xref: /titanic_50/usr/src/uts/common/vm/vm_anon.c (revision b365acd0c29cb0376af78f1f0662459a9d216641)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 /*
31  * University Copyright- Copyright (c) 1982, 1986, 1988
32  * The Regents of the University of California
33  * All Rights Reserved
34  *
35  * University Acknowledgment- Portions of this document are derived from
36  * software developed by the University of California, Berkeley, and its
37  * contributors.
38  */
39 
40 #pragma ident	"%Z%%M%	%I%	%E% SMI"
41 
42 /*
43  * VM - anonymous pages.
44  *
45  * This layer sits immediately above the vm_swap layer.  It manages
46  * physical pages that have no permanent identity in the file system
47  * name space, using the services of the vm_swap layer to allocate
48  * backing storage for these pages.  Since these pages have no external
49  * identity, they are discarded when the last reference is removed.
50  *
51  * An important function of this layer is to manage low-level sharing
52  * of pages that are logically distinct but that happen to be
53  * physically identical (e.g., the corresponding pages of the processes
54  * resulting from a fork before one process or the other changes their
55  * contents).  This pseudo-sharing is present only as an optimization
56  * and is not to be confused with true sharing in which multiple
57  * address spaces deliberately contain references to the same object;
58  * such sharing is managed at a higher level.
59  *
60  * The key data structure here is the anon struct, which contains a
61  * reference count for its associated physical page and a hint about
62  * the identity of that page.  Anon structs typically live in arrays,
63  * with an instance's position in its array determining where the
64  * corresponding backing storage is allocated; however, the swap_xlate()
65  * routine abstracts away this representation information so that the
66  * rest of the anon layer need not know it.  (See the swap layer for
67  * more details on anon struct layout.)
68  *
69  * In the future versions of the system, the association between an
70  * anon struct and its position on backing store will change so that
71  * we don't require backing store all anonymous pages in the system.
72  * This is important for consideration for large memory systems.
73  * We can also use this technique to delay binding physical locations
74  * to anonymous pages until pageout/swapout time where we can make
75  * smarter allocation decisions to improve anonymous klustering.
76  *
77  * Many of the routines defined here take a (struct anon **) argument,
78  * which allows the code at this level to manage anon pages directly,
79  * so that callers can regard anon structs as opaque objects and not be
80  * concerned with assigning or inspecting their contents.
81  *
82  * Clients of this layer refer to anon pages indirectly.  That is, they
83  * maintain arrays of pointers to anon structs rather than maintaining
84  * anon structs themselves.  The (struct anon **) arguments mentioned
85  * above are pointers to entries in these arrays.  It is these arrays
86  * that capture the mapping between offsets within a given segment and
87  * the corresponding anonymous backing storage address.
88  */
89 
90 #ifdef DEBUG
91 #define	ANON_DEBUG
92 #endif
93 
94 #include <sys/types.h>
95 #include <sys/t_lock.h>
96 #include <sys/param.h>
97 #include <sys/systm.h>
98 #include <sys/mman.h>
99 #include <sys/cred.h>
100 #include <sys/thread.h>
101 #include <sys/vnode.h>
102 #include <sys/cpuvar.h>
103 #include <sys/swap.h>
104 #include <sys/cmn_err.h>
105 #include <sys/vtrace.h>
106 #include <sys/kmem.h>
107 #include <sys/sysmacros.h>
108 #include <sys/bitmap.h>
109 #include <sys/vmsystm.h>
110 #include <sys/debug.h>
111 #include <sys/tnf_probe.h>
112 #include <sys/lgrp.h>
113 #include <sys/policy.h>
114 #include <sys/condvar_impl.h>
115 #include <sys/mutex_impl.h>
116 
117 #include <vm/as.h>
118 #include <vm/hat.h>
119 #include <vm/anon.h>
120 #include <vm/page.h>
121 #include <vm/vpage.h>
122 #include <vm/seg.h>
123 #include <vm/rm.h>
124 
125 #include <fs/fs_subr.h>
126 
127 int anon_debug;
128 
129 kmutex_t	anoninfo_lock;
130 struct		k_anoninfo k_anoninfo;
131 ani_free_t	ani_free_pool[ANI_MAX_POOL];
132 pad_mutex_t	anon_array_lock[ANON_LOCKSIZE];
133 kcondvar_t	anon_array_cv[ANON_LOCKSIZE];
134 
135 /*
136  * Global hash table for (vp, off) -> anon slot
137  */
138 extern	int swap_maxcontig;
139 size_t	anon_hash_size;
140 struct anon **anon_hash;
141 
142 static struct kmem_cache *anon_cache;
143 static struct kmem_cache *anonmap_cache;
144 
145 #ifdef VM_STATS
146 static struct anonvmstats_str {
147 	ulong_t getpages[30];
148 	ulong_t privatepages[10];
149 	ulong_t demotepages[9];
150 	ulong_t decrefpages[9];
151 	ulong_t	dupfillholes[4];
152 	ulong_t freepages[1];
153 } anonvmstats;
154 #endif /* VM_STATS */
155 
156 
157 /*ARGSUSED*/
158 static int
159 anonmap_cache_constructor(void *buf, void *cdrarg, int kmflags)
160 {
161 	struct anon_map *amp = buf;
162 
163 	rw_init(&amp->a_rwlock, NULL, RW_DEFAULT, NULL);
164 	return (0);
165 }
166 
167 /*ARGSUSED1*/
168 static void
169 anonmap_cache_destructor(void *buf, void *cdrarg)
170 {
171 	struct anon_map *amp = buf;
172 
173 	rw_destroy(&amp->a_rwlock);
174 }
175 
176 kmutex_t	anonhash_lock[AH_LOCK_SIZE];
177 kmutex_t	anonpages_hash_lock[AH_LOCK_SIZE];
178 
179 void
180 anon_init(void)
181 {
182 	int i;
183 
184 	anon_hash_size = 1L << highbit(physmem / ANON_HASHAVELEN);
185 
186 	for (i = 0; i < AH_LOCK_SIZE; i++) {
187 		mutex_init(&anonhash_lock[i], NULL, MUTEX_DEFAULT, NULL);
188 		mutex_init(&anonpages_hash_lock[i], NULL, MUTEX_DEFAULT, NULL);
189 	}
190 
191 	for (i = 0; i < ANON_LOCKSIZE; i++) {
192 		mutex_init(&anon_array_lock[i].pad_mutex, NULL,
193 			MUTEX_DEFAULT, NULL);
194 		cv_init(&anon_array_cv[i], NULL, CV_DEFAULT, NULL);
195 	}
196 
197 	anon_hash = (struct anon **)
198 		kmem_zalloc(sizeof (struct anon *) * anon_hash_size, KM_SLEEP);
199 	anon_cache = kmem_cache_create("anon_cache", sizeof (struct anon),
200 		AN_CACHE_ALIGN, NULL, NULL, NULL, NULL, NULL, 0);
201 	anonmap_cache = kmem_cache_create("anonmap_cache",
202 		sizeof (struct anon_map), 0,
203 		anonmap_cache_constructor, anonmap_cache_destructor, NULL,
204 		NULL, NULL, 0);
205 	swap_maxcontig = (1024 * 1024) >> PAGESHIFT;	/* 1MB of pages */
206 }
207 
208 /*
209  * Global anon slot hash table manipulation.
210  */
211 
212 static void
213 anon_addhash(struct anon *ap)
214 {
215 	int index;
216 
217 	ASSERT(MUTEX_HELD(&anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]));
218 	index = ANON_HASH(ap->an_vp, ap->an_off);
219 	ap->an_hash = anon_hash[index];
220 	anon_hash[index] = ap;
221 }
222 
223 static void
224 anon_rmhash(struct anon *ap)
225 {
226 	struct anon **app;
227 
228 	ASSERT(MUTEX_HELD(&anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]));
229 
230 	for (app = &anon_hash[ANON_HASH(ap->an_vp, ap->an_off)];
231 	    *app; app = &((*app)->an_hash)) {
232 		if (*app == ap) {
233 			*app = ap->an_hash;
234 			break;
235 		}
236 	}
237 }
238 
239 /*
240  * The anon array interfaces. Functions allocating,
241  * freeing array of pointers, and returning/setting
242  * entries in the array of pointers for a given offset.
243  *
244  * Create the list of pointers
245  */
246 struct anon_hdr *
247 anon_create(pgcnt_t npages, int flags)
248 {
249 	struct anon_hdr *ahp;
250 	ulong_t nchunks;
251 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
252 
253 	if ((ahp = kmem_zalloc(sizeof (struct anon_hdr), kmemflags)) == NULL) {
254 		return (NULL);
255 	}
256 
257 	mutex_init(&ahp->serial_lock, NULL, MUTEX_DEFAULT, NULL);
258 	/*
259 	 * Single level case.
260 	 */
261 	ahp->size = npages;
262 	if (npages <= ANON_CHUNK_SIZE || (flags & ANON_ALLOC_FORCE)) {
263 
264 		if (flags & ANON_ALLOC_FORCE)
265 			ahp->flags |= ANON_ALLOC_FORCE;
266 
267 		ahp->array_chunk = kmem_zalloc(
268 		    ahp->size * sizeof (struct anon *), kmemflags);
269 
270 		if (ahp->array_chunk == NULL) {
271 			kmem_free(ahp, sizeof (struct anon_hdr));
272 			return (NULL);
273 		}
274 	} else {
275 		/*
276 		 * 2 Level case.
277 		 */
278 		nchunks = (ahp->size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
279 
280 		ahp->array_chunk = kmem_zalloc(nchunks * sizeof (ulong_t *),
281 		    kmemflags);
282 
283 		if (ahp->array_chunk == NULL) {
284 			kmem_free(ahp, sizeof (struct anon_hdr));
285 			return (NULL);
286 		}
287 	}
288 	return (ahp);
289 }
290 
291 /*
292  * Free the array of pointers
293  */
294 void
295 anon_release(struct anon_hdr *ahp, pgcnt_t npages)
296 {
297 	ulong_t i;
298 	void **ppp;
299 	ulong_t nchunks;
300 
301 	ASSERT(npages == ahp->size);
302 
303 	/*
304 	 * Single level case.
305 	 */
306 	if (npages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
307 		kmem_free(ahp->array_chunk, ahp->size * sizeof (struct anon *));
308 	} else {
309 		/*
310 		 * 2 level case.
311 		 */
312 		nchunks = (ahp->size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
313 		for (i = 0; i < nchunks; i++) {
314 			ppp = &ahp->array_chunk[i];
315 			if (*ppp != NULL)
316 				kmem_free(*ppp, PAGESIZE);
317 		}
318 		kmem_free(ahp->array_chunk, nchunks * sizeof (ulong_t *));
319 	}
320 	mutex_destroy(&ahp->serial_lock);
321 	kmem_free(ahp, sizeof (struct anon_hdr));
322 }
323 
324 /*
325  * Return the pointer from the list for a
326  * specified anon index.
327  */
328 struct anon *
329 anon_get_ptr(struct anon_hdr *ahp, ulong_t an_idx)
330 {
331 	struct anon **app;
332 
333 	ASSERT(an_idx < ahp->size);
334 
335 	/*
336 	 * Single level case.
337 	 */
338 	if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
339 		return ((struct anon *)
340 			((uintptr_t)ahp->array_chunk[an_idx] & ANON_PTRMASK));
341 	} else {
342 
343 		/*
344 		 * 2 level case.
345 		 */
346 		app = ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
347 		if (app) {
348 			return ((struct anon *)
349 				((uintptr_t)app[an_idx & ANON_CHUNK_OFF] &
350 					ANON_PTRMASK));
351 		} else {
352 			return (NULL);
353 		}
354 	}
355 }
356 
357 /*
358  * Return the anon pointer for the first valid entry in the anon list,
359  * starting from the given index.
360  */
361 struct anon *
362 anon_get_next_ptr(struct anon_hdr *ahp, ulong_t *index)
363 {
364 	struct anon *ap;
365 	struct anon **app;
366 	ulong_t chunkoff;
367 	ulong_t i;
368 	ulong_t j;
369 	pgcnt_t size;
370 
371 	i = *index;
372 	size = ahp->size;
373 
374 	ASSERT(i < size);
375 
376 	if ((size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
377 		/*
378 		 * 1 level case
379 		 */
380 		while (i < size) {
381 			ap = (struct anon *)
382 				((uintptr_t)ahp->array_chunk[i] & ANON_PTRMASK);
383 			if (ap) {
384 				*index = i;
385 				return (ap);
386 			}
387 			i++;
388 		}
389 	} else {
390 		/*
391 		 * 2 level case
392 		 */
393 		chunkoff = i & ANON_CHUNK_OFF;
394 		while (i < size) {
395 			app = ahp->array_chunk[i >> ANON_CHUNK_SHIFT];
396 			if (app)
397 				for (j = chunkoff; j < ANON_CHUNK_SIZE; j++) {
398 					ap = (struct anon *)
399 						((uintptr_t)app[j] &
400 							ANON_PTRMASK);
401 					if (ap) {
402 						*index = i + (j - chunkoff);
403 						return (ap);
404 					}
405 				}
406 			chunkoff = 0;
407 			i = (i + ANON_CHUNK_SIZE) & ~ANON_CHUNK_OFF;
408 		}
409 	}
410 	*index = size;
411 	return (NULL);
412 }
413 
414 /*
415  * Set list entry with a given pointer for a specified offset
416  */
417 int
418 anon_set_ptr(struct anon_hdr *ahp, ulong_t an_idx, struct anon *ap, int flags)
419 {
420 	void		**ppp;
421 	struct anon	**app;
422 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
423 	uintptr_t	*ap_addr;
424 
425 	ASSERT(an_idx < ahp->size);
426 
427 	/*
428 	 * Single level case.
429 	 */
430 	if (ahp->size <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
431 		ap_addr = (uintptr_t *)&ahp->array_chunk[an_idx];
432 	} else {
433 
434 		/*
435 		 * 2 level case.
436 		 */
437 		ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
438 
439 		ASSERT(ppp != NULL);
440 		if (*ppp == NULL) {
441 			mutex_enter(&ahp->serial_lock);
442 			ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
443 			if (*ppp == NULL) {
444 				*ppp = kmem_zalloc(PAGESIZE, kmemflags);
445 				if (*ppp == NULL) {
446 					mutex_exit(&ahp->serial_lock);
447 					return (ENOMEM);
448 				}
449 			}
450 			mutex_exit(&ahp->serial_lock);
451 		}
452 		app = *ppp;
453 		ap_addr = (uintptr_t *)&app[an_idx & ANON_CHUNK_OFF];
454 	}
455 	*ap_addr = (*ap_addr & ~ANON_PTRMASK) | (uintptr_t)ap;
456 	return (0);
457 }
458 
459 /*
460  * Copy anon array into a given new anon array
461  */
462 int
463 anon_copy_ptr(struct anon_hdr *sahp, ulong_t s_idx,
464 	struct anon_hdr *dahp, ulong_t d_idx,
465 	pgcnt_t npages, int flags)
466 {
467 	void **sapp, **dapp;
468 	void *ap;
469 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
470 
471 	ASSERT((s_idx < sahp->size) && (d_idx < dahp->size));
472 	ASSERT((npages <= sahp->size) && (npages <= dahp->size));
473 
474 	/*
475 	 * Both arrays are 1 level.
476 	 */
477 	if (((sahp->size <= ANON_CHUNK_SIZE) &&
478 	    (dahp->size <= ANON_CHUNK_SIZE)) ||
479 	    ((sahp->flags & ANON_ALLOC_FORCE) &&
480 	    (dahp->flags & ANON_ALLOC_FORCE))) {
481 
482 		bcopy(&sahp->array_chunk[s_idx], &dahp->array_chunk[d_idx],
483 		    npages * sizeof (struct anon *));
484 		return (0);
485 	}
486 
487 	/*
488 	 * Both arrays are 2 levels.
489 	 */
490 	if (sahp->size > ANON_CHUNK_SIZE &&
491 	    dahp->size > ANON_CHUNK_SIZE &&
492 	    ((sahp->flags & ANON_ALLOC_FORCE) == 0) &&
493 	    ((dahp->flags & ANON_ALLOC_FORCE) == 0)) {
494 
495 		ulong_t sapidx, dapidx;
496 		ulong_t *sap, *dap;
497 		ulong_t chknp;
498 
499 		while (npages != 0) {
500 
501 			sapidx = s_idx & ANON_CHUNK_OFF;
502 			dapidx = d_idx & ANON_CHUNK_OFF;
503 			chknp = ANON_CHUNK_SIZE - MAX(sapidx, dapidx);
504 			if (chknp > npages)
505 				chknp = npages;
506 
507 			sapp = &sahp->array_chunk[s_idx >> ANON_CHUNK_SHIFT];
508 			if ((sap = *sapp) != NULL) {
509 				dapp = &dahp->array_chunk[d_idx
510 							>> ANON_CHUNK_SHIFT];
511 				if ((dap = *dapp) == NULL) {
512 					*dapp = kmem_zalloc(PAGESIZE,
513 					    kmemflags);
514 					if ((dap = *dapp) == NULL)
515 						return (ENOMEM);
516 				}
517 				bcopy((sap + sapidx), (dap + dapidx),
518 				    chknp << ANON_PTRSHIFT);
519 			}
520 			s_idx += chknp;
521 			d_idx += chknp;
522 			npages -= chknp;
523 		}
524 		return (0);
525 	}
526 
527 	/*
528 	 * At least one of the arrays is 2 level.
529 	 */
530 	while (npages--) {
531 		if ((ap = anon_get_ptr(sahp, s_idx)) != NULL) {
532 			ASSERT(!ANON_ISBUSY(anon_get_slot(sahp, s_idx)));
533 			if (anon_set_ptr(dahp, d_idx, ap, flags) == ENOMEM)
534 					return (ENOMEM);
535 		}
536 		s_idx++;
537 		d_idx++;
538 	}
539 	return (0);
540 }
541 
542 
543 /*
544  * ANON_INITBUF is a convenience macro for anon_grow() below. It
545  * takes a buffer dst, which is at least as large as buffer src. It
546  * does a bcopy from src into dst, and then bzeros the extra bytes
547  * of dst. If tail is set, the data in src is tail aligned within
548  * dst instead of head aligned.
549  */
550 
551 #define	ANON_INITBUF(src, srclen, dst, dstsize, tail)			      \
552 	if (tail) {							      \
553 		bzero((dst), (dstsize) - (srclen));			      \
554 		bcopy((src), (char *)(dst) + (dstsize) - (srclen), (srclen)); \
555 	} else {							      \
556 		bcopy((src), (dst), (srclen));				      \
557 		bzero((char *)(dst) + (srclen), (dstsize) - (srclen));	      \
558 	}
559 
560 #define	ANON_1_LEVEL_INC	(ANON_CHUNK_SIZE / 8)
561 #define	ANON_2_LEVEL_INC	(ANON_1_LEVEL_INC * ANON_CHUNK_SIZE)
562 
563 /*
564  * anon_grow() is used to efficiently extend an existing anon array.
565  * startidx_p points to the index into the anon array of the first page
566  * that is in use. oldseg_pgs is the number of pages in use, starting at
567  * *startidx_p. newpages is the number of additional pages desired.
568  *
569  * If startidx_p == NULL, startidx is taken to be 0 and cannot be changed.
570  *
571  * The growth is done by creating a new top level of the anon array,
572  * and (if the array is 2-level) reusing the existing second level arrays.
573  *
574  * flags can be used to specify ANON_NOSLEEP and ANON_GROWDOWN.
575  *
576  * Returns the new number of pages in the anon array.
577  */
578 pgcnt_t
579 anon_grow(struct anon_hdr *ahp, ulong_t *startidx_p, pgcnt_t oldseg_pgs,
580     pgcnt_t newseg_pgs, int flags)
581 {
582 	ulong_t startidx = startidx_p ? *startidx_p : 0;
583 	pgcnt_t oldamp_pgs = ahp->size, newamp_pgs;
584 	pgcnt_t oelems, nelems, totpages;
585 	void **level1;
586 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
587 	int growdown = (flags & ANON_GROWDOWN);
588 	size_t newarrsz, oldarrsz;
589 	void *level2;
590 
591 	ASSERT(!(startidx_p == NULL && growdown));
592 	ASSERT(startidx + oldseg_pgs <= ahp->size);
593 
594 	/*
595 	 * Determine the total number of pages needed in the new
596 	 * anon array. If growing down, totpages is all pages from
597 	 * startidx through the end of the array, plus <newseg_pgs>
598 	 * pages. If growing up, keep all pages from page 0 through
599 	 * the last page currently in use, plus <newseg_pgs> pages.
600 	 */
601 	if (growdown)
602 		totpages = oldamp_pgs - startidx + newseg_pgs;
603 	else
604 		totpages = startidx + oldseg_pgs + newseg_pgs;
605 
606 	/* If the array is already large enough, just return. */
607 
608 	if (oldamp_pgs >= totpages) {
609 		if (growdown)
610 			*startidx_p = oldamp_pgs - totpages;
611 		return (oldamp_pgs);
612 	}
613 
614 	/*
615 	 * oldamp_pgs/newamp_pgs are the total numbers of pages represented
616 	 * by the corresponding arrays.
617 	 * oelems/nelems are the number of pointers in the top level arrays
618 	 * which may be either level 1 or level 2.
619 	 * Will the new anon array be one level or two levels?
620 	 */
621 	if (totpages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
622 		newamp_pgs = P2ROUNDUP(totpages, ANON_1_LEVEL_INC);
623 		oelems = oldamp_pgs;
624 		nelems = newamp_pgs;
625 	} else {
626 		newamp_pgs = P2ROUNDUP(totpages, ANON_2_LEVEL_INC);
627 		oelems = (oldamp_pgs + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
628 		nelems = newamp_pgs >> ANON_CHUNK_SHIFT;
629 	}
630 
631 	newarrsz = nelems * sizeof (void *);
632 	level1 = kmem_alloc(newarrsz, kmemflags);
633 	if (level1 == NULL)
634 		return (0);
635 
636 	/* Are we converting from a one level to a two level anon array? */
637 
638 	if (newamp_pgs > ANON_CHUNK_SIZE && oldamp_pgs <= ANON_CHUNK_SIZE &&
639 	    !(ahp->flags & ANON_ALLOC_FORCE)) {
640 
641 		/*
642 		 * Yes, we're converting to a two level. Reuse old level 1
643 		 * as new level 2 if it is exactly PAGESIZE. Otherwise
644 		 * alloc a new level 2 and copy the old level 1 data into it.
645 		 */
646 		if (oldamp_pgs == ANON_CHUNK_SIZE) {
647 			level2 = (void *)ahp->array_chunk;
648 		} else {
649 			level2 = kmem_alloc(PAGESIZE, kmemflags);
650 			if (level2 == NULL) {
651 				kmem_free(level1, newarrsz);
652 				return (0);
653 			}
654 			oldarrsz = oldamp_pgs * sizeof (void *);
655 
656 			ANON_INITBUF(ahp->array_chunk, oldarrsz,
657 			    level2, PAGESIZE, growdown);
658 			kmem_free(ahp->array_chunk, oldarrsz);
659 		}
660 		bzero(level1, newarrsz);
661 		if (growdown)
662 			level1[nelems - 1] = level2;
663 		else
664 			level1[0] = level2;
665 	} else {
666 		oldarrsz = oelems * sizeof (void *);
667 
668 		ANON_INITBUF(ahp->array_chunk, oldarrsz,
669 		    level1, newarrsz, growdown);
670 		kmem_free(ahp->array_chunk, oldarrsz);
671 	}
672 
673 	ahp->array_chunk = level1;
674 	ahp->size = newamp_pgs;
675 	if (growdown) {
676 		*startidx_p = newamp_pgs - totpages;
677 		if (oldamp_pgs > ANON_CHUNK_SIZE)
678 			*startidx_p -= P2NPHASE(oldseg_pgs, ANON_CHUNK_SIZE);
679 	}
680 	return (newamp_pgs);
681 }
682 
683 
684 /*
685  * Called from clock handler to sync ani_free value.
686  */
687 
688 void
689 set_anoninfo(void)
690 {
691 	int	ix;
692 	pgcnt_t	total = 0;
693 
694 	for (ix = 0; ix < ANI_MAX_POOL; ix++) {
695 		total += ani_free_pool[ix].ani_count;
696 	}
697 	k_anoninfo.ani_free = total;
698 }
699 
700 /*
701  * Reserve anon space.
702  *
703  * It's no longer simply a matter of incrementing ani_resv to
704  * reserve swap space, we need to check memory-based as well
705  * as disk-backed (physical) swap.  The following algorithm
706  * is used:
707  * 	Check the space on physical swap
708  * 		i.e. amount needed < ani_max - ani_phys_resv
709  * 	If we are swapping on swapfs check
710  *		amount needed < (availrmem - swapfs_minfree)
711  * Since the algorithm to check for the quantity of swap space is
712  * almost the same as that for reserving it, we'll just use anon_resvmem
713  * with a flag to decrement availrmem.
714  *
715  * Return non-zero on success.
716  */
717 int
718 anon_resvmem(size_t size, uint_t takemem)
719 {
720 	pgcnt_t npages = btopr(size);
721 	pgcnt_t mswap_pages = 0;
722 	pgcnt_t pswap_pages = 0;
723 
724 	mutex_enter(&anoninfo_lock);
725 
726 	/*
727 	 * pswap_pages is the number of pages we can take from
728 	 * physical (i.e. disk-backed) swap.
729 	 */
730 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
731 	pswap_pages = k_anoninfo.ani_max - k_anoninfo.ani_phys_resv;
732 
733 	ANON_PRINT(A_RESV,
734 	    ("anon_resvmem: npages %lu takemem %u pswap %lu caller %p\n",
735 	    npages, takemem, pswap_pages, (void *)caller()));
736 
737 	if (npages <= pswap_pages) {
738 		/*
739 		 * we have enough space on a physical swap
740 		 */
741 		if (takemem)
742 			k_anoninfo.ani_phys_resv += npages;
743 		mutex_exit(&anoninfo_lock);
744 		return (1);
745 	} else if (pswap_pages != 0) {
746 		/*
747 		 * we have some space on a physical swap
748 		 */
749 		if (takemem) {
750 			/*
751 			 * use up remainder of phys swap
752 			 */
753 			k_anoninfo.ani_phys_resv += pswap_pages;
754 			ASSERT(k_anoninfo.ani_phys_resv == k_anoninfo.ani_max);
755 		}
756 	}
757 	/*
758 	 * since (npages > pswap_pages) we need mem swap
759 	 * mswap_pages is the number of pages needed from availrmem
760 	 */
761 	ASSERT(npages > pswap_pages);
762 	mswap_pages = npages - pswap_pages;
763 
764 	ANON_PRINT(A_RESV, ("anon_resvmem: need %ld pages from memory\n",
765 	    mswap_pages));
766 
767 	/*
768 	 * priv processes can reserve memory as swap as long as availrmem
769 	 * remains greater than swapfs_minfree; in the case of non-priv
770 	 * processes, memory can be reserved as swap only if availrmem
771 	 * doesn't fall below (swapfs_minfree + swapfs_reserve). Thus,
772 	 * swapfs_reserve amount of memswap is not available to non-priv
773 	 * processes. This protects daemons such as automounter dying
774 	 * as a result of application processes eating away almost entire
775 	 * membased swap. This safeguard becomes useless if apps are run
776 	 * with root access.
777 	 *
778 	 * swapfs_reserve is minimum of 4Mb or 1/16 of physmem.
779 	 *
780 	 */
781 	mutex_enter(&freemem_lock);
782 	if (availrmem > (swapfs_minfree + swapfs_reserve + mswap_pages) ||
783 		(availrmem > (swapfs_minfree + mswap_pages) &&
784 		secpolicy_resource(CRED()) == 0)) {
785 
786 		if (takemem) {
787 			/*
788 			 * Take the memory from the rest of the system.
789 			 */
790 			availrmem -= mswap_pages;
791 			mutex_exit(&freemem_lock);
792 			k_anoninfo.ani_mem_resv += mswap_pages;
793 			ANI_ADD(mswap_pages);
794 			ANON_PRINT((A_RESV | A_MRESV),
795 				("anon_resvmem: took %ld pages of availrmem\n",
796 				mswap_pages));
797 		} else {
798 			mutex_exit(&freemem_lock);
799 		}
800 
801 		ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
802 		mutex_exit(&anoninfo_lock);
803 		return (1);
804 
805 	} else {
806 		/*
807 		 * Fail if not enough memory
808 		 */
809 
810 		if (takemem) {
811 			k_anoninfo.ani_phys_resv -= pswap_pages;
812 		}
813 
814 		mutex_exit(&freemem_lock);
815 		mutex_exit(&anoninfo_lock);
816 		ANON_PRINT(A_RESV,
817 			("anon_resvmem: not enough space from swapfs\n"));
818 		return (0);
819 	}
820 }
821 
822 
823 /*
824  * Give back an anon reservation.
825  */
826 void
827 anon_unresv(size_t size)
828 {
829 	pgcnt_t npages = btopr(size);
830 	spgcnt_t mem_free_pages = 0;
831 	pgcnt_t phys_free_slots;
832 #ifdef	ANON_DEBUG
833 	pgcnt_t mem_resv;
834 #endif
835 
836 	mutex_enter(&anoninfo_lock);
837 
838 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
839 	/*
840 	 * If some of this reservation belonged to swapfs
841 	 * give it back to availrmem.
842 	 * ani_mem_resv is the amount of availrmem swapfs has reserved.
843 	 * but some of that memory could be locked by segspt so we can only
844 	 * return non locked ani_mem_resv back to availrmem
845 	 */
846 	if (k_anoninfo.ani_mem_resv > k_anoninfo.ani_locked_swap) {
847 		ANON_PRINT((A_RESV | A_MRESV),
848 		    ("anon_unresv: growing availrmem by %ld pages\n",
849 		    MIN(k_anoninfo.ani_mem_resv, npages)));
850 
851 		mem_free_pages = MIN((spgcnt_t)(k_anoninfo.ani_mem_resv -
852 		    k_anoninfo.ani_locked_swap), npages);
853 		mutex_enter(&freemem_lock);
854 		availrmem += mem_free_pages;
855 		mutex_exit(&freemem_lock);
856 		k_anoninfo.ani_mem_resv -= mem_free_pages;
857 
858 		ANI_ADD(-mem_free_pages);
859 	}
860 	/*
861 	 * The remainder of the pages is returned to phys swap
862 	 */
863 	ASSERT(npages >= mem_free_pages);
864 	phys_free_slots = npages - mem_free_pages;
865 
866 	if (phys_free_slots) {
867 	    k_anoninfo.ani_phys_resv -= phys_free_slots;
868 	}
869 
870 #ifdef	ANON_DEBUG
871 	mem_resv = k_anoninfo.ani_mem_resv;
872 #endif
873 
874 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
875 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
876 
877 	mutex_exit(&anoninfo_lock);
878 
879 	ANON_PRINT(A_RESV, ("anon_unresv: %lu, tot %lu, caller %p\n",
880 	    npages, mem_resv, (void *)caller()));
881 }
882 
883 /*
884  * Allocate an anon slot and return it with the lock held.
885  */
886 struct anon *
887 anon_alloc(struct vnode *vp, anoff_t off)
888 {
889 	struct anon	*ap;
890 	kmutex_t	*ahm;
891 
892 	ap = kmem_cache_alloc(anon_cache, KM_SLEEP);
893 	if (vp == NULL) {
894 		swap_alloc(ap);
895 	} else {
896 		ap->an_vp = vp;
897 		ap->an_off = off;
898 	}
899 	ap->an_refcnt = 1;
900 	ap->an_pvp = NULL;
901 	ap->an_poff = 0;
902 	ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
903 	mutex_enter(ahm);
904 	anon_addhash(ap);
905 	mutex_exit(ahm);
906 	ANI_ADD(-1);
907 	ANON_PRINT(A_ANON, ("anon_alloc: returning ap %p, vp %p\n",
908 	    (void *)ap, (ap ? (void *)ap->an_vp : NULL)));
909 	return (ap);
910 }
911 
912 /*
913  * Decrement the reference count of an anon page.
914  * If reference count goes to zero, free it and
915  * its associated page (if any).
916  */
917 void
918 anon_decref(struct anon *ap)
919 {
920 	page_t *pp;
921 	struct vnode *vp;
922 	anoff_t off;
923 	kmutex_t *ahm;
924 
925 	ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
926 	mutex_enter(ahm);
927 	ASSERT(ap->an_refcnt != 0);
928 	if (ap->an_refcnt == 0)
929 		panic("anon_decref: slot count 0");
930 	if (--ap->an_refcnt == 0) {
931 		swap_xlate(ap, &vp, &off);
932 		mutex_exit(ahm);
933 
934 		/*
935 		 * If there is a page for this anon slot we will need to
936 		 * call VN_DISPOSE to get rid of the vp association and
937 		 * put the page back on the free list as really free.
938 		 * Acquire the "exclusive" lock to ensure that any
939 		 * pending i/o always completes before the swap slot
940 		 * is freed.
941 		 */
942 		pp = page_lookup(vp, (u_offset_t)off, SE_EXCL);
943 
944 		/*
945 		 * If there was a page, we've synchronized on it (getting
946 		 * the exclusive lock is as good as gettting the iolock)
947 		 * so now we can free the physical backing store. Also, this
948 		 * is where we would free the name of the anonymous page
949 		 * (swap_free(ap)), a no-op in the current implementation.
950 		 */
951 		mutex_enter(ahm);
952 		ASSERT(ap->an_refcnt == 0);
953 		anon_rmhash(ap);
954 		if (ap->an_pvp)
955 			swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE);
956 		mutex_exit(ahm);
957 
958 		if (pp != NULL) {
959 			/*LINTED: constant in conditional context */
960 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
961 		}
962 		ANON_PRINT(A_ANON, ("anon_decref: free ap %p, vp %p\n",
963 		    (void *)ap, (void *)ap->an_vp));
964 		kmem_cache_free(anon_cache, ap);
965 
966 		ANI_ADD(1);
967 	} else {
968 		mutex_exit(ahm);
969 	}
970 }
971 
972 static int
973 anon_share(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots)
974 {
975 	struct anon *ap;
976 
977 	while (nslots-- > 0) {
978 		if ((ap = anon_get_ptr(ahp, anon_index)) != NULL &&
979 		    ap->an_refcnt > 1)
980 			return (1);
981 		anon_index++;
982 	}
983 
984 	return (0);
985 }
986 
987 static void
988 anon_decref_pages(
989 	struct anon_hdr *ahp,
990 	ulong_t an_idx,
991 	uint_t szc)
992 {
993 	struct anon *ap = anon_get_ptr(ahp, an_idx);
994 	kmutex_t *ahmpages = NULL;
995 	page_t *pp;
996 	pgcnt_t pgcnt = page_get_pagecnt(szc);
997 	pgcnt_t i;
998 	struct vnode *vp;
999 	anoff_t   off;
1000 	kmutex_t *ahm;
1001 #ifdef DEBUG
1002 	int refcnt = 1;
1003 #endif
1004 
1005 	ASSERT(szc != 0);
1006 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1007 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1008 
1009 	VM_STAT_ADD(anonvmstats.decrefpages[0]);
1010 
1011 	if (ap != NULL) {
1012 		ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1013 		mutex_enter(ahmpages);
1014 		ASSERT((refcnt = ap->an_refcnt) != 0);
1015 		VM_STAT_ADD(anonvmstats.decrefpages[1]);
1016 		if (ap->an_refcnt == 1) {
1017 			VM_STAT_ADD(anonvmstats.decrefpages[2]);
1018 			ASSERT(!anon_share(ahp, an_idx, pgcnt));
1019 			mutex_exit(ahmpages);
1020 			ahmpages = NULL;
1021 		}
1022 	}
1023 
1024 	i = 0;
1025 	while (i < pgcnt) {
1026 		if ((ap = anon_get_ptr(ahp, an_idx + i)) == NULL) {
1027 			ASSERT(refcnt == 1 && ahmpages == NULL);
1028 			i++;
1029 			continue;
1030 		}
1031 		ASSERT(ap->an_refcnt == refcnt);
1032 		ASSERT(ahmpages != NULL || ap->an_refcnt == 1);
1033 		ASSERT(ahmpages == NULL || ap->an_refcnt > 1);
1034 
1035 		if (ahmpages == NULL) {
1036 			swap_xlate(ap, &vp, &off);
1037 			pp = page_lookup(vp, (u_offset_t)off, SE_EXCL);
1038 			if (pp == NULL || pp->p_szc == 0) {
1039 				VM_STAT_ADD(anonvmstats.decrefpages[3]);
1040 				ahm = &anonhash_lock[AH_LOCK(ap->an_vp,
1041 				    ap->an_off)];
1042 				(void) anon_set_ptr(ahp, an_idx + i, NULL,
1043 				    ANON_SLEEP);
1044 				mutex_enter(ahm);
1045 				ap->an_refcnt--;
1046 				ASSERT(ap->an_refcnt == 0);
1047 				anon_rmhash(ap);
1048 				if (ap->an_pvp)
1049 					swap_phys_free(ap->an_pvp, ap->an_poff,
1050 					    PAGESIZE);
1051 				mutex_exit(ahm);
1052 				if (pp != NULL) {
1053 					VM_STAT_ADD(anonvmstats.decrefpages[4]);
1054 					/*LINTED*/
1055 					VN_DISPOSE(pp, B_INVAL, 0, kcred);
1056 				}
1057 				kmem_cache_free(anon_cache, ap);
1058 				ANI_ADD(1);
1059 				i++;
1060 			} else {
1061 				pgcnt_t j;
1062 				pgcnt_t curpgcnt =
1063 				    page_get_pagecnt(pp->p_szc);
1064 				size_t ppasize = curpgcnt * sizeof (page_t *);
1065 				page_t **ppa = kmem_alloc(ppasize, KM_SLEEP);
1066 				int dispose = 0;
1067 
1068 				VM_STAT_ADD(anonvmstats.decrefpages[5]);
1069 
1070 				ASSERT(pp->p_szc <= szc);
1071 				ASSERT(IS_P2ALIGNED(curpgcnt, curpgcnt));
1072 				ASSERT(IS_P2ALIGNED(i, curpgcnt));
1073 				ASSERT(i + curpgcnt <= pgcnt);
1074 				ASSERT(!(page_pptonum(pp) & (curpgcnt - 1)));
1075 				ppa[0] = pp;
1076 				for (j = i + 1; j < i + curpgcnt; j++) {
1077 					ap = anon_get_ptr(ahp, an_idx + j);
1078 					ASSERT(ap != NULL &&
1079 					    ap->an_refcnt == 1);
1080 					swap_xlate(ap, &vp, &off);
1081 					pp = page_lookup(vp, (u_offset_t)off,
1082 					    SE_EXCL);
1083 					if (pp == NULL)
1084 						panic("anon_decref_pages: "
1085 						    "no page");
1086 
1087 					(void) hat_pageunload(pp,
1088 					    HAT_FORCE_PGUNLOAD);
1089 					ASSERT(pp->p_szc == ppa[0]->p_szc);
1090 					ASSERT(page_pptonum(pp) - 1 ==
1091 					    page_pptonum(ppa[j - i - 1]));
1092 					ppa[j - i] = pp;
1093 					if (ap->an_pvp != NULL &&
1094 					    !vn_matchopval(ap->an_pvp,
1095 						VOPNAME_DISPOSE,
1096 						(fs_generic_func_p)fs_dispose))
1097 						dispose = 1;
1098 				}
1099 				if (!dispose) {
1100 					VM_STAT_ADD(anonvmstats.decrefpages[6]);
1101 					page_destroy_pages(ppa[0]);
1102 				} else {
1103 					VM_STAT_ADD(anonvmstats.decrefpages[7]);
1104 					for (j = 0; j < curpgcnt; j++) {
1105 						ASSERT(PAGE_EXCL(ppa[j]));
1106 						ppa[j]->p_szc = 0;
1107 					}
1108 					for (j = 0; j < curpgcnt; j++) {
1109 						ASSERT(!hat_page_is_mapped(
1110 						    ppa[j]));
1111 						/*LINTED*/
1112 						VN_DISPOSE(ppa[j], B_INVAL, 0,
1113 						    kcred);
1114 					}
1115 				}
1116 				kmem_free(ppa, ppasize);
1117 				for (j = i; j < i + curpgcnt; j++) {
1118 					ap = anon_get_ptr(ahp, an_idx + j);
1119 					ASSERT(ap != NULL &&
1120 					    ap->an_refcnt == 1);
1121 					ahm = &anonhash_lock[AH_LOCK(ap->an_vp,
1122 					    ap->an_off)];
1123 					(void) anon_set_ptr(ahp, an_idx + j,
1124 					    NULL, ANON_SLEEP);
1125 					mutex_enter(ahm);
1126 					ap->an_refcnt--;
1127 					ASSERT(ap->an_refcnt == 0);
1128 					anon_rmhash(ap);
1129 					if (ap->an_pvp)
1130 						swap_phys_free(ap->an_pvp,
1131 							ap->an_poff, PAGESIZE);
1132 					mutex_exit(ahm);
1133 					kmem_cache_free(anon_cache, ap);
1134 					ANI_ADD(1);
1135 				}
1136 				i += curpgcnt;
1137 			}
1138 		} else {
1139 			VM_STAT_ADD(anonvmstats.decrefpages[8]);
1140 			(void) anon_set_ptr(ahp, an_idx + i, NULL, ANON_SLEEP);
1141 			ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1142 			mutex_enter(ahm);
1143 			ap->an_refcnt--;
1144 			mutex_exit(ahm);
1145 			i++;
1146 		}
1147 	}
1148 
1149 	if (ahmpages != NULL) {
1150 		mutex_exit(ahmpages);
1151 	}
1152 }
1153 
1154 /*
1155  * Duplicate references to size bytes worth of anon pages.
1156  * Used when duplicating a segment that contains private anon pages.
1157  * This code assumes that procedure calling this one has already used
1158  * hat_chgprot() to disable write access to the range of addresses that
1159  * that *old actually refers to.
1160  */
1161 void
1162 anon_dup(struct anon_hdr *old, ulong_t old_idx, struct anon_hdr *new,
1163 			ulong_t new_idx, size_t size)
1164 {
1165 	spgcnt_t npages;
1166 	kmutex_t *ahm;
1167 	struct anon *ap;
1168 	ulong_t off;
1169 	ulong_t index;
1170 
1171 	npages = btopr(size);
1172 	while (npages > 0) {
1173 		index = old_idx;
1174 		if ((ap = anon_get_next_ptr(old, &index)) == NULL)
1175 			break;
1176 
1177 		ASSERT(!ANON_ISBUSY(anon_get_slot(old, index)));
1178 		off = index - old_idx;
1179 		npages -= off;
1180 		if (npages <= 0)
1181 			break;
1182 
1183 		(void) anon_set_ptr(new, new_idx + off, ap, ANON_SLEEP);
1184 		ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1185 
1186 		mutex_enter(ahm);
1187 		ap->an_refcnt++;
1188 		mutex_exit(ahm);
1189 
1190 		off++;
1191 		new_idx += off;
1192 		old_idx += off;
1193 		npages--;
1194 	}
1195 }
1196 
1197 /*
1198  * Just like anon_dup but also guarantees there are no holes (unallocated anon
1199  * slots) within any large page region. That means if a large page region is
1200  * empty in the old array it will skip it. If there are 1 or more valid slots
1201  * in the large page region of the old array it will make sure to fill in any
1202  * unallocated ones and also copy them to the new array. If noalloc is 1 large
1203  * page region should either have no valid anon slots or all slots should be
1204  * valid.
1205  */
1206 void
1207 anon_dup_fill_holes(
1208 	struct anon_hdr *old,
1209 	ulong_t old_idx,
1210 	struct anon_hdr *new,
1211 	ulong_t new_idx,
1212 	size_t size,
1213 	uint_t szc,
1214 	int noalloc)
1215 {
1216 	struct anon	*ap;
1217 	spgcnt_t	npages;
1218 	kmutex_t	*ahm, *ahmpages = NULL;
1219 	pgcnt_t		pgcnt, i;
1220 	ulong_t		index, off;
1221 #ifdef DEBUG
1222 	int		refcnt;
1223 #endif
1224 
1225 	ASSERT(szc != 0);
1226 	pgcnt = page_get_pagecnt(szc);
1227 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1228 	npages = btopr(size);
1229 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1230 	ASSERT(IS_P2ALIGNED(old_idx, pgcnt));
1231 
1232 	VM_STAT_ADD(anonvmstats.dupfillholes[0]);
1233 
1234 	while (npages > 0) {
1235 		index = old_idx;
1236 
1237 		/*
1238 		 * Find the next valid slot.
1239 		 */
1240 		if (anon_get_next_ptr(old, &index) == NULL)
1241 			break;
1242 
1243 		ASSERT(!ANON_ISBUSY(anon_get_slot(old, index)));
1244 		/*
1245 		 * Now backup index to the beginning of the
1246 		 * current large page region of the old array.
1247 		 */
1248 		index = P2ALIGN(index, pgcnt);
1249 		off = index - old_idx;
1250 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1251 		npages -= off;
1252 		if (npages <= 0)
1253 			break;
1254 
1255 		/*
1256 		 * Fill and copy a large page regions worth
1257 		 * of anon slots.
1258 		 */
1259 		for (i = 0; i < pgcnt; i++) {
1260 			if ((ap = anon_get_ptr(old, index + i)) == NULL) {
1261 				if (noalloc) {
1262 					panic("anon_dup_fill_holes: "
1263 					    "empty anon slot\n");
1264 				}
1265 				VM_STAT_ADD(anonvmstats.dupfillholes[1]);
1266 				ap = anon_alloc(NULL, 0);
1267 				(void) anon_set_ptr(old, index + i, ap,
1268 				    ANON_SLEEP);
1269 			} else if (i == 0) {
1270 				/*
1271 				 * make the increment of all refcnts of all
1272 				 * anon slots of a large page appear atomic by
1273 				 * getting an anonpages_hash_lock for the
1274 				 * first anon slot of a large page.
1275 				 */
1276 				int hash = AH_LOCK(ap->an_vp, ap->an_off);
1277 
1278 				VM_STAT_ADD(anonvmstats.dupfillholes[2]);
1279 
1280 				ahmpages = &anonpages_hash_lock[hash];
1281 				mutex_enter(ahmpages);
1282 				/*LINTED*/
1283 				ASSERT(refcnt = ap->an_refcnt);
1284 
1285 				VM_STAT_COND_ADD(ap->an_refcnt > 1,
1286 				    anonvmstats.dupfillholes[3]);
1287 			}
1288 			(void) anon_set_ptr(new, new_idx + off + i, ap,
1289 			    ANON_SLEEP);
1290 			ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1291 			mutex_enter(ahm);
1292 			ASSERT(ahmpages != NULL || ap->an_refcnt == 1);
1293 			ASSERT(i == 0 || ahmpages == NULL ||
1294 			    refcnt == ap->an_refcnt);
1295 			ap->an_refcnt++;
1296 			mutex_exit(ahm);
1297 		}
1298 		if (ahmpages != NULL) {
1299 			mutex_exit(ahmpages);
1300 			ahmpages = NULL;
1301 		}
1302 		off += pgcnt;
1303 		new_idx += off;
1304 		old_idx += off;
1305 		npages -= pgcnt;
1306 	}
1307 }
1308 
1309 /*
1310  * Used when a segment with a vnode changes szc. similarly to
1311  * anon_dup_fill_holes() makes sure each large page region either has no anon
1312  * slots or all of them. but new slots are created by COWing the file
1313  * pages. on entrance no anon slots should be shared.
1314  */
1315 int
1316 anon_fill_cow_holes(
1317 	struct seg *seg,
1318 	caddr_t addr,
1319 	struct anon_hdr *ahp,
1320 	ulong_t an_idx,
1321 	struct vnode *vp,
1322 	u_offset_t vp_off,
1323 	size_t size,
1324 	uint_t szc,
1325 	uint_t prot,
1326 	struct vpage vpage[],
1327 	struct cred *cred)
1328 {
1329 	struct anon	*ap;
1330 	spgcnt_t	npages;
1331 	pgcnt_t		pgcnt, i;
1332 	ulong_t		index, off;
1333 	int		err = 0;
1334 	int		pageflags = 0;
1335 
1336 	ASSERT(szc != 0);
1337 	pgcnt = page_get_pagecnt(szc);
1338 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1339 	npages = btopr(size);
1340 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1341 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1342 
1343 	while (npages > 0) {
1344 		index = an_idx;
1345 
1346 		/*
1347 		 * Find the next valid slot.
1348 		 */
1349 		if (anon_get_next_ptr(ahp, &index) == NULL) {
1350 			break;
1351 		}
1352 
1353 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1354 		/*
1355 		 * Now backup index to the beginning of the
1356 		 * current large page region of the anon array.
1357 		 */
1358 		index = P2ALIGN(index, pgcnt);
1359 		off = index - an_idx;
1360 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1361 		npages -= off;
1362 		if (npages <= 0)
1363 			break;
1364 		an_idx += off;
1365 		vp_off += ptob(off);
1366 		addr += ptob(off);
1367 		if (vpage != NULL) {
1368 			vpage += off;
1369 		}
1370 
1371 		for (i = 0; i < pgcnt; i++, an_idx++, vp_off += PAGESIZE) {
1372 			if ((ap = anon_get_ptr(ahp, an_idx)) == NULL) {
1373 				page_t *pl[1 + 1];
1374 				page_t *pp;
1375 
1376 				err = VOP_GETPAGE(vp, vp_off, PAGESIZE, NULL,
1377 				    pl, PAGESIZE, seg, addr, S_READ, cred);
1378 				if (err) {
1379 					break;
1380 				}
1381 				if (vpage != NULL) {
1382 					prot = VPP_PROT(vpage);
1383 					pageflags = VPP_ISPPLOCK(vpage) ?
1384 					    LOCK_PAGE : 0;
1385 				}
1386 				pp = anon_private(&ap, seg, addr, prot, pl[0],
1387 					pageflags, cred);
1388 				if (pp == NULL) {
1389 					err = ENOMEM;
1390 					break;
1391 				}
1392 				(void) anon_set_ptr(ahp, an_idx, ap,
1393 				    ANON_SLEEP);
1394 				page_unlock(pp);
1395 			}
1396 			ASSERT(ap->an_refcnt == 1);
1397 			addr += PAGESIZE;
1398 			if (vpage != NULL) {
1399 				vpage++;
1400 			}
1401 		}
1402 		npages -= pgcnt;
1403 	}
1404 
1405 	return (err);
1406 }
1407 
1408 /*
1409  * Free a group of "size" anon pages, size in bytes,
1410  * and clear out the pointers to the anon entries.
1411  */
1412 void
1413 anon_free(struct anon_hdr *ahp, ulong_t index, size_t size)
1414 {
1415 	spgcnt_t npages;
1416 	struct anon *ap;
1417 	ulong_t old;
1418 
1419 	npages = btopr(size);
1420 
1421 	while (npages > 0) {
1422 		old = index;
1423 		if ((ap = anon_get_next_ptr(ahp, &index)) == NULL)
1424 			break;
1425 
1426 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1427 		npages -= index - old;
1428 		if (npages <= 0)
1429 			break;
1430 
1431 		(void) anon_set_ptr(ahp, index, NULL, ANON_SLEEP);
1432 		anon_decref(ap);
1433 		/*
1434 		 * Bump index and decrement page count
1435 		 */
1436 		index++;
1437 		npages--;
1438 	}
1439 }
1440 
1441 void
1442 anon_free_pages(
1443 	struct anon_hdr *ahp,
1444 	ulong_t an_idx,
1445 	size_t size,
1446 	uint_t szc)
1447 {
1448 	spgcnt_t	npages;
1449 	pgcnt_t		pgcnt;
1450 	ulong_t		index, off;
1451 
1452 	ASSERT(szc != 0);
1453 	pgcnt = page_get_pagecnt(szc);
1454 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1455 	npages = btopr(size);
1456 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1457 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1458 
1459 	VM_STAT_ADD(anonvmstats.freepages[0]);
1460 
1461 	while (npages > 0) {
1462 		index = an_idx;
1463 
1464 		/*
1465 		 * Find the next valid slot.
1466 		 */
1467 		if (anon_get_next_ptr(ahp, &index) == NULL)
1468 			break;
1469 
1470 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1471 		/*
1472 		 * Now backup index to the beginning of the
1473 		 * current large page region of the old array.
1474 		 */
1475 		index = P2ALIGN(index, pgcnt);
1476 		off = index - an_idx;
1477 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1478 		npages -= off;
1479 		if (npages <= 0)
1480 			break;
1481 
1482 		anon_decref_pages(ahp, index, szc);
1483 
1484 		off += pgcnt;
1485 		an_idx += off;
1486 		npages -= pgcnt;
1487 	}
1488 }
1489 
1490 /*
1491  * Make anonymous pages discardable
1492  */
1493 void
1494 anon_disclaim(struct anon_map *amp, ulong_t index, size_t size, int flags)
1495 {
1496 	spgcnt_t npages = btopr(size);
1497 	struct anon *ap;
1498 	struct vnode *vp;
1499 	anoff_t off;
1500 	page_t *pp, *root_pp;
1501 	kmutex_t *ahm;
1502 	pgcnt_t pgcnt;
1503 	ulong_t old_idx, idx, i;
1504 	struct anon_hdr *ahp = amp->ahp;
1505 	anon_sync_obj_t cookie;
1506 
1507 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
1508 	pgcnt = 1;
1509 	for (; npages > 0; index = (pgcnt == 1) ? index + 1:
1510 		P2ROUNDUP(index + 1, pgcnt), npages -= pgcnt) {
1511 
1512 		/*
1513 		 * get anon pointer and index for the first valid entry
1514 		 * in the anon list, starting from "index"
1515 		 */
1516 		old_idx = index;
1517 		if ((ap = anon_get_next_ptr(ahp, &index)) == NULL)
1518 			break;
1519 
1520 		/*
1521 		 * decrement npages by number of NULL anon slots we skipped
1522 		 */
1523 		npages -= index - old_idx;
1524 		if (npages <= 0)
1525 			break;
1526 
1527 		anon_array_enter(amp, index, &cookie);
1528 		ap = anon_get_ptr(ahp, index);
1529 		ASSERT(ap != NULL);
1530 
1531 		/*
1532 		 * Get anonymous page and try to lock it SE_EXCL;
1533 		 * For non blocking case if we couldn't grab the lock
1534 		 * we skip to next page.
1535 		 * For blocking case (ANON_PGLOOKUP_BLK) block
1536 		 * until we grab SE_EXCL lock.
1537 		 */
1538 		swap_xlate(ap, &vp, &off);
1539 		if (flags & ANON_PGLOOKUP_BLK)
1540 			pp = page_lookup_create(vp, (u_offset_t)off,
1541 			    SE_EXCL, NULL, NULL, SE_EXCL_WANTED);
1542 		else
1543 			pp = page_lookup_nowait(vp, (u_offset_t)off, SE_EXCL);
1544 		if (pp == NULL) {
1545 			segadvstat.MADV_FREE_miss.value.ul++;
1546 			pgcnt = 1;
1547 			anon_array_exit(&cookie);
1548 			continue;
1549 		}
1550 		pgcnt = page_get_pagecnt(pp->p_szc);
1551 
1552 		/*
1553 		 * we cannot free a page which is permanently locked.
1554 		 * The page_struct_lock need not be acquired to examine
1555 		 * these fields since the page has an "exclusive" lock.
1556 		 */
1557 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
1558 			page_unlock(pp);
1559 			segadvstat.MADV_FREE_miss.value.ul++;
1560 			anon_array_exit(&cookie);
1561 			continue;
1562 		}
1563 
1564 		ahm = &anonhash_lock[AH_LOCK(vp, off)];
1565 		mutex_enter(ahm);
1566 		ASSERT(ap->an_refcnt != 0);
1567 		/*
1568 		 * skip this one if copy-on-write is not yet broken.
1569 		 */
1570 		if (ap->an_refcnt > 1) {
1571 			mutex_exit(ahm);
1572 			page_unlock(pp);
1573 			segadvstat.MADV_FREE_miss.value.ul++;
1574 			anon_array_exit(&cookie);
1575 			continue;
1576 		}
1577 
1578 		if (pp->p_szc == 0) {
1579 			pgcnt = 1;
1580 
1581 			/*
1582 			 * free swap slot;
1583 			 */
1584 			if (ap->an_pvp) {
1585 				swap_phys_free(ap->an_pvp, ap->an_poff,
1586 				    PAGESIZE);
1587 				ap->an_pvp = NULL;
1588 				ap->an_poff = 0;
1589 			}
1590 			mutex_exit(ahm);
1591 			segadvstat.MADV_FREE_hit.value.ul++;
1592 
1593 			/*
1594 			 * while we are at it, unload all the translations
1595 			 * and attempt to free the page.
1596 			 */
1597 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1598 			/*LINTED: constant in conditional context */
1599 			VN_DISPOSE(pp, B_FREE, 0, kcred);
1600 			anon_array_exit(&cookie);
1601 			continue;
1602 		}
1603 
1604 		pgcnt = page_get_pagecnt(pp->p_szc);
1605 		if (!IS_P2ALIGNED(index, pgcnt)) {
1606 			if (!page_try_demote_pages(pp)) {
1607 				mutex_exit(ahm);
1608 				page_unlock(pp);
1609 				segadvstat.MADV_FREE_miss.value.ul++;
1610 				anon_array_exit(&cookie);
1611 				continue;
1612 			} else {
1613 				pgcnt = 1;
1614 				if (ap->an_pvp) {
1615 					swap_phys_free(ap->an_pvp,
1616 					    ap->an_poff, PAGESIZE);
1617 					    ap->an_pvp = NULL;
1618 					    ap->an_poff = 0;
1619 				}
1620 				mutex_exit(ahm);
1621 				(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1622 				/*LINTED*/
1623 				VN_DISPOSE(pp, B_FREE, 0, kcred);
1624 				segadvstat.MADV_FREE_hit.value.ul++;
1625 				anon_array_exit(&cookie);
1626 				continue;
1627 			}
1628 		}
1629 		mutex_exit(ahm);
1630 		root_pp = pp;
1631 
1632 		/*
1633 		 * try to lock remaining pages
1634 		 */
1635 		for (idx = 1; idx < pgcnt; idx++) {
1636 			pp++;
1637 			if (!page_trylock(pp, SE_EXCL))
1638 				break;
1639 			if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
1640 				page_unlock(pp);
1641 				break;
1642 			}
1643 		}
1644 
1645 		if (idx == pgcnt) {
1646 			for (i = 0; i < pgcnt; i++) {
1647 				ap = anon_get_ptr(ahp, index + i);
1648 				if (ap == NULL)
1649 					break;
1650 				swap_xlate(ap, &vp, &off);
1651 				ahm = &anonhash_lock[AH_LOCK(vp, off)];
1652 				mutex_enter(ahm);
1653 				ASSERT(ap->an_refcnt != 0);
1654 
1655 				/*
1656 				 * skip this one if copy-on-write
1657 				 * is not yet broken.
1658 				 */
1659 				if (ap->an_refcnt > 1) {
1660 					mutex_exit(ahm);
1661 					goto skiplp;
1662 				}
1663 				if (ap->an_pvp) {
1664 					swap_phys_free(ap->an_pvp,
1665 					    ap->an_poff, PAGESIZE);
1666 					    ap->an_pvp = NULL;
1667 					    ap->an_poff = 0;
1668 				}
1669 				mutex_exit(ahm);
1670 			}
1671 			page_destroy_pages(root_pp);
1672 			segadvstat.MADV_FREE_hit.value.ul += pgcnt;
1673 			anon_array_exit(&cookie);
1674 			continue;
1675 		}
1676 skiplp:
1677 		segadvstat.MADV_FREE_miss.value.ul += pgcnt;
1678 		for (i = 0, pp = root_pp; i < idx; pp++, i++)
1679 			page_unlock(pp);
1680 		anon_array_exit(&cookie);
1681 	}
1682 }
1683 
1684 /*
1685  * Return the kept page(s) and protections back to the segment driver.
1686  */
1687 int
1688 anon_getpage(
1689 	struct anon **app,
1690 	uint_t *protp,
1691 	page_t *pl[],
1692 	size_t plsz,
1693 	struct seg *seg,
1694 	caddr_t addr,
1695 	enum seg_rw rw,
1696 	struct cred *cred)
1697 {
1698 	page_t *pp;
1699 	struct anon *ap = *app;
1700 	struct vnode *vp;
1701 	anoff_t off;
1702 	int err;
1703 	kmutex_t *ahm;
1704 
1705 	swap_xlate(ap, &vp, &off);
1706 
1707 	/*
1708 	 * Lookup the page. If page is being paged in,
1709 	 * wait for it to finish as we must return a list of
1710 	 * pages since this routine acts like the VOP_GETPAGE
1711 	 * routine does.
1712 	 */
1713 	if (pl != NULL && (pp = page_lookup(vp, (u_offset_t)off, SE_SHARED))) {
1714 		ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1715 		mutex_enter(ahm);
1716 		if (ap->an_refcnt == 1)
1717 			*protp = PROT_ALL;
1718 		else
1719 			*protp = PROT_ALL & ~PROT_WRITE;
1720 		mutex_exit(ahm);
1721 		pl[0] = pp;
1722 		pl[1] = NULL;
1723 		return (0);
1724 	}
1725 
1726 	/*
1727 	 * Simply treat it as a vnode fault on the anon vp.
1728 	 */
1729 
1730 	TRACE_3(TR_FAC_VM, TR_ANON_GETPAGE,
1731 		"anon_getpage:seg %x addr %x vp %x",
1732 		seg, addr, vp);
1733 
1734 	err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, protp, pl, plsz,
1735 	    seg, addr, rw, cred);
1736 
1737 	if (err == 0 && pl != NULL) {
1738 		ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1739 		mutex_enter(ahm);
1740 		if (ap->an_refcnt != 1)
1741 			*protp &= ~PROT_WRITE;	/* make read-only */
1742 		mutex_exit(ahm);
1743 	}
1744 	return (err);
1745 }
1746 
1747 /*
1748  * Creates or returns kept pages to the segment driver.  returns -1 if a large
1749  * page cannot be allocated. returns -2 if some other process has allocated a
1750  * larger page.
1751  *
1752  * For cowfault it will alocate any size pages to fill the requested area to
1753  * avoid partially overwritting anon slots (i.e. sharing only some of the anon
1754  * slots within a large page with other processes). This policy greatly
1755  * simplifies large page freeing (which is only freed when all anon slot
1756  * refcnts are 0).
1757  */
1758 int
1759 anon_map_getpages(
1760 	struct anon_map *amp,
1761 	ulong_t	start_idx,
1762 	uint_t	szc,
1763 	struct seg *seg,
1764 	caddr_t	addr,
1765 	uint_t prot,
1766 	uint_t *protp,
1767 	page_t	*ppa[],
1768 	uint_t	*ppa_szc,
1769 	struct vpage vpage[],
1770 	enum seg_rw rw,
1771 	int brkcow,
1772 	int anypgsz,
1773 	struct cred *cred)
1774 {
1775 	pgcnt_t		pgcnt;
1776 	struct anon	*ap;
1777 	struct vnode	*vp;
1778 	anoff_t		off;
1779 	page_t		*pp, *pl[2], *conpp = NULL;
1780 	caddr_t		vaddr;
1781 	ulong_t		pg_idx, an_idx, i;
1782 	spgcnt_t	nreloc = 0;
1783 	int		prealloc = 1;
1784 	int		err, slotcreate;
1785 	uint_t		vpprot;
1786 
1787 #if !defined(__i386) && !defined(__amd64)
1788 	ASSERT(seg->s_szc != 0);
1789 #endif
1790 	ASSERT(szc <= seg->s_szc);
1791 	ASSERT(ppa_szc != NULL);
1792 	ASSERT(rw != S_CREATE);
1793 
1794 	*protp = PROT_ALL;
1795 
1796 	VM_STAT_ADD(anonvmstats.getpages[0]);
1797 
1798 	if (szc == 0) {
1799 		VM_STAT_ADD(anonvmstats.getpages[1]);
1800 		if ((ap = anon_get_ptr(amp->ahp, start_idx)) != NULL) {
1801 			err = anon_getpage(&ap, protp, pl, PAGESIZE, seg,
1802 			    addr, rw, cred);
1803 			if (err)
1804 				return (err);
1805 			ppa[0] = pl[0];
1806 			if (brkcow == 0 || (*protp & PROT_WRITE)) {
1807 				VM_STAT_ADD(anonvmstats.getpages[2]);
1808 				if (ppa[0]->p_szc != 0) {
1809 					VM_STAT_ADD(anonvmstats.getpages[3]);
1810 					*ppa_szc = ppa[0]->p_szc;
1811 					page_unlock(ppa[0]);
1812 					return (-2);
1813 				}
1814 				return (0);
1815 			}
1816 			panic("anon_map_getpages: cowfault for szc 0");
1817 		} else {
1818 			VM_STAT_ADD(anonvmstats.getpages[4]);
1819 			ppa[0] = anon_zero(seg, addr, &ap, cred);
1820 			if (ppa[0] == NULL)
1821 				return (ENOMEM);
1822 			(void) anon_set_ptr(amp->ahp, start_idx, ap,
1823 			    ANON_SLEEP);
1824 			return (0);
1825 		}
1826 	}
1827 
1828 	pgcnt = page_get_pagecnt(szc);
1829 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1830 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
1831 
1832 	/*
1833 	 * First we check for the case that the requtested large
1834 	 * page or larger page already exists in the system.
1835 	 * Actually we only check if the first constituent page
1836 	 * exists and only preallocate if it's not found.
1837 	 */
1838 	ap = anon_get_ptr(amp->ahp, start_idx);
1839 	if (ap) {
1840 		uint_t pszc;
1841 		swap_xlate(ap, &vp, &off);
1842 		if (page_exists_forreal(vp, (u_offset_t)off, &pszc)) {
1843 			if (pszc > szc) {
1844 				*ppa_szc = pszc;
1845 				return (-2);
1846 			}
1847 			if (pszc == szc) {
1848 				prealloc = 0;
1849 			}
1850 		}
1851 	}
1852 
1853 	VM_STAT_COND_ADD(prealloc == 0, anonvmstats.getpages[5]);
1854 	VM_STAT_COND_ADD(prealloc != 0, anonvmstats.getpages[6]);
1855 
1856 top:
1857 	/*
1858 	 * If a smaller page or no page at all was found,
1859 	 * grab a large page off the freelist.
1860 	 */
1861 	if (prealloc) {
1862 		ASSERT(conpp == NULL);
1863 		if (page_alloc_pages(seg, addr, NULL, ppa, szc, 0) != 0) {
1864 			VM_STAT_ADD(anonvmstats.getpages[7]);
1865 			if (brkcow == 0 ||
1866 			    !anon_share(amp->ahp, start_idx, pgcnt)) {
1867 				/*
1868 				 * If the refcnt's of all anon slots are <= 1
1869 				 * they can't increase since we are holding
1870 				 * the address space's lock. So segvn can
1871 				 * safely decrease szc without risking to
1872 				 * generate a cow fault for the region smaller
1873 				 * than the segment's largest page size.
1874 				 */
1875 				VM_STAT_ADD(anonvmstats.getpages[8]);
1876 				return (-1);
1877 			}
1878 		docow:
1879 			/*
1880 			 * This is a cow fault. Copy away the entire 1 large
1881 			 * page region of this segment.
1882 			 */
1883 			if (szc != seg->s_szc)
1884 				panic("anon_map_getpages: cowfault for szc %d",
1885 				    szc);
1886 			vaddr = addr;
1887 			for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt;
1888 			    pg_idx++, an_idx++, vaddr += PAGESIZE) {
1889 				if ((ap = anon_get_ptr(amp->ahp, an_idx)) !=
1890 				    NULL) {
1891 					err = anon_getpage(&ap, &vpprot, pl,
1892 					    PAGESIZE, seg, vaddr, rw, cred);
1893 					if (err) {
1894 						for (i = 0; i < pg_idx; i++) {
1895 							if ((pp = ppa[i]) !=
1896 							    NULL)
1897 								page_unlock(pp);
1898 						}
1899 						return (err);
1900 					}
1901 					ppa[pg_idx] = pl[0];
1902 				} else {
1903 					/*
1904 					 * Since this is a cowfault we know
1905 					 * that this address space has a
1906 					 * parent or children which means
1907 					 * anon_dup_fill_holes() has initialized
1908 					 * all anon slots within a large page
1909 					 * region that had at least one anon
1910 					 * slot at the time of fork().
1911 					 */
1912 					panic("anon_map_getpages: "
1913 					    "cowfault but anon slot is empty");
1914 				}
1915 			}
1916 			VM_STAT_ADD(anonvmstats.getpages[9]);
1917 			*protp = PROT_ALL;
1918 			return (anon_map_privatepages(amp, start_idx, szc, seg,
1919 			    addr, prot, ppa, vpage, anypgsz, cred));
1920 		}
1921 	}
1922 
1923 	VM_STAT_ADD(anonvmstats.getpages[10]);
1924 
1925 	an_idx = start_idx;
1926 	pg_idx = 0;
1927 	vaddr = addr;
1928 	while (pg_idx < pgcnt) {
1929 		slotcreate = 0;
1930 		if ((ap = anon_get_ptr(amp->ahp, an_idx)) == NULL) {
1931 			VM_STAT_ADD(anonvmstats.getpages[11]);
1932 			/*
1933 			 * For us to have decided not to preallocate
1934 			 * would have meant that a large page
1935 			 * was found. Which also means that all of the
1936 			 * anon slots for that page would have been
1937 			 * already created for us.
1938 			 */
1939 			if (prealloc == 0)
1940 				panic("anon_map_getpages: prealloc = 0");
1941 
1942 			slotcreate = 1;
1943 			ap = anon_alloc(NULL, 0);
1944 		}
1945 		swap_xlate(ap, &vp, &off);
1946 
1947 		/*
1948 		 * Now setup our preallocated page to pass down
1949 		 * to swap_getpage().
1950 		 */
1951 		if (prealloc) {
1952 			ASSERT(ppa[pg_idx]->p_szc == szc);
1953 			conpp = ppa[pg_idx];
1954 		}
1955 		ASSERT(prealloc || conpp == NULL);
1956 
1957 		/*
1958 		 * If we just created this anon slot then call
1959 		 * with S_CREATE to prevent doing IO on the page.
1960 		 * Similar to the anon_zero case.
1961 		 */
1962 		err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE,
1963 		    NULL, pl, PAGESIZE, conpp, &nreloc, seg, vaddr,
1964 		    slotcreate == 1 ? S_CREATE : rw, cred);
1965 
1966 		if (err) {
1967 			VM_STAT_ADD(anonvmstats.getpages[12]);
1968 			ASSERT(slotcreate == 0);
1969 			goto io_err;
1970 		}
1971 
1972 		pp = pl[0];
1973 
1974 		if (pp->p_szc != szc) {
1975 			VM_STAT_ADD(anonvmstats.getpages[13]);
1976 			ASSERT(slotcreate == 0);
1977 			ASSERT(prealloc == 0);
1978 			ASSERT(pg_idx == 0);
1979 			if (pp->p_szc > szc) {
1980 				page_unlock(pp);
1981 				VM_STAT_ADD(anonvmstats.getpages[14]);
1982 				return (-2);
1983 			}
1984 			page_unlock(pp);
1985 			prealloc = 1;
1986 			goto top;
1987 		}
1988 
1989 		/*
1990 		 * If we decided to preallocate but VOP_GETPAGE
1991 		 * found a page in the system that satisfies our
1992 		 * request then free up our preallocated large page
1993 		 * and continue looping accross the existing large
1994 		 * page via VOP_GETPAGE.
1995 		 */
1996 		if (prealloc && pp != ppa[pg_idx]) {
1997 			VM_STAT_ADD(anonvmstats.getpages[15]);
1998 			ASSERT(slotcreate == 0);
1999 			ASSERT(pg_idx == 0);
2000 			conpp = NULL;
2001 			prealloc = 0;
2002 			page_free_pages(ppa[0]);
2003 		}
2004 
2005 		if (prealloc && nreloc > 1) {
2006 			/*
2007 			 * we have relocated out of a smaller large page.
2008 			 * skip npgs - 1 iterations and continue which will
2009 			 * increment by one the loop indices.
2010 			 */
2011 			spgcnt_t npgs = nreloc;
2012 
2013 			VM_STAT_ADD(anonvmstats.getpages[16]);
2014 
2015 			ASSERT(pp == ppa[pg_idx]);
2016 			ASSERT(slotcreate == 0);
2017 			ASSERT(pg_idx + npgs <= pgcnt);
2018 			if ((*protp & PROT_WRITE) &&
2019 			    anon_share(amp->ahp, an_idx, npgs)) {
2020 			    *protp &= ~PROT_WRITE;
2021 			}
2022 			pg_idx += npgs;
2023 			an_idx += npgs;
2024 			vaddr += PAGESIZE * npgs;
2025 			continue;
2026 		}
2027 
2028 		VM_STAT_ADD(anonvmstats.getpages[17]);
2029 
2030 		/*
2031 		 * Anon_zero case.
2032 		 */
2033 		if (slotcreate) {
2034 			ASSERT(prealloc);
2035 			pagezero(pp, 0, PAGESIZE);
2036 			CPU_STATS_ADD_K(vm, zfod, 1);
2037 			hat_setrefmod(pp);
2038 		}
2039 
2040 		ASSERT(prealloc == 0 || ppa[pg_idx] == pp);
2041 		ASSERT(prealloc != 0 || PAGE_SHARED(pp));
2042 		ASSERT(prealloc == 0 || PAGE_EXCL(pp));
2043 
2044 		if (pg_idx > 0 &&
2045 		    ((page_pptonum(pp) != page_pptonum(ppa[pg_idx - 1]) + 1) ||
2046 		    (pp->p_szc != ppa[pg_idx - 1]->p_szc)))
2047 			panic("anon_map_getpages: unexpected page");
2048 
2049 		if (prealloc == 0) {
2050 			ppa[pg_idx] = pp;
2051 		}
2052 
2053 		if (ap->an_refcnt > 1) {
2054 			VM_STAT_ADD(anonvmstats.getpages[18]);
2055 			*protp &= ~PROT_WRITE;
2056 		}
2057 
2058 		/*
2059 		 * If this is a new anon slot then initialize
2060 		 * the anon array entry.
2061 		 */
2062 		if (slotcreate) {
2063 			(void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP);
2064 		}
2065 		pg_idx++;
2066 		an_idx++;
2067 		vaddr += PAGESIZE;
2068 	}
2069 
2070 	/*
2071 	 * Since preallocated pages come off the freelist
2072 	 * they are locked SE_EXCL. Simply downgrade and return.
2073 	 */
2074 	if (prealloc) {
2075 		VM_STAT_ADD(anonvmstats.getpages[19]);
2076 		conpp = NULL;
2077 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2078 			page_downgrade(ppa[pg_idx]);
2079 		}
2080 	}
2081 	ASSERT(conpp == NULL);
2082 
2083 	if (brkcow == 0 || (*protp & PROT_WRITE)) {
2084 		VM_STAT_ADD(anonvmstats.getpages[20]);
2085 		return (0);
2086 	}
2087 
2088 	if (szc < seg->s_szc)
2089 		panic("anon_map_getpages: cowfault for szc %d", szc);
2090 
2091 	VM_STAT_ADD(anonvmstats.getpages[21]);
2092 
2093 	*protp = PROT_ALL;
2094 	return (anon_map_privatepages(amp, start_idx, szc, seg, addr, prot,
2095 	    ppa, vpage, anypgsz, cred));
2096 io_err:
2097 	/*
2098 	 * We got an IO error somewhere in our large page.
2099 	 * If we were using a preallocated page then just demote
2100 	 * all the constituent pages that we've succeeded with sofar
2101 	 * to PAGESIZE pages and leave them in the system
2102 	 * unlocked.
2103 	 */
2104 
2105 	ASSERT(err != -2 || pg_idx == 0);
2106 
2107 	VM_STAT_COND_ADD(err > 0, anonvmstats.getpages[22]);
2108 	VM_STAT_COND_ADD(err == -1, anonvmstats.getpages[23]);
2109 	VM_STAT_COND_ADD(err == -2, anonvmstats.getpages[24]);
2110 
2111 	if (prealloc) {
2112 		conpp = NULL;
2113 		if (pg_idx > 0) {
2114 			VM_STAT_ADD(anonvmstats.getpages[25]);
2115 			for (i = 0; i < pgcnt; i++) {
2116 				pp = ppa[i];
2117 				ASSERT(PAGE_EXCL(pp));
2118 				ASSERT(pp->p_szc == szc);
2119 				pp->p_szc = 0;
2120 			}
2121 			for (i = 0; i < pg_idx; i++) {
2122 				ASSERT(!hat_page_is_mapped(ppa[i]));
2123 				page_unlock(ppa[i]);
2124 			}
2125 			/*
2126 			 * Now free up the remaining unused constituent
2127 			 * pages.
2128 			 */
2129 			while (pg_idx < pgcnt) {
2130 				ASSERT(!hat_page_is_mapped(ppa[pg_idx]));
2131 				page_free(ppa[pg_idx], 0);
2132 				pg_idx++;
2133 			}
2134 		} else {
2135 			VM_STAT_ADD(anonvmstats.getpages[26]);
2136 			page_free_pages(ppa[0]);
2137 		}
2138 	} else {
2139 		VM_STAT_ADD(anonvmstats.getpages[27]);
2140 		ASSERT(err > 0);
2141 		for (i = 0; i < pg_idx; i++)
2142 			page_unlock(ppa[i]);
2143 	}
2144 	ASSERT(conpp == NULL);
2145 	if (err != -1)
2146 		return (err);
2147 	/*
2148 	 * we are here because we failed to relocate.
2149 	 */
2150 	ASSERT(prealloc);
2151 	if (brkcow == 0 || !anon_share(amp->ahp, start_idx, pgcnt)) {
2152 		VM_STAT_ADD(anonvmstats.getpages[28]);
2153 		return (-1);
2154 	}
2155 	VM_STAT_ADD(anonvmstats.getpages[29]);
2156 	goto docow;
2157 }
2158 
2159 
2160 /*
2161  * Turn a reference to an object or shared anon page
2162  * into a private page with a copy of the data from the
2163  * original page which is always locked by the caller.
2164  * This routine unloads the translation and unlocks the
2165  * original page, if it isn't being stolen, before returning
2166  * to the caller.
2167  *
2168  * NOTE:  The original anon slot is not freed by this routine
2169  *	  It must be freed by the caller while holding the
2170  *	  "anon_map" lock to prevent races which can occur if
2171  *	  a process has multiple lwps in its address space.
2172  */
2173 page_t *
2174 anon_private(
2175 	struct anon **app,
2176 	struct seg *seg,
2177 	caddr_t addr,
2178 	uint_t	prot,
2179 	page_t *opp,
2180 	int oppflags,
2181 	struct cred *cred)
2182 {
2183 	struct anon *old = *app;
2184 	struct anon *new;
2185 	page_t *pp = NULL;
2186 	struct vnode *vp;
2187 	anoff_t off;
2188 	page_t *anon_pl[1 + 1];
2189 	int err;
2190 
2191 	if (oppflags & STEAL_PAGE)
2192 		ASSERT(PAGE_EXCL(opp));
2193 	else
2194 		ASSERT(PAGE_LOCKED(opp));
2195 
2196 	CPU_STATS_ADD_K(vm, cow_fault, 1);
2197 
2198 	/* Kernel probe */
2199 	TNF_PROBE_1(anon_private, "vm pagefault", /* CSTYLED */,
2200 		tnf_opaque,	address,	addr);
2201 
2202 	*app = new = anon_alloc(NULL, 0);
2203 	swap_xlate(new, &vp, &off);
2204 
2205 	if (oppflags & STEAL_PAGE) {
2206 		page_rename(opp, vp, (u_offset_t)off);
2207 		pp = opp;
2208 		TRACE_5(TR_FAC_VM, TR_ANON_PRIVATE,
2209 			"anon_private:seg %p addr %x pp %p vp %p off %lx",
2210 			seg, addr, pp, vp, off);
2211 		hat_setmod(pp);
2212 
2213 		/* bug 4026339 */
2214 		page_downgrade(pp);
2215 		return (pp);
2216 	}
2217 
2218 	/*
2219 	 * Call the VOP_GETPAGE routine to create the page, thereby
2220 	 * enabling the vnode driver to allocate any filesystem
2221 	 * space (e.g., disk block allocation for UFS).  This also
2222 	 * prevents more than one page from being added to the
2223 	 * vnode at the same time.
2224 	 */
2225 	err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, NULL,
2226 	    anon_pl, PAGESIZE, seg, addr, S_CREATE, cred);
2227 	if (err)
2228 		goto out;
2229 
2230 	pp = anon_pl[0];
2231 
2232 	/*
2233 	 * If the original page was locked, we need to move the lock
2234 	 * to the new page by transfering 'cowcnt/lckcnt' of the original
2235 	 * page to 'cowcnt/lckcnt' of the new page.
2236 	 *
2237 	 * See Statement at the beginning of segvn_lockop() and
2238 	 * comments in page_pp_useclaim() regarding the way
2239 	 * cowcnts/lckcnts are handled.
2240 	 *
2241 	 * Also availrmem must be decremented up front for read only mapping
2242 	 * before calling page_pp_useclaim. page_pp_useclaim will bump it back
2243 	 * if availrmem did not need to be decremented after all.
2244 	 */
2245 	if (oppflags & LOCK_PAGE) {
2246 		if ((prot & PROT_WRITE) == 0) {
2247 			mutex_enter(&freemem_lock);
2248 			if (availrmem > pages_pp_maximum) {
2249 				availrmem--;
2250 				pages_useclaim++;
2251 			} else {
2252 				mutex_exit(&freemem_lock);
2253 				goto out;
2254 			}
2255 			mutex_exit(&freemem_lock);
2256 		}
2257 		page_pp_useclaim(opp, pp, prot & PROT_WRITE);
2258 	}
2259 
2260 	/*
2261 	 * Now copy the contents from the original page,
2262 	 * which is locked and loaded in the MMU by
2263 	 * the caller to prevent yet another page fault.
2264 	 */
2265 	ppcopy(opp, pp);		/* XXX - should set mod bit in here */
2266 
2267 	hat_setrefmod(pp);		/* mark as modified */
2268 
2269 	/*
2270 	 * Unload the old translation.
2271 	 */
2272 	hat_unload(seg->s_as->a_hat, addr, PAGESIZE, HAT_UNLOAD);
2273 
2274 	/*
2275 	 * Free unmapped, unmodified original page.
2276 	 * or release the lock on the original page,
2277 	 * otherwise the process will sleep forever in
2278 	 * anon_decref() waiting for the "exclusive" lock
2279 	 * on the page.
2280 	 */
2281 	(void) page_release(opp, 1);
2282 
2283 	/*
2284 	 * we are done with page creation so downgrade the new
2285 	 * page's selock to shared, this helps when multiple
2286 	 * as_fault(...SOFTLOCK...) are done to the same
2287 	 * page(aio)
2288 	 */
2289 	page_downgrade(pp);
2290 
2291 	/*
2292 	 * NOTE:  The original anon slot must be freed by the
2293 	 * caller while holding the "anon_map" lock, if we
2294 	 * copied away from an anonymous page.
2295 	 */
2296 	return (pp);
2297 
2298 out:
2299 	*app = old;
2300 	if (pp)
2301 		page_unlock(pp);
2302 	anon_decref(new);
2303 	page_unlock(opp);
2304 	return ((page_t *)NULL);
2305 }
2306 
2307 int
2308 anon_map_privatepages(
2309 	struct anon_map *amp,
2310 	ulong_t	start_idx,
2311 	uint_t	szc,
2312 	struct seg *seg,
2313 	caddr_t addr,
2314 	uint_t	prot,
2315 	page_t	*ppa[],
2316 	struct vpage vpage[],
2317 	int anypgsz,
2318 	struct cred *cred)
2319 {
2320 	pgcnt_t		pgcnt;
2321 	struct vnode	*vp;
2322 	anoff_t		off;
2323 	page_t		*pl[2], *conpp = NULL;
2324 	int		err;
2325 	int		prealloc = 1;
2326 	struct anon	*ap, *oldap;
2327 	caddr_t		vaddr;
2328 	page_t		*pplist, *pp;
2329 	ulong_t		pg_idx, an_idx;
2330 	spgcnt_t	nreloc = 0;
2331 	int		pagelock = 0;
2332 	kmutex_t	*ahmpages = NULL;
2333 #ifdef DEBUG
2334 	int		refcnt;
2335 #endif
2336 
2337 	ASSERT(szc != 0);
2338 	ASSERT(szc == seg->s_szc);
2339 
2340 	VM_STAT_ADD(anonvmstats.privatepages[0]);
2341 
2342 	pgcnt = page_get_pagecnt(szc);
2343 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
2344 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
2345 
2346 	ASSERT(amp != NULL);
2347 	ap = anon_get_ptr(amp->ahp, start_idx);
2348 	ASSERT(ap == NULL || ap->an_refcnt >= 1);
2349 
2350 	VM_STAT_COND_ADD(ap == NULL, anonvmstats.privatepages[1]);
2351 
2352 	/*
2353 	 * Now try and allocate the large page. If we fail then just
2354 	 * let VOP_GETPAGE give us PAGESIZE pages. Normally we let
2355 	 * the caller make this decision but to avoid added complexity
2356 	 * it's simplier to handle that case here.
2357 	 */
2358 	if (anypgsz == -1) {
2359 		VM_STAT_ADD(anonvmstats.privatepages[2]);
2360 		prealloc = 0;
2361 	} else if (page_alloc_pages(seg, addr, &pplist, NULL, szc,
2362 	    anypgsz) != 0) {
2363 		VM_STAT_ADD(anonvmstats.privatepages[3]);
2364 		prealloc = 0;
2365 	}
2366 
2367 	/*
2368 	 * make the decrement of all refcnts of all
2369 	 * anon slots of a large page appear atomic by
2370 	 * getting an anonpages_hash_lock for the
2371 	 * first anon slot of a large page.
2372 	 */
2373 	if (ap != NULL) {
2374 		ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp,
2375 		    ap->an_off)];
2376 		mutex_enter(ahmpages);
2377 		if (ap->an_refcnt == 1) {
2378 			VM_STAT_ADD(anonvmstats.privatepages[4]);
2379 			ASSERT(!anon_share(amp->ahp, start_idx, pgcnt));
2380 			mutex_exit(ahmpages);
2381 
2382 			if (prealloc) {
2383 				page_free_replacement_page(pplist);
2384 				page_create_putback(pgcnt);
2385 			}
2386 			ASSERT(ppa[0]->p_szc <= szc);
2387 			if (ppa[0]->p_szc == szc) {
2388 				VM_STAT_ADD(anonvmstats.privatepages[5]);
2389 				return (0);
2390 			}
2391 			for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2392 				ASSERT(ppa[pg_idx] != NULL);
2393 				page_unlock(ppa[pg_idx]);
2394 			}
2395 			return (-1);
2396 		}
2397 	}
2398 
2399 	/*
2400 	 * If we are passed in the vpage array and this is
2401 	 * not PROT_WRITE then we need to decrement availrmem
2402 	 * up front before we try anything. If we need to and
2403 	 * can't decrement availrmem then its better to fail now
2404 	 * than in the middle of processing the new large page.
2405 	 * page_pp_usclaim() on behalf of each constituent page
2406 	 * below will adjust availrmem back for the cases not needed.
2407 	 */
2408 	if (vpage != NULL && (prot & PROT_WRITE) == 0) {
2409 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2410 			if (VPP_ISPPLOCK(&vpage[pg_idx])) {
2411 				pagelock = 1;
2412 				break;
2413 			}
2414 		}
2415 		if (pagelock) {
2416 			VM_STAT_ADD(anonvmstats.privatepages[6]);
2417 			mutex_enter(&freemem_lock);
2418 			if (availrmem >= pages_pp_maximum + pgcnt) {
2419 				availrmem -= pgcnt;
2420 				pages_useclaim += pgcnt;
2421 			} else {
2422 				VM_STAT_ADD(anonvmstats.privatepages[7]);
2423 				mutex_exit(&freemem_lock);
2424 				if (ahmpages != NULL) {
2425 					mutex_exit(ahmpages);
2426 				}
2427 				if (prealloc) {
2428 					page_free_replacement_page(pplist);
2429 					page_create_putback(pgcnt);
2430 				}
2431 				for (pg_idx = 0; pg_idx < pgcnt; pg_idx++)
2432 					if (ppa[pg_idx] != NULL)
2433 						page_unlock(ppa[pg_idx]);
2434 				return (ENOMEM);
2435 			}
2436 			mutex_exit(&freemem_lock);
2437 		}
2438 	}
2439 
2440 	CPU_STATS_ADD_K(vm, cow_fault, pgcnt);
2441 
2442 	VM_STAT_ADD(anonvmstats.privatepages[8]);
2443 
2444 	an_idx = start_idx;
2445 	pg_idx = 0;
2446 	vaddr = addr;
2447 	for (; pg_idx < pgcnt; pg_idx++, an_idx++, vaddr += PAGESIZE) {
2448 		ASSERT(ppa[pg_idx] != NULL);
2449 		oldap = anon_get_ptr(amp->ahp, an_idx);
2450 		ASSERT(ahmpages != NULL || oldap == NULL);
2451 		ASSERT(ahmpages == NULL || oldap != NULL);
2452 		ASSERT(ahmpages == NULL || oldap->an_refcnt > 1);
2453 		ASSERT(ahmpages == NULL || pg_idx != 0 ||
2454 		    (refcnt = oldap->an_refcnt));
2455 		ASSERT(ahmpages == NULL || pg_idx == 0 ||
2456 		    refcnt == oldap->an_refcnt);
2457 
2458 		ap = anon_alloc(NULL, 0);
2459 
2460 		swap_xlate(ap, &vp, &off);
2461 
2462 		/*
2463 		 * Now setup our preallocated page to pass down to
2464 		 * swap_getpage().
2465 		 */
2466 		if (prealloc) {
2467 			pp = pplist;
2468 			page_sub(&pplist, pp);
2469 			conpp = pp;
2470 		}
2471 
2472 		err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE, NULL, pl,
2473 			PAGESIZE, conpp, &nreloc, seg, vaddr, S_CREATE, cred);
2474 
2475 		/*
2476 		 * Impossible to fail this is S_CREATE.
2477 		 */
2478 		if (err)
2479 			panic("anon_map_privatepages: VOP_GETPAGE failed");
2480 
2481 		ASSERT(prealloc ? pp == pl[0] : pl[0]->p_szc == 0);
2482 		ASSERT(prealloc == 0 || nreloc == 1);
2483 
2484 		pp = pl[0];
2485 
2486 		/*
2487 		 * If the original page was locked, we need to move
2488 		 * the lock to the new page by transfering
2489 		 * 'cowcnt/lckcnt' of the original page to 'cowcnt/lckcnt'
2490 		 * of the new page. pg_idx can be used to index
2491 		 * into the vpage array since the caller will guarentee
2492 		 * that vpage struct passed in corresponds to addr
2493 		 * and forward.
2494 		 */
2495 		if (vpage != NULL && VPP_ISPPLOCK(&vpage[pg_idx])) {
2496 			page_pp_useclaim(ppa[pg_idx], pp, prot & PROT_WRITE);
2497 		} else if (pagelock) {
2498 			mutex_enter(&freemem_lock);
2499 			availrmem++;
2500 			pages_useclaim--;
2501 			mutex_exit(&freemem_lock);
2502 		}
2503 
2504 		/*
2505 		 * Now copy the contents from the original page.
2506 		 */
2507 		ppcopy(ppa[pg_idx], pp);
2508 
2509 		hat_setrefmod(pp);		/* mark as modified */
2510 
2511 		/*
2512 		 * Release the lock on the original page,
2513 		 * derement the old slot, and down grade the lock
2514 		 * on the new copy.
2515 		 */
2516 		page_unlock(ppa[pg_idx]);
2517 
2518 		if (!prealloc)
2519 			page_downgrade(pp);
2520 
2521 		ppa[pg_idx] = pp;
2522 
2523 		/*
2524 		 * Now reflect the copy in the new anon array.
2525 		 */
2526 		ASSERT(ahmpages == NULL || oldap->an_refcnt > 1);
2527 		if (oldap != NULL)
2528 			anon_decref(oldap);
2529 		(void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP);
2530 	}
2531 	if (ahmpages != NULL) {
2532 		mutex_exit(ahmpages);
2533 	}
2534 	ASSERT(prealloc == 0 || pplist == NULL);
2535 	if (prealloc) {
2536 		VM_STAT_ADD(anonvmstats.privatepages[9]);
2537 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2538 			page_downgrade(ppa[pg_idx]);
2539 		}
2540 	}
2541 
2542 	/*
2543 	 * Unload the old large page translation.
2544 	 */
2545 	hat_unload(seg->s_as->a_hat, addr, pgcnt << PAGESHIFT, HAT_UNLOAD);
2546 	return (0);
2547 }
2548 
2549 /*
2550  * Allocate a private zero-filled anon page.
2551  */
2552 page_t *
2553 anon_zero(struct seg *seg, caddr_t addr, struct anon **app, struct cred *cred)
2554 {
2555 	struct anon *ap;
2556 	page_t *pp;
2557 	struct vnode *vp;
2558 	anoff_t off;
2559 	page_t *anon_pl[1 + 1];
2560 	int err;
2561 
2562 	/* Kernel probe */
2563 	TNF_PROBE_1(anon_zero, "vm pagefault", /* CSTYLED */,
2564 		tnf_opaque,	address,	addr);
2565 
2566 	*app = ap = anon_alloc(NULL, 0);
2567 	swap_xlate(ap, &vp, &off);
2568 
2569 	/*
2570 	 * Call the VOP_GETPAGE routine to create the page, thereby
2571 	 * enabling the vnode driver to allocate any filesystem
2572 	 * dependent structures (e.g., disk block allocation for UFS).
2573 	 * This also prevents more than on page from being added to
2574 	 * the vnode at the same time since it is locked.
2575 	 */
2576 	err = VOP_GETPAGE(vp, off, PAGESIZE, NULL,
2577 	    anon_pl, PAGESIZE, seg, addr, S_CREATE, cred);
2578 	if (err) {
2579 		*app = NULL;
2580 		anon_decref(ap);
2581 		return (NULL);
2582 	}
2583 	pp = anon_pl[0];
2584 
2585 	pagezero(pp, 0, PAGESIZE);	/* XXX - should set mod bit */
2586 	page_downgrade(pp);
2587 	CPU_STATS_ADD_K(vm, zfod, 1);
2588 	hat_setrefmod(pp);	/* mark as modified so pageout writes back */
2589 	return (pp);
2590 }
2591 
2592 
2593 /*
2594  * Allocate array of private zero-filled anon pages for empty slots
2595  * and kept pages for non empty slots within given range.
2596  *
2597  * NOTE: This rontine will try and use large pages
2598  *	if available and supported by underlying platform.
2599  */
2600 int
2601 anon_map_createpages(
2602 	struct anon_map *amp,
2603 	ulong_t start_index,
2604 	size_t len,
2605 	page_t *ppa[],
2606 	struct seg *seg,
2607 	caddr_t addr,
2608 	enum seg_rw rw,
2609 	struct cred *cred)
2610 {
2611 
2612 	struct anon	*ap;
2613 	struct vnode	*ap_vp;
2614 	page_t		*pp, *pplist, *anon_pl[1 + 1], *conpp = NULL;
2615 	int		err = 0;
2616 	ulong_t		p_index, index;
2617 	pgcnt_t		npgs, pg_cnt;
2618 	spgcnt_t	nreloc = 0;
2619 	uint_t		l_szc, szc, prot;
2620 	anoff_t		ap_off;
2621 	size_t		pgsz;
2622 	lgrp_t		*lgrp;
2623 
2624 	/*
2625 	 * XXX For now only handle S_CREATE.
2626 	 */
2627 	ASSERT(rw == S_CREATE);
2628 
2629 	index	= start_index;
2630 	p_index	= 0;
2631 	npgs = btopr(len);
2632 
2633 	/*
2634 	 * If this platform supports multiple page sizes
2635 	 * then try and allocate directly from the free
2636 	 * list for pages larger than PAGESIZE.
2637 	 *
2638 	 * NOTE:When we have page_create_ru we can stop
2639 	 *	directly allocating from the freelist.
2640 	 */
2641 	l_szc  = seg->s_szc;
2642 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2643 	while (npgs) {
2644 
2645 		/*
2646 		 * if anon slot already exists
2647 		 *   (means page has been created)
2648 		 * so 1) look up the page
2649 		 *    2) if the page is still in memory, get it.
2650 		 *    3) if not, create a page and
2651 		 *	  page in from physical swap device.
2652 		 * These are done in anon_getpage().
2653 		 */
2654 		ap = anon_get_ptr(amp->ahp, index);
2655 		if (ap) {
2656 			err = anon_getpage(&ap, &prot, anon_pl, PAGESIZE,
2657 			    seg, addr, S_READ, cred);
2658 			if (err) {
2659 				ANON_LOCK_EXIT(&amp->a_rwlock);
2660 				panic("anon_map_createpages: anon_getpage");
2661 			}
2662 			pp = anon_pl[0];
2663 			ppa[p_index++] = pp;
2664 
2665 			addr += PAGESIZE;
2666 			index++;
2667 			npgs--;
2668 			continue;
2669 		}
2670 		/*
2671 		 * Now try and allocate the largest page possible
2672 		 * for the current address and range.
2673 		 * Keep dropping down in page size until:
2674 		 *
2675 		 *	1) Properly aligned
2676 		 *	2) Does not overlap existing anon pages
2677 		 *	3) Fits in remaining range.
2678 		 *	4) able to allocate one.
2679 		 *
2680 		 * NOTE: XXX When page_create_ru is completed this code
2681 		 *	 will change.
2682 		 */
2683 		szc    = l_szc;
2684 		pplist = NULL;
2685 		pg_cnt = 0;
2686 		while (szc) {
2687 			pgsz	= page_get_pagesize(szc);
2688 			pg_cnt	= pgsz >> PAGESHIFT;
2689 			if (IS_P2ALIGNED(addr, pgsz) && pg_cnt <= npgs &&
2690 				anon_pages(amp->ahp, index, pg_cnt) == 0) {
2691 				/*
2692 				 * XXX
2693 				 * Since we are faking page_create()
2694 				 * we also need to do the freemem and
2695 				 * pcf accounting.
2696 				 */
2697 				(void) page_create_wait(pg_cnt, PG_WAIT);
2698 
2699 				/*
2700 				 * Get lgroup to allocate next page of shared
2701 				 * memory from and use it to specify where to
2702 				 * allocate the physical memory
2703 				 */
2704 				lgrp = lgrp_mem_choose(seg, addr, pgsz);
2705 
2706 				pplist = page_get_freelist(
2707 				    (struct vnode *)NULL, (u_offset_t)0, seg,
2708 				    addr, pgsz, 0, lgrp);
2709 
2710 				if (pplist == NULL) {
2711 					page_create_putback(pg_cnt);
2712 				}
2713 
2714 				/*
2715 				 * If a request for a page of size
2716 				 * larger than PAGESIZE failed
2717 				 * then don't try that size anymore.
2718 				 */
2719 				if (pplist == NULL) {
2720 					l_szc = szc - 1;
2721 				} else {
2722 					break;
2723 				}
2724 			}
2725 			szc--;
2726 		}
2727 
2728 		/*
2729 		 * If just using PAGESIZE pages then don't
2730 		 * directly allocate from the free list.
2731 		 */
2732 		if (pplist == NULL) {
2733 			ASSERT(szc == 0);
2734 			pp = anon_zero(seg, addr, &ap, cred);
2735 			if (pp == NULL) {
2736 				ANON_LOCK_EXIT(&amp->a_rwlock);
2737 				panic("anon_map_createpages: anon_zero");
2738 			}
2739 			ppa[p_index++] = pp;
2740 
2741 			ASSERT(anon_get_ptr(amp->ahp, index) == NULL);
2742 			(void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP);
2743 
2744 			addr += PAGESIZE;
2745 			index++;
2746 			npgs--;
2747 			continue;
2748 		}
2749 
2750 		/*
2751 		 * pplist is a list of pg_cnt PAGESIZE pages.
2752 		 * These pages are locked SE_EXCL since they
2753 		 * came directly off the free list.
2754 		 */
2755 		ASSERT(IS_P2ALIGNED(pg_cnt, pg_cnt));
2756 		ASSERT(IS_P2ALIGNED(index, pg_cnt));
2757 		ASSERT(conpp == NULL);
2758 		while (pg_cnt--) {
2759 
2760 			ap = anon_alloc(NULL, 0);
2761 			swap_xlate(ap, &ap_vp, &ap_off);
2762 
2763 			ASSERT(pplist != NULL);
2764 			pp = pplist;
2765 			page_sub(&pplist, pp);
2766 			PP_CLRFREE(pp);
2767 			PP_CLRAGED(pp);
2768 			conpp = pp;
2769 
2770 			err = swap_getconpage(ap_vp, ap_off, PAGESIZE,
2771 			    (uint_t *)NULL, anon_pl, PAGESIZE, conpp, &nreloc,
2772 			    seg, addr, S_CREATE, cred);
2773 
2774 			if (err) {
2775 				ANON_LOCK_EXIT(&amp->a_rwlock);
2776 				panic("anon_map_createpages: S_CREATE");
2777 			}
2778 
2779 			ASSERT(anon_pl[0] == pp);
2780 			ASSERT(nreloc == 1);
2781 			pagezero(pp, 0, PAGESIZE);
2782 			CPU_STATS_ADD_K(vm, zfod, 1);
2783 			hat_setrefmod(pp);
2784 
2785 			ASSERT(anon_get_ptr(amp->ahp, index) == NULL);
2786 			(void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP);
2787 
2788 			ppa[p_index++] = pp;
2789 
2790 			addr += PAGESIZE;
2791 			index++;
2792 			npgs--;
2793 		}
2794 		conpp = NULL;
2795 		pg_cnt	= pgsz >> PAGESHIFT;
2796 		p_index = p_index - pg_cnt;
2797 		while (pg_cnt--) {
2798 			page_downgrade(ppa[p_index++]);
2799 		}
2800 	}
2801 	ANON_LOCK_EXIT(&amp->a_rwlock);
2802 	return (0);
2803 }
2804 
2805 int
2806 anon_map_demotepages(
2807 	struct anon_map *amp,
2808 	ulong_t	start_idx,
2809 	struct seg *seg,
2810 	caddr_t addr,
2811 	uint_t prot,
2812 	struct vpage vpage[],
2813 	struct cred *cred)
2814 {
2815 	struct anon	*ap;
2816 	uint_t		szc = seg->s_szc;
2817 	pgcnt_t		pgcnt = page_get_pagecnt(szc);
2818 	size_t		ppasize = pgcnt * sizeof (page_t *);
2819 	page_t		**ppa = kmem_alloc(ppasize, KM_SLEEP);
2820 	page_t		*pp;
2821 	page_t		*pl[2];
2822 	pgcnt_t		i, pg_idx;
2823 	ulong_t		an_idx;
2824 	caddr_t		vaddr;
2825 	kmutex_t	*ahmpages = NULL;
2826 	int 		err;
2827 	int		retry = 0;
2828 	uint_t		vpprot;
2829 
2830 	ASSERT(RW_WRITE_HELD(&amp->a_rwlock));
2831 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
2832 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
2833 	ASSERT(ppa != NULL);
2834 
2835 	VM_STAT_ADD(anonvmstats.demotepages[0]);
2836 
2837 	ap = anon_get_ptr(amp->ahp, start_idx);
2838 	if (ap != NULL) {
2839 		VM_STAT_ADD(anonvmstats.demotepages[1]);
2840 		ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
2841 		mutex_enter(ahmpages);
2842 	}
2843 top:
2844 	if (ap == NULL || ap->an_refcnt <= 1) {
2845 		int root = 0;
2846 		pgcnt_t npgs, curnpgs = 0;
2847 
2848 		VM_STAT_ADD(anonvmstats.demotepages[2]);
2849 
2850 		ASSERT(retry == 0 || ap != NULL);
2851 
2852 		if (ahmpages != NULL)
2853 			mutex_exit(ahmpages);
2854 		an_idx = start_idx;
2855 		for (i = 0; i < pgcnt; i++, an_idx++) {
2856 			ap = anon_get_ptr(amp->ahp, an_idx);
2857 			if (ap != NULL) {
2858 				ASSERT(ap->an_refcnt == 1);
2859 				pp = ppa[i] = page_lookup(ap->an_vp, ap->an_off,
2860 				    SE_EXCL);
2861 				if (pp != NULL) {
2862 					(void) hat_pageunload(pp,
2863 					    HAT_FORCE_PGUNLOAD);
2864 				}
2865 			} else {
2866 				ppa[i] = NULL;
2867 			}
2868 		}
2869 		for (i = 0; i < pgcnt; i++) {
2870 			if ((pp = ppa[i]) != NULL && pp->p_szc != 0) {
2871 				ASSERT(pp->p_szc <= szc);
2872 				if (!root) {
2873 					VM_STAT_ADD(anonvmstats.demotepages[3]);
2874 					if (curnpgs != 0)
2875 						panic("anon_map_demotepages: "
2876 						    "bad large page");
2877 
2878 					root = 1;
2879 					curnpgs = npgs =
2880 					    page_get_pagecnt(pp->p_szc);
2881 
2882 					ASSERT(npgs <= pgcnt);
2883 					ASSERT(IS_P2ALIGNED(npgs, npgs));
2884 					ASSERT(!(page_pptonum(pp) &
2885 					    (npgs - 1)));
2886 				} else {
2887 					ASSERT(i > 0);
2888 					ASSERT(page_pptonum(pp) - 1 ==
2889 					    page_pptonum(ppa[i - 1]));
2890 					if ((page_pptonum(pp) & (npgs - 1)) ==
2891 					    npgs - 1)
2892 						root = 0;
2893 				}
2894 				ASSERT(PAGE_EXCL(pp));
2895 				pp->p_szc = 0;
2896 				curnpgs--;
2897 			}
2898 		}
2899 		if (root != 0 || curnpgs != 0)
2900 			panic("anon_map_demotepages: bad large page");
2901 
2902 		for (i = 0; i < pgcnt; i++) {
2903 			if ((pp = ppa[i]) != NULL) {
2904 				ASSERT(!hat_page_is_mapped(pp));
2905 				ASSERT(pp->p_szc == 0);
2906 				page_unlock(pp);
2907 			}
2908 		}
2909 		kmem_free(ppa, ppasize);
2910 		return (0);
2911 	}
2912 	ASSERT(ahmpages != NULL);
2913 	mutex_exit(ahmpages);
2914 	ahmpages = NULL;
2915 
2916 	VM_STAT_ADD(anonvmstats.demotepages[4]);
2917 
2918 	ASSERT(retry == 0); /* we can be here only once */
2919 
2920 	vaddr = addr;
2921 	for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt;
2922 	    pg_idx++, an_idx++, vaddr += PAGESIZE) {
2923 		ap = anon_get_ptr(amp->ahp, an_idx);
2924 		if (ap == NULL)
2925 			panic("anon_map_demotepages: no anon slot");
2926 		err = anon_getpage(&ap, &vpprot, pl, PAGESIZE, seg, vaddr,
2927 		    S_READ, cred);
2928 		if (err) {
2929 			for (i = 0; i < pg_idx; i++) {
2930 				if ((pp = ppa[i]) != NULL)
2931 					page_unlock(pp);
2932 			}
2933 			kmem_free(ppa, ppasize);
2934 			return (err);
2935 		}
2936 		ppa[pg_idx] = pl[0];
2937 	}
2938 
2939 	err = anon_map_privatepages(amp, start_idx, szc, seg, addr, prot, ppa,
2940 	    vpage, -1, cred);
2941 	if (err > 0) {
2942 		VM_STAT_ADD(anonvmstats.demotepages[5]);
2943 		kmem_free(ppa, ppasize);
2944 		return (err);
2945 	}
2946 	ASSERT(err == 0 || err == -1);
2947 	if (err == -1) {
2948 		VM_STAT_ADD(anonvmstats.demotepages[6]);
2949 		retry = 1;
2950 		goto top;
2951 	}
2952 	for (i = 0; i < pgcnt; i++) {
2953 		ASSERT(ppa[i] != NULL);
2954 		if (ppa[i]->p_szc != 0)
2955 			retry = 1;
2956 		page_unlock(ppa[i]);
2957 	}
2958 	if (retry) {
2959 		VM_STAT_ADD(anonvmstats.demotepages[7]);
2960 		goto top;
2961 	}
2962 
2963 	VM_STAT_ADD(anonvmstats.demotepages[8]);
2964 
2965 	kmem_free(ppa, ppasize);
2966 
2967 	return (0);
2968 }
2969 
2970 /*
2971  * Allocate and initialize an anon_map structure for seg
2972  * associating the given swap reservation with the new anon_map.
2973  */
2974 struct anon_map *
2975 anonmap_alloc(size_t size, size_t swresv)
2976 {
2977 	struct anon_map *amp;
2978 
2979 	amp = kmem_cache_alloc(anonmap_cache, KM_SLEEP);
2980 
2981 	amp->refcnt = 1;
2982 	amp->size = size;
2983 
2984 	amp->ahp = anon_create(btopr(size), ANON_SLEEP);
2985 	amp->swresv = swresv;
2986 	amp->locality = 0;
2987 	amp->a_szc = 0;
2988 	return (amp);
2989 }
2990 
2991 void
2992 anonmap_free(struct anon_map *amp)
2993 {
2994 	ASSERT(amp->ahp);
2995 	ASSERT(amp->refcnt == 0);
2996 
2997 	lgrp_shm_policy_fini(amp, NULL);
2998 	anon_release(amp->ahp, btopr(amp->size));
2999 	kmem_cache_free(anonmap_cache, amp);
3000 }
3001 
3002 /*
3003  * Returns true if the app array has some empty slots.
3004  * The offp and lenp paramters are in/out paramters.  On entry
3005  * these values represent the starting offset and length of the
3006  * mapping.  When true is returned, these values may be modified
3007  * to be the largest range which includes empty slots.
3008  */
3009 int
3010 non_anon(struct anon_hdr *ahp, ulong_t anon_idx, u_offset_t *offp,
3011 				size_t *lenp)
3012 {
3013 	ulong_t i, el;
3014 	ssize_t low, high;
3015 	struct anon *ap;
3016 
3017 	low = -1;
3018 	for (i = 0, el = *lenp; i < el; i += PAGESIZE, anon_idx++) {
3019 		ap = anon_get_ptr(ahp, anon_idx);
3020 		if (ap == NULL) {
3021 			if (low == -1)
3022 				low = i;
3023 			high = i;
3024 		}
3025 	}
3026 	if (low != -1) {
3027 		/*
3028 		 * Found at least one non-anon page.
3029 		 * Set up the off and len return values.
3030 		 */
3031 		if (low != 0)
3032 			*offp += low;
3033 		*lenp = high - low + PAGESIZE;
3034 		return (1);
3035 	}
3036 	return (0);
3037 }
3038 
3039 /*
3040  * Return a count of the number of existing anon pages in the anon array
3041  * app in the range (off, off+len). The array and slots must be guaranteed
3042  * stable by the caller.
3043  */
3044 pgcnt_t
3045 anon_pages(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots)
3046 {
3047 	pgcnt_t cnt = 0;
3048 
3049 	while (nslots-- > 0) {
3050 		if ((anon_get_ptr(ahp, anon_index)) != NULL)
3051 			cnt++;
3052 		anon_index++;
3053 	}
3054 	return (cnt);
3055 }
3056 
3057 /*
3058  * Move reserved phys swap into memory swap (unreserve phys swap
3059  * and reserve mem swap by the same amount).
3060  * Used by segspt when it needs to lock resrved swap npages in memory
3061  */
3062 int
3063 anon_swap_adjust(pgcnt_t npages)
3064 {
3065 	pgcnt_t unlocked_mem_swap;
3066 
3067 	mutex_enter(&anoninfo_lock);
3068 
3069 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
3070 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
3071 
3072 	unlocked_mem_swap = k_anoninfo.ani_mem_resv
3073 					- k_anoninfo.ani_locked_swap;
3074 	if (npages > unlocked_mem_swap) {
3075 		spgcnt_t adjusted_swap = npages - unlocked_mem_swap;
3076 
3077 		/*
3078 		 * if there is not enough unlocked mem swap we take missing
3079 		 * amount from phys swap and give it to mem swap
3080 		 */
3081 		mutex_enter(&freemem_lock);
3082 		if (availrmem < adjusted_swap + segspt_minfree) {
3083 			mutex_exit(&freemem_lock);
3084 			mutex_exit(&anoninfo_lock);
3085 			return (ENOMEM);
3086 		}
3087 		availrmem -= adjusted_swap;
3088 		mutex_exit(&freemem_lock);
3089 
3090 		k_anoninfo.ani_mem_resv += adjusted_swap;
3091 		ASSERT(k_anoninfo.ani_phys_resv >= adjusted_swap);
3092 		k_anoninfo.ani_phys_resv -= adjusted_swap;
3093 
3094 		ANI_ADD(adjusted_swap);
3095 	}
3096 	k_anoninfo.ani_locked_swap += npages;
3097 
3098 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
3099 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
3100 
3101 	mutex_exit(&anoninfo_lock);
3102 
3103 	return (0);
3104 }
3105 
3106 /*
3107  * 'unlocked' reserved mem swap so when it is unreserved it
3108  * can be moved back phys (disk) swap
3109  */
3110 void
3111 anon_swap_restore(pgcnt_t npages)
3112 {
3113 	mutex_enter(&anoninfo_lock);
3114 
3115 	ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv);
3116 
3117 	ASSERT(k_anoninfo.ani_locked_swap >= npages);
3118 	k_anoninfo.ani_locked_swap -= npages;
3119 
3120 	ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv);
3121 
3122 	mutex_exit(&anoninfo_lock);
3123 }
3124 
3125 /*
3126  * Return the pointer from the list for a
3127  * specified anon index.
3128  */
3129 ulong_t *
3130 anon_get_slot(struct anon_hdr *ahp, ulong_t an_idx)
3131 {
3132 	struct anon	**app;
3133 	void 		**ppp;
3134 
3135 	ASSERT(an_idx < ahp->size);
3136 
3137 	/*
3138 	 * Single level case.
3139 	 */
3140 	if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
3141 		return ((ulong_t *)&ahp->array_chunk[an_idx]);
3142 	} else {
3143 
3144 		/*
3145 		 * 2 level case.
3146 		 */
3147 		ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
3148 		if (*ppp == NULL) {
3149 			mutex_enter(&ahp->serial_lock);
3150 			ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
3151 			if (*ppp == NULL)
3152 				*ppp = kmem_zalloc(PAGESIZE, KM_SLEEP);
3153 			mutex_exit(&ahp->serial_lock);
3154 		}
3155 		app = *ppp;
3156 		return ((ulong_t *)&app[an_idx & ANON_CHUNK_OFF]);
3157 	}
3158 }
3159 
3160 void
3161 anon_array_enter(struct anon_map *amp, ulong_t an_idx, anon_sync_obj_t *sobj)
3162 {
3163 	ulong_t		*ap_slot;
3164 	kmutex_t	*mtx;
3165 	kcondvar_t	*cv;
3166 	int		hash;
3167 
3168 	/*
3169 	 * Use szc to determine anon slot(s) to appear atomic.
3170 	 * If szc = 0, then lock the anon slot and mark it busy.
3171 	 * If szc > 0, then lock the range of slots by getting the
3172 	 * anon_array_lock for the first anon slot, and mark only the
3173 	 * first anon slot busy to represent whole range being busy.
3174 	 */
3175 
3176 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
3177 	an_idx = P2ALIGN(an_idx, page_get_pagecnt(amp->a_szc));
3178 	hash = ANON_ARRAY_HASH(amp, an_idx);
3179 	sobj->sync_mutex = mtx = &anon_array_lock[hash].pad_mutex;
3180 	sobj->sync_cv = cv = &anon_array_cv[hash];
3181 	mutex_enter(mtx);
3182 	ap_slot = anon_get_slot(amp->ahp, an_idx);
3183 	while (ANON_ISBUSY(ap_slot))
3184 		cv_wait(cv, mtx);
3185 	ANON_SETBUSY(ap_slot);
3186 	sobj->sync_data = ap_slot;
3187 	mutex_exit(mtx);
3188 }
3189 
3190 void
3191 anon_array_exit(anon_sync_obj_t *sobj)
3192 {
3193 	mutex_enter(sobj->sync_mutex);
3194 	ASSERT(ANON_ISBUSY(sobj->sync_data));
3195 	ANON_CLRBUSY(sobj->sync_data);
3196 	if (CV_HAS_WAITERS(sobj->sync_cv))
3197 		cv_broadcast(sobj->sync_cv);
3198 	mutex_exit(sobj->sync_mutex);
3199 }
3200