xref: /titanic_50/usr/src/uts/common/vm/vm_page.c (revision 942cd3bfda20c863bc5b099340d64c03434a1174)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989  AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 #pragma ident	"%Z%%M%	%I%	%E% SMI"
40 
41 /*
42  * VM - physical page management.
43  */
44 
45 #include <sys/types.h>
46 #include <sys/t_lock.h>
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/errno.h>
50 #include <sys/time.h>
51 #include <sys/vnode.h>
52 #include <sys/vm.h>
53 #include <sys/vtrace.h>
54 #include <sys/swap.h>
55 #include <sys/cmn_err.h>
56 #include <sys/tuneable.h>
57 #include <sys/sysmacros.h>
58 #include <sys/cpuvar.h>
59 #include <sys/callb.h>
60 #include <sys/debug.h>
61 #include <sys/tnf_probe.h>
62 #include <sys/condvar_impl.h>
63 #include <sys/mem_config.h>
64 #include <sys/mem_cage.h>
65 #include <sys/kmem.h>
66 #include <sys/atomic.h>
67 #include <sys/strlog.h>
68 #include <sys/mman.h>
69 #include <sys/ontrap.h>
70 #include <sys/lgrp.h>
71 #include <sys/vfs.h>
72 
73 #include <vm/hat.h>
74 #include <vm/anon.h>
75 #include <vm/page.h>
76 #include <vm/seg.h>
77 #include <vm/pvn.h>
78 #include <vm/seg_kmem.h>
79 #include <vm/vm_dep.h>
80 #include <sys/vm_usage.h>
81 #include <fs/fs_subr.h>
82 #include <sys/ddi.h>
83 #include <sys/modctl.h>
84 
85 static int nopageage = 0;
86 
87 static pgcnt_t max_page_get;	/* max page_get request size in pages */
88 pgcnt_t total_pages = 0;	/* total number of pages (used by /proc) */
89 
90 /*
91  * freemem_lock protects all freemem variables:
92  * availrmem. Also this lock protects the globals which track the
93  * availrmem changes for accurate kernel footprint calculation.
94  * See below for an explanation of these
95  * globals.
96  */
97 kmutex_t freemem_lock;
98 pgcnt_t availrmem;
99 pgcnt_t availrmem_initial;
100 
101 /*
102  * These globals track availrmem changes to get a more accurate
103  * estimate of tke kernel size. Historically pp_kernel is used for
104  * kernel size and is based on availrmem. But availrmem is adjusted for
105  * locked pages in the system not just for kernel locked pages.
106  * These new counters will track the pages locked through segvn and
107  * by explicit user locking.
108  *
109  * segvn_pages_locked : This keeps track on a global basis how many pages
110  * are currently locked because of I/O.
111  *
112  * pages_locked : How many pages are locked because of user specified
113  * locking through mlock or plock.
114  *
115  * pages_useclaim,pages_claimed : These two variables track the
116  * claim adjustments because of the protection changes on a segvn segment.
117  *
118  * All these globals are protected by the same lock which protects availrmem.
119  */
120 pgcnt_t segvn_pages_locked;
121 pgcnt_t pages_locked;
122 pgcnt_t pages_useclaim;
123 pgcnt_t pages_claimed;
124 
125 
126 /*
127  * new_freemem_lock protects freemem, freemem_wait & freemem_cv.
128  */
129 static kmutex_t	new_freemem_lock;
130 static uint_t	freemem_wait;	/* someone waiting for freemem */
131 static kcondvar_t freemem_cv;
132 
133 /*
134  * The logical page free list is maintained as two lists, the 'free'
135  * and the 'cache' lists.
136  * The free list contains those pages that should be reused first.
137  *
138  * The implementation of the lists is machine dependent.
139  * page_get_freelist(), page_get_cachelist(),
140  * page_list_sub(), and page_list_add()
141  * form the interface to the machine dependent implementation.
142  *
143  * Pages with p_free set are on the cache list.
144  * Pages with p_free and p_age set are on the free list,
145  *
146  * A page may be locked while on either list.
147  */
148 
149 /*
150  * free list accounting stuff.
151  *
152  *
153  * Spread out the value for the number of pages on the
154  * page free and page cache lists.  If there is just one
155  * value, then it must be under just one lock.
156  * The lock contention and cache traffic are a real bother.
157  *
158  * When we acquire and then drop a single pcf lock
159  * we can start in the middle of the array of pcf structures.
160  * If we acquire more than one pcf lock at a time, we need to
161  * start at the front to avoid deadlocking.
162  *
163  * pcf_count holds the number of pages in each pool.
164  *
165  * pcf_block is set when page_create_get_something() has asked the
166  * PSM page freelist and page cachelist routines without specifying
167  * a color and nothing came back.  This is used to block anything
168  * else from moving pages from one list to the other while the
169  * lists are searched again.  If a page is freeed while pcf_block is
170  * set, then pcf_reserve is incremented.  pcgs_unblock() takes care
171  * of clearning pcf_block, doing the wakeups, etc.
172  */
173 
174 #if NCPU <= 4
175 #define	PAD	2
176 #define	PCF_FANOUT	4
177 static	uint_t	pcf_mask = PCF_FANOUT - 1;
178 #else
179 #define	PAD	10
180 #ifdef sun4v
181 #define	PCF_FANOUT	32
182 #else
183 #define	PCF_FANOUT	128
184 #endif
185 static	uint_t	pcf_mask = PCF_FANOUT - 1;
186 #endif
187 
188 struct pcf {
189 	kmutex_t	pcf_lock;	/* protects the structure */
190 	uint_t		pcf_count;	/* page count */
191 	uint_t		pcf_wait;	/* number of waiters */
192 	uint_t		pcf_block; 	/* pcgs flag to page_free() */
193 	uint_t		pcf_reserve; 	/* pages freed after pcf_block set */
194 	uint_t		pcf_fill[PAD];	/* to line up on the caches */
195 };
196 
197 static struct	pcf	pcf[PCF_FANOUT];
198 #define	PCF_INDEX()	((CPU->cpu_id) & (pcf_mask))
199 
200 kmutex_t	pcgs_lock;		/* serializes page_create_get_ */
201 kmutex_t	pcgs_cagelock;		/* serializes NOSLEEP cage allocs */
202 kmutex_t	pcgs_wait_lock;		/* used for delay in pcgs */
203 static kcondvar_t	pcgs_cv;	/* cv for delay in pcgs */
204 
205 #ifdef VM_STATS
206 
207 /*
208  * No locks, but so what, they are only statistics.
209  */
210 
211 static struct page_tcnt {
212 	int	pc_free_cache;		/* free's into cache list */
213 	int	pc_free_dontneed;	/* free's with dontneed */
214 	int	pc_free_pageout;	/* free's from pageout */
215 	int	pc_free_free;		/* free's into free list */
216 	int	pc_free_pages;		/* free's into large page free list */
217 	int	pc_destroy_pages;	/* large page destroy's */
218 	int	pc_get_cache;		/* get's from cache list */
219 	int	pc_get_free;		/* get's from free list */
220 	int	pc_reclaim;		/* reclaim's */
221 	int	pc_abortfree;		/* abort's of free pages */
222 	int	pc_find_hit;		/* find's that find page */
223 	int	pc_find_miss;		/* find's that don't find page */
224 	int	pc_destroy_free;	/* # of free pages destroyed */
225 #define	PC_HASH_CNT	(4*PAGE_HASHAVELEN)
226 	int	pc_find_hashlen[PC_HASH_CNT+1];
227 	int	pc_addclaim_pages;
228 	int	pc_subclaim_pages;
229 	int	pc_free_replacement_page[2];
230 	int	pc_try_demote_pages[6];
231 	int	pc_demote_pages[2];
232 } pagecnt;
233 
234 uint_t	hashin_count;
235 uint_t	hashin_not_held;
236 uint_t	hashin_already;
237 
238 uint_t	hashout_count;
239 uint_t	hashout_not_held;
240 
241 uint_t	page_create_count;
242 uint_t	page_create_not_enough;
243 uint_t	page_create_not_enough_again;
244 uint_t	page_create_zero;
245 uint_t	page_create_hashout;
246 uint_t	page_create_page_lock_failed;
247 uint_t	page_create_trylock_failed;
248 uint_t	page_create_found_one;
249 uint_t	page_create_hashin_failed;
250 uint_t	page_create_dropped_phm;
251 
252 uint_t	page_create_new;
253 uint_t	page_create_exists;
254 uint_t	page_create_putbacks;
255 uint_t	page_create_overshoot;
256 
257 uint_t	page_reclaim_zero;
258 uint_t	page_reclaim_zero_locked;
259 
260 uint_t	page_rename_exists;
261 uint_t	page_rename_count;
262 
263 uint_t	page_lookup_cnt[20];
264 uint_t	page_lookup_nowait_cnt[10];
265 uint_t	page_find_cnt;
266 uint_t	page_exists_cnt;
267 uint_t	page_exists_forreal_cnt;
268 uint_t	page_lookup_dev_cnt;
269 uint_t	get_cachelist_cnt;
270 uint_t	page_create_cnt[10];
271 uint_t	alloc_pages[9];
272 uint_t	page_exphcontg[19];
273 uint_t  page_create_large_cnt[10];
274 
275 /*
276  * Collects statistics.
277  */
278 #define	PAGE_HASH_SEARCH(index, pp, vp, off) { \
279 	uint_t	mylen = 0; \
280 			\
281 	for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash, mylen++) { \
282 		if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \
283 			break; \
284 	} \
285 	if ((pp) != NULL) \
286 		pagecnt.pc_find_hit++; \
287 	else \
288 		pagecnt.pc_find_miss++; \
289 	if (mylen > PC_HASH_CNT) \
290 		mylen = PC_HASH_CNT; \
291 	pagecnt.pc_find_hashlen[mylen]++; \
292 }
293 
294 #else	/* VM_STATS */
295 
296 /*
297  * Don't collect statistics
298  */
299 #define	PAGE_HASH_SEARCH(index, pp, vp, off) { \
300 	for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash) { \
301 		if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \
302 			break; \
303 	} \
304 }
305 
306 #endif	/* VM_STATS */
307 
308 
309 
310 #ifdef DEBUG
311 #define	MEMSEG_SEARCH_STATS
312 #endif
313 
314 #ifdef MEMSEG_SEARCH_STATS
315 struct memseg_stats {
316     uint_t nsearch;
317     uint_t nlastwon;
318     uint_t nhashwon;
319     uint_t nnotfound;
320 } memseg_stats;
321 
322 #define	MEMSEG_STAT_INCR(v) \
323 	atomic_add_32(&memseg_stats.v, 1)
324 #else
325 #define	MEMSEG_STAT_INCR(x)
326 #endif
327 
328 struct memseg *memsegs;		/* list of memory segments */
329 
330 /*
331  * /etc/system tunable to control large page allocation hueristic.
332  *
333  * Setting to LPAP_LOCAL will heavily prefer the local lgroup over remote lgroup
334  * for large page allocation requests.  If a large page is not readily
335  * avaliable on the local freelists we will go through additional effort
336  * to create a large page, potentially moving smaller pages around to coalesce
337  * larger pages in the local lgroup.
338  * Default value of LPAP_DEFAULT will go to remote freelists if large pages
339  * are not readily available in the local lgroup.
340  */
341 enum lpap {
342 	LPAP_DEFAULT,	/* default large page allocation policy */
343 	LPAP_LOCAL	/* local large page allocation policy */
344 };
345 
346 enum lpap lpg_alloc_prefer = LPAP_DEFAULT;
347 
348 static void page_init_mem_config(void);
349 static int page_do_hashin(page_t *, vnode_t *, u_offset_t);
350 static void page_do_hashout(page_t *);
351 static void page_capture_init();
352 int page_capture_take_action(page_t *, uint_t, void *);
353 
354 static void page_demote_vp_pages(page_t *);
355 
356 /*
357  * vm subsystem related initialization
358  */
359 void
360 vm_init(void)
361 {
362 	boolean_t callb_vm_cpr(void *, int);
363 
364 	(void) callb_add(callb_vm_cpr, 0, CB_CL_CPR_VM, "vm");
365 	page_init_mem_config();
366 	page_retire_init();
367 	vm_usage_init();
368 	page_capture_init();
369 }
370 
371 /*
372  * This function is called at startup and when memory is added or deleted.
373  */
374 void
375 init_pages_pp_maximum()
376 {
377 	static pgcnt_t p_min;
378 	static pgcnt_t pages_pp_maximum_startup;
379 	static pgcnt_t avrmem_delta;
380 	static int init_done;
381 	static int user_set;	/* true if set in /etc/system */
382 
383 	if (init_done == 0) {
384 
385 		/* If the user specified a value, save it */
386 		if (pages_pp_maximum != 0) {
387 			user_set = 1;
388 			pages_pp_maximum_startup = pages_pp_maximum;
389 		}
390 
391 		/*
392 		 * Setting of pages_pp_maximum is based first time
393 		 * on the value of availrmem just after the start-up
394 		 * allocations. To preserve this relationship at run
395 		 * time, use a delta from availrmem_initial.
396 		 */
397 		ASSERT(availrmem_initial >= availrmem);
398 		avrmem_delta = availrmem_initial - availrmem;
399 
400 		/* The allowable floor of pages_pp_maximum */
401 		p_min = tune.t_minarmem + 100;
402 
403 		/* Make sure we don't come through here again. */
404 		init_done = 1;
405 	}
406 	/*
407 	 * Determine pages_pp_maximum, the number of currently available
408 	 * pages (availrmem) that can't be `locked'. If not set by
409 	 * the user, we set it to 4% of the currently available memory
410 	 * plus 4MB.
411 	 * But we also insist that it be greater than tune.t_minarmem;
412 	 * otherwise a process could lock down a lot of memory, get swapped
413 	 * out, and never have enough to get swapped back in.
414 	 */
415 	if (user_set)
416 		pages_pp_maximum = pages_pp_maximum_startup;
417 	else
418 		pages_pp_maximum = ((availrmem_initial - avrmem_delta) / 25)
419 		    + btop(4 * 1024 * 1024);
420 
421 	if (pages_pp_maximum <= p_min) {
422 		pages_pp_maximum = p_min;
423 	}
424 }
425 
426 void
427 set_max_page_get(pgcnt_t target_total_pages)
428 {
429 	max_page_get = target_total_pages / 2;
430 }
431 
432 static pgcnt_t pending_delete;
433 
434 /*ARGSUSED*/
435 static void
436 page_mem_config_post_add(
437 	void *arg,
438 	pgcnt_t delta_pages)
439 {
440 	set_max_page_get(total_pages - pending_delete);
441 	init_pages_pp_maximum();
442 }
443 
444 /*ARGSUSED*/
445 static int
446 page_mem_config_pre_del(
447 	void *arg,
448 	pgcnt_t delta_pages)
449 {
450 	pgcnt_t nv;
451 
452 	nv = atomic_add_long_nv(&pending_delete, (spgcnt_t)delta_pages);
453 	set_max_page_get(total_pages - nv);
454 	return (0);
455 }
456 
457 /*ARGSUSED*/
458 static void
459 page_mem_config_post_del(
460 	void *arg,
461 	pgcnt_t delta_pages,
462 	int cancelled)
463 {
464 	pgcnt_t nv;
465 
466 	nv = atomic_add_long_nv(&pending_delete, -(spgcnt_t)delta_pages);
467 	set_max_page_get(total_pages - nv);
468 	if (!cancelled)
469 		init_pages_pp_maximum();
470 }
471 
472 static kphysm_setup_vector_t page_mem_config_vec = {
473 	KPHYSM_SETUP_VECTOR_VERSION,
474 	page_mem_config_post_add,
475 	page_mem_config_pre_del,
476 	page_mem_config_post_del,
477 };
478 
479 static void
480 page_init_mem_config(void)
481 {
482 	int ret;
483 
484 	ret = kphysm_setup_func_register(&page_mem_config_vec, (void *)NULL);
485 	ASSERT(ret == 0);
486 }
487 
488 /*
489  * Evenly spread out the PCF counters for large free pages
490  */
491 static void
492 page_free_large_ctr(pgcnt_t npages)
493 {
494 	static struct pcf	*p = pcf;
495 	pgcnt_t			lump;
496 
497 	freemem += npages;
498 
499 	lump = roundup(npages, PCF_FANOUT) / PCF_FANOUT;
500 
501 	while (npages > 0) {
502 
503 		ASSERT(!p->pcf_block);
504 
505 		if (lump < npages) {
506 			p->pcf_count += (uint_t)lump;
507 			npages -= lump;
508 		} else {
509 			p->pcf_count += (uint_t)npages;
510 			npages = 0;
511 		}
512 
513 		ASSERT(!p->pcf_wait);
514 
515 		if (++p > &pcf[PCF_FANOUT - 1])
516 			p = pcf;
517 	}
518 
519 	ASSERT(npages == 0);
520 }
521 
522 /*
523  * Add a physical chunk of memory to the system free lists during startup.
524  * Platform specific startup() allocates the memory for the page structs.
525  *
526  * num	- number of page structures
527  * base - page number (pfn) to be associated with the first page.
528  *
529  * Since we are doing this during startup (ie. single threaded), we will
530  * use shortcut routines to avoid any locking overhead while putting all
531  * these pages on the freelists.
532  *
533  * NOTE: Any changes performed to page_free(), must also be performed to
534  *	 add_physmem() since this is how we initialize all page_t's at
535  *	 boot time.
536  */
537 void
538 add_physmem(
539 	page_t	*pp,
540 	pgcnt_t	num,
541 	pfn_t	pnum)
542 {
543 	page_t	*root = NULL;
544 	uint_t	szc = page_num_pagesizes() - 1;
545 	pgcnt_t	large = page_get_pagecnt(szc);
546 	pgcnt_t	cnt = 0;
547 
548 	TRACE_2(TR_FAC_VM, TR_PAGE_INIT,
549 	    "add_physmem:pp %p num %lu", pp, num);
550 
551 	/*
552 	 * Arbitrarily limit the max page_get request
553 	 * to 1/2 of the page structs we have.
554 	 */
555 	total_pages += num;
556 	set_max_page_get(total_pages);
557 
558 	PLCNT_MODIFY_MAX(pnum, (long)num);
559 
560 	/*
561 	 * The physical space for the pages array
562 	 * representing ram pages has already been
563 	 * allocated.  Here we initialize each lock
564 	 * in the page structure, and put each on
565 	 * the free list
566 	 */
567 	for (; num; pp++, pnum++, num--) {
568 
569 		/*
570 		 * this needs to fill in the page number
571 		 * and do any other arch specific initialization
572 		 */
573 		add_physmem_cb(pp, pnum);
574 
575 		pp->p_lckcnt = 0;
576 		pp->p_cowcnt = 0;
577 		pp->p_slckcnt = 0;
578 
579 		/*
580 		 * Initialize the page lock as unlocked, since nobody
581 		 * can see or access this page yet.
582 		 */
583 		pp->p_selock = 0;
584 
585 		/*
586 		 * Initialize IO lock
587 		 */
588 		page_iolock_init(pp);
589 
590 		/*
591 		 * initialize other fields in the page_t
592 		 */
593 		PP_SETFREE(pp);
594 		page_clr_all_props(pp);
595 		PP_SETAGED(pp);
596 		pp->p_offset = (u_offset_t)-1;
597 		pp->p_next = pp;
598 		pp->p_prev = pp;
599 
600 		/*
601 		 * Simple case: System doesn't support large pages.
602 		 */
603 		if (szc == 0) {
604 			pp->p_szc = 0;
605 			page_free_at_startup(pp);
606 			continue;
607 		}
608 
609 		/*
610 		 * Handle unaligned pages, we collect them up onto
611 		 * the root page until we have a full large page.
612 		 */
613 		if (!IS_P2ALIGNED(pnum, large)) {
614 
615 			/*
616 			 * If not in a large page,
617 			 * just free as small page.
618 			 */
619 			if (root == NULL) {
620 				pp->p_szc = 0;
621 				page_free_at_startup(pp);
622 				continue;
623 			}
624 
625 			/*
626 			 * Link a constituent page into the large page.
627 			 */
628 			pp->p_szc = szc;
629 			page_list_concat(&root, &pp);
630 
631 			/*
632 			 * When large page is fully formed, free it.
633 			 */
634 			if (++cnt == large) {
635 				page_free_large_ctr(cnt);
636 				page_list_add_pages(root, PG_LIST_ISINIT);
637 				root = NULL;
638 				cnt = 0;
639 			}
640 			continue;
641 		}
642 
643 		/*
644 		 * At this point we have a page number which
645 		 * is aligned. We assert that we aren't already
646 		 * in a different large page.
647 		 */
648 		ASSERT(IS_P2ALIGNED(pnum, large));
649 		ASSERT(root == NULL && cnt == 0);
650 
651 		/*
652 		 * If insufficient number of pages left to form
653 		 * a large page, just free the small page.
654 		 */
655 		if (num < large) {
656 			pp->p_szc = 0;
657 			page_free_at_startup(pp);
658 			continue;
659 		}
660 
661 		/*
662 		 * Otherwise start a new large page.
663 		 */
664 		pp->p_szc = szc;
665 		cnt++;
666 		root = pp;
667 	}
668 	ASSERT(root == NULL && cnt == 0);
669 }
670 
671 /*
672  * Find a page representing the specified [vp, offset].
673  * If we find the page but it is intransit coming in,
674  * it will have an "exclusive" lock and we wait for
675  * the i/o to complete.  A page found on the free list
676  * is always reclaimed and then locked.  On success, the page
677  * is locked, its data is valid and it isn't on the free
678  * list, while a NULL is returned if the page doesn't exist.
679  */
680 page_t *
681 page_lookup(vnode_t *vp, u_offset_t off, se_t se)
682 {
683 	return (page_lookup_create(vp, off, se, NULL, NULL, 0));
684 }
685 
686 /*
687  * Find a page representing the specified [vp, offset].
688  * We either return the one we found or, if passed in,
689  * create one with identity of [vp, offset] of the
690  * pre-allocated page. If we find existing page but it is
691  * intransit coming in, it will have an "exclusive" lock
692  * and we wait for the i/o to complete.  A page found on
693  * the free list is always reclaimed and then locked.
694  * On success, the page is locked, its data is valid and
695  * it isn't on the free list, while a NULL is returned
696  * if the page doesn't exist and newpp is NULL;
697  */
698 page_t *
699 page_lookup_create(
700 	vnode_t *vp,
701 	u_offset_t off,
702 	se_t se,
703 	page_t *newpp,
704 	spgcnt_t *nrelocp,
705 	int flags)
706 {
707 	page_t		*pp;
708 	kmutex_t	*phm;
709 	ulong_t		index;
710 	uint_t		hash_locked;
711 	uint_t		es;
712 
713 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
714 	VM_STAT_ADD(page_lookup_cnt[0]);
715 	ASSERT(newpp ? PAGE_EXCL(newpp) : 1);
716 
717 	/*
718 	 * Acquire the appropriate page hash lock since
719 	 * we have to search the hash list.  Pages that
720 	 * hash to this list can't change identity while
721 	 * this lock is held.
722 	 */
723 	hash_locked = 0;
724 	index = PAGE_HASH_FUNC(vp, off);
725 	phm = NULL;
726 top:
727 	PAGE_HASH_SEARCH(index, pp, vp, off);
728 	if (pp != NULL) {
729 		VM_STAT_ADD(page_lookup_cnt[1]);
730 		es = (newpp != NULL) ? 1 : 0;
731 		es |= flags;
732 		if (!hash_locked) {
733 			VM_STAT_ADD(page_lookup_cnt[2]);
734 			if (!page_try_reclaim_lock(pp, se, es)) {
735 				/*
736 				 * On a miss, acquire the phm.  Then
737 				 * next time, page_lock() will be called,
738 				 * causing a wait if the page is busy.
739 				 * just looping with page_trylock() would
740 				 * get pretty boring.
741 				 */
742 				VM_STAT_ADD(page_lookup_cnt[3]);
743 				phm = PAGE_HASH_MUTEX(index);
744 				mutex_enter(phm);
745 				hash_locked = 1;
746 				goto top;
747 			}
748 		} else {
749 			VM_STAT_ADD(page_lookup_cnt[4]);
750 			if (!page_lock_es(pp, se, phm, P_RECLAIM, es)) {
751 				VM_STAT_ADD(page_lookup_cnt[5]);
752 				goto top;
753 			}
754 		}
755 
756 		/*
757 		 * Since `pp' is locked it can not change identity now.
758 		 * Reconfirm we locked the correct page.
759 		 *
760 		 * Both the p_vnode and p_offset *must* be cast volatile
761 		 * to force a reload of their values: The PAGE_HASH_SEARCH
762 		 * macro will have stuffed p_vnode and p_offset into
763 		 * registers before calling page_trylock(); another thread,
764 		 * actually holding the hash lock, could have changed the
765 		 * page's identity in memory, but our registers would not
766 		 * be changed, fooling the reconfirmation.  If the hash
767 		 * lock was held during the search, the casting would
768 		 * not be needed.
769 		 */
770 		VM_STAT_ADD(page_lookup_cnt[6]);
771 		if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
772 		    ((volatile u_offset_t)(pp->p_offset) != off)) {
773 			VM_STAT_ADD(page_lookup_cnt[7]);
774 			if (hash_locked) {
775 				panic("page_lookup_create: lost page %p",
776 				    (void *)pp);
777 				/*NOTREACHED*/
778 			}
779 			page_unlock(pp);
780 			phm = PAGE_HASH_MUTEX(index);
781 			mutex_enter(phm);
782 			hash_locked = 1;
783 			goto top;
784 		}
785 
786 		/*
787 		 * If page_trylock() was called, then pp may still be on
788 		 * the cachelist (can't be on the free list, it would not
789 		 * have been found in the search).  If it is on the
790 		 * cachelist it must be pulled now. To pull the page from
791 		 * the cachelist, it must be exclusively locked.
792 		 *
793 		 * The other big difference between page_trylock() and
794 		 * page_lock(), is that page_lock() will pull the
795 		 * page from whatever free list (the cache list in this
796 		 * case) the page is on.  If page_trylock() was used
797 		 * above, then we have to do the reclaim ourselves.
798 		 */
799 		if ((!hash_locked) && (PP_ISFREE(pp))) {
800 			ASSERT(PP_ISAGED(pp) == 0);
801 			VM_STAT_ADD(page_lookup_cnt[8]);
802 
803 			/*
804 			 * page_relcaim will insure that we
805 			 * have this page exclusively
806 			 */
807 
808 			if (!page_reclaim(pp, NULL)) {
809 				/*
810 				 * Page_reclaim dropped whatever lock
811 				 * we held.
812 				 */
813 				VM_STAT_ADD(page_lookup_cnt[9]);
814 				phm = PAGE_HASH_MUTEX(index);
815 				mutex_enter(phm);
816 				hash_locked = 1;
817 				goto top;
818 			} else if (se == SE_SHARED && newpp == NULL) {
819 				VM_STAT_ADD(page_lookup_cnt[10]);
820 				page_downgrade(pp);
821 			}
822 		}
823 
824 		if (hash_locked) {
825 			mutex_exit(phm);
826 		}
827 
828 		if (newpp != NULL && pp->p_szc < newpp->p_szc &&
829 		    PAGE_EXCL(pp) && nrelocp != NULL) {
830 			ASSERT(nrelocp != NULL);
831 			(void) page_relocate(&pp, &newpp, 1, 1, nrelocp,
832 			    NULL);
833 			if (*nrelocp > 0) {
834 				VM_STAT_COND_ADD(*nrelocp == 1,
835 				    page_lookup_cnt[11]);
836 				VM_STAT_COND_ADD(*nrelocp > 1,
837 				    page_lookup_cnt[12]);
838 				pp = newpp;
839 				se = SE_EXCL;
840 			} else {
841 				if (se == SE_SHARED) {
842 					page_downgrade(pp);
843 				}
844 				VM_STAT_ADD(page_lookup_cnt[13]);
845 			}
846 		} else if (newpp != NULL && nrelocp != NULL) {
847 			if (PAGE_EXCL(pp) && se == SE_SHARED) {
848 				page_downgrade(pp);
849 			}
850 			VM_STAT_COND_ADD(pp->p_szc < newpp->p_szc,
851 			    page_lookup_cnt[14]);
852 			VM_STAT_COND_ADD(pp->p_szc == newpp->p_szc,
853 			    page_lookup_cnt[15]);
854 			VM_STAT_COND_ADD(pp->p_szc > newpp->p_szc,
855 			    page_lookup_cnt[16]);
856 		} else if (newpp != NULL && PAGE_EXCL(pp)) {
857 			se = SE_EXCL;
858 		}
859 	} else if (!hash_locked) {
860 		VM_STAT_ADD(page_lookup_cnt[17]);
861 		phm = PAGE_HASH_MUTEX(index);
862 		mutex_enter(phm);
863 		hash_locked = 1;
864 		goto top;
865 	} else if (newpp != NULL) {
866 		/*
867 		 * If we have a preallocated page then
868 		 * insert it now and basically behave like
869 		 * page_create.
870 		 */
871 		VM_STAT_ADD(page_lookup_cnt[18]);
872 		/*
873 		 * Since we hold the page hash mutex and
874 		 * just searched for this page, page_hashin
875 		 * had better not fail.  If it does, that
876 		 * means some thread did not follow the
877 		 * page hash mutex rules.  Panic now and
878 		 * get it over with.  As usual, go down
879 		 * holding all the locks.
880 		 */
881 		ASSERT(MUTEX_HELD(phm));
882 		if (!page_hashin(newpp, vp, off, phm)) {
883 			ASSERT(MUTEX_HELD(phm));
884 			panic("page_lookup_create: hashin failed %p %p %llx %p",
885 			    (void *)newpp, (void *)vp, off, (void *)phm);
886 			/*NOTREACHED*/
887 		}
888 		ASSERT(MUTEX_HELD(phm));
889 		mutex_exit(phm);
890 		phm = NULL;
891 		page_set_props(newpp, P_REF);
892 		page_io_lock(newpp);
893 		pp = newpp;
894 		se = SE_EXCL;
895 	} else {
896 		VM_STAT_ADD(page_lookup_cnt[19]);
897 		mutex_exit(phm);
898 	}
899 
900 	ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
901 
902 	ASSERT(pp ? ((PP_ISFREE(pp) == 0) && (PP_ISAGED(pp) == 0)) : 1);
903 
904 	return (pp);
905 }
906 
907 /*
908  * Search the hash list for the page representing the
909  * specified [vp, offset] and return it locked.  Skip
910  * free pages and pages that cannot be locked as requested.
911  * Used while attempting to kluster pages.
912  */
913 page_t *
914 page_lookup_nowait(vnode_t *vp, u_offset_t off, se_t se)
915 {
916 	page_t		*pp;
917 	kmutex_t	*phm;
918 	ulong_t		index;
919 	uint_t		locked;
920 
921 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
922 	VM_STAT_ADD(page_lookup_nowait_cnt[0]);
923 
924 	index = PAGE_HASH_FUNC(vp, off);
925 	PAGE_HASH_SEARCH(index, pp, vp, off);
926 	locked = 0;
927 	if (pp == NULL) {
928 top:
929 		VM_STAT_ADD(page_lookup_nowait_cnt[1]);
930 		locked = 1;
931 		phm = PAGE_HASH_MUTEX(index);
932 		mutex_enter(phm);
933 		PAGE_HASH_SEARCH(index, pp, vp, off);
934 	}
935 
936 	if (pp == NULL || PP_ISFREE(pp)) {
937 		VM_STAT_ADD(page_lookup_nowait_cnt[2]);
938 		pp = NULL;
939 	} else {
940 		if (!page_trylock(pp, se)) {
941 			VM_STAT_ADD(page_lookup_nowait_cnt[3]);
942 			pp = NULL;
943 		} else {
944 			VM_STAT_ADD(page_lookup_nowait_cnt[4]);
945 			/*
946 			 * See the comment in page_lookup()
947 			 */
948 			if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
949 			    ((u_offset_t)(pp->p_offset) != off)) {
950 				VM_STAT_ADD(page_lookup_nowait_cnt[5]);
951 				if (locked) {
952 					panic("page_lookup_nowait %p",
953 					    (void *)pp);
954 					/*NOTREACHED*/
955 				}
956 				page_unlock(pp);
957 				goto top;
958 			}
959 			if (PP_ISFREE(pp)) {
960 				VM_STAT_ADD(page_lookup_nowait_cnt[6]);
961 				page_unlock(pp);
962 				pp = NULL;
963 			}
964 		}
965 	}
966 	if (locked) {
967 		VM_STAT_ADD(page_lookup_nowait_cnt[7]);
968 		mutex_exit(phm);
969 	}
970 
971 	ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
972 
973 	return (pp);
974 }
975 
976 /*
977  * Search the hash list for a page with the specified [vp, off]
978  * that is known to exist and is already locked.  This routine
979  * is typically used by segment SOFTUNLOCK routines.
980  */
981 page_t *
982 page_find(vnode_t *vp, u_offset_t off)
983 {
984 	page_t		*pp;
985 	kmutex_t	*phm;
986 	ulong_t		index;
987 
988 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
989 	VM_STAT_ADD(page_find_cnt);
990 
991 	index = PAGE_HASH_FUNC(vp, off);
992 	phm = PAGE_HASH_MUTEX(index);
993 
994 	mutex_enter(phm);
995 	PAGE_HASH_SEARCH(index, pp, vp, off);
996 	mutex_exit(phm);
997 
998 	ASSERT(pp == NULL || PAGE_LOCKED(pp) || panicstr);
999 	return (pp);
1000 }
1001 
1002 /*
1003  * Determine whether a page with the specified [vp, off]
1004  * currently exists in the system.  Obviously this should
1005  * only be considered as a hint since nothing prevents the
1006  * page from disappearing or appearing immediately after
1007  * the return from this routine. Subsequently, we don't
1008  * even bother to lock the list.
1009  */
1010 page_t *
1011 page_exists(vnode_t *vp, u_offset_t off)
1012 {
1013 	page_t	*pp;
1014 	ulong_t		index;
1015 
1016 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1017 	VM_STAT_ADD(page_exists_cnt);
1018 
1019 	index = PAGE_HASH_FUNC(vp, off);
1020 	PAGE_HASH_SEARCH(index, pp, vp, off);
1021 
1022 	return (pp);
1023 }
1024 
1025 /*
1026  * Determine if physically contiguous pages exist for [vp, off] - [vp, off +
1027  * page_size(szc)) range.  if they exist and ppa is not NULL fill ppa array
1028  * with these pages locked SHARED. If necessary reclaim pages from
1029  * freelist. Return 1 if contiguous pages exist and 0 otherwise.
1030  *
1031  * If we fail to lock pages still return 1 if pages exist and contiguous.
1032  * But in this case return value is just a hint. ppa array won't be filled.
1033  * Caller should initialize ppa[0] as NULL to distinguish return value.
1034  *
1035  * Returns 0 if pages don't exist or not physically contiguous.
1036  *
1037  * This routine doesn't work for anonymous(swapfs) pages.
1038  */
1039 int
1040 page_exists_physcontig(vnode_t *vp, u_offset_t off, uint_t szc, page_t *ppa[])
1041 {
1042 	pgcnt_t pages;
1043 	pfn_t pfn;
1044 	page_t *rootpp;
1045 	pgcnt_t i;
1046 	pgcnt_t j;
1047 	u_offset_t save_off = off;
1048 	ulong_t index;
1049 	kmutex_t *phm;
1050 	page_t *pp;
1051 	uint_t pszc;
1052 	int loopcnt = 0;
1053 
1054 	ASSERT(szc != 0);
1055 	ASSERT(vp != NULL);
1056 	ASSERT(!IS_SWAPFSVP(vp));
1057 	ASSERT(!VN_ISKAS(vp));
1058 
1059 again:
1060 	if (++loopcnt > 3) {
1061 		VM_STAT_ADD(page_exphcontg[0]);
1062 		return (0);
1063 	}
1064 
1065 	index = PAGE_HASH_FUNC(vp, off);
1066 	phm = PAGE_HASH_MUTEX(index);
1067 
1068 	mutex_enter(phm);
1069 	PAGE_HASH_SEARCH(index, pp, vp, off);
1070 	mutex_exit(phm);
1071 
1072 	VM_STAT_ADD(page_exphcontg[1]);
1073 
1074 	if (pp == NULL) {
1075 		VM_STAT_ADD(page_exphcontg[2]);
1076 		return (0);
1077 	}
1078 
1079 	pages = page_get_pagecnt(szc);
1080 	rootpp = pp;
1081 	pfn = rootpp->p_pagenum;
1082 
1083 	if ((pszc = pp->p_szc) >= szc && ppa != NULL) {
1084 		VM_STAT_ADD(page_exphcontg[3]);
1085 		if (!page_trylock(pp, SE_SHARED)) {
1086 			VM_STAT_ADD(page_exphcontg[4]);
1087 			return (1);
1088 		}
1089 		if (pp->p_szc != pszc || pp->p_vnode != vp ||
1090 		    pp->p_offset != off) {
1091 			VM_STAT_ADD(page_exphcontg[5]);
1092 			page_unlock(pp);
1093 			off = save_off;
1094 			goto again;
1095 		}
1096 		/*
1097 		 * szc was non zero and vnode and offset matched after we
1098 		 * locked the page it means it can't become free on us.
1099 		 */
1100 		ASSERT(!PP_ISFREE(pp));
1101 		if (!IS_P2ALIGNED(pfn, pages)) {
1102 			page_unlock(pp);
1103 			return (0);
1104 		}
1105 		ppa[0] = pp;
1106 		pp++;
1107 		off += PAGESIZE;
1108 		pfn++;
1109 		for (i = 1; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1110 			if (!page_trylock(pp, SE_SHARED)) {
1111 				VM_STAT_ADD(page_exphcontg[6]);
1112 				pp--;
1113 				while (i-- > 0) {
1114 					page_unlock(pp);
1115 					pp--;
1116 				}
1117 				ppa[0] = NULL;
1118 				return (1);
1119 			}
1120 			if (pp->p_szc != pszc) {
1121 				VM_STAT_ADD(page_exphcontg[7]);
1122 				page_unlock(pp);
1123 				pp--;
1124 				while (i-- > 0) {
1125 					page_unlock(pp);
1126 					pp--;
1127 				}
1128 				ppa[0] = NULL;
1129 				off = save_off;
1130 				goto again;
1131 			}
1132 			/*
1133 			 * szc the same as for previous already locked pages
1134 			 * with right identity. Since this page had correct
1135 			 * szc after we locked it can't get freed or destroyed
1136 			 * and therefore must have the expected identity.
1137 			 */
1138 			ASSERT(!PP_ISFREE(pp));
1139 			if (pp->p_vnode != vp ||
1140 			    pp->p_offset != off) {
1141 				panic("page_exists_physcontig: "
1142 				    "large page identity doesn't match");
1143 			}
1144 			ppa[i] = pp;
1145 			ASSERT(pp->p_pagenum == pfn);
1146 		}
1147 		VM_STAT_ADD(page_exphcontg[8]);
1148 		ppa[pages] = NULL;
1149 		return (1);
1150 	} else if (pszc >= szc) {
1151 		VM_STAT_ADD(page_exphcontg[9]);
1152 		if (!IS_P2ALIGNED(pfn, pages)) {
1153 			return (0);
1154 		}
1155 		return (1);
1156 	}
1157 
1158 	if (!IS_P2ALIGNED(pfn, pages)) {
1159 		VM_STAT_ADD(page_exphcontg[10]);
1160 		return (0);
1161 	}
1162 
1163 	if (page_numtomemseg_nolock(pfn) !=
1164 	    page_numtomemseg_nolock(pfn + pages - 1)) {
1165 		VM_STAT_ADD(page_exphcontg[11]);
1166 		return (0);
1167 	}
1168 
1169 	/*
1170 	 * We loop up 4 times across pages to promote page size.
1171 	 * We're extra cautious to promote page size atomically with respect
1172 	 * to everybody else.  But we can probably optimize into 1 loop if
1173 	 * this becomes an issue.
1174 	 */
1175 
1176 	for (i = 0; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1177 		ASSERT(pp->p_pagenum == pfn);
1178 		if (!page_trylock(pp, SE_EXCL)) {
1179 			VM_STAT_ADD(page_exphcontg[12]);
1180 			break;
1181 		}
1182 		if (pp->p_vnode != vp ||
1183 		    pp->p_offset != off) {
1184 			VM_STAT_ADD(page_exphcontg[13]);
1185 			page_unlock(pp);
1186 			break;
1187 		}
1188 		if (pp->p_szc >= szc) {
1189 			ASSERT(i == 0);
1190 			page_unlock(pp);
1191 			off = save_off;
1192 			goto again;
1193 		}
1194 	}
1195 
1196 	if (i != pages) {
1197 		VM_STAT_ADD(page_exphcontg[14]);
1198 		--pp;
1199 		while (i-- > 0) {
1200 			page_unlock(pp);
1201 			--pp;
1202 		}
1203 		return (0);
1204 	}
1205 
1206 	pp = rootpp;
1207 	for (i = 0; i < pages; i++, pp++) {
1208 		if (PP_ISFREE(pp)) {
1209 			VM_STAT_ADD(page_exphcontg[15]);
1210 			ASSERT(!PP_ISAGED(pp));
1211 			ASSERT(pp->p_szc == 0);
1212 			if (!page_reclaim(pp, NULL)) {
1213 				break;
1214 			}
1215 		} else {
1216 			ASSERT(pp->p_szc < szc);
1217 			VM_STAT_ADD(page_exphcontg[16]);
1218 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1219 		}
1220 	}
1221 	if (i < pages) {
1222 		VM_STAT_ADD(page_exphcontg[17]);
1223 		/*
1224 		 * page_reclaim failed because we were out of memory.
1225 		 * drop the rest of the locks and return because this page
1226 		 * must be already reallocated anyway.
1227 		 */
1228 		pp = rootpp;
1229 		for (j = 0; j < pages; j++, pp++) {
1230 			if (j != i) {
1231 				page_unlock(pp);
1232 			}
1233 		}
1234 		return (0);
1235 	}
1236 
1237 	off = save_off;
1238 	pp = rootpp;
1239 	for (i = 0; i < pages; i++, pp++, off += PAGESIZE) {
1240 		ASSERT(PAGE_EXCL(pp));
1241 		ASSERT(!PP_ISFREE(pp));
1242 		ASSERT(!hat_page_is_mapped(pp));
1243 		ASSERT(pp->p_vnode == vp);
1244 		ASSERT(pp->p_offset == off);
1245 		pp->p_szc = szc;
1246 	}
1247 	pp = rootpp;
1248 	for (i = 0; i < pages; i++, pp++) {
1249 		if (ppa == NULL) {
1250 			page_unlock(pp);
1251 		} else {
1252 			ppa[i] = pp;
1253 			page_downgrade(ppa[i]);
1254 		}
1255 	}
1256 	if (ppa != NULL) {
1257 		ppa[pages] = NULL;
1258 	}
1259 	VM_STAT_ADD(page_exphcontg[18]);
1260 	ASSERT(vp->v_pages != NULL);
1261 	return (1);
1262 }
1263 
1264 /*
1265  * Determine whether a page with the specified [vp, off]
1266  * currently exists in the system and if so return its
1267  * size code. Obviously this should only be considered as
1268  * a hint since nothing prevents the page from disappearing
1269  * or appearing immediately after the return from this routine.
1270  */
1271 int
1272 page_exists_forreal(vnode_t *vp, u_offset_t off, uint_t *szc)
1273 {
1274 	page_t		*pp;
1275 	kmutex_t	*phm;
1276 	ulong_t		index;
1277 	int		rc = 0;
1278 
1279 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1280 	ASSERT(szc != NULL);
1281 	VM_STAT_ADD(page_exists_forreal_cnt);
1282 
1283 	index = PAGE_HASH_FUNC(vp, off);
1284 	phm = PAGE_HASH_MUTEX(index);
1285 
1286 	mutex_enter(phm);
1287 	PAGE_HASH_SEARCH(index, pp, vp, off);
1288 	if (pp != NULL) {
1289 		*szc = pp->p_szc;
1290 		rc = 1;
1291 	}
1292 	mutex_exit(phm);
1293 	return (rc);
1294 }
1295 
1296 /* wakeup threads waiting for pages in page_create_get_something() */
1297 void
1298 wakeup_pcgs(void)
1299 {
1300 	if (!CV_HAS_WAITERS(&pcgs_cv))
1301 		return;
1302 	cv_broadcast(&pcgs_cv);
1303 }
1304 
1305 /*
1306  * 'freemem' is used all over the kernel as an indication of how many
1307  * pages are free (either on the cache list or on the free page list)
1308  * in the system.  In very few places is a really accurate 'freemem'
1309  * needed.  To avoid contention of the lock protecting a the
1310  * single freemem, it was spread out into NCPU buckets.  Set_freemem
1311  * sets freemem to the total of all NCPU buckets.  It is called from
1312  * clock() on each TICK.
1313  */
1314 void
1315 set_freemem()
1316 {
1317 	struct pcf	*p;
1318 	ulong_t		t;
1319 	uint_t		i;
1320 
1321 	t = 0;
1322 	p = pcf;
1323 	for (i = 0;  i < PCF_FANOUT; i++) {
1324 		t += p->pcf_count;
1325 		p++;
1326 	}
1327 	freemem = t;
1328 
1329 	/*
1330 	 * Don't worry about grabbing mutex.  It's not that
1331 	 * critical if we miss a tick or two.  This is
1332 	 * where we wakeup possible delayers in
1333 	 * page_create_get_something().
1334 	 */
1335 	wakeup_pcgs();
1336 }
1337 
1338 ulong_t
1339 get_freemem()
1340 {
1341 	struct pcf	*p;
1342 	ulong_t		t;
1343 	uint_t		i;
1344 
1345 	t = 0;
1346 	p = pcf;
1347 	for (i = 0; i < PCF_FANOUT; i++) {
1348 		t += p->pcf_count;
1349 		p++;
1350 	}
1351 	/*
1352 	 * We just calculated it, might as well set it.
1353 	 */
1354 	freemem = t;
1355 	return (t);
1356 }
1357 
1358 /*
1359  * Acquire all of the page cache & free (pcf) locks.
1360  */
1361 void
1362 pcf_acquire_all()
1363 {
1364 	struct pcf	*p;
1365 	uint_t		i;
1366 
1367 	p = pcf;
1368 	for (i = 0; i < PCF_FANOUT; i++) {
1369 		mutex_enter(&p->pcf_lock);
1370 		p++;
1371 	}
1372 }
1373 
1374 /*
1375  * Release all the pcf_locks.
1376  */
1377 void
1378 pcf_release_all()
1379 {
1380 	struct pcf	*p;
1381 	uint_t		i;
1382 
1383 	p = pcf;
1384 	for (i = 0; i < PCF_FANOUT; i++) {
1385 		mutex_exit(&p->pcf_lock);
1386 		p++;
1387 	}
1388 }
1389 
1390 /*
1391  * Inform the VM system that we need some pages freed up.
1392  * Calls must be symmetric, e.g.:
1393  *
1394  *	page_needfree(100);
1395  *	wait a bit;
1396  *	page_needfree(-100);
1397  */
1398 void
1399 page_needfree(spgcnt_t npages)
1400 {
1401 	mutex_enter(&new_freemem_lock);
1402 	needfree += npages;
1403 	mutex_exit(&new_freemem_lock);
1404 }
1405 
1406 /*
1407  * Throttle for page_create(): try to prevent freemem from dropping
1408  * below throttlefree.  We can't provide a 100% guarantee because
1409  * KM_NOSLEEP allocations, page_reclaim(), and various other things
1410  * nibble away at the freelist.  However, we can block all PG_WAIT
1411  * allocations until memory becomes available.  The motivation is
1412  * that several things can fall apart when there's no free memory:
1413  *
1414  * (1) If pageout() needs memory to push a page, the system deadlocks.
1415  *
1416  * (2) By (broken) specification, timeout(9F) can neither fail nor
1417  *     block, so it has no choice but to panic the system if it
1418  *     cannot allocate a callout structure.
1419  *
1420  * (3) Like timeout(), ddi_set_callback() cannot fail and cannot block;
1421  *     it panics if it cannot allocate a callback structure.
1422  *
1423  * (4) Untold numbers of third-party drivers have not yet been hardened
1424  *     against KM_NOSLEEP and/or allocb() failures; they simply assume
1425  *     success and panic the system with a data fault on failure.
1426  *     (The long-term solution to this particular problem is to ship
1427  *     hostile fault-injecting DEBUG kernels with the DDK.)
1428  *
1429  * It is theoretically impossible to guarantee success of non-blocking
1430  * allocations, but in practice, this throttle is very hard to break.
1431  */
1432 static int
1433 page_create_throttle(pgcnt_t npages, int flags)
1434 {
1435 	ulong_t	fm;
1436 	uint_t	i;
1437 	pgcnt_t tf;	/* effective value of throttlefree */
1438 
1439 	/*
1440 	 * Never deny pages when:
1441 	 * - it's a thread that cannot block [NOMEMWAIT()]
1442 	 * - the allocation cannot block and must not fail
1443 	 * - the allocation cannot block and is pageout dispensated
1444 	 */
1445 	if (NOMEMWAIT() ||
1446 	    ((flags & (PG_WAIT | PG_PANIC)) == PG_PANIC) ||
1447 	    ((flags & (PG_WAIT | PG_PUSHPAGE)) == PG_PUSHPAGE))
1448 		return (1);
1449 
1450 	/*
1451 	 * If the allocation can't block, we look favorably upon it
1452 	 * unless we're below pageout_reserve.  In that case we fail
1453 	 * the allocation because we want to make sure there are a few
1454 	 * pages available for pageout.
1455 	 */
1456 	if ((flags & PG_WAIT) == 0)
1457 		return (freemem >= npages + pageout_reserve);
1458 
1459 	/* Calculate the effective throttlefree value */
1460 	tf = throttlefree -
1461 	    ((flags & PG_PUSHPAGE) ? pageout_reserve : 0);
1462 
1463 	cv_signal(&proc_pageout->p_cv);
1464 
1465 	for (;;) {
1466 		fm = 0;
1467 		pcf_acquire_all();
1468 		mutex_enter(&new_freemem_lock);
1469 		for (i = 0; i < PCF_FANOUT; i++) {
1470 			fm += pcf[i].pcf_count;
1471 			pcf[i].pcf_wait++;
1472 			mutex_exit(&pcf[i].pcf_lock);
1473 		}
1474 		freemem = fm;
1475 		if (freemem >= npages + tf) {
1476 			mutex_exit(&new_freemem_lock);
1477 			break;
1478 		}
1479 		needfree += npages;
1480 		freemem_wait++;
1481 		cv_wait(&freemem_cv, &new_freemem_lock);
1482 		freemem_wait--;
1483 		needfree -= npages;
1484 		mutex_exit(&new_freemem_lock);
1485 	}
1486 	return (1);
1487 }
1488 
1489 /*
1490  * page_create_wait() is called to either coalesce pages from the
1491  * different pcf buckets or to wait because there simply are not
1492  * enough pages to satisfy the caller's request.
1493  *
1494  * Sadly, this is called from platform/vm/vm_machdep.c
1495  */
1496 int
1497 page_create_wait(size_t npages, uint_t flags)
1498 {
1499 	pgcnt_t		total;
1500 	uint_t		i;
1501 	struct pcf	*p;
1502 
1503 	/*
1504 	 * Wait until there are enough free pages to satisfy our
1505 	 * entire request.
1506 	 * We set needfree += npages before prodding pageout, to make sure
1507 	 * it does real work when npages > lotsfree > freemem.
1508 	 */
1509 	VM_STAT_ADD(page_create_not_enough);
1510 
1511 	ASSERT(!kcage_on ? !(flags & PG_NORELOC) : 1);
1512 checkagain:
1513 	if ((flags & PG_NORELOC) &&
1514 	    kcage_freemem < kcage_throttlefree + npages)
1515 		(void) kcage_create_throttle(npages, flags);
1516 
1517 	if (freemem < npages + throttlefree)
1518 		if (!page_create_throttle(npages, flags))
1519 			return (0);
1520 
1521 	/*
1522 	 * Since page_create_va() looked at every
1523 	 * bucket, assume we are going to have to wait.
1524 	 * Get all of the pcf locks.
1525 	 */
1526 	total = 0;
1527 	p = pcf;
1528 	for (i = 0; i < PCF_FANOUT; i++) {
1529 		mutex_enter(&p->pcf_lock);
1530 		total += p->pcf_count;
1531 		if (total >= npages) {
1532 			/*
1533 			 * Wow!  There are enough pages laying around
1534 			 * to satisfy the request.  Do the accounting,
1535 			 * drop the locks we acquired, and go back.
1536 			 *
1537 			 * freemem is not protected by any lock. So,
1538 			 * we cannot have any assertion containing
1539 			 * freemem.
1540 			 */
1541 			freemem -= npages;
1542 
1543 			while (p >= pcf) {
1544 				if (p->pcf_count <= npages) {
1545 					npages -= p->pcf_count;
1546 					p->pcf_count = 0;
1547 				} else {
1548 					p->pcf_count -= (uint_t)npages;
1549 					npages = 0;
1550 				}
1551 				mutex_exit(&p->pcf_lock);
1552 				p--;
1553 			}
1554 			ASSERT(npages == 0);
1555 			return (1);
1556 		}
1557 		p++;
1558 	}
1559 
1560 	/*
1561 	 * All of the pcf locks are held, there are not enough pages
1562 	 * to satisfy the request (npages < total).
1563 	 * Be sure to acquire the new_freemem_lock before dropping
1564 	 * the pcf locks.  This prevents dropping wakeups in page_free().
1565 	 * The order is always pcf_lock then new_freemem_lock.
1566 	 *
1567 	 * Since we hold all the pcf locks, it is a good time to set freemem.
1568 	 *
1569 	 * If the caller does not want to wait, return now.
1570 	 * Else turn the pageout daemon loose to find something
1571 	 * and wait till it does.
1572 	 *
1573 	 */
1574 	freemem = total;
1575 
1576 	if ((flags & PG_WAIT) == 0) {
1577 		pcf_release_all();
1578 
1579 		TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_NOMEM,
1580 		"page_create_nomem:npages %ld freemem %ld", npages, freemem);
1581 		return (0);
1582 	}
1583 
1584 	ASSERT(proc_pageout != NULL);
1585 	cv_signal(&proc_pageout->p_cv);
1586 
1587 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_START,
1588 	    "page_create_sleep_start: freemem %ld needfree %ld",
1589 	    freemem, needfree);
1590 
1591 	/*
1592 	 * We are going to wait.
1593 	 * We currently hold all of the pcf_locks,
1594 	 * get the new_freemem_lock (it protects freemem_wait),
1595 	 * before dropping the pcf_locks.
1596 	 */
1597 	mutex_enter(&new_freemem_lock);
1598 
1599 	p = pcf;
1600 	for (i = 0; i < PCF_FANOUT; i++) {
1601 		p->pcf_wait++;
1602 		mutex_exit(&p->pcf_lock);
1603 		p++;
1604 	}
1605 
1606 	needfree += npages;
1607 	freemem_wait++;
1608 
1609 	cv_wait(&freemem_cv, &new_freemem_lock);
1610 
1611 	freemem_wait--;
1612 	needfree -= npages;
1613 
1614 	mutex_exit(&new_freemem_lock);
1615 
1616 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_END,
1617 	    "page_create_sleep_end: freemem %ld needfree %ld",
1618 	    freemem, needfree);
1619 
1620 	VM_STAT_ADD(page_create_not_enough_again);
1621 	goto checkagain;
1622 }
1623 
1624 /*
1625  * A routine to do the opposite of page_create_wait().
1626  */
1627 void
1628 page_create_putback(spgcnt_t npages)
1629 {
1630 	struct pcf	*p;
1631 	pgcnt_t		lump;
1632 	uint_t		*which;
1633 
1634 	/*
1635 	 * When a contiguous lump is broken up, we have to
1636 	 * deal with lots of pages (min 64) so lets spread
1637 	 * the wealth around.
1638 	 */
1639 	lump = roundup(npages, PCF_FANOUT) / PCF_FANOUT;
1640 	freemem += npages;
1641 
1642 	for (p = pcf; (npages > 0) && (p < &pcf[PCF_FANOUT]); p++) {
1643 		which = &p->pcf_count;
1644 
1645 		mutex_enter(&p->pcf_lock);
1646 
1647 		if (p->pcf_block) {
1648 			which = &p->pcf_reserve;
1649 		}
1650 
1651 		if (lump < npages) {
1652 			*which += (uint_t)lump;
1653 			npages -= lump;
1654 		} else {
1655 			*which += (uint_t)npages;
1656 			npages = 0;
1657 		}
1658 
1659 		if (p->pcf_wait) {
1660 			mutex_enter(&new_freemem_lock);
1661 			/*
1662 			 * Check to see if some other thread
1663 			 * is actually waiting.  Another bucket
1664 			 * may have woken it up by now.  If there
1665 			 * are no waiters, then set our pcf_wait
1666 			 * count to zero to avoid coming in here
1667 			 * next time.
1668 			 */
1669 			if (freemem_wait) {
1670 				if (npages > 1) {
1671 					cv_broadcast(&freemem_cv);
1672 				} else {
1673 					cv_signal(&freemem_cv);
1674 				}
1675 				p->pcf_wait--;
1676 			} else {
1677 				p->pcf_wait = 0;
1678 			}
1679 			mutex_exit(&new_freemem_lock);
1680 		}
1681 		mutex_exit(&p->pcf_lock);
1682 	}
1683 	ASSERT(npages == 0);
1684 }
1685 
1686 /*
1687  * A helper routine for page_create_get_something.
1688  * The indenting got to deep down there.
1689  * Unblock the pcf counters.  Any pages freed after
1690  * pcf_block got set are moved to pcf_count and
1691  * wakeups (cv_broadcast() or cv_signal()) are done as needed.
1692  */
1693 static void
1694 pcgs_unblock(void)
1695 {
1696 	int		i;
1697 	struct pcf	*p;
1698 
1699 	/* Update freemem while we're here. */
1700 	freemem = 0;
1701 	p = pcf;
1702 	for (i = 0; i < PCF_FANOUT; i++) {
1703 		mutex_enter(&p->pcf_lock);
1704 		ASSERT(p->pcf_count == 0);
1705 		p->pcf_count = p->pcf_reserve;
1706 		p->pcf_block = 0;
1707 		freemem += p->pcf_count;
1708 		if (p->pcf_wait) {
1709 			mutex_enter(&new_freemem_lock);
1710 			if (freemem_wait) {
1711 				if (p->pcf_reserve > 1) {
1712 					cv_broadcast(&freemem_cv);
1713 					p->pcf_wait = 0;
1714 				} else {
1715 					cv_signal(&freemem_cv);
1716 					p->pcf_wait--;
1717 				}
1718 			} else {
1719 				p->pcf_wait = 0;
1720 			}
1721 			mutex_exit(&new_freemem_lock);
1722 		}
1723 		p->pcf_reserve = 0;
1724 		mutex_exit(&p->pcf_lock);
1725 		p++;
1726 	}
1727 }
1728 
1729 /*
1730  * Called from page_create_va() when both the cache and free lists
1731  * have been checked once.
1732  *
1733  * Either returns a page or panics since the accounting was done
1734  * way before we got here.
1735  *
1736  * We don't come here often, so leave the accounting on permanently.
1737  */
1738 
1739 #define	MAX_PCGS	100
1740 
1741 #ifdef	DEBUG
1742 #define	PCGS_TRIES	100
1743 #else	/* DEBUG */
1744 #define	PCGS_TRIES	10
1745 #endif	/* DEBUG */
1746 
1747 #ifdef	VM_STATS
1748 uint_t	pcgs_counts[PCGS_TRIES];
1749 uint_t	pcgs_too_many;
1750 uint_t	pcgs_entered;
1751 uint_t	pcgs_entered_noreloc;
1752 uint_t	pcgs_locked;
1753 uint_t	pcgs_cagelocked;
1754 #endif	/* VM_STATS */
1755 
1756 static page_t *
1757 page_create_get_something(vnode_t *vp, u_offset_t off, struct seg *seg,
1758     caddr_t vaddr, uint_t flags)
1759 {
1760 	uint_t		count;
1761 	page_t		*pp;
1762 	uint_t		locked, i;
1763 	struct	pcf	*p;
1764 	lgrp_t		*lgrp;
1765 	int		cagelocked = 0;
1766 
1767 	VM_STAT_ADD(pcgs_entered);
1768 
1769 	/*
1770 	 * Tap any reserve freelists: if we fail now, we'll die
1771 	 * since the page(s) we're looking for have already been
1772 	 * accounted for.
1773 	 */
1774 	flags |= PG_PANIC;
1775 
1776 	if ((flags & PG_NORELOC) != 0) {
1777 		VM_STAT_ADD(pcgs_entered_noreloc);
1778 		/*
1779 		 * Requests for free pages from critical threads
1780 		 * such as pageout still won't throttle here, but
1781 		 * we must try again, to give the cageout thread
1782 		 * another chance to catch up. Since we already
1783 		 * accounted for the pages, we had better get them
1784 		 * this time.
1785 		 *
1786 		 * N.B. All non-critical threads acquire the pcgs_cagelock
1787 		 * to serialize access to the freelists. This implements a
1788 		 * turnstile-type synchornization to avoid starvation of
1789 		 * critical requests for PG_NORELOC memory by non-critical
1790 		 * threads: all non-critical threads must acquire a 'ticket'
1791 		 * before passing through, which entails making sure
1792 		 * kcage_freemem won't fall below minfree prior to grabbing
1793 		 * pages from the freelists.
1794 		 */
1795 		if (kcage_create_throttle(1, flags) == KCT_NONCRIT) {
1796 			mutex_enter(&pcgs_cagelock);
1797 			cagelocked = 1;
1798 			VM_STAT_ADD(pcgs_cagelocked);
1799 		}
1800 	}
1801 
1802 	/*
1803 	 * Time to get serious.
1804 	 * We failed to get a `correctly colored' page from both the
1805 	 * free and cache lists.
1806 	 * We escalate in stage.
1807 	 *
1808 	 * First try both lists without worring about color.
1809 	 *
1810 	 * Then, grab all page accounting locks (ie. pcf[]) and
1811 	 * steal any pages that they have and set the pcf_block flag to
1812 	 * stop deletions from the lists.  This will help because
1813 	 * a page can get added to the free list while we are looking
1814 	 * at the cache list, then another page could be added to the cache
1815 	 * list allowing the page on the free list to be removed as we
1816 	 * move from looking at the cache list to the free list. This
1817 	 * could happen over and over. We would never find the page
1818 	 * we have accounted for.
1819 	 *
1820 	 * Noreloc pages are a subset of the global (relocatable) page pool.
1821 	 * They are not tracked separately in the pcf bins, so it is
1822 	 * impossible to know when doing pcf accounting if the available
1823 	 * page(s) are noreloc pages or not. When looking for a noreloc page
1824 	 * it is quite easy to end up here even if the global (relocatable)
1825 	 * page pool has plenty of free pages but the noreloc pool is empty.
1826 	 *
1827 	 * When the noreloc pool is empty (or low), additional noreloc pages
1828 	 * are created by converting pages from the global page pool. This
1829 	 * process will stall during pcf accounting if the pcf bins are
1830 	 * already locked. Such is the case when a noreloc allocation is
1831 	 * looping here in page_create_get_something waiting for more noreloc
1832 	 * pages to appear.
1833 	 *
1834 	 * Short of adding a new field to the pcf bins to accurately track
1835 	 * the number of free noreloc pages, we instead do not grab the
1836 	 * pcgs_lock, do not set the pcf blocks and do not timeout when
1837 	 * allocating a noreloc page. This allows noreloc allocations to
1838 	 * loop without blocking global page pool allocations.
1839 	 *
1840 	 * NOTE: the behaviour of page_create_get_something has not changed
1841 	 * for the case of global page pool allocations.
1842 	 */
1843 
1844 	flags &= ~PG_MATCH_COLOR;
1845 	locked = 0;
1846 #if defined(__i386) || defined(__amd64)
1847 	flags = page_create_update_flags_x86(flags);
1848 #endif
1849 
1850 	lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
1851 
1852 	for (count = 0; kcage_on || count < MAX_PCGS; count++) {
1853 		pp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
1854 		    flags, lgrp);
1855 		if (pp == NULL) {
1856 			pp = page_get_cachelist(vp, off, seg, vaddr,
1857 			    flags, lgrp);
1858 		}
1859 		if (pp == NULL) {
1860 			/*
1861 			 * Serialize.  Don't fight with other pcgs().
1862 			 */
1863 			if (!locked && (!kcage_on || !(flags & PG_NORELOC))) {
1864 				mutex_enter(&pcgs_lock);
1865 				VM_STAT_ADD(pcgs_locked);
1866 				locked = 1;
1867 				p = pcf;
1868 				for (i = 0; i < PCF_FANOUT; i++) {
1869 					mutex_enter(&p->pcf_lock);
1870 					ASSERT(p->pcf_block == 0);
1871 					p->pcf_block = 1;
1872 					p->pcf_reserve = p->pcf_count;
1873 					p->pcf_count = 0;
1874 					mutex_exit(&p->pcf_lock);
1875 					p++;
1876 				}
1877 				freemem = 0;
1878 			}
1879 
1880 			if (count) {
1881 				/*
1882 				 * Since page_free() puts pages on
1883 				 * a list then accounts for it, we
1884 				 * just have to wait for page_free()
1885 				 * to unlock any page it was working
1886 				 * with. The page_lock()-page_reclaim()
1887 				 * path falls in the same boat.
1888 				 *
1889 				 * We don't need to check on the
1890 				 * PG_WAIT flag, we have already
1891 				 * accounted for the page we are
1892 				 * looking for in page_create_va().
1893 				 *
1894 				 * We just wait a moment to let any
1895 				 * locked pages on the lists free up,
1896 				 * then continue around and try again.
1897 				 *
1898 				 * Will be awakened by set_freemem().
1899 				 */
1900 				mutex_enter(&pcgs_wait_lock);
1901 				cv_wait(&pcgs_cv, &pcgs_wait_lock);
1902 				mutex_exit(&pcgs_wait_lock);
1903 			}
1904 		} else {
1905 #ifdef VM_STATS
1906 			if (count >= PCGS_TRIES) {
1907 				VM_STAT_ADD(pcgs_too_many);
1908 			} else {
1909 				VM_STAT_ADD(pcgs_counts[count]);
1910 			}
1911 #endif
1912 			if (locked) {
1913 				pcgs_unblock();
1914 				mutex_exit(&pcgs_lock);
1915 			}
1916 			if (cagelocked)
1917 				mutex_exit(&pcgs_cagelock);
1918 			return (pp);
1919 		}
1920 	}
1921 	/*
1922 	 * we go down holding the pcf locks.
1923 	 */
1924 	panic("no %spage found %d",
1925 	    ((flags & PG_NORELOC) ? "non-reloc " : ""), count);
1926 	/*NOTREACHED*/
1927 }
1928 
1929 /*
1930  * Create enough pages for "bytes" worth of data starting at
1931  * "off" in "vp".
1932  *
1933  *	Where flag must be one of:
1934  *
1935  *		PG_EXCL:	Exclusive create (fail if any page already
1936  *				exists in the page cache) which does not
1937  *				wait for memory to become available.
1938  *
1939  *		PG_WAIT:	Non-exclusive create which can wait for
1940  *				memory to become available.
1941  *
1942  *		PG_PHYSCONTIG:	Allocate physically contiguous pages.
1943  *				(Not Supported)
1944  *
1945  * A doubly linked list of pages is returned to the caller.  Each page
1946  * on the list has the "exclusive" (p_selock) lock and "iolock" (p_iolock)
1947  * lock.
1948  *
1949  * Unable to change the parameters to page_create() in a minor release,
1950  * we renamed page_create() to page_create_va(), changed all known calls
1951  * from page_create() to page_create_va(), and created this wrapper.
1952  *
1953  * Upon a major release, we should break compatibility by deleting this
1954  * wrapper, and replacing all the strings "page_create_va", with "page_create".
1955  *
1956  * NOTE: There is a copy of this interface as page_create_io() in
1957  *	 i86/vm/vm_machdep.c. Any bugs fixed here should be applied
1958  *	 there.
1959  */
1960 page_t *
1961 page_create(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags)
1962 {
1963 	caddr_t random_vaddr;
1964 	struct seg kseg;
1965 
1966 #ifdef DEBUG
1967 	cmn_err(CE_WARN, "Using deprecated interface page_create: caller %p",
1968 	    (void *)caller());
1969 #endif
1970 
1971 	random_vaddr = (caddr_t)(((uintptr_t)vp >> 7) ^
1972 	    (uintptr_t)(off >> PAGESHIFT));
1973 	kseg.s_as = &kas;
1974 
1975 	return (page_create_va(vp, off, bytes, flags, &kseg, random_vaddr));
1976 }
1977 
1978 #ifdef DEBUG
1979 uint32_t pg_alloc_pgs_mtbf = 0;
1980 #endif
1981 
1982 /*
1983  * Used for large page support. It will attempt to allocate
1984  * a large page(s) off the freelist.
1985  *
1986  * Returns non zero on failure.
1987  */
1988 int
1989 page_alloc_pages(struct vnode *vp, struct seg *seg, caddr_t addr,
1990     page_t **basepp, page_t *ppa[], uint_t szc, int anypgsz, int pgflags)
1991 {
1992 	pgcnt_t		npgs, curnpgs, totpgs;
1993 	size_t		pgsz;
1994 	page_t		*pplist = NULL, *pp;
1995 	int		err = 0;
1996 	lgrp_t		*lgrp;
1997 
1998 	ASSERT(szc != 0 && szc <= (page_num_pagesizes() - 1));
1999 	ASSERT(pgflags == 0 || pgflags == PG_LOCAL);
2000 
2001 	/*
2002 	 * Check if system heavily prefers local large pages over remote
2003 	 * on systems with multiple lgroups.
2004 	 */
2005 	if (lpg_alloc_prefer == LPAP_LOCAL && nlgrps > 1) {
2006 		pgflags = PG_LOCAL;
2007 	}
2008 
2009 	VM_STAT_ADD(alloc_pages[0]);
2010 
2011 #ifdef DEBUG
2012 	if (pg_alloc_pgs_mtbf && !(gethrtime() % pg_alloc_pgs_mtbf)) {
2013 		return (ENOMEM);
2014 	}
2015 #endif
2016 
2017 	/*
2018 	 * One must be NULL but not both.
2019 	 * And one must be non NULL but not both.
2020 	 */
2021 	ASSERT(basepp != NULL || ppa != NULL);
2022 	ASSERT(basepp == NULL || ppa == NULL);
2023 
2024 #if defined(__i386) || defined(__amd64)
2025 	while (page_chk_freelist(szc) == 0) {
2026 		VM_STAT_ADD(alloc_pages[8]);
2027 		if (anypgsz == 0 || --szc == 0)
2028 			return (ENOMEM);
2029 	}
2030 #endif
2031 
2032 	pgsz = page_get_pagesize(szc);
2033 	totpgs = curnpgs = npgs = pgsz >> PAGESHIFT;
2034 
2035 	ASSERT(((uintptr_t)addr & (pgsz - 1)) == 0);
2036 
2037 	(void) page_create_wait(npgs, PG_WAIT);
2038 
2039 	while (npgs && szc) {
2040 		lgrp = lgrp_mem_choose(seg, addr, pgsz);
2041 		if (pgflags == PG_LOCAL) {
2042 			pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2043 			    pgflags, lgrp);
2044 			if (pp == NULL) {
2045 				pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2046 				    0, lgrp);
2047 			}
2048 		} else {
2049 			pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2050 			    0, lgrp);
2051 		}
2052 		if (pp != NULL) {
2053 			VM_STAT_ADD(alloc_pages[1]);
2054 			page_list_concat(&pplist, &pp);
2055 			ASSERT(npgs >= curnpgs);
2056 			npgs -= curnpgs;
2057 		} else if (anypgsz) {
2058 			VM_STAT_ADD(alloc_pages[2]);
2059 			szc--;
2060 			pgsz = page_get_pagesize(szc);
2061 			curnpgs = pgsz >> PAGESHIFT;
2062 		} else {
2063 			VM_STAT_ADD(alloc_pages[3]);
2064 			ASSERT(npgs == totpgs);
2065 			page_create_putback(npgs);
2066 			return (ENOMEM);
2067 		}
2068 	}
2069 	if (szc == 0) {
2070 		VM_STAT_ADD(alloc_pages[4]);
2071 		ASSERT(npgs != 0);
2072 		page_create_putback(npgs);
2073 		err = ENOMEM;
2074 	} else if (basepp != NULL) {
2075 		ASSERT(npgs == 0);
2076 		ASSERT(ppa == NULL);
2077 		*basepp = pplist;
2078 	}
2079 
2080 	npgs = totpgs - npgs;
2081 	pp = pplist;
2082 
2083 	/*
2084 	 * Clear the free and age bits. Also if we were passed in a ppa then
2085 	 * fill it in with all the constituent pages from the large page. But
2086 	 * if we failed to allocate all the pages just free what we got.
2087 	 */
2088 	while (npgs != 0) {
2089 		ASSERT(PP_ISFREE(pp));
2090 		ASSERT(PP_ISAGED(pp));
2091 		if (ppa != NULL || err != 0) {
2092 			if (err == 0) {
2093 				VM_STAT_ADD(alloc_pages[5]);
2094 				PP_CLRFREE(pp);
2095 				PP_CLRAGED(pp);
2096 				page_sub(&pplist, pp);
2097 				*ppa++ = pp;
2098 				npgs--;
2099 			} else {
2100 				VM_STAT_ADD(alloc_pages[6]);
2101 				ASSERT(pp->p_szc != 0);
2102 				curnpgs = page_get_pagecnt(pp->p_szc);
2103 				page_list_break(&pp, &pplist, curnpgs);
2104 				page_list_add_pages(pp, 0);
2105 				page_create_putback(curnpgs);
2106 				ASSERT(npgs >= curnpgs);
2107 				npgs -= curnpgs;
2108 			}
2109 			pp = pplist;
2110 		} else {
2111 			VM_STAT_ADD(alloc_pages[7]);
2112 			PP_CLRFREE(pp);
2113 			PP_CLRAGED(pp);
2114 			pp = pp->p_next;
2115 			npgs--;
2116 		}
2117 	}
2118 	return (err);
2119 }
2120 
2121 /*
2122  * Get a single large page off of the freelists, and set it up for use.
2123  * Number of bytes requested must be a supported page size.
2124  *
2125  * Note that this call may fail even if there is sufficient
2126  * memory available or PG_WAIT is set, so the caller must
2127  * be willing to fallback on page_create_va(), block and retry,
2128  * or fail the requester.
2129  */
2130 page_t *
2131 page_create_va_large(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
2132     struct seg *seg, caddr_t vaddr, void *arg)
2133 {
2134 	pgcnt_t		npages, pcftotal;
2135 	page_t		*pp;
2136 	page_t		*rootpp;
2137 	lgrp_t		*lgrp;
2138 	uint_t		enough;
2139 	uint_t		pcf_index;
2140 	uint_t		i;
2141 	struct pcf	*p;
2142 	struct pcf	*q;
2143 	lgrp_id_t	*lgrpid = (lgrp_id_t *)arg;
2144 
2145 	ASSERT(vp != NULL);
2146 
2147 	ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2148 	    PG_NORELOC | PG_PANIC | PG_PUSHPAGE)) == 0);
2149 	/* but no others */
2150 
2151 	ASSERT((flags & PG_EXCL) == PG_EXCL);
2152 
2153 	npages = btop(bytes);
2154 
2155 	if (!kcage_on || panicstr) {
2156 		/*
2157 		 * Cage is OFF, or we are single threaded in
2158 		 * panic, so make everything a RELOC request.
2159 		 */
2160 		flags &= ~PG_NORELOC;
2161 	}
2162 
2163 	/*
2164 	 * Make sure there's adequate physical memory available.
2165 	 * Note: PG_WAIT is ignored here.
2166 	 */
2167 	if (freemem <= throttlefree + npages) {
2168 		VM_STAT_ADD(page_create_large_cnt[1]);
2169 		return (NULL);
2170 	}
2171 
2172 	/*
2173 	 * If cage is on, dampen draw from cage when available
2174 	 * cage space is low.
2175 	 */
2176 	if ((flags & (PG_NORELOC | PG_WAIT)) ==  (PG_NORELOC | PG_WAIT) &&
2177 	    kcage_freemem < kcage_throttlefree + npages) {
2178 
2179 		/*
2180 		 * The cage is on, the caller wants PG_NORELOC
2181 		 * pages and available cage memory is very low.
2182 		 * Call kcage_create_throttle() to attempt to
2183 		 * control demand on the cage.
2184 		 */
2185 		if (kcage_create_throttle(npages, flags) == KCT_FAILURE) {
2186 			VM_STAT_ADD(page_create_large_cnt[2]);
2187 			return (NULL);
2188 		}
2189 	}
2190 
2191 	enough = 0;
2192 	pcf_index = PCF_INDEX();
2193 	p = &pcf[pcf_index];
2194 	q = &pcf[PCF_FANOUT];
2195 	for (pcftotal = 0, i = 0; i < PCF_FANOUT; i++) {
2196 		if (p->pcf_count > npages) {
2197 			/*
2198 			 * a good one to try.
2199 			 */
2200 			mutex_enter(&p->pcf_lock);
2201 			if (p->pcf_count > npages) {
2202 				p->pcf_count -= (uint_t)npages;
2203 				/*
2204 				 * freemem is not protected by any lock.
2205 				 * Thus, we cannot have any assertion
2206 				 * containing freemem here.
2207 				 */
2208 				freemem -= npages;
2209 				enough = 1;
2210 				mutex_exit(&p->pcf_lock);
2211 				break;
2212 			}
2213 			mutex_exit(&p->pcf_lock);
2214 		}
2215 		pcftotal += p->pcf_count;
2216 		p++;
2217 		if (p >= q) {
2218 			p = pcf;
2219 		}
2220 	}
2221 
2222 	if (!enough) {
2223 		/* If there isn't enough memory available, give up. */
2224 		if (pcftotal < npages) {
2225 			VM_STAT_ADD(page_create_large_cnt[3]);
2226 			return (NULL);
2227 		}
2228 
2229 		/* try to collect pages from several pcf bins */
2230 		for (p = pcf, pcftotal = 0, i = 0; i < PCF_FANOUT; i++) {
2231 			mutex_enter(&p->pcf_lock);
2232 			pcftotal += p->pcf_count;
2233 			if (pcftotal >= npages) {
2234 				/*
2235 				 * Wow!  There are enough pages laying around
2236 				 * to satisfy the request.  Do the accounting,
2237 				 * drop the locks we acquired, and go back.
2238 				 *
2239 				 * freemem is not protected by any lock. So,
2240 				 * we cannot have any assertion containing
2241 				 * freemem.
2242 				 */
2243 				pgcnt_t	tpages = npages;
2244 				freemem -= npages;
2245 				while (p >= pcf) {
2246 					if (p->pcf_count <= tpages) {
2247 						tpages -= p->pcf_count;
2248 						p->pcf_count = 0;
2249 					} else {
2250 						p->pcf_count -= (uint_t)tpages;
2251 						tpages = 0;
2252 					}
2253 					mutex_exit(&p->pcf_lock);
2254 					p--;
2255 				}
2256 				ASSERT(tpages == 0);
2257 				break;
2258 			}
2259 			p++;
2260 		}
2261 		if (i == PCF_FANOUT) {
2262 			/* failed to collect pages - release the locks */
2263 			while (--p >= pcf) {
2264 				mutex_exit(&p->pcf_lock);
2265 			}
2266 			VM_STAT_ADD(page_create_large_cnt[4]);
2267 			return (NULL);
2268 		}
2269 	}
2270 
2271 	/*
2272 	 * This is where this function behaves fundamentally differently
2273 	 * than page_create_va(); since we're intending to map the page
2274 	 * with a single TTE, we have to get it as a physically contiguous
2275 	 * hardware pagesize chunk.  If we can't, we fail.
2276 	 */
2277 	if (lgrpid != NULL && *lgrpid >= 0 && *lgrpid <= lgrp_alloc_max &&
2278 	    LGRP_EXISTS(lgrp_table[*lgrpid]))
2279 		lgrp = lgrp_table[*lgrpid];
2280 	else
2281 		lgrp = lgrp_mem_choose(seg, vaddr, bytes);
2282 
2283 	if ((rootpp = page_get_freelist(&kvp, off, seg, vaddr,
2284 	    bytes, flags & ~PG_MATCH_COLOR, lgrp)) == NULL) {
2285 		page_create_putback(npages);
2286 		VM_STAT_ADD(page_create_large_cnt[5]);
2287 		return (NULL);
2288 	}
2289 
2290 	/*
2291 	 * if we got the page with the wrong mtype give it back this is a
2292 	 * workaround for CR 6249718. When CR 6249718 is fixed we never get
2293 	 * inside "if" and the workaround becomes just a nop
2294 	 */
2295 	if (kcage_on && (flags & PG_NORELOC) && !PP_ISNORELOC(rootpp)) {
2296 		page_list_add_pages(rootpp, 0);
2297 		page_create_putback(npages);
2298 		VM_STAT_ADD(page_create_large_cnt[6]);
2299 		return (NULL);
2300 	}
2301 
2302 	/*
2303 	 * If satisfying this request has left us with too little
2304 	 * memory, start the wheels turning to get some back.  The
2305 	 * first clause of the test prevents waking up the pageout
2306 	 * daemon in situations where it would decide that there's
2307 	 * nothing to do.
2308 	 */
2309 	if (nscan < desscan && freemem < minfree) {
2310 		TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2311 		    "pageout_cv_signal:freemem %ld", freemem);
2312 		cv_signal(&proc_pageout->p_cv);
2313 	}
2314 
2315 	pp = rootpp;
2316 	while (npages--) {
2317 		ASSERT(PAGE_EXCL(pp));
2318 		ASSERT(pp->p_vnode == NULL);
2319 		ASSERT(!hat_page_is_mapped(pp));
2320 		PP_CLRFREE(pp);
2321 		PP_CLRAGED(pp);
2322 		if (!page_hashin(pp, vp, off, NULL))
2323 			panic("page_create_large: hashin failed: page %p",
2324 			    (void *)pp);
2325 		page_io_lock(pp);
2326 		off += PAGESIZE;
2327 		pp = pp->p_next;
2328 	}
2329 
2330 	VM_STAT_ADD(page_create_large_cnt[0]);
2331 	return (rootpp);
2332 }
2333 
2334 page_t *
2335 page_create_va(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
2336     struct seg *seg, caddr_t vaddr)
2337 {
2338 	page_t		*plist = NULL;
2339 	pgcnt_t		npages;
2340 	pgcnt_t		found_on_free = 0;
2341 	pgcnt_t		pages_req;
2342 	page_t		*npp = NULL;
2343 	uint_t		enough;
2344 	uint_t		i;
2345 	uint_t		pcf_index;
2346 	struct pcf	*p;
2347 	struct pcf	*q;
2348 	lgrp_t		*lgrp;
2349 
2350 	TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START,
2351 	    "page_create_start:vp %p off %llx bytes %lu flags %x",
2352 	    vp, off, bytes, flags);
2353 
2354 	ASSERT(bytes != 0 && vp != NULL);
2355 
2356 	if ((flags & PG_EXCL) == 0 && (flags & PG_WAIT) == 0) {
2357 		panic("page_create: invalid flags");
2358 		/*NOTREACHED*/
2359 	}
2360 	ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2361 	    PG_NORELOC | PG_PANIC | PG_PUSHPAGE)) == 0);
2362 	    /* but no others */
2363 
2364 	pages_req = npages = btopr(bytes);
2365 	/*
2366 	 * Try to see whether request is too large to *ever* be
2367 	 * satisfied, in order to prevent deadlock.  We arbitrarily
2368 	 * decide to limit maximum size requests to max_page_get.
2369 	 */
2370 	if (npages >= max_page_get) {
2371 		if ((flags & PG_WAIT) == 0) {
2372 			TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_TOOBIG,
2373 			    "page_create_toobig:vp %p off %llx npages "
2374 			    "%lu max_page_get %lu",
2375 			    vp, off, npages, max_page_get);
2376 			return (NULL);
2377 		} else {
2378 			cmn_err(CE_WARN,
2379 			    "Request for too much kernel memory "
2380 			    "(%lu bytes), will hang forever", bytes);
2381 			for (;;)
2382 				delay(1000000000);
2383 		}
2384 	}
2385 
2386 	if (!kcage_on || panicstr) {
2387 		/*
2388 		 * Cage is OFF, or we are single threaded in
2389 		 * panic, so make everything a RELOC request.
2390 		 */
2391 		flags &= ~PG_NORELOC;
2392 	}
2393 
2394 	if (freemem <= throttlefree + npages)
2395 		if (!page_create_throttle(npages, flags))
2396 			return (NULL);
2397 
2398 	/*
2399 	 * If cage is on, dampen draw from cage when available
2400 	 * cage space is low.
2401 	 */
2402 	if ((flags & PG_NORELOC) &&
2403 	    kcage_freemem < kcage_throttlefree + npages) {
2404 
2405 		/*
2406 		 * The cage is on, the caller wants PG_NORELOC
2407 		 * pages and available cage memory is very low.
2408 		 * Call kcage_create_throttle() to attempt to
2409 		 * control demand on the cage.
2410 		 */
2411 		if (kcage_create_throttle(npages, flags) == KCT_FAILURE)
2412 			return (NULL);
2413 	}
2414 
2415 	VM_STAT_ADD(page_create_cnt[0]);
2416 
2417 	enough = 0;
2418 	pcf_index = PCF_INDEX();
2419 
2420 	p = &pcf[pcf_index];
2421 	q = &pcf[PCF_FANOUT];
2422 	for (i = 0; i < PCF_FANOUT; i++) {
2423 		if (p->pcf_count > npages) {
2424 			/*
2425 			 * a good one to try.
2426 			 */
2427 			mutex_enter(&p->pcf_lock);
2428 			if (p->pcf_count > npages) {
2429 				p->pcf_count -= (uint_t)npages;
2430 				/*
2431 				 * freemem is not protected by any lock.
2432 				 * Thus, we cannot have any assertion
2433 				 * containing freemem here.
2434 				 */
2435 				freemem -= npages;
2436 				enough = 1;
2437 				mutex_exit(&p->pcf_lock);
2438 				break;
2439 			}
2440 			mutex_exit(&p->pcf_lock);
2441 		}
2442 		p++;
2443 		if (p >= q) {
2444 			p = pcf;
2445 		}
2446 	}
2447 
2448 	if (!enough) {
2449 		/*
2450 		 * Have to look harder.  If npages is greater than
2451 		 * one, then we might have to coalesce the counters.
2452 		 *
2453 		 * Go wait.  We come back having accounted
2454 		 * for the memory.
2455 		 */
2456 		VM_STAT_ADD(page_create_cnt[1]);
2457 		if (!page_create_wait(npages, flags)) {
2458 			VM_STAT_ADD(page_create_cnt[2]);
2459 			return (NULL);
2460 		}
2461 	}
2462 
2463 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS,
2464 	    "page_create_success:vp %p off %llx", vp, off);
2465 
2466 	/*
2467 	 * If satisfying this request has left us with too little
2468 	 * memory, start the wheels turning to get some back.  The
2469 	 * first clause of the test prevents waking up the pageout
2470 	 * daemon in situations where it would decide that there's
2471 	 * nothing to do.
2472 	 */
2473 	if (nscan < desscan && freemem < minfree) {
2474 		TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2475 		    "pageout_cv_signal:freemem %ld", freemem);
2476 		cv_signal(&proc_pageout->p_cv);
2477 	}
2478 
2479 	/*
2480 	 * Loop around collecting the requested number of pages.
2481 	 * Most of the time, we have to `create' a new page. With
2482 	 * this in mind, pull the page off the free list before
2483 	 * getting the hash lock.  This will minimize the hash
2484 	 * lock hold time, nesting, and the like.  If it turns
2485 	 * out we don't need the page, we put it back at the end.
2486 	 */
2487 	while (npages--) {
2488 		page_t		*pp;
2489 		kmutex_t	*phm = NULL;
2490 		ulong_t		index;
2491 
2492 		index = PAGE_HASH_FUNC(vp, off);
2493 top:
2494 		ASSERT(phm == NULL);
2495 		ASSERT(index == PAGE_HASH_FUNC(vp, off));
2496 		ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
2497 
2498 		if (npp == NULL) {
2499 			/*
2500 			 * Try to get a page from the freelist (ie,
2501 			 * a page with no [vp, off] tag).  If that
2502 			 * fails, use the cachelist.
2503 			 *
2504 			 * During the first attempt at both the free
2505 			 * and cache lists we try for the correct color.
2506 			 */
2507 			/*
2508 			 * XXXX-how do we deal with virtual indexed
2509 			 * caches and and colors?
2510 			 */
2511 			VM_STAT_ADD(page_create_cnt[4]);
2512 			/*
2513 			 * Get lgroup to allocate next page of shared memory
2514 			 * from and use it to specify where to allocate
2515 			 * the physical memory
2516 			 */
2517 			lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
2518 			npp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
2519 			    flags | PG_MATCH_COLOR, lgrp);
2520 			if (npp == NULL) {
2521 				npp = page_get_cachelist(vp, off, seg,
2522 				    vaddr, flags | PG_MATCH_COLOR, lgrp);
2523 				if (npp == NULL) {
2524 					npp = page_create_get_something(vp,
2525 					    off, seg, vaddr,
2526 					    flags & ~PG_MATCH_COLOR);
2527 				}
2528 
2529 				if (PP_ISAGED(npp) == 0) {
2530 					/*
2531 					 * Since this page came from the
2532 					 * cachelist, we must destroy the
2533 					 * old vnode association.
2534 					 */
2535 					page_hashout(npp, NULL);
2536 				}
2537 			}
2538 		}
2539 
2540 		/*
2541 		 * We own this page!
2542 		 */
2543 		ASSERT(PAGE_EXCL(npp));
2544 		ASSERT(npp->p_vnode == NULL);
2545 		ASSERT(!hat_page_is_mapped(npp));
2546 		PP_CLRFREE(npp);
2547 		PP_CLRAGED(npp);
2548 
2549 		/*
2550 		 * Here we have a page in our hot little mits and are
2551 		 * just waiting to stuff it on the appropriate lists.
2552 		 * Get the mutex and check to see if it really does
2553 		 * not exist.
2554 		 */
2555 		phm = PAGE_HASH_MUTEX(index);
2556 		mutex_enter(phm);
2557 		PAGE_HASH_SEARCH(index, pp, vp, off);
2558 		if (pp == NULL) {
2559 			VM_STAT_ADD(page_create_new);
2560 			pp = npp;
2561 			npp = NULL;
2562 			if (!page_hashin(pp, vp, off, phm)) {
2563 				/*
2564 				 * Since we hold the page hash mutex and
2565 				 * just searched for this page, page_hashin
2566 				 * had better not fail.  If it does, that
2567 				 * means somethread did not follow the
2568 				 * page hash mutex rules.  Panic now and
2569 				 * get it over with.  As usual, go down
2570 				 * holding all the locks.
2571 				 */
2572 				ASSERT(MUTEX_HELD(phm));
2573 				panic("page_create: "
2574 				    "hashin failed %p %p %llx %p",
2575 				    (void *)pp, (void *)vp, off, (void *)phm);
2576 				/*NOTREACHED*/
2577 			}
2578 			ASSERT(MUTEX_HELD(phm));
2579 			mutex_exit(phm);
2580 			phm = NULL;
2581 
2582 			/*
2583 			 * Hat layer locking need not be done to set
2584 			 * the following bits since the page is not hashed
2585 			 * and was on the free list (i.e., had no mappings).
2586 			 *
2587 			 * Set the reference bit to protect
2588 			 * against immediate pageout
2589 			 *
2590 			 * XXXmh modify freelist code to set reference
2591 			 * bit so we don't have to do it here.
2592 			 */
2593 			page_set_props(pp, P_REF);
2594 			found_on_free++;
2595 		} else {
2596 			VM_STAT_ADD(page_create_exists);
2597 			if (flags & PG_EXCL) {
2598 				/*
2599 				 * Found an existing page, and the caller
2600 				 * wanted all new pages.  Undo all of the work
2601 				 * we have done.
2602 				 */
2603 				mutex_exit(phm);
2604 				phm = NULL;
2605 				while (plist != NULL) {
2606 					pp = plist;
2607 					page_sub(&plist, pp);
2608 					page_io_unlock(pp);
2609 					/* large pages should not end up here */
2610 					ASSERT(pp->p_szc == 0);
2611 					/*LINTED: constant in conditional ctx*/
2612 					VN_DISPOSE(pp, B_INVAL, 0, kcred);
2613 				}
2614 				VM_STAT_ADD(page_create_found_one);
2615 				goto fail;
2616 			}
2617 			ASSERT(flags & PG_WAIT);
2618 			if (!page_lock(pp, SE_EXCL, phm, P_NO_RECLAIM)) {
2619 				/*
2620 				 * Start all over again if we blocked trying
2621 				 * to lock the page.
2622 				 */
2623 				mutex_exit(phm);
2624 				VM_STAT_ADD(page_create_page_lock_failed);
2625 				phm = NULL;
2626 				goto top;
2627 			}
2628 			mutex_exit(phm);
2629 			phm = NULL;
2630 
2631 			if (PP_ISFREE(pp)) {
2632 				ASSERT(PP_ISAGED(pp) == 0);
2633 				VM_STAT_ADD(pagecnt.pc_get_cache);
2634 				page_list_sub(pp, PG_CACHE_LIST);
2635 				PP_CLRFREE(pp);
2636 				found_on_free++;
2637 			}
2638 		}
2639 
2640 		/*
2641 		 * Got a page!  It is locked.  Acquire the i/o
2642 		 * lock since we are going to use the p_next and
2643 		 * p_prev fields to link the requested pages together.
2644 		 */
2645 		page_io_lock(pp);
2646 		page_add(&plist, pp);
2647 		plist = plist->p_next;
2648 		off += PAGESIZE;
2649 		vaddr += PAGESIZE;
2650 	}
2651 
2652 	ASSERT((flags & PG_EXCL) ? (found_on_free == pages_req) : 1);
2653 fail:
2654 	if (npp != NULL) {
2655 		/*
2656 		 * Did not need this page after all.
2657 		 * Put it back on the free list.
2658 		 */
2659 		VM_STAT_ADD(page_create_putbacks);
2660 		PP_SETFREE(npp);
2661 		PP_SETAGED(npp);
2662 		npp->p_offset = (u_offset_t)-1;
2663 		page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL);
2664 		page_unlock(npp);
2665 
2666 	}
2667 
2668 	ASSERT(pages_req >= found_on_free);
2669 
2670 	{
2671 		uint_t overshoot = (uint_t)(pages_req - found_on_free);
2672 
2673 		if (overshoot) {
2674 			VM_STAT_ADD(page_create_overshoot);
2675 			p = &pcf[pcf_index];
2676 			mutex_enter(&p->pcf_lock);
2677 			if (p->pcf_block) {
2678 				p->pcf_reserve += overshoot;
2679 			} else {
2680 				p->pcf_count += overshoot;
2681 				if (p->pcf_wait) {
2682 					mutex_enter(&new_freemem_lock);
2683 					if (freemem_wait) {
2684 						cv_signal(&freemem_cv);
2685 						p->pcf_wait--;
2686 					} else {
2687 						p->pcf_wait = 0;
2688 					}
2689 					mutex_exit(&new_freemem_lock);
2690 				}
2691 			}
2692 			mutex_exit(&p->pcf_lock);
2693 			/* freemem is approximate, so this test OK */
2694 			if (!p->pcf_block)
2695 				freemem += overshoot;
2696 		}
2697 	}
2698 
2699 	return (plist);
2700 }
2701 
2702 /*
2703  * One or more constituent pages of this large page has been marked
2704  * toxic. Simply demote the large page to PAGESIZE pages and let
2705  * page_free() handle it. This routine should only be called by
2706  * large page free routines (page_free_pages() and page_destroy_pages().
2707  * All pages are locked SE_EXCL and have already been marked free.
2708  */
2709 static void
2710 page_free_toxic_pages(page_t *rootpp)
2711 {
2712 	page_t	*tpp;
2713 	pgcnt_t	i, pgcnt = page_get_pagecnt(rootpp->p_szc);
2714 	uint_t	szc = rootpp->p_szc;
2715 
2716 	for (i = 0, tpp = rootpp; i < pgcnt; i++, tpp = tpp->p_next) {
2717 		ASSERT(tpp->p_szc == szc);
2718 		ASSERT((PAGE_EXCL(tpp) &&
2719 		    !page_iolock_assert(tpp)) || panicstr);
2720 		tpp->p_szc = 0;
2721 	}
2722 
2723 	while (rootpp != NULL) {
2724 		tpp = rootpp;
2725 		page_sub(&rootpp, tpp);
2726 		ASSERT(PP_ISFREE(tpp));
2727 		PP_CLRFREE(tpp);
2728 		page_free(tpp, 1);
2729 	}
2730 }
2731 
2732 /*
2733  * Put page on the "free" list.
2734  * The free list is really two lists maintained by
2735  * the PSM of whatever machine we happen to be on.
2736  */
2737 void
2738 page_free(page_t *pp, int dontneed)
2739 {
2740 	struct pcf	*p;
2741 	uint_t		pcf_index;
2742 
2743 	ASSERT((PAGE_EXCL(pp) &&
2744 	    !page_iolock_assert(pp)) || panicstr);
2745 
2746 	if (PP_ISFREE(pp)) {
2747 		panic("page_free: page %p is free", (void *)pp);
2748 	}
2749 
2750 	if (pp->p_szc != 0) {
2751 		if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
2752 		    PP_ISKAS(pp)) {
2753 			panic("page_free: anon or kernel "
2754 			    "or no vnode large page %p", (void *)pp);
2755 		}
2756 		page_demote_vp_pages(pp);
2757 		ASSERT(pp->p_szc == 0);
2758 	}
2759 
2760 	/*
2761 	 * The page_struct_lock need not be acquired to examine these
2762 	 * fields since the page has an "exclusive" lock.
2763 	 */
2764 	if (hat_page_is_mapped(pp) || pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
2765 	    pp->p_slckcnt != 0) {
2766 		panic("page_free pp=%p, pfn=%lx, lckcnt=%d, cowcnt=%d "
2767 		    "slckcnt = %d", pp, page_pptonum(pp), pp->p_lckcnt,
2768 		    pp->p_cowcnt, pp->p_slckcnt);
2769 		/*NOTREACHED*/
2770 	}
2771 
2772 	ASSERT(!hat_page_getshare(pp));
2773 
2774 	PP_SETFREE(pp);
2775 	ASSERT(pp->p_vnode == NULL || !IS_VMODSORT(pp->p_vnode) ||
2776 	    !hat_ismod(pp));
2777 	page_clr_all_props(pp);
2778 	ASSERT(!hat_page_getshare(pp));
2779 
2780 	/*
2781 	 * Now we add the page to the head of the free list.
2782 	 * But if this page is associated with a paged vnode
2783 	 * then we adjust the head forward so that the page is
2784 	 * effectively at the end of the list.
2785 	 */
2786 	if (pp->p_vnode == NULL) {
2787 		/*
2788 		 * Page has no identity, put it on the free list.
2789 		 */
2790 		PP_SETAGED(pp);
2791 		pp->p_offset = (u_offset_t)-1;
2792 		page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
2793 		VM_STAT_ADD(pagecnt.pc_free_free);
2794 		TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
2795 		    "page_free_free:pp %p", pp);
2796 	} else {
2797 		PP_CLRAGED(pp);
2798 
2799 		if (!dontneed || nopageage) {
2800 			/* move it to the tail of the list */
2801 			page_list_add(pp, PG_CACHE_LIST | PG_LIST_TAIL);
2802 
2803 			VM_STAT_ADD(pagecnt.pc_free_cache);
2804 			TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_TAIL,
2805 			    "page_free_cache_tail:pp %p", pp);
2806 		} else {
2807 			page_list_add(pp, PG_CACHE_LIST | PG_LIST_HEAD);
2808 
2809 			VM_STAT_ADD(pagecnt.pc_free_dontneed);
2810 			TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_HEAD,
2811 			    "page_free_cache_head:pp %p", pp);
2812 		}
2813 	}
2814 	page_unlock(pp);
2815 
2816 	/*
2817 	 * Now do the `freemem' accounting.
2818 	 */
2819 	pcf_index = PCF_INDEX();
2820 	p = &pcf[pcf_index];
2821 
2822 	mutex_enter(&p->pcf_lock);
2823 	if (p->pcf_block) {
2824 		p->pcf_reserve += 1;
2825 	} else {
2826 		p->pcf_count += 1;
2827 		if (p->pcf_wait) {
2828 			mutex_enter(&new_freemem_lock);
2829 			/*
2830 			 * Check to see if some other thread
2831 			 * is actually waiting.  Another bucket
2832 			 * may have woken it up by now.  If there
2833 			 * are no waiters, then set our pcf_wait
2834 			 * count to zero to avoid coming in here
2835 			 * next time.  Also, since only one page
2836 			 * was put on the free list, just wake
2837 			 * up one waiter.
2838 			 */
2839 			if (freemem_wait) {
2840 				cv_signal(&freemem_cv);
2841 				p->pcf_wait--;
2842 			} else {
2843 				p->pcf_wait = 0;
2844 			}
2845 			mutex_exit(&new_freemem_lock);
2846 		}
2847 	}
2848 	mutex_exit(&p->pcf_lock);
2849 
2850 	/* freemem is approximate, so this test OK */
2851 	if (!p->pcf_block)
2852 		freemem += 1;
2853 }
2854 
2855 /*
2856  * Put page on the "free" list during intial startup.
2857  * This happens during initial single threaded execution.
2858  */
2859 void
2860 page_free_at_startup(page_t *pp)
2861 {
2862 	struct pcf	*p;
2863 	uint_t		pcf_index;
2864 
2865 	page_list_add(pp, PG_FREE_LIST | PG_LIST_HEAD | PG_LIST_ISINIT);
2866 	VM_STAT_ADD(pagecnt.pc_free_free);
2867 
2868 	/*
2869 	 * Now do the `freemem' accounting.
2870 	 */
2871 	pcf_index = PCF_INDEX();
2872 	p = &pcf[pcf_index];
2873 
2874 	ASSERT(p->pcf_block == 0);
2875 	ASSERT(p->pcf_wait == 0);
2876 	p->pcf_count += 1;
2877 
2878 	/* freemem is approximate, so this is OK */
2879 	freemem += 1;
2880 }
2881 
2882 void
2883 page_free_pages(page_t *pp)
2884 {
2885 	page_t	*tpp, *rootpp = NULL;
2886 	pgcnt_t	pgcnt = page_get_pagecnt(pp->p_szc);
2887 	pgcnt_t	i;
2888 	uint_t	szc = pp->p_szc;
2889 
2890 	VM_STAT_ADD(pagecnt.pc_free_pages);
2891 	TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
2892 	    "page_free_free:pp %p", pp);
2893 
2894 	ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
2895 	if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
2896 		panic("page_free_pages: not root page %p", (void *)pp);
2897 		/*NOTREACHED*/
2898 	}
2899 
2900 	for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
2901 		ASSERT((PAGE_EXCL(tpp) &&
2902 		    !page_iolock_assert(tpp)) || panicstr);
2903 		if (PP_ISFREE(tpp)) {
2904 			panic("page_free_pages: page %p is free", (void *)tpp);
2905 			/*NOTREACHED*/
2906 		}
2907 		if (hat_page_is_mapped(tpp) || tpp->p_lckcnt != 0 ||
2908 		    tpp->p_cowcnt != 0 || tpp->p_slckcnt != 0) {
2909 			panic("page_free_pages %p", (void *)tpp);
2910 			/*NOTREACHED*/
2911 		}
2912 
2913 		ASSERT(!hat_page_getshare(tpp));
2914 		ASSERT(tpp->p_vnode == NULL);
2915 		ASSERT(tpp->p_szc == szc);
2916 
2917 		PP_SETFREE(tpp);
2918 		page_clr_all_props(tpp);
2919 		PP_SETAGED(tpp);
2920 		tpp->p_offset = (u_offset_t)-1;
2921 		ASSERT(tpp->p_next == tpp);
2922 		ASSERT(tpp->p_prev == tpp);
2923 		page_list_concat(&rootpp, &tpp);
2924 	}
2925 	ASSERT(rootpp == pp);
2926 
2927 	page_list_add_pages(rootpp, 0);
2928 	page_create_putback(pgcnt);
2929 }
2930 
2931 int free_pages = 1;
2932 
2933 /*
2934  * This routine attempts to return pages to the cachelist via page_release().
2935  * It does not *have* to be successful in all cases, since the pageout scanner
2936  * will catch any pages it misses.  It does need to be fast and not introduce
2937  * too much overhead.
2938  *
2939  * If a page isn't found on the unlocked sweep of the page_hash bucket, we
2940  * don't lock and retry.  This is ok, since the page scanner will eventually
2941  * find any page we miss in free_vp_pages().
2942  */
2943 void
2944 free_vp_pages(vnode_t *vp, u_offset_t off, size_t len)
2945 {
2946 	page_t *pp;
2947 	u_offset_t eoff;
2948 	extern int swap_in_range(vnode_t *, u_offset_t, size_t);
2949 
2950 	eoff = off + len;
2951 
2952 	if (free_pages == 0)
2953 		return;
2954 	if (swap_in_range(vp, off, len))
2955 		return;
2956 
2957 	for (; off < eoff; off += PAGESIZE) {
2958 
2959 		/*
2960 		 * find the page using a fast, but inexact search. It'll be OK
2961 		 * if a few pages slip through the cracks here.
2962 		 */
2963 		pp = page_exists(vp, off);
2964 
2965 		/*
2966 		 * If we didn't find the page (it may not exist), the page
2967 		 * is free, looks still in use (shared), or we can't lock it,
2968 		 * just give up.
2969 		 */
2970 		if (pp == NULL ||
2971 		    PP_ISFREE(pp) ||
2972 		    page_share_cnt(pp) > 0 ||
2973 		    !page_trylock(pp, SE_EXCL))
2974 			continue;
2975 
2976 		/*
2977 		 * Once we have locked pp, verify that it's still the
2978 		 * correct page and not already free
2979 		 */
2980 		ASSERT(PAGE_LOCKED_SE(pp, SE_EXCL));
2981 		if (pp->p_vnode != vp || pp->p_offset != off || PP_ISFREE(pp)) {
2982 			page_unlock(pp);
2983 			continue;
2984 		}
2985 
2986 		/*
2987 		 * try to release the page...
2988 		 */
2989 		(void) page_release(pp, 1);
2990 	}
2991 }
2992 
2993 /*
2994  * Reclaim the given page from the free list.
2995  * If pp is part of a large pages, only the given constituent page is reclaimed
2996  * and the large page it belonged to will be demoted.  This can only happen
2997  * if the page is not on the cachelist.
2998  *
2999  * Returns 1 on success or 0 on failure.
3000  *
3001  * The page is unlocked if it can't be reclaimed (when freemem == 0).
3002  * If `lock' is non-null, it will be dropped and re-acquired if
3003  * the routine must wait while freemem is 0.
3004  *
3005  * As it turns out, boot_getpages() does this.  It picks a page,
3006  * based on where OBP mapped in some address, gets its pfn, searches
3007  * the memsegs, locks the page, then pulls it off the free list!
3008  */
3009 int
3010 page_reclaim(page_t *pp, kmutex_t *lock)
3011 {
3012 	struct pcf	*p;
3013 	uint_t		pcf_index;
3014 	struct cpu	*cpup;
3015 	int		enough;
3016 	uint_t		i;
3017 
3018 	ASSERT(lock != NULL ? MUTEX_HELD(lock) : 1);
3019 	ASSERT(PAGE_EXCL(pp) && PP_ISFREE(pp));
3020 
3021 	/*
3022 	 * If `freemem' is 0, we cannot reclaim this page from the
3023 	 * freelist, so release every lock we might hold: the page,
3024 	 * and the `lock' before blocking.
3025 	 *
3026 	 * The only way `freemem' can become 0 while there are pages
3027 	 * marked free (have their p->p_free bit set) is when the
3028 	 * system is low on memory and doing a page_create().  In
3029 	 * order to guarantee that once page_create() starts acquiring
3030 	 * pages it will be able to get all that it needs since `freemem'
3031 	 * was decreased by the requested amount.  So, we need to release
3032 	 * this page, and let page_create() have it.
3033 	 *
3034 	 * Since `freemem' being zero is not supposed to happen, just
3035 	 * use the usual hash stuff as a starting point.  If that bucket
3036 	 * is empty, then assume the worst, and start at the beginning
3037 	 * of the pcf array.  If we always start at the beginning
3038 	 * when acquiring more than one pcf lock, there won't be any
3039 	 * deadlock problems.
3040 	 */
3041 
3042 	/* TODO: Do we need to test kcage_freemem if PG_NORELOC(pp)? */
3043 
3044 	if (freemem <= throttlefree && !page_create_throttle(1l, 0)) {
3045 		pcf_acquire_all();
3046 		goto page_reclaim_nomem;
3047 	}
3048 
3049 	enough = 0;
3050 	pcf_index = PCF_INDEX();
3051 	p = &pcf[pcf_index];
3052 	mutex_enter(&p->pcf_lock);
3053 	if (p->pcf_count >= 1) {
3054 		enough = 1;
3055 		p->pcf_count--;
3056 	}
3057 	mutex_exit(&p->pcf_lock);
3058 
3059 	if (!enough) {
3060 		VM_STAT_ADD(page_reclaim_zero);
3061 		/*
3062 		 * Check again. Its possible that some other thread
3063 		 * could have been right behind us, and added one
3064 		 * to a list somewhere.  Acquire each of the pcf locks
3065 		 * until we find a page.
3066 		 */
3067 		p = pcf;
3068 		for (i = 0; i < PCF_FANOUT; i++) {
3069 			mutex_enter(&p->pcf_lock);
3070 			if (p->pcf_count >= 1) {
3071 				p->pcf_count -= 1;
3072 				enough = 1;
3073 				break;
3074 			}
3075 			p++;
3076 		}
3077 
3078 		if (!enough) {
3079 page_reclaim_nomem:
3080 			/*
3081 			 * We really can't have page `pp'.
3082 			 * Time for the no-memory dance with
3083 			 * page_free().  This is just like
3084 			 * page_create_wait().  Plus the added
3085 			 * attraction of releasing whatever mutex
3086 			 * we held when we were called with in `lock'.
3087 			 * Page_unlock() will wakeup any thread
3088 			 * waiting around for this page.
3089 			 */
3090 			if (lock) {
3091 				VM_STAT_ADD(page_reclaim_zero_locked);
3092 				mutex_exit(lock);
3093 			}
3094 			page_unlock(pp);
3095 
3096 			/*
3097 			 * get this before we drop all the pcf locks.
3098 			 */
3099 			mutex_enter(&new_freemem_lock);
3100 
3101 			p = pcf;
3102 			for (i = 0; i < PCF_FANOUT; i++) {
3103 				p->pcf_wait++;
3104 				mutex_exit(&p->pcf_lock);
3105 				p++;
3106 			}
3107 
3108 			freemem_wait++;
3109 			cv_wait(&freemem_cv, &new_freemem_lock);
3110 			freemem_wait--;
3111 
3112 			mutex_exit(&new_freemem_lock);
3113 
3114 			if (lock) {
3115 				mutex_enter(lock);
3116 			}
3117 			return (0);
3118 		}
3119 
3120 		/*
3121 		 * The pcf accounting has been done,
3122 		 * though none of the pcf_wait flags have been set,
3123 		 * drop the locks and continue on.
3124 		 */
3125 		while (p >= pcf) {
3126 			mutex_exit(&p->pcf_lock);
3127 			p--;
3128 		}
3129 	}
3130 
3131 	/*
3132 	 * freemem is not protected by any lock. Thus, we cannot
3133 	 * have any assertion containing freemem here.
3134 	 */
3135 	freemem -= 1;
3136 
3137 	VM_STAT_ADD(pagecnt.pc_reclaim);
3138 
3139 	/*
3140 	 * page_list_sub will handle the case where pp is a large page.
3141 	 * It's possible that the page was promoted while on the freelist
3142 	 */
3143 	if (PP_ISAGED(pp)) {
3144 		page_list_sub(pp, PG_FREE_LIST);
3145 		TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_FREE,
3146 		    "page_reclaim_free:pp %p", pp);
3147 	} else {
3148 		page_list_sub(pp, PG_CACHE_LIST);
3149 		TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_CACHE,
3150 		    "page_reclaim_cache:pp %p", pp);
3151 	}
3152 
3153 	/*
3154 	 * clear the p_free & p_age bits since this page is no longer
3155 	 * on the free list.  Notice that there was a brief time where
3156 	 * a page is marked as free, but is not on the list.
3157 	 *
3158 	 * Set the reference bit to protect against immediate pageout.
3159 	 */
3160 	PP_CLRFREE(pp);
3161 	PP_CLRAGED(pp);
3162 	page_set_props(pp, P_REF);
3163 
3164 	CPU_STATS_ENTER_K();
3165 	cpup = CPU;	/* get cpup now that CPU cannot change */
3166 	CPU_STATS_ADDQ(cpup, vm, pgrec, 1);
3167 	CPU_STATS_ADDQ(cpup, vm, pgfrec, 1);
3168 	CPU_STATS_EXIT_K();
3169 	ASSERT(pp->p_szc == 0);
3170 
3171 	return (1);
3172 }
3173 
3174 /*
3175  * Destroy identity of the page and put it back on
3176  * the page free list.  Assumes that the caller has
3177  * acquired the "exclusive" lock on the page.
3178  */
3179 void
3180 page_destroy(page_t *pp, int dontfree)
3181 {
3182 	ASSERT((PAGE_EXCL(pp) &&
3183 	    !page_iolock_assert(pp)) || panicstr);
3184 	ASSERT(pp->p_slckcnt == 0 || panicstr);
3185 
3186 	if (pp->p_szc != 0) {
3187 		if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
3188 		    PP_ISKAS(pp)) {
3189 			panic("page_destroy: anon or kernel or no vnode "
3190 			    "large page %p", (void *)pp);
3191 		}
3192 		page_demote_vp_pages(pp);
3193 		ASSERT(pp->p_szc == 0);
3194 	}
3195 
3196 	TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy:pp %p", pp);
3197 
3198 	/*
3199 	 * Unload translations, if any, then hash out the
3200 	 * page to erase its identity.
3201 	 */
3202 	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3203 	page_hashout(pp, NULL);
3204 
3205 	if (!dontfree) {
3206 		/*
3207 		 * Acquire the "freemem_lock" for availrmem.
3208 		 * The page_struct_lock need not be acquired for lckcnt
3209 		 * and cowcnt since the page has an "exclusive" lock.
3210 		 */
3211 		if ((pp->p_lckcnt != 0) || (pp->p_cowcnt != 0)) {
3212 			mutex_enter(&freemem_lock);
3213 			if (pp->p_lckcnt != 0) {
3214 				availrmem++;
3215 				pp->p_lckcnt = 0;
3216 			}
3217 			if (pp->p_cowcnt != 0) {
3218 				availrmem += pp->p_cowcnt;
3219 				pp->p_cowcnt = 0;
3220 			}
3221 			mutex_exit(&freemem_lock);
3222 		}
3223 		/*
3224 		 * Put the page on the "free" list.
3225 		 */
3226 		page_free(pp, 0);
3227 	}
3228 }
3229 
3230 void
3231 page_destroy_pages(page_t *pp)
3232 {
3233 
3234 	page_t	*tpp, *rootpp = NULL;
3235 	pgcnt_t	pgcnt = page_get_pagecnt(pp->p_szc);
3236 	pgcnt_t	i, pglcks = 0;
3237 	uint_t	szc = pp->p_szc;
3238 
3239 	ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
3240 
3241 	VM_STAT_ADD(pagecnt.pc_destroy_pages);
3242 
3243 	TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy_pages:pp %p", pp);
3244 
3245 	if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
3246 		panic("page_destroy_pages: not root page %p", (void *)pp);
3247 		/*NOTREACHED*/
3248 	}
3249 
3250 	for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
3251 		ASSERT((PAGE_EXCL(tpp) &&
3252 		    !page_iolock_assert(tpp)) || panicstr);
3253 		ASSERT(tpp->p_slckcnt == 0 || panicstr);
3254 		(void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
3255 		page_hashout(tpp, NULL);
3256 		ASSERT(tpp->p_offset == (u_offset_t)-1);
3257 		if (tpp->p_lckcnt != 0) {
3258 			pglcks++;
3259 			tpp->p_lckcnt = 0;
3260 		} else if (tpp->p_cowcnt != 0) {
3261 			pglcks += tpp->p_cowcnt;
3262 			tpp->p_cowcnt = 0;
3263 		}
3264 		ASSERT(!hat_page_getshare(tpp));
3265 		ASSERT(tpp->p_vnode == NULL);
3266 		ASSERT(tpp->p_szc == szc);
3267 
3268 		PP_SETFREE(tpp);
3269 		page_clr_all_props(tpp);
3270 		PP_SETAGED(tpp);
3271 		ASSERT(tpp->p_next == tpp);
3272 		ASSERT(tpp->p_prev == tpp);
3273 		page_list_concat(&rootpp, &tpp);
3274 	}
3275 
3276 	ASSERT(rootpp == pp);
3277 	if (pglcks != 0) {
3278 		mutex_enter(&freemem_lock);
3279 		availrmem += pglcks;
3280 		mutex_exit(&freemem_lock);
3281 	}
3282 
3283 	page_list_add_pages(rootpp, 0);
3284 	page_create_putback(pgcnt);
3285 }
3286 
3287 /*
3288  * Similar to page_destroy(), but destroys pages which are
3289  * locked and known to be on the page free list.  Since
3290  * the page is known to be free and locked, no one can access
3291  * it.
3292  *
3293  * Also, the number of free pages does not change.
3294  */
3295 void
3296 page_destroy_free(page_t *pp)
3297 {
3298 	ASSERT(PAGE_EXCL(pp));
3299 	ASSERT(PP_ISFREE(pp));
3300 	ASSERT(pp->p_vnode);
3301 	ASSERT(hat_page_getattr(pp, P_MOD | P_REF | P_RO) == 0);
3302 	ASSERT(!hat_page_is_mapped(pp));
3303 	ASSERT(PP_ISAGED(pp) == 0);
3304 	ASSERT(pp->p_szc == 0);
3305 
3306 	VM_STAT_ADD(pagecnt.pc_destroy_free);
3307 	page_list_sub(pp, PG_CACHE_LIST);
3308 
3309 	page_hashout(pp, NULL);
3310 	ASSERT(pp->p_vnode == NULL);
3311 	ASSERT(pp->p_offset == (u_offset_t)-1);
3312 	ASSERT(pp->p_hash == NULL);
3313 
3314 	PP_SETAGED(pp);
3315 	page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
3316 	page_unlock(pp);
3317 
3318 	mutex_enter(&new_freemem_lock);
3319 	if (freemem_wait) {
3320 		cv_signal(&freemem_cv);
3321 	}
3322 	mutex_exit(&new_freemem_lock);
3323 }
3324 
3325 /*
3326  * Rename the page "opp" to have an identity specified
3327  * by [vp, off].  If a page already exists with this name
3328  * it is locked and destroyed.  Note that the page's
3329  * translations are not unloaded during the rename.
3330  *
3331  * This routine is used by the anon layer to "steal" the
3332  * original page and is not unlike destroying a page and
3333  * creating a new page using the same page frame.
3334  *
3335  * XXX -- Could deadlock if caller 1 tries to rename A to B while
3336  * caller 2 tries to rename B to A.
3337  */
3338 void
3339 page_rename(page_t *opp, vnode_t *vp, u_offset_t off)
3340 {
3341 	page_t		*pp;
3342 	int		olckcnt = 0;
3343 	int		ocowcnt = 0;
3344 	kmutex_t	*phm;
3345 	ulong_t		index;
3346 
3347 	ASSERT(PAGE_EXCL(opp) && !page_iolock_assert(opp));
3348 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3349 	ASSERT(PP_ISFREE(opp) == 0);
3350 
3351 	VM_STAT_ADD(page_rename_count);
3352 
3353 	TRACE_3(TR_FAC_VM, TR_PAGE_RENAME,
3354 	    "page rename:pp %p vp %p off %llx", opp, vp, off);
3355 
3356 	/*
3357 	 * CacheFS may call page_rename for a large NFS page
3358 	 * when both CacheFS and NFS mount points are used
3359 	 * by applications. Demote this large page before
3360 	 * renaming it, to ensure that there are no "partial"
3361 	 * large pages left lying around.
3362 	 */
3363 	if (opp->p_szc != 0) {
3364 		vnode_t *ovp = opp->p_vnode;
3365 		ASSERT(ovp != NULL);
3366 		ASSERT(!IS_SWAPFSVP(ovp));
3367 		ASSERT(!VN_ISKAS(ovp));
3368 		page_demote_vp_pages(opp);
3369 		ASSERT(opp->p_szc == 0);
3370 	}
3371 
3372 	page_hashout(opp, NULL);
3373 	PP_CLRAGED(opp);
3374 
3375 	/*
3376 	 * Acquire the appropriate page hash lock, since
3377 	 * we're going to rename the page.
3378 	 */
3379 	index = PAGE_HASH_FUNC(vp, off);
3380 	phm = PAGE_HASH_MUTEX(index);
3381 	mutex_enter(phm);
3382 top:
3383 	/*
3384 	 * Look for an existing page with this name and destroy it if found.
3385 	 * By holding the page hash lock all the way to the page_hashin()
3386 	 * call, we are assured that no page can be created with this
3387 	 * identity.  In the case when the phm lock is dropped to undo any
3388 	 * hat layer mappings, the existing page is held with an "exclusive"
3389 	 * lock, again preventing another page from being created with
3390 	 * this identity.
3391 	 */
3392 	PAGE_HASH_SEARCH(index, pp, vp, off);
3393 	if (pp != NULL) {
3394 		VM_STAT_ADD(page_rename_exists);
3395 
3396 		/*
3397 		 * As it turns out, this is one of only two places where
3398 		 * page_lock() needs to hold the passed in lock in the
3399 		 * successful case.  In all of the others, the lock could
3400 		 * be dropped as soon as the attempt is made to lock
3401 		 * the page.  It is tempting to add yet another arguement,
3402 		 * PL_KEEP or PL_DROP, to let page_lock know what to do.
3403 		 */
3404 		if (!page_lock(pp, SE_EXCL, phm, P_RECLAIM)) {
3405 			/*
3406 			 * Went to sleep because the page could not
3407 			 * be locked.  We were woken up when the page
3408 			 * was unlocked, or when the page was destroyed.
3409 			 * In either case, `phm' was dropped while we
3410 			 * slept.  Hence we should not just roar through
3411 			 * this loop.
3412 			 */
3413 			goto top;
3414 		}
3415 
3416 		/*
3417 		 * If an existing page is a large page, then demote
3418 		 * it to ensure that no "partial" large pages are
3419 		 * "created" after page_rename. An existing page
3420 		 * can be a CacheFS page, and can't belong to swapfs.
3421 		 */
3422 		if (hat_page_is_mapped(pp)) {
3423 			/*
3424 			 * Unload translations.  Since we hold the
3425 			 * exclusive lock on this page, the page
3426 			 * can not be changed while we drop phm.
3427 			 * This is also not a lock protocol violation,
3428 			 * but rather the proper way to do things.
3429 			 */
3430 			mutex_exit(phm);
3431 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3432 			if (pp->p_szc != 0) {
3433 				ASSERT(!IS_SWAPFSVP(vp));
3434 				ASSERT(!VN_ISKAS(vp));
3435 				page_demote_vp_pages(pp);
3436 				ASSERT(pp->p_szc == 0);
3437 			}
3438 			mutex_enter(phm);
3439 		} else if (pp->p_szc != 0) {
3440 			ASSERT(!IS_SWAPFSVP(vp));
3441 			ASSERT(!VN_ISKAS(vp));
3442 			mutex_exit(phm);
3443 			page_demote_vp_pages(pp);
3444 			ASSERT(pp->p_szc == 0);
3445 			mutex_enter(phm);
3446 		}
3447 		page_hashout(pp, phm);
3448 	}
3449 	/*
3450 	 * Hash in the page with the new identity.
3451 	 */
3452 	if (!page_hashin(opp, vp, off, phm)) {
3453 		/*
3454 		 * We were holding phm while we searched for [vp, off]
3455 		 * and only dropped phm if we found and locked a page.
3456 		 * If we can't create this page now, then some thing
3457 		 * is really broken.
3458 		 */
3459 		panic("page_rename: Can't hash in page: %p", (void *)pp);
3460 		/*NOTREACHED*/
3461 	}
3462 
3463 	ASSERT(MUTEX_HELD(phm));
3464 	mutex_exit(phm);
3465 
3466 	/*
3467 	 * Now that we have dropped phm, lets get around to finishing up
3468 	 * with pp.
3469 	 */
3470 	if (pp != NULL) {
3471 		ASSERT(!hat_page_is_mapped(pp));
3472 		/* for now large pages should not end up here */
3473 		ASSERT(pp->p_szc == 0);
3474 		/*
3475 		 * Save the locks for transfer to the new page and then
3476 		 * clear them so page_free doesn't think they're important.
3477 		 * The page_struct_lock need not be acquired for lckcnt and
3478 		 * cowcnt since the page has an "exclusive" lock.
3479 		 */
3480 		olckcnt = pp->p_lckcnt;
3481 		ocowcnt = pp->p_cowcnt;
3482 		pp->p_lckcnt = pp->p_cowcnt = 0;
3483 
3484 		/*
3485 		 * Put the page on the "free" list after we drop
3486 		 * the lock.  The less work under the lock the better.
3487 		 */
3488 		/*LINTED: constant in conditional context*/
3489 		VN_DISPOSE(pp, B_FREE, 0, kcred);
3490 	}
3491 
3492 	/*
3493 	 * Transfer the lock count from the old page (if any).
3494 	 * The page_struct_lock need not be acquired for lckcnt and
3495 	 * cowcnt since the page has an "exclusive" lock.
3496 	 */
3497 	opp->p_lckcnt += olckcnt;
3498 	opp->p_cowcnt += ocowcnt;
3499 }
3500 
3501 /*
3502  * low level routine to add page `pp' to the hash and vp chains for [vp, offset]
3503  *
3504  * Pages are normally inserted at the start of a vnode's v_pages list.
3505  * If the vnode is VMODSORT and the page is modified, it goes at the end.
3506  * This can happen when a modified page is relocated for DR.
3507  *
3508  * Returns 1 on success and 0 on failure.
3509  */
3510 static int
3511 page_do_hashin(page_t *pp, vnode_t *vp, u_offset_t offset)
3512 {
3513 	page_t		**listp;
3514 	page_t		*tp;
3515 	ulong_t		index;
3516 
3517 	ASSERT(PAGE_EXCL(pp));
3518 	ASSERT(vp != NULL);
3519 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3520 
3521 	/*
3522 	 * Be sure to set these up before the page is inserted on the hash
3523 	 * list.  As soon as the page is placed on the list some other
3524 	 * thread might get confused and wonder how this page could
3525 	 * possibly hash to this list.
3526 	 */
3527 	pp->p_vnode = vp;
3528 	pp->p_offset = offset;
3529 
3530 	/*
3531 	 * record if this page is on a swap vnode
3532 	 */
3533 	if ((vp->v_flag & VISSWAP) != 0)
3534 		PP_SETSWAP(pp);
3535 
3536 	index = PAGE_HASH_FUNC(vp, offset);
3537 	ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(index)));
3538 	listp = &page_hash[index];
3539 
3540 	/*
3541 	 * If this page is already hashed in, fail this attempt to add it.
3542 	 */
3543 	for (tp = *listp; tp != NULL; tp = tp->p_hash) {
3544 		if (tp->p_vnode == vp && tp->p_offset == offset) {
3545 			pp->p_vnode = NULL;
3546 			pp->p_offset = (u_offset_t)(-1);
3547 			return (0);
3548 		}
3549 	}
3550 	pp->p_hash = *listp;
3551 	*listp = pp;
3552 
3553 	/*
3554 	 * Add the page to the vnode's list of pages
3555 	 */
3556 	if (vp->v_pages != NULL && IS_VMODSORT(vp) && hat_ismod(pp))
3557 		listp = &vp->v_pages->p_vpprev->p_vpnext;
3558 	else
3559 		listp = &vp->v_pages;
3560 
3561 	page_vpadd(listp, pp);
3562 
3563 	return (1);
3564 }
3565 
3566 /*
3567  * Add page `pp' to both the hash and vp chains for [vp, offset].
3568  *
3569  * Returns 1 on success and 0 on failure.
3570  * If hold is passed in, it is not dropped.
3571  */
3572 int
3573 page_hashin(page_t *pp, vnode_t *vp, u_offset_t offset, kmutex_t *hold)
3574 {
3575 	kmutex_t	*phm = NULL;
3576 	kmutex_t	*vphm;
3577 	int		rc;
3578 
3579 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3580 
3581 	TRACE_3(TR_FAC_VM, TR_PAGE_HASHIN,
3582 	    "page_hashin:pp %p vp %p offset %llx",
3583 	    pp, vp, offset);
3584 
3585 	VM_STAT_ADD(hashin_count);
3586 
3587 	if (hold != NULL)
3588 		phm = hold;
3589 	else {
3590 		VM_STAT_ADD(hashin_not_held);
3591 		phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, offset));
3592 		mutex_enter(phm);
3593 	}
3594 
3595 	vphm = page_vnode_mutex(vp);
3596 	mutex_enter(vphm);
3597 	rc = page_do_hashin(pp, vp, offset);
3598 	mutex_exit(vphm);
3599 	if (hold == NULL)
3600 		mutex_exit(phm);
3601 	if (rc == 0)
3602 		VM_STAT_ADD(hashin_already);
3603 	return (rc);
3604 }
3605 
3606 /*
3607  * Remove page ``pp'' from the hash and vp chains and remove vp association.
3608  * All mutexes must be held
3609  */
3610 static void
3611 page_do_hashout(page_t *pp)
3612 {
3613 	page_t	**hpp;
3614 	page_t	*hp;
3615 	vnode_t	*vp = pp->p_vnode;
3616 
3617 	ASSERT(vp != NULL);
3618 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3619 
3620 	/*
3621 	 * First, take pp off of its hash chain.
3622 	 */
3623 	hpp = &page_hash[PAGE_HASH_FUNC(vp, pp->p_offset)];
3624 
3625 	for (;;) {
3626 		hp = *hpp;
3627 		if (hp == pp)
3628 			break;
3629 		if (hp == NULL) {
3630 			panic("page_do_hashout");
3631 			/*NOTREACHED*/
3632 		}
3633 		hpp = &hp->p_hash;
3634 	}
3635 	*hpp = pp->p_hash;
3636 
3637 	/*
3638 	 * Now remove it from its associated vnode.
3639 	 */
3640 	if (vp->v_pages)
3641 		page_vpsub(&vp->v_pages, pp);
3642 
3643 	pp->p_hash = NULL;
3644 	page_clr_all_props(pp);
3645 	PP_CLRSWAP(pp);
3646 	pp->p_vnode = NULL;
3647 	pp->p_offset = (u_offset_t)-1;
3648 }
3649 
3650 /*
3651  * Remove page ``pp'' from the hash and vp chains and remove vp association.
3652  *
3653  * When `phm' is non-NULL it contains the address of the mutex protecting the
3654  * hash list pp is on.  It is not dropped.
3655  */
3656 void
3657 page_hashout(page_t *pp, kmutex_t *phm)
3658 {
3659 	vnode_t		*vp;
3660 	ulong_t		index;
3661 	kmutex_t	*nphm;
3662 	kmutex_t	*vphm;
3663 	kmutex_t	*sep;
3664 
3665 	ASSERT(phm != NULL ? MUTEX_HELD(phm) : 1);
3666 	ASSERT(pp->p_vnode != NULL);
3667 	ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);
3668 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(pp->p_vnode)));
3669 
3670 	vp = pp->p_vnode;
3671 
3672 	TRACE_2(TR_FAC_VM, TR_PAGE_HASHOUT,
3673 	    "page_hashout:pp %p vp %p", pp, vp);
3674 
3675 	/* Kernel probe */
3676 	TNF_PROBE_2(page_unmap, "vm pagefault", /* CSTYLED */,
3677 	    tnf_opaque, vnode, vp,
3678 	    tnf_offset, offset, pp->p_offset);
3679 
3680 	/*
3681 	 *
3682 	 */
3683 	VM_STAT_ADD(hashout_count);
3684 	index = PAGE_HASH_FUNC(vp, pp->p_offset);
3685 	if (phm == NULL) {
3686 		VM_STAT_ADD(hashout_not_held);
3687 		nphm = PAGE_HASH_MUTEX(index);
3688 		mutex_enter(nphm);
3689 	}
3690 	ASSERT(phm ? phm == PAGE_HASH_MUTEX(index) : 1);
3691 
3692 
3693 	/*
3694 	 * grab page vnode mutex and remove it...
3695 	 */
3696 	vphm = page_vnode_mutex(vp);
3697 	mutex_enter(vphm);
3698 
3699 	page_do_hashout(pp);
3700 
3701 	mutex_exit(vphm);
3702 	if (phm == NULL)
3703 		mutex_exit(nphm);
3704 
3705 	/*
3706 	 * Wake up processes waiting for this page.  The page's
3707 	 * identity has been changed, and is probably not the
3708 	 * desired page any longer.
3709 	 */
3710 	sep = page_se_mutex(pp);
3711 	mutex_enter(sep);
3712 	pp->p_selock &= ~SE_EWANTED;
3713 	if (CV_HAS_WAITERS(&pp->p_cv))
3714 		cv_broadcast(&pp->p_cv);
3715 	mutex_exit(sep);
3716 }
3717 
3718 /*
3719  * Add the page to the front of a linked list of pages
3720  * using the p_next & p_prev pointers for the list.
3721  * The caller is responsible for protecting the list pointers.
3722  */
3723 void
3724 page_add(page_t **ppp, page_t *pp)
3725 {
3726 	ASSERT(PAGE_EXCL(pp) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3727 
3728 	page_add_common(ppp, pp);
3729 }
3730 
3731 
3732 
3733 /*
3734  *  Common code for page_add() and mach_page_add()
3735  */
3736 void
3737 page_add_common(page_t **ppp, page_t *pp)
3738 {
3739 	if (*ppp == NULL) {
3740 		pp->p_next = pp->p_prev = pp;
3741 	} else {
3742 		pp->p_next = *ppp;
3743 		pp->p_prev = (*ppp)->p_prev;
3744 		(*ppp)->p_prev = pp;
3745 		pp->p_prev->p_next = pp;
3746 	}
3747 	*ppp = pp;
3748 }
3749 
3750 
3751 /*
3752  * Remove this page from a linked list of pages
3753  * using the p_next & p_prev pointers for the list.
3754  *
3755  * The caller is responsible for protecting the list pointers.
3756  */
3757 void
3758 page_sub(page_t **ppp, page_t *pp)
3759 {
3760 	ASSERT((PP_ISFREE(pp)) ? 1 :
3761 	    (PAGE_EXCL(pp)) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3762 
3763 	if (*ppp == NULL || pp == NULL) {
3764 		panic("page_sub: bad arg(s): pp %p, *ppp %p",
3765 		    (void *)pp, (void *)(*ppp));
3766 		/*NOTREACHED*/
3767 	}
3768 
3769 	page_sub_common(ppp, pp);
3770 }
3771 
3772 
3773 /*
3774  *  Common code for page_sub() and mach_page_sub()
3775  */
3776 void
3777 page_sub_common(page_t **ppp, page_t *pp)
3778 {
3779 	if (*ppp == pp)
3780 		*ppp = pp->p_next;		/* go to next page */
3781 
3782 	if (*ppp == pp)
3783 		*ppp = NULL;			/* page list is gone */
3784 	else {
3785 		pp->p_prev->p_next = pp->p_next;
3786 		pp->p_next->p_prev = pp->p_prev;
3787 	}
3788 	pp->p_prev = pp->p_next = pp;		/* make pp a list of one */
3789 }
3790 
3791 
3792 /*
3793  * Break page list cppp into two lists with npages in the first list.
3794  * The tail is returned in nppp.
3795  */
3796 void
3797 page_list_break(page_t **oppp, page_t **nppp, pgcnt_t npages)
3798 {
3799 	page_t *s1pp = *oppp;
3800 	page_t *s2pp;
3801 	page_t *e1pp, *e2pp;
3802 	long n = 0;
3803 
3804 	if (s1pp == NULL) {
3805 		*nppp = NULL;
3806 		return;
3807 	}
3808 	if (npages == 0) {
3809 		*nppp = s1pp;
3810 		*oppp = NULL;
3811 		return;
3812 	}
3813 	for (n = 0, s2pp = *oppp; n < npages; n++) {
3814 		s2pp = s2pp->p_next;
3815 	}
3816 	/* Fix head and tail of new lists */
3817 	e1pp = s2pp->p_prev;
3818 	e2pp = s1pp->p_prev;
3819 	s1pp->p_prev = e1pp;
3820 	e1pp->p_next = s1pp;
3821 	s2pp->p_prev = e2pp;
3822 	e2pp->p_next = s2pp;
3823 
3824 	/* second list empty */
3825 	if (s2pp == s1pp) {
3826 		*oppp = s1pp;
3827 		*nppp = NULL;
3828 	} else {
3829 		*oppp = s1pp;
3830 		*nppp = s2pp;
3831 	}
3832 }
3833 
3834 /*
3835  * Concatenate page list nppp onto the end of list ppp.
3836  */
3837 void
3838 page_list_concat(page_t **ppp, page_t **nppp)
3839 {
3840 	page_t *s1pp, *s2pp, *e1pp, *e2pp;
3841 
3842 	if (*nppp == NULL) {
3843 		return;
3844 	}
3845 	if (*ppp == NULL) {
3846 		*ppp = *nppp;
3847 		return;
3848 	}
3849 	s1pp = *ppp;
3850 	e1pp =  s1pp->p_prev;
3851 	s2pp = *nppp;
3852 	e2pp = s2pp->p_prev;
3853 	s1pp->p_prev = e2pp;
3854 	e2pp->p_next = s1pp;
3855 	e1pp->p_next = s2pp;
3856 	s2pp->p_prev = e1pp;
3857 }
3858 
3859 /*
3860  * return the next page in the page list
3861  */
3862 page_t *
3863 page_list_next(page_t *pp)
3864 {
3865 	return (pp->p_next);
3866 }
3867 
3868 
3869 /*
3870  * Add the page to the front of the linked list of pages
3871  * using p_vpnext/p_vpprev pointers for the list.
3872  *
3873  * The caller is responsible for protecting the lists.
3874  */
3875 void
3876 page_vpadd(page_t **ppp, page_t *pp)
3877 {
3878 	if (*ppp == NULL) {
3879 		pp->p_vpnext = pp->p_vpprev = pp;
3880 	} else {
3881 		pp->p_vpnext = *ppp;
3882 		pp->p_vpprev = (*ppp)->p_vpprev;
3883 		(*ppp)->p_vpprev = pp;
3884 		pp->p_vpprev->p_vpnext = pp;
3885 	}
3886 	*ppp = pp;
3887 }
3888 
3889 /*
3890  * Remove this page from the linked list of pages
3891  * using p_vpnext/p_vpprev pointers for the list.
3892  *
3893  * The caller is responsible for protecting the lists.
3894  */
3895 void
3896 page_vpsub(page_t **ppp, page_t *pp)
3897 {
3898 	if (*ppp == NULL || pp == NULL) {
3899 		panic("page_vpsub: bad arg(s): pp %p, *ppp %p",
3900 		    (void *)pp, (void *)(*ppp));
3901 		/*NOTREACHED*/
3902 	}
3903 
3904 	if (*ppp == pp)
3905 		*ppp = pp->p_vpnext;		/* go to next page */
3906 
3907 	if (*ppp == pp)
3908 		*ppp = NULL;			/* page list is gone */
3909 	else {
3910 		pp->p_vpprev->p_vpnext = pp->p_vpnext;
3911 		pp->p_vpnext->p_vpprev = pp->p_vpprev;
3912 	}
3913 	pp->p_vpprev = pp->p_vpnext = pp;	/* make pp a list of one */
3914 }
3915 
3916 /*
3917  * Lock a physical page into memory "long term".  Used to support "lock
3918  * in memory" functions.  Accepts the page to be locked, and a cow variable
3919  * to indicate whether a the lock will travel to the new page during
3920  * a potential copy-on-write.
3921  */
3922 int
3923 page_pp_lock(
3924 	page_t *pp,			/* page to be locked */
3925 	int cow,			/* cow lock */
3926 	int kernel)			/* must succeed -- ignore checking */
3927 {
3928 	int r = 0;			/* result -- assume failure */
3929 
3930 	ASSERT(PAGE_LOCKED(pp));
3931 
3932 	page_struct_lock(pp);
3933 	/*
3934 	 * Acquire the "freemem_lock" for availrmem.
3935 	 */
3936 	if (cow) {
3937 		mutex_enter(&freemem_lock);
3938 		if ((availrmem > pages_pp_maximum) &&
3939 		    (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
3940 			availrmem--;
3941 			pages_locked++;
3942 			mutex_exit(&freemem_lock);
3943 			r = 1;
3944 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
3945 				cmn_err(CE_WARN,
3946 				    "COW lock limit reached on pfn 0x%lx",
3947 				    page_pptonum(pp));
3948 			}
3949 		} else
3950 			mutex_exit(&freemem_lock);
3951 	} else {
3952 		if (pp->p_lckcnt) {
3953 			if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
3954 				r = 1;
3955 				if (++pp->p_lckcnt ==
3956 				    (ushort_t)PAGE_LOCK_MAXIMUM) {
3957 					cmn_err(CE_WARN, "Page lock limit "
3958 					    "reached on pfn 0x%lx",
3959 					    page_pptonum(pp));
3960 				}
3961 			}
3962 		} else {
3963 			if (kernel) {
3964 				/* availrmem accounting done by caller */
3965 				++pp->p_lckcnt;
3966 				r = 1;
3967 			} else {
3968 				mutex_enter(&freemem_lock);
3969 				if (availrmem > pages_pp_maximum) {
3970 					availrmem--;
3971 					pages_locked++;
3972 					++pp->p_lckcnt;
3973 					r = 1;
3974 				}
3975 				mutex_exit(&freemem_lock);
3976 			}
3977 		}
3978 	}
3979 	page_struct_unlock(pp);
3980 	return (r);
3981 }
3982 
3983 /*
3984  * Decommit a lock on a physical page frame.  Account for cow locks if
3985  * appropriate.
3986  */
3987 void
3988 page_pp_unlock(
3989 	page_t *pp,			/* page to be unlocked */
3990 	int cow,			/* expect cow lock */
3991 	int kernel)			/* this was a kernel lock */
3992 {
3993 	ASSERT(PAGE_LOCKED(pp));
3994 
3995 	page_struct_lock(pp);
3996 	/*
3997 	 * Acquire the "freemem_lock" for availrmem.
3998 	 * If cowcnt or lcknt is already 0 do nothing; i.e., we
3999 	 * could be called to unlock even if nothing is locked. This could
4000 	 * happen if locked file pages were truncated (removing the lock)
4001 	 * and the file was grown again and new pages faulted in; the new
4002 	 * pages are unlocked but the segment still thinks they're locked.
4003 	 */
4004 	if (cow) {
4005 		if (pp->p_cowcnt) {
4006 			mutex_enter(&freemem_lock);
4007 			pp->p_cowcnt--;
4008 			availrmem++;
4009 			pages_locked--;
4010 			mutex_exit(&freemem_lock);
4011 		}
4012 	} else {
4013 		if (pp->p_lckcnt && --pp->p_lckcnt == 0) {
4014 			if (!kernel) {
4015 				mutex_enter(&freemem_lock);
4016 				availrmem++;
4017 				pages_locked--;
4018 				mutex_exit(&freemem_lock);
4019 			}
4020 		}
4021 	}
4022 	page_struct_unlock(pp);
4023 }
4024 
4025 /*
4026  * This routine reserves availrmem for npages;
4027  * 	flags: KM_NOSLEEP or KM_SLEEP
4028  * 	returns 1 on success or 0 on failure
4029  */
4030 int
4031 page_resv(pgcnt_t npages, uint_t flags)
4032 {
4033 	mutex_enter(&freemem_lock);
4034 	while (availrmem < tune.t_minarmem + npages) {
4035 		if (flags & KM_NOSLEEP) {
4036 			mutex_exit(&freemem_lock);
4037 			return (0);
4038 		}
4039 		mutex_exit(&freemem_lock);
4040 		page_needfree(npages);
4041 		kmem_reap();
4042 		delay(hz >> 2);
4043 		page_needfree(-(spgcnt_t)npages);
4044 		mutex_enter(&freemem_lock);
4045 	}
4046 	availrmem -= npages;
4047 	mutex_exit(&freemem_lock);
4048 	return (1);
4049 }
4050 
4051 /*
4052  * This routine unreserves availrmem for npages;
4053  */
4054 void
4055 page_unresv(pgcnt_t npages)
4056 {
4057 	mutex_enter(&freemem_lock);
4058 	availrmem += npages;
4059 	mutex_exit(&freemem_lock);
4060 }
4061 
4062 /*
4063  * See Statement at the beginning of segvn_lockop() regarding
4064  * the way we handle cowcnts and lckcnts.
4065  *
4066  * Transfer cowcnt on 'opp' to cowcnt on 'npp' if the vpage
4067  * that breaks COW has PROT_WRITE.
4068  *
4069  * Note that, we may also break COW in case we are softlocking
4070  * on read access during physio;
4071  * in this softlock case, the vpage may not have PROT_WRITE.
4072  * So, we need to transfer lckcnt on 'opp' to lckcnt on 'npp'
4073  * if the vpage doesn't have PROT_WRITE.
4074  *
4075  * This routine is never called if we are stealing a page
4076  * in anon_private.
4077  *
4078  * The caller subtracted from availrmem for read only mapping.
4079  * if lckcnt is 1 increment availrmem.
4080  */
4081 void
4082 page_pp_useclaim(
4083 	page_t *opp,		/* original page frame losing lock */
4084 	page_t *npp,		/* new page frame gaining lock */
4085 	uint_t	write_perm) 	/* set if vpage has PROT_WRITE */
4086 {
4087 	int payback = 0;
4088 
4089 	ASSERT(PAGE_LOCKED(opp));
4090 	ASSERT(PAGE_LOCKED(npp));
4091 
4092 	page_struct_lock(opp);
4093 
4094 	ASSERT(npp->p_cowcnt == 0);
4095 	ASSERT(npp->p_lckcnt == 0);
4096 
4097 	/* Don't use claim if nothing is locked (see page_pp_unlock above) */
4098 	if ((write_perm && opp->p_cowcnt != 0) ||
4099 	    (!write_perm && opp->p_lckcnt != 0)) {
4100 
4101 		if (write_perm) {
4102 			npp->p_cowcnt++;
4103 			ASSERT(opp->p_cowcnt != 0);
4104 			opp->p_cowcnt--;
4105 		} else {
4106 
4107 			ASSERT(opp->p_lckcnt != 0);
4108 
4109 			/*
4110 			 * We didn't need availrmem decremented if p_lckcnt on
4111 			 * original page is 1. Here, we are unlocking
4112 			 * read-only copy belonging to original page and
4113 			 * are locking a copy belonging to new page.
4114 			 */
4115 			if (opp->p_lckcnt == 1)
4116 				payback = 1;
4117 
4118 			npp->p_lckcnt++;
4119 			opp->p_lckcnt--;
4120 		}
4121 	}
4122 	if (payback) {
4123 		mutex_enter(&freemem_lock);
4124 		availrmem++;
4125 		pages_useclaim--;
4126 		mutex_exit(&freemem_lock);
4127 	}
4128 	page_struct_unlock(opp);
4129 }
4130 
4131 /*
4132  * Simple claim adjust functions -- used to support changes in
4133  * claims due to changes in access permissions.  Used by segvn_setprot().
4134  */
4135 int
4136 page_addclaim(page_t *pp)
4137 {
4138 	int r = 0;			/* result */
4139 
4140 	ASSERT(PAGE_LOCKED(pp));
4141 
4142 	page_struct_lock(pp);
4143 	ASSERT(pp->p_lckcnt != 0);
4144 
4145 	if (pp->p_lckcnt == 1) {
4146 		if (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4147 			--pp->p_lckcnt;
4148 			r = 1;
4149 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4150 				cmn_err(CE_WARN,
4151 				    "COW lock limit reached on pfn 0x%lx",
4152 				    page_pptonum(pp));
4153 			}
4154 		}
4155 	} else {
4156 		mutex_enter(&freemem_lock);
4157 		if ((availrmem > pages_pp_maximum) &&
4158 		    (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
4159 			--availrmem;
4160 			++pages_claimed;
4161 			mutex_exit(&freemem_lock);
4162 			--pp->p_lckcnt;
4163 			r = 1;
4164 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4165 				cmn_err(CE_WARN,
4166 				    "COW lock limit reached on pfn 0x%lx",
4167 				    page_pptonum(pp));
4168 			}
4169 		} else
4170 			mutex_exit(&freemem_lock);
4171 	}
4172 	page_struct_unlock(pp);
4173 	return (r);
4174 }
4175 
4176 int
4177 page_subclaim(page_t *pp)
4178 {
4179 	int r = 0;
4180 
4181 	ASSERT(PAGE_LOCKED(pp));
4182 
4183 	page_struct_lock(pp);
4184 	ASSERT(pp->p_cowcnt != 0);
4185 
4186 	if (pp->p_lckcnt) {
4187 		if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4188 			r = 1;
4189 			/*
4190 			 * for availrmem
4191 			 */
4192 			mutex_enter(&freemem_lock);
4193 			availrmem++;
4194 			pages_claimed--;
4195 			mutex_exit(&freemem_lock);
4196 
4197 			pp->p_cowcnt--;
4198 
4199 			if (++pp->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4200 				cmn_err(CE_WARN,
4201 				    "Page lock limit reached on pfn 0x%lx",
4202 				    page_pptonum(pp));
4203 			}
4204 		}
4205 	} else {
4206 		r = 1;
4207 		pp->p_cowcnt--;
4208 		pp->p_lckcnt++;
4209 	}
4210 	page_struct_unlock(pp);
4211 	return (r);
4212 }
4213 
4214 int
4215 page_addclaim_pages(page_t  **ppa)
4216 {
4217 
4218 	pgcnt_t	lckpgs = 0, pg_idx;
4219 
4220 	VM_STAT_ADD(pagecnt.pc_addclaim_pages);
4221 
4222 	mutex_enter(&page_llock);
4223 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4224 
4225 		ASSERT(PAGE_LOCKED(ppa[pg_idx]));
4226 		ASSERT(ppa[pg_idx]->p_lckcnt != 0);
4227 		if (ppa[pg_idx]->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4228 			mutex_exit(&page_llock);
4229 			return (0);
4230 		}
4231 		if (ppa[pg_idx]->p_lckcnt > 1)
4232 			lckpgs++;
4233 	}
4234 
4235 	if (lckpgs != 0) {
4236 		mutex_enter(&freemem_lock);
4237 		if (availrmem >= pages_pp_maximum + lckpgs) {
4238 			availrmem -= lckpgs;
4239 			pages_claimed += lckpgs;
4240 		} else {
4241 			mutex_exit(&freemem_lock);
4242 			mutex_exit(&page_llock);
4243 			return (0);
4244 		}
4245 		mutex_exit(&freemem_lock);
4246 	}
4247 
4248 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4249 		ppa[pg_idx]->p_lckcnt--;
4250 		ppa[pg_idx]->p_cowcnt++;
4251 	}
4252 	mutex_exit(&page_llock);
4253 	return (1);
4254 }
4255 
4256 int
4257 page_subclaim_pages(page_t  **ppa)
4258 {
4259 	pgcnt_t	ulckpgs = 0, pg_idx;
4260 
4261 	VM_STAT_ADD(pagecnt.pc_subclaim_pages);
4262 
4263 	mutex_enter(&page_llock);
4264 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4265 
4266 		ASSERT(PAGE_LOCKED(ppa[pg_idx]));
4267 		ASSERT(ppa[pg_idx]->p_cowcnt != 0);
4268 		if (ppa[pg_idx]->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4269 			mutex_exit(&page_llock);
4270 			return (0);
4271 		}
4272 		if (ppa[pg_idx]->p_lckcnt != 0)
4273 			ulckpgs++;
4274 	}
4275 
4276 	if (ulckpgs != 0) {
4277 		mutex_enter(&freemem_lock);
4278 		availrmem += ulckpgs;
4279 		pages_claimed -= ulckpgs;
4280 		mutex_exit(&freemem_lock);
4281 	}
4282 
4283 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4284 		ppa[pg_idx]->p_cowcnt--;
4285 		ppa[pg_idx]->p_lckcnt++;
4286 
4287 	}
4288 	mutex_exit(&page_llock);
4289 	return (1);
4290 }
4291 
4292 page_t *
4293 page_numtopp(pfn_t pfnum, se_t se)
4294 {
4295 	page_t *pp;
4296 
4297 retry:
4298 	pp = page_numtopp_nolock(pfnum);
4299 	if (pp == NULL) {
4300 		return ((page_t *)NULL);
4301 	}
4302 
4303 	/*
4304 	 * Acquire the appropriate lock on the page.
4305 	 */
4306 	while (!page_lock(pp, se, (kmutex_t *)NULL, P_RECLAIM)) {
4307 		if (page_pptonum(pp) != pfnum)
4308 			goto retry;
4309 		continue;
4310 	}
4311 
4312 	if (page_pptonum(pp) != pfnum) {
4313 		page_unlock(pp);
4314 		goto retry;
4315 	}
4316 
4317 	return (pp);
4318 }
4319 
4320 page_t *
4321 page_numtopp_noreclaim(pfn_t pfnum, se_t se)
4322 {
4323 	page_t *pp;
4324 
4325 retry:
4326 	pp = page_numtopp_nolock(pfnum);
4327 	if (pp == NULL) {
4328 		return ((page_t *)NULL);
4329 	}
4330 
4331 	/*
4332 	 * Acquire the appropriate lock on the page.
4333 	 */
4334 	while (!page_lock(pp, se, (kmutex_t *)NULL, P_NO_RECLAIM)) {
4335 		if (page_pptonum(pp) != pfnum)
4336 			goto retry;
4337 		continue;
4338 	}
4339 
4340 	if (page_pptonum(pp) != pfnum) {
4341 		page_unlock(pp);
4342 		goto retry;
4343 	}
4344 
4345 	return (pp);
4346 }
4347 
4348 /*
4349  * This routine is like page_numtopp, but will only return page structs
4350  * for pages which are ok for loading into hardware using the page struct.
4351  */
4352 page_t *
4353 page_numtopp_nowait(pfn_t pfnum, se_t se)
4354 {
4355 	page_t *pp;
4356 
4357 retry:
4358 	pp = page_numtopp_nolock(pfnum);
4359 	if (pp == NULL) {
4360 		return ((page_t *)NULL);
4361 	}
4362 
4363 	/*
4364 	 * Try to acquire the appropriate lock on the page.
4365 	 */
4366 	if (PP_ISFREE(pp))
4367 		pp = NULL;
4368 	else {
4369 		if (!page_trylock(pp, se))
4370 			pp = NULL;
4371 		else {
4372 			if (page_pptonum(pp) != pfnum) {
4373 				page_unlock(pp);
4374 				goto retry;
4375 			}
4376 			if (PP_ISFREE(pp)) {
4377 				page_unlock(pp);
4378 				pp = NULL;
4379 			}
4380 		}
4381 	}
4382 	return (pp);
4383 }
4384 
4385 /*
4386  * Returns a count of dirty pages that are in the process
4387  * of being written out.  If 'cleanit' is set, try to push the page.
4388  */
4389 pgcnt_t
4390 page_busy(int cleanit)
4391 {
4392 	page_t *page0 = page_first();
4393 	page_t *pp = page0;
4394 	pgcnt_t nppbusy = 0;
4395 	u_offset_t off;
4396 
4397 	do {
4398 		vnode_t *vp = pp->p_vnode;
4399 
4400 		/*
4401 		 * A page is a candidate for syncing if it is:
4402 		 *
4403 		 * (a)	On neither the freelist nor the cachelist
4404 		 * (b)	Hashed onto a vnode
4405 		 * (c)	Not a kernel page
4406 		 * (d)	Dirty
4407 		 * (e)	Not part of a swapfile
4408 		 * (f)	a page which belongs to a real vnode; eg has a non-null
4409 		 *	v_vfsp pointer.
4410 		 * (g)	Backed by a filesystem which doesn't have a
4411 		 *	stubbed-out sync operation
4412 		 */
4413 		if (!PP_ISFREE(pp) && vp != NULL && !VN_ISKAS(vp) &&
4414 		    hat_ismod(pp) && !IS_SWAPVP(vp) && vp->v_vfsp != NULL &&
4415 		    vfs_can_sync(vp->v_vfsp)) {
4416 			nppbusy++;
4417 			vfs_syncprogress();
4418 
4419 			if (!cleanit)
4420 				continue;
4421 			if (!page_trylock(pp, SE_EXCL))
4422 				continue;
4423 
4424 			if (PP_ISFREE(pp) || vp == NULL || IS_SWAPVP(vp) ||
4425 			    pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
4426 			    !(hat_pagesync(pp,
4427 			    HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD) & P_MOD)) {
4428 				page_unlock(pp);
4429 				continue;
4430 			}
4431 			off = pp->p_offset;
4432 			VN_HOLD(vp);
4433 			page_unlock(pp);
4434 			(void) VOP_PUTPAGE(vp, off, PAGESIZE,
4435 			    B_ASYNC | B_FREE, kcred, NULL);
4436 			VN_RELE(vp);
4437 		}
4438 	} while ((pp = page_next(pp)) != page0);
4439 
4440 	return (nppbusy);
4441 }
4442 
4443 void page_invalidate_pages(void);
4444 
4445 /*
4446  * callback handler to vm sub-system
4447  *
4448  * callers make sure no recursive entries to this func.
4449  */
4450 /*ARGSUSED*/
4451 boolean_t
4452 callb_vm_cpr(void *arg, int code)
4453 {
4454 	if (code == CB_CODE_CPR_CHKPT)
4455 		page_invalidate_pages();
4456 	return (B_TRUE);
4457 }
4458 
4459 /*
4460  * Invalidate all pages of the system.
4461  * It shouldn't be called until all user page activities are all stopped.
4462  */
4463 void
4464 page_invalidate_pages()
4465 {
4466 	page_t *pp;
4467 	page_t *page0;
4468 	pgcnt_t nbusypages;
4469 	int retry = 0;
4470 	const int MAXRETRIES = 4;
4471 #if defined(__sparc)
4472 	extern struct vnode prom_ppages;
4473 #endif /* __sparc */
4474 
4475 top:
4476 	/*
4477 	 * Flush dirty pages and destroy the clean ones.
4478 	 */
4479 	nbusypages = 0;
4480 
4481 	pp = page0 = page_first();
4482 	do {
4483 		struct vnode	*vp;
4484 		u_offset_t	offset;
4485 		int		mod;
4486 
4487 		/*
4488 		 * skip the page if it has no vnode or the page associated
4489 		 * with the kernel vnode or prom allocated kernel mem.
4490 		 */
4491 #if defined(__sparc)
4492 		if ((vp = pp->p_vnode) == NULL || VN_ISKAS(vp) ||
4493 		    vp == &prom_ppages)
4494 #else /* x86 doesn't have prom or prom_ppage */
4495 		if ((vp = pp->p_vnode) == NULL || VN_ISKAS(vp))
4496 #endif /* __sparc */
4497 			continue;
4498 
4499 		/*
4500 		 * skip the page which is already free invalidated.
4501 		 */
4502 		if (PP_ISFREE(pp) && PP_ISAGED(pp))
4503 			continue;
4504 
4505 		/*
4506 		 * skip pages that are already locked or can't be "exclusively"
4507 		 * locked or are already free.  After we lock the page, check
4508 		 * the free and age bits again to be sure it's not destroied
4509 		 * yet.
4510 		 * To achieve max. parallelization, we use page_trylock instead
4511 		 * of page_lock so that we don't get block on individual pages
4512 		 * while we have thousands of other pages to process.
4513 		 */
4514 		if (!page_trylock(pp, SE_EXCL)) {
4515 			nbusypages++;
4516 			continue;
4517 		} else if (PP_ISFREE(pp)) {
4518 			if (!PP_ISAGED(pp)) {
4519 				page_destroy_free(pp);
4520 			} else {
4521 				page_unlock(pp);
4522 			}
4523 			continue;
4524 		}
4525 		/*
4526 		 * Is this page involved in some I/O? shared?
4527 		 *
4528 		 * The page_struct_lock need not be acquired to
4529 		 * examine these fields since the page has an
4530 		 * "exclusive" lock.
4531 		 */
4532 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
4533 			page_unlock(pp);
4534 			continue;
4535 		}
4536 
4537 		if (vp->v_type == VCHR) {
4538 			panic("vp->v_type == VCHR");
4539 			/*NOTREACHED*/
4540 		}
4541 
4542 		if (!page_try_demote_pages(pp)) {
4543 			page_unlock(pp);
4544 			continue;
4545 		}
4546 
4547 		/*
4548 		 * Check the modified bit. Leave the bits alone in hardware
4549 		 * (they will be modified if we do the putpage).
4550 		 */
4551 		mod = (hat_pagesync(pp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD)
4552 		    & P_MOD);
4553 		if (mod) {
4554 			offset = pp->p_offset;
4555 			/*
4556 			 * Hold the vnode before releasing the page lock
4557 			 * to prevent it from being freed and re-used by
4558 			 * some other thread.
4559 			 */
4560 			VN_HOLD(vp);
4561 			page_unlock(pp);
4562 			/*
4563 			 * No error return is checked here. Callers such as
4564 			 * cpr deals with the dirty pages at the dump time
4565 			 * if this putpage fails.
4566 			 */
4567 			(void) VOP_PUTPAGE(vp, offset, PAGESIZE, B_INVAL,
4568 			    kcred, NULL);
4569 			VN_RELE(vp);
4570 		} else {
4571 			page_destroy(pp, 0);
4572 		}
4573 	} while ((pp = page_next(pp)) != page0);
4574 	if (nbusypages && retry++ < MAXRETRIES) {
4575 		delay(1);
4576 		goto top;
4577 	}
4578 }
4579 
4580 /*
4581  * Replace the page "old" with the page "new" on the page hash and vnode lists
4582  *
4583  * the replacement must be done in place, ie the equivalent sequence:
4584  *
4585  *	vp = old->p_vnode;
4586  *	off = old->p_offset;
4587  *	page_do_hashout(old)
4588  *	page_do_hashin(new, vp, off)
4589  *
4590  * doesn't work, since
4591  *  1) if old is the only page on the vnode, the v_pages list has a window
4592  *     where it looks empty. This will break file system assumptions.
4593  * and
4594  *  2) pvn_vplist_dirty() can't deal with pages moving on the v_pages list.
4595  */
4596 static void
4597 page_do_relocate_hash(page_t *new, page_t *old)
4598 {
4599 	page_t	**hash_list;
4600 	vnode_t	*vp = old->p_vnode;
4601 	kmutex_t *sep;
4602 
4603 	ASSERT(PAGE_EXCL(old));
4604 	ASSERT(PAGE_EXCL(new));
4605 	ASSERT(vp != NULL);
4606 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
4607 	ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, old->p_offset))));
4608 
4609 	/*
4610 	 * First find old page on the page hash list
4611 	 */
4612 	hash_list = &page_hash[PAGE_HASH_FUNC(vp, old->p_offset)];
4613 
4614 	for (;;) {
4615 		if (*hash_list == old)
4616 			break;
4617 		if (*hash_list == NULL) {
4618 			panic("page_do_hashout");
4619 			/*NOTREACHED*/
4620 		}
4621 		hash_list = &(*hash_list)->p_hash;
4622 	}
4623 
4624 	/*
4625 	 * update new and replace old with new on the page hash list
4626 	 */
4627 	new->p_vnode = old->p_vnode;
4628 	new->p_offset = old->p_offset;
4629 	new->p_hash = old->p_hash;
4630 	*hash_list = new;
4631 
4632 	if ((new->p_vnode->v_flag & VISSWAP) != 0)
4633 		PP_SETSWAP(new);
4634 
4635 	/*
4636 	 * replace old with new on the vnode's page list
4637 	 */
4638 	if (old->p_vpnext == old) {
4639 		new->p_vpnext = new;
4640 		new->p_vpprev = new;
4641 	} else {
4642 		new->p_vpnext = old->p_vpnext;
4643 		new->p_vpprev = old->p_vpprev;
4644 		new->p_vpnext->p_vpprev = new;
4645 		new->p_vpprev->p_vpnext = new;
4646 	}
4647 	if (vp->v_pages == old)
4648 		vp->v_pages = new;
4649 
4650 	/*
4651 	 * clear out the old page
4652 	 */
4653 	old->p_hash = NULL;
4654 	old->p_vpnext = NULL;
4655 	old->p_vpprev = NULL;
4656 	old->p_vnode = NULL;
4657 	PP_CLRSWAP(old);
4658 	old->p_offset = (u_offset_t)-1;
4659 	page_clr_all_props(old);
4660 
4661 	/*
4662 	 * Wake up processes waiting for this page.  The page's
4663 	 * identity has been changed, and is probably not the
4664 	 * desired page any longer.
4665 	 */
4666 	sep = page_se_mutex(old);
4667 	mutex_enter(sep);
4668 	old->p_selock &= ~SE_EWANTED;
4669 	if (CV_HAS_WAITERS(&old->p_cv))
4670 		cv_broadcast(&old->p_cv);
4671 	mutex_exit(sep);
4672 }
4673 
4674 /*
4675  * This function moves the identity of page "pp_old" to page "pp_new".
4676  * Both pages must be locked on entry.  "pp_new" is free, has no identity,
4677  * and need not be hashed out from anywhere.
4678  */
4679 void
4680 page_relocate_hash(page_t *pp_new, page_t *pp_old)
4681 {
4682 	vnode_t *vp = pp_old->p_vnode;
4683 	u_offset_t off = pp_old->p_offset;
4684 	kmutex_t *phm, *vphm;
4685 
4686 	/*
4687 	 * Rehash two pages
4688 	 */
4689 	ASSERT(PAGE_EXCL(pp_old));
4690 	ASSERT(PAGE_EXCL(pp_new));
4691 	ASSERT(vp != NULL);
4692 	ASSERT(pp_new->p_vnode == NULL);
4693 
4694 	/*
4695 	 * hashout then hashin while holding the mutexes
4696 	 */
4697 	phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, off));
4698 	mutex_enter(phm);
4699 	vphm = page_vnode_mutex(vp);
4700 	mutex_enter(vphm);
4701 
4702 	page_do_relocate_hash(pp_new, pp_old);
4703 
4704 	mutex_exit(vphm);
4705 	mutex_exit(phm);
4706 
4707 	/*
4708 	 * The page_struct_lock need not be acquired for lckcnt and
4709 	 * cowcnt since the page has an "exclusive" lock.
4710 	 */
4711 	ASSERT(pp_new->p_lckcnt == 0);
4712 	ASSERT(pp_new->p_cowcnt == 0);
4713 	pp_new->p_lckcnt = pp_old->p_lckcnt;
4714 	pp_new->p_cowcnt = pp_old->p_cowcnt;
4715 	pp_old->p_lckcnt = pp_old->p_cowcnt = 0;
4716 
4717 	/* The following comment preserved from page_flip(). */
4718 	/* XXX - Do we need to protect fsdata? */
4719 	pp_new->p_fsdata = pp_old->p_fsdata;
4720 }
4721 
4722 /*
4723  * Helper routine used to lock all remaining members of a
4724  * large page. The caller is responsible for passing in a locked
4725  * pp. If pp is a large page, then it succeeds in locking all the
4726  * remaining constituent pages or it returns with only the
4727  * original page locked.
4728  *
4729  * Returns 1 on success, 0 on failure.
4730  *
4731  * If success is returned this routine guarantees p_szc for all constituent
4732  * pages of a large page pp belongs to can't change. To achieve this we
4733  * recheck szc of pp after locking all constituent pages and retry if szc
4734  * changed (it could only decrease). Since hat_page_demote() needs an EXCL
4735  * lock on one of constituent pages it can't be running after all constituent
4736  * pages are locked.  hat_page_demote() with a lock on a constituent page
4737  * outside of this large page (i.e. pp belonged to a larger large page) is
4738  * already done with all constituent pages of pp since the root's p_szc is
4739  * changed last. Therefore no need to synchronize with hat_page_demote() that
4740  * locked a constituent page outside of pp's current large page.
4741  */
4742 #ifdef DEBUG
4743 uint32_t gpg_trylock_mtbf = 0;
4744 #endif
4745 
4746 int
4747 group_page_trylock(page_t *pp, se_t se)
4748 {
4749 	page_t  *tpp;
4750 	pgcnt_t	npgs, i, j;
4751 	uint_t pszc = pp->p_szc;
4752 
4753 #ifdef DEBUG
4754 	if (gpg_trylock_mtbf && !(gethrtime() % gpg_trylock_mtbf)) {
4755 		return (0);
4756 	}
4757 #endif
4758 
4759 	if (pp != PP_GROUPLEADER(pp, pszc)) {
4760 		return (0);
4761 	}
4762 
4763 retry:
4764 	ASSERT(PAGE_LOCKED_SE(pp, se));
4765 	ASSERT(!PP_ISFREE(pp));
4766 	if (pszc == 0) {
4767 		return (1);
4768 	}
4769 	npgs = page_get_pagecnt(pszc);
4770 	tpp = pp + 1;
4771 	for (i = 1; i < npgs; i++, tpp++) {
4772 		if (!page_trylock(tpp, se)) {
4773 			tpp = pp + 1;
4774 			for (j = 1; j < i; j++, tpp++) {
4775 				page_unlock(tpp);
4776 			}
4777 			return (0);
4778 		}
4779 	}
4780 	if (pp->p_szc != pszc) {
4781 		ASSERT(pp->p_szc < pszc);
4782 		ASSERT(pp->p_vnode != NULL && !PP_ISKAS(pp) &&
4783 		    !IS_SWAPFSVP(pp->p_vnode));
4784 		tpp = pp + 1;
4785 		for (i = 1; i < npgs; i++, tpp++) {
4786 			page_unlock(tpp);
4787 		}
4788 		pszc = pp->p_szc;
4789 		goto retry;
4790 	}
4791 	return (1);
4792 }
4793 
4794 void
4795 group_page_unlock(page_t *pp)
4796 {
4797 	page_t *tpp;
4798 	pgcnt_t	npgs, i;
4799 
4800 	ASSERT(PAGE_LOCKED(pp));
4801 	ASSERT(!PP_ISFREE(pp));
4802 	ASSERT(pp == PP_PAGEROOT(pp));
4803 	npgs = page_get_pagecnt(pp->p_szc);
4804 	for (i = 1, tpp = pp + 1; i < npgs; i++, tpp++) {
4805 		page_unlock(tpp);
4806 	}
4807 }
4808 
4809 /*
4810  * returns
4811  * 0 		: on success and *nrelocp is number of relocated PAGESIZE pages
4812  * ERANGE	: this is not a base page
4813  * EBUSY	: failure to get locks on the page/pages
4814  * ENOMEM	: failure to obtain replacement pages
4815  * EAGAIN	: OBP has not yet completed its boot-time handoff to the kernel
4816  * EIO		: An error occurred while trying to copy the page data
4817  *
4818  * Return with all constituent members of target and replacement
4819  * SE_EXCL locked. It is the callers responsibility to drop the
4820  * locks.
4821  */
4822 int
4823 do_page_relocate(
4824 	page_t **target,
4825 	page_t **replacement,
4826 	int grouplock,
4827 	spgcnt_t *nrelocp,
4828 	lgrp_t *lgrp)
4829 {
4830 	page_t *first_repl;
4831 	page_t *repl;
4832 	page_t *targ;
4833 	page_t *pl = NULL;
4834 	uint_t ppattr;
4835 	pfn_t   pfn, repl_pfn;
4836 	uint_t	szc;
4837 	spgcnt_t npgs, i;
4838 	int repl_contig = 0;
4839 	uint_t flags = 0;
4840 	spgcnt_t dofree = 0;
4841 
4842 	*nrelocp = 0;
4843 
4844 #if defined(__sparc)
4845 	/*
4846 	 * We need to wait till OBP has completed
4847 	 * its boot-time handoff of its resources to the kernel
4848 	 * before we allow page relocation
4849 	 */
4850 	if (page_relocate_ready == 0) {
4851 		return (EAGAIN);
4852 	}
4853 #endif
4854 
4855 	/*
4856 	 * If this is not a base page,
4857 	 * just return with 0x0 pages relocated.
4858 	 */
4859 	targ = *target;
4860 	ASSERT(PAGE_EXCL(targ));
4861 	ASSERT(!PP_ISFREE(targ));
4862 	szc = targ->p_szc;
4863 	ASSERT(szc < mmu_page_sizes);
4864 	VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
4865 	pfn = targ->p_pagenum;
4866 	if (pfn != PFN_BASE(pfn, szc)) {
4867 		VM_STAT_ADD(vmm_vmstats.ppr_relocnoroot[szc]);
4868 		return (ERANGE);
4869 	}
4870 
4871 	if ((repl = *replacement) != NULL && repl->p_szc >= szc) {
4872 		repl_pfn = repl->p_pagenum;
4873 		if (repl_pfn != PFN_BASE(repl_pfn, szc)) {
4874 			VM_STAT_ADD(vmm_vmstats.ppr_reloc_replnoroot[szc]);
4875 			return (ERANGE);
4876 		}
4877 		repl_contig = 1;
4878 	}
4879 
4880 	/*
4881 	 * We must lock all members of this large page or we cannot
4882 	 * relocate any part of it.
4883 	 */
4884 	if (grouplock != 0 && !group_page_trylock(targ, SE_EXCL)) {
4885 		VM_STAT_ADD(vmm_vmstats.ppr_relocnolock[targ->p_szc]);
4886 		return (EBUSY);
4887 	}
4888 
4889 	/*
4890 	 * reread szc it could have been decreased before
4891 	 * group_page_trylock() was done.
4892 	 */
4893 	szc = targ->p_szc;
4894 	ASSERT(szc < mmu_page_sizes);
4895 	VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
4896 	ASSERT(pfn == PFN_BASE(pfn, szc));
4897 
4898 	npgs = page_get_pagecnt(targ->p_szc);
4899 
4900 	if (repl == NULL) {
4901 		dofree = npgs;		/* Size of target page in MMU pages */
4902 		if (!page_create_wait(dofree, 0)) {
4903 			if (grouplock != 0) {
4904 				group_page_unlock(targ);
4905 			}
4906 			VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
4907 			return (ENOMEM);
4908 		}
4909 
4910 		/*
4911 		 * seg kmem pages require that the target and replacement
4912 		 * page be the same pagesize.
4913 		 */
4914 		flags = (VN_ISKAS(targ->p_vnode)) ? PGR_SAMESZC : 0;
4915 		repl = page_get_replacement_page(targ, lgrp, flags);
4916 		if (repl == NULL) {
4917 			if (grouplock != 0) {
4918 				group_page_unlock(targ);
4919 			}
4920 			page_create_putback(dofree);
4921 			VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
4922 			return (ENOMEM);
4923 		}
4924 	}
4925 #ifdef DEBUG
4926 	else {
4927 		ASSERT(PAGE_LOCKED(repl));
4928 	}
4929 #endif /* DEBUG */
4930 
4931 #if defined(__sparc)
4932 	/*
4933 	 * Let hat_page_relocate() complete the relocation if it's kernel page
4934 	 */
4935 	if (VN_ISKAS(targ->p_vnode)) {
4936 		*replacement = repl;
4937 		if (hat_page_relocate(target, replacement, nrelocp) != 0) {
4938 			if (grouplock != 0) {
4939 				group_page_unlock(targ);
4940 			}
4941 			if (dofree) {
4942 				*replacement = NULL;
4943 				page_free_replacement_page(repl);
4944 				page_create_putback(dofree);
4945 			}
4946 			VM_STAT_ADD(vmm_vmstats.ppr_krelocfail[szc]);
4947 			return (EAGAIN);
4948 		}
4949 		VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
4950 		return (0);
4951 	}
4952 #else
4953 #if defined(lint)
4954 	dofree = dofree;
4955 #endif
4956 #endif
4957 
4958 	first_repl = repl;
4959 
4960 	for (i = 0; i < npgs; i++) {
4961 		ASSERT(PAGE_EXCL(targ));
4962 		ASSERT(targ->p_slckcnt == 0);
4963 		ASSERT(repl->p_slckcnt == 0);
4964 
4965 		(void) hat_pageunload(targ, HAT_FORCE_PGUNLOAD);
4966 
4967 		ASSERT(hat_page_getshare(targ) == 0);
4968 		ASSERT(!PP_ISFREE(targ));
4969 		ASSERT(targ->p_pagenum == (pfn + i));
4970 		ASSERT(repl_contig == 0 ||
4971 		    repl->p_pagenum == (repl_pfn + i));
4972 
4973 		/*
4974 		 * Copy the page contents and attributes then
4975 		 * relocate the page in the page hash.
4976 		 */
4977 		if (ppcopy(targ, repl) == 0) {
4978 			targ = *target;
4979 			repl = first_repl;
4980 			VM_STAT_ADD(vmm_vmstats.ppr_copyfail);
4981 			if (grouplock != 0) {
4982 				group_page_unlock(targ);
4983 			}
4984 			if (dofree) {
4985 				*replacement = NULL;
4986 				page_free_replacement_page(repl);
4987 				page_create_putback(dofree);
4988 			}
4989 			return (EIO);
4990 		}
4991 
4992 		targ++;
4993 		if (repl_contig != 0) {
4994 			repl++;
4995 		} else {
4996 			repl = repl->p_next;
4997 		}
4998 	}
4999 
5000 	repl = first_repl;
5001 	targ = *target;
5002 
5003 	for (i = 0; i < npgs; i++) {
5004 		ppattr = hat_page_getattr(targ, (P_MOD | P_REF | P_RO));
5005 		page_clr_all_props(repl);
5006 		page_set_props(repl, ppattr);
5007 		page_relocate_hash(repl, targ);
5008 
5009 		ASSERT(hat_page_getshare(targ) == 0);
5010 		ASSERT(hat_page_getshare(repl) == 0);
5011 		/*
5012 		 * Now clear the props on targ, after the
5013 		 * page_relocate_hash(), they no longer
5014 		 * have any meaning.
5015 		 */
5016 		page_clr_all_props(targ);
5017 		ASSERT(targ->p_next == targ);
5018 		ASSERT(targ->p_prev == targ);
5019 		page_list_concat(&pl, &targ);
5020 
5021 		targ++;
5022 		if (repl_contig != 0) {
5023 			repl++;
5024 		} else {
5025 			repl = repl->p_next;
5026 		}
5027 	}
5028 	/* assert that we have come full circle with repl */
5029 	ASSERT(repl_contig == 1 || first_repl == repl);
5030 
5031 	*target = pl;
5032 	if (*replacement == NULL) {
5033 		ASSERT(first_repl == repl);
5034 		*replacement = repl;
5035 	}
5036 	VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
5037 	*nrelocp = npgs;
5038 	return (0);
5039 }
5040 /*
5041  * On success returns 0 and *nrelocp the number of PAGESIZE pages relocated.
5042  */
5043 int
5044 page_relocate(
5045 	page_t **target,
5046 	page_t **replacement,
5047 	int grouplock,
5048 	int freetarget,
5049 	spgcnt_t *nrelocp,
5050 	lgrp_t *lgrp)
5051 {
5052 	spgcnt_t ret;
5053 
5054 	/* do_page_relocate returns 0 on success or errno value */
5055 	ret = do_page_relocate(target, replacement, grouplock, nrelocp, lgrp);
5056 
5057 	if (ret != 0 || freetarget == 0) {
5058 		return (ret);
5059 	}
5060 	if (*nrelocp == 1) {
5061 		ASSERT(*target != NULL);
5062 		page_free(*target, 1);
5063 	} else {
5064 		page_t *tpp = *target;
5065 		uint_t szc = tpp->p_szc;
5066 		pgcnt_t npgs = page_get_pagecnt(szc);
5067 		ASSERT(npgs > 1);
5068 		ASSERT(szc != 0);
5069 		do {
5070 			ASSERT(PAGE_EXCL(tpp));
5071 			ASSERT(!hat_page_is_mapped(tpp));
5072 			ASSERT(tpp->p_szc == szc);
5073 			PP_SETFREE(tpp);
5074 			PP_SETAGED(tpp);
5075 			npgs--;
5076 		} while ((tpp = tpp->p_next) != *target);
5077 		ASSERT(npgs == 0);
5078 		page_list_add_pages(*target, 0);
5079 		npgs = page_get_pagecnt(szc);
5080 		page_create_putback(npgs);
5081 	}
5082 	return (ret);
5083 }
5084 
5085 /*
5086  * it is up to the caller to deal with pcf accounting.
5087  */
5088 void
5089 page_free_replacement_page(page_t *pplist)
5090 {
5091 	page_t *pp;
5092 
5093 	while (pplist != NULL) {
5094 		/*
5095 		 * pp_targ is a linked list.
5096 		 */
5097 		pp = pplist;
5098 		if (pp->p_szc == 0) {
5099 			page_sub(&pplist, pp);
5100 			page_clr_all_props(pp);
5101 			PP_SETFREE(pp);
5102 			PP_SETAGED(pp);
5103 			page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
5104 			page_unlock(pp);
5105 			VM_STAT_ADD(pagecnt.pc_free_replacement_page[0]);
5106 		} else {
5107 			spgcnt_t curnpgs = page_get_pagecnt(pp->p_szc);
5108 			page_t *tpp;
5109 			page_list_break(&pp, &pplist, curnpgs);
5110 			tpp = pp;
5111 			do {
5112 				ASSERT(PAGE_EXCL(tpp));
5113 				ASSERT(!hat_page_is_mapped(tpp));
5114 				page_clr_all_props(pp);
5115 				PP_SETFREE(tpp);
5116 				PP_SETAGED(tpp);
5117 			} while ((tpp = tpp->p_next) != pp);
5118 			page_list_add_pages(pp, 0);
5119 			VM_STAT_ADD(pagecnt.pc_free_replacement_page[1]);
5120 		}
5121 	}
5122 }
5123 
5124 /*
5125  * Relocate target to non-relocatable replacement page.
5126  */
5127 int
5128 page_relocate_cage(page_t **target, page_t **replacement)
5129 {
5130 	page_t *tpp, *rpp;
5131 	spgcnt_t pgcnt, npgs;
5132 	int result;
5133 
5134 	tpp = *target;
5135 
5136 	ASSERT(PAGE_EXCL(tpp));
5137 	ASSERT(tpp->p_szc == 0);
5138 
5139 	pgcnt = btop(page_get_pagesize(tpp->p_szc));
5140 
5141 	do {
5142 		(void) page_create_wait(pgcnt, PG_WAIT | PG_NORELOC);
5143 		rpp = page_get_replacement_page(tpp, NULL, PGR_NORELOC);
5144 		if (rpp == NULL) {
5145 			page_create_putback(pgcnt);
5146 			kcage_cageout_wakeup();
5147 		}
5148 	} while (rpp == NULL);
5149 
5150 	ASSERT(PP_ISNORELOC(rpp));
5151 
5152 	result = page_relocate(&tpp, &rpp, 0, 1, &npgs, NULL);
5153 
5154 	if (result == 0) {
5155 		*replacement = rpp;
5156 		if (pgcnt != npgs)
5157 			panic("page_relocate_cage: partial relocation");
5158 	}
5159 
5160 	return (result);
5161 }
5162 
5163 /*
5164  * Release the page lock on a page, place on cachelist
5165  * tail if no longer mapped. Caller can let us know if
5166  * the page is known to be clean.
5167  */
5168 int
5169 page_release(page_t *pp, int checkmod)
5170 {
5171 	int status;
5172 
5173 	ASSERT(PAGE_LOCKED(pp) && !PP_ISFREE(pp) &&
5174 	    (pp->p_vnode != NULL));
5175 
5176 	if (!hat_page_is_mapped(pp) && !IS_SWAPVP(pp->p_vnode) &&
5177 	    ((PAGE_SHARED(pp) && page_tryupgrade(pp)) || PAGE_EXCL(pp)) &&
5178 	    pp->p_lckcnt == 0 && pp->p_cowcnt == 0 &&
5179 	    !hat_page_is_mapped(pp)) {
5180 
5181 		/*
5182 		 * If page is modified, unlock it
5183 		 *
5184 		 * (p_nrm & P_MOD) bit has the latest stuff because:
5185 		 * (1) We found that this page doesn't have any mappings
5186 		 *	_after_ holding SE_EXCL and
5187 		 * (2) We didn't drop SE_EXCL lock after the check in (1)
5188 		 */
5189 		if (checkmod && hat_ismod(pp)) {
5190 			page_unlock(pp);
5191 			status = PGREL_MOD;
5192 		} else {
5193 			/*LINTED: constant in conditional context*/
5194 			VN_DISPOSE(pp, B_FREE, 0, kcred);
5195 			status = PGREL_CLEAN;
5196 		}
5197 	} else {
5198 		page_unlock(pp);
5199 		status = PGREL_NOTREL;
5200 	}
5201 	return (status);
5202 }
5203 
5204 /*
5205  * Given a constituent page, try to demote the large page on the freelist.
5206  *
5207  * Returns nonzero if the page could be demoted successfully. Returns with
5208  * the constituent page still locked.
5209  */
5210 int
5211 page_try_demote_free_pages(page_t *pp)
5212 {
5213 	page_t *rootpp = pp;
5214 	pfn_t	pfn = page_pptonum(pp);
5215 	spgcnt_t npgs;
5216 	uint_t	szc = pp->p_szc;
5217 
5218 	ASSERT(PP_ISFREE(pp));
5219 	ASSERT(PAGE_EXCL(pp));
5220 
5221 	/*
5222 	 * Adjust rootpp and lock it, if `pp' is not the base
5223 	 * constituent page.
5224 	 */
5225 	npgs = page_get_pagecnt(pp->p_szc);
5226 	if (npgs == 1) {
5227 		return (0);
5228 	}
5229 
5230 	if (!IS_P2ALIGNED(pfn, npgs)) {
5231 		pfn = P2ALIGN(pfn, npgs);
5232 		rootpp = page_numtopp_nolock(pfn);
5233 	}
5234 
5235 	if (pp != rootpp && !page_trylock(rootpp, SE_EXCL)) {
5236 		return (0);
5237 	}
5238 
5239 	if (rootpp->p_szc != szc) {
5240 		if (pp != rootpp)
5241 			page_unlock(rootpp);
5242 		return (0);
5243 	}
5244 
5245 	page_demote_free_pages(rootpp);
5246 
5247 	if (pp != rootpp)
5248 		page_unlock(rootpp);
5249 
5250 	ASSERT(PP_ISFREE(pp));
5251 	ASSERT(PAGE_EXCL(pp));
5252 	return (1);
5253 }
5254 
5255 /*
5256  * Given a constituent page, try to demote the large page.
5257  *
5258  * Returns nonzero if the page could be demoted successfully. Returns with
5259  * the constituent page still locked.
5260  */
5261 int
5262 page_try_demote_pages(page_t *pp)
5263 {
5264 	page_t *tpp, *rootpp = pp;
5265 	pfn_t	pfn = page_pptonum(pp);
5266 	spgcnt_t i, npgs;
5267 	uint_t	szc = pp->p_szc;
5268 	vnode_t *vp = pp->p_vnode;
5269 
5270 	ASSERT(PAGE_EXCL(pp));
5271 
5272 	VM_STAT_ADD(pagecnt.pc_try_demote_pages[0]);
5273 
5274 	if (pp->p_szc == 0) {
5275 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[1]);
5276 		return (1);
5277 	}
5278 
5279 	if (vp != NULL && !IS_SWAPFSVP(vp) && !VN_ISKAS(vp)) {
5280 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[2]);
5281 		page_demote_vp_pages(pp);
5282 		ASSERT(pp->p_szc == 0);
5283 		return (1);
5284 	}
5285 
5286 	/*
5287 	 * Adjust rootpp if passed in is not the base
5288 	 * constituent page.
5289 	 */
5290 	npgs = page_get_pagecnt(pp->p_szc);
5291 	ASSERT(npgs > 1);
5292 	if (!IS_P2ALIGNED(pfn, npgs)) {
5293 		pfn = P2ALIGN(pfn, npgs);
5294 		rootpp = page_numtopp_nolock(pfn);
5295 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[3]);
5296 		ASSERT(rootpp->p_vnode != NULL);
5297 		ASSERT(rootpp->p_szc == szc);
5298 	}
5299 
5300 	/*
5301 	 * We can't demote kernel pages since we can't hat_unload()
5302 	 * the mappings.
5303 	 */
5304 	if (VN_ISKAS(rootpp->p_vnode))
5305 		return (0);
5306 
5307 	/*
5308 	 * Attempt to lock all constituent pages except the page passed
5309 	 * in since it's already locked.
5310 	 */
5311 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5312 		ASSERT(!PP_ISFREE(tpp));
5313 		ASSERT(tpp->p_vnode != NULL);
5314 
5315 		if (tpp != pp && !page_trylock(tpp, SE_EXCL))
5316 			break;
5317 		ASSERT(tpp->p_szc == rootpp->p_szc);
5318 		ASSERT(page_pptonum(tpp) == page_pptonum(rootpp) + i);
5319 	}
5320 
5321 	/*
5322 	 * If we failed to lock them all then unlock what we have
5323 	 * locked so far and bail.
5324 	 */
5325 	if (i < npgs) {
5326 		tpp = rootpp;
5327 		while (i-- > 0) {
5328 			if (tpp != pp)
5329 				page_unlock(tpp);
5330 			tpp++;
5331 		}
5332 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[4]);
5333 		return (0);
5334 	}
5335 
5336 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5337 		ASSERT(PAGE_EXCL(tpp));
5338 		ASSERT(tpp->p_slckcnt == 0);
5339 		(void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
5340 		tpp->p_szc = 0;
5341 	}
5342 
5343 	/*
5344 	 * Unlock all pages except the page passed in.
5345 	 */
5346 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5347 		ASSERT(!hat_page_is_mapped(tpp));
5348 		if (tpp != pp)
5349 			page_unlock(tpp);
5350 	}
5351 
5352 	VM_STAT_ADD(pagecnt.pc_try_demote_pages[5]);
5353 	return (1);
5354 }
5355 
5356 /*
5357  * Called by page_free() and page_destroy() to demote the page size code
5358  * (p_szc) to 0 (since we can't just put a single PAGESIZE page with non zero
5359  * p_szc on free list, neither can we just clear p_szc of a single page_t
5360  * within a large page since it will break other code that relies on p_szc
5361  * being the same for all page_t's of a large page). Anonymous pages should
5362  * never end up here because anon_map_getpages() cannot deal with p_szc
5363  * changes after a single constituent page is locked.  While anonymous or
5364  * kernel large pages are demoted or freed the entire large page at a time
5365  * with all constituent pages locked EXCL for the file system pages we
5366  * have to be able to demote a large page (i.e. decrease all constituent pages
5367  * p_szc) with only just an EXCL lock on one of constituent pages. The reason
5368  * we can easily deal with anonymous page demotion the entire large page at a
5369  * time is that those operation originate at address space level and concern
5370  * the entire large page region with actual demotion only done when pages are
5371  * not shared with any other processes (therefore we can always get EXCL lock
5372  * on all anonymous constituent pages after clearing segment page
5373  * cache). However file system pages can be truncated or invalidated at a
5374  * PAGESIZE level from the file system side and end up in page_free() or
5375  * page_destroy() (we also allow only part of the large page to be SOFTLOCKed
5376  * and therefore pageout should be able to demote a large page by EXCL locking
5377  * any constituent page that is not under SOFTLOCK). In those cases we cannot
5378  * rely on being able to lock EXCL all constituent pages.
5379  *
5380  * To prevent szc changes on file system pages one has to lock all constituent
5381  * pages at least SHARED (or call page_szc_lock()). The only subsystem that
5382  * doesn't rely on locking all constituent pages (or using page_szc_lock()) to
5383  * prevent szc changes is hat layer that uses its own page level mlist
5384  * locks. hat assumes that szc doesn't change after mlist lock for a page is
5385  * taken. Therefore we need to change szc under hat level locks if we only
5386  * have an EXCL lock on a single constituent page and hat still references any
5387  * of constituent pages.  (Note we can't "ignore" hat layer by simply
5388  * hat_pageunload() all constituent pages without having EXCL locks on all of
5389  * constituent pages). We use hat_page_demote() call to safely demote szc of
5390  * all constituent pages under hat locks when we only have an EXCL lock on one
5391  * of constituent pages.
5392  *
5393  * This routine calls page_szc_lock() before calling hat_page_demote() to
5394  * allow segvn in one special case not to lock all constituent pages SHARED
5395  * before calling hat_memload_array() that relies on p_szc not changing even
5396  * before hat level mlist lock is taken.  In that case segvn uses
5397  * page_szc_lock() to prevent hat_page_demote() changing p_szc values.
5398  *
5399  * Anonymous or kernel page demotion still has to lock all pages exclusively
5400  * and do hat_pageunload() on all constituent pages before demoting the page
5401  * therefore there's no need for anonymous or kernel page demotion to use
5402  * hat_page_demote() mechanism.
5403  *
5404  * hat_page_demote() removes all large mappings that map pp and then decreases
5405  * p_szc starting from the last constituent page of the large page. By working
5406  * from the tail of a large page in pfn decreasing order allows one looking at
5407  * the root page to know that hat_page_demote() is done for root's szc area.
5408  * e.g. if a root page has szc 1 one knows it only has to lock all constituent
5409  * pages within szc 1 area to prevent szc changes because hat_page_demote()
5410  * that started on this page when it had szc > 1 is done for this szc 1 area.
5411  *
5412  * We are guaranteed that all constituent pages of pp's large page belong to
5413  * the same vnode with the consecutive offsets increasing in the direction of
5414  * the pfn i.e. the identity of constituent pages can't change until their
5415  * p_szc is decreased. Therefore it's safe for hat_page_demote() to remove
5416  * large mappings to pp even though we don't lock any constituent page except
5417  * pp (i.e. we won't unload e.g. kernel locked page).
5418  */
5419 static void
5420 page_demote_vp_pages(page_t *pp)
5421 {
5422 	kmutex_t *mtx;
5423 
5424 	ASSERT(PAGE_EXCL(pp));
5425 	ASSERT(!PP_ISFREE(pp));
5426 	ASSERT(pp->p_vnode != NULL);
5427 	ASSERT(!IS_SWAPFSVP(pp->p_vnode));
5428 	ASSERT(!PP_ISKAS(pp));
5429 
5430 	VM_STAT_ADD(pagecnt.pc_demote_pages[0]);
5431 
5432 	mtx = page_szc_lock(pp);
5433 	if (mtx != NULL) {
5434 		hat_page_demote(pp);
5435 		mutex_exit(mtx);
5436 	}
5437 	ASSERT(pp->p_szc == 0);
5438 }
5439 
5440 /*
5441  * Mark any existing pages for migration in the given range
5442  */
5443 void
5444 page_mark_migrate(struct seg *seg, caddr_t addr, size_t len,
5445     struct anon_map *amp, ulong_t anon_index, vnode_t *vp,
5446     u_offset_t vnoff, int rflag)
5447 {
5448 	struct anon	*ap;
5449 	vnode_t		*curvp;
5450 	lgrp_t		*from;
5451 	pgcnt_t		i;
5452 	pgcnt_t		nlocked;
5453 	u_offset_t	off;
5454 	pfn_t		pfn;
5455 	size_t		pgsz;
5456 	size_t		segpgsz;
5457 	pgcnt_t		pages;
5458 	uint_t		pszc;
5459 	page_t		**ppa;
5460 	pgcnt_t		ppa_nentries;
5461 	page_t		*pp;
5462 	caddr_t		va;
5463 	ulong_t		an_idx;
5464 	anon_sync_obj_t	cookie;
5465 
5466 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5467 
5468 	/*
5469 	 * Don't do anything if don't need to do lgroup optimizations
5470 	 * on this system
5471 	 */
5472 	if (!lgrp_optimizations())
5473 		return;
5474 
5475 	/*
5476 	 * Align address and length to (potentially large) page boundary
5477 	 */
5478 	segpgsz = page_get_pagesize(seg->s_szc);
5479 	addr = (caddr_t)P2ALIGN((uintptr_t)addr, segpgsz);
5480 	if (rflag)
5481 		len = P2ROUNDUP(len, segpgsz);
5482 
5483 	/*
5484 	 * Allocate page array to accommodate largest page size
5485 	 */
5486 	pgsz = page_get_pagesize(page_num_pagesizes() - 1);
5487 	ppa_nentries = btop(pgsz);
5488 	ppa = kmem_zalloc(ppa_nentries * sizeof (page_t *), KM_SLEEP);
5489 
5490 	/*
5491 	 * Do one (large) page at a time
5492 	 */
5493 	va = addr;
5494 	while (va < addr + len) {
5495 		/*
5496 		 * Lookup (root) page for vnode and offset corresponding to
5497 		 * this virtual address
5498 		 * Try anonmap first since there may be copy-on-write
5499 		 * pages, but initialize vnode pointer and offset using
5500 		 * vnode arguments just in case there isn't an amp.
5501 		 */
5502 		curvp = vp;
5503 		off = vnoff + va - seg->s_base;
5504 		if (amp) {
5505 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5506 			an_idx = anon_index + seg_page(seg, va);
5507 			anon_array_enter(amp, an_idx, &cookie);
5508 			ap = anon_get_ptr(amp->ahp, an_idx);
5509 			if (ap)
5510 				swap_xlate(ap, &curvp, &off);
5511 			anon_array_exit(&cookie);
5512 			ANON_LOCK_EXIT(&amp->a_rwlock);
5513 		}
5514 
5515 		pp = NULL;
5516 		if (curvp)
5517 			pp = page_lookup(curvp, off, SE_SHARED);
5518 
5519 		/*
5520 		 * If there isn't a page at this virtual address,
5521 		 * skip to next page
5522 		 */
5523 		if (pp == NULL) {
5524 			va += PAGESIZE;
5525 			continue;
5526 		}
5527 
5528 		/*
5529 		 * Figure out which lgroup this page is in for kstats
5530 		 */
5531 		pfn = page_pptonum(pp);
5532 		from = lgrp_pfn_to_lgrp(pfn);
5533 
5534 		/*
5535 		 * Get page size, and round up and skip to next page boundary
5536 		 * if unaligned address
5537 		 */
5538 		pszc = pp->p_szc;
5539 		pgsz = page_get_pagesize(pszc);
5540 		pages = btop(pgsz);
5541 		if (!IS_P2ALIGNED(va, pgsz) ||
5542 		    !IS_P2ALIGNED(pfn, pages) ||
5543 		    pgsz > segpgsz) {
5544 			pgsz = MIN(pgsz, segpgsz);
5545 			page_unlock(pp);
5546 			i = btop(P2END((uintptr_t)va, pgsz) -
5547 			    (uintptr_t)va);
5548 			va = (caddr_t)P2END((uintptr_t)va, pgsz);
5549 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, i);
5550 			continue;
5551 		}
5552 
5553 		/*
5554 		 * Upgrade to exclusive lock on page
5555 		 */
5556 		if (!page_tryupgrade(pp)) {
5557 			page_unlock(pp);
5558 			va += pgsz;
5559 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5560 			    btop(pgsz));
5561 			continue;
5562 		}
5563 
5564 		/*
5565 		 * Remember pages locked exclusively and how many
5566 		 */
5567 		ppa[0] = pp;
5568 		nlocked = 1;
5569 
5570 		/*
5571 		 * Lock constituent pages if this is large page
5572 		 */
5573 		if (pages > 1) {
5574 			/*
5575 			 * Lock all constituents except root page, since it
5576 			 * should be locked already.
5577 			 */
5578 			for (i = 1; i < pages; i++) {
5579 				pp++;
5580 				if (!page_trylock(pp, SE_EXCL)) {
5581 					break;
5582 				}
5583 				if (PP_ISFREE(pp) ||
5584 				    pp->p_szc != pszc) {
5585 					/*
5586 					 * hat_page_demote() raced in with us.
5587 					 */
5588 					ASSERT(!IS_SWAPFSVP(curvp));
5589 					page_unlock(pp);
5590 					break;
5591 				}
5592 				ppa[nlocked] = pp;
5593 				nlocked++;
5594 			}
5595 		}
5596 
5597 		/*
5598 		 * If all constituent pages couldn't be locked,
5599 		 * unlock pages locked so far and skip to next page.
5600 		 */
5601 		if (nlocked != pages) {
5602 			for (i = 0; i < nlocked; i++)
5603 				page_unlock(ppa[i]);
5604 			va += pgsz;
5605 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5606 			    btop(pgsz));
5607 			continue;
5608 		}
5609 
5610 		/*
5611 		 * hat_page_demote() can no longer happen
5612 		 * since last cons page had the right p_szc after
5613 		 * all cons pages were locked. all cons pages
5614 		 * should now have the same p_szc.
5615 		 */
5616 
5617 		/*
5618 		 * All constituent pages locked successfully, so mark
5619 		 * large page for migration and unload the mappings of
5620 		 * constituent pages, so a fault will occur on any part of the
5621 		 * large page
5622 		 */
5623 		PP_SETMIGRATE(ppa[0]);
5624 		for (i = 0; i < nlocked; i++) {
5625 			pp = ppa[i];
5626 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
5627 			ASSERT(hat_page_getshare(pp) == 0);
5628 			page_unlock(pp);
5629 		}
5630 		lgrp_stat_add(from->lgrp_id, LGRP_PMM_PGS, nlocked);
5631 
5632 		va += pgsz;
5633 	}
5634 	kmem_free(ppa, ppa_nentries * sizeof (page_t *));
5635 }
5636 
5637 /*
5638  * Migrate any pages that have been marked for migration in the given range
5639  */
5640 void
5641 page_migrate(
5642 	struct seg	*seg,
5643 	caddr_t		addr,
5644 	page_t		**ppa,
5645 	pgcnt_t		npages)
5646 {
5647 	lgrp_t		*from;
5648 	lgrp_t		*to;
5649 	page_t		*newpp;
5650 	page_t		*pp;
5651 	pfn_t		pfn;
5652 	size_t		pgsz;
5653 	spgcnt_t	page_cnt;
5654 	spgcnt_t	i;
5655 	uint_t		pszc;
5656 
5657 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5658 
5659 	while (npages > 0) {
5660 		pp = *ppa;
5661 		pszc = pp->p_szc;
5662 		pgsz = page_get_pagesize(pszc);
5663 		page_cnt = btop(pgsz);
5664 
5665 		/*
5666 		 * Check to see whether this page is marked for migration
5667 		 *
5668 		 * Assume that root page of large page is marked for
5669 		 * migration and none of the other constituent pages
5670 		 * are marked.  This really simplifies clearing the
5671 		 * migrate bit by not having to clear it from each
5672 		 * constituent page.
5673 		 *
5674 		 * note we don't want to relocate an entire large page if
5675 		 * someone is only using one subpage.
5676 		 */
5677 		if (npages < page_cnt)
5678 			break;
5679 
5680 		/*
5681 		 * Is it marked for migration?
5682 		 */
5683 		if (!PP_ISMIGRATE(pp))
5684 			goto next;
5685 
5686 		/*
5687 		 * Determine lgroups that page is being migrated between
5688 		 */
5689 		pfn = page_pptonum(pp);
5690 		if (!IS_P2ALIGNED(pfn, page_cnt)) {
5691 			break;
5692 		}
5693 		from = lgrp_pfn_to_lgrp(pfn);
5694 		to = lgrp_mem_choose(seg, addr, pgsz);
5695 
5696 		/*
5697 		 * Need to get exclusive lock's to migrate
5698 		 */
5699 		for (i = 0; i < page_cnt; i++) {
5700 			ASSERT(PAGE_LOCKED(ppa[i]));
5701 			if (page_pptonum(ppa[i]) != pfn + i ||
5702 			    ppa[i]->p_szc != pszc) {
5703 				break;
5704 			}
5705 			if (!page_tryupgrade(ppa[i])) {
5706 				lgrp_stat_add(from->lgrp_id,
5707 				    LGRP_PM_FAIL_LOCK_PGS,
5708 				    page_cnt);
5709 				break;
5710 			}
5711 
5712 			/*
5713 			 * Check to see whether we are trying to migrate
5714 			 * page to lgroup where it is allocated already.
5715 			 * If so, clear the migrate bit and skip to next
5716 			 * page.
5717 			 */
5718 			if (i == 0 && to == from) {
5719 				PP_CLRMIGRATE(ppa[0]);
5720 				page_downgrade(ppa[0]);
5721 				goto next;
5722 			}
5723 		}
5724 
5725 		/*
5726 		 * If all constituent pages couldn't be locked,
5727 		 * unlock pages locked so far and skip to next page.
5728 		 */
5729 		if (i != page_cnt) {
5730 			while (--i != -1) {
5731 				page_downgrade(ppa[i]);
5732 			}
5733 			goto next;
5734 		}
5735 
5736 		(void) page_create_wait(page_cnt, PG_WAIT);
5737 		newpp = page_get_replacement_page(pp, to, PGR_SAMESZC);
5738 		if (newpp == NULL) {
5739 			page_create_putback(page_cnt);
5740 			for (i = 0; i < page_cnt; i++) {
5741 				page_downgrade(ppa[i]);
5742 			}
5743 			lgrp_stat_add(to->lgrp_id, LGRP_PM_FAIL_ALLOC_PGS,
5744 			    page_cnt);
5745 			goto next;
5746 		}
5747 		ASSERT(newpp->p_szc == pszc);
5748 		/*
5749 		 * Clear migrate bit and relocate page
5750 		 */
5751 		PP_CLRMIGRATE(pp);
5752 		if (page_relocate(&pp, &newpp, 0, 1, &page_cnt, to)) {
5753 			panic("page_migrate: page_relocate failed");
5754 		}
5755 		ASSERT(page_cnt * PAGESIZE == pgsz);
5756 
5757 		/*
5758 		 * Keep stats for number of pages migrated from and to
5759 		 * each lgroup
5760 		 */
5761 		lgrp_stat_add(from->lgrp_id, LGRP_PM_SRC_PGS, page_cnt);
5762 		lgrp_stat_add(to->lgrp_id, LGRP_PM_DEST_PGS, page_cnt);
5763 		/*
5764 		 * update the page_t array we were passed in and
5765 		 * unlink constituent pages of a large page.
5766 		 */
5767 		for (i = 0; i < page_cnt; ++i, ++pp) {
5768 			ASSERT(PAGE_EXCL(newpp));
5769 			ASSERT(newpp->p_szc == pszc);
5770 			ppa[i] = newpp;
5771 			pp = newpp;
5772 			page_sub(&newpp, pp);
5773 			page_downgrade(pp);
5774 		}
5775 		ASSERT(newpp == NULL);
5776 next:
5777 		addr += pgsz;
5778 		ppa += page_cnt;
5779 		npages -= page_cnt;
5780 	}
5781 }
5782 
5783 ulong_t mem_waiters 	= 0;
5784 ulong_t	max_count 	= 20;
5785 #define	MAX_DELAY	0x1ff
5786 
5787 /*
5788  * Check if enough memory is available to proceed.
5789  * Depending on system configuration and how much memory is
5790  * reserved for swap we need to check against two variables.
5791  * e.g. on systems with little physical swap availrmem can be
5792  * more reliable indicator of how much memory is available.
5793  * On systems with large phys swap freemem can be better indicator.
5794  * If freemem drops below threshold level don't return an error
5795  * immediately but wake up pageout to free memory and block.
5796  * This is done number of times. If pageout is not able to free
5797  * memory within certain time return an error.
5798  * The same applies for availrmem but kmem_reap is used to
5799  * free memory.
5800  */
5801 int
5802 page_mem_avail(pgcnt_t npages)
5803 {
5804 	ulong_t count;
5805 
5806 #if defined(__i386)
5807 	if (freemem > desfree + npages &&
5808 	    availrmem > swapfs_reserve + npages &&
5809 	    btop(vmem_size(heap_arena, VMEM_FREE)) > tune.t_minarmem +
5810 	    npages)
5811 		return (1);
5812 #else
5813 	if (freemem > desfree + npages &&
5814 	    availrmem > swapfs_reserve + npages)
5815 		return (1);
5816 #endif
5817 
5818 	count = max_count;
5819 	atomic_add_long(&mem_waiters, 1);
5820 
5821 	while (freemem < desfree + npages && --count) {
5822 		cv_signal(&proc_pageout->p_cv);
5823 		if (delay_sig(hz + (mem_waiters & MAX_DELAY))) {
5824 			atomic_add_long(&mem_waiters, -1);
5825 			return (0);
5826 		}
5827 	}
5828 	if (count == 0) {
5829 		atomic_add_long(&mem_waiters, -1);
5830 		return (0);
5831 	}
5832 
5833 	count = max_count;
5834 	while (availrmem < swapfs_reserve + npages && --count) {
5835 		kmem_reap();
5836 		if (delay_sig(hz + (mem_waiters & MAX_DELAY))) {
5837 			atomic_add_long(&mem_waiters, -1);
5838 			return (0);
5839 		}
5840 	}
5841 	atomic_add_long(&mem_waiters, -1);
5842 	if (count == 0)
5843 		return (0);
5844 
5845 #if defined(__i386)
5846 	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
5847 	    tune.t_minarmem + npages)
5848 		return (0);
5849 #endif
5850 	return (1);
5851 }
5852 
5853 #define	MAX_CNT	60	/* max num of iterations */
5854 /*
5855  * Reclaim/reserve availrmem for npages.
5856  * If there is not enough memory start reaping seg, kmem caches.
5857  * Start pageout scanner (via page_needfree()).
5858  * Exit after ~ MAX_CNT s regardless of how much memory has been released.
5859  * Note: There is no guarantee that any availrmem will be freed as
5860  * this memory typically is locked (kernel heap) or reserved for swap.
5861  * Also due to memory fragmentation kmem allocator may not be able
5862  * to free any memory (single user allocated buffer will prevent
5863  * freeing slab or a page).
5864  */
5865 int
5866 page_reclaim_mem(pgcnt_t npages, pgcnt_t epages, int adjust)
5867 {
5868 	int	i = 0;
5869 	int	ret = 0;
5870 	pgcnt_t	deficit;
5871 	pgcnt_t old_availrmem;
5872 
5873 	mutex_enter(&freemem_lock);
5874 	old_availrmem = availrmem - 1;
5875 	while ((availrmem < tune.t_minarmem + npages + epages) &&
5876 	    (old_availrmem < availrmem) && (i++ < MAX_CNT)) {
5877 		old_availrmem = availrmem;
5878 		deficit = tune.t_minarmem + npages + epages - availrmem;
5879 		mutex_exit(&freemem_lock);
5880 		page_needfree(deficit);
5881 		seg_preap();
5882 		kmem_reap();
5883 		delay(hz);
5884 		page_needfree(-(spgcnt_t)deficit);
5885 		mutex_enter(&freemem_lock);
5886 	}
5887 
5888 	if (adjust && (availrmem >= tune.t_minarmem + npages + epages)) {
5889 		availrmem -= npages;
5890 		ret = 1;
5891 	}
5892 
5893 	mutex_exit(&freemem_lock);
5894 
5895 	return (ret);
5896 }
5897 
5898 /*
5899  * Search the memory segments to locate the desired page.  Within a
5900  * segment, pages increase linearly with one page structure per
5901  * physical page frame (size PAGESIZE).  The search begins
5902  * with the segment that was accessed last, to take advantage of locality.
5903  * If the hint misses, we start from the beginning of the sorted memseg list
5904  */
5905 
5906 
5907 /*
5908  * Some data structures for pfn to pp lookup.
5909  */
5910 ulong_t mhash_per_slot;
5911 struct memseg *memseg_hash[N_MEM_SLOTS];
5912 
5913 page_t *
5914 page_numtopp_nolock(pfn_t pfnum)
5915 {
5916 	struct memseg *seg;
5917 	page_t *pp;
5918 	vm_cpu_data_t *vc = CPU->cpu_vm_data;
5919 
5920 	ASSERT(vc != NULL);
5921 
5922 	MEMSEG_STAT_INCR(nsearch);
5923 
5924 	/* Try last winner first */
5925 	if (((seg = vc->vc_pnum_memseg) != NULL) &&
5926 	    (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5927 		MEMSEG_STAT_INCR(nlastwon);
5928 		pp = seg->pages + (pfnum - seg->pages_base);
5929 		if (pp->p_pagenum == pfnum)
5930 			return ((page_t *)pp);
5931 	}
5932 
5933 	/* Else Try hash */
5934 	if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
5935 	    (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5936 		MEMSEG_STAT_INCR(nhashwon);
5937 		vc->vc_pnum_memseg = seg;
5938 		pp = seg->pages + (pfnum - seg->pages_base);
5939 		if (pp->p_pagenum == pfnum)
5940 			return ((page_t *)pp);
5941 	}
5942 
5943 	/* Else Brute force */
5944 	for (seg = memsegs; seg != NULL; seg = seg->next) {
5945 		if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
5946 			vc->vc_pnum_memseg = seg;
5947 			pp = seg->pages + (pfnum - seg->pages_base);
5948 			return ((page_t *)pp);
5949 		}
5950 	}
5951 	vc->vc_pnum_memseg = NULL;
5952 	MEMSEG_STAT_INCR(nnotfound);
5953 	return ((page_t *)NULL);
5954 
5955 }
5956 
5957 struct memseg *
5958 page_numtomemseg_nolock(pfn_t pfnum)
5959 {
5960 	struct memseg *seg;
5961 	page_t *pp;
5962 
5963 	/* Try hash */
5964 	if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
5965 	    (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5966 		pp = seg->pages + (pfnum - seg->pages_base);
5967 		if (pp->p_pagenum == pfnum)
5968 			return (seg);
5969 	}
5970 
5971 	/* Else Brute force */
5972 	for (seg = memsegs; seg != NULL; seg = seg->next) {
5973 		if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
5974 			return (seg);
5975 		}
5976 	}
5977 	return ((struct memseg *)NULL);
5978 }
5979 
5980 /*
5981  * Given a page and a count return the page struct that is
5982  * n structs away from the current one in the global page
5983  * list.
5984  *
5985  * This function wraps to the first page upon
5986  * reaching the end of the memseg list.
5987  */
5988 page_t *
5989 page_nextn(page_t *pp, ulong_t n)
5990 {
5991 	struct memseg *seg;
5992 	page_t *ppn;
5993 	vm_cpu_data_t *vc = (vm_cpu_data_t *)CPU->cpu_vm_data;
5994 
5995 	ASSERT(vc != NULL);
5996 
5997 	if (((seg = vc->vc_pnext_memseg) == NULL) ||
5998 	    (seg->pages_base == seg->pages_end) ||
5999 	    !(pp >= seg->pages && pp < seg->epages)) {
6000 
6001 		for (seg = memsegs; seg; seg = seg->next) {
6002 			if (pp >= seg->pages && pp < seg->epages)
6003 				break;
6004 		}
6005 
6006 		if (seg == NULL) {
6007 			/* Memory delete got in, return something valid. */
6008 			/* TODO: fix me. */
6009 			seg = memsegs;
6010 			pp = seg->pages;
6011 		}
6012 	}
6013 
6014 	/* check for wraparound - possible if n is large */
6015 	while ((ppn = (pp + n)) >= seg->epages || ppn < pp) {
6016 		n -= seg->epages - pp;
6017 		seg = seg->next;
6018 		if (seg == NULL)
6019 			seg = memsegs;
6020 		pp = seg->pages;
6021 	}
6022 	vc->vc_pnext_memseg = seg;
6023 	return (ppn);
6024 }
6025 
6026 /*
6027  * Initialize for a loop using page_next_scan_large().
6028  */
6029 page_t *
6030 page_next_scan_init(void **cookie)
6031 {
6032 	ASSERT(cookie != NULL);
6033 	*cookie = (void *)memsegs;
6034 	return ((page_t *)memsegs->pages);
6035 }
6036 
6037 /*
6038  * Return the next page in a scan of page_t's, assuming we want
6039  * to skip over sub-pages within larger page sizes.
6040  *
6041  * The cookie is used to keep track of the current memseg.
6042  */
6043 page_t *
6044 page_next_scan_large(
6045 	page_t		*pp,
6046 	ulong_t		*n,
6047 	void		**cookie)
6048 {
6049 	struct memseg	*seg = (struct memseg *)*cookie;
6050 	page_t		*new_pp;
6051 	ulong_t		cnt;
6052 	pfn_t		pfn;
6053 
6054 
6055 	/*
6056 	 * get the count of page_t's to skip based on the page size
6057 	 */
6058 	ASSERT(pp != NULL);
6059 	if (pp->p_szc == 0) {
6060 		cnt = 1;
6061 	} else {
6062 		pfn = page_pptonum(pp);
6063 		cnt = page_get_pagecnt(pp->p_szc);
6064 		cnt -= pfn & (cnt - 1);
6065 	}
6066 	*n += cnt;
6067 	new_pp = pp + cnt;
6068 
6069 	/*
6070 	 * Catch if we went past the end of the current memory segment. If so,
6071 	 * just move to the next segment with pages.
6072 	 */
6073 	if (new_pp >= seg->epages) {
6074 		do {
6075 			seg = seg->next;
6076 			if (seg == NULL)
6077 				seg = memsegs;
6078 		} while (seg->pages == seg->epages);
6079 		new_pp = seg->pages;
6080 		*cookie = (void *)seg;
6081 	}
6082 
6083 	return (new_pp);
6084 }
6085 
6086 
6087 /*
6088  * Returns next page in list. Note: this function wraps
6089  * to the first page in the list upon reaching the end
6090  * of the list. Callers should be aware of this fact.
6091  */
6092 
6093 /* We should change this be a #define */
6094 
6095 page_t *
6096 page_next(page_t *pp)
6097 {
6098 	return (page_nextn(pp, 1));
6099 }
6100 
6101 page_t *
6102 page_first()
6103 {
6104 	return ((page_t *)memsegs->pages);
6105 }
6106 
6107 
6108 /*
6109  * This routine is called at boot with the initial memory configuration
6110  * and when memory is added or removed.
6111  */
6112 void
6113 build_pfn_hash()
6114 {
6115 	pfn_t cur;
6116 	pgcnt_t index;
6117 	struct memseg *pseg;
6118 	int	i;
6119 
6120 	/*
6121 	 * Clear memseg_hash array.
6122 	 * Since memory add/delete is designed to operate concurrently
6123 	 * with normal operation, the hash rebuild must be able to run
6124 	 * concurrently with page_numtopp_nolock(). To support this
6125 	 * functionality, assignments to memseg_hash array members must
6126 	 * be done atomically.
6127 	 *
6128 	 * NOTE: bzero() does not currently guarantee this for kernel
6129 	 * threads, and cannot be used here.
6130 	 */
6131 	for (i = 0; i < N_MEM_SLOTS; i++)
6132 		memseg_hash[i] = NULL;
6133 
6134 	hat_kpm_mseghash_clear(N_MEM_SLOTS);
6135 
6136 	/*
6137 	 * Physmax is the last valid pfn.
6138 	 */
6139 	mhash_per_slot = (physmax + 1) >> MEM_HASH_SHIFT;
6140 	for (pseg = memsegs; pseg != NULL; pseg = pseg->next) {
6141 		index = MEMSEG_PFN_HASH(pseg->pages_base);
6142 		cur = pseg->pages_base;
6143 		do {
6144 			if (index >= N_MEM_SLOTS)
6145 				index = MEMSEG_PFN_HASH(cur);
6146 
6147 			if (memseg_hash[index] == NULL ||
6148 			    memseg_hash[index]->pages_base > pseg->pages_base) {
6149 				memseg_hash[index] = pseg;
6150 				hat_kpm_mseghash_update(index, pseg);
6151 			}
6152 			cur += mhash_per_slot;
6153 			index++;
6154 		} while (cur < pseg->pages_end);
6155 	}
6156 }
6157 
6158 /*
6159  * Return the pagenum for the pp
6160  */
6161 pfn_t
6162 page_pptonum(page_t *pp)
6163 {
6164 	return (pp->p_pagenum);
6165 }
6166 
6167 /*
6168  * interface to the referenced and modified etc bits
6169  * in the PSM part of the page struct
6170  * when no locking is desired.
6171  */
6172 void
6173 page_set_props(page_t *pp, uint_t flags)
6174 {
6175 	ASSERT((flags & ~(P_MOD | P_REF | P_RO)) == 0);
6176 	pp->p_nrm |= (uchar_t)flags;
6177 }
6178 
6179 void
6180 page_clr_all_props(page_t *pp)
6181 {
6182 	pp->p_nrm = 0;
6183 }
6184 
6185 /*
6186  * Clear p_lckcnt and p_cowcnt, adjusting freemem if required.
6187  */
6188 int
6189 page_clear_lck_cow(page_t *pp, int adjust)
6190 {
6191 	int	f_amount;
6192 
6193 	ASSERT(PAGE_EXCL(pp));
6194 
6195 	/*
6196 	 * The page_struct_lock need not be acquired here since
6197 	 * we require the caller hold the page exclusively locked.
6198 	 */
6199 	f_amount = 0;
6200 	if (pp->p_lckcnt) {
6201 		f_amount = 1;
6202 		pp->p_lckcnt = 0;
6203 	}
6204 	if (pp->p_cowcnt) {
6205 		f_amount += pp->p_cowcnt;
6206 		pp->p_cowcnt = 0;
6207 	}
6208 
6209 	if (adjust && f_amount) {
6210 		mutex_enter(&freemem_lock);
6211 		availrmem += f_amount;
6212 		mutex_exit(&freemem_lock);
6213 	}
6214 
6215 	return (f_amount);
6216 }
6217 
6218 /*
6219  * The following functions is called from free_vp_pages()
6220  * for an inexact estimate of a newly free'd page...
6221  */
6222 ulong_t
6223 page_share_cnt(page_t *pp)
6224 {
6225 	return (hat_page_getshare(pp));
6226 }
6227 
6228 int
6229 page_isshared(page_t *pp)
6230 {
6231 	return (hat_page_checkshare(pp, 1));
6232 }
6233 
6234 int
6235 page_isfree(page_t *pp)
6236 {
6237 	return (PP_ISFREE(pp));
6238 }
6239 
6240 int
6241 page_isref(page_t *pp)
6242 {
6243 	return (hat_page_getattr(pp, P_REF));
6244 }
6245 
6246 int
6247 page_ismod(page_t *pp)
6248 {
6249 	return (hat_page_getattr(pp, P_MOD));
6250 }
6251 
6252 /*
6253  * The following code all currently relates to the page capture logic:
6254  *
6255  * This logic is used for cases where there is a desire to claim a certain
6256  * physical page in the system for the caller.  As it may not be possible
6257  * to capture the page immediately, the p_toxic bits are used in the page
6258  * structure to indicate that someone wants to capture this page.  When the
6259  * page gets unlocked, the toxic flag will be noted and an attempt to capture
6260  * the page will be made.  If it is successful, the original callers callback
6261  * will be called with the page to do with it what they please.
6262  *
6263  * There is also an async thread which wakes up to attempt to capture
6264  * pages occasionally which have the capture bit set.  All of the pages which
6265  * need to be captured asynchronously have been inserted into the
6266  * page_capture_hash and thus this thread walks that hash list.  Items in the
6267  * hash have an expiration time so this thread handles that as well by removing
6268  * the item from the hash if it has expired.
6269  *
6270  * Some important things to note are:
6271  * - if the PR_CAPTURE bit is set on a page, then the page is in the
6272  *   page_capture_hash.  The page_capture_hash_head.pchh_mutex is needed
6273  *   to set and clear this bit, and while the lock is held is the only time
6274  *   you can add or remove an entry from the hash.
6275  * - the PR_CAPTURE bit can only be set and cleared while holding the
6276  *   page_capture_hash_head.pchh_mutex
6277  * - the t_flag field of the thread struct is used with the T_CAPTURING
6278  *   flag to prevent recursion while dealing with large pages.
6279  * - pages which need to be retired never expire on the page_capture_hash.
6280  */
6281 
6282 static void page_capture_thread(void);
6283 static kthread_t *pc_thread_id;
6284 kcondvar_t pc_cv;
6285 static kmutex_t pc_thread_mutex;
6286 static clock_t pc_thread_shortwait;
6287 static clock_t pc_thread_longwait;
6288 static int pc_thread_ism_retry;
6289 
6290 struct page_capture_callback pc_cb[PC_NUM_CALLBACKS];
6291 
6292 /* Note that this is a circular linked list */
6293 typedef struct page_capture_hash_bucket {
6294 	page_t *pp;
6295 	uint_t szc;
6296 	uint_t flags;
6297 	clock_t expires;	/* lbolt at which this request expires. */
6298 	void *datap;		/* Cached data passed in for callback */
6299 	struct page_capture_hash_bucket *next;
6300 	struct page_capture_hash_bucket *prev;
6301 } page_capture_hash_bucket_t;
6302 
6303 /*
6304  * Each hash bucket will have it's own mutex and two lists which are:
6305  * active (0):	represents requests which have not been processed by
6306  *		the page_capture async thread yet.
6307  * walked (1):	represents requests which have been processed by the
6308  *		page_capture async thread within it's given walk of this bucket.
6309  *
6310  * These are all needed so that we can synchronize all async page_capture
6311  * events.  When the async thread moves to a new bucket, it will append the
6312  * walked list to the active list and walk each item one at a time, moving it
6313  * from the active list to the walked list.  Thus if there is an async request
6314  * outstanding for a given page, it will always be in one of the two lists.
6315  * New requests will always be added to the active list.
6316  * If we were not able to capture a page before the request expired, we'd free
6317  * up the request structure which would indicate to page_capture that there is
6318  * no longer a need for the given page, and clear the PR_CAPTURE flag if
6319  * possible.
6320  */
6321 typedef struct page_capture_hash_head {
6322 	kmutex_t pchh_mutex;
6323 	uint_t num_pages;
6324 	page_capture_hash_bucket_t lists[2]; /* sentinel nodes */
6325 } page_capture_hash_head_t;
6326 
6327 #ifdef DEBUG
6328 #define	NUM_PAGE_CAPTURE_BUCKETS 4
6329 #else
6330 #define	NUM_PAGE_CAPTURE_BUCKETS 64
6331 #endif
6332 
6333 page_capture_hash_head_t page_capture_hash[NUM_PAGE_CAPTURE_BUCKETS];
6334 
6335 /* for now use a very simple hash based upon the size of a page struct */
6336 #define	PAGE_CAPTURE_HASH(pp)	\
6337 	((int)(((uintptr_t)pp >> 7) & (NUM_PAGE_CAPTURE_BUCKETS - 1)))
6338 
6339 extern pgcnt_t swapfs_minfree;
6340 
6341 int page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap);
6342 
6343 /*
6344  * a callback function is required for page capture requests.
6345  */
6346 void
6347 page_capture_register_callback(uint_t index, clock_t duration,
6348     int (*cb_func)(page_t *, void *, uint_t))
6349 {
6350 	ASSERT(pc_cb[index].cb_active == 0);
6351 	ASSERT(cb_func != NULL);
6352 	rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER);
6353 	pc_cb[index].duration = duration;
6354 	pc_cb[index].cb_func = cb_func;
6355 	pc_cb[index].cb_active = 1;
6356 	rw_exit(&pc_cb[index].cb_rwlock);
6357 }
6358 
6359 void
6360 page_capture_unregister_callback(uint_t index)
6361 {
6362 	int i, j;
6363 	struct page_capture_hash_bucket *bp1;
6364 	struct page_capture_hash_bucket *bp2;
6365 	struct page_capture_hash_bucket *head = NULL;
6366 	uint_t flags = (1 << index);
6367 
6368 	rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER);
6369 	ASSERT(pc_cb[index].cb_active == 1);
6370 	pc_cb[index].duration = 0;	/* Paranoia */
6371 	pc_cb[index].cb_func = NULL;	/* Paranoia */
6372 	pc_cb[index].cb_active = 0;
6373 	rw_exit(&pc_cb[index].cb_rwlock);
6374 
6375 	/*
6376 	 * Just move all the entries to a private list which we can walk
6377 	 * through without the need to hold any locks.
6378 	 * No more requests can get added to the hash lists for this consumer
6379 	 * as the cb_active field for the callback has been cleared.
6380 	 */
6381 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
6382 		mutex_enter(&page_capture_hash[i].pchh_mutex);
6383 		for (j = 0; j < 2; j++) {
6384 			bp1 = page_capture_hash[i].lists[j].next;
6385 			/* walk through all but first (sentinel) element */
6386 			while (bp1 != &page_capture_hash[i].lists[j]) {
6387 				bp2 = bp1;
6388 				if (bp2->flags & flags) {
6389 					bp1 = bp2->next;
6390 					bp1->prev = bp2->prev;
6391 					bp2->prev->next = bp1;
6392 					bp2->next = head;
6393 					head = bp2;
6394 					/*
6395 					 * Clear the PR_CAPTURE bit as we
6396 					 * hold appropriate locks here.
6397 					 */
6398 					page_clrtoxic(head->pp, PR_CAPTURE);
6399 					page_capture_hash[i].num_pages--;
6400 					continue;
6401 				}
6402 				bp1 = bp1->next;
6403 			}
6404 		}
6405 		mutex_exit(&page_capture_hash[i].pchh_mutex);
6406 	}
6407 
6408 	while (head != NULL) {
6409 		bp1 = head;
6410 		head = head->next;
6411 		kmem_free(bp1, sizeof (*bp1));
6412 	}
6413 }
6414 
6415 
6416 /*
6417  * Find pp in the active list and move it to the walked list if it
6418  * exists.
6419  * Note that most often pp should be at the front of the active list
6420  * as it is currently used and thus there is no other sort of optimization
6421  * being done here as this is a linked list data structure.
6422  * Returns 1 on successful move or 0 if page could not be found.
6423  */
6424 static int
6425 page_capture_move_to_walked(page_t *pp)
6426 {
6427 	page_capture_hash_bucket_t *bp;
6428 	int index;
6429 
6430 	index = PAGE_CAPTURE_HASH(pp);
6431 
6432 	mutex_enter(&page_capture_hash[index].pchh_mutex);
6433 	bp = page_capture_hash[index].lists[0].next;
6434 	while (bp != &page_capture_hash[index].lists[0]) {
6435 		if (bp->pp == pp) {
6436 			/* Remove from old list */
6437 			bp->next->prev = bp->prev;
6438 			bp->prev->next = bp->next;
6439 
6440 			/* Add to new list */
6441 			bp->next = page_capture_hash[index].lists[1].next;
6442 			bp->prev = &page_capture_hash[index].lists[1];
6443 			page_capture_hash[index].lists[1].next = bp;
6444 			bp->next->prev = bp;
6445 			mutex_exit(&page_capture_hash[index].pchh_mutex);
6446 
6447 			return (1);
6448 		}
6449 		bp = bp->next;
6450 	}
6451 	mutex_exit(&page_capture_hash[index].pchh_mutex);
6452 	return (0);
6453 }
6454 
6455 /*
6456  * Add a new entry to the page capture hash.  The only case where a new
6457  * entry is not added is when the page capture consumer is no longer registered.
6458  * In this case, we'll silently not add the page to the hash.  We know that
6459  * page retire will always be registered for the case where we are currently
6460  * unretiring a page and thus there are no conflicts.
6461  */
6462 static void
6463 page_capture_add_hash(page_t *pp, uint_t szc, uint_t flags, void *datap)
6464 {
6465 	page_capture_hash_bucket_t *bp1;
6466 	page_capture_hash_bucket_t *bp2;
6467 	int index;
6468 	int cb_index;
6469 	int i;
6470 #ifdef DEBUG
6471 	page_capture_hash_bucket_t *tp1;
6472 	int l;
6473 #endif
6474 
6475 	ASSERT(!(flags & CAPTURE_ASYNC));
6476 
6477 	bp1 = kmem_alloc(sizeof (struct page_capture_hash_bucket), KM_SLEEP);
6478 
6479 	bp1->pp = pp;
6480 	bp1->szc = szc;
6481 	bp1->flags = flags;
6482 	bp1->datap = datap;
6483 
6484 	for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6485 		if ((flags >> cb_index) & 1) {
6486 			break;
6487 		}
6488 	}
6489 
6490 	ASSERT(cb_index != PC_NUM_CALLBACKS);
6491 
6492 	rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER);
6493 	if (pc_cb[cb_index].cb_active) {
6494 		if (pc_cb[cb_index].duration == -1) {
6495 			bp1->expires = (clock_t)-1;
6496 		} else {
6497 			bp1->expires = lbolt + pc_cb[cb_index].duration;
6498 		}
6499 	} else {
6500 		/* There's no callback registered so don't add to the hash */
6501 		rw_exit(&pc_cb[cb_index].cb_rwlock);
6502 		kmem_free(bp1, sizeof (*bp1));
6503 		return;
6504 	}
6505 
6506 	index = PAGE_CAPTURE_HASH(pp);
6507 
6508 	/*
6509 	 * Only allow capture flag to be modified under this mutex.
6510 	 * Prevents multiple entries for same page getting added.
6511 	 */
6512 	mutex_enter(&page_capture_hash[index].pchh_mutex);
6513 
6514 	/*
6515 	 * if not already on the hash, set capture bit and add to the hash
6516 	 */
6517 	if (!(pp->p_toxic & PR_CAPTURE)) {
6518 #ifdef DEBUG
6519 		/* Check for duplicate entries */
6520 		for (l = 0; l < 2; l++) {
6521 			tp1 = page_capture_hash[index].lists[l].next;
6522 			while (tp1 != &page_capture_hash[index].lists[l]) {
6523 				if (tp1->pp == pp) {
6524 					panic("page pp 0x%p already on hash "
6525 					    "at 0x%p\n", pp, tp1);
6526 				}
6527 				tp1 = tp1->next;
6528 			}
6529 		}
6530 
6531 #endif
6532 		page_settoxic(pp, PR_CAPTURE);
6533 		bp1->next = page_capture_hash[index].lists[0].next;
6534 		bp1->prev = &page_capture_hash[index].lists[0];
6535 		bp1->next->prev = bp1;
6536 		page_capture_hash[index].lists[0].next = bp1;
6537 		page_capture_hash[index].num_pages++;
6538 		if (flags & CAPTURE_RETIRE) {
6539 			page_retire_incr_pend_count();
6540 		}
6541 		mutex_exit(&page_capture_hash[index].pchh_mutex);
6542 		rw_exit(&pc_cb[cb_index].cb_rwlock);
6543 		cv_signal(&pc_cv);
6544 		return;
6545 	}
6546 
6547 	/*
6548 	 * A page retire request will replace any other request.
6549 	 * A second physmem request which is for a different process than
6550 	 * the currently registered one will be dropped as there is
6551 	 * no way to hold the private data for both calls.
6552 	 * In the future, once there are more callers, this will have to
6553 	 * be worked out better as there needs to be private storage for
6554 	 * at least each type of caller (maybe have datap be an array of
6555 	 * *void's so that we can index based upon callers index).
6556 	 */
6557 
6558 	/* walk hash list to update expire time */
6559 	for (i = 0; i < 2; i++) {
6560 		bp2 = page_capture_hash[index].lists[i].next;
6561 		while (bp2 != &page_capture_hash[index].lists[i]) {
6562 			if (bp2->pp == pp) {
6563 				if (flags & CAPTURE_RETIRE) {
6564 					if (!(bp2->flags & CAPTURE_RETIRE)) {
6565 						page_retire_incr_pend_count();
6566 						bp2->flags = flags;
6567 						bp2->expires = bp1->expires;
6568 						bp2->datap = datap;
6569 					}
6570 				} else {
6571 					ASSERT(flags & CAPTURE_PHYSMEM);
6572 					if (!(bp2->flags & CAPTURE_RETIRE) &&
6573 					    (datap == bp2->datap)) {
6574 						bp2->expires = bp1->expires;
6575 					}
6576 				}
6577 				mutex_exit(&page_capture_hash[index].
6578 				    pchh_mutex);
6579 				rw_exit(&pc_cb[cb_index].cb_rwlock);
6580 				kmem_free(bp1, sizeof (*bp1));
6581 				return;
6582 			}
6583 			bp2 = bp2->next;
6584 		}
6585 	}
6586 
6587 	/*
6588 	 * the PR_CAPTURE flag is protected by the page_capture_hash mutexes
6589 	 * and thus it either has to be set or not set and can't change
6590 	 * while holding the mutex above.
6591 	 */
6592 	panic("page_capture_add_hash, PR_CAPTURE flag set on pp %p\n", pp);
6593 }
6594 
6595 /*
6596  * We have a page in our hands, lets try and make it ours by turning
6597  * it into a clean page like it had just come off the freelists.
6598  *
6599  * Returns 0 on success, with the page still EXCL locked.
6600  * On failure, the page will be unlocked, and returns EAGAIN
6601  */
6602 static int
6603 page_capture_clean_page(page_t *pp)
6604 {
6605 	page_t *newpp;
6606 	int skip_unlock = 0;
6607 	spgcnt_t count;
6608 	page_t *tpp;
6609 	int ret = 0;
6610 	int extra;
6611 
6612 	ASSERT(PAGE_EXCL(pp));
6613 	ASSERT(!PP_RETIRED(pp));
6614 	ASSERT(curthread->t_flag & T_CAPTURING);
6615 
6616 	if (PP_ISFREE(pp)) {
6617 		if (!page_reclaim(pp, NULL)) {
6618 			skip_unlock = 1;
6619 			ret = EAGAIN;
6620 			goto cleanup;
6621 		}
6622 		ASSERT(pp->p_szc == 0);
6623 		if (pp->p_vnode != NULL) {
6624 			/*
6625 			 * Since this page came from the
6626 			 * cachelist, we must destroy the
6627 			 * old vnode association.
6628 			 */
6629 			page_hashout(pp, NULL);
6630 		}
6631 		goto cleanup;
6632 	}
6633 
6634 	/*
6635 	 * If we know page_relocate will fail, skip it
6636 	 * It could still fail due to a UE on another page but we
6637 	 * can't do anything about that.
6638 	 */
6639 	if (pp->p_toxic & PR_UE) {
6640 		goto skip_relocate;
6641 	}
6642 
6643 	/*
6644 	 * It's possible that pages can not have a vnode as fsflush comes
6645 	 * through and cleans up these pages.  It's ugly but that's how it is.
6646 	 */
6647 	if (pp->p_vnode == NULL) {
6648 		goto skip_relocate;
6649 	}
6650 
6651 	/*
6652 	 * Page was not free, so lets try to relocate it.
6653 	 * page_relocate only works with root pages, so if this is not a root
6654 	 * page, we need to demote it to try and relocate it.
6655 	 * Unfortunately this is the best we can do right now.
6656 	 */
6657 	newpp = NULL;
6658 	if ((pp->p_szc > 0) && (pp != PP_PAGEROOT(pp))) {
6659 		if (page_try_demote_pages(pp) == 0) {
6660 			ret = EAGAIN;
6661 			goto cleanup;
6662 		}
6663 	}
6664 	ret = page_relocate(&pp, &newpp, 1, 0, &count, NULL);
6665 	if (ret == 0) {
6666 		page_t *npp;
6667 		/* unlock the new page(s) */
6668 		while (count-- > 0) {
6669 			ASSERT(newpp != NULL);
6670 			npp = newpp;
6671 			page_sub(&newpp, npp);
6672 			page_unlock(npp);
6673 		}
6674 		ASSERT(newpp == NULL);
6675 		/*
6676 		 * Check to see if the page we have is too large.
6677 		 * If so, demote it freeing up the extra pages.
6678 		 */
6679 		if (pp->p_szc > 0) {
6680 			/* For now demote extra pages to szc == 0 */
6681 			extra = page_get_pagecnt(pp->p_szc) - 1;
6682 			while (extra > 0) {
6683 				tpp = pp->p_next;
6684 				page_sub(&pp, tpp);
6685 				tpp->p_szc = 0;
6686 				page_free(tpp, 1);
6687 				extra--;
6688 			}
6689 			/* Make sure to set our page to szc 0 as well */
6690 			ASSERT(pp->p_next == pp && pp->p_prev == pp);
6691 			pp->p_szc = 0;
6692 		}
6693 		goto cleanup;
6694 	} else if (ret == EIO) {
6695 		ret = EAGAIN;
6696 		goto cleanup;
6697 	} else {
6698 		/*
6699 		 * Need to reset return type as we failed to relocate the page
6700 		 * but that does not mean that some of the next steps will not
6701 		 * work.
6702 		 */
6703 		ret = 0;
6704 	}
6705 
6706 skip_relocate:
6707 
6708 	if (pp->p_szc > 0) {
6709 		if (page_try_demote_pages(pp) == 0) {
6710 			ret = EAGAIN;
6711 			goto cleanup;
6712 		}
6713 	}
6714 
6715 	ASSERT(pp->p_szc == 0);
6716 
6717 	if (hat_ismod(pp)) {
6718 		ret = EAGAIN;
6719 		goto cleanup;
6720 	}
6721 	if (PP_ISKAS(pp)) {
6722 		ret = EAGAIN;
6723 		goto cleanup;
6724 	}
6725 	if (pp->p_lckcnt || pp->p_cowcnt) {
6726 		ret = EAGAIN;
6727 		goto cleanup;
6728 	}
6729 
6730 	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
6731 	ASSERT(!hat_page_is_mapped(pp));
6732 
6733 	if (hat_ismod(pp)) {
6734 		/*
6735 		 * This is a semi-odd case as the page is now modified but not
6736 		 * mapped as we just unloaded the mappings above.
6737 		 */
6738 		ret = EAGAIN;
6739 		goto cleanup;
6740 	}
6741 	if (pp->p_vnode != NULL) {
6742 		page_hashout(pp, NULL);
6743 	}
6744 
6745 	/*
6746 	 * At this point, the page should be in a clean state and
6747 	 * we can do whatever we want with it.
6748 	 */
6749 
6750 cleanup:
6751 	if (ret != 0) {
6752 		if (!skip_unlock) {
6753 			page_unlock(pp);
6754 		}
6755 	} else {
6756 		ASSERT(pp->p_szc == 0);
6757 		ASSERT(PAGE_EXCL(pp));
6758 
6759 		pp->p_next = pp;
6760 		pp->p_prev = pp;
6761 	}
6762 	return (ret);
6763 }
6764 
6765 /*
6766  * Various callers of page_trycapture() can have different restrictions upon
6767  * what memory they have access to.
6768  * Returns 0 on success, with the following error codes on failure:
6769  *      EPERM - The requested page is long term locked, and thus repeated
6770  *              requests to capture this page will likely fail.
6771  *      ENOMEM - There was not enough free memory in the system to safely
6772  *              map the requested page.
6773  *      ENOENT - The requested page was inside the kernel cage, and the
6774  *              PHYSMEM_CAGE flag was not set.
6775  */
6776 int
6777 page_capture_pre_checks(page_t *pp, uint_t flags)
6778 {
6779 #if defined(__sparc)
6780 	extern struct vnode prom_ppages;
6781 #endif /* __sparc */
6782 
6783 	ASSERT(pp != NULL);
6784 
6785 	/* only physmem currently has restrictions */
6786 	if (!(flags & CAPTURE_PHYSMEM)) {
6787 		return (0);
6788 	}
6789 
6790 #if defined(__sparc)
6791 	if (pp->p_vnode == &prom_ppages) {
6792 		return (EPERM);
6793 	}
6794 
6795 	if (PP_ISNORELOC(pp) && !(flags & CAPTURE_GET_CAGE)) {
6796 		return (ENOENT);
6797 	}
6798 
6799 	if (PP_ISNORELOCKERNEL(pp)) {
6800 		return (EPERM);
6801 	}
6802 #else
6803 	if (PP_ISKAS(pp)) {
6804 		return (EPERM);
6805 	}
6806 #endif /* __sparc */
6807 
6808 	if (availrmem < swapfs_minfree) {
6809 		/*
6810 		 * We won't try to capture this page as we are
6811 		 * running low on memory.
6812 		 */
6813 		return (ENOMEM);
6814 	}
6815 	return (0);
6816 }
6817 
6818 /*
6819  * Once we have a page in our mits, go ahead and complete the capture
6820  * operation.
6821  * Returns 1 on failure where page is no longer needed
6822  * Returns 0 on success
6823  * Returns -1 if there was a transient failure.
6824  * Failure cases must release the SE_EXCL lock on pp (usually via page_free).
6825  */
6826 int
6827 page_capture_take_action(page_t *pp, uint_t flags, void *datap)
6828 {
6829 	int cb_index;
6830 	int ret = 0;
6831 	page_capture_hash_bucket_t *bp1;
6832 	page_capture_hash_bucket_t *bp2;
6833 	int index;
6834 	int found = 0;
6835 	int i;
6836 
6837 	ASSERT(PAGE_EXCL(pp));
6838 	ASSERT(curthread->t_flag & T_CAPTURING);
6839 
6840 	for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6841 		if ((flags >> cb_index) & 1) {
6842 			break;
6843 		}
6844 	}
6845 	ASSERT(cb_index < PC_NUM_CALLBACKS);
6846 
6847 	/*
6848 	 * Remove the entry from the page_capture hash, but don't free it yet
6849 	 * as we may need to put it back.
6850 	 * Since we own the page at this point in time, we should find it
6851 	 * in the hash if this is an ASYNC call.  If we don't it's likely
6852 	 * that the page_capture_async() thread decided that this request
6853 	 * had expired, in which case we just continue on.
6854 	 */
6855 	if (flags & CAPTURE_ASYNC) {
6856 
6857 		index = PAGE_CAPTURE_HASH(pp);
6858 
6859 		mutex_enter(&page_capture_hash[index].pchh_mutex);
6860 		for (i = 0; i < 2 && !found; i++) {
6861 			bp1 = page_capture_hash[index].lists[i].next;
6862 			while (bp1 != &page_capture_hash[index].lists[i]) {
6863 				if (bp1->pp == pp) {
6864 					bp1->next->prev = bp1->prev;
6865 					bp1->prev->next = bp1->next;
6866 					page_capture_hash[index].num_pages--;
6867 					page_clrtoxic(pp, PR_CAPTURE);
6868 					found = 1;
6869 					break;
6870 				}
6871 				bp1 = bp1->next;
6872 			}
6873 		}
6874 		mutex_exit(&page_capture_hash[index].pchh_mutex);
6875 	}
6876 
6877 	/* Synchronize with the unregister func. */
6878 	rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER);
6879 	if (!pc_cb[cb_index].cb_active) {
6880 		page_free(pp, 1);
6881 		rw_exit(&pc_cb[cb_index].cb_rwlock);
6882 		if (found) {
6883 			kmem_free(bp1, sizeof (*bp1));
6884 		}
6885 		return (1);
6886 	}
6887 
6888 	/*
6889 	 * We need to remove the entry from the page capture hash and turn off
6890 	 * the PR_CAPTURE bit before calling the callback.  We'll need to cache
6891 	 * the entry here, and then based upon the return value, cleanup
6892 	 * appropriately or re-add it to the hash, making sure that someone else
6893 	 * hasn't already done so.
6894 	 * It should be rare for the callback to fail and thus it's ok for
6895 	 * the failure path to be a bit complicated as the success path is
6896 	 * cleaner and the locking rules are easier to follow.
6897 	 */
6898 
6899 	ret = pc_cb[cb_index].cb_func(pp, datap, flags);
6900 
6901 	rw_exit(&pc_cb[cb_index].cb_rwlock);
6902 
6903 	/*
6904 	 * If this was an ASYNC request, we need to cleanup the hash if the
6905 	 * callback was successful or if the request was no longer valid.
6906 	 * For non-ASYNC requests, we return failure to map and the caller
6907 	 * will take care of adding the request to the hash.
6908 	 * Note also that the callback itself is responsible for the page
6909 	 * at this point in time in terms of locking ...  The most common
6910 	 * case for the failure path should just be a page_free.
6911 	 */
6912 	if (ret >= 0) {
6913 		if (found) {
6914 			if (bp1->flags & CAPTURE_RETIRE) {
6915 				page_retire_decr_pend_count();
6916 			}
6917 			kmem_free(bp1, sizeof (*bp1));
6918 		}
6919 		return (ret);
6920 	}
6921 	if (!found) {
6922 		return (ret);
6923 	}
6924 
6925 	ASSERT(flags & CAPTURE_ASYNC);
6926 
6927 	/*
6928 	 * Check for expiration time first as we can just free it up if it's
6929 	 * expired.
6930 	 */
6931 	if (lbolt > bp1->expires && bp1->expires != -1) {
6932 		kmem_free(bp1, sizeof (*bp1));
6933 		return (ret);
6934 	}
6935 
6936 	/*
6937 	 * The callback failed and there used to be an entry in the hash for
6938 	 * this page, so we need to add it back to the hash.
6939 	 */
6940 	mutex_enter(&page_capture_hash[index].pchh_mutex);
6941 	if (!(pp->p_toxic & PR_CAPTURE)) {
6942 		/* just add bp1 back to head of walked list */
6943 		page_settoxic(pp, PR_CAPTURE);
6944 		bp1->next = page_capture_hash[index].lists[1].next;
6945 		bp1->prev = &page_capture_hash[index].lists[1];
6946 		bp1->next->prev = bp1;
6947 		page_capture_hash[index].lists[1].next = bp1;
6948 		page_capture_hash[index].num_pages++;
6949 		mutex_exit(&page_capture_hash[index].pchh_mutex);
6950 		return (ret);
6951 	}
6952 
6953 	/*
6954 	 * Otherwise there was a new capture request added to list
6955 	 * Need to make sure that our original data is represented if
6956 	 * appropriate.
6957 	 */
6958 	for (i = 0; i < 2; i++) {
6959 		bp2 = page_capture_hash[index].lists[i].next;
6960 		while (bp2 != &page_capture_hash[index].lists[i]) {
6961 			if (bp2->pp == pp) {
6962 				if (bp1->flags & CAPTURE_RETIRE) {
6963 					if (!(bp2->flags & CAPTURE_RETIRE)) {
6964 						bp2->szc = bp1->szc;
6965 						bp2->flags = bp1->flags;
6966 						bp2->expires = bp1->expires;
6967 						bp2->datap = bp1->datap;
6968 					}
6969 				} else {
6970 					ASSERT(bp1->flags & CAPTURE_PHYSMEM);
6971 					if (!(bp2->flags & CAPTURE_RETIRE)) {
6972 						bp2->szc = bp1->szc;
6973 						bp2->flags = bp1->flags;
6974 						bp2->expires = bp1->expires;
6975 						bp2->datap = bp1->datap;
6976 					}
6977 				}
6978 				mutex_exit(&page_capture_hash[index].
6979 				    pchh_mutex);
6980 				kmem_free(bp1, sizeof (*bp1));
6981 				return (ret);
6982 			}
6983 			bp2 = bp2->next;
6984 		}
6985 	}
6986 	panic("PR_CAPTURE set but not on hash for pp 0x%p\n", pp);
6987 	/*NOTREACHED*/
6988 }
6989 
6990 /*
6991  * Try to capture the given page for the caller specified in the flags
6992  * parameter.  The page will either be captured and handed over to the
6993  * appropriate callback, or will be queued up in the page capture hash
6994  * to be captured asynchronously.
6995  * If the current request is due to an async capture, the page must be
6996  * exclusively locked before calling this function.
6997  * Currently szc must be 0 but in the future this should be expandable to
6998  * other page sizes.
6999  * Returns 0 on success, with the following error codes on failure:
7000  *      EPERM - The requested page is long term locked, and thus repeated
7001  *              requests to capture this page will likely fail.
7002  *      ENOMEM - There was not enough free memory in the system to safely
7003  *              map the requested page.
7004  *      ENOENT - The requested page was inside the kernel cage, and the
7005  *              CAPTURE_GET_CAGE flag was not set.
7006  *	EAGAIN - The requested page could not be capturead at this point in
7007  *		time but future requests will likely work.
7008  *	EBUSY - The requested page is retired and the CAPTURE_GET_RETIRED flag
7009  *		was not set.
7010  */
7011 int
7012 page_itrycapture(page_t *pp, uint_t szc, uint_t flags, void *datap)
7013 {
7014 	int ret;
7015 	int cb_index;
7016 
7017 	if (flags & CAPTURE_ASYNC) {
7018 		ASSERT(PAGE_EXCL(pp));
7019 		goto async;
7020 	}
7021 
7022 	/* Make sure there's enough availrmem ... */
7023 	ret = page_capture_pre_checks(pp, flags);
7024 	if (ret != 0) {
7025 		return (ret);
7026 	}
7027 
7028 	if (!page_trylock(pp, SE_EXCL)) {
7029 		for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
7030 			if ((flags >> cb_index) & 1) {
7031 				break;
7032 			}
7033 		}
7034 		ASSERT(cb_index < PC_NUM_CALLBACKS);
7035 		ret = EAGAIN;
7036 		/* Special case for retired pages */
7037 		if (PP_RETIRED(pp)) {
7038 			if (flags & CAPTURE_GET_RETIRED) {
7039 				if (!page_unretire_pp(pp, PR_UNR_TEMP)) {
7040 					/*
7041 					 * Need to set capture bit and add to
7042 					 * hash so that the page will be
7043 					 * retired when freed.
7044 					 */
7045 					page_capture_add_hash(pp, szc,
7046 					    CAPTURE_RETIRE, NULL);
7047 					ret = 0;
7048 					goto own_page;
7049 				}
7050 			} else {
7051 				return (EBUSY);
7052 			}
7053 		}
7054 		page_capture_add_hash(pp, szc, flags, datap);
7055 		return (ret);
7056 	}
7057 
7058 async:
7059 	ASSERT(PAGE_EXCL(pp));
7060 
7061 	/* Need to check for physmem async requests that availrmem is sane */
7062 	if ((flags & (CAPTURE_ASYNC | CAPTURE_PHYSMEM)) ==
7063 	    (CAPTURE_ASYNC | CAPTURE_PHYSMEM) &&
7064 	    (availrmem < swapfs_minfree)) {
7065 		page_unlock(pp);
7066 		return (ENOMEM);
7067 	}
7068 
7069 	ret = page_capture_clean_page(pp);
7070 
7071 	if (ret != 0) {
7072 		/* We failed to get the page, so lets add it to the hash */
7073 		if (!(flags & CAPTURE_ASYNC)) {
7074 			page_capture_add_hash(pp, szc, flags, datap);
7075 		}
7076 		return (ret);
7077 	}
7078 
7079 own_page:
7080 	ASSERT(PAGE_EXCL(pp));
7081 	ASSERT(pp->p_szc == 0);
7082 
7083 	/* Call the callback */
7084 	ret = page_capture_take_action(pp, flags, datap);
7085 
7086 	if (ret == 0) {
7087 		return (0);
7088 	}
7089 
7090 	/*
7091 	 * Note that in the failure cases from page_capture_take_action, the
7092 	 * EXCL lock will have already been dropped.
7093 	 */
7094 	if ((ret == -1) && (!(flags & CAPTURE_ASYNC))) {
7095 		page_capture_add_hash(pp, szc, flags, datap);
7096 	}
7097 	return (EAGAIN);
7098 }
7099 
7100 int
7101 page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap)
7102 {
7103 	int ret;
7104 
7105 	curthread->t_flag |= T_CAPTURING;
7106 	ret = page_itrycapture(pp, szc, flags, datap);
7107 	curthread->t_flag &= ~T_CAPTURING; /* xor works as we know its set */
7108 	return (ret);
7109 }
7110 
7111 /*
7112  * When unlocking a page which has the PR_CAPTURE bit set, this routine
7113  * gets called to try and capture the page.
7114  */
7115 void
7116 page_unlock_capture(page_t *pp)
7117 {
7118 	page_capture_hash_bucket_t *bp;
7119 	int index;
7120 	int i;
7121 	uint_t szc;
7122 	uint_t flags = 0;
7123 	void *datap;
7124 	kmutex_t *mp;
7125 	extern vnode_t retired_pages;
7126 
7127 	/*
7128 	 * We need to protect against a possible deadlock here where we own
7129 	 * the vnode page hash mutex and want to acquire it again as there
7130 	 * are locations in the code, where we unlock a page while holding
7131 	 * the mutex which can lead to the page being captured and eventually
7132 	 * end up here.  As we may be hashing out the old page and hashing into
7133 	 * the retire vnode, we need to make sure we don't own them.
7134 	 * Other callbacks who do hash operations also need to make sure that
7135 	 * before they hashin to a vnode that they do not currently own the
7136 	 * vphm mutex otherwise there will be a panic.
7137 	 */
7138 	if (mutex_owned(page_vnode_mutex(&retired_pages))) {
7139 		page_unlock_nocapture(pp);
7140 		return;
7141 	}
7142 	if (pp->p_vnode != NULL && mutex_owned(page_vnode_mutex(pp->p_vnode))) {
7143 		page_unlock_nocapture(pp);
7144 		return;
7145 	}
7146 
7147 	index = PAGE_CAPTURE_HASH(pp);
7148 
7149 	mp = &page_capture_hash[index].pchh_mutex;
7150 	mutex_enter(mp);
7151 	for (i = 0; i < 2; i++) {
7152 		bp = page_capture_hash[index].lists[i].next;
7153 		while (bp != &page_capture_hash[index].lists[i]) {
7154 			if (bp->pp == pp) {
7155 				szc = bp->szc;
7156 				flags = bp->flags | CAPTURE_ASYNC;
7157 				datap = bp->datap;
7158 				mutex_exit(mp);
7159 				(void) page_trycapture(pp, szc, flags, datap);
7160 				return;
7161 			}
7162 			bp = bp->next;
7163 		}
7164 	}
7165 
7166 	/* Failed to find page in hash so clear flags and unlock it. */
7167 	page_clrtoxic(pp, PR_CAPTURE);
7168 	page_unlock(pp);
7169 
7170 	mutex_exit(mp);
7171 }
7172 
7173 void
7174 page_capture_init()
7175 {
7176 	int i;
7177 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7178 		page_capture_hash[i].lists[0].next =
7179 		    &page_capture_hash[i].lists[0];
7180 		page_capture_hash[i].lists[0].prev =
7181 		    &page_capture_hash[i].lists[0];
7182 		page_capture_hash[i].lists[1].next =
7183 		    &page_capture_hash[i].lists[1];
7184 		page_capture_hash[i].lists[1].prev =
7185 		    &page_capture_hash[i].lists[1];
7186 	}
7187 
7188 	pc_thread_shortwait = 23 * hz;
7189 	pc_thread_longwait = 1201 * hz;
7190 	pc_thread_ism_retry = 3;
7191 	mutex_init(&pc_thread_mutex, NULL, MUTEX_DEFAULT, NULL);
7192 	cv_init(&pc_cv, NULL, CV_DEFAULT, NULL);
7193 	pc_thread_id = thread_create(NULL, 0, page_capture_thread, NULL, 0, &p0,
7194 	    TS_RUN, minclsyspri);
7195 }
7196 
7197 /*
7198  * It is necessary to scrub any failing pages prior to reboot in order to
7199  * prevent a latent error trap from occurring on the next boot.
7200  */
7201 void
7202 page_retire_mdboot()
7203 {
7204 	page_t *pp;
7205 	int i, j;
7206 	page_capture_hash_bucket_t *bp;
7207 
7208 	/* walk lists looking for pages to scrub */
7209 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7210 		if (page_capture_hash[i].num_pages == 0)
7211 			continue;
7212 
7213 		mutex_enter(&page_capture_hash[i].pchh_mutex);
7214 
7215 		for (j = 0; j < 2; j++) {
7216 			bp = page_capture_hash[i].lists[j].next;
7217 			while (bp != &page_capture_hash[i].lists[j]) {
7218 				pp = bp->pp;
7219 				if (!PP_ISKAS(pp) && PP_TOXIC(pp)) {
7220 					pp->p_selock = -1;  /* pacify ASSERTs */
7221 					PP_CLRFREE(pp);
7222 					pagescrub(pp, 0, PAGESIZE);
7223 					pp->p_selock = 0;
7224 				}
7225 				bp = bp->next;
7226 			}
7227 		}
7228 		mutex_exit(&page_capture_hash[i].pchh_mutex);
7229 	}
7230 }
7231 
7232 /*
7233  * Walk the page_capture_hash trying to capture pages and also cleanup old
7234  * entries which have expired.
7235  */
7236 void
7237 page_capture_async()
7238 {
7239 	page_t *pp;
7240 	int i;
7241 	int ret;
7242 	page_capture_hash_bucket_t *bp1, *bp2;
7243 	uint_t szc;
7244 	uint_t flags;
7245 	void *datap;
7246 
7247 	/* If there are outstanding pages to be captured, get to work */
7248 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7249 		if (page_capture_hash[i].num_pages == 0)
7250 			continue;
7251 		/* Append list 1 to list 0 and then walk through list 0 */
7252 		mutex_enter(&page_capture_hash[i].pchh_mutex);
7253 		bp1 = &page_capture_hash[i].lists[1];
7254 		bp2 = bp1->next;
7255 		if (bp1 != bp2) {
7256 			bp1->prev->next = page_capture_hash[i].lists[0].next;
7257 			bp2->prev = &page_capture_hash[i].lists[0];
7258 			page_capture_hash[i].lists[0].next->prev = bp1->prev;
7259 			page_capture_hash[i].lists[0].next = bp2;
7260 			bp1->next = bp1;
7261 			bp1->prev = bp1;
7262 		}
7263 
7264 		/* list[1] will be empty now */
7265 
7266 		bp1 = page_capture_hash[i].lists[0].next;
7267 		while (bp1 != &page_capture_hash[i].lists[0]) {
7268 			/* Check expiration time */
7269 			if ((lbolt > bp1->expires && bp1->expires != -1) ||
7270 			    page_deleted(bp1->pp)) {
7271 				page_capture_hash[i].lists[0].next = bp1->next;
7272 				bp1->next->prev =
7273 				    &page_capture_hash[i].lists[0];
7274 				page_capture_hash[i].num_pages--;
7275 
7276 				/*
7277 				 * We can safely remove the PR_CAPTURE bit
7278 				 * without holding the EXCL lock on the page
7279 				 * as the PR_CAPTURE bit requres that the
7280 				 * page_capture_hash[].pchh_mutex be held
7281 				 * to modify it.
7282 				 */
7283 				page_clrtoxic(bp1->pp, PR_CAPTURE);
7284 				mutex_exit(&page_capture_hash[i].pchh_mutex);
7285 				kmem_free(bp1, sizeof (*bp1));
7286 				mutex_enter(&page_capture_hash[i].pchh_mutex);
7287 				bp1 = page_capture_hash[i].lists[0].next;
7288 				continue;
7289 			}
7290 			pp = bp1->pp;
7291 			szc = bp1->szc;
7292 			flags = bp1->flags;
7293 			datap = bp1->datap;
7294 			mutex_exit(&page_capture_hash[i].pchh_mutex);
7295 			if (page_trylock(pp, SE_EXCL)) {
7296 				ret = page_trycapture(pp, szc,
7297 				    flags | CAPTURE_ASYNC, datap);
7298 			} else {
7299 				ret = 1;	/* move to walked hash */
7300 			}
7301 
7302 			if (ret != 0) {
7303 				/* Move to walked hash */
7304 				(void) page_capture_move_to_walked(pp);
7305 			}
7306 			mutex_enter(&page_capture_hash[i].pchh_mutex);
7307 			bp1 = page_capture_hash[i].lists[0].next;
7308 		}
7309 
7310 		mutex_exit(&page_capture_hash[i].pchh_mutex);
7311 	}
7312 }
7313 
7314 /*
7315  * This function is called by the page_capture_thread, and is needed in
7316  * in order to initiate aio cleanup, so that pages used in aio
7317  * will be unlocked and subsequently retired by page_capture_thread.
7318  */
7319 static int
7320 do_aio_cleanup(void)
7321 {
7322 	proc_t *procp;
7323 	int (*aio_cleanup_dr_delete_memory)(proc_t *);
7324 	int cleaned = 0;
7325 
7326 	if (modload("sys", "kaio") == -1) {
7327 		cmn_err(CE_WARN, "do_aio_cleanup: cannot load kaio");
7328 		return (0);
7329 	}
7330 	/*
7331 	 * We use the aio_cleanup_dr_delete_memory function to
7332 	 * initiate the actual clean up; this function will wake
7333 	 * up the per-process aio_cleanup_thread.
7334 	 */
7335 	aio_cleanup_dr_delete_memory = (int (*)(proc_t *))
7336 	    modgetsymvalue("aio_cleanup_dr_delete_memory", 0);
7337 	if (aio_cleanup_dr_delete_memory == NULL) {
7338 		cmn_err(CE_WARN,
7339 	    "aio_cleanup_dr_delete_memory not found in kaio");
7340 		return (0);
7341 	}
7342 	mutex_enter(&pidlock);
7343 	for (procp = practive; (procp != NULL); procp = procp->p_next) {
7344 		mutex_enter(&procp->p_lock);
7345 		if (procp->p_aio != NULL) {
7346 			/* cleanup proc's outstanding kaio */
7347 			cleaned += (*aio_cleanup_dr_delete_memory)(procp);
7348 		}
7349 		mutex_exit(&procp->p_lock);
7350 	}
7351 	mutex_exit(&pidlock);
7352 	return (cleaned);
7353 }
7354 
7355 /*
7356  * helper function for page_capture_thread
7357  */
7358 static void
7359 page_capture_handle_outstanding(void)
7360 {
7361 	extern size_t spt_used;
7362 	int ntry;
7363 
7364 	if (!page_retire_pend_count()) {
7365 		/*
7366 		 * Do we really want to be this aggressive
7367 		 * for things other than page_retire?
7368 		 * Maybe have a counter for each callback
7369 		 * type to guide how aggressive we should
7370 		 * be here.  Thus if there's at least one
7371 		 * page for page_retire we go ahead and reap
7372 		 * like this.
7373 		 */
7374 		kmem_reap();
7375 		seg_preap();
7376 		page_capture_async();
7377 	} else {
7378 		/*
7379 		 * There are pages pending retirement, so
7380 		 * we reap prior to attempting to capture.
7381 		 */
7382 		kmem_reap();
7383 		/*
7384 		 * When ISM is in use, we need to disable and
7385 		 * purge the seg_pcache, and initiate aio
7386 		 * cleanup in order to release page locks and
7387 		 * subsquently retire pages in need of
7388 		 * retirement.
7389 		 */
7390 		if (spt_used) {
7391 			/* disable and purge seg_pcache */
7392 			(void) seg_p_disable();
7393 			for (ntry = 0; ntry < pc_thread_ism_retry; ntry++) {
7394 				if (!page_retire_pend_count())
7395 					break;
7396 				if (do_aio_cleanup()) {
7397 					/*
7398 					 * allow the apps cleanup threads
7399 					 * to run
7400 					 */
7401 					delay(pc_thread_shortwait);
7402 				}
7403 				page_capture_async();
7404 			}
7405 			/* reenable seg_pcache */
7406 			seg_p_enable();
7407 		} else {
7408 			seg_preap();
7409 			page_capture_async();
7410 		}
7411 	}
7412 }
7413 
7414 /*
7415  * The page_capture_thread loops forever, looking to see if there are
7416  * pages still waiting to be captured.
7417  */
7418 static void
7419 page_capture_thread(void)
7420 {
7421 	callb_cpr_t c;
7422 	int outstanding;
7423 	int i;
7424 
7425 	CALLB_CPR_INIT(&c, &pc_thread_mutex, callb_generic_cpr, "page_capture");
7426 
7427 	mutex_enter(&pc_thread_mutex);
7428 	for (;;) {
7429 		outstanding = 0;
7430 		for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++)
7431 			outstanding += page_capture_hash[i].num_pages;
7432 		if (outstanding) {
7433 			page_capture_handle_outstanding();
7434 			CALLB_CPR_SAFE_BEGIN(&c);
7435 			(void) cv_timedwait(&pc_cv, &pc_thread_mutex,
7436 			    lbolt + pc_thread_shortwait);
7437 			CALLB_CPR_SAFE_END(&c, &pc_thread_mutex);
7438 		} else {
7439 			CALLB_CPR_SAFE_BEGIN(&c);
7440 			(void) cv_timedwait(&pc_cv, &pc_thread_mutex,
7441 			    lbolt + pc_thread_longwait);
7442 			CALLB_CPR_SAFE_END(&c, &pc_thread_mutex);
7443 		}
7444 	}
7445 	/*NOTREACHED*/
7446 }
7447