xref: /titanic_50/usr/src/uts/common/vm/vm_anon.c (revision 03831d35f7499c87d51205817c93e9a8d42c4bae)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 #pragma ident	"%Z%%M%	%I%	%E% SMI"
40 
41 /*
42  * VM - anonymous pages.
43  *
44  * This layer sits immediately above the vm_swap layer.  It manages
45  * physical pages that have no permanent identity in the file system
46  * name space, using the services of the vm_swap layer to allocate
47  * backing storage for these pages.  Since these pages have no external
48  * identity, they are discarded when the last reference is removed.
49  *
50  * An important function of this layer is to manage low-level sharing
51  * of pages that are logically distinct but that happen to be
52  * physically identical (e.g., the corresponding pages of the processes
53  * resulting from a fork before one process or the other changes their
54  * contents).  This pseudo-sharing is present only as an optimization
55  * and is not to be confused with true sharing in which multiple
56  * address spaces deliberately contain references to the same object;
57  * such sharing is managed at a higher level.
58  *
59  * The key data structure here is the anon struct, which contains a
60  * reference count for its associated physical page and a hint about
61  * the identity of that page.  Anon structs typically live in arrays,
62  * with an instance's position in its array determining where the
63  * corresponding backing storage is allocated; however, the swap_xlate()
64  * routine abstracts away this representation information so that the
65  * rest of the anon layer need not know it.  (See the swap layer for
66  * more details on anon struct layout.)
67  *
68  * In the future versions of the system, the association between an
69  * anon struct and its position on backing store will change so that
70  * we don't require backing store all anonymous pages in the system.
71  * This is important for consideration for large memory systems.
72  * We can also use this technique to delay binding physical locations
73  * to anonymous pages until pageout/swapout time where we can make
74  * smarter allocation decisions to improve anonymous klustering.
75  *
76  * Many of the routines defined here take a (struct anon **) argument,
77  * which allows the code at this level to manage anon pages directly,
78  * so that callers can regard anon structs as opaque objects and not be
79  * concerned with assigning or inspecting their contents.
80  *
81  * Clients of this layer refer to anon pages indirectly.  That is, they
82  * maintain arrays of pointers to anon structs rather than maintaining
83  * anon structs themselves.  The (struct anon **) arguments mentioned
84  * above are pointers to entries in these arrays.  It is these arrays
85  * that capture the mapping between offsets within a given segment and
86  * the corresponding anonymous backing storage address.
87  */
88 
89 #ifdef DEBUG
90 #define	ANON_DEBUG
91 #endif
92 
93 #include <sys/types.h>
94 #include <sys/t_lock.h>
95 #include <sys/param.h>
96 #include <sys/systm.h>
97 #include <sys/mman.h>
98 #include <sys/cred.h>
99 #include <sys/thread.h>
100 #include <sys/vnode.h>
101 #include <sys/cpuvar.h>
102 #include <sys/swap.h>
103 #include <sys/cmn_err.h>
104 #include <sys/vtrace.h>
105 #include <sys/kmem.h>
106 #include <sys/sysmacros.h>
107 #include <sys/bitmap.h>
108 #include <sys/vmsystm.h>
109 #include <sys/debug.h>
110 #include <sys/fs/swapnode.h>
111 #include <sys/tnf_probe.h>
112 #include <sys/lgrp.h>
113 #include <sys/policy.h>
114 #include <sys/condvar_impl.h>
115 #include <sys/mutex_impl.h>
116 
117 #include <vm/as.h>
118 #include <vm/hat.h>
119 #include <vm/anon.h>
120 #include <vm/page.h>
121 #include <vm/vpage.h>
122 #include <vm/seg.h>
123 #include <vm/rm.h>
124 
125 #include <fs/fs_subr.h>
126 
127 struct vnode *anon_vp;
128 
129 int anon_debug;
130 
131 kmutex_t	anoninfo_lock;
132 struct		k_anoninfo k_anoninfo;
133 ani_free_t	ani_free_pool[ANI_MAX_POOL];
134 pad_mutex_t	anon_array_lock[ANON_LOCKSIZE];
135 kcondvar_t	anon_array_cv[ANON_LOCKSIZE];
136 
137 /*
138  * Global hash table for (vp, off) -> anon slot
139  */
140 extern	int swap_maxcontig;
141 size_t	anon_hash_size;
142 struct anon **anon_hash;
143 
144 static struct kmem_cache *anon_cache;
145 static struct kmem_cache *anonmap_cache;
146 
147 #ifdef VM_STATS
148 static struct anonvmstats_str {
149 	ulong_t getpages[30];
150 	ulong_t privatepages[10];
151 	ulong_t demotepages[9];
152 	ulong_t decrefpages[9];
153 	ulong_t	dupfillholes[4];
154 	ulong_t freepages[1];
155 } anonvmstats;
156 #endif /* VM_STATS */
157 
158 
159 /*ARGSUSED*/
160 static int
161 anonmap_cache_constructor(void *buf, void *cdrarg, int kmflags)
162 {
163 	struct anon_map *amp = buf;
164 
165 	rw_init(&amp->a_rwlock, NULL, RW_DEFAULT, NULL);
166 	return (0);
167 }
168 
169 /*ARGSUSED1*/
170 static void
171 anonmap_cache_destructor(void *buf, void *cdrarg)
172 {
173 	struct anon_map *amp = buf;
174 
175 	rw_destroy(&amp->a_rwlock);
176 }
177 
178 kmutex_t	anonhash_lock[AH_LOCK_SIZE];
179 kmutex_t	anonpages_hash_lock[AH_LOCK_SIZE];
180 
181 void
182 anon_init(void)
183 {
184 	int i;
185 
186 	anon_hash_size = 1L << highbit(physmem / ANON_HASHAVELEN);
187 
188 	for (i = 0; i < AH_LOCK_SIZE; i++) {
189 		mutex_init(&anonhash_lock[i], NULL, MUTEX_DEFAULT, NULL);
190 		mutex_init(&anonpages_hash_lock[i], NULL, MUTEX_DEFAULT, NULL);
191 	}
192 
193 	for (i = 0; i < ANON_LOCKSIZE; i++) {
194 		mutex_init(&anon_array_lock[i].pad_mutex, NULL,
195 			MUTEX_DEFAULT, NULL);
196 		cv_init(&anon_array_cv[i], NULL, CV_DEFAULT, NULL);
197 	}
198 
199 	anon_hash = (struct anon **)
200 		kmem_zalloc(sizeof (struct anon *) * anon_hash_size, KM_SLEEP);
201 	anon_cache = kmem_cache_create("anon_cache", sizeof (struct anon),
202 		AN_CACHE_ALIGN, NULL, NULL, NULL, NULL, NULL, 0);
203 	anonmap_cache = kmem_cache_create("anonmap_cache",
204 		sizeof (struct anon_map), 0,
205 		anonmap_cache_constructor, anonmap_cache_destructor, NULL,
206 		NULL, NULL, 0);
207 	swap_maxcontig = (1024 * 1024) >> PAGESHIFT;	/* 1MB of pages */
208 
209 	anon_vp = vn_alloc(KM_SLEEP);
210 	vn_setops(anon_vp, swap_vnodeops);
211 	anon_vp->v_type = VREG;
212 	anon_vp->v_flag |= (VISSWAP|VISSWAPFS);
213 }
214 
215 /*
216  * Global anon slot hash table manipulation.
217  */
218 
219 static void
220 anon_addhash(struct anon *ap)
221 {
222 	int index;
223 
224 	ASSERT(MUTEX_HELD(&anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]));
225 	index = ANON_HASH(ap->an_vp, ap->an_off);
226 	ap->an_hash = anon_hash[index];
227 	anon_hash[index] = ap;
228 }
229 
230 static void
231 anon_rmhash(struct anon *ap)
232 {
233 	struct anon **app;
234 
235 	ASSERT(MUTEX_HELD(&anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]));
236 
237 	for (app = &anon_hash[ANON_HASH(ap->an_vp, ap->an_off)];
238 	    *app; app = &((*app)->an_hash)) {
239 		if (*app == ap) {
240 			*app = ap->an_hash;
241 			break;
242 		}
243 	}
244 }
245 
246 /*
247  * The anon array interfaces. Functions allocating,
248  * freeing array of pointers, and returning/setting
249  * entries in the array of pointers for a given offset.
250  *
251  * Create the list of pointers
252  */
253 struct anon_hdr *
254 anon_create(pgcnt_t npages, int flags)
255 {
256 	struct anon_hdr *ahp;
257 	ulong_t nchunks;
258 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
259 
260 	if ((ahp = kmem_zalloc(sizeof (struct anon_hdr), kmemflags)) == NULL) {
261 		return (NULL);
262 	}
263 
264 	mutex_init(&ahp->serial_lock, NULL, MUTEX_DEFAULT, NULL);
265 	/*
266 	 * Single level case.
267 	 */
268 	ahp->size = npages;
269 	if (npages <= ANON_CHUNK_SIZE || (flags & ANON_ALLOC_FORCE)) {
270 
271 		if (flags & ANON_ALLOC_FORCE)
272 			ahp->flags |= ANON_ALLOC_FORCE;
273 
274 		ahp->array_chunk = kmem_zalloc(
275 		    ahp->size * sizeof (struct anon *), kmemflags);
276 
277 		if (ahp->array_chunk == NULL) {
278 			kmem_free(ahp, sizeof (struct anon_hdr));
279 			return (NULL);
280 		}
281 	} else {
282 		/*
283 		 * 2 Level case.
284 		 * anon hdr size needs to be rounded off  to be a multiple
285 		 * of ANON_CHUNK_SIZE. This is important as various anon
286 		 * related functions depend on this.
287 		 * NOTE -
288 		 * anon_grow()  makes anon hdr size a multiple of
289 		 * ANON_CHUNK_SIZE.
290 		 * amp size is <= anon hdr size.
291 		 * anon_index + seg_pgs <= anon hdr size.
292 		 */
293 		ahp->size = P2ROUNDUP(npages, ANON_CHUNK_SIZE);
294 		nchunks = ahp->size >> ANON_CHUNK_SHIFT;
295 
296 		ahp->array_chunk = kmem_zalloc(nchunks * sizeof (ulong_t *),
297 		    kmemflags);
298 
299 		if (ahp->array_chunk == NULL) {
300 			kmem_free(ahp, sizeof (struct anon_hdr));
301 			return (NULL);
302 		}
303 	}
304 	return (ahp);
305 }
306 
307 /*
308  * Free the array of pointers
309  */
310 void
311 anon_release(struct anon_hdr *ahp, pgcnt_t npages)
312 {
313 	ulong_t i;
314 	void **ppp;
315 	ulong_t nchunks;
316 
317 	ASSERT(npages <= ahp->size);
318 
319 	/*
320 	 * Single level case.
321 	 */
322 	if (npages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
323 		kmem_free(ahp->array_chunk, ahp->size * sizeof (struct anon *));
324 	} else {
325 		/*
326 		 * 2 level case.
327 		 */
328 		nchunks = ahp->size >> ANON_CHUNK_SHIFT;
329 		for (i = 0; i < nchunks; i++) {
330 			ppp = &ahp->array_chunk[i];
331 			if (*ppp != NULL)
332 				kmem_free(*ppp, PAGESIZE);
333 		}
334 		kmem_free(ahp->array_chunk, nchunks * sizeof (ulong_t *));
335 	}
336 	mutex_destroy(&ahp->serial_lock);
337 	kmem_free(ahp, sizeof (struct anon_hdr));
338 }
339 
340 /*
341  * Return the pointer from the list for a
342  * specified anon index.
343  */
344 struct anon *
345 anon_get_ptr(struct anon_hdr *ahp, ulong_t an_idx)
346 {
347 	struct anon **app;
348 
349 	ASSERT(an_idx < ahp->size);
350 
351 	/*
352 	 * Single level case.
353 	 */
354 	if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
355 		return ((struct anon *)
356 			((uintptr_t)ahp->array_chunk[an_idx] & ANON_PTRMASK));
357 	} else {
358 
359 		/*
360 		 * 2 level case.
361 		 */
362 		app = ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
363 		if (app) {
364 			return ((struct anon *)
365 				((uintptr_t)app[an_idx & ANON_CHUNK_OFF] &
366 					ANON_PTRMASK));
367 		} else {
368 			return (NULL);
369 		}
370 	}
371 }
372 
373 /*
374  * Return the anon pointer for the first valid entry in the anon list,
375  * starting from the given index.
376  */
377 struct anon *
378 anon_get_next_ptr(struct anon_hdr *ahp, ulong_t *index)
379 {
380 	struct anon *ap;
381 	struct anon **app;
382 	ulong_t chunkoff;
383 	ulong_t i;
384 	ulong_t j;
385 	pgcnt_t size;
386 
387 	i = *index;
388 	size = ahp->size;
389 
390 	ASSERT(i < size);
391 
392 	if ((size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
393 		/*
394 		 * 1 level case
395 		 */
396 		while (i < size) {
397 			ap = (struct anon *)
398 				((uintptr_t)ahp->array_chunk[i] & ANON_PTRMASK);
399 			if (ap) {
400 				*index = i;
401 				return (ap);
402 			}
403 			i++;
404 		}
405 	} else {
406 		/*
407 		 * 2 level case
408 		 */
409 		chunkoff = i & ANON_CHUNK_OFF;
410 		while (i < size) {
411 			app = ahp->array_chunk[i >> ANON_CHUNK_SHIFT];
412 			if (app)
413 				for (j = chunkoff; j < ANON_CHUNK_SIZE; j++) {
414 					ap = (struct anon *)
415 						((uintptr_t)app[j] &
416 							ANON_PTRMASK);
417 					if (ap) {
418 						*index = i + (j - chunkoff);
419 						return (ap);
420 					}
421 				}
422 			chunkoff = 0;
423 			i = (i + ANON_CHUNK_SIZE) & ~ANON_CHUNK_OFF;
424 		}
425 	}
426 	*index = size;
427 	return (NULL);
428 }
429 
430 /*
431  * Set list entry with a given pointer for a specified offset
432  */
433 int
434 anon_set_ptr(struct anon_hdr *ahp, ulong_t an_idx, struct anon *ap, int flags)
435 {
436 	void		**ppp;
437 	struct anon	**app;
438 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
439 	uintptr_t	*ap_addr;
440 
441 	ASSERT(an_idx < ahp->size);
442 
443 	/*
444 	 * Single level case.
445 	 */
446 	if (ahp->size <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
447 		ap_addr = (uintptr_t *)&ahp->array_chunk[an_idx];
448 	} else {
449 
450 		/*
451 		 * 2 level case.
452 		 */
453 		ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
454 
455 		ASSERT(ppp != NULL);
456 		if (*ppp == NULL) {
457 			mutex_enter(&ahp->serial_lock);
458 			ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
459 			if (*ppp == NULL) {
460 				*ppp = kmem_zalloc(PAGESIZE, kmemflags);
461 				if (*ppp == NULL) {
462 					mutex_exit(&ahp->serial_lock);
463 					return (ENOMEM);
464 				}
465 			}
466 			mutex_exit(&ahp->serial_lock);
467 		}
468 		app = *ppp;
469 		ap_addr = (uintptr_t *)&app[an_idx & ANON_CHUNK_OFF];
470 	}
471 	*ap_addr = (*ap_addr & ~ANON_PTRMASK) | (uintptr_t)ap;
472 	return (0);
473 }
474 
475 /*
476  * Copy anon array into a given new anon array
477  */
478 int
479 anon_copy_ptr(struct anon_hdr *sahp, ulong_t s_idx,
480 	struct anon_hdr *dahp, ulong_t d_idx,
481 	pgcnt_t npages, int flags)
482 {
483 	void **sapp, **dapp;
484 	void *ap;
485 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
486 
487 	ASSERT((s_idx < sahp->size) && (d_idx < dahp->size));
488 	ASSERT((npages <= sahp->size) && (npages <= dahp->size));
489 
490 	/*
491 	 * Both arrays are 1 level.
492 	 */
493 	if (((sahp->size <= ANON_CHUNK_SIZE) &&
494 	    (dahp->size <= ANON_CHUNK_SIZE)) ||
495 	    ((sahp->flags & ANON_ALLOC_FORCE) &&
496 	    (dahp->flags & ANON_ALLOC_FORCE))) {
497 
498 		bcopy(&sahp->array_chunk[s_idx], &dahp->array_chunk[d_idx],
499 		    npages * sizeof (struct anon *));
500 		return (0);
501 	}
502 
503 	/*
504 	 * Both arrays are 2 levels.
505 	 */
506 	if (sahp->size > ANON_CHUNK_SIZE &&
507 	    dahp->size > ANON_CHUNK_SIZE &&
508 	    ((sahp->flags & ANON_ALLOC_FORCE) == 0) &&
509 	    ((dahp->flags & ANON_ALLOC_FORCE) == 0)) {
510 
511 		ulong_t sapidx, dapidx;
512 		ulong_t *sap, *dap;
513 		ulong_t chknp;
514 
515 		while (npages != 0) {
516 
517 			sapidx = s_idx & ANON_CHUNK_OFF;
518 			dapidx = d_idx & ANON_CHUNK_OFF;
519 			chknp = ANON_CHUNK_SIZE - MAX(sapidx, dapidx);
520 			if (chknp > npages)
521 				chknp = npages;
522 
523 			sapp = &sahp->array_chunk[s_idx >> ANON_CHUNK_SHIFT];
524 			if ((sap = *sapp) != NULL) {
525 				dapp = &dahp->array_chunk[d_idx
526 							>> ANON_CHUNK_SHIFT];
527 				if ((dap = *dapp) == NULL) {
528 					*dapp = kmem_zalloc(PAGESIZE,
529 					    kmemflags);
530 					if ((dap = *dapp) == NULL)
531 						return (ENOMEM);
532 				}
533 				bcopy((sap + sapidx), (dap + dapidx),
534 				    chknp << ANON_PTRSHIFT);
535 			}
536 			s_idx += chknp;
537 			d_idx += chknp;
538 			npages -= chknp;
539 		}
540 		return (0);
541 	}
542 
543 	/*
544 	 * At least one of the arrays is 2 level.
545 	 */
546 	while (npages--) {
547 		if ((ap = anon_get_ptr(sahp, s_idx)) != NULL) {
548 			ASSERT(!ANON_ISBUSY(anon_get_slot(sahp, s_idx)));
549 			if (anon_set_ptr(dahp, d_idx, ap, flags) == ENOMEM)
550 					return (ENOMEM);
551 		}
552 		s_idx++;
553 		d_idx++;
554 	}
555 	return (0);
556 }
557 
558 
559 /*
560  * ANON_INITBUF is a convenience macro for anon_grow() below. It
561  * takes a buffer dst, which is at least as large as buffer src. It
562  * does a bcopy from src into dst, and then bzeros the extra bytes
563  * of dst. If tail is set, the data in src is tail aligned within
564  * dst instead of head aligned.
565  */
566 
567 #define	ANON_INITBUF(src, srclen, dst, dstsize, tail)			      \
568 	if (tail) {							      \
569 		bzero((dst), (dstsize) - (srclen));			      \
570 		bcopy((src), (char *)(dst) + (dstsize) - (srclen), (srclen)); \
571 	} else {							      \
572 		bcopy((src), (dst), (srclen));				      \
573 		bzero((char *)(dst) + (srclen), (dstsize) - (srclen));	      \
574 	}
575 
576 #define	ANON_1_LEVEL_INC	(ANON_CHUNK_SIZE / 8)
577 #define	ANON_2_LEVEL_INC	(ANON_1_LEVEL_INC * ANON_CHUNK_SIZE)
578 
579 /*
580  * anon_grow() is used to efficiently extend an existing anon array.
581  * startidx_p points to the index into the anon array of the first page
582  * that is in use. oldseg_pgs is the number of pages in use, starting at
583  * *startidx_p. newpages is the number of additional pages desired.
584  *
585  * If startidx_p == NULL, startidx is taken to be 0 and cannot be changed.
586  *
587  * The growth is done by creating a new top level of the anon array,
588  * and (if the array is 2-level) reusing the existing second level arrays.
589  *
590  * flags can be used to specify ANON_NOSLEEP and ANON_GROWDOWN.
591  *
592  * Returns the new number of pages in the anon array.
593  */
594 pgcnt_t
595 anon_grow(struct anon_hdr *ahp, ulong_t *startidx_p, pgcnt_t oldseg_pgs,
596     pgcnt_t newseg_pgs, int flags)
597 {
598 	ulong_t startidx = startidx_p ? *startidx_p : 0;
599 	pgcnt_t oldamp_pgs = ahp->size, newamp_pgs;
600 	pgcnt_t oelems, nelems, totpages;
601 	void **level1;
602 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
603 	int growdown = (flags & ANON_GROWDOWN);
604 	size_t newarrsz, oldarrsz;
605 	void *level2;
606 
607 	ASSERT(!(startidx_p == NULL && growdown));
608 	ASSERT(startidx + oldseg_pgs <= ahp->size);
609 
610 	/*
611 	 * Determine the total number of pages needed in the new
612 	 * anon array. If growing down, totpages is all pages from
613 	 * startidx through the end of the array, plus <newseg_pgs>
614 	 * pages. If growing up, keep all pages from page 0 through
615 	 * the last page currently in use, plus <newseg_pgs> pages.
616 	 */
617 	if (growdown)
618 		totpages = oldamp_pgs - startidx + newseg_pgs;
619 	else
620 		totpages = startidx + oldseg_pgs + newseg_pgs;
621 
622 	/* If the array is already large enough, just return. */
623 
624 	if (oldamp_pgs >= totpages) {
625 		if (growdown)
626 			*startidx_p = oldamp_pgs - totpages;
627 		return (oldamp_pgs);
628 	}
629 
630 	/*
631 	 * oldamp_pgs/newamp_pgs are the total numbers of pages represented
632 	 * by the corresponding arrays.
633 	 * oelems/nelems are the number of pointers in the top level arrays
634 	 * which may be either level 1 or level 2.
635 	 * Will the new anon array be one level or two levels?
636 	 */
637 	if (totpages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
638 		newamp_pgs = P2ROUNDUP(totpages, ANON_1_LEVEL_INC);
639 		oelems = oldamp_pgs;
640 		nelems = newamp_pgs;
641 	} else {
642 		newamp_pgs = P2ROUNDUP(totpages, ANON_2_LEVEL_INC);
643 		oelems = (oldamp_pgs + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
644 		nelems = newamp_pgs >> ANON_CHUNK_SHIFT;
645 	}
646 
647 	newarrsz = nelems * sizeof (void *);
648 	level1 = kmem_alloc(newarrsz, kmemflags);
649 	if (level1 == NULL)
650 		return (0);
651 
652 	/* Are we converting from a one level to a two level anon array? */
653 
654 	if (newamp_pgs > ANON_CHUNK_SIZE && oldamp_pgs <= ANON_CHUNK_SIZE &&
655 	    !(ahp->flags & ANON_ALLOC_FORCE)) {
656 
657 		/*
658 		 * Yes, we're converting to a two level. Reuse old level 1
659 		 * as new level 2 if it is exactly PAGESIZE. Otherwise
660 		 * alloc a new level 2 and copy the old level 1 data into it.
661 		 */
662 		if (oldamp_pgs == ANON_CHUNK_SIZE) {
663 			level2 = (void *)ahp->array_chunk;
664 		} else {
665 			level2 = kmem_alloc(PAGESIZE, kmemflags);
666 			if (level2 == NULL) {
667 				kmem_free(level1, newarrsz);
668 				return (0);
669 			}
670 			oldarrsz = oldamp_pgs * sizeof (void *);
671 
672 			ANON_INITBUF(ahp->array_chunk, oldarrsz,
673 			    level2, PAGESIZE, growdown);
674 			kmem_free(ahp->array_chunk, oldarrsz);
675 		}
676 		bzero(level1, newarrsz);
677 		if (growdown)
678 			level1[nelems - 1] = level2;
679 		else
680 			level1[0] = level2;
681 	} else {
682 		oldarrsz = oelems * sizeof (void *);
683 
684 		ANON_INITBUF(ahp->array_chunk, oldarrsz,
685 		    level1, newarrsz, growdown);
686 		kmem_free(ahp->array_chunk, oldarrsz);
687 	}
688 
689 	ahp->array_chunk = level1;
690 	ahp->size = newamp_pgs;
691 	if (growdown)
692 		*startidx_p = newamp_pgs - totpages;
693 
694 	return (newamp_pgs);
695 }
696 
697 
698 /*
699  * Called from clock handler to sync ani_free value.
700  */
701 
702 void
703 set_anoninfo(void)
704 {
705 	int	ix;
706 	pgcnt_t	total = 0;
707 
708 	for (ix = 0; ix < ANI_MAX_POOL; ix++) {
709 		total += ani_free_pool[ix].ani_count;
710 	}
711 	k_anoninfo.ani_free = total;
712 }
713 
714 /*
715  * Reserve anon space.
716  *
717  * It's no longer simply a matter of incrementing ani_resv to
718  * reserve swap space, we need to check memory-based as well
719  * as disk-backed (physical) swap.  The following algorithm
720  * is used:
721  * 	Check the space on physical swap
722  * 		i.e. amount needed < ani_max - ani_phys_resv
723  * 	If we are swapping on swapfs check
724  *		amount needed < (availrmem - swapfs_minfree)
725  * Since the algorithm to check for the quantity of swap space is
726  * almost the same as that for reserving it, we'll just use anon_resvmem
727  * with a flag to decrement availrmem.
728  *
729  * Return non-zero on success.
730  */
731 int
732 anon_resvmem(size_t size, uint_t takemem)
733 {
734 	pgcnt_t npages = btopr(size);
735 	pgcnt_t mswap_pages = 0;
736 	pgcnt_t pswap_pages = 0;
737 
738 	mutex_enter(&anoninfo_lock);
739 
740 	/*
741 	 * pswap_pages is the number of pages we can take from
742 	 * physical (i.e. disk-backed) swap.
743 	 */
744 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
745 	pswap_pages = k_anoninfo.ani_max - k_anoninfo.ani_phys_resv;
746 
747 	ANON_PRINT(A_RESV,
748 	    ("anon_resvmem: npages %lu takemem %u pswap %lu caller %p\n",
749 	    npages, takemem, pswap_pages, (void *)caller()));
750 
751 	if (npages <= pswap_pages) {
752 		/*
753 		 * we have enough space on a physical swap
754 		 */
755 		if (takemem)
756 			k_anoninfo.ani_phys_resv += npages;
757 		mutex_exit(&anoninfo_lock);
758 		return (1);
759 	} else if (pswap_pages != 0) {
760 		/*
761 		 * we have some space on a physical swap
762 		 */
763 		if (takemem) {
764 			/*
765 			 * use up remainder of phys swap
766 			 */
767 			k_anoninfo.ani_phys_resv += pswap_pages;
768 			ASSERT(k_anoninfo.ani_phys_resv == k_anoninfo.ani_max);
769 		}
770 	}
771 	/*
772 	 * since (npages > pswap_pages) we need mem swap
773 	 * mswap_pages is the number of pages needed from availrmem
774 	 */
775 	ASSERT(npages > pswap_pages);
776 	mswap_pages = npages - pswap_pages;
777 
778 	ANON_PRINT(A_RESV, ("anon_resvmem: need %ld pages from memory\n",
779 	    mswap_pages));
780 
781 	/*
782 	 * priv processes can reserve memory as swap as long as availrmem
783 	 * remains greater than swapfs_minfree; in the case of non-priv
784 	 * processes, memory can be reserved as swap only if availrmem
785 	 * doesn't fall below (swapfs_minfree + swapfs_reserve). Thus,
786 	 * swapfs_reserve amount of memswap is not available to non-priv
787 	 * processes. This protects daemons such as automounter dying
788 	 * as a result of application processes eating away almost entire
789 	 * membased swap. This safeguard becomes useless if apps are run
790 	 * with root access.
791 	 *
792 	 * swapfs_reserve is minimum of 4Mb or 1/16 of physmem.
793 	 *
794 	 */
795 	mutex_enter(&freemem_lock);
796 	if (availrmem > (swapfs_minfree + swapfs_reserve + mswap_pages) ||
797 		(availrmem > (swapfs_minfree + mswap_pages) &&
798 		secpolicy_resource(CRED()) == 0)) {
799 
800 		if (takemem) {
801 			/*
802 			 * Take the memory from the rest of the system.
803 			 */
804 			availrmem -= mswap_pages;
805 			mutex_exit(&freemem_lock);
806 			k_anoninfo.ani_mem_resv += mswap_pages;
807 			ANI_ADD(mswap_pages);
808 			ANON_PRINT((A_RESV | A_MRESV),
809 				("anon_resvmem: took %ld pages of availrmem\n",
810 				mswap_pages));
811 		} else {
812 			mutex_exit(&freemem_lock);
813 		}
814 
815 		ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
816 		mutex_exit(&anoninfo_lock);
817 		return (1);
818 
819 	} else {
820 		/*
821 		 * Fail if not enough memory
822 		 */
823 
824 		if (takemem) {
825 			k_anoninfo.ani_phys_resv -= pswap_pages;
826 		}
827 
828 		mutex_exit(&freemem_lock);
829 		mutex_exit(&anoninfo_lock);
830 		ANON_PRINT(A_RESV,
831 			("anon_resvmem: not enough space from swapfs\n"));
832 		return (0);
833 	}
834 }
835 
836 
837 /*
838  * Give back an anon reservation.
839  */
840 void
841 anon_unresv(size_t size)
842 {
843 	pgcnt_t npages = btopr(size);
844 	spgcnt_t mem_free_pages = 0;
845 	pgcnt_t phys_free_slots;
846 #ifdef	ANON_DEBUG
847 	pgcnt_t mem_resv;
848 #endif
849 
850 	mutex_enter(&anoninfo_lock);
851 
852 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
853 	/*
854 	 * If some of this reservation belonged to swapfs
855 	 * give it back to availrmem.
856 	 * ani_mem_resv is the amount of availrmem swapfs has reserved.
857 	 * but some of that memory could be locked by segspt so we can only
858 	 * return non locked ani_mem_resv back to availrmem
859 	 */
860 	if (k_anoninfo.ani_mem_resv > k_anoninfo.ani_locked_swap) {
861 		ANON_PRINT((A_RESV | A_MRESV),
862 		    ("anon_unresv: growing availrmem by %ld pages\n",
863 		    MIN(k_anoninfo.ani_mem_resv, npages)));
864 
865 		mem_free_pages = MIN((spgcnt_t)(k_anoninfo.ani_mem_resv -
866 		    k_anoninfo.ani_locked_swap), npages);
867 		mutex_enter(&freemem_lock);
868 		availrmem += mem_free_pages;
869 		mutex_exit(&freemem_lock);
870 		k_anoninfo.ani_mem_resv -= mem_free_pages;
871 
872 		ANI_ADD(-mem_free_pages);
873 	}
874 	/*
875 	 * The remainder of the pages is returned to phys swap
876 	 */
877 	ASSERT(npages >= mem_free_pages);
878 	phys_free_slots = npages - mem_free_pages;
879 
880 	if (phys_free_slots) {
881 	    k_anoninfo.ani_phys_resv -= phys_free_slots;
882 	}
883 
884 #ifdef	ANON_DEBUG
885 	mem_resv = k_anoninfo.ani_mem_resv;
886 #endif
887 
888 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
889 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
890 
891 	mutex_exit(&anoninfo_lock);
892 
893 	ANON_PRINT(A_RESV, ("anon_unresv: %lu, tot %lu, caller %p\n",
894 	    npages, mem_resv, (void *)caller()));
895 }
896 
897 /*
898  * Allocate an anon slot and return it with the lock held.
899  */
900 struct anon *
901 anon_alloc(struct vnode *vp, anoff_t off)
902 {
903 	struct anon	*ap;
904 	kmutex_t	*ahm;
905 
906 	ap = kmem_cache_alloc(anon_cache, KM_SLEEP);
907 	if (vp == NULL) {
908 		swap_alloc(ap);
909 	} else {
910 		ap->an_vp = vp;
911 		ap->an_off = off;
912 	}
913 	ap->an_refcnt = 1;
914 	ap->an_pvp = NULL;
915 	ap->an_poff = 0;
916 	ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
917 	mutex_enter(ahm);
918 	anon_addhash(ap);
919 	mutex_exit(ahm);
920 	ANI_ADD(-1);
921 	ANON_PRINT(A_ANON, ("anon_alloc: returning ap %p, vp %p\n",
922 	    (void *)ap, (ap ? (void *)ap->an_vp : NULL)));
923 	return (ap);
924 }
925 
926 /*
927  * Decrement the reference count of an anon page.
928  * If reference count goes to zero, free it and
929  * its associated page (if any).
930  */
931 void
932 anon_decref(struct anon *ap)
933 {
934 	page_t *pp;
935 	struct vnode *vp;
936 	anoff_t off;
937 	kmutex_t *ahm;
938 
939 	ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
940 	mutex_enter(ahm);
941 	ASSERT(ap->an_refcnt != 0);
942 	if (ap->an_refcnt == 0)
943 		panic("anon_decref: slot count 0");
944 	if (--ap->an_refcnt == 0) {
945 		swap_xlate(ap, &vp, &off);
946 		mutex_exit(ahm);
947 
948 		/*
949 		 * If there is a page for this anon slot we will need to
950 		 * call VN_DISPOSE to get rid of the vp association and
951 		 * put the page back on the free list as really free.
952 		 * Acquire the "exclusive" lock to ensure that any
953 		 * pending i/o always completes before the swap slot
954 		 * is freed.
955 		 */
956 		pp = page_lookup(vp, (u_offset_t)off, SE_EXCL);
957 
958 		/*
959 		 * If there was a page, we've synchronized on it (getting
960 		 * the exclusive lock is as good as gettting the iolock)
961 		 * so now we can free the physical backing store. Also, this
962 		 * is where we would free the name of the anonymous page
963 		 * (swap_free(ap)), a no-op in the current implementation.
964 		 */
965 		mutex_enter(ahm);
966 		ASSERT(ap->an_refcnt == 0);
967 		anon_rmhash(ap);
968 		if (ap->an_pvp)
969 			swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE);
970 		mutex_exit(ahm);
971 
972 		if (pp != NULL) {
973 			/*LINTED: constant in conditional context */
974 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
975 		}
976 		ANON_PRINT(A_ANON, ("anon_decref: free ap %p, vp %p\n",
977 		    (void *)ap, (void *)ap->an_vp));
978 		kmem_cache_free(anon_cache, ap);
979 
980 		ANI_ADD(1);
981 	} else {
982 		mutex_exit(ahm);
983 	}
984 }
985 
986 static int
987 anon_share(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots)
988 {
989 	struct anon *ap;
990 
991 	while (nslots-- > 0) {
992 		if ((ap = anon_get_ptr(ahp, anon_index)) != NULL &&
993 		    ap->an_refcnt > 1)
994 			return (1);
995 		anon_index++;
996 	}
997 
998 	return (0);
999 }
1000 
1001 static void
1002 anon_decref_pages(
1003 	struct anon_hdr *ahp,
1004 	ulong_t an_idx,
1005 	uint_t szc)
1006 {
1007 	struct anon *ap = anon_get_ptr(ahp, an_idx);
1008 	kmutex_t *ahmpages = NULL;
1009 	page_t *pp;
1010 	pgcnt_t pgcnt = page_get_pagecnt(szc);
1011 	pgcnt_t i;
1012 	struct vnode *vp;
1013 	anoff_t   off;
1014 	kmutex_t *ahm;
1015 #ifdef DEBUG
1016 	int refcnt = 1;
1017 #endif
1018 
1019 	ASSERT(szc != 0);
1020 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1021 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1022 
1023 	VM_STAT_ADD(anonvmstats.decrefpages[0]);
1024 
1025 	if (ap != NULL) {
1026 		ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1027 		mutex_enter(ahmpages);
1028 		ASSERT((refcnt = ap->an_refcnt) != 0);
1029 		VM_STAT_ADD(anonvmstats.decrefpages[1]);
1030 		if (ap->an_refcnt == 1) {
1031 			VM_STAT_ADD(anonvmstats.decrefpages[2]);
1032 			ASSERT(!anon_share(ahp, an_idx, pgcnt));
1033 			mutex_exit(ahmpages);
1034 			ahmpages = NULL;
1035 		}
1036 	}
1037 
1038 	i = 0;
1039 	while (i < pgcnt) {
1040 		if ((ap = anon_get_ptr(ahp, an_idx + i)) == NULL) {
1041 			ASSERT(refcnt == 1 && ahmpages == NULL);
1042 			i++;
1043 			continue;
1044 		}
1045 		ASSERT(ap->an_refcnt == refcnt);
1046 		ASSERT(ahmpages != NULL || ap->an_refcnt == 1);
1047 		ASSERT(ahmpages == NULL || ap->an_refcnt > 1);
1048 
1049 		if (ahmpages == NULL) {
1050 			swap_xlate(ap, &vp, &off);
1051 			pp = page_lookup(vp, (u_offset_t)off, SE_EXCL);
1052 			if (pp == NULL || pp->p_szc == 0) {
1053 				VM_STAT_ADD(anonvmstats.decrefpages[3]);
1054 				ahm = &anonhash_lock[AH_LOCK(ap->an_vp,
1055 				    ap->an_off)];
1056 				(void) anon_set_ptr(ahp, an_idx + i, NULL,
1057 				    ANON_SLEEP);
1058 				mutex_enter(ahm);
1059 				ap->an_refcnt--;
1060 				ASSERT(ap->an_refcnt == 0);
1061 				anon_rmhash(ap);
1062 				if (ap->an_pvp)
1063 					swap_phys_free(ap->an_pvp, ap->an_poff,
1064 					    PAGESIZE);
1065 				mutex_exit(ahm);
1066 				if (pp != NULL) {
1067 					VM_STAT_ADD(anonvmstats.decrefpages[4]);
1068 					/*LINTED*/
1069 					VN_DISPOSE(pp, B_INVAL, 0, kcred);
1070 				}
1071 				kmem_cache_free(anon_cache, ap);
1072 				ANI_ADD(1);
1073 				i++;
1074 			} else {
1075 				pgcnt_t j;
1076 				pgcnt_t curpgcnt =
1077 				    page_get_pagecnt(pp->p_szc);
1078 				size_t ppasize = curpgcnt * sizeof (page_t *);
1079 				page_t **ppa = kmem_alloc(ppasize, KM_SLEEP);
1080 				int dispose = 0;
1081 
1082 				VM_STAT_ADD(anonvmstats.decrefpages[5]);
1083 
1084 				ASSERT(pp->p_szc <= szc);
1085 				ASSERT(IS_P2ALIGNED(curpgcnt, curpgcnt));
1086 				ASSERT(IS_P2ALIGNED(i, curpgcnt));
1087 				ASSERT(i + curpgcnt <= pgcnt);
1088 				ASSERT(!(page_pptonum(pp) & (curpgcnt - 1)));
1089 				ppa[0] = pp;
1090 				for (j = i + 1; j < i + curpgcnt; j++) {
1091 					ap = anon_get_ptr(ahp, an_idx + j);
1092 					ASSERT(ap != NULL &&
1093 					    ap->an_refcnt == 1);
1094 					swap_xlate(ap, &vp, &off);
1095 					pp = page_lookup(vp, (u_offset_t)off,
1096 					    SE_EXCL);
1097 					if (pp == NULL)
1098 						panic("anon_decref_pages: "
1099 						    "no page");
1100 
1101 					(void) hat_pageunload(pp,
1102 					    HAT_FORCE_PGUNLOAD);
1103 					ASSERT(pp->p_szc == ppa[0]->p_szc);
1104 					ASSERT(page_pptonum(pp) - 1 ==
1105 					    page_pptonum(ppa[j - i - 1]));
1106 					ppa[j - i] = pp;
1107 					if (ap->an_pvp != NULL &&
1108 					    !vn_matchopval(ap->an_pvp,
1109 						VOPNAME_DISPOSE,
1110 						(fs_generic_func_p)fs_dispose))
1111 						dispose = 1;
1112 				}
1113 				if (!dispose) {
1114 					VM_STAT_ADD(anonvmstats.decrefpages[6]);
1115 					page_destroy_pages(ppa[0]);
1116 				} else {
1117 					VM_STAT_ADD(anonvmstats.decrefpages[7]);
1118 					for (j = 0; j < curpgcnt; j++) {
1119 						ASSERT(PAGE_EXCL(ppa[j]));
1120 						ppa[j]->p_szc = 0;
1121 					}
1122 					for (j = 0; j < curpgcnt; j++) {
1123 						ASSERT(!hat_page_is_mapped(
1124 						    ppa[j]));
1125 						/*LINTED*/
1126 						VN_DISPOSE(ppa[j], B_INVAL, 0,
1127 						    kcred);
1128 					}
1129 				}
1130 				kmem_free(ppa, ppasize);
1131 				for (j = i; j < i + curpgcnt; j++) {
1132 					ap = anon_get_ptr(ahp, an_idx + j);
1133 					ASSERT(ap != NULL &&
1134 					    ap->an_refcnt == 1);
1135 					ahm = &anonhash_lock[AH_LOCK(ap->an_vp,
1136 					    ap->an_off)];
1137 					(void) anon_set_ptr(ahp, an_idx + j,
1138 					    NULL, ANON_SLEEP);
1139 					mutex_enter(ahm);
1140 					ap->an_refcnt--;
1141 					ASSERT(ap->an_refcnt == 0);
1142 					anon_rmhash(ap);
1143 					if (ap->an_pvp)
1144 						swap_phys_free(ap->an_pvp,
1145 							ap->an_poff, PAGESIZE);
1146 					mutex_exit(ahm);
1147 					kmem_cache_free(anon_cache, ap);
1148 					ANI_ADD(1);
1149 				}
1150 				i += curpgcnt;
1151 			}
1152 		} else {
1153 			VM_STAT_ADD(anonvmstats.decrefpages[8]);
1154 			(void) anon_set_ptr(ahp, an_idx + i, NULL, ANON_SLEEP);
1155 			ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1156 			mutex_enter(ahm);
1157 			ap->an_refcnt--;
1158 			mutex_exit(ahm);
1159 			i++;
1160 		}
1161 	}
1162 
1163 	if (ahmpages != NULL) {
1164 		mutex_exit(ahmpages);
1165 	}
1166 }
1167 
1168 /*
1169  * Duplicate references to size bytes worth of anon pages.
1170  * Used when duplicating a segment that contains private anon pages.
1171  * This code assumes that procedure calling this one has already used
1172  * hat_chgprot() to disable write access to the range of addresses that
1173  * that *old actually refers to.
1174  */
1175 void
1176 anon_dup(struct anon_hdr *old, ulong_t old_idx, struct anon_hdr *new,
1177 			ulong_t new_idx, size_t size)
1178 {
1179 	spgcnt_t npages;
1180 	kmutex_t *ahm;
1181 	struct anon *ap;
1182 	ulong_t off;
1183 	ulong_t index;
1184 
1185 	npages = btopr(size);
1186 	while (npages > 0) {
1187 		index = old_idx;
1188 		if ((ap = anon_get_next_ptr(old, &index)) == NULL)
1189 			break;
1190 
1191 		ASSERT(!ANON_ISBUSY(anon_get_slot(old, index)));
1192 		off = index - old_idx;
1193 		npages -= off;
1194 		if (npages <= 0)
1195 			break;
1196 
1197 		(void) anon_set_ptr(new, new_idx + off, ap, ANON_SLEEP);
1198 		ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1199 
1200 		mutex_enter(ahm);
1201 		ap->an_refcnt++;
1202 		mutex_exit(ahm);
1203 
1204 		off++;
1205 		new_idx += off;
1206 		old_idx += off;
1207 		npages--;
1208 	}
1209 }
1210 
1211 /*
1212  * Just like anon_dup but also guarantees there are no holes (unallocated anon
1213  * slots) within any large page region. That means if a large page region is
1214  * empty in the old array it will skip it. If there are 1 or more valid slots
1215  * in the large page region of the old array it will make sure to fill in any
1216  * unallocated ones and also copy them to the new array. If noalloc is 1 large
1217  * page region should either have no valid anon slots or all slots should be
1218  * valid.
1219  */
1220 void
1221 anon_dup_fill_holes(
1222 	struct anon_hdr *old,
1223 	ulong_t old_idx,
1224 	struct anon_hdr *new,
1225 	ulong_t new_idx,
1226 	size_t size,
1227 	uint_t szc,
1228 	int noalloc)
1229 {
1230 	struct anon	*ap;
1231 	spgcnt_t	npages;
1232 	kmutex_t	*ahm, *ahmpages = NULL;
1233 	pgcnt_t		pgcnt, i;
1234 	ulong_t		index, off;
1235 #ifdef DEBUG
1236 	int		refcnt;
1237 #endif
1238 
1239 	ASSERT(szc != 0);
1240 	pgcnt = page_get_pagecnt(szc);
1241 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1242 	npages = btopr(size);
1243 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1244 	ASSERT(IS_P2ALIGNED(old_idx, pgcnt));
1245 
1246 	VM_STAT_ADD(anonvmstats.dupfillholes[0]);
1247 
1248 	while (npages > 0) {
1249 		index = old_idx;
1250 
1251 		/*
1252 		 * Find the next valid slot.
1253 		 */
1254 		if (anon_get_next_ptr(old, &index) == NULL)
1255 			break;
1256 
1257 		ASSERT(!ANON_ISBUSY(anon_get_slot(old, index)));
1258 		/*
1259 		 * Now backup index to the beginning of the
1260 		 * current large page region of the old array.
1261 		 */
1262 		index = P2ALIGN(index, pgcnt);
1263 		off = index - old_idx;
1264 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1265 		npages -= off;
1266 		if (npages <= 0)
1267 			break;
1268 
1269 		/*
1270 		 * Fill and copy a large page regions worth
1271 		 * of anon slots.
1272 		 */
1273 		for (i = 0; i < pgcnt; i++) {
1274 			if ((ap = anon_get_ptr(old, index + i)) == NULL) {
1275 				if (noalloc) {
1276 					panic("anon_dup_fill_holes: "
1277 					    "empty anon slot\n");
1278 				}
1279 				VM_STAT_ADD(anonvmstats.dupfillholes[1]);
1280 				ap = anon_alloc(NULL, 0);
1281 				(void) anon_set_ptr(old, index + i, ap,
1282 				    ANON_SLEEP);
1283 			} else if (i == 0) {
1284 				/*
1285 				 * make the increment of all refcnts of all
1286 				 * anon slots of a large page appear atomic by
1287 				 * getting an anonpages_hash_lock for the
1288 				 * first anon slot of a large page.
1289 				 */
1290 				int hash = AH_LOCK(ap->an_vp, ap->an_off);
1291 
1292 				VM_STAT_ADD(anonvmstats.dupfillholes[2]);
1293 
1294 				ahmpages = &anonpages_hash_lock[hash];
1295 				mutex_enter(ahmpages);
1296 				/*LINTED*/
1297 				ASSERT(refcnt = ap->an_refcnt);
1298 
1299 				VM_STAT_COND_ADD(ap->an_refcnt > 1,
1300 				    anonvmstats.dupfillholes[3]);
1301 			}
1302 			(void) anon_set_ptr(new, new_idx + off + i, ap,
1303 			    ANON_SLEEP);
1304 			ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1305 			mutex_enter(ahm);
1306 			ASSERT(ahmpages != NULL || ap->an_refcnt == 1);
1307 			ASSERT(i == 0 || ahmpages == NULL ||
1308 			    refcnt == ap->an_refcnt);
1309 			ap->an_refcnt++;
1310 			mutex_exit(ahm);
1311 		}
1312 		if (ahmpages != NULL) {
1313 			mutex_exit(ahmpages);
1314 			ahmpages = NULL;
1315 		}
1316 		off += pgcnt;
1317 		new_idx += off;
1318 		old_idx += off;
1319 		npages -= pgcnt;
1320 	}
1321 }
1322 
1323 /*
1324  * Used when a segment with a vnode changes szc. similarly to
1325  * anon_dup_fill_holes() makes sure each large page region either has no anon
1326  * slots or all of them. but new slots are created by COWing the file
1327  * pages. on entrance no anon slots should be shared.
1328  */
1329 int
1330 anon_fill_cow_holes(
1331 	struct seg *seg,
1332 	caddr_t addr,
1333 	struct anon_hdr *ahp,
1334 	ulong_t an_idx,
1335 	struct vnode *vp,
1336 	u_offset_t vp_off,
1337 	size_t size,
1338 	uint_t szc,
1339 	uint_t prot,
1340 	struct vpage vpage[],
1341 	struct cred *cred)
1342 {
1343 	struct anon	*ap;
1344 	spgcnt_t	npages;
1345 	pgcnt_t		pgcnt, i;
1346 	ulong_t		index, off;
1347 	int		err = 0;
1348 	int		pageflags = 0;
1349 
1350 	ASSERT(szc != 0);
1351 	pgcnt = page_get_pagecnt(szc);
1352 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1353 	npages = btopr(size);
1354 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1355 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1356 
1357 	while (npages > 0) {
1358 		index = an_idx;
1359 
1360 		/*
1361 		 * Find the next valid slot.
1362 		 */
1363 		if (anon_get_next_ptr(ahp, &index) == NULL) {
1364 			break;
1365 		}
1366 
1367 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1368 		/*
1369 		 * Now backup index to the beginning of the
1370 		 * current large page region of the anon array.
1371 		 */
1372 		index = P2ALIGN(index, pgcnt);
1373 		off = index - an_idx;
1374 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1375 		npages -= off;
1376 		if (npages <= 0)
1377 			break;
1378 		an_idx += off;
1379 		vp_off += ptob(off);
1380 		addr += ptob(off);
1381 		if (vpage != NULL) {
1382 			vpage += off;
1383 		}
1384 
1385 		for (i = 0; i < pgcnt; i++, an_idx++, vp_off += PAGESIZE) {
1386 			if ((ap = anon_get_ptr(ahp, an_idx)) == NULL) {
1387 				page_t *pl[1 + 1];
1388 				page_t *pp;
1389 
1390 				err = VOP_GETPAGE(vp, vp_off, PAGESIZE, NULL,
1391 				    pl, PAGESIZE, seg, addr, S_READ, cred);
1392 				if (err) {
1393 					break;
1394 				}
1395 				if (vpage != NULL) {
1396 					prot = VPP_PROT(vpage);
1397 					pageflags = VPP_ISPPLOCK(vpage) ?
1398 					    LOCK_PAGE : 0;
1399 				}
1400 				pp = anon_private(&ap, seg, addr, prot, pl[0],
1401 					pageflags, cred);
1402 				if (pp == NULL) {
1403 					err = ENOMEM;
1404 					break;
1405 				}
1406 				(void) anon_set_ptr(ahp, an_idx, ap,
1407 				    ANON_SLEEP);
1408 				page_unlock(pp);
1409 			}
1410 			ASSERT(ap->an_refcnt == 1);
1411 			addr += PAGESIZE;
1412 			if (vpage != NULL) {
1413 				vpage++;
1414 			}
1415 		}
1416 		npages -= pgcnt;
1417 	}
1418 
1419 	return (err);
1420 }
1421 
1422 /*
1423  * Free a group of "size" anon pages, size in bytes,
1424  * and clear out the pointers to the anon entries.
1425  */
1426 void
1427 anon_free(struct anon_hdr *ahp, ulong_t index, size_t size)
1428 {
1429 	spgcnt_t npages;
1430 	struct anon *ap;
1431 	ulong_t old;
1432 
1433 	npages = btopr(size);
1434 
1435 	while (npages > 0) {
1436 		old = index;
1437 		if ((ap = anon_get_next_ptr(ahp, &index)) == NULL)
1438 			break;
1439 
1440 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1441 		npages -= index - old;
1442 		if (npages <= 0)
1443 			break;
1444 
1445 		(void) anon_set_ptr(ahp, index, NULL, ANON_SLEEP);
1446 		anon_decref(ap);
1447 		/*
1448 		 * Bump index and decrement page count
1449 		 */
1450 		index++;
1451 		npages--;
1452 	}
1453 }
1454 
1455 void
1456 anon_free_pages(
1457 	struct anon_hdr *ahp,
1458 	ulong_t an_idx,
1459 	size_t size,
1460 	uint_t szc)
1461 {
1462 	spgcnt_t	npages;
1463 	pgcnt_t		pgcnt;
1464 	ulong_t		index, off;
1465 
1466 	ASSERT(szc != 0);
1467 	pgcnt = page_get_pagecnt(szc);
1468 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1469 	npages = btopr(size);
1470 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1471 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1472 
1473 	VM_STAT_ADD(anonvmstats.freepages[0]);
1474 
1475 	while (npages > 0) {
1476 		index = an_idx;
1477 
1478 		/*
1479 		 * Find the next valid slot.
1480 		 */
1481 		if (anon_get_next_ptr(ahp, &index) == NULL)
1482 			break;
1483 
1484 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1485 		/*
1486 		 * Now backup index to the beginning of the
1487 		 * current large page region of the old array.
1488 		 */
1489 		index = P2ALIGN(index, pgcnt);
1490 		off = index - an_idx;
1491 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1492 		npages -= off;
1493 		if (npages <= 0)
1494 			break;
1495 
1496 		anon_decref_pages(ahp, index, szc);
1497 
1498 		off += pgcnt;
1499 		an_idx += off;
1500 		npages -= pgcnt;
1501 	}
1502 }
1503 
1504 /*
1505  * Make anonymous pages discardable
1506  */
1507 void
1508 anon_disclaim(struct anon_map *amp, ulong_t index, size_t size, int flags)
1509 {
1510 	spgcnt_t npages = btopr(size);
1511 	struct anon *ap;
1512 	struct vnode *vp;
1513 	anoff_t off;
1514 	page_t *pp, *root_pp;
1515 	kmutex_t *ahm;
1516 	pgcnt_t pgcnt;
1517 	ulong_t old_idx, idx, i;
1518 	struct anon_hdr *ahp = amp->ahp;
1519 	anon_sync_obj_t cookie;
1520 
1521 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
1522 	pgcnt = 1;
1523 	for (; npages > 0; index = (pgcnt == 1) ? index + 1:
1524 		P2ROUNDUP(index + 1, pgcnt), npages -= pgcnt) {
1525 
1526 		/*
1527 		 * get anon pointer and index for the first valid entry
1528 		 * in the anon list, starting from "index"
1529 		 */
1530 		old_idx = index;
1531 		if ((ap = anon_get_next_ptr(ahp, &index)) == NULL)
1532 			break;
1533 
1534 		/*
1535 		 * decrement npages by number of NULL anon slots we skipped
1536 		 */
1537 		npages -= index - old_idx;
1538 		if (npages <= 0)
1539 			break;
1540 
1541 		anon_array_enter(amp, index, &cookie);
1542 		ap = anon_get_ptr(ahp, index);
1543 		ASSERT(ap != NULL);
1544 
1545 		/*
1546 		 * Get anonymous page and try to lock it SE_EXCL;
1547 		 * For non blocking case if we couldn't grab the lock
1548 		 * we skip to next page.
1549 		 * For blocking case (ANON_PGLOOKUP_BLK) block
1550 		 * until we grab SE_EXCL lock.
1551 		 */
1552 		swap_xlate(ap, &vp, &off);
1553 		if (flags & ANON_PGLOOKUP_BLK)
1554 			pp = page_lookup_create(vp, (u_offset_t)off,
1555 			    SE_EXCL, NULL, NULL, SE_EXCL_WANTED);
1556 		else
1557 			pp = page_lookup_nowait(vp, (u_offset_t)off, SE_EXCL);
1558 		if (pp == NULL) {
1559 			segadvstat.MADV_FREE_miss.value.ul++;
1560 			pgcnt = 1;
1561 			anon_array_exit(&cookie);
1562 			continue;
1563 		}
1564 		pgcnt = page_get_pagecnt(pp->p_szc);
1565 
1566 		/*
1567 		 * we cannot free a page which is permanently locked.
1568 		 * The page_struct_lock need not be acquired to examine
1569 		 * these fields since the page has an "exclusive" lock.
1570 		 */
1571 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
1572 			page_unlock(pp);
1573 			segadvstat.MADV_FREE_miss.value.ul++;
1574 			anon_array_exit(&cookie);
1575 			continue;
1576 		}
1577 
1578 		ahm = &anonhash_lock[AH_LOCK(vp, off)];
1579 		mutex_enter(ahm);
1580 		ASSERT(ap->an_refcnt != 0);
1581 		/*
1582 		 * skip this one if copy-on-write is not yet broken.
1583 		 */
1584 		if (ap->an_refcnt > 1) {
1585 			mutex_exit(ahm);
1586 			page_unlock(pp);
1587 			segadvstat.MADV_FREE_miss.value.ul++;
1588 			anon_array_exit(&cookie);
1589 			continue;
1590 		}
1591 
1592 		if (pp->p_szc == 0) {
1593 			pgcnt = 1;
1594 
1595 			/*
1596 			 * free swap slot;
1597 			 */
1598 			if (ap->an_pvp) {
1599 				swap_phys_free(ap->an_pvp, ap->an_poff,
1600 				    PAGESIZE);
1601 				ap->an_pvp = NULL;
1602 				ap->an_poff = 0;
1603 			}
1604 			mutex_exit(ahm);
1605 			segadvstat.MADV_FREE_hit.value.ul++;
1606 
1607 			/*
1608 			 * while we are at it, unload all the translations
1609 			 * and attempt to free the page.
1610 			 */
1611 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1612 			/*LINTED: constant in conditional context */
1613 			VN_DISPOSE(pp, B_FREE, 0, kcred);
1614 			anon_array_exit(&cookie);
1615 			continue;
1616 		}
1617 
1618 		pgcnt = page_get_pagecnt(pp->p_szc);
1619 		if (!IS_P2ALIGNED(index, pgcnt)) {
1620 			if (!page_try_demote_pages(pp)) {
1621 				mutex_exit(ahm);
1622 				page_unlock(pp);
1623 				segadvstat.MADV_FREE_miss.value.ul++;
1624 				anon_array_exit(&cookie);
1625 				continue;
1626 			} else {
1627 				pgcnt = 1;
1628 				if (ap->an_pvp) {
1629 					swap_phys_free(ap->an_pvp,
1630 					    ap->an_poff, PAGESIZE);
1631 					    ap->an_pvp = NULL;
1632 					    ap->an_poff = 0;
1633 				}
1634 				mutex_exit(ahm);
1635 				(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1636 				/*LINTED*/
1637 				VN_DISPOSE(pp, B_FREE, 0, kcred);
1638 				segadvstat.MADV_FREE_hit.value.ul++;
1639 				anon_array_exit(&cookie);
1640 				continue;
1641 			}
1642 		}
1643 		mutex_exit(ahm);
1644 		root_pp = pp;
1645 
1646 		/*
1647 		 * try to lock remaining pages
1648 		 */
1649 		for (idx = 1; idx < pgcnt; idx++) {
1650 			pp++;
1651 			if (!page_trylock(pp, SE_EXCL))
1652 				break;
1653 			if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
1654 				page_unlock(pp);
1655 				break;
1656 			}
1657 		}
1658 
1659 		if (idx == pgcnt) {
1660 			for (i = 0; i < pgcnt; i++) {
1661 				ap = anon_get_ptr(ahp, index + i);
1662 				if (ap == NULL)
1663 					break;
1664 				swap_xlate(ap, &vp, &off);
1665 				ahm = &anonhash_lock[AH_LOCK(vp, off)];
1666 				mutex_enter(ahm);
1667 				ASSERT(ap->an_refcnt != 0);
1668 
1669 				/*
1670 				 * skip this one if copy-on-write
1671 				 * is not yet broken.
1672 				 */
1673 				if (ap->an_refcnt > 1) {
1674 					mutex_exit(ahm);
1675 					goto skiplp;
1676 				}
1677 				if (ap->an_pvp) {
1678 					swap_phys_free(ap->an_pvp,
1679 					    ap->an_poff, PAGESIZE);
1680 					    ap->an_pvp = NULL;
1681 					    ap->an_poff = 0;
1682 				}
1683 				mutex_exit(ahm);
1684 			}
1685 			page_destroy_pages(root_pp);
1686 			segadvstat.MADV_FREE_hit.value.ul += pgcnt;
1687 			anon_array_exit(&cookie);
1688 			continue;
1689 		}
1690 skiplp:
1691 		segadvstat.MADV_FREE_miss.value.ul += pgcnt;
1692 		for (i = 0, pp = root_pp; i < idx; pp++, i++)
1693 			page_unlock(pp);
1694 		anon_array_exit(&cookie);
1695 	}
1696 }
1697 
1698 /*
1699  * Return the kept page(s) and protections back to the segment driver.
1700  */
1701 int
1702 anon_getpage(
1703 	struct anon **app,
1704 	uint_t *protp,
1705 	page_t *pl[],
1706 	size_t plsz,
1707 	struct seg *seg,
1708 	caddr_t addr,
1709 	enum seg_rw rw,
1710 	struct cred *cred)
1711 {
1712 	page_t *pp;
1713 	struct anon *ap = *app;
1714 	struct vnode *vp;
1715 	anoff_t off;
1716 	int err;
1717 	kmutex_t *ahm;
1718 
1719 	swap_xlate(ap, &vp, &off);
1720 
1721 	/*
1722 	 * Lookup the page. If page is being paged in,
1723 	 * wait for it to finish as we must return a list of
1724 	 * pages since this routine acts like the VOP_GETPAGE
1725 	 * routine does.
1726 	 */
1727 	if (pl != NULL && (pp = page_lookup(vp, (u_offset_t)off, SE_SHARED))) {
1728 		ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1729 		mutex_enter(ahm);
1730 		if (ap->an_refcnt == 1)
1731 			*protp = PROT_ALL;
1732 		else
1733 			*protp = PROT_ALL & ~PROT_WRITE;
1734 		mutex_exit(ahm);
1735 		pl[0] = pp;
1736 		pl[1] = NULL;
1737 		return (0);
1738 	}
1739 
1740 	/*
1741 	 * Simply treat it as a vnode fault on the anon vp.
1742 	 */
1743 
1744 	TRACE_3(TR_FAC_VM, TR_ANON_GETPAGE,
1745 		"anon_getpage:seg %x addr %x vp %x",
1746 		seg, addr, vp);
1747 
1748 	err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, protp, pl, plsz,
1749 	    seg, addr, rw, cred);
1750 
1751 	if (err == 0 && pl != NULL) {
1752 		ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
1753 		mutex_enter(ahm);
1754 		if (ap->an_refcnt != 1)
1755 			*protp &= ~PROT_WRITE;	/* make read-only */
1756 		mutex_exit(ahm);
1757 	}
1758 	return (err);
1759 }
1760 
1761 /*
1762  * Creates or returns kept pages to the segment driver.  returns -1 if a large
1763  * page cannot be allocated. returns -2 if some other process has allocated a
1764  * larger page.
1765  *
1766  * For cowfault it will alocate any size pages to fill the requested area to
1767  * avoid partially overwritting anon slots (i.e. sharing only some of the anon
1768  * slots within a large page with other processes). This policy greatly
1769  * simplifies large page freeing (which is only freed when all anon slot
1770  * refcnts are 0).
1771  */
1772 int
1773 anon_map_getpages(
1774 	struct anon_map *amp,
1775 	ulong_t	start_idx,
1776 	uint_t	szc,
1777 	struct seg *seg,
1778 	caddr_t	addr,
1779 	uint_t prot,
1780 	uint_t *protp,
1781 	page_t	*ppa[],
1782 	uint_t	*ppa_szc,
1783 	struct vpage vpage[],
1784 	enum seg_rw rw,
1785 	int brkcow,
1786 	int anypgsz,
1787 	struct cred *cred)
1788 {
1789 	pgcnt_t		pgcnt;
1790 	struct anon	*ap;
1791 	struct vnode	*vp;
1792 	anoff_t		off;
1793 	page_t		*pp, *pl[2], *conpp = NULL;
1794 	caddr_t		vaddr;
1795 	ulong_t		pg_idx, an_idx, i;
1796 	spgcnt_t	nreloc = 0;
1797 	int		prealloc = 1;
1798 	int		err, slotcreate;
1799 	uint_t		vpprot;
1800 
1801 #if !defined(__i386) && !defined(__amd64)
1802 	ASSERT(seg->s_szc != 0);
1803 #endif
1804 	ASSERT(szc <= seg->s_szc);
1805 	ASSERT(ppa_szc != NULL);
1806 	ASSERT(rw != S_CREATE);
1807 
1808 	*protp = PROT_ALL;
1809 
1810 	VM_STAT_ADD(anonvmstats.getpages[0]);
1811 
1812 	if (szc == 0) {
1813 		VM_STAT_ADD(anonvmstats.getpages[1]);
1814 		if ((ap = anon_get_ptr(amp->ahp, start_idx)) != NULL) {
1815 			err = anon_getpage(&ap, protp, pl, PAGESIZE, seg,
1816 			    addr, rw, cred);
1817 			if (err)
1818 				return (err);
1819 			ppa[0] = pl[0];
1820 			if (brkcow == 0 || (*protp & PROT_WRITE)) {
1821 				VM_STAT_ADD(anonvmstats.getpages[2]);
1822 				if (ppa[0]->p_szc != 0) {
1823 					VM_STAT_ADD(anonvmstats.getpages[3]);
1824 					*ppa_szc = ppa[0]->p_szc;
1825 					page_unlock(ppa[0]);
1826 					return (-2);
1827 				}
1828 				return (0);
1829 			}
1830 			panic("anon_map_getpages: cowfault for szc 0");
1831 		} else {
1832 			VM_STAT_ADD(anonvmstats.getpages[4]);
1833 			ppa[0] = anon_zero(seg, addr, &ap, cred);
1834 			if (ppa[0] == NULL)
1835 				return (ENOMEM);
1836 			(void) anon_set_ptr(amp->ahp, start_idx, ap,
1837 			    ANON_SLEEP);
1838 			return (0);
1839 		}
1840 	}
1841 
1842 	pgcnt = page_get_pagecnt(szc);
1843 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1844 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
1845 
1846 	/*
1847 	 * First we check for the case that the requtested large
1848 	 * page or larger page already exists in the system.
1849 	 * Actually we only check if the first constituent page
1850 	 * exists and only preallocate if it's not found.
1851 	 */
1852 	ap = anon_get_ptr(amp->ahp, start_idx);
1853 	if (ap) {
1854 		uint_t pszc;
1855 		swap_xlate(ap, &vp, &off);
1856 		if (page_exists_forreal(vp, (u_offset_t)off, &pszc)) {
1857 			if (pszc > szc) {
1858 				*ppa_szc = pszc;
1859 				return (-2);
1860 			}
1861 			if (pszc == szc) {
1862 				prealloc = 0;
1863 			}
1864 		}
1865 	}
1866 
1867 	VM_STAT_COND_ADD(prealloc == 0, anonvmstats.getpages[5]);
1868 	VM_STAT_COND_ADD(prealloc != 0, anonvmstats.getpages[6]);
1869 
1870 top:
1871 	/*
1872 	 * If a smaller page or no page at all was found,
1873 	 * grab a large page off the freelist.
1874 	 */
1875 	if (prealloc) {
1876 		ASSERT(conpp == NULL);
1877 		if (page_alloc_pages(anon_vp, seg, addr, NULL, ppa,
1878 		    szc, 0) != 0) {
1879 			VM_STAT_ADD(anonvmstats.getpages[7]);
1880 			if (brkcow == 0 ||
1881 			    !anon_share(amp->ahp, start_idx, pgcnt)) {
1882 				/*
1883 				 * If the refcnt's of all anon slots are <= 1
1884 				 * they can't increase since we are holding
1885 				 * the address space's lock. So segvn can
1886 				 * safely decrease szc without risking to
1887 				 * generate a cow fault for the region smaller
1888 				 * than the segment's largest page size.
1889 				 */
1890 				VM_STAT_ADD(anonvmstats.getpages[8]);
1891 				return (-1);
1892 			}
1893 		docow:
1894 			/*
1895 			 * This is a cow fault. Copy away the entire 1 large
1896 			 * page region of this segment.
1897 			 */
1898 			if (szc != seg->s_szc)
1899 				panic("anon_map_getpages: cowfault for szc %d",
1900 				    szc);
1901 			vaddr = addr;
1902 			for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt;
1903 			    pg_idx++, an_idx++, vaddr += PAGESIZE) {
1904 				if ((ap = anon_get_ptr(amp->ahp, an_idx)) !=
1905 				    NULL) {
1906 					err = anon_getpage(&ap, &vpprot, pl,
1907 					    PAGESIZE, seg, vaddr, rw, cred);
1908 					if (err) {
1909 						for (i = 0; i < pg_idx; i++) {
1910 							if ((pp = ppa[i]) !=
1911 							    NULL)
1912 								page_unlock(pp);
1913 						}
1914 						return (err);
1915 					}
1916 					ppa[pg_idx] = pl[0];
1917 				} else {
1918 					/*
1919 					 * Since this is a cowfault we know
1920 					 * that this address space has a
1921 					 * parent or children which means
1922 					 * anon_dup_fill_holes() has initialized
1923 					 * all anon slots within a large page
1924 					 * region that had at least one anon
1925 					 * slot at the time of fork().
1926 					 */
1927 					panic("anon_map_getpages: "
1928 					    "cowfault but anon slot is empty");
1929 				}
1930 			}
1931 			VM_STAT_ADD(anonvmstats.getpages[9]);
1932 			*protp = PROT_ALL;
1933 			return (anon_map_privatepages(amp, start_idx, szc, seg,
1934 			    addr, prot, ppa, vpage, anypgsz, cred));
1935 		}
1936 	}
1937 
1938 	VM_STAT_ADD(anonvmstats.getpages[10]);
1939 
1940 	an_idx = start_idx;
1941 	pg_idx = 0;
1942 	vaddr = addr;
1943 	while (pg_idx < pgcnt) {
1944 		slotcreate = 0;
1945 		if ((ap = anon_get_ptr(amp->ahp, an_idx)) == NULL) {
1946 			VM_STAT_ADD(anonvmstats.getpages[11]);
1947 			/*
1948 			 * For us to have decided not to preallocate
1949 			 * would have meant that a large page
1950 			 * was found. Which also means that all of the
1951 			 * anon slots for that page would have been
1952 			 * already created for us.
1953 			 */
1954 			if (prealloc == 0)
1955 				panic("anon_map_getpages: prealloc = 0");
1956 
1957 			slotcreate = 1;
1958 			ap = anon_alloc(NULL, 0);
1959 		}
1960 		swap_xlate(ap, &vp, &off);
1961 
1962 		/*
1963 		 * Now setup our preallocated page to pass down
1964 		 * to swap_getpage().
1965 		 */
1966 		if (prealloc) {
1967 			ASSERT(ppa[pg_idx]->p_szc == szc);
1968 			conpp = ppa[pg_idx];
1969 		}
1970 		ASSERT(prealloc || conpp == NULL);
1971 
1972 		/*
1973 		 * If we just created this anon slot then call
1974 		 * with S_CREATE to prevent doing IO on the page.
1975 		 * Similar to the anon_zero case.
1976 		 */
1977 		err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE,
1978 		    NULL, pl, PAGESIZE, conpp, &nreloc, seg, vaddr,
1979 		    slotcreate == 1 ? S_CREATE : rw, cred);
1980 
1981 		if (err) {
1982 			VM_STAT_ADD(anonvmstats.getpages[12]);
1983 			ASSERT(slotcreate == 0);
1984 			goto io_err;
1985 		}
1986 
1987 		pp = pl[0];
1988 
1989 		if (pp->p_szc != szc) {
1990 			VM_STAT_ADD(anonvmstats.getpages[13]);
1991 			ASSERT(slotcreate == 0);
1992 			ASSERT(prealloc == 0);
1993 			ASSERT(pg_idx == 0);
1994 			if (pp->p_szc > szc) {
1995 				page_unlock(pp);
1996 				VM_STAT_ADD(anonvmstats.getpages[14]);
1997 				return (-2);
1998 			}
1999 			page_unlock(pp);
2000 			prealloc = 1;
2001 			goto top;
2002 		}
2003 
2004 		/*
2005 		 * If we decided to preallocate but VOP_GETPAGE
2006 		 * found a page in the system that satisfies our
2007 		 * request then free up our preallocated large page
2008 		 * and continue looping accross the existing large
2009 		 * page via VOP_GETPAGE.
2010 		 */
2011 		if (prealloc && pp != ppa[pg_idx]) {
2012 			VM_STAT_ADD(anonvmstats.getpages[15]);
2013 			ASSERT(slotcreate == 0);
2014 			ASSERT(pg_idx == 0);
2015 			conpp = NULL;
2016 			prealloc = 0;
2017 			page_free_pages(ppa[0]);
2018 		}
2019 
2020 		if (prealloc && nreloc > 1) {
2021 			/*
2022 			 * we have relocated out of a smaller large page.
2023 			 * skip npgs - 1 iterations and continue which will
2024 			 * increment by one the loop indices.
2025 			 */
2026 			spgcnt_t npgs = nreloc;
2027 
2028 			VM_STAT_ADD(anonvmstats.getpages[16]);
2029 
2030 			ASSERT(pp == ppa[pg_idx]);
2031 			ASSERT(slotcreate == 0);
2032 			ASSERT(pg_idx + npgs <= pgcnt);
2033 			if ((*protp & PROT_WRITE) &&
2034 			    anon_share(amp->ahp, an_idx, npgs)) {
2035 			    *protp &= ~PROT_WRITE;
2036 			}
2037 			pg_idx += npgs;
2038 			an_idx += npgs;
2039 			vaddr += PAGESIZE * npgs;
2040 			continue;
2041 		}
2042 
2043 		VM_STAT_ADD(anonvmstats.getpages[17]);
2044 
2045 		/*
2046 		 * Anon_zero case.
2047 		 */
2048 		if (slotcreate) {
2049 			ASSERT(prealloc);
2050 			pagezero(pp, 0, PAGESIZE);
2051 			CPU_STATS_ADD_K(vm, zfod, 1);
2052 			hat_setrefmod(pp);
2053 		}
2054 
2055 		ASSERT(prealloc == 0 || ppa[pg_idx] == pp);
2056 		ASSERT(prealloc != 0 || PAGE_SHARED(pp));
2057 		ASSERT(prealloc == 0 || PAGE_EXCL(pp));
2058 
2059 		if (pg_idx > 0 &&
2060 		    ((page_pptonum(pp) != page_pptonum(ppa[pg_idx - 1]) + 1) ||
2061 		    (pp->p_szc != ppa[pg_idx - 1]->p_szc)))
2062 			panic("anon_map_getpages: unexpected page");
2063 
2064 		if (prealloc == 0) {
2065 			ppa[pg_idx] = pp;
2066 		}
2067 
2068 		if (ap->an_refcnt > 1) {
2069 			VM_STAT_ADD(anonvmstats.getpages[18]);
2070 			*protp &= ~PROT_WRITE;
2071 		}
2072 
2073 		/*
2074 		 * If this is a new anon slot then initialize
2075 		 * the anon array entry.
2076 		 */
2077 		if (slotcreate) {
2078 			(void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP);
2079 		}
2080 		pg_idx++;
2081 		an_idx++;
2082 		vaddr += PAGESIZE;
2083 	}
2084 
2085 	/*
2086 	 * Since preallocated pages come off the freelist
2087 	 * they are locked SE_EXCL. Simply downgrade and return.
2088 	 */
2089 	if (prealloc) {
2090 		VM_STAT_ADD(anonvmstats.getpages[19]);
2091 		conpp = NULL;
2092 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2093 			page_downgrade(ppa[pg_idx]);
2094 		}
2095 	}
2096 	ASSERT(conpp == NULL);
2097 
2098 	if (brkcow == 0 || (*protp & PROT_WRITE)) {
2099 		VM_STAT_ADD(anonvmstats.getpages[20]);
2100 		return (0);
2101 	}
2102 
2103 	if (szc < seg->s_szc)
2104 		panic("anon_map_getpages: cowfault for szc %d", szc);
2105 
2106 	VM_STAT_ADD(anonvmstats.getpages[21]);
2107 
2108 	*protp = PROT_ALL;
2109 	return (anon_map_privatepages(amp, start_idx, szc, seg, addr, prot,
2110 	    ppa, vpage, anypgsz, cred));
2111 io_err:
2112 	/*
2113 	 * We got an IO error somewhere in our large page.
2114 	 * If we were using a preallocated page then just demote
2115 	 * all the constituent pages that we've succeeded with sofar
2116 	 * to PAGESIZE pages and leave them in the system
2117 	 * unlocked.
2118 	 */
2119 
2120 	ASSERT(err != -2 || pg_idx == 0);
2121 
2122 	VM_STAT_COND_ADD(err > 0, anonvmstats.getpages[22]);
2123 	VM_STAT_COND_ADD(err == -1, anonvmstats.getpages[23]);
2124 	VM_STAT_COND_ADD(err == -2, anonvmstats.getpages[24]);
2125 
2126 	if (prealloc) {
2127 		conpp = NULL;
2128 		if (pg_idx > 0) {
2129 			VM_STAT_ADD(anonvmstats.getpages[25]);
2130 			for (i = 0; i < pgcnt; i++) {
2131 				pp = ppa[i];
2132 				ASSERT(PAGE_EXCL(pp));
2133 				ASSERT(pp->p_szc == szc);
2134 				pp->p_szc = 0;
2135 			}
2136 			for (i = 0; i < pg_idx; i++) {
2137 				ASSERT(!hat_page_is_mapped(ppa[i]));
2138 				page_unlock(ppa[i]);
2139 			}
2140 			/*
2141 			 * Now free up the remaining unused constituent
2142 			 * pages.
2143 			 */
2144 			while (pg_idx < pgcnt) {
2145 				ASSERT(!hat_page_is_mapped(ppa[pg_idx]));
2146 				page_free(ppa[pg_idx], 0);
2147 				pg_idx++;
2148 			}
2149 		} else {
2150 			VM_STAT_ADD(anonvmstats.getpages[26]);
2151 			page_free_pages(ppa[0]);
2152 		}
2153 	} else {
2154 		VM_STAT_ADD(anonvmstats.getpages[27]);
2155 		ASSERT(err > 0);
2156 		for (i = 0; i < pg_idx; i++)
2157 			page_unlock(ppa[i]);
2158 	}
2159 	ASSERT(conpp == NULL);
2160 	if (err != -1)
2161 		return (err);
2162 	/*
2163 	 * we are here because we failed to relocate.
2164 	 */
2165 	ASSERT(prealloc);
2166 	if (brkcow == 0 || !anon_share(amp->ahp, start_idx, pgcnt)) {
2167 		VM_STAT_ADD(anonvmstats.getpages[28]);
2168 		return (-1);
2169 	}
2170 	VM_STAT_ADD(anonvmstats.getpages[29]);
2171 	goto docow;
2172 }
2173 
2174 
2175 /*
2176  * Turn a reference to an object or shared anon page
2177  * into a private page with a copy of the data from the
2178  * original page which is always locked by the caller.
2179  * This routine unloads the translation and unlocks the
2180  * original page, if it isn't being stolen, before returning
2181  * to the caller.
2182  *
2183  * NOTE:  The original anon slot is not freed by this routine
2184  *	  It must be freed by the caller while holding the
2185  *	  "anon_map" lock to prevent races which can occur if
2186  *	  a process has multiple lwps in its address space.
2187  */
2188 page_t *
2189 anon_private(
2190 	struct anon **app,
2191 	struct seg *seg,
2192 	caddr_t addr,
2193 	uint_t	prot,
2194 	page_t *opp,
2195 	int oppflags,
2196 	struct cred *cred)
2197 {
2198 	struct anon *old = *app;
2199 	struct anon *new;
2200 	page_t *pp = NULL;
2201 	struct vnode *vp;
2202 	anoff_t off;
2203 	page_t *anon_pl[1 + 1];
2204 	int err;
2205 
2206 	if (oppflags & STEAL_PAGE)
2207 		ASSERT(PAGE_EXCL(opp));
2208 	else
2209 		ASSERT(PAGE_LOCKED(opp));
2210 
2211 	CPU_STATS_ADD_K(vm, cow_fault, 1);
2212 
2213 	/* Kernel probe */
2214 	TNF_PROBE_1(anon_private, "vm pagefault", /* CSTYLED */,
2215 		tnf_opaque,	address,	addr);
2216 
2217 	*app = new = anon_alloc(NULL, 0);
2218 	swap_xlate(new, &vp, &off);
2219 
2220 	if (oppflags & STEAL_PAGE) {
2221 		page_rename(opp, vp, (u_offset_t)off);
2222 		pp = opp;
2223 		TRACE_5(TR_FAC_VM, TR_ANON_PRIVATE,
2224 			"anon_private:seg %p addr %x pp %p vp %p off %lx",
2225 			seg, addr, pp, vp, off);
2226 		hat_setmod(pp);
2227 
2228 		/* bug 4026339 */
2229 		page_downgrade(pp);
2230 		return (pp);
2231 	}
2232 
2233 	/*
2234 	 * Call the VOP_GETPAGE routine to create the page, thereby
2235 	 * enabling the vnode driver to allocate any filesystem
2236 	 * space (e.g., disk block allocation for UFS).  This also
2237 	 * prevents more than one page from being added to the
2238 	 * vnode at the same time.
2239 	 */
2240 	err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, NULL,
2241 	    anon_pl, PAGESIZE, seg, addr, S_CREATE, cred);
2242 	if (err)
2243 		goto out;
2244 
2245 	pp = anon_pl[0];
2246 
2247 	/*
2248 	 * If the original page was locked, we need to move the lock
2249 	 * to the new page by transfering 'cowcnt/lckcnt' of the original
2250 	 * page to 'cowcnt/lckcnt' of the new page.
2251 	 *
2252 	 * See Statement at the beginning of segvn_lockop() and
2253 	 * comments in page_pp_useclaim() regarding the way
2254 	 * cowcnts/lckcnts are handled.
2255 	 *
2256 	 * Also availrmem must be decremented up front for read only mapping
2257 	 * before calling page_pp_useclaim. page_pp_useclaim will bump it back
2258 	 * if availrmem did not need to be decremented after all.
2259 	 */
2260 	if (oppflags & LOCK_PAGE) {
2261 		if ((prot & PROT_WRITE) == 0) {
2262 			mutex_enter(&freemem_lock);
2263 			if (availrmem > pages_pp_maximum) {
2264 				availrmem--;
2265 				pages_useclaim++;
2266 			} else {
2267 				mutex_exit(&freemem_lock);
2268 				goto out;
2269 			}
2270 			mutex_exit(&freemem_lock);
2271 		}
2272 		page_pp_useclaim(opp, pp, prot & PROT_WRITE);
2273 	}
2274 
2275 	/*
2276 	 * Now copy the contents from the original page,
2277 	 * which is locked and loaded in the MMU by
2278 	 * the caller to prevent yet another page fault.
2279 	 */
2280 	ppcopy(opp, pp);		/* XXX - should set mod bit in here */
2281 
2282 	hat_setrefmod(pp);		/* mark as modified */
2283 
2284 	/*
2285 	 * Unload the old translation.
2286 	 */
2287 	hat_unload(seg->s_as->a_hat, addr, PAGESIZE, HAT_UNLOAD);
2288 
2289 	/*
2290 	 * Free unmapped, unmodified original page.
2291 	 * or release the lock on the original page,
2292 	 * otherwise the process will sleep forever in
2293 	 * anon_decref() waiting for the "exclusive" lock
2294 	 * on the page.
2295 	 */
2296 	(void) page_release(opp, 1);
2297 
2298 	/*
2299 	 * we are done with page creation so downgrade the new
2300 	 * page's selock to shared, this helps when multiple
2301 	 * as_fault(...SOFTLOCK...) are done to the same
2302 	 * page(aio)
2303 	 */
2304 	page_downgrade(pp);
2305 
2306 	/*
2307 	 * NOTE:  The original anon slot must be freed by the
2308 	 * caller while holding the "anon_map" lock, if we
2309 	 * copied away from an anonymous page.
2310 	 */
2311 	return (pp);
2312 
2313 out:
2314 	*app = old;
2315 	if (pp)
2316 		page_unlock(pp);
2317 	anon_decref(new);
2318 	page_unlock(opp);
2319 	return ((page_t *)NULL);
2320 }
2321 
2322 int
2323 anon_map_privatepages(
2324 	struct anon_map *amp,
2325 	ulong_t	start_idx,
2326 	uint_t	szc,
2327 	struct seg *seg,
2328 	caddr_t addr,
2329 	uint_t	prot,
2330 	page_t	*ppa[],
2331 	struct vpage vpage[],
2332 	int anypgsz,
2333 	struct cred *cred)
2334 {
2335 	pgcnt_t		pgcnt;
2336 	struct vnode	*vp;
2337 	anoff_t		off;
2338 	page_t		*pl[2], *conpp = NULL;
2339 	int		err;
2340 	int		prealloc = 1;
2341 	struct anon	*ap, *oldap;
2342 	caddr_t		vaddr;
2343 	page_t		*pplist, *pp;
2344 	ulong_t		pg_idx, an_idx;
2345 	spgcnt_t	nreloc = 0;
2346 	int		pagelock = 0;
2347 	kmutex_t	*ahmpages = NULL;
2348 #ifdef DEBUG
2349 	int		refcnt;
2350 #endif
2351 
2352 	ASSERT(szc != 0);
2353 	ASSERT(szc == seg->s_szc);
2354 
2355 	VM_STAT_ADD(anonvmstats.privatepages[0]);
2356 
2357 	pgcnt = page_get_pagecnt(szc);
2358 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
2359 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
2360 
2361 	ASSERT(amp != NULL);
2362 	ap = anon_get_ptr(amp->ahp, start_idx);
2363 	ASSERT(ap == NULL || ap->an_refcnt >= 1);
2364 
2365 	VM_STAT_COND_ADD(ap == NULL, anonvmstats.privatepages[1]);
2366 
2367 	/*
2368 	 * Now try and allocate the large page. If we fail then just
2369 	 * let VOP_GETPAGE give us PAGESIZE pages. Normally we let
2370 	 * the caller make this decision but to avoid added complexity
2371 	 * it's simplier to handle that case here.
2372 	 */
2373 	if (anypgsz == -1) {
2374 		VM_STAT_ADD(anonvmstats.privatepages[2]);
2375 		prealloc = 0;
2376 	} else if (page_alloc_pages(anon_vp, seg, addr, &pplist, NULL, szc,
2377 	    anypgsz) != 0) {
2378 		VM_STAT_ADD(anonvmstats.privatepages[3]);
2379 		prealloc = 0;
2380 	}
2381 
2382 	/*
2383 	 * make the decrement of all refcnts of all
2384 	 * anon slots of a large page appear atomic by
2385 	 * getting an anonpages_hash_lock for the
2386 	 * first anon slot of a large page.
2387 	 */
2388 	if (ap != NULL) {
2389 		ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp,
2390 		    ap->an_off)];
2391 		mutex_enter(ahmpages);
2392 		if (ap->an_refcnt == 1) {
2393 			VM_STAT_ADD(anonvmstats.privatepages[4]);
2394 			ASSERT(!anon_share(amp->ahp, start_idx, pgcnt));
2395 			mutex_exit(ahmpages);
2396 
2397 			if (prealloc) {
2398 				page_free_replacement_page(pplist);
2399 				page_create_putback(pgcnt);
2400 			}
2401 			ASSERT(ppa[0]->p_szc <= szc);
2402 			if (ppa[0]->p_szc == szc) {
2403 				VM_STAT_ADD(anonvmstats.privatepages[5]);
2404 				return (0);
2405 			}
2406 			for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2407 				ASSERT(ppa[pg_idx] != NULL);
2408 				page_unlock(ppa[pg_idx]);
2409 			}
2410 			return (-1);
2411 		}
2412 	}
2413 
2414 	/*
2415 	 * If we are passed in the vpage array and this is
2416 	 * not PROT_WRITE then we need to decrement availrmem
2417 	 * up front before we try anything. If we need to and
2418 	 * can't decrement availrmem then its better to fail now
2419 	 * than in the middle of processing the new large page.
2420 	 * page_pp_usclaim() on behalf of each constituent page
2421 	 * below will adjust availrmem back for the cases not needed.
2422 	 */
2423 	if (vpage != NULL && (prot & PROT_WRITE) == 0) {
2424 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2425 			if (VPP_ISPPLOCK(&vpage[pg_idx])) {
2426 				pagelock = 1;
2427 				break;
2428 			}
2429 		}
2430 		if (pagelock) {
2431 			VM_STAT_ADD(anonvmstats.privatepages[6]);
2432 			mutex_enter(&freemem_lock);
2433 			if (availrmem >= pages_pp_maximum + pgcnt) {
2434 				availrmem -= pgcnt;
2435 				pages_useclaim += pgcnt;
2436 			} else {
2437 				VM_STAT_ADD(anonvmstats.privatepages[7]);
2438 				mutex_exit(&freemem_lock);
2439 				if (ahmpages != NULL) {
2440 					mutex_exit(ahmpages);
2441 				}
2442 				if (prealloc) {
2443 					page_free_replacement_page(pplist);
2444 					page_create_putback(pgcnt);
2445 				}
2446 				for (pg_idx = 0; pg_idx < pgcnt; pg_idx++)
2447 					if (ppa[pg_idx] != NULL)
2448 						page_unlock(ppa[pg_idx]);
2449 				return (ENOMEM);
2450 			}
2451 			mutex_exit(&freemem_lock);
2452 		}
2453 	}
2454 
2455 	CPU_STATS_ADD_K(vm, cow_fault, pgcnt);
2456 
2457 	VM_STAT_ADD(anonvmstats.privatepages[8]);
2458 
2459 	an_idx = start_idx;
2460 	pg_idx = 0;
2461 	vaddr = addr;
2462 	for (; pg_idx < pgcnt; pg_idx++, an_idx++, vaddr += PAGESIZE) {
2463 		ASSERT(ppa[pg_idx] != NULL);
2464 		oldap = anon_get_ptr(amp->ahp, an_idx);
2465 		ASSERT(ahmpages != NULL || oldap == NULL);
2466 		ASSERT(ahmpages == NULL || oldap != NULL);
2467 		ASSERT(ahmpages == NULL || oldap->an_refcnt > 1);
2468 		ASSERT(ahmpages == NULL || pg_idx != 0 ||
2469 		    (refcnt = oldap->an_refcnt));
2470 		ASSERT(ahmpages == NULL || pg_idx == 0 ||
2471 		    refcnt == oldap->an_refcnt);
2472 
2473 		ap = anon_alloc(NULL, 0);
2474 
2475 		swap_xlate(ap, &vp, &off);
2476 
2477 		/*
2478 		 * Now setup our preallocated page to pass down to
2479 		 * swap_getpage().
2480 		 */
2481 		if (prealloc) {
2482 			pp = pplist;
2483 			page_sub(&pplist, pp);
2484 			conpp = pp;
2485 		}
2486 
2487 		err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE, NULL, pl,
2488 			PAGESIZE, conpp, &nreloc, seg, vaddr, S_CREATE, cred);
2489 
2490 		/*
2491 		 * Impossible to fail this is S_CREATE.
2492 		 */
2493 		if (err)
2494 			panic("anon_map_privatepages: VOP_GETPAGE failed");
2495 
2496 		ASSERT(prealloc ? pp == pl[0] : pl[0]->p_szc == 0);
2497 		ASSERT(prealloc == 0 || nreloc == 1);
2498 
2499 		pp = pl[0];
2500 
2501 		/*
2502 		 * If the original page was locked, we need to move
2503 		 * the lock to the new page by transfering
2504 		 * 'cowcnt/lckcnt' of the original page to 'cowcnt/lckcnt'
2505 		 * of the new page. pg_idx can be used to index
2506 		 * into the vpage array since the caller will guarentee
2507 		 * that vpage struct passed in corresponds to addr
2508 		 * and forward.
2509 		 */
2510 		if (vpage != NULL && VPP_ISPPLOCK(&vpage[pg_idx])) {
2511 			page_pp_useclaim(ppa[pg_idx], pp, prot & PROT_WRITE);
2512 		} else if (pagelock) {
2513 			mutex_enter(&freemem_lock);
2514 			availrmem++;
2515 			pages_useclaim--;
2516 			mutex_exit(&freemem_lock);
2517 		}
2518 
2519 		/*
2520 		 * Now copy the contents from the original page.
2521 		 */
2522 		ppcopy(ppa[pg_idx], pp);
2523 
2524 		hat_setrefmod(pp);		/* mark as modified */
2525 
2526 		/*
2527 		 * Release the lock on the original page,
2528 		 * derement the old slot, and down grade the lock
2529 		 * on the new copy.
2530 		 */
2531 		page_unlock(ppa[pg_idx]);
2532 
2533 		if (!prealloc)
2534 			page_downgrade(pp);
2535 
2536 		ppa[pg_idx] = pp;
2537 
2538 		/*
2539 		 * Now reflect the copy in the new anon array.
2540 		 */
2541 		ASSERT(ahmpages == NULL || oldap->an_refcnt > 1);
2542 		if (oldap != NULL)
2543 			anon_decref(oldap);
2544 		(void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP);
2545 	}
2546 	if (ahmpages != NULL) {
2547 		mutex_exit(ahmpages);
2548 	}
2549 	ASSERT(prealloc == 0 || pplist == NULL);
2550 	if (prealloc) {
2551 		VM_STAT_ADD(anonvmstats.privatepages[9]);
2552 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2553 			page_downgrade(ppa[pg_idx]);
2554 		}
2555 	}
2556 
2557 	/*
2558 	 * Unload the old large page translation.
2559 	 */
2560 	hat_unload(seg->s_as->a_hat, addr, pgcnt << PAGESHIFT, HAT_UNLOAD);
2561 	return (0);
2562 }
2563 
2564 /*
2565  * Allocate a private zero-filled anon page.
2566  */
2567 page_t *
2568 anon_zero(struct seg *seg, caddr_t addr, struct anon **app, struct cred *cred)
2569 {
2570 	struct anon *ap;
2571 	page_t *pp;
2572 	struct vnode *vp;
2573 	anoff_t off;
2574 	page_t *anon_pl[1 + 1];
2575 	int err;
2576 
2577 	/* Kernel probe */
2578 	TNF_PROBE_1(anon_zero, "vm pagefault", /* CSTYLED */,
2579 		tnf_opaque,	address,	addr);
2580 
2581 	*app = ap = anon_alloc(NULL, 0);
2582 	swap_xlate(ap, &vp, &off);
2583 
2584 	/*
2585 	 * Call the VOP_GETPAGE routine to create the page, thereby
2586 	 * enabling the vnode driver to allocate any filesystem
2587 	 * dependent structures (e.g., disk block allocation for UFS).
2588 	 * This also prevents more than on page from being added to
2589 	 * the vnode at the same time since it is locked.
2590 	 */
2591 	err = VOP_GETPAGE(vp, off, PAGESIZE, NULL,
2592 	    anon_pl, PAGESIZE, seg, addr, S_CREATE, cred);
2593 	if (err) {
2594 		*app = NULL;
2595 		anon_decref(ap);
2596 		return (NULL);
2597 	}
2598 	pp = anon_pl[0];
2599 
2600 	pagezero(pp, 0, PAGESIZE);	/* XXX - should set mod bit */
2601 	page_downgrade(pp);
2602 	CPU_STATS_ADD_K(vm, zfod, 1);
2603 	hat_setrefmod(pp);	/* mark as modified so pageout writes back */
2604 	return (pp);
2605 }
2606 
2607 
2608 /*
2609  * Allocate array of private zero-filled anon pages for empty slots
2610  * and kept pages for non empty slots within given range.
2611  *
2612  * NOTE: This rontine will try and use large pages
2613  *	if available and supported by underlying platform.
2614  */
2615 int
2616 anon_map_createpages(
2617 	struct anon_map *amp,
2618 	ulong_t start_index,
2619 	size_t len,
2620 	page_t *ppa[],
2621 	struct seg *seg,
2622 	caddr_t addr,
2623 	enum seg_rw rw,
2624 	struct cred *cred)
2625 {
2626 
2627 	struct anon	*ap;
2628 	struct vnode	*ap_vp;
2629 	page_t		*pp, *pplist, *anon_pl[1 + 1], *conpp = NULL;
2630 	int		err = 0;
2631 	ulong_t		p_index, index;
2632 	pgcnt_t		npgs, pg_cnt;
2633 	spgcnt_t	nreloc = 0;
2634 	uint_t		l_szc, szc, prot;
2635 	anoff_t		ap_off;
2636 	size_t		pgsz;
2637 	lgrp_t		*lgrp;
2638 
2639 	/*
2640 	 * XXX For now only handle S_CREATE.
2641 	 */
2642 	ASSERT(rw == S_CREATE);
2643 
2644 	index	= start_index;
2645 	p_index	= 0;
2646 	npgs = btopr(len);
2647 
2648 	/*
2649 	 * If this platform supports multiple page sizes
2650 	 * then try and allocate directly from the free
2651 	 * list for pages larger than PAGESIZE.
2652 	 *
2653 	 * NOTE:When we have page_create_ru we can stop
2654 	 *	directly allocating from the freelist.
2655 	 */
2656 	l_szc  = seg->s_szc;
2657 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2658 	while (npgs) {
2659 
2660 		/*
2661 		 * if anon slot already exists
2662 		 *   (means page has been created)
2663 		 * so 1) look up the page
2664 		 *    2) if the page is still in memory, get it.
2665 		 *    3) if not, create a page and
2666 		 *	  page in from physical swap device.
2667 		 * These are done in anon_getpage().
2668 		 */
2669 		ap = anon_get_ptr(amp->ahp, index);
2670 		if (ap) {
2671 			err = anon_getpage(&ap, &prot, anon_pl, PAGESIZE,
2672 			    seg, addr, S_READ, cred);
2673 			if (err) {
2674 				ANON_LOCK_EXIT(&amp->a_rwlock);
2675 				panic("anon_map_createpages: anon_getpage");
2676 			}
2677 			pp = anon_pl[0];
2678 			ppa[p_index++] = pp;
2679 
2680 			addr += PAGESIZE;
2681 			index++;
2682 			npgs--;
2683 			continue;
2684 		}
2685 		/*
2686 		 * Now try and allocate the largest page possible
2687 		 * for the current address and range.
2688 		 * Keep dropping down in page size until:
2689 		 *
2690 		 *	1) Properly aligned
2691 		 *	2) Does not overlap existing anon pages
2692 		 *	3) Fits in remaining range.
2693 		 *	4) able to allocate one.
2694 		 *
2695 		 * NOTE: XXX When page_create_ru is completed this code
2696 		 *	 will change.
2697 		 */
2698 		szc    = l_szc;
2699 		pplist = NULL;
2700 		pg_cnt = 0;
2701 		while (szc) {
2702 			pgsz	= page_get_pagesize(szc);
2703 			pg_cnt	= pgsz >> PAGESHIFT;
2704 			if (IS_P2ALIGNED(addr, pgsz) && pg_cnt <= npgs &&
2705 				anon_pages(amp->ahp, index, pg_cnt) == 0) {
2706 				/*
2707 				 * XXX
2708 				 * Since we are faking page_create()
2709 				 * we also need to do the freemem and
2710 				 * pcf accounting.
2711 				 */
2712 				(void) page_create_wait(pg_cnt, PG_WAIT);
2713 
2714 				/*
2715 				 * Get lgroup to allocate next page of shared
2716 				 * memory from and use it to specify where to
2717 				 * allocate the physical memory
2718 				 */
2719 				lgrp = lgrp_mem_choose(seg, addr, pgsz);
2720 
2721 				pplist = page_get_freelist(
2722 				    anon_vp, (u_offset_t)0, seg,
2723 				    addr, pgsz, 0, lgrp);
2724 
2725 				if (pplist == NULL) {
2726 					page_create_putback(pg_cnt);
2727 				}
2728 
2729 				/*
2730 				 * If a request for a page of size
2731 				 * larger than PAGESIZE failed
2732 				 * then don't try that size anymore.
2733 				 */
2734 				if (pplist == NULL) {
2735 					l_szc = szc - 1;
2736 				} else {
2737 					break;
2738 				}
2739 			}
2740 			szc--;
2741 		}
2742 
2743 		/*
2744 		 * If just using PAGESIZE pages then don't
2745 		 * directly allocate from the free list.
2746 		 */
2747 		if (pplist == NULL) {
2748 			ASSERT(szc == 0);
2749 			pp = anon_zero(seg, addr, &ap, cred);
2750 			if (pp == NULL) {
2751 				ANON_LOCK_EXIT(&amp->a_rwlock);
2752 				panic("anon_map_createpages: anon_zero");
2753 			}
2754 			ppa[p_index++] = pp;
2755 
2756 			ASSERT(anon_get_ptr(amp->ahp, index) == NULL);
2757 			(void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP);
2758 
2759 			addr += PAGESIZE;
2760 			index++;
2761 			npgs--;
2762 			continue;
2763 		}
2764 
2765 		/*
2766 		 * pplist is a list of pg_cnt PAGESIZE pages.
2767 		 * These pages are locked SE_EXCL since they
2768 		 * came directly off the free list.
2769 		 */
2770 		ASSERT(IS_P2ALIGNED(pg_cnt, pg_cnt));
2771 		ASSERT(IS_P2ALIGNED(index, pg_cnt));
2772 		ASSERT(conpp == NULL);
2773 		while (pg_cnt--) {
2774 
2775 			ap = anon_alloc(NULL, 0);
2776 			swap_xlate(ap, &ap_vp, &ap_off);
2777 
2778 			ASSERT(pplist != NULL);
2779 			pp = pplist;
2780 			page_sub(&pplist, pp);
2781 			PP_CLRFREE(pp);
2782 			PP_CLRAGED(pp);
2783 			conpp = pp;
2784 
2785 			err = swap_getconpage(ap_vp, ap_off, PAGESIZE,
2786 			    (uint_t *)NULL, anon_pl, PAGESIZE, conpp, &nreloc,
2787 			    seg, addr, S_CREATE, cred);
2788 
2789 			if (err) {
2790 				ANON_LOCK_EXIT(&amp->a_rwlock);
2791 				panic("anon_map_createpages: S_CREATE");
2792 			}
2793 
2794 			ASSERT(anon_pl[0] == pp);
2795 			ASSERT(nreloc == 1);
2796 			pagezero(pp, 0, PAGESIZE);
2797 			CPU_STATS_ADD_K(vm, zfod, 1);
2798 			hat_setrefmod(pp);
2799 
2800 			ASSERT(anon_get_ptr(amp->ahp, index) == NULL);
2801 			(void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP);
2802 
2803 			ppa[p_index++] = pp;
2804 
2805 			addr += PAGESIZE;
2806 			index++;
2807 			npgs--;
2808 		}
2809 		conpp = NULL;
2810 		pg_cnt	= pgsz >> PAGESHIFT;
2811 		p_index = p_index - pg_cnt;
2812 		while (pg_cnt--) {
2813 			page_downgrade(ppa[p_index++]);
2814 		}
2815 	}
2816 	ANON_LOCK_EXIT(&amp->a_rwlock);
2817 	return (0);
2818 }
2819 
2820 int
2821 anon_map_demotepages(
2822 	struct anon_map *amp,
2823 	ulong_t	start_idx,
2824 	struct seg *seg,
2825 	caddr_t addr,
2826 	uint_t prot,
2827 	struct vpage vpage[],
2828 	struct cred *cred)
2829 {
2830 	struct anon	*ap;
2831 	uint_t		szc = seg->s_szc;
2832 	pgcnt_t		pgcnt = page_get_pagecnt(szc);
2833 	size_t		ppasize = pgcnt * sizeof (page_t *);
2834 	page_t		**ppa = kmem_alloc(ppasize, KM_SLEEP);
2835 	page_t		*pp;
2836 	page_t		*pl[2];
2837 	pgcnt_t		i, pg_idx;
2838 	ulong_t		an_idx;
2839 	caddr_t		vaddr;
2840 	kmutex_t	*ahmpages = NULL;
2841 	int 		err;
2842 	int		retry = 0;
2843 	uint_t		vpprot;
2844 
2845 	ASSERT(RW_WRITE_HELD(&amp->a_rwlock));
2846 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
2847 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
2848 	ASSERT(ppa != NULL);
2849 
2850 	VM_STAT_ADD(anonvmstats.demotepages[0]);
2851 
2852 	ap = anon_get_ptr(amp->ahp, start_idx);
2853 	if (ap != NULL) {
2854 		VM_STAT_ADD(anonvmstats.demotepages[1]);
2855 		ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)];
2856 		mutex_enter(ahmpages);
2857 	}
2858 top:
2859 	if (ap == NULL || ap->an_refcnt <= 1) {
2860 		int root = 0;
2861 		pgcnt_t npgs, curnpgs = 0;
2862 
2863 		VM_STAT_ADD(anonvmstats.demotepages[2]);
2864 
2865 		ASSERT(retry == 0 || ap != NULL);
2866 
2867 		if (ahmpages != NULL)
2868 			mutex_exit(ahmpages);
2869 		an_idx = start_idx;
2870 		for (i = 0; i < pgcnt; i++, an_idx++) {
2871 			ap = anon_get_ptr(amp->ahp, an_idx);
2872 			if (ap != NULL) {
2873 				ASSERT(ap->an_refcnt == 1);
2874 				pp = ppa[i] = page_lookup(ap->an_vp, ap->an_off,
2875 				    SE_EXCL);
2876 				if (pp != NULL) {
2877 					(void) hat_pageunload(pp,
2878 					    HAT_FORCE_PGUNLOAD);
2879 				}
2880 			} else {
2881 				ppa[i] = NULL;
2882 			}
2883 		}
2884 		for (i = 0; i < pgcnt; i++) {
2885 			if ((pp = ppa[i]) != NULL && pp->p_szc != 0) {
2886 				ASSERT(pp->p_szc <= szc);
2887 				if (!root) {
2888 					VM_STAT_ADD(anonvmstats.demotepages[3]);
2889 					if (curnpgs != 0)
2890 						panic("anon_map_demotepages: "
2891 						    "bad large page");
2892 
2893 					root = 1;
2894 					curnpgs = npgs =
2895 					    page_get_pagecnt(pp->p_szc);
2896 
2897 					ASSERT(npgs <= pgcnt);
2898 					ASSERT(IS_P2ALIGNED(npgs, npgs));
2899 					ASSERT(!(page_pptonum(pp) &
2900 					    (npgs - 1)));
2901 				} else {
2902 					ASSERT(i > 0);
2903 					ASSERT(page_pptonum(pp) - 1 ==
2904 					    page_pptonum(ppa[i - 1]));
2905 					if ((page_pptonum(pp) & (npgs - 1)) ==
2906 					    npgs - 1)
2907 						root = 0;
2908 				}
2909 				ASSERT(PAGE_EXCL(pp));
2910 				pp->p_szc = 0;
2911 				curnpgs--;
2912 			}
2913 		}
2914 		if (root != 0 || curnpgs != 0)
2915 			panic("anon_map_demotepages: bad large page");
2916 
2917 		for (i = 0; i < pgcnt; i++) {
2918 			if ((pp = ppa[i]) != NULL) {
2919 				ASSERT(!hat_page_is_mapped(pp));
2920 				ASSERT(pp->p_szc == 0);
2921 				page_unlock(pp);
2922 			}
2923 		}
2924 		kmem_free(ppa, ppasize);
2925 		return (0);
2926 	}
2927 	ASSERT(ahmpages != NULL);
2928 	mutex_exit(ahmpages);
2929 	ahmpages = NULL;
2930 
2931 	VM_STAT_ADD(anonvmstats.demotepages[4]);
2932 
2933 	ASSERT(retry == 0); /* we can be here only once */
2934 
2935 	vaddr = addr;
2936 	for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt;
2937 	    pg_idx++, an_idx++, vaddr += PAGESIZE) {
2938 		ap = anon_get_ptr(amp->ahp, an_idx);
2939 		if (ap == NULL)
2940 			panic("anon_map_demotepages: no anon slot");
2941 		err = anon_getpage(&ap, &vpprot, pl, PAGESIZE, seg, vaddr,
2942 		    S_READ, cred);
2943 		if (err) {
2944 			for (i = 0; i < pg_idx; i++) {
2945 				if ((pp = ppa[i]) != NULL)
2946 					page_unlock(pp);
2947 			}
2948 			kmem_free(ppa, ppasize);
2949 			return (err);
2950 		}
2951 		ppa[pg_idx] = pl[0];
2952 	}
2953 
2954 	err = anon_map_privatepages(amp, start_idx, szc, seg, addr, prot, ppa,
2955 	    vpage, -1, cred);
2956 	if (err > 0) {
2957 		VM_STAT_ADD(anonvmstats.demotepages[5]);
2958 		kmem_free(ppa, ppasize);
2959 		return (err);
2960 	}
2961 	ASSERT(err == 0 || err == -1);
2962 	if (err == -1) {
2963 		VM_STAT_ADD(anonvmstats.demotepages[6]);
2964 		retry = 1;
2965 		goto top;
2966 	}
2967 	for (i = 0; i < pgcnt; i++) {
2968 		ASSERT(ppa[i] != NULL);
2969 		if (ppa[i]->p_szc != 0)
2970 			retry = 1;
2971 		page_unlock(ppa[i]);
2972 	}
2973 	if (retry) {
2974 		VM_STAT_ADD(anonvmstats.demotepages[7]);
2975 		goto top;
2976 	}
2977 
2978 	VM_STAT_ADD(anonvmstats.demotepages[8]);
2979 
2980 	kmem_free(ppa, ppasize);
2981 
2982 	return (0);
2983 }
2984 
2985 /*
2986  * Allocate and initialize an anon_map structure for seg
2987  * associating the given swap reservation with the new anon_map.
2988  */
2989 struct anon_map *
2990 anonmap_alloc(size_t size, size_t swresv)
2991 {
2992 	struct anon_map *amp;
2993 
2994 	amp = kmem_cache_alloc(anonmap_cache, KM_SLEEP);
2995 
2996 	amp->refcnt = 1;
2997 	amp->size = size;
2998 
2999 	amp->ahp = anon_create(btopr(size), ANON_SLEEP);
3000 	amp->swresv = swresv;
3001 	amp->locality = 0;
3002 	amp->a_szc = 0;
3003 	return (amp);
3004 }
3005 
3006 void
3007 anonmap_free(struct anon_map *amp)
3008 {
3009 	ASSERT(amp->ahp);
3010 	ASSERT(amp->refcnt == 0);
3011 
3012 	lgrp_shm_policy_fini(amp, NULL);
3013 	anon_release(amp->ahp, btopr(amp->size));
3014 	kmem_cache_free(anonmap_cache, amp);
3015 }
3016 
3017 /*
3018  * Returns true if the app array has some empty slots.
3019  * The offp and lenp paramters are in/out paramters.  On entry
3020  * these values represent the starting offset and length of the
3021  * mapping.  When true is returned, these values may be modified
3022  * to be the largest range which includes empty slots.
3023  */
3024 int
3025 non_anon(struct anon_hdr *ahp, ulong_t anon_idx, u_offset_t *offp,
3026 				size_t *lenp)
3027 {
3028 	ulong_t i, el;
3029 	ssize_t low, high;
3030 	struct anon *ap;
3031 
3032 	low = -1;
3033 	for (i = 0, el = *lenp; i < el; i += PAGESIZE, anon_idx++) {
3034 		ap = anon_get_ptr(ahp, anon_idx);
3035 		if (ap == NULL) {
3036 			if (low == -1)
3037 				low = i;
3038 			high = i;
3039 		}
3040 	}
3041 	if (low != -1) {
3042 		/*
3043 		 * Found at least one non-anon page.
3044 		 * Set up the off and len return values.
3045 		 */
3046 		if (low != 0)
3047 			*offp += low;
3048 		*lenp = high - low + PAGESIZE;
3049 		return (1);
3050 	}
3051 	return (0);
3052 }
3053 
3054 /*
3055  * Return a count of the number of existing anon pages in the anon array
3056  * app in the range (off, off+len). The array and slots must be guaranteed
3057  * stable by the caller.
3058  */
3059 pgcnt_t
3060 anon_pages(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots)
3061 {
3062 	pgcnt_t cnt = 0;
3063 
3064 	while (nslots-- > 0) {
3065 		if ((anon_get_ptr(ahp, anon_index)) != NULL)
3066 			cnt++;
3067 		anon_index++;
3068 	}
3069 	return (cnt);
3070 }
3071 
3072 /*
3073  * Move reserved phys swap into memory swap (unreserve phys swap
3074  * and reserve mem swap by the same amount).
3075  * Used by segspt when it needs to lock resrved swap npages in memory
3076  */
3077 int
3078 anon_swap_adjust(pgcnt_t npages)
3079 {
3080 	pgcnt_t unlocked_mem_swap;
3081 
3082 	mutex_enter(&anoninfo_lock);
3083 
3084 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
3085 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
3086 
3087 	unlocked_mem_swap = k_anoninfo.ani_mem_resv
3088 					- k_anoninfo.ani_locked_swap;
3089 	if (npages > unlocked_mem_swap) {
3090 		spgcnt_t adjusted_swap = npages - unlocked_mem_swap;
3091 
3092 		/*
3093 		 * if there is not enough unlocked mem swap we take missing
3094 		 * amount from phys swap and give it to mem swap
3095 		 */
3096 		mutex_enter(&freemem_lock);
3097 		if (availrmem < adjusted_swap + segspt_minfree) {
3098 			mutex_exit(&freemem_lock);
3099 			mutex_exit(&anoninfo_lock);
3100 			return (ENOMEM);
3101 		}
3102 		availrmem -= adjusted_swap;
3103 		mutex_exit(&freemem_lock);
3104 
3105 		k_anoninfo.ani_mem_resv += adjusted_swap;
3106 		ASSERT(k_anoninfo.ani_phys_resv >= adjusted_swap);
3107 		k_anoninfo.ani_phys_resv -= adjusted_swap;
3108 
3109 		ANI_ADD(adjusted_swap);
3110 	}
3111 	k_anoninfo.ani_locked_swap += npages;
3112 
3113 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
3114 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
3115 
3116 	mutex_exit(&anoninfo_lock);
3117 
3118 	return (0);
3119 }
3120 
3121 /*
3122  * 'unlocked' reserved mem swap so when it is unreserved it
3123  * can be moved back phys (disk) swap
3124  */
3125 void
3126 anon_swap_restore(pgcnt_t npages)
3127 {
3128 	mutex_enter(&anoninfo_lock);
3129 
3130 	ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv);
3131 
3132 	ASSERT(k_anoninfo.ani_locked_swap >= npages);
3133 	k_anoninfo.ani_locked_swap -= npages;
3134 
3135 	ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv);
3136 
3137 	mutex_exit(&anoninfo_lock);
3138 }
3139 
3140 /*
3141  * Return the pointer from the list for a
3142  * specified anon index.
3143  */
3144 ulong_t *
3145 anon_get_slot(struct anon_hdr *ahp, ulong_t an_idx)
3146 {
3147 	struct anon	**app;
3148 	void 		**ppp;
3149 
3150 	ASSERT(an_idx < ahp->size);
3151 
3152 	/*
3153 	 * Single level case.
3154 	 */
3155 	if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
3156 		return ((ulong_t *)&ahp->array_chunk[an_idx]);
3157 	} else {
3158 
3159 		/*
3160 		 * 2 level case.
3161 		 */
3162 		ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
3163 		if (*ppp == NULL) {
3164 			mutex_enter(&ahp->serial_lock);
3165 			ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
3166 			if (*ppp == NULL)
3167 				*ppp = kmem_zalloc(PAGESIZE, KM_SLEEP);
3168 			mutex_exit(&ahp->serial_lock);
3169 		}
3170 		app = *ppp;
3171 		return ((ulong_t *)&app[an_idx & ANON_CHUNK_OFF]);
3172 	}
3173 }
3174 
3175 void
3176 anon_array_enter(struct anon_map *amp, ulong_t an_idx, anon_sync_obj_t *sobj)
3177 {
3178 	ulong_t		*ap_slot;
3179 	kmutex_t	*mtx;
3180 	kcondvar_t	*cv;
3181 	int		hash;
3182 
3183 	/*
3184 	 * Use szc to determine anon slot(s) to appear atomic.
3185 	 * If szc = 0, then lock the anon slot and mark it busy.
3186 	 * If szc > 0, then lock the range of slots by getting the
3187 	 * anon_array_lock for the first anon slot, and mark only the
3188 	 * first anon slot busy to represent whole range being busy.
3189 	 */
3190 
3191 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
3192 	an_idx = P2ALIGN(an_idx, page_get_pagecnt(amp->a_szc));
3193 	hash = ANON_ARRAY_HASH(amp, an_idx);
3194 	sobj->sync_mutex = mtx = &anon_array_lock[hash].pad_mutex;
3195 	sobj->sync_cv = cv = &anon_array_cv[hash];
3196 	mutex_enter(mtx);
3197 	ap_slot = anon_get_slot(amp->ahp, an_idx);
3198 	while (ANON_ISBUSY(ap_slot))
3199 		cv_wait(cv, mtx);
3200 	ANON_SETBUSY(ap_slot);
3201 	sobj->sync_data = ap_slot;
3202 	mutex_exit(mtx);
3203 }
3204 
3205 int
3206 anon_array_try_enter(struct anon_map *amp, ulong_t an_idx,
3207 			anon_sync_obj_t *sobj)
3208 {
3209 	ulong_t		*ap_slot;
3210 	kmutex_t	*mtx;
3211 	int		hash;
3212 
3213 	/*
3214 	 * Try to lock a range of anon slots.
3215 	 * Use szc to determine anon slot(s) to appear atomic.
3216 	 * If szc = 0, then lock the anon slot and mark it busy.
3217 	 * If szc > 0, then lock the range of slots by getting the
3218 	 * anon_array_lock for the first anon slot, and mark only the
3219 	 * first anon slot busy to represent whole range being busy.
3220 	 * Fail if the mutex or the anon_array are busy.
3221 	 */
3222 
3223 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
3224 	an_idx = P2ALIGN(an_idx, page_get_pagecnt(amp->a_szc));
3225 	hash = ANON_ARRAY_HASH(amp, an_idx);
3226 	sobj->sync_mutex = mtx = &anon_array_lock[hash].pad_mutex;
3227 	sobj->sync_cv = &anon_array_cv[hash];
3228 	if (!mutex_tryenter(mtx)) {
3229 		return (EWOULDBLOCK);
3230 	}
3231 	ap_slot = anon_get_slot(amp->ahp, an_idx);
3232 	if (ANON_ISBUSY(ap_slot)) {
3233 		mutex_exit(mtx);
3234 		return (EWOULDBLOCK);
3235 	}
3236 	ANON_SETBUSY(ap_slot);
3237 	sobj->sync_data = ap_slot;
3238 	mutex_exit(mtx);
3239 	return (0);
3240 }
3241 
3242 void
3243 anon_array_exit(anon_sync_obj_t *sobj)
3244 {
3245 	mutex_enter(sobj->sync_mutex);
3246 	ASSERT(ANON_ISBUSY(sobj->sync_data));
3247 	ANON_CLRBUSY(sobj->sync_data);
3248 	if (CV_HAS_WAITERS(sobj->sync_cv))
3249 		cv_broadcast(sobj->sync_cv);
3250 	mutex_exit(sobj->sync_mutex);
3251 }
3252