xref: /titanic_50/usr/src/uts/i86pc/io/pcplusmp/apic.c (revision 1767006bb066ef500b90b432fba79d63d0d09b36)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /*
26  * Copyright (c) 2010, Intel Corporation.
27  * All rights reserved.
28  */
29 /*
30  * Copyright (c) 2013, Joyent, Inc.  All rights reserved.
31  */
32 
33 /*
34  * To understand how the pcplusmp module interacts with the interrupt subsystem
35  * read the theory statement in uts/i86pc/os/intr.c.
36  */
37 
38 /*
39  * PSMI 1.1 extensions are supported only in 2.6 and later versions.
40  * PSMI 1.2 extensions are supported only in 2.7 and later versions.
41  * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
42  * PSMI 1.5 extensions are supported in Solaris Nevada.
43  * PSMI 1.6 extensions are supported in Solaris Nevada.
44  * PSMI 1.7 extensions are supported in Solaris Nevada.
45  */
46 #define	PSMI_1_7
47 
48 #include <sys/processor.h>
49 #include <sys/time.h>
50 #include <sys/psm.h>
51 #include <sys/smp_impldefs.h>
52 #include <sys/cram.h>
53 #include <sys/acpi/acpi.h>
54 #include <sys/acpica.h>
55 #include <sys/psm_common.h>
56 #include <sys/apic.h>
57 #include <sys/pit.h>
58 #include <sys/ddi.h>
59 #include <sys/sunddi.h>
60 #include <sys/ddi_impldefs.h>
61 #include <sys/pci.h>
62 #include <sys/promif.h>
63 #include <sys/x86_archext.h>
64 #include <sys/cpc_impl.h>
65 #include <sys/uadmin.h>
66 #include <sys/panic.h>
67 #include <sys/debug.h>
68 #include <sys/archsystm.h>
69 #include <sys/trap.h>
70 #include <sys/machsystm.h>
71 #include <sys/sysmacros.h>
72 #include <sys/cpuvar.h>
73 #include <sys/rm_platter.h>
74 #include <sys/privregs.h>
75 #include <sys/note.h>
76 #include <sys/pci_intr_lib.h>
77 #include <sys/spl.h>
78 #include <sys/clock.h>
79 #include <sys/cyclic.h>
80 #include <sys/dditypes.h>
81 #include <sys/sunddi.h>
82 #include <sys/x_call.h>
83 #include <sys/reboot.h>
84 #include <sys/hpet.h>
85 #include <sys/apic_common.h>
86 #include <sys/apic_timer.h>
87 
88 /*
89  *	Local Function Prototypes
90  */
91 static void apic_init_intr(void);
92 
93 /*
94  *	standard MP entries
95  */
96 static int	apic_probe(void);
97 static int	apic_getclkirq(int ipl);
98 static void	apic_init(void);
99 static void	apic_picinit(void);
100 static int	apic_post_cpu_start(void);
101 static int	apic_intr_enter(int ipl, int *vect);
102 static void	apic_setspl(int ipl);
103 static void	x2apic_setspl(int ipl);
104 static int	apic_addspl(int ipl, int vector, int min_ipl, int max_ipl);
105 static int	apic_delspl(int ipl, int vector, int min_ipl, int max_ipl);
106 static int	apic_disable_intr(processorid_t cpun);
107 static void	apic_enable_intr(processorid_t cpun);
108 static int		apic_get_ipivect(int ipl, int type);
109 static void	apic_post_cyclic_setup(void *arg);
110 
111 /*
112  * The following vector assignments influence the value of ipltopri and
113  * vectortoipl. Note that vectors 0 - 0x1f are not used. We can program
114  * idle to 0 and IPL 0 to 0xf to differentiate idle in case
115  * we care to do so in future. Note some IPLs which are rarely used
116  * will share the vector ranges and heavily used IPLs (5 and 6) have
117  * a wide range.
118  *
119  * This array is used to initialize apic_ipls[] (in apic_init()).
120  *
121  *	IPL		Vector range.		as passed to intr_enter
122  *	0		none.
123  *	1,2,3		0x20-0x2f		0x0-0xf
124  *	4		0x30-0x3f		0x10-0x1f
125  *	5		0x40-0x5f		0x20-0x3f
126  *	6		0x60-0x7f		0x40-0x5f
127  *	7,8,9		0x80-0x8f		0x60-0x6f
128  *	10		0x90-0x9f		0x70-0x7f
129  *	11		0xa0-0xaf		0x80-0x8f
130  *	...		...
131  *	15		0xe0-0xef		0xc0-0xcf
132  *	15		0xf0-0xff		0xd0-0xdf
133  */
134 uchar_t apic_vectortoipl[APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL] = {
135 	3, 4, 5, 5, 6, 6, 9, 10, 11, 12, 13, 14, 15, 15
136 };
137 	/*
138 	 * The ipl of an ISR at vector X is apic_vectortoipl[X>>4]
139 	 * NOTE that this is vector as passed into intr_enter which is
140 	 * programmed vector - 0x20 (APIC_BASE_VECT)
141 	 */
142 
143 uchar_t	apic_ipltopri[MAXIPL + 1];	/* unix ipl to apic pri	*/
144 	/* The taskpri to be programmed into apic to mask given ipl */
145 
146 /*
147  * Correlation of the hardware vector to the IPL in use, initialized
148  * from apic_vectortoipl[] in apic_init().  The final IPLs may not correlate
149  * to the IPLs in apic_vectortoipl on some systems that share interrupt lines
150  * connected to errata-stricken IOAPICs
151  */
152 uchar_t apic_ipls[APIC_AVAIL_VECTOR];
153 
154 /*
155  * Patchable global variables.
156  */
157 int	apic_enable_hwsoftint = 0;	/* 0 - disable, 1 - enable	*/
158 int	apic_enable_bind_log = 1;	/* 1 - display interrupt binding log */
159 
160 /*
161  *	Local static data
162  */
163 static struct	psm_ops apic_ops = {
164 	apic_probe,
165 
166 	apic_init,
167 	apic_picinit,
168 	apic_intr_enter,
169 	apic_intr_exit,
170 	apic_setspl,
171 	apic_addspl,
172 	apic_delspl,
173 	apic_disable_intr,
174 	apic_enable_intr,
175 	(int (*)(int))NULL,		/* psm_softlvl_to_irq */
176 	(void (*)(int))NULL,		/* psm_set_softintr */
177 
178 	apic_set_idlecpu,
179 	apic_unset_idlecpu,
180 
181 	apic_clkinit,
182 	apic_getclkirq,
183 	(void (*)(void))NULL,		/* psm_hrtimeinit */
184 	apic_gethrtime,
185 
186 	apic_get_next_processorid,
187 	apic_cpu_start,
188 	apic_post_cpu_start,
189 	apic_shutdown,
190 	apic_get_ipivect,
191 	apic_send_ipi,
192 
193 	(int (*)(dev_info_t *, int))NULL,	/* psm_translate_irq */
194 	(void (*)(int, char *))NULL,	/* psm_notify_error */
195 	(void (*)(int))NULL,		/* psm_notify_func */
196 	apic_timer_reprogram,
197 	apic_timer_enable,
198 	apic_timer_disable,
199 	apic_post_cyclic_setup,
200 	apic_preshutdown,
201 	apic_intr_ops,			/* Advanced DDI Interrupt framework */
202 	apic_state,			/* save, restore apic state for S3 */
203 	apic_cpu_ops,			/* CPU control interface. */
204 };
205 
206 struct psm_ops *psmops = &apic_ops;
207 
208 static struct	psm_info apic_psm_info = {
209 	PSM_INFO_VER01_7,			/* version */
210 	PSM_OWN_EXCLUSIVE,			/* ownership */
211 	(struct psm_ops *)&apic_ops,		/* operation */
212 	APIC_PCPLUSMP_NAME,			/* machine name */
213 	"pcplusmp v1.4 compatible",
214 };
215 
216 static void *apic_hdlp;
217 
218 /* to gather intr data and redistribute */
219 static void apic_redistribute_compute(void);
220 
221 /*
222  *	This is the loadable module wrapper
223  */
224 
225 int
226 _init(void)
227 {
228 	if (apic_coarse_hrtime)
229 		apic_ops.psm_gethrtime = &apic_gettime;
230 	return (psm_mod_init(&apic_hdlp, &apic_psm_info));
231 }
232 
233 int
234 _fini(void)
235 {
236 	return (psm_mod_fini(&apic_hdlp, &apic_psm_info));
237 }
238 
239 int
240 _info(struct modinfo *modinfop)
241 {
242 	return (psm_mod_info(&apic_hdlp, &apic_psm_info, modinfop));
243 }
244 
245 static int
246 apic_probe(void)
247 {
248 	/* check if apix is initialized */
249 	if (apix_enable && apix_loaded())
250 		return (PSM_FAILURE);
251 	else
252 		apix_enable = 0; /* continue using pcplusmp PSM */
253 
254 	return (apic_probe_common(apic_psm_info.p_mach_idstring));
255 }
256 
257 static uchar_t
258 apic_xlate_vector_by_irq(uchar_t irq)
259 {
260 	if (apic_irq_table[irq] == NULL)
261 		return (0);
262 
263 	return (apic_irq_table[irq]->airq_vector);
264 }
265 
266 void
267 apic_init(void)
268 {
269 	int i;
270 	int	j = 1;
271 
272 	psm_get_ioapicid = apic_get_ioapicid;
273 	psm_get_localapicid = apic_get_localapicid;
274 	psm_xlate_vector_by_irq = apic_xlate_vector_by_irq;
275 
276 	apic_ipltopri[0] = APIC_VECTOR_PER_IPL; /* leave 0 for idle */
277 	for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) {
278 		if ((i < ((APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL) - 1)) &&
279 		    (apic_vectortoipl[i + 1] == apic_vectortoipl[i]))
280 			/* get to highest vector at the same ipl */
281 			continue;
282 		for (; j <= apic_vectortoipl[i]; j++) {
283 			apic_ipltopri[j] = (i << APIC_IPL_SHIFT) +
284 			    APIC_BASE_VECT;
285 		}
286 	}
287 	for (; j < MAXIPL + 1; j++)
288 		/* fill up any empty ipltopri slots */
289 		apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + APIC_BASE_VECT;
290 	apic_init_common();
291 
292 #if !defined(__amd64)
293 	if (cpuid_have_cr8access(CPU))
294 		apic_have_32bit_cr8 = 1;
295 #endif
296 }
297 
298 static void
299 apic_init_intr(void)
300 {
301 	processorid_t	cpun = psm_get_cpu_id();
302 	uint_t nlvt;
303 	uint32_t svr = AV_UNIT_ENABLE | APIC_SPUR_INTR;
304 
305 	apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL);
306 
307 	if (apic_mode == LOCAL_APIC) {
308 		/*
309 		 * We are running APIC in MMIO mode.
310 		 */
311 		if (apic_flat_model) {
312 			apic_reg_ops->apic_write(APIC_FORMAT_REG,
313 			    APIC_FLAT_MODEL);
314 		} else {
315 			apic_reg_ops->apic_write(APIC_FORMAT_REG,
316 			    APIC_CLUSTER_MODEL);
317 		}
318 
319 		apic_reg_ops->apic_write(APIC_DEST_REG,
320 		    AV_HIGH_ORDER >> cpun);
321 	}
322 
323 	if (apic_directed_EOI_supported()) {
324 		/*
325 		 * Setting the 12th bit in the Spurious Interrupt Vector
326 		 * Register suppresses broadcast EOIs generated by the local
327 		 * APIC. The suppression of broadcast EOIs happens only when
328 		 * interrupts are level-triggered.
329 		 */
330 		svr |= APIC_SVR_SUPPRESS_BROADCAST_EOI;
331 	}
332 
333 	/* need to enable APIC before unmasking NMI */
334 	apic_reg_ops->apic_write(APIC_SPUR_INT_REG, svr);
335 
336 	/*
337 	 * Presence of an invalid vector with delivery mode AV_FIXED can
338 	 * cause an error interrupt, even if the entry is masked...so
339 	 * write a valid vector to LVT entries along with the mask bit
340 	 */
341 
342 	/* All APICs have timer and LINT0/1 */
343 	apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK|APIC_RESV_IRQ);
344 	apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK|APIC_RESV_IRQ);
345 	apic_reg_ops->apic_write(APIC_INT_VECT1, AV_NMI);	/* enable NMI */
346 
347 	/*
348 	 * On integrated APICs, the number of LVT entries is
349 	 * 'Max LVT entry' + 1; on 82489DX's (non-integrated
350 	 * APICs), nlvt is "3" (LINT0, LINT1, and timer)
351 	 */
352 
353 	if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) {
354 		nlvt = 3;
355 	} else {
356 		nlvt = ((apic_reg_ops->apic_read(APIC_VERS_REG) >> 16) &
357 		    0xFF) + 1;
358 	}
359 
360 	if (nlvt >= 5) {
361 		/* Enable performance counter overflow interrupt */
362 
363 		if (!is_x86_feature(x86_featureset, X86FSET_MSR))
364 			apic_enable_cpcovf_intr = 0;
365 		if (apic_enable_cpcovf_intr) {
366 			if (apic_cpcovf_vect == 0) {
367 				int ipl = APIC_PCINT_IPL;
368 				int irq = apic_get_ipivect(ipl, -1);
369 
370 				ASSERT(irq != -1);
371 				apic_cpcovf_vect =
372 				    apic_irq_table[irq]->airq_vector;
373 				ASSERT(apic_cpcovf_vect);
374 				(void) add_avintr(NULL, ipl,
375 				    (avfunc)kcpc_hw_overflow_intr,
376 				    "apic pcint", irq, NULL, NULL, NULL, NULL);
377 				kcpc_hw_overflow_intr_installed = 1;
378 				kcpc_hw_enable_cpc_intr =
379 				    apic_cpcovf_mask_clear;
380 			}
381 			apic_reg_ops->apic_write(APIC_PCINT_VECT,
382 			    apic_cpcovf_vect);
383 		}
384 	}
385 
386 	if (nlvt >= 6) {
387 		/* Only mask TM intr if the BIOS apparently doesn't use it */
388 
389 		uint32_t lvtval;
390 
391 		lvtval = apic_reg_ops->apic_read(APIC_THERM_VECT);
392 		if (((lvtval & AV_MASK) == AV_MASK) ||
393 		    ((lvtval & AV_DELIV_MODE) != AV_SMI)) {
394 			apic_reg_ops->apic_write(APIC_THERM_VECT,
395 			    AV_MASK|APIC_RESV_IRQ);
396 		}
397 	}
398 
399 	/* Enable error interrupt */
400 
401 	if (nlvt >= 4 && apic_enable_error_intr) {
402 		if (apic_errvect == 0) {
403 			int ipl = 0xf;	/* get highest priority intr */
404 			int irq = apic_get_ipivect(ipl, -1);
405 
406 			ASSERT(irq != -1);
407 			apic_errvect = apic_irq_table[irq]->airq_vector;
408 			ASSERT(apic_errvect);
409 			/*
410 			 * Not PSMI compliant, but we are going to merge
411 			 * with ON anyway
412 			 */
413 			(void) add_avintr((void *)NULL, ipl,
414 			    (avfunc)apic_error_intr, "apic error intr",
415 			    irq, NULL, NULL, NULL, NULL);
416 		}
417 		apic_reg_ops->apic_write(APIC_ERR_VECT, apic_errvect);
418 		apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
419 		apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
420 	}
421 
422 	/* Enable CMCI interrupt */
423 	if (cmi_enable_cmci) {
424 
425 		mutex_enter(&cmci_cpu_setup_lock);
426 		if (cmci_cpu_setup_registered == 0) {
427 			mutex_enter(&cpu_lock);
428 			register_cpu_setup_func(cmci_cpu_setup, NULL);
429 			mutex_exit(&cpu_lock);
430 			cmci_cpu_setup_registered = 1;
431 		}
432 		mutex_exit(&cmci_cpu_setup_lock);
433 
434 		if (apic_cmci_vect == 0) {
435 			int ipl = 0x2;
436 			int irq = apic_get_ipivect(ipl, -1);
437 
438 			ASSERT(irq != -1);
439 			apic_cmci_vect = apic_irq_table[irq]->airq_vector;
440 			ASSERT(apic_cmci_vect);
441 
442 			(void) add_avintr(NULL, ipl,
443 			    (avfunc)cmi_cmci_trap,
444 			    "apic cmci intr", irq, NULL, NULL, NULL, NULL);
445 		}
446 		apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect);
447 	}
448 }
449 
450 static void
451 apic_picinit(void)
452 {
453 	int i, j;
454 	uint_t isr;
455 
456 	/*
457 	 * Initialize and enable interrupt remapping before apic
458 	 * hardware initialization
459 	 */
460 	apic_intrmap_init(apic_mode);
461 
462 	/*
463 	 * On UniSys Model 6520, the BIOS leaves vector 0x20 isr
464 	 * bit on without clearing it with EOI.  Since softint
465 	 * uses vector 0x20 to interrupt itself, so softint will
466 	 * not work on this machine.  In order to fix this problem
467 	 * a check is made to verify all the isr bits are clear.
468 	 * If not, EOIs are issued to clear the bits.
469 	 */
470 	for (i = 7; i >= 1; i--) {
471 		isr = apic_reg_ops->apic_read(APIC_ISR_REG + (i * 4));
472 		if (isr != 0)
473 			for (j = 0; ((j < 32) && (isr != 0)); j++)
474 				if (isr & (1 << j)) {
475 					apic_reg_ops->apic_write(
476 					    APIC_EOI_REG, 0);
477 					isr &= ~(1 << j);
478 					apic_error |= APIC_ERR_BOOT_EOI;
479 				}
480 	}
481 
482 	/* set a flag so we know we have run apic_picinit() */
483 	apic_picinit_called = 1;
484 	LOCK_INIT_CLEAR(&apic_gethrtime_lock);
485 	LOCK_INIT_CLEAR(&apic_ioapic_lock);
486 	LOCK_INIT_CLEAR(&apic_error_lock);
487 	LOCK_INIT_CLEAR(&apic_mode_switch_lock);
488 
489 	picsetup();	 /* initialise the 8259 */
490 
491 	/* add nmi handler - least priority nmi handler */
492 	LOCK_INIT_CLEAR(&apic_nmi_lock);
493 
494 	if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr,
495 	    "pcplusmp NMI handler", (caddr_t)NULL))
496 		cmn_err(CE_WARN, "pcplusmp: Unable to add nmi handler");
497 
498 	/*
499 	 * Check for directed-EOI capability in the local APIC.
500 	 */
501 	if (apic_directed_EOI_supported() == 1) {
502 		apic_set_directed_EOI_handler();
503 	}
504 
505 	apic_init_intr();
506 
507 	/* enable apic mode if imcr present */
508 	if (apic_imcrp) {
509 		outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT);
510 		outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC);
511 	}
512 
513 	ioapic_init_intr(IOAPIC_MASK);
514 }
515 
516 #ifdef	DEBUG
517 void
518 apic_break(void)
519 {
520 }
521 #endif /* DEBUG */
522 
523 /*
524  * platform_intr_enter
525  *
526  *	Called at the beginning of the interrupt service routine to
527  *	mask all level equal to and below the interrupt priority
528  *	of the interrupting vector.  An EOI should be given to
529  *	the interrupt controller to enable other HW interrupts.
530  *
531  *	Return -1 for spurious interrupts
532  *
533  */
534 /*ARGSUSED*/
535 static int
536 apic_intr_enter(int ipl, int *vectorp)
537 {
538 	uchar_t vector;
539 	int nipl;
540 	int irq;
541 	ulong_t iflag;
542 	apic_cpus_info_t *cpu_infop;
543 
544 	/*
545 	 * The real vector delivered is (*vectorp + 0x20), but our caller
546 	 * subtracts 0x20 from the vector before passing it to us.
547 	 * (That's why APIC_BASE_VECT is 0x20.)
548 	 */
549 	vector = (uchar_t)*vectorp;
550 
551 	/* if interrupted by the clock, increment apic_nsec_since_boot */
552 	if (vector == apic_clkvect) {
553 		if (!apic_oneshot) {
554 			/* NOTE: this is not MT aware */
555 			apic_hrtime_stamp++;
556 			apic_nsec_since_boot += apic_nsec_per_intr;
557 			apic_hrtime_stamp++;
558 			last_count_read = apic_hertz_count;
559 			apic_redistribute_compute();
560 		}
561 
562 		/* We will avoid all the book keeping overhead for clock */
563 		nipl = apic_ipls[vector];
564 
565 		*vectorp = apic_vector_to_irq[vector + APIC_BASE_VECT];
566 
567 		apic_reg_ops->apic_write_task_reg(apic_ipltopri[nipl]);
568 		apic_reg_ops->apic_send_eoi(0);
569 
570 		return (nipl);
571 	}
572 
573 	cpu_infop = &apic_cpus[psm_get_cpu_id()];
574 
575 	if (vector == (APIC_SPUR_INTR - APIC_BASE_VECT)) {
576 		cpu_infop->aci_spur_cnt++;
577 		return (APIC_INT_SPURIOUS);
578 	}
579 
580 	/* Check if the vector we got is really what we need */
581 	if (apic_revector_pending) {
582 		/*
583 		 * Disable interrupts for the duration of
584 		 * the vector translation to prevent a self-race for
585 		 * the apic_revector_lock.  This cannot be done
586 		 * in apic_xlate_vector because it is recursive and
587 		 * we want the vector translation to be atomic with
588 		 * respect to other (higher-priority) interrupts.
589 		 */
590 		iflag = intr_clear();
591 		vector = apic_xlate_vector(vector + APIC_BASE_VECT) -
592 		    APIC_BASE_VECT;
593 		intr_restore(iflag);
594 	}
595 
596 	nipl = apic_ipls[vector];
597 	*vectorp = irq = apic_vector_to_irq[vector + APIC_BASE_VECT];
598 
599 	apic_reg_ops->apic_write_task_reg(apic_ipltopri[nipl]);
600 
601 	cpu_infop->aci_current[nipl] = (uchar_t)irq;
602 	cpu_infop->aci_curipl = (uchar_t)nipl;
603 	cpu_infop->aci_ISR_in_progress |= 1 << nipl;
604 
605 	/*
606 	 * apic_level_intr could have been assimilated into the irq struct.
607 	 * but, having it as a character array is more efficient in terms of
608 	 * cache usage. So, we leave it as is.
609 	 */
610 	if (!apic_level_intr[irq]) {
611 		apic_reg_ops->apic_send_eoi(0);
612 	}
613 
614 #ifdef	DEBUG
615 	APIC_DEBUG_BUF_PUT(vector);
616 	APIC_DEBUG_BUF_PUT(irq);
617 	APIC_DEBUG_BUF_PUT(nipl);
618 	APIC_DEBUG_BUF_PUT(psm_get_cpu_id());
619 	if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl)))
620 		drv_usecwait(apic_stretch_interrupts);
621 
622 	if (apic_break_on_cpu == psm_get_cpu_id())
623 		apic_break();
624 #endif /* DEBUG */
625 	return (nipl);
626 }
627 
628 /*
629  * This macro is a common code used by MMIO local apic and X2APIC
630  * local apic.
631  */
632 #define	APIC_INTR_EXIT() \
633 { \
634 	cpu_infop = &apic_cpus[psm_get_cpu_id()]; \
635 	if (apic_level_intr[irq]) \
636 		apic_reg_ops->apic_send_eoi(irq); \
637 	cpu_infop->aci_curipl = (uchar_t)prev_ipl; \
638 	/* ISR above current pri could not be in progress */ \
639 	cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1; \
640 }
641 
642 /*
643  * Any changes made to this function must also change X2APIC
644  * version of intr_exit.
645  */
646 void
647 apic_intr_exit(int prev_ipl, int irq)
648 {
649 	apic_cpus_info_t *cpu_infop;
650 
651 	apic_reg_ops->apic_write_task_reg(apic_ipltopri[prev_ipl]);
652 
653 	APIC_INTR_EXIT();
654 }
655 
656 /*
657  * Same as apic_intr_exit() except it uses MSR rather than MMIO
658  * to access local apic registers.
659  */
660 void
661 x2apic_intr_exit(int prev_ipl, int irq)
662 {
663 	apic_cpus_info_t *cpu_infop;
664 
665 	X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[prev_ipl]);
666 	APIC_INTR_EXIT();
667 }
668 
669 intr_exit_fn_t
670 psm_intr_exit_fn(void)
671 {
672 	if (apic_mode == LOCAL_X2APIC)
673 		return (x2apic_intr_exit);
674 
675 	return (apic_intr_exit);
676 }
677 
678 /*
679  * Mask all interrupts below or equal to the given IPL.
680  * Any changes made to this function must also change X2APIC
681  * version of setspl.
682  */
683 static void
684 apic_setspl(int ipl)
685 {
686 	apic_reg_ops->apic_write_task_reg(apic_ipltopri[ipl]);
687 
688 	/* interrupts at ipl above this cannot be in progress */
689 	apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1;
690 	/*
691 	 * this is a patch fix for the ALR QSMP P5 machine, so that interrupts
692 	 * have enough time to come in before the priority is raised again
693 	 * during the idle() loop.
694 	 */
695 	if (apic_setspl_delay)
696 		(void) apic_reg_ops->apic_get_pri();
697 }
698 
699 /*
700  * X2APIC version of setspl.
701  * Mask all interrupts below or equal to the given IPL
702  */
703 static void
704 x2apic_setspl(int ipl)
705 {
706 	X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[ipl]);
707 
708 	/* interrupts at ipl above this cannot be in progress */
709 	apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1;
710 }
711 
712 /*ARGSUSED*/
713 static int
714 apic_addspl(int irqno, int ipl, int min_ipl, int max_ipl)
715 {
716 	return (apic_addspl_common(irqno, ipl, min_ipl, max_ipl));
717 }
718 
719 static int
720 apic_delspl(int irqno, int ipl, int min_ipl, int max_ipl)
721 {
722 	return (apic_delspl_common(irqno, ipl, min_ipl,  max_ipl));
723 }
724 
725 static int
726 apic_post_cpu_start(void)
727 {
728 	int cpun;
729 	static int cpus_started = 1;
730 
731 	/* We know this CPU + BSP  started successfully. */
732 	cpus_started++;
733 
734 	/*
735 	 * On BSP we would have enabled X2APIC, if supported by processor,
736 	 * in acpi_probe(), but on AP we do it here.
737 	 *
738 	 * We enable X2APIC mode only if BSP is running in X2APIC & the
739 	 * local APIC mode of the current CPU is MMIO (xAPIC).
740 	 */
741 	if (apic_mode == LOCAL_X2APIC && apic_detect_x2apic() &&
742 	    apic_local_mode() == LOCAL_APIC) {
743 		apic_enable_x2apic();
744 	}
745 
746 	/*
747 	 * Switch back to x2apic IPI sending method for performance when target
748 	 * CPU has entered x2apic mode.
749 	 */
750 	if (apic_mode == LOCAL_X2APIC) {
751 		apic_switch_ipi_callback(B_FALSE);
752 	}
753 
754 	splx(ipltospl(LOCK_LEVEL));
755 	apic_init_intr();
756 
757 	/*
758 	 * since some systems don't enable the internal cache on the non-boot
759 	 * cpus, so we have to enable them here
760 	 */
761 	setcr0(getcr0() & ~(CR0_CD | CR0_NW));
762 
763 #ifdef	DEBUG
764 	APIC_AV_PENDING_SET();
765 #else
766 	if (apic_mode == LOCAL_APIC)
767 		APIC_AV_PENDING_SET();
768 #endif	/* DEBUG */
769 
770 	/*
771 	 * We may be booting, or resuming from suspend; aci_status will
772 	 * be APIC_CPU_INTR_ENABLE if coming from suspend, so we add the
773 	 * APIC_CPU_ONLINE flag here rather than setting aci_status completely.
774 	 */
775 	cpun = psm_get_cpu_id();
776 	apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE;
777 
778 	apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init);
779 	return (PSM_SUCCESS);
780 }
781 
782 /*
783  * type == -1 indicates it is an internal request. Do not change
784  * resv_vector for these requests
785  */
786 static int
787 apic_get_ipivect(int ipl, int type)
788 {
789 	uchar_t vector;
790 	int irq;
791 
792 	if ((irq = apic_allocate_irq(APIC_VECTOR(ipl))) != -1) {
793 		if ((vector = apic_allocate_vector(ipl, irq, 1))) {
794 			apic_irq_table[irq]->airq_mps_intr_index =
795 			    RESERVE_INDEX;
796 			apic_irq_table[irq]->airq_vector = vector;
797 			if (type != -1) {
798 				apic_resv_vector[ipl] = vector;
799 			}
800 			return (irq);
801 		}
802 	}
803 	apic_error |= APIC_ERR_GET_IPIVECT_FAIL;
804 	return (-1);	/* shouldn't happen */
805 }
806 
807 static int
808 apic_getclkirq(int ipl)
809 {
810 	int	irq;
811 
812 	if ((irq = apic_get_ipivect(ipl, -1)) == -1)
813 		return (-1);
814 	/*
815 	 * Note the vector in apic_clkvect for per clock handling.
816 	 */
817 	apic_clkvect = apic_irq_table[irq]->airq_vector - APIC_BASE_VECT;
818 	APIC_VERBOSE_IOAPIC((CE_NOTE, "get_clkirq: vector = %x\n",
819 	    apic_clkvect));
820 	return (irq);
821 }
822 
823 /*
824  * Try and disable all interrupts. We just assign interrupts to other
825  * processors based on policy. If any were bound by user request, we
826  * let them continue and return failure. We do not bother to check
827  * for cache affinity while rebinding.
828  */
829 
830 static int
831 apic_disable_intr(processorid_t cpun)
832 {
833 	int bind_cpu = 0, i, hardbound = 0;
834 	apic_irq_t *irq_ptr;
835 	ulong_t iflag;
836 
837 	iflag = intr_clear();
838 	lock_set(&apic_ioapic_lock);
839 
840 	for (i = 0; i <= APIC_MAX_VECTOR; i++) {
841 		if (apic_reprogram_info[i].done == B_FALSE) {
842 			if (apic_reprogram_info[i].bindcpu == cpun) {
843 				/*
844 				 * CPU is busy -- it's the target of
845 				 * a pending reprogramming attempt
846 				 */
847 				lock_clear(&apic_ioapic_lock);
848 				intr_restore(iflag);
849 				return (PSM_FAILURE);
850 			}
851 		}
852 	}
853 
854 	apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE;
855 
856 	apic_cpus[cpun].aci_curipl = 0;
857 
858 	i = apic_min_device_irq;
859 	for (; i <= apic_max_device_irq; i++) {
860 		/*
861 		 * If there are bound interrupts on this cpu, then
862 		 * rebind them to other processors.
863 		 */
864 		if ((irq_ptr = apic_irq_table[i]) != NULL) {
865 			ASSERT((irq_ptr->airq_temp_cpu == IRQ_UNBOUND) ||
866 			    (irq_ptr->airq_temp_cpu == IRQ_UNINIT) ||
867 			    (apic_cpu_in_range(irq_ptr->airq_temp_cpu)));
868 
869 			if (irq_ptr->airq_temp_cpu == (cpun | IRQ_USER_BOUND)) {
870 				hardbound = 1;
871 				continue;
872 			}
873 
874 			if (irq_ptr->airq_temp_cpu == cpun) {
875 				do {
876 					bind_cpu =
877 					    apic_find_cpu(APIC_CPU_INTR_ENABLE);
878 				} while (apic_rebind_all(irq_ptr, bind_cpu));
879 			}
880 		}
881 	}
882 
883 	lock_clear(&apic_ioapic_lock);
884 	intr_restore(iflag);
885 
886 	if (hardbound) {
887 		cmn_err(CE_WARN, "Could not disable interrupts on %d"
888 		    "due to user bound interrupts", cpun);
889 		return (PSM_FAILURE);
890 	}
891 	else
892 		return (PSM_SUCCESS);
893 }
894 
895 /*
896  * Bind interrupts to the CPU's local APIC.
897  * Interrupts should not be bound to a CPU's local APIC until the CPU
898  * is ready to receive interrupts.
899  */
900 static void
901 apic_enable_intr(processorid_t cpun)
902 {
903 	int	i;
904 	apic_irq_t *irq_ptr;
905 	ulong_t iflag;
906 
907 	iflag = intr_clear();
908 	lock_set(&apic_ioapic_lock);
909 
910 	apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE;
911 
912 	i = apic_min_device_irq;
913 	for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
914 		if ((irq_ptr = apic_irq_table[i]) != NULL) {
915 			if ((irq_ptr->airq_cpu & ~IRQ_USER_BOUND) == cpun) {
916 				(void) apic_rebind_all(irq_ptr,
917 				    irq_ptr->airq_cpu);
918 			}
919 		}
920 	}
921 
922 	if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND)
923 		apic_cpus[cpun].aci_status &= ~APIC_CPU_SUSPEND;
924 
925 	lock_clear(&apic_ioapic_lock);
926 	intr_restore(iflag);
927 }
928 
929 /*
930  * If this module needs a periodic handler for the interrupt distribution, it
931  * can be added here. The argument to the periodic handler is not currently
932  * used, but is reserved for future.
933  */
934 static void
935 apic_post_cyclic_setup(void *arg)
936 {
937 _NOTE(ARGUNUSED(arg))
938 
939 	cyc_handler_t cyh;
940 	cyc_time_t cyt;
941 
942 	/* cpu_lock is held */
943 	/* set up a periodic handler for intr redistribution */
944 
945 	/*
946 	 * In peridoc mode intr redistribution processing is done in
947 	 * apic_intr_enter during clk intr processing
948 	 */
949 	if (!apic_oneshot)
950 		return;
951 
952 	/*
953 	 * Register a periodical handler for the redistribution processing.
954 	 * Though we would generally prefer to use the DDI interface for
955 	 * periodic handler invocation, ddi_periodic_add(9F), we are
956 	 * unfortunately already holding cpu_lock, which ddi_periodic_add will
957 	 * attempt to take for us.  Thus, we add our own cyclic directly:
958 	 */
959 	cyh.cyh_func = (void (*)(void *))apic_redistribute_compute;
960 	cyh.cyh_arg = NULL;
961 	cyh.cyh_level = CY_LOW_LEVEL;
962 
963 	cyt.cyt_when = 0;
964 	cyt.cyt_interval = apic_redistribute_sample_interval;
965 
966 	apic_cyclic_id = cyclic_add(&cyh, &cyt);
967 }
968 
969 static void
970 apic_redistribute_compute(void)
971 {
972 	int	i, j, max_busy;
973 
974 	if (apic_enable_dynamic_migration) {
975 		if (++apic_nticks == apic_sample_factor_redistribution) {
976 			/*
977 			 * Time to call apic_intr_redistribute().
978 			 * reset apic_nticks. This will cause max_busy
979 			 * to be calculated below and if it is more than
980 			 * apic_int_busy, we will do the whole thing
981 			 */
982 			apic_nticks = 0;
983 		}
984 		max_busy = 0;
985 		for (i = 0; i < apic_nproc; i++) {
986 			if (!apic_cpu_in_range(i))
987 				continue;
988 
989 			/*
990 			 * Check if curipl is non zero & if ISR is in
991 			 * progress
992 			 */
993 			if (((j = apic_cpus[i].aci_curipl) != 0) &&
994 			    (apic_cpus[i].aci_ISR_in_progress & (1 << j))) {
995 
996 				int	irq;
997 				apic_cpus[i].aci_busy++;
998 				irq = apic_cpus[i].aci_current[j];
999 				apic_irq_table[irq]->airq_busy++;
1000 			}
1001 
1002 			if (!apic_nticks &&
1003 			    (apic_cpus[i].aci_busy > max_busy))
1004 				max_busy = apic_cpus[i].aci_busy;
1005 		}
1006 		if (!apic_nticks) {
1007 			if (max_busy > apic_int_busy_mark) {
1008 			/*
1009 			 * We could make the following check be
1010 			 * skipped > 1 in which case, we get a
1011 			 * redistribution at half the busy mark (due to
1012 			 * double interval). Need to be able to collect
1013 			 * more empirical data to decide if that is a
1014 			 * good strategy. Punt for now.
1015 			 */
1016 				if (apic_skipped_redistribute) {
1017 					apic_cleanup_busy();
1018 					apic_skipped_redistribute = 0;
1019 				} else {
1020 					apic_intr_redistribute();
1021 				}
1022 			} else
1023 				apic_skipped_redistribute++;
1024 		}
1025 	}
1026 }
1027 
1028 
1029 /*
1030  * The following functions are in the platform specific file so that they
1031  * can be different functions depending on whether we are running on
1032  * bare metal or a hypervisor.
1033  */
1034 
1035 /*
1036  * Check to make sure there are enough irq slots
1037  */
1038 int
1039 apic_check_free_irqs(int count)
1040 {
1041 	int i, avail;
1042 
1043 	avail = 0;
1044 	for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) {
1045 		if ((apic_irq_table[i] == NULL) ||
1046 		    apic_irq_table[i]->airq_mps_intr_index == FREE_INDEX) {
1047 			if (++avail >= count)
1048 				return (PSM_SUCCESS);
1049 		}
1050 	}
1051 	return (PSM_FAILURE);
1052 }
1053 
1054 /*
1055  * This function allocates "count" MSI vector(s) for the given "dip/pri/type"
1056  */
1057 int
1058 apic_alloc_msi_vectors(dev_info_t *dip, int inum, int count, int pri,
1059     int behavior)
1060 {
1061 	int	rcount, i;
1062 	uchar_t	start, irqno;
1063 	uint32_t cpu;
1064 	major_t	major;
1065 	apic_irq_t	*irqptr;
1066 
1067 	DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: dip=0x%p "
1068 	    "inum=0x%x  pri=0x%x count=0x%x behavior=%d\n",
1069 	    (void *)dip, inum, pri, count, behavior));
1070 
1071 	if (count > 1) {
1072 		if (behavior == DDI_INTR_ALLOC_STRICT &&
1073 		    apic_multi_msi_enable == 0)
1074 			return (0);
1075 		if (apic_multi_msi_enable == 0)
1076 			count = 1;
1077 	}
1078 
1079 	if ((rcount = apic_navail_vector(dip, pri)) > count)
1080 		rcount = count;
1081 	else if (rcount == 0 || (rcount < count &&
1082 	    behavior == DDI_INTR_ALLOC_STRICT))
1083 		return (0);
1084 
1085 	/* if not ISP2, then round it down */
1086 	if (!ISP2(rcount))
1087 		rcount = 1 << (highbit(rcount) - 1);
1088 
1089 	mutex_enter(&airq_mutex);
1090 
1091 	for (start = 0; rcount > 0; rcount >>= 1) {
1092 		if ((start = apic_find_multi_vectors(pri, rcount)) != 0 ||
1093 		    behavior == DDI_INTR_ALLOC_STRICT)
1094 			break;
1095 	}
1096 
1097 	if (start == 0) {
1098 		/* no vector available */
1099 		mutex_exit(&airq_mutex);
1100 		return (0);
1101 	}
1102 
1103 	if (apic_check_free_irqs(rcount) == PSM_FAILURE) {
1104 		/* not enough free irq slots available */
1105 		mutex_exit(&airq_mutex);
1106 		return (0);
1107 	}
1108 
1109 	major = (dip != NULL) ? ddi_driver_major(dip) : 0;
1110 	for (i = 0; i < rcount; i++) {
1111 		if ((irqno = apic_allocate_irq(apic_first_avail_irq)) ==
1112 		    (uchar_t)-1) {
1113 			/*
1114 			 * shouldn't happen because of the
1115 			 * apic_check_free_irqs() check earlier
1116 			 */
1117 			mutex_exit(&airq_mutex);
1118 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: "
1119 			    "apic_allocate_irq failed\n"));
1120 			return (i);
1121 		}
1122 		apic_max_device_irq = max(irqno, apic_max_device_irq);
1123 		apic_min_device_irq = min(irqno, apic_min_device_irq);
1124 		irqptr = apic_irq_table[irqno];
1125 #ifdef	DEBUG
1126 		if (apic_vector_to_irq[start + i] != APIC_RESV_IRQ)
1127 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: "
1128 			    "apic_vector_to_irq is not APIC_RESV_IRQ\n"));
1129 #endif
1130 		apic_vector_to_irq[start + i] = (uchar_t)irqno;
1131 
1132 		irqptr->airq_vector = (uchar_t)(start + i);
1133 		irqptr->airq_ioapicindex = (uchar_t)inum;	/* start */
1134 		irqptr->airq_intin_no = (uchar_t)rcount;
1135 		irqptr->airq_ipl = pri;
1136 		irqptr->airq_vector = start + i;
1137 		irqptr->airq_origirq = (uchar_t)(inum + i);
1138 		irqptr->airq_share_id = 0;
1139 		irqptr->airq_mps_intr_index = MSI_INDEX;
1140 		irqptr->airq_dip = dip;
1141 		irqptr->airq_major = major;
1142 		if (i == 0) /* they all bound to the same cpu */
1143 			cpu = irqptr->airq_cpu = apic_bind_intr(dip, irqno,
1144 			    0xff, 0xff);
1145 		else
1146 			irqptr->airq_cpu = cpu;
1147 		DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: irq=0x%x "
1148 		    "dip=0x%p vector=0x%x origirq=0x%x pri=0x%x\n", irqno,
1149 		    (void *)irqptr->airq_dip, irqptr->airq_vector,
1150 		    irqptr->airq_origirq, pri));
1151 	}
1152 	mutex_exit(&airq_mutex);
1153 	return (rcount);
1154 }
1155 
1156 /*
1157  * This function allocates "count" MSI-X vector(s) for the given "dip/pri/type"
1158  */
1159 int
1160 apic_alloc_msix_vectors(dev_info_t *dip, int inum, int count, int pri,
1161     int behavior)
1162 {
1163 	int	rcount, i;
1164 	major_t	major;
1165 
1166 	mutex_enter(&airq_mutex);
1167 
1168 	if ((rcount = apic_navail_vector(dip, pri)) > count)
1169 		rcount = count;
1170 	else if (rcount == 0 || (rcount < count &&
1171 	    behavior == DDI_INTR_ALLOC_STRICT)) {
1172 		rcount = 0;
1173 		goto out;
1174 	}
1175 
1176 	if (apic_check_free_irqs(rcount) == PSM_FAILURE) {
1177 		/* not enough free irq slots available */
1178 		rcount = 0;
1179 		goto out;
1180 	}
1181 
1182 	major = (dip != NULL) ? ddi_driver_major(dip) : 0;
1183 	for (i = 0; i < rcount; i++) {
1184 		uchar_t	vector, irqno;
1185 		apic_irq_t	*irqptr;
1186 
1187 		if ((irqno = apic_allocate_irq(apic_first_avail_irq)) ==
1188 		    (uchar_t)-1) {
1189 			/*
1190 			 * shouldn't happen because of the
1191 			 * apic_check_free_irqs() check earlier
1192 			 */
1193 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: "
1194 			    "apic_allocate_irq failed\n"));
1195 			rcount = i;
1196 			goto out;
1197 		}
1198 		if ((vector = apic_allocate_vector(pri, irqno, 1)) == 0) {
1199 			/*
1200 			 * shouldn't happen because of the
1201 			 * apic_navail_vector() call earlier
1202 			 */
1203 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: "
1204 			    "apic_allocate_vector failed\n"));
1205 			rcount = i;
1206 			goto out;
1207 		}
1208 		apic_max_device_irq = max(irqno, apic_max_device_irq);
1209 		apic_min_device_irq = min(irqno, apic_min_device_irq);
1210 		irqptr = apic_irq_table[irqno];
1211 		irqptr->airq_vector = (uchar_t)vector;
1212 		irqptr->airq_ipl = pri;
1213 		irqptr->airq_origirq = (uchar_t)(inum + i);
1214 		irqptr->airq_share_id = 0;
1215 		irqptr->airq_mps_intr_index = MSIX_INDEX;
1216 		irqptr->airq_dip = dip;
1217 		irqptr->airq_major = major;
1218 		irqptr->airq_cpu = apic_bind_intr(dip, irqno, 0xff, 0xff);
1219 	}
1220 out:
1221 	mutex_exit(&airq_mutex);
1222 	return (rcount);
1223 }
1224 
1225 /*
1226  * Allocate a free vector for irq at ipl. Takes care of merging of multiple
1227  * IPLs into a single APIC level as well as stretching some IPLs onto multiple
1228  * levels. APIC_HI_PRI_VECTS interrupts are reserved for high priority
1229  * requests and allocated only when pri is set.
1230  */
1231 uchar_t
1232 apic_allocate_vector(int ipl, int irq, int pri)
1233 {
1234 	int	lowest, highest, i;
1235 
1236 	highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK;
1237 	lowest = apic_ipltopri[ipl - 1] + APIC_VECTOR_PER_IPL;
1238 
1239 	if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */
1240 		lowest -= APIC_VECTOR_PER_IPL;
1241 
1242 #ifdef	DEBUG
1243 	if (apic_restrict_vector)	/* for testing shared interrupt logic */
1244 		highest = lowest + apic_restrict_vector + APIC_HI_PRI_VECTS;
1245 #endif /* DEBUG */
1246 	if (pri == 0)
1247 		highest -= APIC_HI_PRI_VECTS;
1248 
1249 	for (i = lowest; i <= highest; i++) {
1250 		if (APIC_CHECK_RESERVE_VECTORS(i))
1251 			continue;
1252 		if (apic_vector_to_irq[i] == APIC_RESV_IRQ) {
1253 			apic_vector_to_irq[i] = (uchar_t)irq;
1254 			return (i);
1255 		}
1256 	}
1257 
1258 	return (0);
1259 }
1260 
1261 /* Mark vector as not being used by any irq */
1262 void
1263 apic_free_vector(uchar_t vector)
1264 {
1265 	apic_vector_to_irq[vector] = APIC_RESV_IRQ;
1266 }
1267 
1268 /*
1269  * Call rebind to do the actual programming.
1270  * Must be called with interrupts disabled and apic_ioapic_lock held
1271  * 'p' is polymorphic -- if this function is called to process a deferred
1272  * reprogramming, p is of type 'struct ioapic_reprogram_data *', from which
1273  * the irq pointer is retrieved.  If not doing deferred reprogramming,
1274  * p is of the type 'apic_irq_t *'.
1275  *
1276  * apic_ioapic_lock must be held across this call, as it protects apic_rebind
1277  * and it protects apic_get_next_bind_cpu() from a race in which a CPU can be
1278  * taken offline after a cpu is selected, but before apic_rebind is called to
1279  * bind interrupts to it.
1280  */
1281 int
1282 apic_setup_io_intr(void *p, int irq, boolean_t deferred)
1283 {
1284 	apic_irq_t *irqptr;
1285 	struct ioapic_reprogram_data *drep = NULL;
1286 	int rv;
1287 
1288 	if (deferred) {
1289 		drep = (struct ioapic_reprogram_data *)p;
1290 		ASSERT(drep != NULL);
1291 		irqptr = drep->irqp;
1292 	} else
1293 		irqptr = (apic_irq_t *)p;
1294 
1295 	ASSERT(irqptr != NULL);
1296 
1297 	rv = apic_rebind(irqptr, apic_irq_table[irq]->airq_cpu, drep);
1298 	if (rv) {
1299 		/*
1300 		 * CPU is not up or interrupts are disabled. Fall back to
1301 		 * the first available CPU
1302 		 */
1303 		rv = apic_rebind(irqptr, apic_find_cpu(APIC_CPU_INTR_ENABLE),
1304 		    drep);
1305 	}
1306 
1307 	return (rv);
1308 }
1309 
1310 
1311 uchar_t
1312 apic_modify_vector(uchar_t vector, int irq)
1313 {
1314 	apic_vector_to_irq[vector] = (uchar_t)irq;
1315 	return (vector);
1316 }
1317 
1318 char *
1319 apic_get_apic_type(void)
1320 {
1321 	return (apic_psm_info.p_mach_idstring);
1322 }
1323 
1324 void
1325 x2apic_update_psm(void)
1326 {
1327 	struct psm_ops *pops = &apic_ops;
1328 
1329 	ASSERT(pops != NULL);
1330 
1331 	pops->psm_intr_exit = x2apic_intr_exit;
1332 	pops->psm_setspl = x2apic_setspl;
1333 
1334 	pops->psm_send_ipi =  x2apic_send_ipi;
1335 	send_dirintf = pops->psm_send_ipi;
1336 
1337 	apic_mode = LOCAL_X2APIC;
1338 	apic_change_ops();
1339 }
1340