xref: /titanic_50/usr/src/uts/i86pc/io/pcplusmp/apic.c (revision 0bd81b6f8fb7804214192b87b0aa3f03fcf87c45)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * PSMI 1.1 extensions are supported only in 2.6 and later versions.
29  * PSMI 1.2 extensions are supported only in 2.7 and later versions.
30  * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
31  * PSMI 1.5 extensions are supported in Solaris Nevada.
32  * PSMI 1.6 extensions are supported in Solaris Nevada.
33  */
34 #define	PSMI_1_6
35 
36 #include <sys/processor.h>
37 #include <sys/time.h>
38 #include <sys/psm.h>
39 #include <sys/smp_impldefs.h>
40 #include <sys/cram.h>
41 #include <sys/acpi/acpi.h>
42 #include <sys/acpica.h>
43 #include <sys/psm_common.h>
44 #include <sys/apic.h>
45 #include <sys/pit.h>
46 #include <sys/ddi.h>
47 #include <sys/sunddi.h>
48 #include <sys/ddi_impldefs.h>
49 #include <sys/pci.h>
50 #include <sys/promif.h>
51 #include <sys/x86_archext.h>
52 #include <sys/cpc_impl.h>
53 #include <sys/uadmin.h>
54 #include <sys/panic.h>
55 #include <sys/debug.h>
56 #include <sys/archsystm.h>
57 #include <sys/trap.h>
58 #include <sys/machsystm.h>
59 #include <sys/sysmacros.h>
60 #include <sys/cpuvar.h>
61 #include <sys/rm_platter.h>
62 #include <sys/privregs.h>
63 #include <sys/note.h>
64 #include <sys/pci_intr_lib.h>
65 #include <sys/spl.h>
66 #include <sys/clock.h>
67 #include <sys/dditypes.h>
68 #include <sys/sunddi.h>
69 #include <sys/x_call.h>
70 #include <sys/reboot.h>
71 
72 /*
73  *	Local Function Prototypes
74  */
75 static void apic_init_intr();
76 static void apic_nmi_intr(caddr_t arg, struct regs *rp);
77 
78 /*
79  *	standard MP entries
80  */
81 static int	apic_probe();
82 static int	apic_clkinit();
83 static int	apic_getclkirq(int ipl);
84 static uint_t	apic_calibrate(volatile uint32_t *addr,
85     uint16_t *pit_ticks_adj);
86 static hrtime_t apic_gettime();
87 static hrtime_t apic_gethrtime();
88 static void	apic_init();
89 static void	apic_picinit(void);
90 static int	apic_cpu_start(processorid_t, caddr_t);
91 static int	apic_post_cpu_start(void);
92 static void	apic_send_ipi(int cpun, int ipl);
93 static void	apic_set_idlecpu(processorid_t cpun);
94 static void	apic_unset_idlecpu(processorid_t cpun);
95 static int	apic_intr_enter(int ipl, int *vect);
96 static void	apic_setspl(int ipl);
97 static void	x2apic_setspl(int ipl);
98 static int	apic_addspl(int ipl, int vector, int min_ipl, int max_ipl);
99 static int	apic_delspl(int ipl, int vector, int min_ipl, int max_ipl);
100 static void	apic_shutdown(int cmd, int fcn);
101 static void	apic_preshutdown(int cmd, int fcn);
102 static int	apic_disable_intr(processorid_t cpun);
103 static void	apic_enable_intr(processorid_t cpun);
104 static processorid_t	apic_get_next_processorid(processorid_t cpun);
105 static int		apic_get_ipivect(int ipl, int type);
106 static void	apic_timer_reprogram(hrtime_t time);
107 static void	apic_timer_enable(void);
108 static void	apic_timer_disable(void);
109 static void	apic_post_cyclic_setup(void *arg);
110 static void	apic_intrr_init(int apic_mode);
111 static void	apic_record_ioapic_rdt(apic_irq_t *irq_ptr, ioapic_rdt_t *irdt);
112 static void	apic_record_msi(apic_irq_t *irq_ptr, msi_regs_t *mregs);
113 
114 static int	apic_oneshot = 0;
115 int	apic_oneshot_enable = 1; /* to allow disabling one-shot capability */
116 
117 /* Now the ones for Dynamic Interrupt distribution */
118 int	apic_enable_dynamic_migration = 0;
119 
120 
121 /*
122  * These variables are frequently accessed in apic_intr_enter(),
123  * apic_intr_exit and apic_setspl, so group them together
124  */
125 volatile uint32_t *apicadr =  NULL;	/* virtual addr of local APIC	*/
126 int apic_setspl_delay = 1;		/* apic_setspl - delay enable	*/
127 int apic_clkvect;
128 
129 /* vector at which error interrupts come in */
130 int apic_errvect;
131 int apic_enable_error_intr = 1;
132 int apic_error_display_delay = 100;
133 
134 /* vector at which performance counter overflow interrupts come in */
135 int apic_cpcovf_vect;
136 int apic_enable_cpcovf_intr = 1;
137 
138 /* vector at which CMCI interrupts come in */
139 int apic_cmci_vect;
140 extern int cmi_enable_cmci;
141 extern void cmi_cmci_trap(void);
142 
143 static kmutex_t cmci_cpu_setup_lock;	/* protects cmci_cpu_setup_registered */
144 static int cmci_cpu_setup_registered;
145 
146 /*
147  * The following vector assignments influence the value of ipltopri and
148  * vectortoipl. Note that vectors 0 - 0x1f are not used. We can program
149  * idle to 0 and IPL 0 to 0xf to differentiate idle in case
150  * we care to do so in future. Note some IPLs which are rarely used
151  * will share the vector ranges and heavily used IPLs (5 and 6) have
152  * a wide range.
153  *
154  * This array is used to initialize apic_ipls[] (in apic_init()).
155  *
156  *	IPL		Vector range.		as passed to intr_enter
157  *	0		none.
158  *	1,2,3		0x20-0x2f		0x0-0xf
159  *	4		0x30-0x3f		0x10-0x1f
160  *	5		0x40-0x5f		0x20-0x3f
161  *	6		0x60-0x7f		0x40-0x5f
162  *	7,8,9		0x80-0x8f		0x60-0x6f
163  *	10		0x90-0x9f		0x70-0x7f
164  *	11		0xa0-0xaf		0x80-0x8f
165  *	...		...
166  *	15		0xe0-0xef		0xc0-0xcf
167  *	15		0xf0-0xff		0xd0-0xdf
168  */
169 uchar_t apic_vectortoipl[APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL] = {
170 	3, 4, 5, 5, 6, 6, 9, 10, 11, 12, 13, 14, 15, 15
171 };
172 	/*
173 	 * The ipl of an ISR at vector X is apic_vectortoipl[X>>4]
174 	 * NOTE that this is vector as passed into intr_enter which is
175 	 * programmed vector - 0x20 (APIC_BASE_VECT)
176 	 */
177 
178 uchar_t	apic_ipltopri[MAXIPL + 1];	/* unix ipl to apic pri	*/
179 	/* The taskpri to be programmed into apic to mask given ipl */
180 
181 #if defined(__amd64)
182 uchar_t	apic_cr8pri[MAXIPL + 1];	/* unix ipl to cr8 pri	*/
183 #endif
184 
185 /*
186  * Correlation of the hardware vector to the IPL in use, initialized
187  * from apic_vectortoipl[] in apic_init().  The final IPLs may not correlate
188  * to the IPLs in apic_vectortoipl on some systems that share interrupt lines
189  * connected to errata-stricken IOAPICs
190  */
191 uchar_t apic_ipls[APIC_AVAIL_VECTOR];
192 
193 /*
194  * Patchable global variables.
195  */
196 int	apic_forceload = 0;
197 
198 int	apic_coarse_hrtime = 1;		/* 0 - use accurate slow gethrtime() */
199 					/* 1 - use gettime() for performance */
200 int	apic_flat_model = 0;		/* 0 - clustered. 1 - flat */
201 int	apic_enable_hwsoftint = 0;	/* 0 - disable, 1 - enable	*/
202 int	apic_enable_bind_log = 1;	/* 1 - display interrupt binding log */
203 int	apic_panic_on_nmi = 0;
204 int	apic_panic_on_apic_error = 0;
205 
206 int	apic_verbose = 0;
207 
208 /* minimum number of timer ticks to program to */
209 int apic_min_timer_ticks = 1;
210 /*
211  *	Local static data
212  */
213 static struct	psm_ops apic_ops = {
214 	apic_probe,
215 
216 	apic_init,
217 	apic_picinit,
218 	apic_intr_enter,
219 	apic_intr_exit,
220 	apic_setspl,
221 	apic_addspl,
222 	apic_delspl,
223 	apic_disable_intr,
224 	apic_enable_intr,
225 	(int (*)(int))NULL,		/* psm_softlvl_to_irq */
226 	(void (*)(int))NULL,		/* psm_set_softintr */
227 
228 	apic_set_idlecpu,
229 	apic_unset_idlecpu,
230 
231 	apic_clkinit,
232 	apic_getclkirq,
233 	(void (*)(void))NULL,		/* psm_hrtimeinit */
234 	apic_gethrtime,
235 
236 	apic_get_next_processorid,
237 	apic_cpu_start,
238 	apic_post_cpu_start,
239 	apic_shutdown,
240 	apic_get_ipivect,
241 	apic_send_ipi,
242 
243 	(int (*)(dev_info_t *, int))NULL,	/* psm_translate_irq */
244 	(void (*)(int, char *))NULL,	/* psm_notify_error */
245 	(void (*)(int))NULL,		/* psm_notify_func */
246 	apic_timer_reprogram,
247 	apic_timer_enable,
248 	apic_timer_disable,
249 	apic_post_cyclic_setup,
250 	apic_preshutdown,
251 	apic_intr_ops,			/* Advanced DDI Interrupt framework */
252 	apic_state,			/* save, restore apic state for S3 */
253 };
254 
255 
256 static struct	psm_info apic_psm_info = {
257 	PSM_INFO_VER01_6,			/* version */
258 	PSM_OWN_EXCLUSIVE,			/* ownership */
259 	(struct psm_ops *)&apic_ops,		/* operation */
260 	APIC_PCPLUSMP_NAME,			/* machine name */
261 	"pcplusmp v1.4 compatible",
262 };
263 
264 static void *apic_hdlp;
265 
266 #ifdef DEBUG
267 int	apic_debug = 0;
268 int	apic_restrict_vector = 0;
269 
270 int	apic_debug_msgbuf[APIC_DEBUG_MSGBUFSIZE];
271 int	apic_debug_msgbufindex = 0;
272 
273 #endif /* DEBUG */
274 
275 apic_cpus_info_t	*apic_cpus;
276 
277 cpuset_t	apic_cpumask;
278 uint_t	apic_picinit_called;
279 
280 /* Flag to indicate that we need to shut down all processors */
281 static uint_t	apic_shutdown_processors;
282 
283 uint_t apic_nsec_per_intr = 0;
284 
285 /*
286  * apic_let_idle_redistribute can have the following values:
287  * 0 - If clock decremented it from 1 to 0, clock has to call redistribute.
288  * apic_redistribute_lock prevents multiple idle cpus from redistributing
289  */
290 int	apic_num_idle_redistributions = 0;
291 static	int apic_let_idle_redistribute = 0;
292 static	uint_t apic_nticks = 0;
293 static	uint_t apic_skipped_redistribute = 0;
294 
295 /* to gather intr data and redistribute */
296 static void apic_redistribute_compute(void);
297 
298 static	uint_t last_count_read = 0;
299 static	lock_t	apic_gethrtime_lock;
300 volatile int	apic_hrtime_stamp = 0;
301 volatile hrtime_t apic_nsec_since_boot = 0;
302 static uint_t apic_hertz_count;
303 
304 uint64_t apic_ticks_per_SFnsecs;	/* # of ticks in SF nsecs */
305 
306 static hrtime_t apic_nsec_max;
307 
308 static	hrtime_t	apic_last_hrtime = 0;
309 int		apic_hrtime_error = 0;
310 int		apic_remote_hrterr = 0;
311 int		apic_num_nmis = 0;
312 int		apic_apic_error = 0;
313 int		apic_num_apic_errors = 0;
314 int		apic_num_cksum_errors = 0;
315 
316 int	apic_error = 0;
317 static	int	apic_cmos_ssb_set = 0;
318 
319 /* use to make sure only one cpu handles the nmi */
320 static	lock_t	apic_nmi_lock;
321 /* use to make sure only one cpu handles the error interrupt */
322 static	lock_t	apic_error_lock;
323 
324 static	struct {
325 	uchar_t	cntl;
326 	uchar_t	data;
327 } aspen_bmc[] = {
328 	{ CC_SMS_WR_START,	0x18 },		/* NetFn/LUN */
329 	{ CC_SMS_WR_NEXT,	0x24 },		/* Cmd SET_WATCHDOG_TIMER */
330 	{ CC_SMS_WR_NEXT,	0x84 },		/* DataByte 1: SMS/OS no log */
331 	{ CC_SMS_WR_NEXT,	0x2 },		/* DataByte 2: Power Down */
332 	{ CC_SMS_WR_NEXT,	0x0 },		/* DataByte 3: no pre-timeout */
333 	{ CC_SMS_WR_NEXT,	0x0 },		/* DataByte 4: timer expir. */
334 	{ CC_SMS_WR_NEXT,	0xa },		/* DataByte 5: init countdown */
335 	{ CC_SMS_WR_END,	0x0 },		/* DataByte 6: init countdown */
336 
337 	{ CC_SMS_WR_START,	0x18 },		/* NetFn/LUN */
338 	{ CC_SMS_WR_END,	0x22 }		/* Cmd RESET_WATCHDOG_TIMER */
339 };
340 
341 static	struct {
342 	int	port;
343 	uchar_t	data;
344 } sitka_bmc[] = {
345 	{ SMS_COMMAND_REGISTER,	SMS_WRITE_START },
346 	{ SMS_DATA_REGISTER,	0x18 },		/* NetFn/LUN */
347 	{ SMS_DATA_REGISTER,	0x24 },		/* Cmd SET_WATCHDOG_TIMER */
348 	{ SMS_DATA_REGISTER,	0x84 },		/* DataByte 1: SMS/OS no log */
349 	{ SMS_DATA_REGISTER,	0x2 },		/* DataByte 2: Power Down */
350 	{ SMS_DATA_REGISTER,	0x0 },		/* DataByte 3: no pre-timeout */
351 	{ SMS_DATA_REGISTER,	0x0 },		/* DataByte 4: timer expir. */
352 	{ SMS_DATA_REGISTER,	0xa },		/* DataByte 5: init countdown */
353 	{ SMS_COMMAND_REGISTER,	SMS_WRITE_END },
354 	{ SMS_DATA_REGISTER,	0x0 },		/* DataByte 6: init countdown */
355 
356 	{ SMS_COMMAND_REGISTER,	SMS_WRITE_START },
357 	{ SMS_DATA_REGISTER,	0x18 },		/* NetFn/LUN */
358 	{ SMS_COMMAND_REGISTER,	SMS_WRITE_END },
359 	{ SMS_DATA_REGISTER,	0x22 }		/* Cmd RESET_WATCHDOG_TIMER */
360 };
361 
362 /* Patchable global variables. */
363 int		apic_kmdb_on_nmi = 0;		/* 0 - no, 1 - yes enter kmdb */
364 uint32_t	apic_divide_reg_init = 0;	/* 0 - divide by 2 */
365 
366 /* default apic ops without interrupt remapping */
367 static apic_intrr_ops_t apic_nointrr_ops = {
368 	(int (*)(int))return_instr,
369 	(void (*)(void))return_instr,
370 	(void (*)(apic_irq_t *))return_instr,
371 	(void (*)(apic_irq_t *, void *))return_instr,
372 	(void (*)(apic_irq_t *))return_instr,
373 	apic_record_ioapic_rdt,
374 	apic_record_msi,
375 };
376 
377 apic_intrr_ops_t *apic_vt_ops = &apic_nointrr_ops;
378 
379 /*
380  *	This is the loadable module wrapper
381  */
382 
383 int
384 _init(void)
385 {
386 	if (apic_coarse_hrtime)
387 		apic_ops.psm_gethrtime = &apic_gettime;
388 	return (psm_mod_init(&apic_hdlp, &apic_psm_info));
389 }
390 
391 int
392 _fini(void)
393 {
394 	return (psm_mod_fini(&apic_hdlp, &apic_psm_info));
395 }
396 
397 int
398 _info(struct modinfo *modinfop)
399 {
400 	return (psm_mod_info(&apic_hdlp, &apic_psm_info, modinfop));
401 }
402 
403 
404 static int
405 apic_probe()
406 {
407 	return (apic_probe_common(apic_psm_info.p_mach_idstring));
408 }
409 
410 void
411 apic_init()
412 {
413 	int i;
414 	int	j = 1;
415 
416 	apic_ipltopri[0] = APIC_VECTOR_PER_IPL; /* leave 0 for idle */
417 	for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) {
418 		if ((i < ((APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL) - 1)) &&
419 		    (apic_vectortoipl[i + 1] == apic_vectortoipl[i]))
420 			/* get to highest vector at the same ipl */
421 			continue;
422 		for (; j <= apic_vectortoipl[i]; j++) {
423 			apic_ipltopri[j] = (i << APIC_IPL_SHIFT) +
424 			    APIC_BASE_VECT;
425 		}
426 	}
427 	for (; j < MAXIPL + 1; j++)
428 		/* fill up any empty ipltopri slots */
429 		apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + APIC_BASE_VECT;
430 	apic_init_common();
431 #if defined(__amd64)
432 	/*
433 	 * Make cpu-specific interrupt info point to cr8pri vector
434 	 */
435 	for (i = 0; i <= MAXIPL; i++)
436 		apic_cr8pri[i] = apic_ipltopri[i] >> APIC_IPL_SHIFT;
437 	CPU->cpu_pri_data = apic_cr8pri;
438 #endif	/* __amd64 */
439 
440 	/*
441 	 * initialize interrupt remapping before apic
442 	 * hardware initialization
443 	 */
444 	apic_intrr_init(apic_mode);
445 }
446 
447 /*
448  * handler for APIC Error interrupt. Just print a warning and continue
449  */
450 static int
451 apic_error_intr()
452 {
453 	uint_t	error0, error1, error;
454 	uint_t	i;
455 
456 	/*
457 	 * We need to write before read as per 7.4.17 of system prog manual.
458 	 * We do both and or the results to be safe
459 	 */
460 	error0 = apic_reg_ops->apic_read(APIC_ERROR_STATUS);
461 	apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
462 	error1 = apic_reg_ops->apic_read(APIC_ERROR_STATUS);
463 	error = error0 | error1;
464 
465 	/*
466 	 * Clear the APIC error status (do this on all cpus that enter here)
467 	 * (two writes are required due to the semantics of accessing the
468 	 * error status register.)
469 	 */
470 	apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
471 	apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
472 
473 	/*
474 	 * Prevent more than 1 CPU from handling error interrupt causing
475 	 * double printing (interleave of characters from multiple
476 	 * CPU's when using prom_printf)
477 	 */
478 	if (lock_try(&apic_error_lock) == 0)
479 		return (error ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
480 	if (error) {
481 #if	DEBUG
482 		if (apic_debug)
483 			debug_enter("pcplusmp: APIC Error interrupt received");
484 #endif /* DEBUG */
485 		if (apic_panic_on_apic_error)
486 			cmn_err(CE_PANIC,
487 			    "APIC Error interrupt on CPU %d. Status = %x\n",
488 			    psm_get_cpu_id(), error);
489 		else {
490 			if ((error & ~APIC_CS_ERRORS) == 0) {
491 				/* cksum error only */
492 				apic_error |= APIC_ERR_APIC_ERROR;
493 				apic_apic_error |= error;
494 				apic_num_apic_errors++;
495 				apic_num_cksum_errors++;
496 			} else {
497 				/*
498 				 * prom_printf is the best shot we have of
499 				 * something which is problem free from
500 				 * high level/NMI type of interrupts
501 				 */
502 				prom_printf("APIC Error interrupt on CPU %d. "
503 				    "Status 0 = %x, Status 1 = %x\n",
504 				    psm_get_cpu_id(), error0, error1);
505 				apic_error |= APIC_ERR_APIC_ERROR;
506 				apic_apic_error |= error;
507 				apic_num_apic_errors++;
508 				for (i = 0; i < apic_error_display_delay; i++) {
509 					tenmicrosec();
510 				}
511 				/*
512 				 * provide more delay next time limited to
513 				 * roughly 1 clock tick time
514 				 */
515 				if (apic_error_display_delay < 500)
516 					apic_error_display_delay *= 2;
517 			}
518 		}
519 		lock_clear(&apic_error_lock);
520 		return (DDI_INTR_CLAIMED);
521 	} else {
522 		lock_clear(&apic_error_lock);
523 		return (DDI_INTR_UNCLAIMED);
524 	}
525 	/* NOTREACHED */
526 }
527 
528 /*
529  * Turn off the mask bit in the performance counter Local Vector Table entry.
530  */
531 static void
532 apic_cpcovf_mask_clear(void)
533 {
534 	apic_reg_ops->apic_write(APIC_PCINT_VECT,
535 	    (apic_reg_ops->apic_read(APIC_PCINT_VECT) & ~APIC_LVT_MASK));
536 }
537 
538 /*ARGSUSED*/
539 static int
540 apic_cmci_enable(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3)
541 {
542 	apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect);
543 	return (0);
544 }
545 
546 /*ARGSUSED*/
547 static int
548 apic_cmci_disable(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3)
549 {
550 	apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect | AV_MASK);
551 	return (0);
552 }
553 
554 /*ARGSUSED*/
555 static int
556 cmci_cpu_setup(cpu_setup_t what, int cpuid, void *arg)
557 {
558 	cpuset_t	cpu_set;
559 
560 	CPUSET_ONLY(cpu_set, cpuid);
561 
562 	switch (what) {
563 		case CPU_ON:
564 			xc_call(NULL, NULL, NULL, X_CALL_HIPRI, cpu_set,
565 			    (xc_func_t)apic_cmci_enable);
566 			break;
567 
568 		case CPU_OFF:
569 			xc_call(NULL, NULL, NULL, X_CALL_HIPRI, cpu_set,
570 			    (xc_func_t)apic_cmci_disable);
571 			break;
572 
573 		default:
574 			break;
575 	}
576 
577 	return (0);
578 }
579 
580 static void
581 apic_init_intr()
582 {
583 	processorid_t	cpun = psm_get_cpu_id();
584 	uint_t nlvt;
585 	uint32_t svr = AV_UNIT_ENABLE | APIC_SPUR_INTR;
586 
587 	apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL);
588 
589 	if (apic_mode == LOCAL_APIC) {
590 		/*
591 		 * We are running APIC in MMIO mode.
592 		 */
593 		if (apic_flat_model) {
594 			apic_reg_ops->apic_write(APIC_FORMAT_REG,
595 			    APIC_FLAT_MODEL);
596 		} else {
597 			apic_reg_ops->apic_write(APIC_FORMAT_REG,
598 			    APIC_CLUSTER_MODEL);
599 		}
600 
601 		apic_reg_ops->apic_write(APIC_DEST_REG,
602 		    AV_HIGH_ORDER >> cpun);
603 	}
604 
605 	if (apic_direct_EOI) {
606 		/*
607 		 * Set 12th bit in Spurious Interrupt Vector
608 		 * Register to support level triggered interrupt
609 		 * directed EOI.
610 		 */
611 		svr |= (0x1 << APIC_SVR);
612 	}
613 
614 	/* need to enable APIC before unmasking NMI */
615 	apic_reg_ops->apic_write(APIC_SPUR_INT_REG, svr);
616 
617 	/*
618 	 * Presence of an invalid vector with delivery mode AV_FIXED can
619 	 * cause an error interrupt, even if the entry is masked...so
620 	 * write a valid vector to LVT entries along with the mask bit
621 	 */
622 
623 	/* All APICs have timer and LINT0/1 */
624 	apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK|APIC_RESV_IRQ);
625 	apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK|APIC_RESV_IRQ);
626 	apic_reg_ops->apic_write(APIC_INT_VECT1, AV_NMI);	/* enable NMI */
627 
628 	/*
629 	 * On integrated APICs, the number of LVT entries is
630 	 * 'Max LVT entry' + 1; on 82489DX's (non-integrated
631 	 * APICs), nlvt is "3" (LINT0, LINT1, and timer)
632 	 */
633 
634 	if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) {
635 		nlvt = 3;
636 	} else {
637 		nlvt = ((apic_reg_ops->apic_read(APIC_VERS_REG) >> 16) &
638 		    0xFF) + 1;
639 	}
640 
641 	if (nlvt >= 5) {
642 		/* Enable performance counter overflow interrupt */
643 
644 		if ((x86_feature & X86_MSR) != X86_MSR)
645 			apic_enable_cpcovf_intr = 0;
646 		if (apic_enable_cpcovf_intr) {
647 			if (apic_cpcovf_vect == 0) {
648 				int ipl = APIC_PCINT_IPL;
649 				int irq = apic_get_ipivect(ipl, -1);
650 
651 				ASSERT(irq != -1);
652 				apic_cpcovf_vect =
653 				    apic_irq_table[irq]->airq_vector;
654 				ASSERT(apic_cpcovf_vect);
655 				(void) add_avintr(NULL, ipl,
656 				    (avfunc)kcpc_hw_overflow_intr,
657 				    "apic pcint", irq, NULL, NULL, NULL, NULL);
658 				kcpc_hw_overflow_intr_installed = 1;
659 				kcpc_hw_enable_cpc_intr =
660 				    apic_cpcovf_mask_clear;
661 			}
662 			apic_reg_ops->apic_write(APIC_PCINT_VECT,
663 			    apic_cpcovf_vect);
664 		}
665 	}
666 
667 	if (nlvt >= 6) {
668 		/* Only mask TM intr if the BIOS apparently doesn't use it */
669 
670 		uint32_t lvtval;
671 
672 		lvtval = apic_reg_ops->apic_read(APIC_THERM_VECT);
673 		if (((lvtval & AV_MASK) == AV_MASK) ||
674 		    ((lvtval & AV_DELIV_MODE) != AV_SMI)) {
675 			apic_reg_ops->apic_write(APIC_THERM_VECT,
676 			    AV_MASK|APIC_RESV_IRQ);
677 		}
678 	}
679 
680 	/* Enable error interrupt */
681 
682 	if (nlvt >= 4 && apic_enable_error_intr) {
683 		if (apic_errvect == 0) {
684 			int ipl = 0xf;	/* get highest priority intr */
685 			int irq = apic_get_ipivect(ipl, -1);
686 
687 			ASSERT(irq != -1);
688 			apic_errvect = apic_irq_table[irq]->airq_vector;
689 			ASSERT(apic_errvect);
690 			/*
691 			 * Not PSMI compliant, but we are going to merge
692 			 * with ON anyway
693 			 */
694 			(void) add_avintr((void *)NULL, ipl,
695 			    (avfunc)apic_error_intr, "apic error intr",
696 			    irq, NULL, NULL, NULL, NULL);
697 		}
698 		apic_reg_ops->apic_write(APIC_ERR_VECT, apic_errvect);
699 		apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
700 		apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
701 	}
702 
703 	/* Enable CMCI interrupt */
704 	if (cmi_enable_cmci) {
705 
706 		mutex_enter(&cmci_cpu_setup_lock);
707 		if (cmci_cpu_setup_registered == 0) {
708 			mutex_enter(&cpu_lock);
709 			register_cpu_setup_func(cmci_cpu_setup, NULL);
710 			mutex_exit(&cpu_lock);
711 			cmci_cpu_setup_registered = 1;
712 		}
713 		mutex_exit(&cmci_cpu_setup_lock);
714 
715 		if (apic_cmci_vect == 0) {
716 			int ipl = 0x2;
717 			int irq = apic_get_ipivect(ipl, -1);
718 
719 			ASSERT(irq != -1);
720 			apic_cmci_vect = apic_irq_table[irq]->airq_vector;
721 			ASSERT(apic_cmci_vect);
722 
723 			(void) add_avintr(NULL, ipl,
724 			    (avfunc)cmi_cmci_trap,
725 			    "apic cmci intr", irq, NULL, NULL, NULL, NULL);
726 		}
727 		apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect);
728 	}
729 }
730 
731 static void
732 apic_disable_local_apic()
733 {
734 	apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL);
735 	apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK);
736 
737 	/* local intr reg 0 */
738 	apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK);
739 
740 	/* disable NMI */
741 	apic_reg_ops->apic_write(APIC_INT_VECT1, AV_MASK);
742 
743 	/* and error interrupt */
744 	apic_reg_ops->apic_write(APIC_ERR_VECT, AV_MASK);
745 
746 	/* and perf counter intr */
747 	apic_reg_ops->apic_write(APIC_PCINT_VECT, AV_MASK);
748 
749 	apic_reg_ops->apic_write(APIC_SPUR_INT_REG, APIC_SPUR_INTR);
750 }
751 
752 static void
753 apic_picinit(void)
754 {
755 	int i, j;
756 	uint_t isr;
757 	uint32_t ver;
758 
759 	/*
760 	 * On UniSys Model 6520, the BIOS leaves vector 0x20 isr
761 	 * bit on without clearing it with EOI.  Since softint
762 	 * uses vector 0x20 to interrupt itself, so softint will
763 	 * not work on this machine.  In order to fix this problem
764 	 * a check is made to verify all the isr bits are clear.
765 	 * If not, EOIs are issued to clear the bits.
766 	 */
767 	for (i = 7; i >= 1; i--) {
768 		isr = apic_reg_ops->apic_read(APIC_ISR_REG + (i * 4));
769 		if (isr != 0)
770 			for (j = 0; ((j < 32) && (isr != 0)); j++)
771 				if (isr & (1 << j)) {
772 					apic_reg_ops->apic_write(
773 					    APIC_EOI_REG, 0);
774 					isr &= ~(1 << j);
775 					apic_error |= APIC_ERR_BOOT_EOI;
776 				}
777 	}
778 
779 	/* set a flag so we know we have run apic_picinit() */
780 	apic_picinit_called = 1;
781 	LOCK_INIT_CLEAR(&apic_gethrtime_lock);
782 	LOCK_INIT_CLEAR(&apic_ioapic_lock);
783 	LOCK_INIT_CLEAR(&apic_error_lock);
784 
785 	picsetup();	 /* initialise the 8259 */
786 
787 	/* add nmi handler - least priority nmi handler */
788 	LOCK_INIT_CLEAR(&apic_nmi_lock);
789 
790 	if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr,
791 	    "pcplusmp NMI handler", (caddr_t)NULL))
792 		cmn_err(CE_WARN, "pcplusmp: Unable to add nmi handler");
793 
794 	ver = apic_reg_ops->apic_read(APIC_VERS_REG);
795 	/*
796 	 * In order to determine support for Directed EOI capability,
797 	 * we check for 24th bit in Local APIC Version Register.
798 	 */
799 	if (ver & (0x1 << APIC_DIRECTED_EOI)) {
800 		apic_direct_EOI = 1;
801 		apic_change_eoi();
802 	}
803 
804 	apic_init_intr();
805 
806 	/* enable apic mode if imcr present */
807 	if (apic_imcrp) {
808 		outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT);
809 		outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC);
810 	}
811 
812 	ioapic_init_intr(IOAPIC_MASK);
813 }
814 
815 
816 /*ARGSUSED1*/
817 static int
818 apic_cpu_start(processorid_t cpun, caddr_t arg)
819 {
820 	int		loop_count;
821 	uint32_t	vector;
822 	uint_t		cpu_id;
823 	ulong_t		iflag;
824 
825 	cpu_id =  apic_cpus[cpun].aci_local_id;
826 
827 	apic_cmos_ssb_set = 1;
828 
829 	/*
830 	 * Interrupts on BSP cpu will be disabled during these startup
831 	 * steps in order to avoid unwanted side effects from
832 	 * executing interrupt handlers on a problematic BIOS.
833 	 */
834 
835 	iflag = intr_clear();
836 	outb(CMOS_ADDR, SSB);
837 	outb(CMOS_DATA, BIOS_SHUTDOWN);
838 
839 	/*
840 	 * According to X2APIC specification in section '2.3.5.1' of
841 	 * Interrupt Command Register Semantics, the semantics of
842 	 * programming the Interrupt Command Register to dispatch an interrupt
843 	 * is simplified. A single MSR write to the 64-bit ICR is required
844 	 * for dispatching an interrupt. Specifically, with the 64-bit MSR
845 	 * interface to ICR, system software is not required to check the
846 	 * status of the delivery status bit prior to writing to the ICR
847 	 * to send an IPI. With the removal of the Delivery Status bit,
848 	 * system software no longer has a reason to read the ICR. It remains
849 	 * readable only to aid in debugging.
850 	 */
851 #ifdef	DEBUG
852 	APIC_AV_PENDING_SET();
853 #else
854 	if (apic_mode == LOCAL_APIC) {
855 		APIC_AV_PENDING_SET();
856 	}
857 #endif /* DEBUG */
858 
859 	/* for integrated - make sure there is one INIT IPI in buffer */
860 	/* for external - it will wake up the cpu */
861 	apic_reg_ops->apic_write_int_cmd(cpu_id, AV_ASSERT | AV_RESET);
862 
863 	/* If only 1 CPU is installed, PENDING bit will not go low */
864 	for (loop_count = 0x1000; loop_count; loop_count--) {
865 		if (apic_mode == LOCAL_APIC &&
866 		    apic_reg_ops->apic_read(APIC_INT_CMD1) & AV_PENDING)
867 			apic_ret();
868 		else
869 			break;
870 	}
871 
872 	apic_reg_ops->apic_write_int_cmd(cpu_id, AV_DEASSERT | AV_RESET);
873 
874 	drv_usecwait(20000);		/* 20 milli sec */
875 
876 	if (apic_cpus[cpun].aci_local_ver >= APIC_INTEGRATED_VERS) {
877 		/* integrated apic */
878 
879 		vector = (rm_platter_pa >> MMU_PAGESHIFT) &
880 		    (APIC_VECTOR_MASK | APIC_IPL_MASK);
881 
882 		/* to offset the INIT IPI queue up in the buffer */
883 		apic_reg_ops->apic_write_int_cmd(cpu_id, vector | AV_STARTUP);
884 
885 		drv_usecwait(200);		/* 20 micro sec */
886 
887 		apic_reg_ops->apic_write_int_cmd(cpu_id, vector | AV_STARTUP);
888 
889 		drv_usecwait(200);		/* 20 micro sec */
890 	}
891 	intr_restore(iflag);
892 	return (0);
893 }
894 
895 
896 #ifdef	DEBUG
897 int	apic_break_on_cpu = 9;
898 int	apic_stretch_interrupts = 0;
899 int	apic_stretch_ISR = 1 << 3;	/* IPL of 3 matches nothing now */
900 
901 void
902 apic_break()
903 {
904 }
905 #endif /* DEBUG */
906 
907 /*
908  * platform_intr_enter
909  *
910  *	Called at the beginning of the interrupt service routine to
911  *	mask all level equal to and below the interrupt priority
912  *	of the interrupting vector.  An EOI should be given to
913  *	the interrupt controller to enable other HW interrupts.
914  *
915  *	Return -1 for spurious interrupts
916  *
917  */
918 /*ARGSUSED*/
919 static int
920 apic_intr_enter(int ipl, int *vectorp)
921 {
922 	uchar_t vector;
923 	int nipl;
924 	int irq;
925 	ulong_t iflag;
926 	apic_cpus_info_t *cpu_infop;
927 
928 	/*
929 	 * The real vector delivered is (*vectorp + 0x20), but our caller
930 	 * subtracts 0x20 from the vector before passing it to us.
931 	 * (That's why APIC_BASE_VECT is 0x20.)
932 	 */
933 	vector = (uchar_t)*vectorp;
934 
935 	/* if interrupted by the clock, increment apic_nsec_since_boot */
936 	if (vector == apic_clkvect) {
937 		if (!apic_oneshot) {
938 			/* NOTE: this is not MT aware */
939 			apic_hrtime_stamp++;
940 			apic_nsec_since_boot += apic_nsec_per_intr;
941 			apic_hrtime_stamp++;
942 			last_count_read = apic_hertz_count;
943 			apic_redistribute_compute();
944 		}
945 
946 		/* We will avoid all the book keeping overhead for clock */
947 		nipl = apic_ipls[vector];
948 
949 		*vectorp = apic_vector_to_irq[vector + APIC_BASE_VECT];
950 		if (apic_mode == LOCAL_APIC) {
951 #if defined(__amd64)
952 			setcr8((ulong_t)(apic_ipltopri[nipl] >>
953 			    APIC_IPL_SHIFT));
954 #else
955 			LOCAL_APIC_WRITE_REG(APIC_TASK_REG,
956 			    (uint32_t)apic_ipltopri[nipl]);
957 #endif
958 			LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0);
959 		} else {
960 			X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[nipl]);
961 			X2APIC_WRITE(APIC_EOI_REG, 0);
962 		}
963 
964 		return (nipl);
965 	}
966 
967 	cpu_infop = &apic_cpus[psm_get_cpu_id()];
968 
969 	if (vector == (APIC_SPUR_INTR - APIC_BASE_VECT)) {
970 		cpu_infop->aci_spur_cnt++;
971 		return (APIC_INT_SPURIOUS);
972 	}
973 
974 	/* Check if the vector we got is really what we need */
975 	if (apic_revector_pending) {
976 		/*
977 		 * Disable interrupts for the duration of
978 		 * the vector translation to prevent a self-race for
979 		 * the apic_revector_lock.  This cannot be done
980 		 * in apic_xlate_vector because it is recursive and
981 		 * we want the vector translation to be atomic with
982 		 * respect to other (higher-priority) interrupts.
983 		 */
984 		iflag = intr_clear();
985 		vector = apic_xlate_vector(vector + APIC_BASE_VECT) -
986 		    APIC_BASE_VECT;
987 		intr_restore(iflag);
988 	}
989 
990 	nipl = apic_ipls[vector];
991 	*vectorp = irq = apic_vector_to_irq[vector + APIC_BASE_VECT];
992 
993 	if (apic_mode == LOCAL_APIC) {
994 #if defined(__amd64)
995 		setcr8((ulong_t)(apic_ipltopri[nipl] >> APIC_IPL_SHIFT));
996 #else
997 		LOCAL_APIC_WRITE_REG(APIC_TASK_REG,
998 		    (uint32_t)apic_ipltopri[nipl]);
999 #endif
1000 	} else {
1001 		X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[nipl]);
1002 	}
1003 
1004 	cpu_infop->aci_current[nipl] = (uchar_t)irq;
1005 	cpu_infop->aci_curipl = (uchar_t)nipl;
1006 	cpu_infop->aci_ISR_in_progress |= 1 << nipl;
1007 
1008 	/*
1009 	 * apic_level_intr could have been assimilated into the irq struct.
1010 	 * but, having it as a character array is more efficient in terms of
1011 	 * cache usage. So, we leave it as is.
1012 	 */
1013 	if (!apic_level_intr[irq]) {
1014 		if (apic_mode == LOCAL_APIC)
1015 			LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0);
1016 		else
1017 			X2APIC_WRITE(APIC_EOI_REG, 0);
1018 	}
1019 
1020 #ifdef	DEBUG
1021 	APIC_DEBUG_BUF_PUT(vector);
1022 	APIC_DEBUG_BUF_PUT(irq);
1023 	APIC_DEBUG_BUF_PUT(nipl);
1024 	APIC_DEBUG_BUF_PUT(psm_get_cpu_id());
1025 	if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl)))
1026 		drv_usecwait(apic_stretch_interrupts);
1027 
1028 	if (apic_break_on_cpu == psm_get_cpu_id())
1029 		apic_break();
1030 #endif /* DEBUG */
1031 	return (nipl);
1032 }
1033 
1034 /*
1035  * This macro is a common code used by MMIO local apic and X2APIC
1036  * local apic.
1037  */
1038 #define	APIC_INTR_EXIT() \
1039 { \
1040 	cpu_infop = &apic_cpus[psm_get_cpu_id()]; \
1041 	if (apic_level_intr[irq]) \
1042 		apic_reg_ops->apic_send_eoi(irq); \
1043 	cpu_infop->aci_curipl = (uchar_t)prev_ipl; \
1044 	/* ISR above current pri could not be in progress */ \
1045 	cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1; \
1046 }
1047 
1048 /*
1049  * Any changes made to this function must also change X2APIC
1050  * version of intr_exit.
1051  */
1052 void
1053 apic_intr_exit(int prev_ipl, int irq)
1054 {
1055 	apic_cpus_info_t *cpu_infop;
1056 
1057 #if defined(__amd64)
1058 	setcr8((ulong_t)apic_cr8pri[prev_ipl]);
1059 #else
1060 	apicadr[APIC_TASK_REG] = apic_ipltopri[prev_ipl];
1061 #endif
1062 
1063 	APIC_INTR_EXIT();
1064 }
1065 
1066 /*
1067  * Same as apic_intr_exit() except it uses MSR rather than MMIO
1068  * to access local apic registers.
1069  */
1070 void
1071 x2apic_intr_exit(int prev_ipl, int irq)
1072 {
1073 	apic_cpus_info_t *cpu_infop;
1074 
1075 	X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[prev_ipl]);
1076 	APIC_INTR_EXIT();
1077 }
1078 
1079 intr_exit_fn_t
1080 psm_intr_exit_fn(void)
1081 {
1082 	if (apic_mode == LOCAL_X2APIC)
1083 		return (x2apic_intr_exit);
1084 
1085 	return (apic_intr_exit);
1086 }
1087 
1088 /*
1089  * Mask all interrupts below or equal to the given IPL.
1090  * Any changes made to this function must also change X2APIC
1091  * version of setspl.
1092  */
1093 static void
1094 apic_setspl(int ipl)
1095 {
1096 #if defined(__amd64)
1097 	setcr8((ulong_t)apic_cr8pri[ipl]);
1098 #else
1099 	apicadr[APIC_TASK_REG] = apic_ipltopri[ipl];
1100 #endif
1101 
1102 	/* interrupts at ipl above this cannot be in progress */
1103 	apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1;
1104 	/*
1105 	 * this is a patch fix for the ALR QSMP P5 machine, so that interrupts
1106 	 * have enough time to come in before the priority is raised again
1107 	 * during the idle() loop.
1108 	 */
1109 	if (apic_setspl_delay)
1110 		(void) apic_reg_ops->apic_get_pri();
1111 }
1112 
1113 /*
1114  * X2APIC version of setspl.
1115  * Mask all interrupts below or equal to the given IPL
1116  */
1117 static void
1118 x2apic_setspl(int ipl)
1119 {
1120 	X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[ipl]);
1121 
1122 	/* interrupts at ipl above this cannot be in progress */
1123 	apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1;
1124 }
1125 
1126 /*
1127  * generates an interprocessor interrupt to another CPU. Any changes made to
1128  * this routine must be accompanied by similar changes to
1129  * apic_common_send_ipi().
1130  */
1131 static void
1132 apic_send_ipi(int cpun, int ipl)
1133 {
1134 	int vector;
1135 	ulong_t flag;
1136 
1137 	vector = apic_resv_vector[ipl];
1138 
1139 	ASSERT((vector >= APIC_BASE_VECT) && (vector <= APIC_SPUR_INTR));
1140 
1141 	flag = intr_clear();
1142 
1143 	APIC_AV_PENDING_SET();
1144 
1145 	apic_reg_ops->apic_write_int_cmd(apic_cpus[cpun].aci_local_id,
1146 	    vector);
1147 
1148 	intr_restore(flag);
1149 }
1150 
1151 
1152 /*ARGSUSED*/
1153 static void
1154 apic_set_idlecpu(processorid_t cpun)
1155 {
1156 }
1157 
1158 /*ARGSUSED*/
1159 static void
1160 apic_unset_idlecpu(processorid_t cpun)
1161 {
1162 }
1163 
1164 
1165 void
1166 apic_ret()
1167 {
1168 }
1169 
1170 /*
1171  * If apic_coarse_time == 1, then apic_gettime() is used instead of
1172  * apic_gethrtime().  This is used for performance instead of accuracy.
1173  */
1174 
1175 static hrtime_t
1176 apic_gettime()
1177 {
1178 	int old_hrtime_stamp;
1179 	hrtime_t temp;
1180 
1181 	/*
1182 	 * In one-shot mode, we do not keep time, so if anyone
1183 	 * calls psm_gettime() directly, we vector over to
1184 	 * gethrtime().
1185 	 * one-shot mode MUST NOT be enabled if this psm is the source of
1186 	 * hrtime.
1187 	 */
1188 
1189 	if (apic_oneshot)
1190 		return (gethrtime());
1191 
1192 
1193 gettime_again:
1194 	while ((old_hrtime_stamp = apic_hrtime_stamp) & 1)
1195 		apic_ret();
1196 
1197 	temp = apic_nsec_since_boot;
1198 
1199 	if (apic_hrtime_stamp != old_hrtime_stamp) {	/* got an interrupt */
1200 		goto gettime_again;
1201 	}
1202 	return (temp);
1203 }
1204 
1205 /*
1206  * Here we return the number of nanoseconds since booting.  Note every
1207  * clock interrupt increments apic_nsec_since_boot by the appropriate
1208  * amount.
1209  */
1210 static hrtime_t
1211 apic_gethrtime()
1212 {
1213 	int curr_timeval, countval, elapsed_ticks;
1214 	int old_hrtime_stamp, status;
1215 	hrtime_t temp;
1216 	uint32_t cpun;
1217 	ulong_t oflags;
1218 
1219 	/*
1220 	 * In one-shot mode, we do not keep time, so if anyone
1221 	 * calls psm_gethrtime() directly, we vector over to
1222 	 * gethrtime().
1223 	 * one-shot mode MUST NOT be enabled if this psm is the source of
1224 	 * hrtime.
1225 	 */
1226 
1227 	if (apic_oneshot)
1228 		return (gethrtime());
1229 
1230 	oflags = intr_clear();	/* prevent migration */
1231 
1232 	cpun = apic_reg_ops->apic_read(APIC_LID_REG);
1233 	if (apic_mode == LOCAL_APIC)
1234 		cpun >>= APIC_ID_BIT_OFFSET;
1235 
1236 	lock_set(&apic_gethrtime_lock);
1237 
1238 gethrtime_again:
1239 	while ((old_hrtime_stamp = apic_hrtime_stamp) & 1)
1240 		apic_ret();
1241 
1242 	/*
1243 	 * Check to see which CPU we are on.  Note the time is kept on
1244 	 * the local APIC of CPU 0.  If on CPU 0, simply read the current
1245 	 * counter.  If on another CPU, issue a remote read command to CPU 0.
1246 	 */
1247 	if (cpun == apic_cpus[0].aci_local_id) {
1248 		countval = apic_reg_ops->apic_read(APIC_CURR_COUNT);
1249 	} else {
1250 #ifdef	DEBUG
1251 		APIC_AV_PENDING_SET();
1252 #else
1253 		if (apic_mode == LOCAL_APIC)
1254 			APIC_AV_PENDING_SET();
1255 #endif /* DEBUG */
1256 
1257 		apic_reg_ops->apic_write_int_cmd(
1258 		    apic_cpus[0].aci_local_id, APIC_CURR_ADD | AV_REMOTE);
1259 
1260 		while ((status = apic_reg_ops->apic_read(APIC_INT_CMD1))
1261 		    & AV_READ_PENDING) {
1262 			apic_ret();
1263 		}
1264 
1265 		if (status & AV_REMOTE_STATUS)	/* 1 = valid */
1266 			countval = apic_reg_ops->apic_read(APIC_REMOTE_READ);
1267 		else {	/* 0 = invalid */
1268 			apic_remote_hrterr++;
1269 			/*
1270 			 * return last hrtime right now, will need more
1271 			 * testing if change to retry
1272 			 */
1273 			temp = apic_last_hrtime;
1274 
1275 			lock_clear(&apic_gethrtime_lock);
1276 
1277 			intr_restore(oflags);
1278 
1279 			return (temp);
1280 		}
1281 	}
1282 	if (countval > last_count_read)
1283 		countval = 0;
1284 	else
1285 		last_count_read = countval;
1286 
1287 	elapsed_ticks = apic_hertz_count - countval;
1288 
1289 	curr_timeval = APIC_TICKS_TO_NSECS(elapsed_ticks);
1290 	temp = apic_nsec_since_boot + curr_timeval;
1291 
1292 	if (apic_hrtime_stamp != old_hrtime_stamp) {	/* got an interrupt */
1293 		/* we might have clobbered last_count_read. Restore it */
1294 		last_count_read = apic_hertz_count;
1295 		goto gethrtime_again;
1296 	}
1297 
1298 	if (temp < apic_last_hrtime) {
1299 		/* return last hrtime if error occurs */
1300 		apic_hrtime_error++;
1301 		temp = apic_last_hrtime;
1302 	}
1303 	else
1304 		apic_last_hrtime = temp;
1305 
1306 	lock_clear(&apic_gethrtime_lock);
1307 	intr_restore(oflags);
1308 
1309 	return (temp);
1310 }
1311 
1312 /* apic NMI handler */
1313 /*ARGSUSED*/
1314 static void
1315 apic_nmi_intr(caddr_t arg, struct regs *rp)
1316 {
1317 	if (apic_shutdown_processors) {
1318 		apic_disable_local_apic();
1319 		return;
1320 	}
1321 
1322 	apic_error |= APIC_ERR_NMI;
1323 
1324 	if (!lock_try(&apic_nmi_lock))
1325 		return;
1326 	apic_num_nmis++;
1327 
1328 	if (apic_kmdb_on_nmi && psm_debugger()) {
1329 		debug_enter("NMI received: entering kmdb\n");
1330 	} else if (apic_panic_on_nmi) {
1331 		/* Keep panic from entering kmdb. */
1332 		nopanicdebug = 1;
1333 		panic("NMI received\n");
1334 	} else {
1335 		/*
1336 		 * prom_printf is the best shot we have of something which is
1337 		 * problem free from high level/NMI type of interrupts
1338 		 */
1339 		prom_printf("NMI received\n");
1340 	}
1341 
1342 	lock_clear(&apic_nmi_lock);
1343 }
1344 
1345 /*ARGSUSED*/
1346 static int
1347 apic_addspl(int irqno, int ipl, int min_ipl, int max_ipl)
1348 {
1349 	return (apic_addspl_common(irqno, ipl, min_ipl, max_ipl));
1350 }
1351 
1352 static int
1353 apic_delspl(int irqno, int ipl, int min_ipl, int max_ipl)
1354 {
1355 	return (apic_delspl_common(irqno, ipl, min_ipl,  max_ipl));
1356 }
1357 
1358 static int
1359 apic_post_cpu_start()
1360 {
1361 	int cpun;
1362 	static int cpus_started = 1;
1363 	struct psm_ops *pops = &apic_ops;
1364 
1365 	/* We know this CPU + BSP  started successfully. */
1366 	cpus_started++;
1367 
1368 	/*
1369 	 * On BSP we would have enabled X2APIC, if supported by processor,
1370 	 * in acpi_probe(), but on AP we do it here.
1371 	 *
1372 	 * We enable X2APIC mode only if BSP is running in X2APIC & the
1373 	 * local APIC mode of the current CPU is MMIO (xAPIC).
1374 	 */
1375 	if (apic_mode == LOCAL_X2APIC && apic_detect_x2apic() &&
1376 	    apic_local_mode() == LOCAL_APIC) {
1377 		apic_enable_x2apic();
1378 	}
1379 
1380 	/*
1381 	 * We change psm_send_ipi and send_dirintf only if Solaris
1382 	 * is booted in kmdb & the current CPU is the last CPU being
1383 	 * brought up. We don't need to do anything if Solaris is running
1384 	 * in MMIO mode (xAPIC).
1385 	 */
1386 	if ((boothowto & RB_DEBUG) &&
1387 	    (cpus_started == boot_ncpus || cpus_started == apic_nproc) &&
1388 	    apic_mode == LOCAL_X2APIC) {
1389 		/*
1390 		 * We no longer need help from apic_common_send_ipi()
1391 		 * since we will not start any more CPUs.
1392 		 *
1393 		 * We will need to revisit this if we start supporting
1394 		 * hot-plugging of CPUs.
1395 		 */
1396 		pops->psm_send_ipi = x2apic_send_ipi;
1397 		send_dirintf = pops->psm_send_ipi;
1398 	}
1399 
1400 	splx(ipltospl(LOCK_LEVEL));
1401 	apic_init_intr();
1402 
1403 	/*
1404 	 * since some systems don't enable the internal cache on the non-boot
1405 	 * cpus, so we have to enable them here
1406 	 */
1407 	setcr0(getcr0() & ~(CR0_CD | CR0_NW));
1408 
1409 #ifdef	DEBUG
1410 	APIC_AV_PENDING_SET();
1411 #else
1412 	if (apic_mode == LOCAL_APIC)
1413 		APIC_AV_PENDING_SET();
1414 #endif	/* DEBUG */
1415 
1416 	/*
1417 	 * We may be booting, or resuming from suspend; aci_status will
1418 	 * be APIC_CPU_INTR_ENABLE if coming from suspend, so we add the
1419 	 * APIC_CPU_ONLINE flag here rather than setting aci_status completely.
1420 	 */
1421 	cpun = psm_get_cpu_id();
1422 	apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE;
1423 
1424 	apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init);
1425 	return (PSM_SUCCESS);
1426 }
1427 
1428 processorid_t
1429 apic_get_next_processorid(processorid_t cpu_id)
1430 {
1431 
1432 	int i;
1433 
1434 	if (cpu_id == -1)
1435 		return ((processorid_t)0);
1436 
1437 	for (i = cpu_id + 1; i < NCPU; i++) {
1438 		if (CPU_IN_SET(apic_cpumask, i))
1439 			return (i);
1440 	}
1441 
1442 	return ((processorid_t)-1);
1443 }
1444 
1445 
1446 /*
1447  * type == -1 indicates it is an internal request. Do not change
1448  * resv_vector for these requests
1449  */
1450 static int
1451 apic_get_ipivect(int ipl, int type)
1452 {
1453 	uchar_t vector;
1454 	int irq;
1455 
1456 	if (irq = apic_allocate_irq(APIC_VECTOR(ipl))) {
1457 		if (vector = apic_allocate_vector(ipl, irq, 1)) {
1458 			apic_irq_table[irq]->airq_mps_intr_index =
1459 			    RESERVE_INDEX;
1460 			apic_irq_table[irq]->airq_vector = vector;
1461 			if (type != -1) {
1462 				apic_resv_vector[ipl] = vector;
1463 			}
1464 			return (irq);
1465 		}
1466 	}
1467 	apic_error |= APIC_ERR_GET_IPIVECT_FAIL;
1468 	return (-1);	/* shouldn't happen */
1469 }
1470 
1471 static int
1472 apic_getclkirq(int ipl)
1473 {
1474 	int	irq;
1475 
1476 	if ((irq = apic_get_ipivect(ipl, -1)) == -1)
1477 		return (-1);
1478 	/*
1479 	 * Note the vector in apic_clkvect for per clock handling.
1480 	 */
1481 	apic_clkvect = apic_irq_table[irq]->airq_vector - APIC_BASE_VECT;
1482 	APIC_VERBOSE_IOAPIC((CE_NOTE, "get_clkirq: vector = %x\n",
1483 	    apic_clkvect));
1484 	return (irq);
1485 }
1486 
1487 
1488 /*
1489  * Return the number of APIC clock ticks elapsed for 8245 to decrement
1490  * (APIC_TIME_COUNT + pit_ticks_adj) ticks.
1491  */
1492 static uint_t
1493 apic_calibrate(volatile uint32_t *addr, uint16_t *pit_ticks_adj)
1494 {
1495 	uint8_t		pit_tick_lo;
1496 	uint16_t	pit_tick, target_pit_tick;
1497 	uint32_t	start_apic_tick, end_apic_tick;
1498 	ulong_t		iflag;
1499 	uint32_t	reg;
1500 
1501 	reg = addr + APIC_CURR_COUNT - apicadr;
1502 
1503 	iflag = intr_clear();
1504 
1505 	do {
1506 		pit_tick_lo = inb(PITCTR0_PORT);
1507 		pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo;
1508 	} while (pit_tick < APIC_TIME_MIN ||
1509 	    pit_tick_lo <= APIC_LB_MIN || pit_tick_lo >= APIC_LB_MAX);
1510 
1511 	/*
1512 	 * Wait for the 8254 to decrement by 5 ticks to ensure
1513 	 * we didn't start in the middle of a tick.
1514 	 * Compare with 0x10 for the wrap around case.
1515 	 */
1516 	target_pit_tick = pit_tick - 5;
1517 	do {
1518 		pit_tick_lo = inb(PITCTR0_PORT);
1519 		pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo;
1520 	} while (pit_tick > target_pit_tick || pit_tick_lo < 0x10);
1521 
1522 	start_apic_tick = apic_reg_ops->apic_read(reg);
1523 
1524 	/*
1525 	 * Wait for the 8254 to decrement by
1526 	 * (APIC_TIME_COUNT + pit_ticks_adj) ticks
1527 	 */
1528 	target_pit_tick = pit_tick - APIC_TIME_COUNT;
1529 	do {
1530 		pit_tick_lo = inb(PITCTR0_PORT);
1531 		pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo;
1532 	} while (pit_tick > target_pit_tick || pit_tick_lo < 0x10);
1533 
1534 	end_apic_tick = apic_reg_ops->apic_read(reg);
1535 
1536 	*pit_ticks_adj = target_pit_tick - pit_tick;
1537 
1538 	intr_restore(iflag);
1539 
1540 	return (start_apic_tick - end_apic_tick);
1541 }
1542 
1543 /*
1544  * Initialise the APIC timer on the local APIC of CPU 0 to the desired
1545  * frequency.  Note at this stage in the boot sequence, the boot processor
1546  * is the only active processor.
1547  * hertz value of 0 indicates a one-shot mode request.  In this case
1548  * the function returns the resolution (in nanoseconds) for the hardware
1549  * timer interrupt.  If one-shot mode capability is not available,
1550  * the return value will be 0. apic_enable_oneshot is a global switch
1551  * for disabling the functionality.
1552  * A non-zero positive value for hertz indicates a periodic mode request.
1553  * In this case the hardware will be programmed to generate clock interrupts
1554  * at hertz frequency and returns the resolution of interrupts in
1555  * nanosecond.
1556  */
1557 
1558 static int
1559 apic_clkinit(int hertz)
1560 {
1561 	uint_t		apic_ticks = 0;
1562 	uint_t		pit_ticks;
1563 	int		ret;
1564 	uint16_t	pit_ticks_adj;
1565 	static int	firsttime = 1;
1566 
1567 	if (firsttime) {
1568 		/* first time calibrate on CPU0 only */
1569 
1570 		apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init);
1571 		apic_reg_ops->apic_write(APIC_INIT_COUNT, APIC_MAXVAL);
1572 		apic_ticks = apic_calibrate(apicadr, &pit_ticks_adj);
1573 
1574 		/* total number of PIT ticks corresponding to apic_ticks */
1575 		pit_ticks = APIC_TIME_COUNT + pit_ticks_adj;
1576 
1577 		/*
1578 		 * Determine the number of nanoseconds per APIC clock tick
1579 		 * and then determine how many APIC ticks to interrupt at the
1580 		 * desired frequency
1581 		 * apic_ticks / (pitticks / PIT_HZ) = apic_ticks_per_s
1582 		 * (apic_ticks * PIT_HZ) / pitticks = apic_ticks_per_s
1583 		 * apic_ticks_per_ns = (apic_ticks * PIT_HZ) / (pitticks * 10^9)
1584 		 * pic_ticks_per_SFns =
1585 		 *   (SF * apic_ticks * PIT_HZ) / (pitticks * 10^9)
1586 		 */
1587 		apic_ticks_per_SFnsecs =
1588 		    ((SF * apic_ticks * PIT_HZ) /
1589 		    ((uint64_t)pit_ticks * NANOSEC));
1590 
1591 		/* the interval timer initial count is 32 bit max */
1592 		apic_nsec_max = APIC_TICKS_TO_NSECS(APIC_MAXVAL);
1593 		firsttime = 0;
1594 	}
1595 
1596 	if (hertz != 0) {
1597 		/* periodic */
1598 		apic_nsec_per_intr = NANOSEC / hertz;
1599 		apic_hertz_count = APIC_NSECS_TO_TICKS(apic_nsec_per_intr);
1600 	}
1601 
1602 	apic_int_busy_mark = (apic_int_busy_mark *
1603 	    apic_sample_factor_redistribution) / 100;
1604 	apic_int_free_mark = (apic_int_free_mark *
1605 	    apic_sample_factor_redistribution) / 100;
1606 	apic_diff_for_redistribution = (apic_diff_for_redistribution *
1607 	    apic_sample_factor_redistribution) / 100;
1608 
1609 	if (hertz == 0) {
1610 		/* requested one_shot */
1611 		if (!tsc_gethrtime_enable || !apic_oneshot_enable)
1612 			return (0);
1613 		apic_oneshot = 1;
1614 		ret = (int)APIC_TICKS_TO_NSECS(1);
1615 	} else {
1616 		/* program the local APIC to interrupt at the given frequency */
1617 		apic_reg_ops->apic_write(APIC_INIT_COUNT, apic_hertz_count);
1618 		apic_reg_ops->apic_write(APIC_LOCAL_TIMER,
1619 		    (apic_clkvect + APIC_BASE_VECT) | AV_TIME);
1620 		apic_oneshot = 0;
1621 		ret = NANOSEC / hertz;
1622 	}
1623 
1624 	return (ret);
1625 
1626 }
1627 
1628 /*
1629  * apic_preshutdown:
1630  * Called early in shutdown whilst we can still access filesystems to do
1631  * things like loading modules which will be required to complete shutdown
1632  * after filesystems are all unmounted.
1633  */
1634 static void
1635 apic_preshutdown(int cmd, int fcn)
1636 {
1637 	APIC_VERBOSE_POWEROFF(("apic_preshutdown(%d,%d); m=%d a=%d\n",
1638 	    cmd, fcn, apic_poweroff_method, apic_enable_acpi));
1639 
1640 	if ((cmd != A_SHUTDOWN) || (fcn != AD_POWEROFF)) {
1641 		return;
1642 	}
1643 }
1644 
1645 static void
1646 apic_shutdown(int cmd, int fcn)
1647 {
1648 	int restarts, attempts;
1649 	int i;
1650 	uchar_t	byte;
1651 	ulong_t iflag;
1652 
1653 	/* Send NMI to all CPUs except self to do per processor shutdown */
1654 	iflag = intr_clear();
1655 #ifdef	DEBUG
1656 	APIC_AV_PENDING_SET();
1657 #else
1658 	if (apic_mode == LOCAL_APIC)
1659 		APIC_AV_PENDING_SET();
1660 #endif /* DEBUG */
1661 	apic_shutdown_processors = 1;
1662 	apic_reg_ops->apic_write(APIC_INT_CMD1,
1663 	    AV_NMI | AV_LEVEL | AV_SH_ALL_EXCSELF);
1664 
1665 	/* restore cmos shutdown byte before reboot */
1666 	if (apic_cmos_ssb_set) {
1667 		outb(CMOS_ADDR, SSB);
1668 		outb(CMOS_DATA, 0);
1669 	}
1670 
1671 	ioapic_disable_redirection();
1672 
1673 	/*	disable apic mode if imcr present	*/
1674 	if (apic_imcrp) {
1675 		outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT);
1676 		outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_PIC);
1677 	}
1678 
1679 	apic_disable_local_apic();
1680 
1681 	intr_restore(iflag);
1682 
1683 	/* remainder of function is for shutdown cases only */
1684 	if (cmd != A_SHUTDOWN)
1685 		return;
1686 
1687 	/*
1688 	 * Switch system back into Legacy-Mode if using ACPI and
1689 	 * not powering-off.  Some BIOSes need to remain in ACPI-mode
1690 	 * for power-off to succeed (Dell Dimension 4600)
1691 	 * Do not disable ACPI while doing fastreboot
1692 	 */
1693 	if (apic_enable_acpi && fcn != AD_POWEROFF && fcn != AD_FASTREBOOT)
1694 		(void) AcpiDisable();
1695 
1696 	if (fcn == AD_FASTREBOOT) {
1697 		apic_reg_ops->apic_write(APIC_INT_CMD1,
1698 		    AV_ASSERT | AV_RESET | AV_SH_ALL_EXCSELF);
1699 	}
1700 
1701 	/* remainder of function is for shutdown+poweroff case only */
1702 	if (fcn != AD_POWEROFF)
1703 		return;
1704 
1705 	switch (apic_poweroff_method) {
1706 		case APIC_POWEROFF_VIA_RTC:
1707 
1708 			/* select the extended NVRAM bank in the RTC */
1709 			outb(CMOS_ADDR, RTC_REGA);
1710 			byte = inb(CMOS_DATA);
1711 			outb(CMOS_DATA, (byte | EXT_BANK));
1712 
1713 			outb(CMOS_ADDR, PFR_REG);
1714 
1715 			/* for Predator must toggle the PAB bit */
1716 			byte = inb(CMOS_DATA);
1717 
1718 			/*
1719 			 * clear power active bar, wakeup alarm and
1720 			 * kickstart
1721 			 */
1722 			byte &= ~(PAB_CBIT | WF_FLAG | KS_FLAG);
1723 			outb(CMOS_DATA, byte);
1724 
1725 			/* delay before next write */
1726 			drv_usecwait(1000);
1727 
1728 			/* for S40 the following would suffice */
1729 			byte = inb(CMOS_DATA);
1730 
1731 			/* power active bar control bit */
1732 			byte |= PAB_CBIT;
1733 			outb(CMOS_DATA, byte);
1734 
1735 			break;
1736 
1737 		case APIC_POWEROFF_VIA_ASPEN_BMC:
1738 			restarts = 0;
1739 restart_aspen_bmc:
1740 			if (++restarts == 3)
1741 				break;
1742 			attempts = 0;
1743 			do {
1744 				byte = inb(MISMIC_FLAG_REGISTER);
1745 				byte &= MISMIC_BUSY_MASK;
1746 				if (byte != 0) {
1747 					drv_usecwait(1000);
1748 					if (attempts >= 3)
1749 						goto restart_aspen_bmc;
1750 					++attempts;
1751 				}
1752 			} while (byte != 0);
1753 			outb(MISMIC_CNTL_REGISTER, CC_SMS_GET_STATUS);
1754 			byte = inb(MISMIC_FLAG_REGISTER);
1755 			byte |= 0x1;
1756 			outb(MISMIC_FLAG_REGISTER, byte);
1757 			i = 0;
1758 			for (; i < (sizeof (aspen_bmc)/sizeof (aspen_bmc[0]));
1759 			    i++) {
1760 				attempts = 0;
1761 				do {
1762 					byte = inb(MISMIC_FLAG_REGISTER);
1763 					byte &= MISMIC_BUSY_MASK;
1764 					if (byte != 0) {
1765 						drv_usecwait(1000);
1766 						if (attempts >= 3)
1767 							goto restart_aspen_bmc;
1768 						++attempts;
1769 					}
1770 				} while (byte != 0);
1771 				outb(MISMIC_CNTL_REGISTER, aspen_bmc[i].cntl);
1772 				outb(MISMIC_DATA_REGISTER, aspen_bmc[i].data);
1773 				byte = inb(MISMIC_FLAG_REGISTER);
1774 				byte |= 0x1;
1775 				outb(MISMIC_FLAG_REGISTER, byte);
1776 			}
1777 			break;
1778 
1779 		case APIC_POWEROFF_VIA_SITKA_BMC:
1780 			restarts = 0;
1781 restart_sitka_bmc:
1782 			if (++restarts == 3)
1783 				break;
1784 			attempts = 0;
1785 			do {
1786 				byte = inb(SMS_STATUS_REGISTER);
1787 				byte &= SMS_STATE_MASK;
1788 				if ((byte == SMS_READ_STATE) ||
1789 				    (byte == SMS_WRITE_STATE)) {
1790 					drv_usecwait(1000);
1791 					if (attempts >= 3)
1792 						goto restart_sitka_bmc;
1793 					++attempts;
1794 				}
1795 			} while ((byte == SMS_READ_STATE) ||
1796 			    (byte == SMS_WRITE_STATE));
1797 			outb(SMS_COMMAND_REGISTER, SMS_GET_STATUS);
1798 			i = 0;
1799 			for (; i < (sizeof (sitka_bmc)/sizeof (sitka_bmc[0]));
1800 			    i++) {
1801 				attempts = 0;
1802 				do {
1803 					byte = inb(SMS_STATUS_REGISTER);
1804 					byte &= SMS_IBF_MASK;
1805 					if (byte != 0) {
1806 						drv_usecwait(1000);
1807 						if (attempts >= 3)
1808 							goto restart_sitka_bmc;
1809 						++attempts;
1810 					}
1811 				} while (byte != 0);
1812 				outb(sitka_bmc[i].port, sitka_bmc[i].data);
1813 			}
1814 			break;
1815 
1816 		case APIC_POWEROFF_NONE:
1817 
1818 			/* If no APIC direct method, we will try using ACPI */
1819 			if (apic_enable_acpi) {
1820 				if (acpi_poweroff() == 1)
1821 					return;
1822 			} else
1823 				return;
1824 
1825 			break;
1826 	}
1827 	/*
1828 	 * Wait a limited time here for power to go off.
1829 	 * If the power does not go off, then there was a
1830 	 * problem and we should continue to the halt which
1831 	 * prints a message for the user to press a key to
1832 	 * reboot.
1833 	 */
1834 	drv_usecwait(7000000); /* wait seven seconds */
1835 
1836 }
1837 
1838 /*
1839  * Try and disable all interrupts. We just assign interrupts to other
1840  * processors based on policy. If any were bound by user request, we
1841  * let them continue and return failure. We do not bother to check
1842  * for cache affinity while rebinding.
1843  */
1844 
1845 static int
1846 apic_disable_intr(processorid_t cpun)
1847 {
1848 	int bind_cpu = 0, i, hardbound = 0;
1849 	apic_irq_t *irq_ptr;
1850 	ulong_t iflag;
1851 
1852 	iflag = intr_clear();
1853 	lock_set(&apic_ioapic_lock);
1854 
1855 	for (i = 0; i <= APIC_MAX_VECTOR; i++) {
1856 		if (apic_reprogram_info[i].done == B_FALSE) {
1857 			if (apic_reprogram_info[i].bindcpu == cpun) {
1858 				/*
1859 				 * CPU is busy -- it's the target of
1860 				 * a pending reprogramming attempt
1861 				 */
1862 				lock_clear(&apic_ioapic_lock);
1863 				intr_restore(iflag);
1864 				return (PSM_FAILURE);
1865 			}
1866 		}
1867 	}
1868 
1869 	apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE;
1870 
1871 	apic_cpus[cpun].aci_curipl = 0;
1872 
1873 	i = apic_min_device_irq;
1874 	for (; i <= apic_max_device_irq; i++) {
1875 		/*
1876 		 * If there are bound interrupts on this cpu, then
1877 		 * rebind them to other processors.
1878 		 */
1879 		if ((irq_ptr = apic_irq_table[i]) != NULL) {
1880 			ASSERT((irq_ptr->airq_temp_cpu == IRQ_UNBOUND) ||
1881 			    (irq_ptr->airq_temp_cpu == IRQ_UNINIT) ||
1882 			    ((irq_ptr->airq_temp_cpu & ~IRQ_USER_BOUND) <
1883 			    apic_nproc));
1884 
1885 			if (irq_ptr->airq_temp_cpu == (cpun | IRQ_USER_BOUND)) {
1886 				hardbound = 1;
1887 				continue;
1888 			}
1889 
1890 			if (irq_ptr->airq_temp_cpu == cpun) {
1891 				do {
1892 					bind_cpu = apic_next_bind_cpu++;
1893 					if (bind_cpu >= apic_nproc) {
1894 						apic_next_bind_cpu = 1;
1895 						bind_cpu = 0;
1896 
1897 					}
1898 				} while (apic_rebind_all(irq_ptr, bind_cpu));
1899 			}
1900 		}
1901 	}
1902 
1903 	lock_clear(&apic_ioapic_lock);
1904 	intr_restore(iflag);
1905 
1906 	if (hardbound) {
1907 		cmn_err(CE_WARN, "Could not disable interrupts on %d"
1908 		    "due to user bound interrupts", cpun);
1909 		return (PSM_FAILURE);
1910 	}
1911 	else
1912 		return (PSM_SUCCESS);
1913 }
1914 
1915 /*
1916  * Bind interrupts to the CPU's local APIC.
1917  * Interrupts should not be bound to a CPU's local APIC until the CPU
1918  * is ready to receive interrupts.
1919  */
1920 static void
1921 apic_enable_intr(processorid_t cpun)
1922 {
1923 	int	i;
1924 	apic_irq_t *irq_ptr;
1925 	ulong_t iflag;
1926 
1927 	iflag = intr_clear();
1928 	lock_set(&apic_ioapic_lock);
1929 
1930 	apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE;
1931 
1932 	i = apic_min_device_irq;
1933 	for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
1934 		if ((irq_ptr = apic_irq_table[i]) != NULL) {
1935 			if ((irq_ptr->airq_cpu & ~IRQ_USER_BOUND) == cpun) {
1936 				(void) apic_rebind_all(irq_ptr,
1937 				    irq_ptr->airq_cpu);
1938 			}
1939 		}
1940 	}
1941 
1942 	lock_clear(&apic_ioapic_lock);
1943 	intr_restore(iflag);
1944 }
1945 
1946 
1947 /*
1948  * This function will reprogram the timer.
1949  *
1950  * When in oneshot mode the argument is the absolute time in future to
1951  * generate the interrupt at.
1952  *
1953  * When in periodic mode, the argument is the interval at which the
1954  * interrupts should be generated. There is no need to support the periodic
1955  * mode timer change at this time.
1956  */
1957 static void
1958 apic_timer_reprogram(hrtime_t time)
1959 {
1960 	hrtime_t now;
1961 	uint_t ticks;
1962 	int64_t delta;
1963 
1964 	/*
1965 	 * We should be called from high PIL context (CBE_HIGH_PIL),
1966 	 * so kpreempt is disabled.
1967 	 */
1968 
1969 	if (!apic_oneshot) {
1970 		/* time is the interval for periodic mode */
1971 		ticks = APIC_NSECS_TO_TICKS(time);
1972 	} else {
1973 		/* one shot mode */
1974 
1975 		now = gethrtime();
1976 		delta = time - now;
1977 
1978 		if (delta <= 0) {
1979 			/*
1980 			 * requested to generate an interrupt in the past
1981 			 * generate an interrupt as soon as possible
1982 			 */
1983 			ticks = apic_min_timer_ticks;
1984 		} else if (delta > apic_nsec_max) {
1985 			/*
1986 			 * requested to generate an interrupt at a time
1987 			 * further than what we are capable of. Set to max
1988 			 * the hardware can handle
1989 			 */
1990 
1991 			ticks = APIC_MAXVAL;
1992 #ifdef DEBUG
1993 			cmn_err(CE_CONT, "apic_timer_reprogram, request at"
1994 			    "  %lld  too far in future, current time"
1995 			    "  %lld \n", time, now);
1996 #endif
1997 		} else
1998 			ticks = APIC_NSECS_TO_TICKS(delta);
1999 	}
2000 
2001 	if (ticks < apic_min_timer_ticks)
2002 		ticks = apic_min_timer_ticks;
2003 
2004 	apic_reg_ops->apic_write(APIC_INIT_COUNT, ticks);
2005 }
2006 
2007 /*
2008  * This function will enable timer interrupts.
2009  */
2010 static void
2011 apic_timer_enable(void)
2012 {
2013 	/*
2014 	 * We should be Called from high PIL context (CBE_HIGH_PIL),
2015 	 * so kpreempt is disabled.
2016 	 */
2017 
2018 	if (!apic_oneshot) {
2019 		apic_reg_ops->apic_write(APIC_LOCAL_TIMER,
2020 		    (apic_clkvect + APIC_BASE_VECT) | AV_TIME);
2021 	} else {
2022 		/* one shot */
2023 		apic_reg_ops->apic_write(APIC_LOCAL_TIMER,
2024 		    (apic_clkvect + APIC_BASE_VECT));
2025 	}
2026 }
2027 
2028 /*
2029  * This function will disable timer interrupts.
2030  */
2031 static void
2032 apic_timer_disable(void)
2033 {
2034 	/*
2035 	 * We should be Called from high PIL context (CBE_HIGH_PIL),
2036 	 * so kpreempt is disabled.
2037 	 */
2038 	apic_reg_ops->apic_write(APIC_LOCAL_TIMER,
2039 	    (apic_clkvect + APIC_BASE_VECT) | AV_MASK);
2040 }
2041 
2042 
2043 ddi_periodic_t apic_periodic_id;
2044 
2045 /*
2046  * If this module needs a periodic handler for the interrupt distribution, it
2047  * can be added here. The argument to the periodic handler is not currently
2048  * used, but is reserved for future.
2049  */
2050 static void
2051 apic_post_cyclic_setup(void *arg)
2052 {
2053 _NOTE(ARGUNUSED(arg))
2054 	/* cpu_lock is held */
2055 	/* set up a periodic handler for intr redistribution */
2056 
2057 	/*
2058 	 * In peridoc mode intr redistribution processing is done in
2059 	 * apic_intr_enter during clk intr processing
2060 	 */
2061 	if (!apic_oneshot)
2062 		return;
2063 	/*
2064 	 * Register a periodical handler for the redistribution processing.
2065 	 * On X86, CY_LOW_LEVEL is mapped to the level 2 interrupt, so
2066 	 * DDI_IPL_2 should be passed to ddi_periodic_add() here.
2067 	 */
2068 	apic_periodic_id = ddi_periodic_add(
2069 	    (void (*)(void *))apic_redistribute_compute, NULL,
2070 	    apic_redistribute_sample_interval, DDI_IPL_2);
2071 }
2072 
2073 static void
2074 apic_redistribute_compute(void)
2075 {
2076 	int	i, j, max_busy;
2077 
2078 	if (apic_enable_dynamic_migration) {
2079 		if (++apic_nticks == apic_sample_factor_redistribution) {
2080 			/*
2081 			 * Time to call apic_intr_redistribute().
2082 			 * reset apic_nticks. This will cause max_busy
2083 			 * to be calculated below and if it is more than
2084 			 * apic_int_busy, we will do the whole thing
2085 			 */
2086 			apic_nticks = 0;
2087 		}
2088 		max_busy = 0;
2089 		for (i = 0; i < apic_nproc; i++) {
2090 
2091 			/*
2092 			 * Check if curipl is non zero & if ISR is in
2093 			 * progress
2094 			 */
2095 			if (((j = apic_cpus[i].aci_curipl) != 0) &&
2096 			    (apic_cpus[i].aci_ISR_in_progress & (1 << j))) {
2097 
2098 				int	irq;
2099 				apic_cpus[i].aci_busy++;
2100 				irq = apic_cpus[i].aci_current[j];
2101 				apic_irq_table[irq]->airq_busy++;
2102 			}
2103 
2104 			if (!apic_nticks &&
2105 			    (apic_cpus[i].aci_busy > max_busy))
2106 				max_busy = apic_cpus[i].aci_busy;
2107 		}
2108 		if (!apic_nticks) {
2109 			if (max_busy > apic_int_busy_mark) {
2110 			/*
2111 			 * We could make the following check be
2112 			 * skipped > 1 in which case, we get a
2113 			 * redistribution at half the busy mark (due to
2114 			 * double interval). Need to be able to collect
2115 			 * more empirical data to decide if that is a
2116 			 * good strategy. Punt for now.
2117 			 */
2118 				if (apic_skipped_redistribute) {
2119 					apic_cleanup_busy();
2120 					apic_skipped_redistribute = 0;
2121 				} else {
2122 					apic_intr_redistribute();
2123 				}
2124 			} else
2125 				apic_skipped_redistribute++;
2126 		}
2127 	}
2128 }
2129 
2130 
2131 /*
2132  * The following functions are in the platform specific file so that they
2133  * can be different functions depending on whether we are running on
2134  * bare metal or a hypervisor.
2135  */
2136 
2137 /*
2138  * map an apic for memory-mapped access
2139  */
2140 uint32_t *
2141 mapin_apic(uint32_t addr, size_t len, int flags)
2142 {
2143 	/*LINTED: pointer cast may result in improper alignment */
2144 	return ((uint32_t *)psm_map_phys(addr, len, flags));
2145 }
2146 
2147 uint32_t *
2148 mapin_ioapic(uint32_t addr, size_t len, int flags)
2149 {
2150 	return (mapin_apic(addr, len, flags));
2151 }
2152 
2153 /*
2154  * unmap an apic
2155  */
2156 void
2157 mapout_apic(caddr_t addr, size_t len)
2158 {
2159 	psm_unmap_phys(addr, len);
2160 }
2161 
2162 void
2163 mapout_ioapic(caddr_t addr, size_t len)
2164 {
2165 	mapout_apic(addr, len);
2166 }
2167 
2168 /*
2169  * Check to make sure there are enough irq slots
2170  */
2171 int
2172 apic_check_free_irqs(int count)
2173 {
2174 	int i, avail;
2175 
2176 	avail = 0;
2177 	for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) {
2178 		if ((apic_irq_table[i] == NULL) ||
2179 		    apic_irq_table[i]->airq_mps_intr_index == FREE_INDEX) {
2180 			if (++avail >= count)
2181 				return (PSM_SUCCESS);
2182 		}
2183 	}
2184 	return (PSM_FAILURE);
2185 }
2186 
2187 /*
2188  * This function allocates "count" MSI vector(s) for the given "dip/pri/type"
2189  */
2190 int
2191 apic_alloc_msi_vectors(dev_info_t *dip, int inum, int count, int pri,
2192     int behavior)
2193 {
2194 	int	rcount, i;
2195 	uchar_t	start, irqno;
2196 	uint32_t cpu;
2197 	major_t	major;
2198 	apic_irq_t	*irqptr;
2199 
2200 	DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: dip=0x%p "
2201 	    "inum=0x%x  pri=0x%x count=0x%x behavior=%d\n",
2202 	    (void *)dip, inum, pri, count, behavior));
2203 
2204 	if (count > 1) {
2205 		if (behavior == DDI_INTR_ALLOC_STRICT &&
2206 		    (apic_multi_msi_enable == 0 || count > apic_multi_msi_max))
2207 			return (0);
2208 
2209 		if (apic_multi_msi_enable == 0)
2210 			count = 1;
2211 		else if (count > apic_multi_msi_max)
2212 			count = apic_multi_msi_max;
2213 	}
2214 
2215 	if ((rcount = apic_navail_vector(dip, pri)) > count)
2216 		rcount = count;
2217 	else if (rcount == 0 || (rcount < count &&
2218 	    behavior == DDI_INTR_ALLOC_STRICT))
2219 		return (0);
2220 
2221 	/* if not ISP2, then round it down */
2222 	if (!ISP2(rcount))
2223 		rcount = 1 << (highbit(rcount) - 1);
2224 
2225 	mutex_enter(&airq_mutex);
2226 
2227 	for (start = 0; rcount > 0; rcount >>= 1) {
2228 		if ((start = apic_find_multi_vectors(pri, rcount)) != 0 ||
2229 		    behavior == DDI_INTR_ALLOC_STRICT)
2230 			break;
2231 	}
2232 
2233 	if (start == 0) {
2234 		/* no vector available */
2235 		mutex_exit(&airq_mutex);
2236 		return (0);
2237 	}
2238 
2239 	if (apic_check_free_irqs(rcount) == PSM_FAILURE) {
2240 		/* not enough free irq slots available */
2241 		mutex_exit(&airq_mutex);
2242 		return (0);
2243 	}
2244 
2245 	major = (dip != NULL) ? ddi_driver_major(dip) : 0;
2246 	for (i = 0; i < rcount; i++) {
2247 		if ((irqno = apic_allocate_irq(apic_first_avail_irq)) ==
2248 		    (uchar_t)-1) {
2249 			/*
2250 			 * shouldn't happen because of the
2251 			 * apic_check_free_irqs() check earlier
2252 			 */
2253 			mutex_exit(&airq_mutex);
2254 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: "
2255 			    "apic_allocate_irq failed\n"));
2256 			return (i);
2257 		}
2258 		apic_max_device_irq = max(irqno, apic_max_device_irq);
2259 		apic_min_device_irq = min(irqno, apic_min_device_irq);
2260 		irqptr = apic_irq_table[irqno];
2261 #ifdef	DEBUG
2262 		if (apic_vector_to_irq[start + i] != APIC_RESV_IRQ)
2263 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: "
2264 			    "apic_vector_to_irq is not APIC_RESV_IRQ\n"));
2265 #endif
2266 		apic_vector_to_irq[start + i] = (uchar_t)irqno;
2267 
2268 		irqptr->airq_vector = (uchar_t)(start + i);
2269 		irqptr->airq_ioapicindex = (uchar_t)inum;	/* start */
2270 		irqptr->airq_intin_no = (uchar_t)rcount;
2271 		irqptr->airq_ipl = pri;
2272 		irqptr->airq_vector = start + i;
2273 		irqptr->airq_origirq = (uchar_t)(inum + i);
2274 		irqptr->airq_share_id = 0;
2275 		irqptr->airq_mps_intr_index = MSI_INDEX;
2276 		irqptr->airq_dip = dip;
2277 		irqptr->airq_major = major;
2278 		if (i == 0) /* they all bound to the same cpu */
2279 			cpu = irqptr->airq_cpu = apic_bind_intr(dip, irqno,
2280 			    0xff, 0xff);
2281 		else
2282 			irqptr->airq_cpu = cpu;
2283 		DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: irq=0x%x "
2284 		    "dip=0x%p vector=0x%x origirq=0x%x pri=0x%x\n", irqno,
2285 		    (void *)irqptr->airq_dip, irqptr->airq_vector,
2286 		    irqptr->airq_origirq, pri));
2287 	}
2288 	mutex_exit(&airq_mutex);
2289 	return (rcount);
2290 }
2291 
2292 /*
2293  * This function allocates "count" MSI-X vector(s) for the given "dip/pri/type"
2294  */
2295 int
2296 apic_alloc_msix_vectors(dev_info_t *dip, int inum, int count, int pri,
2297     int behavior)
2298 {
2299 	int	rcount, i;
2300 	major_t	major;
2301 
2302 	if (count > 1) {
2303 		if (behavior == DDI_INTR_ALLOC_STRICT) {
2304 			if (count > apic_msix_max)
2305 				return (0);
2306 		} else if (count > apic_msix_max)
2307 			count = apic_msix_max;
2308 	}
2309 
2310 	mutex_enter(&airq_mutex);
2311 
2312 	if ((rcount = apic_navail_vector(dip, pri)) > count)
2313 		rcount = count;
2314 	else if (rcount == 0 || (rcount < count &&
2315 	    behavior == DDI_INTR_ALLOC_STRICT)) {
2316 		rcount = 0;
2317 		goto out;
2318 	}
2319 
2320 	if (apic_check_free_irqs(rcount) == PSM_FAILURE) {
2321 		/* not enough free irq slots available */
2322 		rcount = 0;
2323 		goto out;
2324 	}
2325 
2326 	major = (dip != NULL) ? ddi_driver_major(dip) : 0;
2327 	for (i = 0; i < rcount; i++) {
2328 		uchar_t	vector, irqno;
2329 		apic_irq_t	*irqptr;
2330 
2331 		if ((irqno = apic_allocate_irq(apic_first_avail_irq)) ==
2332 		    (uchar_t)-1) {
2333 			/*
2334 			 * shouldn't happen because of the
2335 			 * apic_check_free_irqs() check earlier
2336 			 */
2337 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: "
2338 			    "apic_allocate_irq failed\n"));
2339 			rcount = i;
2340 			goto out;
2341 		}
2342 		if ((vector = apic_allocate_vector(pri, irqno, 1)) == 0) {
2343 			/*
2344 			 * shouldn't happen because of the
2345 			 * apic_navail_vector() call earlier
2346 			 */
2347 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: "
2348 			    "apic_allocate_vector failed\n"));
2349 			rcount = i;
2350 			goto out;
2351 		}
2352 		apic_max_device_irq = max(irqno, apic_max_device_irq);
2353 		apic_min_device_irq = min(irqno, apic_min_device_irq);
2354 		irqptr = apic_irq_table[irqno];
2355 		irqptr->airq_vector = (uchar_t)vector;
2356 		irqptr->airq_ipl = pri;
2357 		irqptr->airq_origirq = (uchar_t)(inum + i);
2358 		irqptr->airq_share_id = 0;
2359 		irqptr->airq_mps_intr_index = MSIX_INDEX;
2360 		irqptr->airq_dip = dip;
2361 		irqptr->airq_major = major;
2362 		irqptr->airq_cpu = apic_bind_intr(dip, irqno, 0xff, 0xff);
2363 	}
2364 out:
2365 	mutex_exit(&airq_mutex);
2366 	return (rcount);
2367 }
2368 
2369 /*
2370  * Allocate a free vector for irq at ipl. Takes care of merging of multiple
2371  * IPLs into a single APIC level as well as stretching some IPLs onto multiple
2372  * levels. APIC_HI_PRI_VECTS interrupts are reserved for high priority
2373  * requests and allocated only when pri is set.
2374  */
2375 uchar_t
2376 apic_allocate_vector(int ipl, int irq, int pri)
2377 {
2378 	int	lowest, highest, i;
2379 
2380 	highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK;
2381 	lowest = apic_ipltopri[ipl - 1] + APIC_VECTOR_PER_IPL;
2382 
2383 	if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */
2384 		lowest -= APIC_VECTOR_PER_IPL;
2385 
2386 #ifdef	DEBUG
2387 	if (apic_restrict_vector)	/* for testing shared interrupt logic */
2388 		highest = lowest + apic_restrict_vector + APIC_HI_PRI_VECTS;
2389 #endif /* DEBUG */
2390 	if (pri == 0)
2391 		highest -= APIC_HI_PRI_VECTS;
2392 
2393 	for (i = lowest; i < highest; i++) {
2394 		if (APIC_CHECK_RESERVE_VECTORS(i))
2395 			continue;
2396 		if (apic_vector_to_irq[i] == APIC_RESV_IRQ) {
2397 			apic_vector_to_irq[i] = (uchar_t)irq;
2398 			return (i);
2399 		}
2400 	}
2401 
2402 	return (0);
2403 }
2404 
2405 /* Mark vector as not being used by any irq */
2406 void
2407 apic_free_vector(uchar_t vector)
2408 {
2409 	apic_vector_to_irq[vector] = APIC_RESV_IRQ;
2410 }
2411 
2412 uint32_t
2413 ioapic_read(int ioapic_ix, uint32_t reg)
2414 {
2415 	volatile uint32_t *ioapic;
2416 
2417 	ioapic = apicioadr[ioapic_ix];
2418 	ioapic[APIC_IO_REG] = reg;
2419 	return (ioapic[APIC_IO_DATA]);
2420 }
2421 
2422 void
2423 ioapic_write(int ioapic_ix, uint32_t reg, uint32_t value)
2424 {
2425 	volatile uint32_t *ioapic;
2426 
2427 	ioapic = apicioadr[ioapic_ix];
2428 	ioapic[APIC_IO_REG] = reg;
2429 	ioapic[APIC_IO_DATA] = value;
2430 }
2431 
2432 void
2433 ioapic_write_eoi(int ioapic_ix, uint32_t value)
2434 {
2435 	volatile uint32_t *ioapic;
2436 
2437 	ioapic = apicioadr[ioapic_ix];
2438 	ioapic[APIC_IO_EOI] = value;
2439 }
2440 
2441 static processorid_t
2442 apic_find_cpu(int flag)
2443 {
2444 	processorid_t acid = 0;
2445 	int i;
2446 
2447 	/* Find the first CPU with the passed-in flag set */
2448 	for (i = 0; i < apic_nproc; i++) {
2449 		if (apic_cpus[i].aci_status & flag) {
2450 			acid = i;
2451 			break;
2452 		}
2453 	}
2454 
2455 	ASSERT((apic_cpus[acid].aci_status & flag) != 0);
2456 	return (acid);
2457 }
2458 
2459 /*
2460  * Call rebind to do the actual programming.
2461  * Must be called with interrupts disabled and apic_ioapic_lock held
2462  * 'p' is polymorphic -- if this function is called to process a deferred
2463  * reprogramming, p is of type 'struct ioapic_reprogram_data *', from which
2464  * the irq pointer is retrieved.  If not doing deferred reprogramming,
2465  * p is of the type 'apic_irq_t *'.
2466  *
2467  * apic_ioapic_lock must be held across this call, as it protects apic_rebind
2468  * and it protects apic_find_cpu() from a race in which a CPU can be taken
2469  * offline after a cpu is selected, but before apic_rebind is called to
2470  * bind interrupts to it.
2471  */
2472 int
2473 apic_setup_io_intr(void *p, int irq, boolean_t deferred)
2474 {
2475 	apic_irq_t *irqptr;
2476 	struct ioapic_reprogram_data *drep = NULL;
2477 	int rv;
2478 
2479 	if (deferred) {
2480 		drep = (struct ioapic_reprogram_data *)p;
2481 		ASSERT(drep != NULL);
2482 		irqptr = drep->irqp;
2483 	} else
2484 		irqptr = (apic_irq_t *)p;
2485 
2486 	ASSERT(irqptr != NULL);
2487 
2488 	rv = apic_rebind(irqptr, apic_irq_table[irq]->airq_cpu, drep);
2489 	if (rv) {
2490 		/*
2491 		 * CPU is not up or interrupts are disabled. Fall back to
2492 		 * the first available CPU
2493 		 */
2494 		rv = apic_rebind(irqptr, apic_find_cpu(APIC_CPU_INTR_ENABLE),
2495 		    drep);
2496 	}
2497 
2498 	return (rv);
2499 }
2500 
2501 
2502 uchar_t
2503 apic_modify_vector(uchar_t vector, int irq)
2504 {
2505 	apic_vector_to_irq[vector] = (uchar_t)irq;
2506 	return (vector);
2507 }
2508 
2509 char *
2510 apic_get_apic_type()
2511 {
2512 	return (apic_psm_info.p_mach_idstring);
2513 }
2514 
2515 void
2516 x2apic_update_psm()
2517 {
2518 	struct psm_ops *pops = &apic_ops;
2519 
2520 	ASSERT(pops != NULL);
2521 
2522 	/*
2523 	 * We don't need to do any magic if one of the following
2524 	 * conditions is true :
2525 	 * - Not being run under kernel debugger.
2526 	 * - MP is not set.
2527 	 * - Booted with one CPU only.
2528 	 * - One CPU configured.
2529 	 *
2530 	 * We set apic_common_send_ipi() since kernel debuggers
2531 	 * attempt to send IPIs to other slave CPUs during
2532 	 * entry (exit) from (to) debugger.
2533 	 */
2534 	if (!(boothowto & RB_DEBUG) || use_mp == 0 ||
2535 	    apic_nproc == 1 || boot_ncpus == 1) {
2536 		pops->psm_send_ipi =  x2apic_send_ipi;
2537 	} else {
2538 		pops->psm_send_ipi =  apic_common_send_ipi;
2539 	}
2540 
2541 	pops->psm_intr_exit = x2apic_intr_exit;
2542 	pops->psm_setspl = x2apic_setspl;
2543 
2544 	send_dirintf = pops->psm_send_ipi;
2545 
2546 	apic_mode = LOCAL_X2APIC;
2547 	apic_change_ops();
2548 }
2549 
2550 static void
2551 apic_intrr_init(int apic_mode)
2552 {
2553 	if (psm_vt_ops != NULL) {
2554 		if (((apic_intrr_ops_t *)psm_vt_ops)->apic_intrr_init(apic_mode)
2555 		    == DDI_SUCCESS) {
2556 			apic_vt_ops = psm_vt_ops;
2557 			apic_vt_ops->apic_intrr_enable();
2558 		}
2559 	}
2560 }
2561 
2562 /*ARGSUSED*/
2563 static void
2564 apic_record_ioapic_rdt(apic_irq_t *irq_ptr, ioapic_rdt_t *irdt)
2565 {
2566 	irdt->ir_hi <<= APIC_ID_BIT_OFFSET;
2567 }
2568 
2569 /*ARGSUSED*/
2570 static void
2571 apic_record_msi(apic_irq_t *irq_ptr, msi_regs_t *mregs)
2572 {
2573 	mregs->mr_addr = MSI_ADDR_HDR |
2574 	    (MSI_ADDR_RH_FIXED << MSI_ADDR_RH_SHIFT) |
2575 	    (MSI_ADDR_DM_PHYSICAL << MSI_ADDR_DM_SHIFT) |
2576 	    (mregs->mr_addr << MSI_ADDR_DEST_SHIFT);
2577 	mregs->mr_data = (MSI_DATA_TM_EDGE << MSI_DATA_TM_SHIFT) |
2578 	    mregs->mr_data;
2579 }
2580