %x, Status 1 = %x\n", 505 psm_get_cpu_id(), error0, error1); 506 apic_error |= APIC_ERR_APIC_ERROR; 507 apic_apic_error |= error; 508 apic_num_apic_errors++; 509 for (i = 0; i < apic_error_display_delay; i++) { 510 tenmicrosec(); 511 } 512 /* 513 * provide more delay next time limited to 514 * roughly 1 clock tick time 515 */ 516 if (apic_error_display_delay < 500) 517 apic_error_display_delay *= 2; 518 } 519 } 520 lock_clear(&apic_error_lock); 521 return (DDI_INTR_CLAIMED); 522 } else { 523 lock_clear(&apic_error_lock); 524 return (DDI_INTR_UNCLAIMED); 525 } 526 /* NOTREACHED */ 527 } 528 529 /* 530 * Turn off the mask bit in the performance counter Local Vector Table entry. 531 */ 532 static void 533 apic_cpcovf_mask_clear(void) 534 { 535 apic_reg_ops->apic_write(APIC_PCINT_VECT, 536 (apic_reg_ops->apic_read(APIC_PCINT_VECT) & ~APIC_LVT_MASK)); 537 } 538 539 /*ARGSUSED*/ 540 static int 541 apic_cmci_enable(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3) 542 { 543 apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect); 544 return (0); 545 } 546 547 /*ARGSUSED*/ 548 static int 549 apic_cmci_disable(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3) 550 { 551 apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect | AV_MASK); 552 return (0); 553 } 554 555 /*ARGSUSED*/ 556 static int 557 cmci_cpu_setup(cpu_setup_t what, int cpuid, void *arg) 558 { 559 cpuset_t cpu_set; 560 561 CPUSET_ONLY(cpu_set, cpuid); 562 563 switch (what) { 564 case CPU_ON: 565 xc_call(NULL, NULL, NULL, X_CALL_HIPRI, cpu_set, 566 (xc_func_t)apic_cmci_enable); 567 break; 568 569 case CPU_OFF: 570 xc_call(NULL, NULL, NULL, X_CALL_HIPRI, cpu_set, 571 (xc_func_t)apic_cmci_disable); 572 break; 573 574 default: 575 break; 576 } 577 578 return (0); 579 } 580 581 static void 582 apic_init_intr() 583 { 584 processorid_t cpun = psm_get_cpu_id(); 585 uint_t nlvt; 586 uint32_t svr = AV_UNIT_ENABLE | APIC_SPUR_INTR; 587 588 apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL); 589 590 if (apic_mode == LOCAL_APIC) { 591 /* 592 * We are running APIC in MMIO mode. 593 */ 594 if (apic_flat_model) { 595 apic_reg_ops->apic_write(APIC_FORMAT_REG, 596 APIC_FLAT_MODEL); 597 } else { 598 apic_reg_ops->apic_write(APIC_FORMAT_REG, 599 APIC_CLUSTER_MODEL); 600 } 601 602 apic_reg_ops->apic_write(APIC_DEST_REG, 603 AV_HIGH_ORDER >> cpun); 604 } 605 606 if (apic_direct_EOI) { 607 /* 608 * Set 12th bit in Spurious Interrupt Vector 609 * Register to support level triggered interrupt 610 * directed EOI. 611 */ 612 svr |= (0x1 << APIC_SVR); 613 } 614 615 /* need to enable APIC before unmasking NMI */ 616 apic_reg_ops->apic_write(APIC_SPUR_INT_REG, svr); 617 618 /* 619 * Presence of an invalid vector with delivery mode AV_FIXED can 620 * cause an error interrupt, even if the entry is masked...so 621 * write a valid vector to LVT entries along with the mask bit 622 */ 623 624 /* All APICs have timer and LINT0/1 */ 625 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK|APIC_RESV_IRQ); 626 apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK|APIC_RESV_IRQ); 627 apic_reg_ops->apic_write(APIC_INT_VECT1, AV_NMI); /* enable NMI */ 628 629 /* 630 * On integrated APICs, the number of LVT entries is 631 * 'Max LVT entry' + 1; on 82489DX's (non-integrated 632 * APICs), nlvt is "3" (LINT0, LINT1, and timer) 633 */ 634 635 if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) { 636 nlvt = 3; 637 } else { 638 nlvt = ((apic_reg_ops->apic_read(APIC_VERS_REG) >> 16) & 639 0xFF) + 1; 640 } 641 642 if (nlvt >= 5) { 643 /* Enable performance counter overflow interrupt */ 644 645 if ((x86_feature & X86_MSR) != X86_MSR) 646 apic_enable_cpcovf_intr = 0; 647 if (apic_enable_cpcovf_intr) { 648 if (apic_cpcovf_vect == 0) { 649 int ipl = APIC_PCINT_IPL; 650 int irq = apic_get_ipivect(ipl, -1); 651 652 ASSERT(irq != -1); 653 apic_cpcovf_vect = 654 apic_irq_table[irq]->airq_vector; 655 ASSERT(apic_cpcovf_vect); 656 (void) add_avintr(NULL, ipl, 657 (avfunc)kcpc_hw_overflow_intr, 658 "apic pcint", irq, NULL, NULL, NULL, NULL); 659 kcpc_hw_overflow_intr_installed = 1; 660 kcpc_hw_enable_cpc_intr = 661 apic_cpcovf_mask_clear; 662 } 663 apic_reg_ops->apic_write(APIC_PCINT_VECT, 664 apic_cpcovf_vect); 665 } 666 } 667 668 if (nlvt >= 6) { 669 /* Only mask TM intr if the BIOS apparently doesn't use it */ 670 671 uint32_t lvtval; 672 673 lvtval = apic_reg_ops->apic_read(APIC_THERM_VECT); 674 if (((lvtval & AV_MASK) == AV_MASK) || 675 ((lvtval & AV_DELIV_MODE) != AV_SMI)) { 676 apic_reg_ops->apic_write(APIC_THERM_VECT, 677 AV_MASK|APIC_RESV_IRQ); 678 } 679 } 680 681 /* Enable error interrupt */ 682 683 if (nlvt >= 4 && apic_enable_error_intr) { 684 if (apic_errvect == 0) { 685 int ipl = 0xf; /* get highest priority intr */ 686 int irq = apic_get_ipivect(ipl, -1); 687 688 ASSERT(irq != -1); 689 apic_errvect = apic_irq_table[irq]->airq_vector; 690 ASSERT(apic_errvect); 691 /* 692 * Not PSMI compliant, but we are going to merge 693 * with ON anyway 694 */ 695 (void) add_avintr((void *)NULL, ipl, 696 (avfunc)apic_error_intr, "apic error intr", 697 irq, NULL, NULL, NULL, NULL); 698 } 699 apic_reg_ops->apic_write(APIC_ERR_VECT, apic_errvect); 700 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 701 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 702 } 703 704 /* Enable CMCI interrupt */ 705 if (cmi_enable_cmci) { 706 707 mutex_enter(&cmci_cpu_setup_lock); 708 if (cmci_cpu_setup_registered == 0) { 709 mutex_enter(&cpu_lock); 710 register_cpu_setup_func(cmci_cpu_setup, NULL); 711 mutex_exit(&cpu_lock); 712 cmci_cpu_setup_registered = 1; 713 } 714 mutex_exit(&cmci_cpu_setup_lock); 715 716 if (apic_cmci_vect == 0) { 717 int ipl = 0x2; 718 int irq = apic_get_ipivect(ipl, -1); 719 720 ASSERT(irq != -1); 721 apic_cmci_vect = apic_irq_table[irq]->airq_vector; 722 ASSERT(apic_cmci_vect); 723 724 (void) add_avintr(NULL, ipl, 725 (avfunc)cmi_cmci_trap, 726 "apic cmci intr", irq, NULL, NULL, NULL, NULL); 727 } 728 apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect); 729 } 730 } 731 732 static void 733 apic_disable_local_apic() 734 { 735 apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL); 736 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK); 737 738 /* local intr reg 0 */ 739 apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK); 740 741 /* disable NMI */ 742 apic_reg_ops->apic_write(APIC_INT_VECT1, AV_MASK); 743 744 /* and error interrupt */ 745 apic_reg_ops->apic_write(APIC_ERR_VECT, AV_MASK); 746 747 /* and perf counter intr */ 748 apic_reg_ops->apic_write(APIC_PCINT_VECT, AV_MASK); 749 750 apic_reg_ops->apic_write(APIC_SPUR_INT_REG, APIC_SPUR_INTR); 751 } 752 753 static void 754 apic_picinit(void) 755 { 756 int i, j; 757 uint_t isr; 758 uint32_t ver; 759 760 /* 761 * On UniSys Model 6520, the BIOS leaves vector 0x20 isr 762 * bit on without clearing it with EOI. Since softint 763 * uses vector 0x20 to interrupt itself, so softint will 764 * not work on this machine. In order to fix this problem 765 * a check is made to verify all the isr bits are clear. 766 * If not, EOIs are issued to clear the bits. 767 */ 768 for (i = 7; i >= 1; i--) { 769 isr = apic_reg_ops->apic_read(APIC_ISR_REG + (i * 4)); 770 if (isr != 0) 771 for (j = 0; ((j < 32) && (isr != 0)); j++) 772 if (isr & (1 << j)) { 773 apic_reg_ops->apic_write( 774 APIC_EOI_REG, 0); 775 isr &= ~(1 << j); 776 apic_error |= APIC_ERR_BOOT_EOI; 777 } 778 } 779 780 /* set a flag so we know we have run apic_picinit() */ 781 apic_picinit_called = 1; 782 LOCK_INIT_CLEAR(&apic_gethrtime_lock); 783 LOCK_INIT_CLEAR(&apic_ioapic_lock); 784 LOCK_INIT_CLEAR(&apic_error_lock); 785 786 picsetup(); /* initialise the 8259 */ 787 788 /* add nmi handler - least priority nmi handler */ 789 LOCK_INIT_CLEAR(&apic_nmi_lock); 790 791 if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr, 792 "pcplusmp NMI handler", (caddr_t)NULL)) 793 cmn_err(CE_WARN, "pcplusmp: Unable to add nmi handler"); 794 795 ver = apic_reg_ops->apic_read(APIC_VERS_REG); 796 /* 797 * In order to determine support for Directed EOI capability, 798 * we check for 24th bit in Local APIC Version Register. 799 */ 800 if (ver & (0x1 << APIC_DIRECTED_EOI)) { 801 apic_direct_EOI = 1; 802 apic_change_eoi(); 803 } 804 805 apic_init_intr(); 806 807 /* enable apic mode if imcr present */ 808 if (apic_imcrp) { 809 outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT); 810 outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC); 811 } 812 813 ioapic_init_intr(IOAPIC_MASK); 814 } 815 816 817 /*ARGSUSED1*/ 818 static int 819 apic_cpu_start(processorid_t cpun, caddr_t arg) 820 { 821 int loop_count; 822 uint32_t vector; 823 uint_t cpu_id; 824 ulong_t iflag; 825 826 cpu_id = apic_cpus[cpun].aci_local_id; 827 828 apic_cmos_ssb_set = 1; 829 830 /* 831 * Interrupts on BSP cpu will be disabled during these startup 832 * steps in order to avoid unwanted side effects from 833 * executing interrupt handlers on a problematic BIOS. 834 */ 835 836 iflag = intr_clear(); 837 outb(CMOS_ADDR, SSB); 838 outb(CMOS_DATA, BIOS_SHUTDOWN); 839 840 /* 841 * According to X2APIC specification in section '2.3.5.1' of 842 * Interrupt Command Register Semantics, the semantics of 843 * programming the Interrupt Command Register to dispatch an interrupt 844 * is simplified. A single MSR write to the 64-bit ICR is required 845 * for dispatching an interrupt. Specifically, with the 64-bit MSR 846 * interface to ICR, system software is not required to check the 847 * status of the delivery status bit prior to writing to the ICR 848 * to send an IPI. With the removal of the Delivery Status bit, 849 * system software no longer has a reason to read the ICR. It remains 850 * readable only to aid in debugging. 851 */ 852 #ifdef DEBUG 853 APIC_AV_PENDING_SET(); 854 #else 855 if (apic_mode == LOCAL_APIC) { 856 APIC_AV_PENDING_SET(); 857 } 858 #endif /* DEBUG */ 859 860 /* for integrated - make sure there is one INIT IPI in buffer */ 861 /* for external - it will wake up the cpu */ 862 apic_reg_ops->apic_write_int_cmd(cpu_id, AV_ASSERT | AV_RESET); 863 864 /* If only 1 CPU is installed, PENDING bit will not go low */ 865 for (loop_count = 0x1000; loop_count; loop_count--) { 866 if (apic_mode == LOCAL_APIC && 867 apic_reg_ops->apic_read(APIC_INT_CMD1) & AV_PENDING) 868 apic_ret(); 869 else 870 break; 871 } 872 873 apic_reg_ops->apic_write_int_cmd(cpu_id, AV_DEASSERT | AV_RESET); 874 875 drv_usecwait(20000); /* 20 milli sec */ 876 877 if (apic_cpus[cpun].aci_local_ver >= APIC_INTEGRATED_VERS) { 878 /* integrated apic */ 879 880 vector = (rm_platter_pa >> MMU_PAGESHIFT) & 881 (APIC_VECTOR_MASK | APIC_IPL_MASK); 882 883 /* to offset the INIT IPI queue up in the buffer */ 884 apic_reg_ops->apic_write_int_cmd(cpu_id, vector | AV_STARTUP); 885 886 drv_usecwait(200); /* 20 micro sec */ 887 888 apic_reg_ops->apic_write_int_cmd(cpu_id, vector | AV_STARTUP); 889 890 drv_usecwait(200); /* 20 micro sec */ 891 } 892 intr_restore(iflag); 893 return (0); 894 } 895 896 897 #ifdef DEBUG 898 int apic_break_on_cpu = 9; 899 int apic_stretch_interrupts = 0; 900 int apic_stretch_ISR = 1 << 3; /* IPL of 3 matches nothing now */ 901 902 void 903 apic_break() 904 { 905 } 906 #endif /* DEBUG */ 907 908 /* 909 * platform_intr_enter 910 * 911 * Called at the beginning of the interrupt service routine to 912 * mask all level equal to and below the interrupt priority 913 * of the interrupting vector. An EOI should be given to 914 * the interrupt controller to enable other HW interrupts. 915 * 916 * Return -1 for spurious interrupts 917 * 918 */ 919 /*ARGSUSED*/ 920 static int 921 apic_intr_enter(int ipl, int *vectorp) 922 { 923 uchar_t vector; 924 int nipl; 925 int irq; 926 ulong_t iflag; 927 apic_cpus_info_t *cpu_infop; 928 929 /* 930 * The real vector delivered is (*vectorp + 0x20), but our caller 931 * subtracts 0x20 from the vector before passing it to us. 932 * (That's why APIC_BASE_VECT is 0x20.) 933 */ 934 vector = (uchar_t)*vectorp; 935 936 /* if interrupted by the clock, increment apic_nsec_since_boot */ 937 if (vector == apic_clkvect) { 938 if (!apic_oneshot) { 939 /* NOTE: this is not MT aware */ 940 apic_hrtime_stamp++; 941 apic_nsec_since_boot += apic_nsec_per_intr; 942 apic_hrtime_stamp++; 943 last_count_read = apic_hertz_count; 944 apic_redistribute_compute(); 945 } 946 947 /* We will avoid all the book keeping overhead for clock */ 948 nipl = apic_ipls[vector]; 949 950 *vectorp = apic_vector_to_irq[vector + APIC_BASE_VECT]; 951 if (apic_mode == LOCAL_APIC) { 952 #if defined(__amd64) 953 setcr8((ulong_t)(apic_ipltopri[nipl] >> 954 APIC_IPL_SHIFT)); 955 #else 956 LOCAL_APIC_WRITE_REG(APIC_TASK_REG, 957 (uint32_t)apic_ipltopri[nipl]); 958 #endif 959 LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0); 960 } else { 961 X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[nipl]); 962 X2APIC_WRITE(APIC_EOI_REG, 0); 963 } 964 965 return (nipl); 966 } 967 968 cpu_infop = &apic_cpus[psm_get_cpu_id()]; 969 970 if (vector == (APIC_SPUR_INTR - APIC_BASE_VECT)) { 971 cpu_infop->aci_spur_cnt++; 972 return (APIC_INT_SPURIOUS); 973 } 974 975 /* Check if the vector we got is really what we need */ 976 if (apic_revector_pending) { 977 /* 978 * Disable interrupts for the duration of 979 * the vector translation to prevent a self-race for 980 * the apic_revector_lock. This cannot be done 981 * in apic_xlate_vector because it is recursive and 982 * we want the vector translation to be atomic with 983 * respect to other (higher-priority) interrupts. 984 */ 985 iflag = intr_clear(); 986 vector = apic_xlate_vector(vector + APIC_BASE_VECT) - 987 APIC_BASE_VECT; 988 intr_restore(iflag); 989 } 990 991 nipl = apic_ipls[vector]; 992 *vectorp = irq = apic_vector_to_irq[vector + APIC_BASE_VECT]; 993 994 if (apic_mode == LOCAL_APIC) { 995 #if defined(__amd64) 996 setcr8((ulong_t)(apic_ipltopri[nipl] >> APIC_IPL_SHIFT)); 997 #else 998 LOCAL_APIC_WRITE_REG(APIC_TASK_REG, 999 (uint32_t)apic_ipltopri[nipl]); 1000 #endif 1001 } else { 1002 X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[nipl]); 1003 } 1004 1005 cpu_infop->aci_current[nipl] = (uchar_t)irq; 1006 cpu_infop->aci_curipl = (uchar_t)nipl; 1007 cpu_infop->aci_ISR_in_progress |= 1 << nipl; 1008 1009 /* 1010 * apic_level_intr could have been assimilated into the irq struct. 1011 * but, having it as a character array is more efficient in terms of 1012 * cache usage. So, we leave it as is. 1013 */ 1014 if (!apic_level_intr[irq]) { 1015 if (apic_mode == LOCAL_APIC) { 1016 LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0); 1017 } else { 1018 X2APIC_WRITE(APIC_EOI_REG, 0); 1019 } 1020 } 1021 1022 #ifdef DEBUG 1023 APIC_DEBUG_BUF_PUT(vector); 1024 APIC_DEBUG_BUF_PUT(irq); 1025 APIC_DEBUG_BUF_PUT(nipl); 1026 APIC_DEBUG_BUF_PUT(psm_get_cpu_id()); 1027 if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl))) 1028 drv_usecwait(apic_stretch_interrupts); 1029 1030 if (apic_break_on_cpu == psm_get_cpu_id()) 1031 apic_break(); 1032 #endif /* DEBUG */ 1033 return (nipl); 1034 } 1035 1036 /* 1037 * This macro is a common code used by MMIO local apic and X2APIC 1038 * local apic. 1039 */ 1040 #define APIC_INTR_EXIT() \ 1041 { \ 1042 cpu_infop = &apic_cpus[psm_get_cpu_id()]; \ 1043 if (apic_level_intr[irq]) \ 1044 apic_reg_ops->apic_send_eoi(irq); \ 1045 cpu_infop->aci_curipl = (uchar_t)prev_ipl; \ 1046 /* ISR above current pri could not be in progress */ \ 1047 cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1; \ 1048 } 1049 1050 /* 1051 * Any changes made to this function must also change X2APIC 1052 * version of intr_exit. 1053 */ 1054 void 1055 apic_intr_exit(int prev_ipl, int irq) 1056 { 1057 apic_cpus_info_t *cpu_infop; 1058 1059 #if defined(__amd64) 1060 setcr8((ulong_t)apic_cr8pri[prev_ipl]); 1061 #else 1062 apicadr[APIC_TASK_REG] = apic_ipltopri[prev_ipl]; 1063 #endif 1064 1065 APIC_INTR_EXIT(); 1066 } 1067 1068 /* 1069 * Same as apic_intr_exit() except it uses MSR rather than MMIO 1070 * to access local apic registers. 1071 */ 1072 void 1073 x2apic_intr_exit(int prev_ipl, int irq) 1074 { 1075 apic_cpus_info_t *cpu_infop; 1076 1077 X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[prev_ipl]); 1078 APIC_INTR_EXIT(); 1079 } 1080 1081 intr_exit_fn_t 1082 psm_intr_exit_fn(void) 1083 { 1084 if (apic_mode == LOCAL_X2APIC) 1085 return (x2apic_intr_exit); 1086 1087 return (apic_intr_exit); 1088 } 1089 1090 /* 1091 * Mask all interrupts below or equal to the given IPL. 1092 * Any changes made to this function must also change X2APIC 1093 * version of setspl. 1094 */ 1095 static void 1096 apic_setspl(int ipl) 1097 { 1098 #if defined(__amd64) 1099 setcr8((ulong_t)apic_cr8pri[ipl]); 1100 #else 1101 apicadr[APIC_TASK_REG] = apic_ipltopri[ipl]; 1102 #endif 1103 1104 /* interrupts at ipl above this cannot be in progress */ 1105 apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1; 1106 /* 1107 * this is a patch fix for the ALR QSMP P5 machine, so that interrupts 1108 * have enough time to come in before the priority is raised again 1109 * during the idle() loop. 1110 */ 1111 if (apic_setspl_delay) 1112 (void) apic_reg_ops->apic_get_pri(); 1113 } 1114 1115 /* 1116 * X2APIC version of setspl. 1117 * Mask all interrupts below or equal to the given IPL 1118 */ 1119 static void 1120 x2apic_setspl(int ipl) 1121 { 1122 X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[ipl]); 1123 1124 /* interrupts at ipl above this cannot be in progress */ 1125 apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1; 1126 } 1127 1128 /* 1129 * generates an interprocessor interrupt to another CPU. Any changes made to 1130 * this routine must be accompanied by similar changes to 1131 * apic_common_send_ipi(). 1132 */ 1133 static void 1134 apic_send_ipi(int cpun, int ipl) 1135 { 1136 int vector; 1137 ulong_t flag; 1138 1139 vector = apic_resv_vector[ipl]; 1140 1141 ASSERT((vector >= APIC_BASE_VECT) && (vector <= APIC_SPUR_INTR)); 1142 1143 flag = intr_clear(); 1144 1145 APIC_AV_PENDING_SET(); 1146 1147 apic_reg_ops->apic_write_int_cmd(apic_cpus[cpun].aci_local_id, 1148 vector); 1149 1150 intr_restore(flag); 1151 } 1152 1153 1154 /*ARGSUSED*/ 1155 static void 1156 apic_set_idlecpu(processorid_t cpun) 1157 { 1158 } 1159 1160 /*ARGSUSED*/ 1161 static void 1162 apic_unset_idlecpu(processorid_t cpun) 1163 { 1164 } 1165 1166 1167 void 1168 apic_ret() 1169 { 1170 } 1171 1172 /* 1173 * If apic_coarse_time == 1, then apic_gettime() is used instead of 1174 * apic_gethrtime(). This is used for performance instead of accuracy. 1175 */ 1176 1177 static hrtime_t 1178 apic_gettime() 1179 { 1180 int old_hrtime_stamp; 1181 hrtime_t temp; 1182 1183 /* 1184 * In one-shot mode, we do not keep time, so if anyone 1185 * calls psm_gettime() directly, we vector over to 1186 * gethrtime(). 1187 * one-shot mode MUST NOT be enabled if this psm is the source of 1188 * hrtime. 1189 */ 1190 1191 if (apic_oneshot) 1192 return (gethrtime()); 1193 1194 1195 gettime_again: 1196 while ((old_hrtime_stamp = apic_hrtime_stamp) & 1) 1197 apic_ret(); 1198 1199 temp = apic_nsec_since_boot; 1200 1201 if (apic_hrtime_stamp != old_hrtime_stamp) { /* got an interrupt */ 1202 goto gettime_again; 1203 } 1204 return (temp); 1205 } 1206 1207 /* 1208 * Here we return the number of nanoseconds since booting. Note every 1209 * clock interrupt increments apic_nsec_since_boot by the appropriate 1210 * amount. 1211 */ 1212 static hrtime_t 1213 apic_gethrtime() 1214 { 1215 int curr_timeval, countval, elapsed_ticks; 1216 int old_hrtime_stamp, status; 1217 hrtime_t temp; 1218 uint32_t cpun; 1219 ulong_t oflags; 1220 1221 /* 1222 * In one-shot mode, we do not keep time, so if anyone 1223 * calls psm_gethrtime() directly, we vector over to 1224 * gethrtime(). 1225 * one-shot mode MUST NOT be enabled if this psm is the source of 1226 * hrtime. 1227 */ 1228 1229 if (apic_oneshot) 1230 return (gethrtime()); 1231 1232 oflags = intr_clear(); /* prevent migration */ 1233 1234 cpun = apic_reg_ops->apic_read(APIC_LID_REG); 1235 if (apic_mode == LOCAL_APIC) 1236 cpun >>= APIC_ID_BIT_OFFSET; 1237 1238 lock_set(&apic_gethrtime_lock); 1239 1240 gethrtime_again: 1241 while ((old_hrtime_stamp = apic_hrtime_stamp) & 1) 1242 apic_ret(); 1243 1244 /* 1245 * Check to see which CPU we are on. Note the time is kept on 1246 * the local APIC of CPU 0. If on CPU 0, simply read the current 1247 * counter. If on another CPU, issue a remote read command to CPU 0. 1248 */ 1249 if (cpun == apic_cpus[0].aci_local_id) { 1250 countval = apic_reg_ops->apic_read(APIC_CURR_COUNT); 1251 } else { 1252 #ifdef DEBUG 1253 APIC_AV_PENDING_SET(); 1254 #else 1255 if (apic_mode == LOCAL_APIC) 1256 APIC_AV_PENDING_SET(); 1257 #endif /* DEBUG */ 1258 1259 apic_reg_ops->apic_write_int_cmd( 1260 apic_cpus[0].aci_local_id, APIC_CURR_ADD | AV_REMOTE); 1261 1262 while ((status = apic_reg_ops->apic_read(APIC_INT_CMD1)) 1263 & AV_READ_PENDING) { 1264 apic_ret(); 1265 } 1266 1267 if (status & AV_REMOTE_STATUS) /* 1 = valid */ 1268 countval = apic_reg_ops->apic_read(APIC_REMOTE_READ); 1269 else { /* 0 = invalid */ 1270 apic_remote_hrterr++; 1271 /* 1272 * return last hrtime right now, will need more 1273 * testing if change to retry 1274 */ 1275 temp = apic_last_hrtime; 1276 1277 lock_clear(&apic_gethrtime_lock); 1278 1279 intr_restore(oflags); 1280 1281 return (temp); 1282 } 1283 } 1284 if (countval > last_count_read) 1285 countval = 0; 1286 else 1287 last_count_read = countval; 1288 1289 elapsed_ticks = apic_hertz_count - countval; 1290 1291 curr_timeval = APIC_TICKS_TO_NSECS(elapsed_ticks); 1292 temp = apic_nsec_since_boot + curr_timeval; 1293 1294 if (apic_hrtime_stamp != old_hrtime_stamp) { /* got an interrupt */ 1295 /* we might have clobbered last_count_read. Restore it */ 1296 last_count_read = apic_hertz_count; 1297 goto gethrtime_again; 1298 } 1299 1300 if (temp < apic_last_hrtime) { 1301 /* return last hrtime if error occurs */ 1302 apic_hrtime_error++; 1303 temp = apic_last_hrtime; 1304 } 1305 else 1306 apic_last_hrtime = temp; 1307 1308 lock_clear(&apic_gethrtime_lock); 1309 intr_restore(oflags); 1310 1311 return (temp); 1312 } 1313 1314 /* apic NMI handler */ 1315 /*ARGSUSED*/ 1316 static void 1317 apic_nmi_intr(caddr_t arg, struct regs *rp) 1318 { 1319 if (apic_shutdown_processors) { 1320 apic_disable_local_apic(); 1321 return; 1322 } 1323 1324 apic_error |= APIC_ERR_NMI; 1325 1326 if (!lock_try(&apic_nmi_lock)) 1327 return; 1328 apic_num_nmis++; 1329 1330 if (apic_kmdb_on_nmi && psm_debugger()) { 1331 debug_enter("NMI received: entering kmdb\n"); 1332 } else if (apic_panic_on_nmi) { 1333 /* Keep panic from entering kmdb. */ 1334 nopanicdebug = 1; 1335 panic("NMI received\n"); 1336 } else { 1337 /* 1338 * prom_printf is the best shot we have of something which is 1339 * problem free from high level/NMI type of interrupts 1340 */ 1341 prom_printf("NMI received\n"); 1342 } 1343 1344 lock_clear(&apic_nmi_lock); 1345 } 1346 1347 /*ARGSUSED*/ 1348 static int 1349 apic_addspl(int irqno, int ipl, int min_ipl, int max_ipl) 1350 { 1351 return (apic_addspl_common(irqno, ipl, min_ipl, max_ipl)); 1352 } 1353 1354 static int 1355 apic_delspl(int irqno, int ipl, int min_ipl, int max_ipl) 1356 { 1357 return (apic_delspl_common(irqno, ipl, min_ipl, max_ipl)); 1358 } 1359 1360 static int 1361 apic_post_cpu_start() 1362 { 1363 int cpun; 1364 static int cpus_started = 1; 1365 struct psm_ops *pops = &apic_ops; 1366 1367 /* We know this CPU + BSP started successfully. */ 1368 cpus_started++; 1369 1370 /* 1371 * On BSP we would have enabled X2APIC, if supported by processor, 1372 * in acpi_probe(), but on AP we do it here. 1373 * 1374 * We enable X2APIC mode only if BSP is running in X2APIC & the 1375 * local APIC mode of the current CPU is MMIO (xAPIC). 1376 */ 1377 if (apic_mode == LOCAL_X2APIC && apic_detect_x2apic() && 1378 apic_local_mode() == LOCAL_APIC) { 1379 apic_enable_x2apic(); 1380 } 1381 1382 /* 1383 * We change psm_send_ipi and send_dirintf only if Solaris 1384 * is booted in kmdb & the current CPU is the last CPU being 1385 * brought up. We don't need to do anything if Solaris is running 1386 * in MMIO mode (xAPIC). 1387 */ 1388 if ((boothowto & RB_DEBUG) && 1389 (cpus_started == boot_ncpus || cpus_started == apic_nproc) && 1390 apic_mode == LOCAL_X2APIC) { 1391 /* 1392 * We no longer need help from apic_common_send_ipi() 1393 * since we will not start any more CPUs. 1394 * 1395 * We will need to revisit this if we start supporting 1396 * hot-plugging of CPUs. 1397 */ 1398 pops->psm_send_ipi = x2apic_send_ipi; 1399 send_dirintf = pops->psm_send_ipi; 1400 } 1401 1402 splx(ipltospl(LOCK_LEVEL)); 1403 apic_init_intr(); 1404 1405 /* 1406 * since some systems don't enable the internal cache on the non-boot 1407 * cpus, so we have to enable them here 1408 */ 1409 setcr0(getcr0() & ~(CR0_CD | CR0_NW)); 1410 1411 #ifdef DEBUG 1412 APIC_AV_PENDING_SET(); 1413 #else 1414 if (apic_mode == LOCAL_APIC) 1415 APIC_AV_PENDING_SET(); 1416 #endif /* DEBUG */ 1417 1418 /* 1419 * We may be booting, or resuming from suspend; aci_status will 1420 * be APIC_CPU_INTR_ENABLE if coming from suspend, so we add the 1421 * APIC_CPU_ONLINE flag here rather than setting aci_status completely. 1422 */ 1423 cpun = psm_get_cpu_id(); 1424 apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE; 1425 1426 apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init); 1427 return (PSM_SUCCESS); 1428 } 1429 1430 processorid_t 1431 apic_get_next_processorid(processorid_t cpu_id) 1432 { 1433 1434 int i; 1435 1436 if (cpu_id == -1) 1437 return ((processorid_t)0); 1438 1439 for (i = cpu_id + 1; i < NCPU; i++) { 1440 if (CPU_IN_SET(apic_cpumask, i)) 1441 return (i); 1442 } 1443 1444 return ((processorid_t)-1); 1445 } 1446 1447 1448 /* 1449 * type == -1 indicates it is an internal request. Do not change 1450 * resv_vector for these requests 1451 */ 1452 static int 1453 apic_get_ipivect(int ipl, int type) 1454 { 1455 uchar_t vector; 1456 int irq; 1457 1458 if (irq = apic_allocate_irq(APIC_VECTOR(ipl))) { 1459 if (vector = apic_allocate_vector(ipl, irq, 1)) { 1460 apic_irq_table[irq]->airq_mps_intr_index = 1461 RESERVE_INDEX; 1462 apic_irq_table[irq]->airq_vector = vector; 1463 if (type != -1) { 1464 apic_resv_vector[ipl] = vector; 1465 } 1466 return (irq); 1467 } 1468 } 1469 apic_error |= APIC_ERR_GET_IPIVECT_FAIL; 1470 return (-1); /* shouldn't happen */ 1471 } 1472 1473 static int 1474 apic_getclkirq(int ipl) 1475 { 1476 int irq; 1477 1478 if ((irq = apic_get_ipivect(ipl, -1)) == -1) 1479 return (-1); 1480 /* 1481 * Note the vector in apic_clkvect for per clock handling. 1482 */ 1483 apic_clkvect = apic_irq_table[irq]->airq_vector - APIC_BASE_VECT; 1484 APIC_VERBOSE_IOAPIC((CE_NOTE, "get_clkirq: vector = %x\n", 1485 apic_clkvect)); 1486 return (irq); 1487 } 1488 1489 1490 /* 1491 * Return the number of APIC clock ticks elapsed for 8245 to decrement 1492 * (APIC_TIME_COUNT + pit_ticks_adj) ticks. 1493 */ 1494 static uint_t 1495 apic_calibrate(volatile uint32_t *addr, uint16_t *pit_ticks_adj) 1496 { 1497 uint8_t pit_tick_lo; 1498 uint16_t pit_tick, target_pit_tick; 1499 uint32_t start_apic_tick, end_apic_tick; 1500 ulong_t iflag; 1501 uint32_t reg; 1502 1503 reg = addr + APIC_CURR_COUNT - apicadr; 1504 1505 iflag = intr_clear(); 1506 1507 do { 1508 pit_tick_lo = inb(PITCTR0_PORT); 1509 pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo; 1510 } while (pit_tick < APIC_TIME_MIN || 1511 pit_tick_lo <= APIC_LB_MIN || pit_tick_lo >= APIC_LB_MAX); 1512 1513 /* 1514 * Wait for the 8254 to decrement by 5 ticks to ensure 1515 * we didn't start in the middle of a tick. 1516 * Compare with 0x10 for the wrap around case. 1517 */ 1518 target_pit_tick = pit_tick - 5; 1519 do { 1520 pit_tick_lo = inb(PITCTR0_PORT); 1521 pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo; 1522 } while (pit_tick > target_pit_tick || pit_tick_lo < 0x10); 1523 1524 start_apic_tick = apic_reg_ops->apic_read(reg); 1525 1526 /* 1527 * Wait for the 8254 to decrement by 1528 * (APIC_TIME_COUNT + pit_ticks_adj) ticks 1529 */ 1530 target_pit_tick = pit_tick - APIC_TIME_COUNT; 1531 do { 1532 pit_tick_lo = inb(PITCTR0_PORT); 1533 pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo; 1534 } while (pit_tick > target_pit_tick || pit_tick_lo < 0x10); 1535 1536 end_apic_tick = apic_reg_ops->apic_read(reg); 1537 1538 *pit_ticks_adj = target_pit_tick - pit_tick; 1539 1540 intr_restore(iflag); 1541 1542 return (start_apic_tick - end_apic_tick); 1543 } 1544 1545 /* 1546 * Initialise the APIC timer on the local APIC of CPU 0 to the desired 1547 * frequency. Note at this stage in the boot sequence, the boot processor 1548 * is the only active processor. 1549 * hertz value of 0 indicates a one-shot mode request. In this case 1550 * the function returns the resolution (in nanoseconds) for the hardware 1551 * timer interrupt. If one-shot mode capability is not available, 1552 * the return value will be 0. apic_enable_oneshot is a global switch 1553 * for disabling the functionality. 1554 * A non-zero positive value for hertz indicates a periodic mode request. 1555 * In this case the hardware will be programmed to generate clock interrupts 1556 * at hertz frequency and returns the resolution of interrupts in 1557 * nanosecond. 1558 */ 1559 1560 static int 1561 apic_clkinit(int hertz) 1562 { 1563 uint_t apic_ticks = 0; 1564 uint_t pit_ticks; 1565 int ret; 1566 uint16_t pit_ticks_adj; 1567 static int firsttime = 1; 1568 1569 if (firsttime) { 1570 /* first time calibrate on CPU0 only */ 1571 1572 apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init); 1573 apic_reg_ops->apic_write(APIC_INIT_COUNT, APIC_MAXVAL); 1574 apic_ticks = apic_calibrate(apicadr, &pit_ticks_adj); 1575 1576 /* total number of PIT ticks corresponding to apic_ticks */ 1577 pit_ticks = APIC_TIME_COUNT + pit_ticks_adj; 1578 1579 /* 1580 * Determine the number of nanoseconds per APIC clock tick 1581 * and then determine how many APIC ticks to interrupt at the 1582 * desired frequency 1583 * apic_ticks / (pitticks / PIT_HZ) = apic_ticks_per_s 1584 * (apic_ticks * PIT_HZ) / pitticks = apic_ticks_per_s 1585 * apic_ticks_per_ns = (apic_ticks * PIT_HZ) / (pitticks * 10^9) 1586 * pic_ticks_per_SFns = 1587 * (SF * apic_ticks * PIT_HZ) / (pitticks * 10^9) 1588 */ 1589 apic_ticks_per_SFnsecs = 1590 ((SF * apic_ticks * PIT_HZ) / 1591 ((uint64_t)pit_ticks * NANOSEC)); 1592 1593 /* the interval timer initial count is 32 bit max */ 1594 apic_nsec_max = APIC_TICKS_TO_NSECS(APIC_MAXVAL); 1595 firsttime = 0; 1596 } 1597 1598 if (hertz != 0) { 1599 /* periodic */ 1600 apic_nsec_per_intr = NANOSEC / hertz; 1601 apic_hertz_count = APIC_NSECS_TO_TICKS(apic_nsec_per_intr); 1602 } 1603 1604 apic_int_busy_mark = (apic_int_busy_mark * 1605 apic_sample_factor_redistribution) / 100; 1606 apic_int_free_mark = (apic_int_free_mark * 1607 apic_sample_factor_redistribution) / 100; 1608 apic_diff_for_redistribution = (apic_diff_for_redistribution * 1609 apic_sample_factor_redistribution) / 100; 1610 1611 if (hertz == 0) { 1612 /* requested one_shot */ 1613 if (!tsc_gethrtime_enable || !apic_oneshot_enable) 1614 return (0); 1615 apic_oneshot = 1; 1616 ret = (int)APIC_TICKS_TO_NSECS(1); 1617 } else { 1618 /* program the local APIC to interrupt at the given frequency */ 1619 apic_reg_ops->apic_write(APIC_INIT_COUNT, apic_hertz_count); 1620 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, 1621 (apic_clkvect + APIC_BASE_VECT) | AV_TIME); 1622 apic_oneshot = 0; 1623 ret = NANOSEC / hertz; 1624 } 1625 1626 return (ret); 1627 1628 } 1629 1630 /* 1631 * apic_preshutdown: 1632 * Called early in shutdown whilst we can still access filesystems to do 1633 * things like loading modules which will be required to complete shutdown 1634 * after filesystems are all unmounted. 1635 */ 1636 static void 1637 apic_preshutdown(int cmd, int fcn) 1638 { 1639 APIC_VERBOSE_POWEROFF(("apic_preshutdown(%d,%d); m=%d a=%d\n", 1640 cmd, fcn, apic_poweroff_method, apic_enable_acpi)); 1641 1642 if ((cmd != A_SHUTDOWN) || (fcn != AD_POWEROFF)) { 1643 return; 1644 } 1645 } 1646 1647 static void 1648 apic_shutdown(int cmd, int fcn) 1649 { 1650 int restarts, attempts; 1651 int i; 1652 uchar_t byte; 1653 ulong_t iflag; 1654 1655 hpet_acpi_fini(); 1656 1657 /* Send NMI to all CPUs except self to do per processor shutdown */ 1658 iflag = intr_clear(); 1659 #ifdef DEBUG 1660 APIC_AV_PENDING_SET(); 1661 #else 1662 if (apic_mode == LOCAL_APIC) 1663 APIC_AV_PENDING_SET(); 1664 #endif /* DEBUG */ 1665 apic_shutdown_processors = 1; 1666 apic_reg_ops->apic_write(APIC_INT_CMD1, 1667 AV_NMI | AV_LEVEL | AV_SH_ALL_EXCSELF); 1668 1669 /* restore cmos shutdown byte before reboot */ 1670 if (apic_cmos_ssb_set) { 1671 outb(CMOS_ADDR, SSB); 1672 outb(CMOS_DATA, 0); 1673 } 1674 1675 ioapic_disable_redirection(); 1676 1677 /* disable apic mode if imcr present */ 1678 if (apic_imcrp) { 1679 outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT); 1680 outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_PIC); 1681 } 1682 1683 apic_disable_local_apic(); 1684 1685 intr_restore(iflag); 1686 1687 /* remainder of function is for shutdown cases only */ 1688 if (cmd != A_SHUTDOWN) 1689 return; 1690 1691 /* 1692 * Switch system back into Legacy-Mode if using ACPI and 1693 * not powering-off. Some BIOSes need to remain in ACPI-mode 1694 * for power-off to succeed (Dell Dimension 4600) 1695 * Do not disable ACPI while doing fastreboot 1696 */ 1697 if (apic_enable_acpi && fcn != AD_POWEROFF && fcn != AD_FASTREBOOT) 1698 (void) AcpiDisable(); 1699 1700 if (fcn == AD_FASTREBOOT) { 1701 apic_reg_ops->apic_write(APIC_INT_CMD1, 1702 AV_ASSERT | AV_RESET | AV_SH_ALL_EXCSELF); 1703 } 1704 1705 /* remainder of function is for shutdown+poweroff case only */ 1706 if (fcn != AD_POWEROFF) 1707 return; 1708 1709 switch (apic_poweroff_method) { 1710 case APIC_POWEROFF_VIA_RTC: 1711 1712 /* select the extended NVRAM bank in the RTC */ 1713 outb(CMOS_ADDR, RTC_REGA); 1714 byte = inb(CMOS_DATA); 1715 outb(CMOS_DATA, (byte | EXT_BANK)); 1716 1717 outb(CMOS_ADDR, PFR_REG); 1718 1719 /* for Predator must toggle the PAB bit */ 1720 byte = inb(CMOS_DATA); 1721 1722 /* 1723 * clear power active bar, wakeup alarm and 1724 * kickstart 1725 */ 1726 byte &= ~(PAB_CBIT | WF_FLAG | KS_FLAG); 1727 outb(CMOS_DATA, byte); 1728 1729 /* delay before next write */ 1730 drv_usecwait(1000); 1731 1732 /* for S40 the following would suffice */ 1733 byte = inb(CMOS_DATA); 1734 1735 /* power active bar control bit */ 1736 byte |= PAB_CBIT; 1737 outb(CMOS_DATA, byte); 1738 1739 break; 1740 1741 case APIC_POWEROFF_VIA_ASPEN_BMC: 1742 restarts = 0; 1743 restart_aspen_bmc: 1744 if (++restarts == 3) 1745 break; 1746 attempts = 0; 1747 do { 1748 byte = inb(MISMIC_FLAG_REGISTER); 1749 byte &= MISMIC_BUSY_MASK; 1750 if (byte != 0) { 1751 drv_usecwait(1000); 1752 if (attempts >= 3) 1753 goto restart_aspen_bmc; 1754 ++attempts; 1755 } 1756 } while (byte != 0); 1757 outb(MISMIC_CNTL_REGISTER, CC_SMS_GET_STATUS); 1758 byte = inb(MISMIC_FLAG_REGISTER); 1759 byte |= 0x1; 1760 outb(MISMIC_FLAG_REGISTER, byte); 1761 i = 0; 1762 for (; i < (sizeof (aspen_bmc)/sizeof (aspen_bmc[0])); 1763 i++) { 1764 attempts = 0; 1765 do { 1766 byte = inb(MISMIC_FLAG_REGISTER); 1767 byte &= MISMIC_BUSY_MASK; 1768 if (byte != 0) { 1769 drv_usecwait(1000); 1770 if (attempts >= 3) 1771 goto restart_aspen_bmc; 1772 ++attempts; 1773 } 1774 } while (byte != 0); 1775 outb(MISMIC_CNTL_REGISTER, aspen_bmc[i].cntl); 1776 outb(MISMIC_DATA_REGISTER, aspen_bmc[i].data); 1777 byte = inb(MISMIC_FLAG_REGISTER); 1778 byte |= 0x1; 1779 outb(MISMIC_FLAG_REGISTER, byte); 1780 } 1781 break; 1782 1783 case APIC_POWEROFF_VIA_SITKA_BMC: 1784 restarts = 0; 1785 restart_sitka_bmc: 1786 if (++restarts == 3) 1787 break; 1788 attempts = 0; 1789 do { 1790 byte = inb(SMS_STATUS_REGISTER); 1791 byte &= SMS_STATE_MASK; 1792 if ((byte == SMS_READ_STATE) || 1793 (byte == SMS_WRITE_STATE)) { 1794 drv_usecwait(1000); 1795 if (attempts >= 3) 1796 goto restart_sitka_bmc; 1797 ++attempts; 1798 } 1799 } while ((byte == SMS_READ_STATE) || 1800 (byte == SMS_WRITE_STATE)); 1801 outb(SMS_COMMAND_REGISTER, SMS_GET_STATUS); 1802 i = 0; 1803 for (; i < (sizeof (sitka_bmc)/sizeof (sitka_bmc[0])); 1804 i++) { 1805 attempts = 0; 1806 do { 1807 byte = inb(SMS_STATUS_REGISTER); 1808 byte &= SMS_IBF_MASK; 1809 if (byte != 0) { 1810 drv_usecwait(1000); 1811 if (attempts >= 3) 1812 goto restart_sitka_bmc; 1813 ++attempts; 1814 } 1815 } while (byte != 0); 1816 outb(sitka_bmc[i].port, sitka_bmc[i].data); 1817 } 1818 break; 1819 1820 case APIC_POWEROFF_NONE: 1821 1822 /* If no APIC direct method, we will try using ACPI */ 1823 if (apic_enable_acpi) { 1824 if (acpi_poweroff() == 1) 1825 return; 1826 } else 1827 return; 1828 1829 break; 1830 } 1831 /* 1832 * Wait a limited time here for power to go off. 1833 * If the power does not go off, then there was a 1834 * problem and we should continue to the halt which 1835 * prints a message for the user to press a key to 1836 * reboot. 1837 */ 1838 drv_usecwait(7000000); /* wait seven seconds */ 1839 1840 } 1841 1842 /* 1843 * Try and disable all interrupts. We just assign interrupts to other 1844 * processors based on policy. If any were bound by user request, we 1845 * let them continue and return failure. We do not bother to check 1846 * for cache affinity while rebinding. 1847 */ 1848 1849 static int 1850 apic_disable_intr(processorid_t cpun) 1851 { 1852 int bind_cpu = 0, i, hardbound = 0; 1853 apic_irq_t *irq_ptr; 1854 ulong_t iflag; 1855 1856 iflag = intr_clear(); 1857 lock_set(&apic_ioapic_lock); 1858 1859 for (i = 0; i <= APIC_MAX_VECTOR; i++) { 1860 if (apic_reprogram_info[i].done == B_FALSE) { 1861 if (apic_reprogram_info[i].bindcpu == cpun) { 1862 /* 1863 * CPU is busy -- it's the target of 1864 * a pending reprogramming attempt 1865 */ 1866 lock_clear(&apic_ioapic_lock); 1867 intr_restore(iflag); 1868 return (PSM_FAILURE); 1869 } 1870 } 1871 } 1872 1873 apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE; 1874 1875 apic_cpus[cpun].aci_curipl = 0; 1876 1877 i = apic_min_device_irq; 1878 for (; i <= apic_max_device_irq; i++) { 1879 /* 1880 * If there are bound interrupts on this cpu, then 1881 * rebind them to other processors. 1882 */ 1883 if ((irq_ptr = apic_irq_table[i]) != NULL) { 1884 ASSERT((irq_ptr->airq_temp_cpu == IRQ_UNBOUND) || 1885 (irq_ptr->airq_temp_cpu == IRQ_UNINIT) || 1886 ((irq_ptr->airq_temp_cpu & ~IRQ_USER_BOUND) < 1887 apic_nproc)); 1888 1889 if (irq_ptr->airq_temp_cpu == (cpun | IRQ_USER_BOUND)) { 1890 hardbound = 1; 1891 continue; 1892 } 1893 1894 if (irq_ptr->airq_temp_cpu == cpun) { 1895 do { 1896 bind_cpu = apic_next_bind_cpu++; 1897 if (bind_cpu >= apic_nproc) { 1898 apic_next_bind_cpu = 1; 1899 bind_cpu = 0; 1900 1901 } 1902 } while (apic_rebind_all(irq_ptr, bind_cpu)); 1903 } 1904 } 1905 } 1906 1907 lock_clear(&apic_ioapic_lock); 1908 intr_restore(iflag); 1909 1910 if (hardbound) { 1911 cmn_err(CE_WARN, "Could not disable interrupts on %d" 1912 "due to user bound interrupts", cpun); 1913 return (PSM_FAILURE); 1914 } 1915 else 1916 return (PSM_SUCCESS); 1917 } 1918 1919 /* 1920 * Bind interrupts to the CPU's local APIC. 1921 * Interrupts should not be bound to a CPU's local APIC until the CPU 1922 * is ready to receive interrupts. 1923 */ 1924 static void 1925 apic_enable_intr(processorid_t cpun) 1926 { 1927 int i; 1928 apic_irq_t *irq_ptr; 1929 ulong_t iflag; 1930 1931 iflag = intr_clear(); 1932 lock_set(&apic_ioapic_lock); 1933 1934 apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE; 1935 1936 i = apic_min_device_irq; 1937 for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) { 1938 if ((irq_ptr = apic_irq_table[i]) != NULL) { 1939 if ((irq_ptr->airq_cpu & ~IRQ_USER_BOUND) == cpun) { 1940 (void) apic_rebind_all(irq_ptr, 1941 irq_ptr->airq_cpu); 1942 } 1943 } 1944 } 1945 1946 lock_clear(&apic_ioapic_lock); 1947 intr_restore(iflag); 1948 } 1949 1950 1951 /* 1952 * This function will reprogram the timer. 1953 * 1954 * When in oneshot mode the argument is the absolute time in future to 1955 * generate the interrupt at. 1956 * 1957 * When in periodic mode, the argument is the interval at which the 1958 * interrupts should be generated. There is no need to support the periodic 1959 * mode timer change at this time. 1960 */ 1961 static void 1962 apic_timer_reprogram(hrtime_t time) 1963 { 1964 hrtime_t now; 1965 uint_t ticks; 1966 int64_t delta; 1967 1968 /* 1969 * We should be called from high PIL context (CBE_HIGH_PIL), 1970 * so kpreempt is disabled. 1971 */ 1972 1973 if (!apic_oneshot) { 1974 /* time is the interval for periodic mode */ 1975 ticks = APIC_NSECS_TO_TICKS(time); 1976 } else { 1977 /* one shot mode */ 1978 1979 now = gethrtime(); 1980 delta = time - now; 1981 1982 if (delta <= 0) { 1983 /* 1984 * requested to generate an interrupt in the past 1985 * generate an interrupt as soon as possible 1986 */ 1987 ticks = apic_min_timer_ticks; 1988 } else if (delta > apic_nsec_max) { 1989 /* 1990 * requested to generate an interrupt at a time 1991 * further than what we are capable of. Set to max 1992 * the hardware can handle 1993 */ 1994 1995 ticks = APIC_MAXVAL; 1996 #ifdef DEBUG 1997 cmn_err(CE_CONT, "apic_timer_reprogram, request at" 1998 " %lld too far in future, current time" 1999 " %lld \n", time, now); 2000 #endif 2001 } else 2002 ticks = APIC_NSECS_TO_TICKS(delta); 2003 } 2004 2005 if (ticks < apic_min_timer_ticks) 2006 ticks = apic_min_timer_ticks; 2007 2008 apic_reg_ops->apic_write(APIC_INIT_COUNT, ticks); 2009 } 2010 2011 /* 2012 * This function will enable timer interrupts. 2013 */ 2014 static void 2015 apic_timer_enable(void) 2016 { 2017 /* 2018 * We should be Called from high PIL context (CBE_HIGH_PIL), 2019 * so kpreempt is disabled. 2020 */ 2021 2022 if (!apic_oneshot) { 2023 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, 2024 (apic_clkvect + APIC_BASE_VECT) | AV_TIME); 2025 } else { 2026 /* one shot */ 2027 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, 2028 (apic_clkvect + APIC_BASE_VECT)); 2029 } 2030 } 2031 2032 /* 2033 * This function will disable timer interrupts. 2034 */ 2035 static void 2036 apic_timer_disable(void) 2037 { 2038 /* 2039 * We should be Called from high PIL context (CBE_HIGH_PIL), 2040 * so kpreempt is disabled. 2041 */ 2042 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, 2043 (apic_clkvect + APIC_BASE_VECT) | AV_MASK); 2044 } 2045 2046 /* 2047 * Set timer far into the future and return timer 2048 * current Count in nanoseconds. 2049 */ 2050 hrtime_t 2051 apic_timer_stop_count(void) 2052 { 2053 hrtime_t ns_val; 2054 int enable_val, count_val; 2055 2056 /* 2057 * Should be called with interrupts disabled. 2058 */ 2059 ASSERT(!interrupts_enabled()); 2060 2061 enable_val = apic_reg_ops->apic_read(APIC_LOCAL_TIMER); 2062 if ((enable_val & AV_MASK) == AV_MASK) 2063 return ((hrtime_t)-1); /* timer is disabled */ 2064 2065 count_val = apic_reg_ops->apic_read(APIC_CURR_COUNT); 2066 ns_val = APIC_TICKS_TO_NSECS(count_val); 2067 2068 apic_reg_ops->apic_write(APIC_INIT_COUNT, APIC_MAXVAL); 2069 2070 return (ns_val); 2071 } 2072 2073 /* 2074 * Reprogram timer after Deep C-State. 2075 */ 2076 void 2077 apic_timer_restart(hrtime_t time) 2078 { 2079 apic_timer_reprogram(time); 2080 } 2081 2082 ddi_periodic_t apic_periodic_id; 2083 2084 /* 2085 * If this module needs a periodic handler for the interrupt distribution, it 2086 * can be added here. The argument to the periodic handler is not currently 2087 * used, but is reserved for future. 2088 */ 2089 static void 2090 apic_post_cyclic_setup(void *arg) 2091 { 2092 _NOTE(ARGUNUSED(arg)) 2093 /* cpu_lock is held */ 2094 /* set up a periodic handler for intr redistribution */ 2095 2096 /* 2097 * In peridoc mode intr redistribution processing is done in 2098 * apic_intr_enter during clk intr processing 2099 */ 2100 if (!apic_oneshot) 2101 return; 2102 /* 2103 * Register a periodical handler for the redistribution processing. 2104 * On X86, CY_LOW_LEVEL is mapped to the level 2 interrupt, so 2105 * DDI_IPL_2 should be passed to ddi_periodic_add() here. 2106 */ 2107 apic_periodic_id = ddi_periodic_add( 2108 (void (*)(void *))apic_redistribute_compute, NULL, 2109 apic_redistribute_sample_interval, DDI_IPL_2); 2110 } 2111 2112 static void 2113 apic_redistribute_compute(void) 2114 { 2115 int i, j, max_busy; 2116 2117 if (apic_enable_dynamic_migration) { 2118 if (++apic_nticks == apic_sample_factor_redistribution) { 2119 /* 2120 * Time to call apic_intr_redistribute(). 2121 * reset apic_nticks. This will cause max_busy 2122 * to be calculated below and if it is more than 2123 * apic_int_busy, we will do the whole thing 2124 */ 2125 apic_nticks = 0; 2126 } 2127 max_busy = 0; 2128 for (i = 0; i < apic_nproc; i++) { 2129 2130 /* 2131 * Check if curipl is non zero & if ISR is in 2132 * progress 2133 */ 2134 if (((j = apic_cpus[i].aci_curipl) != 0) && 2135 (apic_cpus[i].aci_ISR_in_progress & (1 << j))) { 2136 2137 int irq; 2138 apic_cpus[i].aci_busy++; 2139 irq = apic_cpus[i].aci_current[j]; 2140 apic_irq_table[irq]->airq_busy++; 2141 } 2142 2143 if (!apic_nticks && 2144 (apic_cpus[i].aci_busy > max_busy)) 2145 max_busy = apic_cpus[i].aci_busy; 2146 } 2147 if (!apic_nticks) { 2148 if (max_busy > apic_int_busy_mark) { 2149 /* 2150 * We could make the following check be 2151 * skipped > 1 in which case, we get a 2152 * redistribution at half the busy mark (due to 2153 * double interval). Need to be able to collect 2154 * more empirical data to decide if that is a 2155 * good strategy. Punt for now. 2156 */ 2157 if (apic_skipped_redistribute) { 2158 apic_cleanup_busy(); 2159 apic_skipped_redistribute = 0; 2160 } else { 2161 apic_intr_redistribute(); 2162 } 2163 } else 2164 apic_skipped_redistribute++; 2165 } 2166 } 2167 } 2168 2169 2170 /* 2171 * The following functions are in the platform specific file so that they 2172 * can be different functions depending on whether we are running on 2173 * bare metal or a hypervisor. 2174 */ 2175 2176 /* 2177 * map an apic for memory-mapped access 2178 */ 2179 uint32_t * 2180 mapin_apic(uint32_t addr, size_t len, int flags) 2181 { 2182 /*LINTED: pointer cast may result in improper alignment */ 2183 return ((uint32_t *)psm_map_phys(addr, len, flags)); 2184 } 2185 2186 uint32_t * 2187 mapin_ioapic(uint32_t addr, size_t len, int flags) 2188 { 2189 return (mapin_apic(addr, len, flags)); 2190 } 2191 2192 /* 2193 * unmap an apic 2194 */ 2195 void 2196 mapout_apic(caddr_t addr, size_t len) 2197 { 2198 psm_unmap_phys(addr, len); 2199 } 2200 2201 void 2202 mapout_ioapic(caddr_t addr, size_t len) 2203 { 2204 mapout_apic(addr, len); 2205 } 2206 2207 /* 2208 * Check to make sure there are enough irq slots 2209 */ 2210 int 2211 apic_check_free_irqs(int count) 2212 { 2213 int i, avail; 2214 2215 avail = 0; 2216 for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) { 2217 if ((apic_irq_table[i] == NULL) || 2218 apic_irq_table[i]->airq_mps_intr_index == FREE_INDEX) { 2219 if (++avail >= count) 2220 return (PSM_SUCCESS); 2221 } 2222 } 2223 return (PSM_FAILURE); 2224 } 2225 2226 /* 2227 * This function allocates "count" MSI vector(s) for the given "dip/pri/type" 2228 */ 2229 int 2230 apic_alloc_msi_vectors(dev_info_t *dip, int inum, int count, int pri, 2231 int behavior) 2232 { 2233 int rcount, i; 2234 uchar_t start, irqno; 2235 uint32_t cpu; 2236 major_t major; 2237 apic_irq_t *irqptr; 2238 2239 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: dip=0x%p " 2240 "inum=0x%x pri=0x%x count=0x%x behavior=%d\n", 2241 (void *)dip, inum, pri, count, behavior)); 2242 2243 if (count > 1) { 2244 if (behavior == DDI_INTR_ALLOC_STRICT && 2245 (apic_multi_msi_enable == 0 || count > apic_multi_msi_max)) 2246 return (0); 2247 2248 if (apic_multi_msi_enable == 0) 2249 count = 1; 2250 else if (count > apic_multi_msi_max) 2251 count = apic_multi_msi_max; 2252 } 2253 2254 if ((rcount = apic_navail_vector(dip, pri)) > count) 2255 rcount = count; 2256 else if (rcount == 0 || (rcount < count && 2257 behavior == DDI_INTR_ALLOC_STRICT)) 2258 return (0); 2259 2260 /* if not ISP2, then round it down */ 2261 if (!ISP2(rcount)) 2262 rcount = 1 << (highbit(rcount) - 1); 2263 2264 mutex_enter(&airq_mutex); 2265 2266 for (start = 0; rcount > 0; rcount >>= 1) { 2267 if ((start = apic_find_multi_vectors(pri, rcount)) != 0 || 2268 behavior == DDI_INTR_ALLOC_STRICT) 2269 break; 2270 } 2271 2272 if (start == 0) { 2273 /* no vector available */ 2274 mutex_exit(&airq_mutex); 2275 return (0); 2276 } 2277 2278 if (apic_check_free_irqs(rcount) == PSM_FAILURE) { 2279 /* not enough free irq slots available */ 2280 mutex_exit(&airq_mutex); 2281 return (0); 2282 } 2283 2284 major = (dip != NULL) ? ddi_driver_major(dip) : 0; 2285 for (i = 0; i < rcount; i++) { 2286 if ((irqno = apic_allocate_irq(apic_first_avail_irq)) == 2287 (uchar_t)-1) { 2288 /* 2289 * shouldn't happen because of the 2290 * apic_check_free_irqs() check earlier 2291 */ 2292 mutex_exit(&airq_mutex); 2293 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: " 2294 "apic_allocate_irq failed\n")); 2295 return (i); 2296 } 2297 apic_max_device_irq = max(irqno, apic_max_device_irq); 2298 apic_min_device_irq = min(irqno, apic_min_device_irq); 2299 irqptr = apic_irq_table[irqno]; 2300 #ifdef DEBUG 2301 if (apic_vector_to_irq[start + i] != APIC_RESV_IRQ) 2302 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: " 2303 "apic_vector_to_irq is not APIC_RESV_IRQ\n")); 2304 #endif 2305 apic_vector_to_irq[start + i] = (uchar_t)irqno; 2306 2307 irqptr->airq_vector = (uchar_t)(start + i); 2308 irqptr->airq_ioapicindex = (uchar_t)inum; /* start */ 2309 irqptr->airq_intin_no = (uchar_t)rcount; 2310 irqptr->airq_ipl = pri; 2311 irqptr->airq_vector = start + i; 2312 irqptr->airq_origirq = (uchar_t)(inum + i); 2313 irqptr->airq_share_id = 0; 2314 irqptr->airq_mps_intr_index = MSI_INDEX; 2315 irqptr->airq_dip = dip; 2316 irqptr->airq_major = major; 2317 if (i == 0) /* they all bound to the same cpu */ 2318 cpu = irqptr->airq_cpu = apic_bind_intr(dip, irqno, 2319 0xff, 0xff); 2320 else 2321 irqptr->airq_cpu = cpu; 2322 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: irq=0x%x " 2323 "dip=0x%p vector=0x%x origirq=0x%x pri=0x%x\n", irqno, 2324 (void *)irqptr->airq_dip, irqptr->airq_vector, 2325 irqptr->airq_origirq, pri)); 2326 } 2327 mutex_exit(&airq_mutex); 2328 return (rcount); 2329 } 2330 2331 /* 2332 * This function allocates "count" MSI-X vector(s) for the given "dip/pri/type" 2333 */ 2334 int 2335 apic_alloc_msix_vectors(dev_info_t *dip, int inum, int count, int pri, 2336 int behavior) 2337 { 2338 int rcount, i; 2339 major_t major; 2340 2341 if (count > 1) { 2342 if (behavior == DDI_INTR_ALLOC_STRICT) { 2343 if (count > apic_msix_max) 2344 return (0); 2345 } else if (count > apic_msix_max) 2346 count = apic_msix_max; 2347 } 2348 2349 mutex_enter(&airq_mutex); 2350 2351 if ((rcount = apic_navail_vector(dip, pri)) > count) 2352 rcount = count; 2353 else if (rcount == 0 || (rcount < count && 2354 behavior == DDI_INTR_ALLOC_STRICT)) { 2355 rcount = 0; 2356 goto out; 2357 } 2358 2359 if (apic_check_free_irqs(rcount) == PSM_FAILURE) { 2360 /* not enough free irq slots available */ 2361 rcount = 0; 2362 goto out; 2363 } 2364 2365 major = (dip != NULL) ? ddi_driver_major(dip) : 0; 2366 for (i = 0; i < rcount; i++) { 2367 uchar_t vector, irqno; 2368 apic_irq_t *irqptr; 2369 2370 if ((irqno = apic_allocate_irq(apic_first_avail_irq)) == 2371 (uchar_t)-1) { 2372 /* 2373 * shouldn't happen because of the 2374 * apic_check_free_irqs() check earlier 2375 */ 2376 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: " 2377 "apic_allocate_irq failed\n")); 2378 rcount = i; 2379 goto out; 2380 } 2381 if ((vector = apic_allocate_vector(pri, irqno, 1)) == 0) { 2382 /* 2383 * shouldn't happen because of the 2384 * apic_navail_vector() call earlier 2385 */ 2386 DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: " 2387 "apic_allocate_vector failed\n")); 2388 rcount = i; 2389 goto out; 2390 } 2391 apic_max_device_irq = max(irqno, apic_max_device_irq); 2392 apic_min_device_irq = min(irqno, apic_min_device_irq); 2393 irqptr = apic_irq_table[irqno]; 2394 irqptr->airq_vector = (uchar_t)vector; 2395 irqptr->airq_ipl = pri; 2396 irqptr->airq_origirq = (uchar_t)(inum + i); 2397 irqptr->airq_share_id = 0; 2398 irqptr->airq_mps_intr_index = MSIX_INDEX; 2399 irqptr->airq_dip = dip; 2400 irqptr->airq_major = major; 2401 irqptr->airq_cpu = apic_bind_intr(dip, irqno, 0xff, 0xff); 2402 } 2403 out: 2404 mutex_exit(&airq_mutex); 2405 return (rcount); 2406 } 2407 2408 /* 2409 * Allocate a free vector for irq at ipl. Takes care of merging of multiple 2410 * IPLs into a single APIC level as well as stretching some IPLs onto multiple 2411 * levels. APIC_HI_PRI_VECTS interrupts are reserved for high priority 2412 * requests and allocated only when pri is set. 2413 */ 2414 uchar_t 2415 apic_allocate_vector(int ipl, int irq, int pri) 2416 { 2417 int lowest, highest, i; 2418 2419 highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK; 2420 lowest = apic_ipltopri[ipl - 1] + APIC_VECTOR_PER_IPL; 2421 2422 if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */ 2423 lowest -= APIC_VECTOR_PER_IPL; 2424 2425 #ifdef DEBUG 2426 if (apic_restrict_vector) /* for testing shared interrupt logic */ 2427 highest = lowest + apic_restrict_vector + APIC_HI_PRI_VECTS; 2428 #endif /* DEBUG */ 2429 if (pri == 0) 2430 highest -= APIC_HI_PRI_VECTS; 2431 2432 for (i = lowest; i < highest; i++) { 2433 if (APIC_CHECK_RESERVE_VECTORS(i)) 2434 continue; 2435 if (apic_vector_to_irq[i] == APIC_RESV_IRQ) { 2436 apic_vector_to_irq[i] = (uchar_t)irq; 2437 return (i); 2438 } 2439 } 2440 2441 return (0); 2442 } 2443 2444 /* Mark vector as not being used by any irq */ 2445 void 2446 apic_free_vector(uchar_t vector) 2447 { 2448 apic_vector_to_irq[vector] = APIC_RESV_IRQ; 2449 } 2450 2451 uint32_t 2452 ioapic_read(int ioapic_ix, uint32_t reg) 2453 { 2454 volatile uint32_t *ioapic; 2455 2456 ioapic = apicioadr[ioapic_ix]; 2457 ioapic[APIC_IO_REG] = reg; 2458 return (ioapic[APIC_IO_DATA]); 2459 } 2460 2461 void 2462 ioapic_write(int ioapic_ix, uint32_t reg, uint32_t value) 2463 { 2464 volatile uint32_t *ioapic; 2465 2466 ioapic = apicioadr[ioapic_ix]; 2467 ioapic[APIC_IO_REG] = reg; 2468 ioapic[APIC_IO_DATA] = value; 2469 } 2470 2471 void 2472 ioapic_write_eoi(int ioapic_ix, uint32_t value) 2473 { 2474 volatile uint32_t *ioapic; 2475 2476 ioapic = apicioadr[ioapic_ix]; 2477 ioapic[APIC_IO_EOI] = value; 2478 } 2479 2480 static processorid_t 2481 apic_find_cpu(int flag) 2482 { 2483 processorid_t acid = 0; 2484 int i; 2485 2486 /* Find the first CPU with the passed-in flag set */ 2487 for (i = 0; i < apic_nproc; i++) { 2488 if (apic_cpus[i].aci_status & flag) { 2489 acid = i; 2490 break; 2491 } 2492 } 2493 2494 ASSERT((apic_cpus[acid].aci_status & flag) != 0); 2495 return (acid); 2496 } 2497 2498 /* 2499 * Call rebind to do the actual programming. 2500 * Must be called with interrupts disabled and apic_ioapic_lock held 2501 * 'p' is polymorphic -- if this function is called to process a deferred 2502 * reprogramming, p is of type 'struct ioapic_reprogram_data *', from which 2503 * the irq pointer is retrieved. If not doing deferred reprogramming, 2504 * p is of the type 'apic_irq_t *'. 2505 * 2506 * apic_ioapic_lock must be held across this call, as it protects apic_rebind 2507 * and it protects apic_find_cpu() from a race in which a CPU can be taken 2508 * offline after a cpu is selected, but before apic_rebind is called to 2509 * bind interrupts to it. 2510 */ 2511 int 2512 apic_setup_io_intr(void *p, int irq, boolean_t deferred) 2513 { 2514 apic_irq_t *irqptr; 2515 struct ioapic_reprogram_data *drep = NULL; 2516 int rv; 2517 2518 if (deferred) { 2519 drep = (struct ioapic_reprogram_data *)p; 2520 ASSERT(drep != NULL); 2521 irqptr = drep->irqp; 2522 } else 2523 irqptr = (apic_irq_t *)p; 2524 2525 ASSERT(irqptr != NULL); 2526 2527 rv = apic_rebind(irqptr, apic_irq_table[irq]->airq_cpu, drep); 2528 if (rv) { 2529 /* 2530 * CPU is not up or interrupts are disabled. Fall back to 2531 * the first available CPU 2532 */ 2533 rv = apic_rebind(irqptr, apic_find_cpu(APIC_CPU_INTR_ENABLE), 2534 drep); 2535 } 2536 2537 return (rv); 2538 } 2539 2540 2541 uchar_t 2542 apic_modify_vector(uchar_t vector, int irq) 2543 { 2544 apic_vector_to_irq[vector] = (uchar_t)irq; 2545 return (vector); 2546 } 2547 2548 char * 2549 apic_get_apic_type() 2550 { 2551 return (apic_psm_info.p_mach_idstring); 2552 } 2553 2554 void 2555 x2apic_update_psm() 2556 { 2557 struct psm_ops *pops = &apic_ops; 2558 2559 ASSERT(pops != NULL); 2560 2561 /* 2562 * We don't need to do any magic if one of the following 2563 * conditions is true : 2564 * - Not being run under kernel debugger. 2565 * - MP is not set. 2566 * - Booted with one CPU only. 2567 * - One CPU configured. 2568 * 2569 * We set apic_common_send_ipi() since kernel debuggers 2570 * attempt to send IPIs to other slave CPUs during 2571 * entry (exit) from (to) debugger. 2572 */ 2573 if (!(boothowto & RB_DEBUG) || use_mp == 0 || 2574 apic_nproc == 1 || boot_ncpus == 1) { 2575 pops->psm_send_ipi = x2apic_send_ipi; 2576 } else { 2577 pops->psm_send_ipi = apic_common_send_ipi; 2578 } 2579 2580 pops->psm_intr_exit = x2apic_intr_exit; 2581 pops->psm_setspl = x2apic_setspl; 2582 2583 send_dirintf = pops->psm_send_ipi; 2584 2585 apic_mode = LOCAL_X2APIC; 2586 apic_change_ops(); 2587 } 2588 2589 static void 2590 apic_intrr_init(int apic_mode) 2591 { 2592 if (psm_vt_ops != NULL) { 2593 if (((apic_intrr_ops_t *)psm_vt_ops)->apic_intrr_init(apic_mode) 2594 == DDI_SUCCESS) { 2595 apic_vt_ops = psm_vt_ops; 2596 apic_vt_ops->apic_intrr_enable(); 2597 } 2598 } 2599 } 2600 2601 /*ARGSUSED*/ 2602 static void 2603 apic_record_ioapic_rdt(apic_irq_t *irq_ptr, ioapic_rdt_t *irdt) 2604 { 2605 irdt->ir_hi <<= APIC_ID_BIT_OFFSET; 2606 } 2607 2608 /*ARGSUSED*/ 2609 static void 2610 apic_record_msi(apic_irq_t *irq_ptr, msi_regs_t *mregs) 2611 { 2612 mregs->mr_addr = MSI_ADDR_HDR | 2613 (MSI_ADDR_RH_FIXED << MSI_ADDR_RH_SHIFT) | 2614 (MSI_ADDR_DM_PHYSICAL << MSI_ADDR_DM_SHIFT) | 2615 (mregs->mr_addr << MSI_ADDR_DEST_SHIFT); 2616 mregs->mr_data = (MSI_DATA_TM_EDGE << MSI_DATA_TM_SHIFT) | 2617 mregs->mr_data; 2618 } 2619