xref: /titanic_50/usr/src/uts/common/vm/vm_swap.c (revision a8449b6b91b07447ea0dd49293b52ffc26e07fe8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1987, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
26 /*	  All Rights Reserved  	*/
27 
28 /*
29  * University Copyright- Copyright (c) 1982, 1986, 1988
30  * The Regents of the University of California
31  * All Rights Reserved
32  *
33  * University Acknowledgment- Portions of this document are derived from
34  * software developed by the University of California, Berkeley, and its
35  * contributors.
36  */
37 
38 /*
39  * Each physical swap area has an associated bitmap representing
40  * its physical storage. The bitmap records which swap slots are
41  * currently allocated or freed.  Allocation is done by searching
42  * through the bitmap for the first free slot. Thus, there's
43  * no linear relation between offset within the swap device and the
44  * address (within its segment(s)) of the page that the slot backs;
45  * instead, it's an arbitrary one-to-one mapping.
46  *
47  * Associated with each swap area is a swapinfo structure.  These
48  * structures are linked into a linear list that determines the
49  * ordering of swap areas in the logical swap device.  Each contains a
50  * pointer to the corresponding bitmap, the area's size, and its
51  * associated vnode.
52  */
53 
54 #include <sys/types.h>
55 #include <sys/inttypes.h>
56 #include <sys/param.h>
57 #include <sys/t_lock.h>
58 #include <sys/sysmacros.h>
59 #include <sys/systm.h>
60 #include <sys/errno.h>
61 #include <sys/kmem.h>
62 #include <sys/vfs.h>
63 #include <sys/vnode.h>
64 #include <sys/pathname.h>
65 #include <sys/cmn_err.h>
66 #include <sys/vtrace.h>
67 #include <sys/swap.h>
68 #include <sys/dumphdr.h>
69 #include <sys/debug.h>
70 #include <sys/fs/snode.h>
71 #include <sys/fs/swapnode.h>
72 #include <sys/policy.h>
73 #include <sys/zone.h>
74 
75 #include <vm/as.h>
76 #include <vm/seg.h>
77 #include <vm/page.h>
78 #include <vm/seg_vn.h>
79 #include <vm/hat.h>
80 #include <vm/anon.h>
81 #include <vm/seg_map.h>
82 
83 /*
84  * To balance the load among multiple swap areas, we don't allow
85  * more than swap_maxcontig allocations to be satisfied from a
86  * single swap area before moving on to the next swap area.  This
87  * effectively "interleaves" allocations among the many swap areas.
88  */
89 int swap_maxcontig;	/* set by anon_init() to 1 Mb */
90 
91 #define	MINIROOTSIZE	12000	/* ~6 Meg XXX */
92 
93 /*
94  * XXX - this lock is a kludge. It serializes some aspects of swapadd() and
95  * swapdel() (namely VOP_OPEN, VOP_CLOSE, VN_RELE).  It protects against
96  * somebody swapadd'ing and getting swap slots from a vnode, while someone
97  * else is in the process of closing or rele'ing it.
98  */
99 static kmutex_t swap_lock;
100 
101 kmutex_t swapinfo_lock;
102 
103 /*
104  * protected by the swapinfo_lock
105  */
106 struct swapinfo	*swapinfo;
107 
108 static	struct	swapinfo *silast;
109 static	int	nswapfiles;
110 
111 static u_offset_t	swap_getoff(struct swapinfo *);
112 static int	swapadd(struct vnode *, ulong_t, ulong_t, char *);
113 static int	swapdel(struct vnode *, ulong_t);
114 static int	swapslot_free(struct vnode *, u_offset_t, struct swapinfo *);
115 
116 /*
117  * swap device bitmap allocation macros
118  */
119 #define	MAPSHIFT	5
120 #define	NBBW		(NBPW * NBBY)	/* number of bits per word */
121 #define	TESTBIT(map, i)		(((map)[(i) >> MAPSHIFT] & (1 << (i) % NBBW)))
122 #define	SETBIT(map, i)		(((map)[(i) >> MAPSHIFT] |= (1 << (i) % NBBW)))
123 #define	CLEARBIT(map, i)	(((map)[(i) >> MAPSHIFT] &= ~(1 << (i) % NBBW)))
124 
125 int swap_debug = 0;	/* set for debug printf's */
126 int swap_verify = 0;	/* set to verify slots when freeing and allocating */
127 
128 uint_t swapalloc_maxcontig;
129 
130 /*
131  * Allocate a range of up to *lenp contiguous slots (page) from a physical
132  * swap device. Flags are one of:
133  *	SA_NOT  Must have a slot from a physical swap device other than the
134  * 		the one containing input (*vpp, *offp).
135  * Less slots than requested may be returned. *lenp allocated slots are
136  * returned starting at *offp on *vpp.
137  * Returns 1 for a successful allocation, 0 for couldn't allocate any slots.
138  */
139 int
140 swap_phys_alloc(
141 	struct vnode **vpp,
142 	u_offset_t *offp,
143 	size_t *lenp,
144 	uint_t flags)
145 {
146 	struct swapinfo *sip;
147 	offset_t soff, noff;
148 	size_t len;
149 
150 	mutex_enter(&swapinfo_lock);
151 	sip = silast;
152 
153 	/* Find a desirable physical device and allocate from it. */
154 	do {
155 		if (sip == NULL)
156 			break;
157 		if (!(sip->si_flags & ST_INDEL) &&
158 		    (spgcnt_t)sip->si_nfpgs > 0) {
159 			/* Caller wants other than specified swap device */
160 			if (flags & SA_NOT) {
161 				if (*vpp != sip->si_vp ||
162 				    *offp < sip->si_soff ||
163 				    *offp >= sip->si_eoff)
164 					goto found;
165 			/* Caller is loose, will take anything */
166 			} else
167 				goto found;
168 		} else if (sip->si_nfpgs == 0)
169 			sip->si_allocs = 0;
170 		if ((sip = sip->si_next) == NULL)
171 			sip = swapinfo;
172 	} while (sip != silast);
173 	mutex_exit(&swapinfo_lock);
174 	return (0);
175 found:
176 	soff = swap_getoff(sip);
177 	sip->si_nfpgs--;
178 	if (soff == -1)
179 		panic("swap_alloc: swap_getoff failed!");
180 
181 	for (len = PAGESIZE; len < *lenp; len += PAGESIZE) {
182 		if (sip->si_nfpgs == 0)
183 			break;
184 		if (swapalloc_maxcontig && len >= swapalloc_maxcontig)
185 			break;
186 		noff = swap_getoff(sip);
187 		if (noff == -1) {
188 			break;
189 		} else if (noff != soff + len) {
190 			CLEARBIT(sip->si_swapslots, btop(noff - sip->si_soff));
191 			break;
192 		}
193 		sip->si_nfpgs--;
194 	}
195 	*vpp = sip->si_vp;
196 	*offp = soff;
197 	*lenp = len;
198 	ASSERT((spgcnt_t)sip->si_nfpgs >= 0);
199 	sip->si_allocs += btop(len);
200 	if (sip->si_allocs >= swap_maxcontig) {
201 		sip->si_allocs = 0;
202 		if ((silast = sip->si_next) == NULL)
203 			silast = swapinfo;
204 	}
205 	TRACE_2(TR_FAC_VM, TR_SWAP_ALLOC,
206 	    "swap_alloc:sip %p offset %lx", sip, soff);
207 	mutex_exit(&swapinfo_lock);
208 	return (1);
209 }
210 
211 int swap_backsearch = 0;
212 
213 /*
214  * Get a free offset on swap device sip.
215  * Return >=0 offset if succeeded, -1 for failure.
216  */
217 static u_offset_t
218 swap_getoff(struct swapinfo *sip)
219 {
220 	uint_t *sp, *ep;
221 	size_t aoff, boff, poff, slotnumber;
222 
223 	ASSERT(MUTEX_HELD(&swapinfo_lock));
224 
225 	sip->si_alloccnt++;
226 	for (sp = &sip->si_swapslots[sip->si_hint >> MAPSHIFT],
227 	    ep = &sip->si_swapslots[sip->si_mapsize / NBPW]; sp < ep; sp++) {
228 		if (*sp != (uint_t)0xffffffff)
229 			goto foundentry;
230 		else
231 			sip->si_checkcnt++;
232 	}
233 	SWAP_PRINT(SW_ALLOC,
234 	    "swap_getoff: couldn't find slot from hint %ld to end\n",
235 	    sip->si_hint, 0, 0, 0, 0);
236 	/*
237 	 * Go backwards? Check for faster method XXX
238 	 */
239 	if (swap_backsearch) {
240 		for (sp = &sip->si_swapslots[sip->si_hint >> MAPSHIFT],
241 		    ep = sip->si_swapslots; sp > ep; sp--) {
242 			if (*sp != (uint_t)0xffffffff)
243 				goto foundentry;
244 			else
245 				sip->si_checkcnt++;
246 		}
247 	} else {
248 		for (sp = sip->si_swapslots,
249 		    ep = &sip->si_swapslots[sip->si_hint >> MAPSHIFT];
250 		    sp < ep; sp++) {
251 			if (*sp != (uint_t)0xffffffff)
252 				goto foundentry;
253 			else
254 				sip->si_checkcnt++;
255 		}
256 	}
257 	if (*sp == 0xffffffff) {
258 		cmn_err(CE_WARN, "No free swap slots!");
259 		return ((u_offset_t)-1);
260 	}
261 
262 foundentry:
263 	/*
264 	 * aoff is the page number offset (in bytes) of the si_swapslots
265 	 * array element containing a free page
266 	 *
267 	 * boff is the page number offset of the free page
268 	 * (i.e. cleared bit) in si_swapslots[aoff].
269 	 */
270 	aoff = ((char *)sp - (char *)sip->si_swapslots) * NBBY;
271 
272 	for (boff = (sip->si_hint % NBBW); boff < NBBW; boff++) {
273 		if (!TESTBIT(sip->si_swapslots, aoff + boff))
274 			goto foundslot;
275 		else
276 			sip->si_checkcnt++;
277 	}
278 	for (boff = 0; boff < (sip->si_hint % NBBW); boff++) {
279 		if (!TESTBIT(sip->si_swapslots, aoff + boff))
280 			goto foundslot;
281 		else
282 			sip->si_checkcnt++;
283 	}
284 	panic("swap_getoff: didn't find slot in word hint %ld", sip->si_hint);
285 
286 foundslot:
287 	/*
288 	 * Return the offset of the free page in swap device.
289 	 * Convert page number of byte offset and add starting
290 	 * offset of swap device.
291 	 */
292 	slotnumber = aoff + boff;
293 	SWAP_PRINT(SW_ALLOC, "swap_getoff: allocating slot %ld\n",
294 	    slotnumber, 0, 0, 0, 0);
295 	poff = ptob(slotnumber);
296 	if (poff + sip->si_soff >= sip->si_eoff)
297 		printf("ptob(aoff(%ld) + boff(%ld))(%ld) >= eoff(%ld)\n",
298 		    aoff, boff, ptob(slotnumber), (long)sip->si_eoff);
299 	ASSERT(poff < sip->si_eoff);
300 	/*
301 	 * We could verify here that the slot isn't already allocated
302 	 * by looking through all the anon slots.
303 	 */
304 	SETBIT(sip->si_swapslots, slotnumber);
305 	sip->si_hint = slotnumber + 1;	/* hint = next slot */
306 	return (poff + sip->si_soff);
307 }
308 
309 /*
310  * Free a swap page.
311  */
312 void
313 swap_phys_free(struct vnode *vp, u_offset_t off, size_t len)
314 {
315 	struct swapinfo *sip;
316 	ssize_t pagenumber, npage;
317 
318 	mutex_enter(&swapinfo_lock);
319 	sip = swapinfo;
320 
321 	do {
322 		if (sip->si_vp == vp &&
323 		    sip->si_soff <= off && off < sip->si_eoff) {
324 			for (pagenumber = btop(off - sip->si_soff),
325 			    npage = btop(len) + pagenumber;
326 			    pagenumber < npage; pagenumber++) {
327 				SWAP_PRINT(SW_ALLOC,
328 				    "swap_phys_free: freeing slot %ld on "
329 				    "sip %p\n",
330 				    pagenumber, sip, 0, 0, 0);
331 				if (!TESTBIT(sip->si_swapslots, pagenumber)) {
332 					panic(
333 					    "swap_phys_free: freeing free slot "
334 					    "%p,%lx\n", (void *)vp,
335 					    ptob(pagenumber) + sip->si_soff);
336 				}
337 				CLEARBIT(sip->si_swapslots, pagenumber);
338 				sip->si_nfpgs++;
339 			}
340 			ASSERT(sip->si_nfpgs <= sip->si_npgs);
341 			mutex_exit(&swapinfo_lock);
342 			return;
343 		}
344 	} while ((sip = sip->si_next) != NULL);
345 	panic("swap_phys_free");
346 	/*NOTREACHED*/
347 }
348 
349 /*
350  * Return the anon struct corresponding for the given
351  * <vnode, off> if it is part of the virtual swap device.
352  * Return the anon struct if found, otherwise NULL.
353  */
354 struct anon *
355 swap_anon(struct vnode *vp, u_offset_t off)
356 {
357 	struct anon *ap;
358 
359 	ASSERT(MUTEX_HELD(AH_MUTEX(vp, off)));
360 
361 	for (ap = anon_hash[ANON_HASH(vp, off)]; ap != NULL; ap = ap->an_hash) {
362 		if (ap->an_vp == vp && ap->an_off == off)
363 			return (ap);
364 	}
365 	return (NULL);
366 }
367 
368 
369 /*
370  * Determine if the vp offset range overlap a swap device.
371  */
372 int
373 swap_in_range(struct vnode *vp, u_offset_t offset, size_t len)
374 {
375 	struct swapinfo *sip;
376 	u_offset_t eoff;
377 
378 	eoff = offset + len;
379 	ASSERT(eoff > offset);
380 
381 	mutex_enter(&swapinfo_lock);
382 	sip = swapinfo;
383 	if (vp && sip) {
384 		do {
385 			if (vp != sip->si_vp || eoff <= sip->si_soff ||
386 			    offset >= sip->si_eoff)
387 				continue;
388 			mutex_exit(&swapinfo_lock);
389 			return (1);
390 		} while ((sip = sip->si_next) != NULL);
391 	}
392 	mutex_exit(&swapinfo_lock);
393 	return (0);
394 }
395 
396 /*
397  * See if name is one of our swap files
398  * even though lookupname failed.
399  * This can be used by swapdel to delete
400  * swap resources on remote machines
401  * where the link has gone down.
402  */
403 static struct vnode *
404 swapdel_byname(
405 	char 	*name,			/* pathname to delete */
406 	ulong_t lowblk) 	/* Low block number of area to delete */
407 {
408 	struct swapinfo **sipp, *osip;
409 	u_offset_t soff;
410 
411 	/*
412 	 * Find the swap file entry for the file to
413 	 * be deleted. Skip any entries that are in
414 	 * transition.
415 	 */
416 
417 	soff = ptob(btopr(lowblk << SCTRSHFT)); /* must be page aligned */
418 
419 	mutex_enter(&swapinfo_lock);
420 	for (sipp = &swapinfo; (osip = *sipp) != NULL; sipp = &osip->si_next) {
421 		if ((strcmp(osip->si_pname, name) == 0) &&
422 		    (osip->si_soff == soff) && (osip->si_flags == 0)) {
423 			struct vnode *vp = osip->si_vp;
424 
425 			VN_HOLD(vp);
426 			mutex_exit(&swapinfo_lock);
427 			return (vp);
428 		}
429 	}
430 	mutex_exit(&swapinfo_lock);
431 	return (NULL);
432 }
433 
434 
435 /*
436  * New system call to manipulate swap files.
437  */
438 int
439 swapctl(int sc_cmd, void *sc_arg, int *rv)
440 {
441 	struct swapinfo *sip, *csip, *tsip;
442 	int error = 0;
443 	struct swapent st, *ust;
444 	struct swapres sr;
445 	struct vnode *vp;
446 	int cnt = 0;
447 	int tmp_nswapfiles;
448 	int nswap;
449 	int length, nlen;
450 	int gplen = 0, plen;
451 	char *swapname;
452 	char *pname;
453 	char *tpname;
454 	struct anoninfo ai;
455 	spgcnt_t avail;
456 	int global = INGLOBALZONE(curproc);
457 	struct zone *zp = curproc->p_zone;
458 
459 	/*
460 	 * When running in a zone we want to hide the details of the swap
461 	 * devices: we report there only being one swap device named "swap"
462 	 * having a size equal to the sum of the sizes of all real swap devices
463 	 * on the system.
464 	 */
465 	switch (sc_cmd) {
466 	case SC_GETNSWP:
467 		if (global)
468 			*rv = nswapfiles;
469 		else
470 			*rv = 1;
471 		return (0);
472 
473 	case SC_AINFO:
474 		/*
475 		 * Return anoninfo information with these changes:
476 		 * ani_max = maximum amount of swap space
477 		 *	(including potentially available physical memory)
478 		 * ani_free = amount of unallocated anonymous memory
479 		 *	(some of which might be reserved and including
480 		 *	 potentially available physical memory)
481 		 * ani_resv = amount of claimed (reserved) anonymous memory
482 		 */
483 		avail = MAX((spgcnt_t)(availrmem - swapfs_minfree), 0);
484 		ai.ani_max = (k_anoninfo.ani_max +
485 		    k_anoninfo.ani_mem_resv) + avail;
486 
487 		/* Update ani_free */
488 		set_anoninfo();
489 		ai.ani_free = k_anoninfo.ani_free + avail;
490 
491 		ai.ani_resv = k_anoninfo.ani_phys_resv +
492 		    k_anoninfo.ani_mem_resv;
493 
494 		if (!global && zp->zone_max_swap_ctl != UINT64_MAX) {
495 			/*
496 			 * We're in a non-global zone with a swap cap.  We
497 			 * always report the system-wide values for the global
498 			 * zone, even though it too can have a swap cap.
499 			 */
500 
501 			/*
502 			 * For a swap-capped zone, the numbers are contrived
503 			 * since we don't have a correct value of 'reserved'
504 			 * for the zone.
505 			 *
506 			 * The ani_max value is always the zone's swap cap.
507 			 *
508 			 * The ani_free value is always the difference between
509 			 * the cap and the amount of swap in use by the zone.
510 			 *
511 			 * The ani_resv value is typically set to be the amount
512 			 * of swap in use by the zone, but can be adjusted
513 			 * upwards to indicate how much swap is currently
514 			 * unavailable to that zone due to usage by entities
515 			 * outside the zone.
516 			 *
517 			 * This works as follows.
518 			 *
519 			 * In the 'swap -s' output, the data is displayed
520 			 * as follows:
521 			 *    allocated = ani_max  - ani_free
522 			 *    reserved  = ani_resv - allocated
523 			 *    available = ani_max  - ani_resv
524 			 *
525 			 * Taking a contrived example, if the swap cap is 100
526 			 * and the amount of swap used by the zone is 75, this
527 			 * gives:
528 			 *    allocated = ani_max  - ani_free  = 100 - 25 = 75
529 			 *    reserved  = ani_resv - allocated =  75 - 75 =  0
530 			 *    available = ani_max  - ani_resv  = 100 - 75 = 25
531 			 *
532 			 * In this typical case, you can see that the 'swap -s'
533 			 * 'reserved' will always be 0 inside a swap capped
534 			 * zone.
535 			 *
536 			 * However, if the system as a whole has less free
537 			 * swap than the zone limits allow, then we adjust
538 			 * the ani_resv value up so that it is the difference
539 			 * between the zone cap and the amount of free system
540 			 * swap.  Taking the above example, but when the
541 			 * system as a whole only has 20 of swap available, we
542 			 * get an ani_resv of 100 - 20 = 80.  This gives:
543 			 *    allocated = ani_max  - ani_free  = 100 - 25 = 75
544 			 *    reserved  = ani_resv - allocated =  80 - 75 =  5
545 			 *    available = ani_max  - ani_resv  = 100 - 80 = 20
546 			 *
547 			 * In this case, you can see how the ani_resv value is
548 			 * tweaked up to make the 'swap -s' numbers work inside
549 			 * the zone.
550 			 */
551 			rctl_qty_t cap, used;
552 			pgcnt_t pgcap, sys_avail;
553 
554 			mutex_enter(&zp->zone_mem_lock);
555 			cap = zp->zone_max_swap_ctl;
556 			used = zp->zone_max_swap;
557 			mutex_exit(&zp->zone_mem_lock);
558 
559 			pgcap = MIN(btop(cap), ai.ani_max);
560 			ai.ani_free = pgcap - btop(used);
561 
562 			/* Get the system-wide swap currently available. */
563 			sys_avail = ai.ani_max - ai.ani_resv;
564 			if (sys_avail < ai.ani_free)
565 				ai.ani_resv = pgcap - sys_avail;
566 			else
567 				ai.ani_resv = btop(used);
568 
569 			ai.ani_max = pgcap;
570 		}
571 
572 		if (copyout(&ai, sc_arg, sizeof (struct anoninfo)) != 0)
573 			return (EFAULT);
574 		return (0);
575 
576 	case SC_LIST:
577 		if (copyin(sc_arg, &length, sizeof (int)) != 0)
578 			return (EFAULT);
579 		if (!global) {
580 			struct swapent st;
581 			char *swappath = "swap";
582 
583 			if (length < 1)
584 				return (ENOMEM);
585 			ust = (swapent_t *)((swaptbl_t *)sc_arg)->swt_ent;
586 			if (copyin(ust, &st, sizeof (swapent_t)) != 0)
587 				return (EFAULT);
588 			st.ste_start = PAGESIZE >> SCTRSHFT;
589 			st.ste_length = (off_t)0;
590 			st.ste_pages = 0;
591 			st.ste_free = 0;
592 			st.ste_flags = 0;
593 
594 			mutex_enter(&swapinfo_lock);
595 			for (sip = swapinfo, nswap = 0;
596 			    sip != NULL && nswap < nswapfiles;
597 			    sip = sip->si_next, nswap++) {
598 				st.ste_length +=
599 				    (sip->si_eoff - sip->si_soff) >> SCTRSHFT;
600 				st.ste_pages += sip->si_npgs;
601 				st.ste_free += sip->si_nfpgs;
602 			}
603 			mutex_exit(&swapinfo_lock);
604 
605 			if (zp->zone_max_swap_ctl != UINT64_MAX) {
606 				rctl_qty_t cap, used;
607 
608 				mutex_enter(&zp->zone_mem_lock);
609 				cap = zp->zone_max_swap_ctl;
610 				used = zp->zone_max_swap;
611 				mutex_exit(&zp->zone_mem_lock);
612 
613 				st.ste_length = MIN(cap, st.ste_length);
614 				st.ste_pages = MIN(btop(cap), st.ste_pages);
615 				st.ste_free = MIN(st.ste_pages - btop(used),
616 				    st.ste_free);
617 			}
618 
619 			if (copyout(&st, ust, sizeof (swapent_t)) != 0 ||
620 			    copyout(swappath, st.ste_path,
621 			    strlen(swappath) + 1) != 0) {
622 				return (EFAULT);
623 			}
624 			*rv = 1;
625 			return (0);
626 		}
627 beginning:
628 		tmp_nswapfiles = nswapfiles;
629 		/* Return an error if not enough space for the whole table. */
630 		if (length < tmp_nswapfiles)
631 			return (ENOMEM);
632 		/*
633 		 * Get memory to hold the swap entries and their names. We'll
634 		 * copy the real entries into these and then copy these out.
635 		 * Allocating the pathname memory is only a guess so we may
636 		 * find that we need more and have to do it again.
637 		 * All this is because we have to hold the anon lock while
638 		 * traversing the swapinfo list, and we can't be doing copyouts
639 		 * and/or kmem_alloc()s during this.
640 		 */
641 		csip = kmem_zalloc(tmp_nswapfiles * sizeof (struct swapinfo),
642 		    KM_SLEEP);
643 retry:
644 		nlen = tmp_nswapfiles * (gplen += 100);
645 		pname = kmem_zalloc(nlen, KM_SLEEP);
646 
647 		mutex_enter(&swapinfo_lock);
648 
649 		if (tmp_nswapfiles != nswapfiles) {
650 			mutex_exit(&swapinfo_lock);
651 			kmem_free(pname, nlen);
652 			kmem_free(csip,
653 			    tmp_nswapfiles * sizeof (struct swapinfo));
654 			gplen = 0;
655 			goto beginning;
656 		}
657 		for (sip = swapinfo, tsip = csip, tpname = pname, nswap = 0;
658 		    sip && nswap < tmp_nswapfiles;
659 		    sip = sip->si_next, tsip++, tpname += plen, nswap++) {
660 			plen = sip->si_pnamelen;
661 			if (tpname + plen - pname > nlen) {
662 				mutex_exit(&swapinfo_lock);
663 				kmem_free(pname, nlen);
664 				goto retry;
665 			}
666 			*tsip = *sip;
667 			tsip->si_pname = tpname;
668 			(void) strcpy(tsip->si_pname, sip->si_pname);
669 		}
670 		mutex_exit(&swapinfo_lock);
671 
672 		if (sip) {
673 			error = ENOMEM;
674 			goto lout;
675 		}
676 		ust = (swapent_t *)((swaptbl_t *)sc_arg)->swt_ent;
677 		for (tsip = csip, cnt = 0; cnt < nswap;  tsip++, ust++, cnt++) {
678 			if (copyin(ust, &st, sizeof (swapent_t)) != 0) {
679 				error = EFAULT;
680 				goto lout;
681 			}
682 			st.ste_flags = tsip->si_flags;
683 			st.ste_length =
684 			    (tsip->si_eoff - tsip->si_soff) >> SCTRSHFT;
685 			st.ste_start = tsip->si_soff >> SCTRSHFT;
686 			st.ste_pages = tsip->si_npgs;
687 			st.ste_free = tsip->si_nfpgs;
688 			if (copyout(&st, ust, sizeof (swapent_t)) != 0) {
689 				error = EFAULT;
690 				goto lout;
691 			}
692 			if (!tsip->si_pnamelen)
693 				continue;
694 			if (copyout(tsip->si_pname, st.ste_path,
695 			    tsip->si_pnamelen) != 0) {
696 				error = EFAULT;
697 				goto lout;
698 			}
699 		}
700 		*rv = nswap;
701 lout:
702 		kmem_free(csip, tmp_nswapfiles * sizeof (struct swapinfo));
703 		kmem_free(pname, nlen);
704 		return (error);
705 
706 	case SC_ADD:
707 	case SC_REMOVE:
708 		break;
709 	default:
710 		return (EINVAL);
711 	}
712 	if ((error = secpolicy_swapctl(CRED())) != 0)
713 		return (error);
714 
715 	if (copyin(sc_arg, &sr, sizeof (swapres_t)))
716 		return (EFAULT);
717 
718 	/* Allocate the space to read in pathname */
719 	if ((swapname = kmem_alloc(MAXPATHLEN, KM_NOSLEEP)) == NULL)
720 		return (ENOMEM);
721 
722 	error = copyinstr(sr.sr_name, swapname, MAXPATHLEN, 0);
723 	if (error)
724 		goto out;
725 
726 	error = lookupname(swapname, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp);
727 	if (error) {
728 		if (sc_cmd == SC_ADD)
729 			goto out;
730 		/* see if we match by name */
731 		vp = swapdel_byname(swapname, (size_t)sr.sr_start);
732 		if (vp == NULL)
733 			goto out;
734 	}
735 
736 	if (vp->v_flag & (VNOMAP | VNOSWAP)) {
737 		VN_RELE(vp);
738 		error = ENOSYS;
739 		goto out;
740 	}
741 	switch (vp->v_type) {
742 	case VBLK:
743 		break;
744 
745 	case VREG:
746 		if (vp->v_vfsp && vn_is_readonly(vp))
747 			error = EROFS;
748 		else
749 			error = VOP_ACCESS(vp, VREAD|VWRITE, 0, CRED(), NULL);
750 		break;
751 
752 	case VDIR:
753 		error = EISDIR;
754 		break;
755 	default:
756 		error = ENOSYS;
757 		break;
758 	}
759 	if (error == 0) {
760 		if (sc_cmd == SC_REMOVE)
761 			error = swapdel(vp, sr.sr_start);
762 		else
763 			error = swapadd(vp, sr.sr_start,
764 			    sr.sr_length, swapname);
765 	}
766 	VN_RELE(vp);
767 out:
768 	kmem_free(swapname, MAXPATHLEN);
769 	return (error);
770 }
771 
772 #if defined(_LP64) && defined(_SYSCALL32)
773 
774 int
775 swapctl32(int sc_cmd, void *sc_arg, int *rv)
776 {
777 	struct swapinfo *sip, *csip, *tsip;
778 	int error = 0;
779 	struct swapent32 st, *ust;
780 	struct swapres32 sr;
781 	struct vnode *vp;
782 	int cnt = 0;
783 	int tmp_nswapfiles;
784 	int nswap;
785 	int length, nlen;
786 	int gplen = 0, plen;
787 	char *swapname;
788 	char *pname;
789 	char *tpname;
790 	struct anoninfo32 ai;
791 	size_t s;
792 	spgcnt_t avail;
793 	int global = INGLOBALZONE(curproc);
794 	struct zone *zp = curproc->p_zone;
795 
796 	/*
797 	 * When running in a zone we want to hide the details of the swap
798 	 * devices: we report there only being one swap device named "swap"
799 	 * having a size equal to the sum of the sizes of all real swap devices
800 	 * on the system.
801 	 */
802 	switch (sc_cmd) {
803 	case SC_GETNSWP:
804 		if (global)
805 			*rv = nswapfiles;
806 		else
807 			*rv = 1;
808 		return (0);
809 
810 	case SC_AINFO:
811 		/*
812 		 * Return anoninfo information with these changes:
813 		 * ani_max = maximum amount of swap space
814 		 *	(including potentially available physical memory)
815 		 * ani_free = amount of unallocated anonymous memory
816 		 *	(some of which might be reserved and including
817 		 *	 potentially available physical memory)
818 		 * ani_resv = amount of claimed (reserved) anonymous memory
819 		 */
820 		avail = MAX((spgcnt_t)(availrmem - swapfs_minfree), 0);
821 		s = (k_anoninfo.ani_max + k_anoninfo.ani_mem_resv) + avail;
822 		if (s > UINT32_MAX)
823 			return (EOVERFLOW);
824 		ai.ani_max = s;
825 
826 		/* Update ani_free */
827 		set_anoninfo();
828 		s = k_anoninfo.ani_free + avail;
829 		if (s > UINT32_MAX)
830 			return (EOVERFLOW);
831 		ai.ani_free = s;
832 
833 		s = k_anoninfo.ani_phys_resv + k_anoninfo.ani_mem_resv;
834 		if (s > UINT32_MAX)
835 			return (EOVERFLOW);
836 		ai.ani_resv = s;
837 
838 		if (!global && zp->zone_max_swap_ctl != UINT64_MAX) {
839 			/*
840 			 * We're in a non-global zone with a swap cap.  We
841 			 * always report the system-wide values for the global
842 			 * zone, even though it too can have a swap cap.
843 			 * See the comment for the SC_AINFO case in swapctl()
844 			 * which explains the following logic.
845 			 */
846 			rctl_qty_t cap, used;
847 			pgcnt_t pgcap, sys_avail;
848 
849 			mutex_enter(&zp->zone_mem_lock);
850 			cap = zp->zone_max_swap_ctl;
851 			used = zp->zone_max_swap;
852 			mutex_exit(&zp->zone_mem_lock);
853 
854 			pgcap = MIN(btop(cap), ai.ani_max);
855 			ai.ani_free = pgcap - btop(used);
856 
857 			/* Get the system-wide swap currently available. */
858 			sys_avail = ai.ani_max - ai.ani_resv;
859 			if (sys_avail < ai.ani_free)
860 				ai.ani_resv = pgcap - sys_avail;
861 			else
862 				ai.ani_resv = btop(used);
863 
864 			ai.ani_max = pgcap;
865 		}
866 
867 		if (copyout(&ai, sc_arg, sizeof (ai)) != 0)
868 			return (EFAULT);
869 		return (0);
870 
871 	case SC_LIST:
872 		if (copyin(sc_arg, &length, sizeof (int32_t)) != 0)
873 			return (EFAULT);
874 		if (!global) {
875 			struct swapent32 st;
876 			char *swappath = "swap";
877 
878 			if (length < 1)
879 				return (ENOMEM);
880 			ust = (swapent32_t *)((swaptbl32_t *)sc_arg)->swt_ent;
881 			if (copyin(ust, &st, sizeof (swapent32_t)) != 0)
882 				return (EFAULT);
883 			st.ste_start = PAGESIZE >> SCTRSHFT;
884 			st.ste_length = (off_t)0;
885 			st.ste_pages = 0;
886 			st.ste_free = 0;
887 			st.ste_flags = 0;
888 
889 			mutex_enter(&swapinfo_lock);
890 			for (sip = swapinfo, nswap = 0;
891 			    sip != NULL && nswap < nswapfiles;
892 			    sip = sip->si_next, nswap++) {
893 				st.ste_length +=
894 				    (sip->si_eoff - sip->si_soff) >> SCTRSHFT;
895 				st.ste_pages += sip->si_npgs;
896 				st.ste_free += sip->si_nfpgs;
897 			}
898 			mutex_exit(&swapinfo_lock);
899 
900 			if (zp->zone_max_swap_ctl != UINT64_MAX) {
901 				rctl_qty_t cap, used;
902 
903 				mutex_enter(&zp->zone_mem_lock);
904 				cap = zp->zone_max_swap_ctl;
905 				used = zp->zone_max_swap;
906 				mutex_exit(&zp->zone_mem_lock);
907 
908 				st.ste_length = MIN(cap, st.ste_length);
909 				st.ste_pages = MIN(btop(cap), st.ste_pages);
910 				st.ste_free = MIN(st.ste_pages - btop(used),
911 				    st.ste_free);
912 			}
913 
914 			if (copyout(&st, ust, sizeof (swapent32_t)) != 0 ||
915 			    copyout(swappath, (caddr_t)(uintptr_t)st.ste_path,
916 			    strlen(swappath) + 1) != 0) {
917 				return (EFAULT);
918 			}
919 			*rv = 1;
920 			return (0);
921 		}
922 beginning:
923 		tmp_nswapfiles = nswapfiles;
924 		/* Return an error if not enough space for the whole table. */
925 		if (length < tmp_nswapfiles)
926 			return (ENOMEM);
927 		/*
928 		 * Get memory to hold the swap entries and their names. We'll
929 		 * copy the real entries into these and then copy these out.
930 		 * Allocating the pathname memory is only a guess so we may
931 		 * find that we need more and have to do it again.
932 		 * All this is because we have to hold the anon lock while
933 		 * traversing the swapinfo list, and we can't be doing copyouts
934 		 * and/or kmem_alloc()s during this.
935 		 */
936 		csip = kmem_zalloc(tmp_nswapfiles * sizeof (*csip), KM_SLEEP);
937 retry:
938 		nlen = tmp_nswapfiles * (gplen += 100);
939 		pname = kmem_zalloc(nlen, KM_SLEEP);
940 
941 		mutex_enter(&swapinfo_lock);
942 
943 		if (tmp_nswapfiles != nswapfiles) {
944 			mutex_exit(&swapinfo_lock);
945 			kmem_free(pname, nlen);
946 			kmem_free(csip, tmp_nswapfiles * sizeof (*csip));
947 			gplen = 0;
948 			goto beginning;
949 		}
950 		for (sip = swapinfo, tsip = csip, tpname = pname, nswap = 0;
951 		    (sip != NULL) && (nswap < tmp_nswapfiles);
952 		    sip = sip->si_next, tsip++, tpname += plen, nswap++) {
953 			plen = sip->si_pnamelen;
954 			if (tpname + plen - pname > nlen) {
955 				mutex_exit(&swapinfo_lock);
956 				kmem_free(pname, nlen);
957 				goto retry;
958 			}
959 			*tsip = *sip;
960 			tsip->si_pname = tpname;
961 			(void) strcpy(tsip->si_pname, sip->si_pname);
962 		}
963 		mutex_exit(&swapinfo_lock);
964 
965 		if (sip != NULL) {
966 			error = ENOMEM;
967 			goto lout;
968 		}
969 		ust = (swapent32_t *)((swaptbl32_t *)sc_arg)->swt_ent;
970 		for (tsip = csip, cnt = 0; cnt < nswap;  tsip++, ust++, cnt++) {
971 			if (copyin(ust, &st, sizeof (*ust)) != 0) {
972 				error = EFAULT;
973 				goto lout;
974 			}
975 			st.ste_flags = tsip->si_flags;
976 			st.ste_length =
977 			    (tsip->si_eoff - tsip->si_soff) >> SCTRSHFT;
978 			st.ste_start = tsip->si_soff >> SCTRSHFT;
979 			st.ste_pages = tsip->si_npgs;
980 			st.ste_free = tsip->si_nfpgs;
981 			if (copyout(&st, ust, sizeof (st)) != 0) {
982 				error = EFAULT;
983 				goto lout;
984 			}
985 			if (!tsip->si_pnamelen)
986 				continue;
987 			if (copyout(tsip->si_pname,
988 			    (caddr_t)(uintptr_t)st.ste_path,
989 			    tsip->si_pnamelen) != 0) {
990 				error = EFAULT;
991 				goto lout;
992 			}
993 		}
994 		*rv = nswap;
995 lout:
996 		kmem_free(csip, tmp_nswapfiles * sizeof (*csip));
997 		kmem_free(pname, nlen);
998 		return (error);
999 
1000 	case SC_ADD:
1001 	case SC_REMOVE:
1002 		break;
1003 	default:
1004 		return (EINVAL);
1005 	}
1006 	if ((error = secpolicy_swapctl(CRED())) != 0)
1007 		return (error);
1008 
1009 	if (copyin(sc_arg, &sr, sizeof (sr)))
1010 		return (EFAULT);
1011 
1012 	/* Allocate the space to read in pathname */
1013 	if ((swapname = kmem_alloc(MAXPATHLEN, KM_NOSLEEP)) == NULL)
1014 		return (ENOMEM);
1015 
1016 	error = copyinstr((caddr_t)(uintptr_t)sr.sr_name,
1017 	    swapname, MAXPATHLEN, NULL);
1018 	if (error)
1019 		goto out;
1020 
1021 	error = lookupname(swapname, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp);
1022 	if (error) {
1023 		if (sc_cmd == SC_ADD)
1024 			goto out;
1025 		/* see if we match by name */
1026 		vp = swapdel_byname(swapname, (uint_t)sr.sr_start);
1027 		if (vp == NULL)
1028 			goto out;
1029 	}
1030 
1031 	if (vp->v_flag & (VNOMAP | VNOSWAP)) {
1032 		VN_RELE(vp);
1033 		error = ENOSYS;
1034 		goto out;
1035 	}
1036 	switch (vp->v_type) {
1037 	case VBLK:
1038 		break;
1039 
1040 	case VREG:
1041 		if (vp->v_vfsp && vn_is_readonly(vp))
1042 			error = EROFS;
1043 		else
1044 			error = VOP_ACCESS(vp, VREAD|VWRITE, 0, CRED(), NULL);
1045 		break;
1046 
1047 	case VDIR:
1048 		error = EISDIR;
1049 		break;
1050 	default:
1051 		error = ENOSYS;
1052 		break;
1053 	}
1054 	if (error == 0) {
1055 		if (sc_cmd == SC_REMOVE)
1056 			error = swapdel(vp, sr.sr_start);
1057 		else
1058 			error = swapadd(vp, sr.sr_start, sr.sr_length,
1059 			    swapname);
1060 	}
1061 	VN_RELE(vp);
1062 out:
1063 	kmem_free(swapname, MAXPATHLEN);
1064 	return (error);
1065 }
1066 
1067 #endif /* _LP64 && _SYSCALL32 */
1068 
1069 /*
1070  * Add a new swap file.
1071  */
1072 int
1073 swapadd(struct vnode *vp, ulong_t lowblk, ulong_t nblks, char *swapname)
1074 {
1075 	struct swapinfo **sipp, *nsip = NULL, *esip = NULL;
1076 	struct vnode *cvp;
1077 	struct vattr vattr;
1078 	pgcnt_t pages;
1079 	u_offset_t soff, eoff;
1080 	int error;
1081 	ssize_t i, start, end;
1082 	ushort_t wasswap;
1083 	ulong_t startblk;
1084 	size_t	returned_mem;
1085 
1086 	SWAP_PRINT(SW_CTL, "swapadd: vp %p lowblk %ld nblks %ld swapname %s\n",
1087 	    vp, lowblk, nblks, swapname, 0);
1088 	/*
1089 	 * Get the real vnode. (If vp is not a specnode it just returns vp, so
1090 	 * it does the right thing, but having this code know about specnodes
1091 	 * violates the spirit of having it be indepedent of vnode type.)
1092 	 */
1093 	cvp = common_specvp(vp);
1094 
1095 	/*
1096 	 * Or in VISSWAP so file system has chance to deny swap-ons during open.
1097 	 */
1098 	mutex_enter(&cvp->v_lock);
1099 	wasswap = cvp->v_flag & VISSWAP;
1100 	cvp->v_flag |= VISSWAP;
1101 	mutex_exit(&cvp->v_lock);
1102 
1103 	mutex_enter(&swap_lock);
1104 	if (error = VOP_OPEN(&cvp, FREAD|FWRITE, CRED(), NULL)) {
1105 		mutex_exit(&swap_lock);
1106 		/* restore state of v_flag */
1107 		if (!wasswap) {
1108 			mutex_enter(&cvp->v_lock);
1109 			cvp->v_flag &= ~VISSWAP;
1110 			mutex_exit(&cvp->v_lock);
1111 		}
1112 		return (error);
1113 	}
1114 	mutex_exit(&swap_lock);
1115 
1116 	/*
1117 	 * Get partition size. Return error if empty partition,
1118 	 * or if request does not fit within the partition.
1119 	 * If this is the first swap device, we can reduce
1120 	 * the size of the swap area to match what is
1121 	 * available.  This can happen if the system was built
1122 	 * on a machine with a different size swap partition.
1123 	 */
1124 	vattr.va_mask = AT_SIZE;
1125 	if (error = VOP_GETATTR(cvp, &vattr, ATTR_COMM, CRED(), NULL))
1126 		goto out;
1127 
1128 	/*
1129 	 * Specfs returns a va_size of MAXOFFSET_T (UNKNOWN_SIZE) when the
1130 	 * size of the device can't be determined.
1131 	 */
1132 	if ((vattr.va_size == 0) || (vattr.va_size == MAXOFFSET_T)) {
1133 		error = EINVAL;
1134 		goto out;
1135 	}
1136 
1137 #ifdef	_ILP32
1138 	/*
1139 	 * No support for large swap in 32-bit OS, if the size of the swap is
1140 	 * bigger than MAXOFF32_T then the size used by swapfs must be limited.
1141 	 * This limitation is imposed by the swap subsystem itself, a D_64BIT
1142 	 * driver as the target of swap operation should be able to field
1143 	 * the IO.
1144 	 */
1145 	if (vattr.va_size > MAXOFF32_T) {
1146 		cmn_err(CE_NOTE,
1147 		    "!swap device %s truncated from 0x%llx to 0x%x bytes",
1148 		    swapname, vattr.va_size, MAXOFF32_T);
1149 		vattr.va_size = MAXOFF32_T;
1150 	}
1151 #endif	/* _ILP32 */
1152 
1153 	/* Fail if file not writeable (try to set size to current size) */
1154 	vattr.va_mask = AT_SIZE;
1155 	if (error = VOP_SETATTR(cvp, &vattr, 0, CRED(), NULL))
1156 		goto out;
1157 
1158 	/* Fail if fs does not support VOP_PAGEIO */
1159 	error = VOP_PAGEIO(cvp, (page_t *)NULL, (u_offset_t)0, 0, 0, CRED(),
1160 	    NULL);
1161 
1162 	if (error == ENOSYS)
1163 		goto out;
1164 	else
1165 		error = 0;
1166 	/*
1167 	 * If swapping on the root filesystem don't put swap blocks that
1168 	 * correspond to the miniroot filesystem on the swap free list.
1169 	 */
1170 	if (cvp == rootdir)
1171 		startblk = roundup(MINIROOTSIZE<<SCTRSHFT, klustsize)>>SCTRSHFT;
1172 	else				/* Skip 1st page (disk label) */
1173 		startblk = (ulong_t)(lowblk ? lowblk : 1);
1174 
1175 	soff = startblk << SCTRSHFT;
1176 	if (soff >= vattr.va_size) {
1177 		error = EINVAL;
1178 		goto out;
1179 	}
1180 
1181 	/*
1182 	 * If user specified 0 blks, use the size of the device
1183 	 */
1184 	eoff = nblks ?  soff + (nblks - (startblk - lowblk) << SCTRSHFT) :
1185 	    vattr.va_size;
1186 
1187 	SWAP_PRINT(SW_CTL, "swapadd: va_size %ld soff %ld eoff %ld\n",
1188 	    vattr.va_size, soff, eoff, 0, 0);
1189 
1190 	if (eoff > vattr.va_size) {
1191 		error = EINVAL;
1192 		goto out;
1193 	}
1194 
1195 	/*
1196 	 * The starting and ending offsets must be page aligned.
1197 	 * Round soff up to next page boundary, round eoff
1198 	 * down to previous page boundary.
1199 	 */
1200 	soff = ptob(btopr(soff));
1201 	eoff = ptob(btop(eoff));
1202 	if (soff >= eoff) {
1203 		SWAP_PRINT(SW_CTL, "swapadd: soff %ld >= eoff %ld\n",
1204 		    soff, eoff, 0, 0, 0);
1205 		error = EINVAL;
1206 		goto out;
1207 	}
1208 
1209 	pages = btop(eoff - soff);
1210 
1211 	/* Allocate and partially set up the new swapinfo */
1212 	nsip = kmem_zalloc(sizeof (struct swapinfo), KM_SLEEP);
1213 	nsip->si_vp = cvp;
1214 
1215 	nsip->si_soff = soff;
1216 	nsip->si_eoff = eoff;
1217 	nsip->si_hint = 0;
1218 	nsip->si_checkcnt = nsip->si_alloccnt = 0;
1219 
1220 	nsip->si_pnamelen = (int)strlen(swapname) + 1;
1221 	nsip->si_pname = (char *)kmem_zalloc(nsip->si_pnamelen, KM_SLEEP);
1222 	bcopy(swapname, nsip->si_pname, nsip->si_pnamelen - 1);
1223 	SWAP_PRINT(SW_CTL, "swapadd: allocating swapinfo for %s, %ld pages\n",
1224 	    swapname, pages, 0, 0, 0);
1225 	/*
1226 	 * Size of swapslots map in bytes
1227 	 */
1228 	nsip->si_mapsize = P2ROUNDUP(pages, NBBW) / NBBY;
1229 	nsip->si_swapslots = kmem_zalloc(nsip->si_mapsize, KM_SLEEP);
1230 
1231 	/*
1232 	 * Permanently set the bits that can't ever be allocated,
1233 	 * i.e. those from the ending offset to the round up slot for the
1234 	 * swapslots bit map.
1235 	 */
1236 	start = pages;
1237 	end = P2ROUNDUP(pages, NBBW);
1238 	for (i = start; i < end; i++) {
1239 		SWAP_PRINT(SW_CTL, "swapadd: set bit for page %ld\n", i,
1240 		    0, 0, 0, 0);
1241 		SETBIT(nsip->si_swapslots, i);
1242 	}
1243 	nsip->si_npgs = nsip->si_nfpgs = pages;
1244 	/*
1245 	 * Now check to see if we can add it. We wait til now to check because
1246 	 * we need the swapinfo_lock and we don't want sleep with it (e.g.,
1247 	 * during kmem_alloc()) while we're setting up the swapinfo.
1248 	 */
1249 	mutex_enter(&swapinfo_lock);
1250 	for (sipp = &swapinfo; (esip = *sipp) != NULL; sipp = &esip->si_next) {
1251 		if (esip->si_vp == cvp) {
1252 			if (esip->si_soff == soff && esip->si_npgs == pages &&
1253 			    (esip->si_flags & ST_DOINGDEL)) {
1254 				/*
1255 				 * We are adding a device that we are in the
1256 				 * middle of deleting. Just clear the
1257 				 * ST_DOINGDEL flag to signal this and
1258 				 * the deletion routine will eventually notice
1259 				 * it and add it back.
1260 				 */
1261 				esip->si_flags &= ~ST_DOINGDEL;
1262 				mutex_exit(&swapinfo_lock);
1263 				goto out;
1264 			}
1265 			/* disallow overlapping swap files */
1266 			if ((soff < esip->si_eoff) && (eoff > esip->si_soff)) {
1267 				error = EEXIST;
1268 				mutex_exit(&swapinfo_lock);
1269 				goto out;
1270 			}
1271 		}
1272 	}
1273 
1274 	nswapfiles++;
1275 
1276 	/*
1277 	 * add new swap device to list and shift allocations to it
1278 	 * before updating the anoninfo counters
1279 	 */
1280 	*sipp = nsip;
1281 	silast = nsip;
1282 
1283 	/*
1284 	 * Update the total amount of reservable swap space
1285 	 * accounting properly for swap space from physical memory
1286 	 */
1287 	/* New swap device soaks up currently reserved memory swap */
1288 	mutex_enter(&anoninfo_lock);
1289 
1290 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
1291 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
1292 
1293 	k_anoninfo.ani_max += pages;
1294 	ANI_ADD(pages);
1295 	if (k_anoninfo.ani_mem_resv > k_anoninfo.ani_locked_swap) {
1296 		returned_mem = MIN(k_anoninfo.ani_mem_resv -
1297 		    k_anoninfo.ani_locked_swap,
1298 		    k_anoninfo.ani_max - k_anoninfo.ani_phys_resv);
1299 
1300 		ANI_ADD(-returned_mem);
1301 		k_anoninfo.ani_free -= returned_mem;
1302 		k_anoninfo.ani_mem_resv -= returned_mem;
1303 		k_anoninfo.ani_phys_resv += returned_mem;
1304 
1305 		mutex_enter(&freemem_lock);
1306 		availrmem += returned_mem;
1307 		mutex_exit(&freemem_lock);
1308 	}
1309 	/*
1310 	 * At boot time, to permit booting small memory machines using
1311 	 * only physical memory as swap space, we allowed a dangerously
1312 	 * large amount of memory to be used as swap space; now that
1313 	 * more physical backing store is available bump down the amount
1314 	 * we can get from memory to a safer size.
1315 	 */
1316 	if (swapfs_minfree < swapfs_desfree) {
1317 		mutex_enter(&freemem_lock);
1318 		if (availrmem > swapfs_desfree || !k_anoninfo.ani_mem_resv)
1319 			swapfs_minfree = swapfs_desfree;
1320 		mutex_exit(&freemem_lock);
1321 	}
1322 
1323 	SWAP_PRINT(SW_CTL, "swapadd: ani_max %ld ani_free %ld\n",
1324 	    k_anoninfo.ani_free, k_anoninfo.ani_free, 0, 0, 0);
1325 
1326 	mutex_exit(&anoninfo_lock);
1327 
1328 	mutex_exit(&swapinfo_lock);
1329 
1330 	/* Initialize the dump device */
1331 	mutex_enter(&dump_lock);
1332 	if (dumpvp == NULL)
1333 		(void) dumpinit(vp, swapname, 0);
1334 	mutex_exit(&dump_lock);
1335 
1336 	VN_HOLD(cvp);
1337 out:
1338 	if (error || esip) {
1339 		SWAP_PRINT(SW_CTL, "swapadd: error (%d)\n", error, 0, 0, 0, 0);
1340 
1341 		if (!wasswap) {
1342 			mutex_enter(&cvp->v_lock);
1343 			cvp->v_flag &= ~VISSWAP;
1344 			mutex_exit(&cvp->v_lock);
1345 		}
1346 		if (nsip) {
1347 			kmem_free(nsip->si_swapslots, (size_t)nsip->si_mapsize);
1348 			kmem_free(nsip->si_pname, nsip->si_pnamelen);
1349 			kmem_free(nsip, sizeof (*nsip));
1350 		}
1351 		mutex_enter(&swap_lock);
1352 		(void) VOP_CLOSE(cvp, FREAD|FWRITE, 1, (offset_t)0, CRED(),
1353 		    NULL);
1354 		mutex_exit(&swap_lock);
1355 	}
1356 	return (error);
1357 }
1358 
1359 /*
1360  * Delete a swap file.
1361  */
1362 static int
1363 swapdel(
1364 	struct vnode *vp,
1365 	ulong_t lowblk) /* Low block number of area to delete. */
1366 {
1367 	struct swapinfo **sipp, *osip = NULL;
1368 	struct vnode *cvp;
1369 	u_offset_t soff;
1370 	int error = 0;
1371 	u_offset_t toff = 0;
1372 	struct vnode *tvp = NULL;
1373 	spgcnt_t pages;
1374 	struct anon **app, *ap;
1375 	kmutex_t *ahm;
1376 	pgcnt_t adjust_swap = 0;
1377 
1378 	/* Find the swap file entry for the file to be deleted */
1379 	cvp = common_specvp(vp);
1380 
1381 
1382 	lowblk = lowblk ? lowblk : 1; 	/* Skip first page (disk label) */
1383 	soff = ptob(btopr(lowblk << SCTRSHFT)); /* must be page aligned */
1384 
1385 	mutex_enter(&swapinfo_lock);
1386 	for (sipp = &swapinfo; (osip = *sipp) != NULL; sipp = &osip->si_next) {
1387 		if ((osip->si_vp == cvp) &&
1388 		    (osip->si_soff == soff) && (osip->si_flags == 0))
1389 			break;
1390 	}
1391 
1392 	/* If the file was not found, error.  */
1393 	if (osip == NULL) {
1394 		error = EINVAL;
1395 		mutex_exit(&swapinfo_lock);
1396 		goto out;
1397 	}
1398 
1399 	pages = osip->si_npgs;
1400 
1401 	/*
1402 	 * Do not delete if we will be low on swap pages.
1403 	 */
1404 	mutex_enter(&anoninfo_lock);
1405 
1406 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
1407 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
1408 
1409 	mutex_enter(&freemem_lock);
1410 	if (((k_anoninfo.ani_max - k_anoninfo.ani_phys_resv) +
1411 	    MAX((spgcnt_t)(availrmem - swapfs_minfree), 0)) < pages) {
1412 		mutex_exit(&freemem_lock);
1413 		mutex_exit(&anoninfo_lock);
1414 		error = ENOMEM;
1415 		cmn_err(CE_WARN, "swapdel - too few free pages");
1416 		mutex_exit(&swapinfo_lock);
1417 		goto out;
1418 	}
1419 	mutex_exit(&freemem_lock);
1420 
1421 	k_anoninfo.ani_max -= pages;
1422 
1423 	/* If needed, reserve memory swap to replace old device */
1424 	if (k_anoninfo.ani_phys_resv > k_anoninfo.ani_max) {
1425 		adjust_swap = k_anoninfo.ani_phys_resv - k_anoninfo.ani_max;
1426 		k_anoninfo.ani_phys_resv -= adjust_swap;
1427 		k_anoninfo.ani_mem_resv += adjust_swap;
1428 		mutex_enter(&freemem_lock);
1429 		availrmem -= adjust_swap;
1430 		mutex_exit(&freemem_lock);
1431 		ANI_ADD(adjust_swap);
1432 	}
1433 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
1434 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
1435 	mutex_exit(&anoninfo_lock);
1436 
1437 	ANI_ADD(-pages);
1438 
1439 	/*
1440 	 * Set the delete flag.  This prevents anyone from allocating more
1441 	 * pages from this file. Also set ST_DOINGDEL. Someone who wants to
1442 	 * add the file back while we're deleting it will signify by clearing
1443 	 * this flag.
1444 	 */
1445 	osip->si_flags |= ST_INDEL|ST_DOINGDEL;
1446 	mutex_exit(&swapinfo_lock);
1447 
1448 	/*
1449 	 * Free all the allocated physical slots for this file. We do this
1450 	 * by walking through the entire anon hash array, because we need
1451 	 * to update all the anon slots that have physical swap slots on
1452 	 * this file, and this is the only way to find them all. We go back
1453 	 * to the beginning of a bucket after each slot is freed because the
1454 	 * anonhash_lock is not held during the free and thus the hash table
1455 	 * may change under us.
1456 	 */
1457 	for (app = anon_hash; app < &anon_hash[ANON_HASH_SIZE]; app++) {
1458 		ahm = &anonhash_lock[(app - anon_hash) &
1459 		    (AH_LOCK_SIZE - 1)].pad_mutex;
1460 		mutex_enter(ahm);
1461 top:
1462 		for (ap = *app; ap != NULL; ap = ap->an_hash) {
1463 			if (ap->an_pvp == cvp &&
1464 			    ap->an_poff >= osip->si_soff &&
1465 			    ap->an_poff < osip->si_eoff) {
1466 				ASSERT(TESTBIT(osip->si_swapslots,
1467 				    btop((size_t)(ap->an_poff -
1468 				    osip->si_soff))));
1469 				tvp = ap->an_vp;
1470 				toff = ap->an_off;
1471 				VN_HOLD(tvp);
1472 				mutex_exit(ahm);
1473 
1474 				error = swapslot_free(tvp, toff, osip);
1475 
1476 				VN_RELE(tvp);
1477 				mutex_enter(ahm);
1478 				if (!error && (osip->si_flags & ST_DOINGDEL)) {
1479 					goto top;
1480 				} else {
1481 					if (error) {
1482 						cmn_err(CE_WARN,
1483 						    "swapslot_free failed %d",
1484 						    error);
1485 					}
1486 
1487 					/*
1488 					 * Add device back before making it
1489 					 * visible.
1490 					 */
1491 					mutex_enter(&swapinfo_lock);
1492 					osip->si_flags &=
1493 					    ~(ST_INDEL | ST_DOINGDEL);
1494 					mutex_exit(&swapinfo_lock);
1495 
1496 					/*
1497 					 * Update the anon space available
1498 					 */
1499 					mutex_enter(&anoninfo_lock);
1500 
1501 					k_anoninfo.ani_phys_resv += adjust_swap;
1502 					k_anoninfo.ani_mem_resv -= adjust_swap;
1503 					k_anoninfo.ani_max += pages;
1504 
1505 					mutex_enter(&freemem_lock);
1506 					availrmem += adjust_swap;
1507 					mutex_exit(&freemem_lock);
1508 
1509 					mutex_exit(&anoninfo_lock);
1510 
1511 					ANI_ADD(pages);
1512 
1513 					mutex_exit(ahm);
1514 					goto out;
1515 				}
1516 			}
1517 		}
1518 		mutex_exit(ahm);
1519 	}
1520 
1521 	/* All done, they'd better all be free! */
1522 	mutex_enter(&swapinfo_lock);
1523 	ASSERT(osip->si_nfpgs == osip->si_npgs);
1524 
1525 	/* Now remove it from the swapinfo list */
1526 	for (sipp = &swapinfo; *sipp != NULL; sipp = &(*sipp)->si_next) {
1527 		if (*sipp == osip)
1528 			break;
1529 	}
1530 	ASSERT(*sipp);
1531 	*sipp = osip->si_next;
1532 	if (silast == osip)
1533 		if ((silast = osip->si_next) == NULL)
1534 			silast = swapinfo;
1535 	nswapfiles--;
1536 	mutex_exit(&swapinfo_lock);
1537 
1538 	kmem_free(osip->si_swapslots, osip->si_mapsize);
1539 	kmem_free(osip->si_pname, osip->si_pnamelen);
1540 	kmem_free(osip, sizeof (*osip));
1541 
1542 	mutex_enter(&dump_lock);
1543 	if (cvp == dumpvp)
1544 		dumpfini();
1545 	mutex_exit(&dump_lock);
1546 
1547 	/* Release the vnode */
1548 
1549 	mutex_enter(&swap_lock);
1550 	(void) VOP_CLOSE(cvp, FREAD|FWRITE, 1, (offset_t)0, CRED(), NULL);
1551 	mutex_enter(&cvp->v_lock);
1552 	cvp->v_flag &= ~VISSWAP;
1553 	mutex_exit(&cvp->v_lock);
1554 	VN_RELE(cvp);
1555 	mutex_exit(&swap_lock);
1556 out:
1557 	return (error);
1558 }
1559 
1560 /*
1561  * Free up a physical swap slot on swapinfo sip, currently in use by the
1562  * anonymous page whose name is (vp, off).
1563  */
1564 static int
1565 swapslot_free(
1566 	struct vnode *vp,
1567 	u_offset_t off,
1568 	struct swapinfo *sip)
1569 {
1570 	struct page *pp = NULL;
1571 	struct anon *ap = NULL;
1572 	int error = 0;
1573 	kmutex_t *ahm;
1574 	struct vnode *pvp = NULL;
1575 	u_offset_t poff;
1576 	int	alloc_pg = 0;
1577 
1578 	ASSERT(sip->si_vp != NULL);
1579 	/*
1580 	 * Get the page for the old swap slot if exists or create a new one.
1581 	 */
1582 again:
1583 	if ((pp = page_lookup(vp, off, SE_SHARED)) == NULL) {
1584 		pp = page_create_va(vp, off, PAGESIZE, PG_WAIT | PG_EXCL,
1585 		    segkmap, NULL);
1586 		if (pp == NULL)
1587 			goto again;
1588 		alloc_pg = 1;
1589 
1590 		error = swap_getphysname(vp, off, &pvp, &poff);
1591 		if (error || pvp != sip->si_vp || poff < sip->si_soff ||
1592 		    poff >= sip->si_eoff) {
1593 			page_io_unlock(pp);
1594 			/*LINTED: constant in conditional context*/
1595 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
1596 			return (0);
1597 		}
1598 
1599 		error = VOP_PAGEIO(pvp, pp, poff, PAGESIZE, B_READ,
1600 		    CRED(), NULL);
1601 		if (error) {
1602 			page_io_unlock(pp);
1603 			if (error == EFAULT)
1604 				error = 0;
1605 			/*LINTED: constant in conditional context*/
1606 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
1607 			return (error);
1608 		}
1609 	}
1610 
1611 	/*
1612 	 * The anon could have been removed by anon_decref* and/or reallocated
1613 	 * by anon layer (an_pvp == NULL) with the same vp, off.
1614 	 * In this case the page which has been allocated needs to
1615 	 * be freed.
1616 	 */
1617 	if (!alloc_pg)
1618 		page_io_lock(pp);
1619 	ahm = AH_MUTEX(vp, off);
1620 	mutex_enter(ahm);
1621 	ap = swap_anon(vp, off);
1622 	if ((ap == NULL || ap->an_pvp == NULL) && alloc_pg) {
1623 		mutex_exit(ahm);
1624 		page_io_unlock(pp);
1625 		/*LINTED: constant in conditional context*/
1626 		VN_DISPOSE(pp, B_INVAL, 0, kcred);
1627 		return (0);
1628 	}
1629 
1630 	/*
1631 	 * Free the physical slot. It may have been freed up and replaced with
1632 	 * another one while we were getting the page so we have to re-verify
1633 	 * that this is really one we want. If we do free the slot we have
1634 	 * to mark the page modified, as its backing store is now gone.
1635 	 */
1636 	if ((ap != NULL) && (ap->an_pvp == sip->si_vp && ap->an_poff >=
1637 	    sip->si_soff && ap->an_poff < sip->si_eoff)) {
1638 		swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE);
1639 		ap->an_pvp = NULL;
1640 		ap->an_poff = 0;
1641 		mutex_exit(ahm);
1642 		hat_setmod(pp);
1643 	} else {
1644 		mutex_exit(ahm);
1645 	}
1646 	page_io_unlock(pp);
1647 	page_unlock(pp);
1648 	return (0);
1649 }
1650 
1651 
1652 /*
1653  * Get contig physical backing store for vp, in the range
1654  * [*offp, *offp + *lenp), May back a subrange of this, but must
1655  * always include the requested offset or fail. Returns the offsets
1656  * backed as [*offp, *offp + *lenp) and the physical offsets used to
1657  * back them from *pvpp in the range [*pstartp, *pstartp + *lenp).
1658  * Returns 	0 for success
1659  * 		SE_NOANON -- no anon slot for requested paged
1660  *		SE_NOSWAP -- no physical swap space available
1661  */
1662 int
1663 swap_newphysname(
1664 	struct vnode *vp,
1665 	u_offset_t offset,
1666 	u_offset_t *offp,
1667 	size_t *lenp,
1668 	struct vnode **pvpp,
1669 	u_offset_t *poffp)
1670 {
1671 	struct anon *ap = NULL;		/* anon slot for vp, off */
1672 	int error = 0;
1673 	struct vnode *pvp;
1674 	u_offset_t poff, pstart, prem;
1675 	size_t plen;
1676 	u_offset_t off, start;
1677 	kmutex_t *ahm;
1678 
1679 	ASSERT(*offp <= offset && offset < *offp + *lenp);
1680 
1681 	/* Get new physical swap slots. */
1682 	plen = *lenp;
1683 	if (!swap_phys_alloc(&pvp, &pstart, &plen, 0)) {
1684 		/*
1685 		 * No swap available so return error unless requested
1686 		 * offset is already backed in which case return that.
1687 		 */
1688 		ahm = AH_MUTEX(vp, offset);
1689 		mutex_enter(ahm);
1690 		if ((ap = swap_anon(vp, offset)) == NULL) {
1691 			error = SE_NOANON;
1692 			mutex_exit(ahm);
1693 			return (error);
1694 		}
1695 		error = (ap->an_pvp ? 0 : SE_NOSWAP);
1696 		*offp = offset;
1697 		*lenp = PAGESIZE;
1698 		*pvpp = ap->an_pvp;
1699 		*poffp = ap->an_poff;
1700 		mutex_exit(ahm);
1701 		return (error);
1702 	}
1703 
1704 	/*
1705 	 * We got plen (<= *lenp) contig slots. Use these to back a
1706 	 * subrange of [*offp, *offp + *lenp) which includes offset.
1707 	 * For now we just put offset at the end of the kluster.
1708 	 * Clearly there are other possible choices - which is best?
1709 	 */
1710 	start = MAX(*offp,
1711 	    (offset + PAGESIZE > plen) ? (offset + PAGESIZE - plen) : 0);
1712 	ASSERT(start + plen <= *offp + *lenp);
1713 
1714 	for (off = start, poff = pstart; poff < pstart + plen;
1715 	    off += PAGESIZE, poff += PAGESIZE) {
1716 		ahm = AH_MUTEX(vp, off);
1717 		mutex_enter(ahm);
1718 		if ((ap = swap_anon(vp, off)) != NULL) {
1719 			/* Free old slot if any, and assign new one */
1720 			if (ap->an_pvp)
1721 				swap_phys_free(ap->an_pvp, ap->an_poff,
1722 				    PAGESIZE);
1723 			ap->an_pvp = pvp;
1724 			ap->an_poff = poff;
1725 		} else {	/* No anon slot for a klustered page, quit. */
1726 			prem = (pstart + plen) - poff;
1727 			/* Already did requested page, do partial kluster */
1728 			if (off > offset) {
1729 				plen = poff - pstart;
1730 				error = 0;
1731 			/* Fail on requested page, error */
1732 			} else if (off == offset)  {
1733 				error = SE_NOANON;
1734 			/* Fail on prior page, fail on requested page, error */
1735 			} else if ((ap = swap_anon(vp, offset)) == NULL) {
1736 				error = SE_NOANON;
1737 			/* Fail on prior page, got requested page, do only it */
1738 			} else {
1739 				/* Free old slot if any, and assign new one */
1740 				if (ap->an_pvp)
1741 					swap_phys_free(ap->an_pvp, ap->an_poff,
1742 					    PAGESIZE);
1743 				ap->an_pvp = pvp;
1744 				ap->an_poff = poff;
1745 				/* One page kluster */
1746 				start = offset;
1747 				plen = PAGESIZE;
1748 				pstart = poff;
1749 				poff += PAGESIZE;
1750 				prem -= PAGESIZE;
1751 			}
1752 			/* Free unassigned slots */
1753 			swap_phys_free(pvp, poff, prem);
1754 			mutex_exit(ahm);
1755 			break;
1756 		}
1757 		mutex_exit(ahm);
1758 	}
1759 	ASSERT(*offp <= start && start + plen <= *offp + *lenp);
1760 	ASSERT(start <= offset && offset < start + plen);
1761 	*offp = start;
1762 	*lenp = plen;
1763 	*pvpp = pvp;
1764 	*poffp = pstart;
1765 	return (error);
1766 }
1767 
1768 
1769 /*
1770  * Get the physical swap backing store location for a given anonymous page
1771  * named (vp, off). The backing store name is returned in (*pvpp, *poffp).
1772  * Returns	0 		success
1773  *		EIDRM --	no anon slot (page is not allocated)
1774  */
1775 int
1776 swap_getphysname(
1777 	struct vnode *vp,
1778 	u_offset_t off,
1779 	struct vnode **pvpp,
1780 	u_offset_t *poffp)
1781 {
1782 	struct anon *ap;
1783 	int error = 0;
1784 	kmutex_t *ahm;
1785 
1786 	ahm = AH_MUTEX(vp, off);
1787 	mutex_enter(ahm);
1788 
1789 	/* Get anon slot for vp, off */
1790 	ap = swap_anon(vp, off);
1791 	if (ap == NULL) {
1792 		error = EIDRM;
1793 		goto out;
1794 	}
1795 	*pvpp = ap->an_pvp;
1796 	*poffp = ap->an_poff;
1797 out:
1798 	mutex_exit(ahm);
1799 	return (error);
1800 }
1801