xref: /titanic_50/usr/src/uts/common/vm/seg_vn.c (revision c5c4113dfcabb1eed3d4bdf7609de5170027a794)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 #pragma ident	"%Z%%M%	%I%	%E% SMI"
40 
41 /*
42  * VM - shared or copy-on-write from a vnode/anonymous memory.
43  */
44 
45 #include <sys/types.h>
46 #include <sys/param.h>
47 #include <sys/t_lock.h>
48 #include <sys/errno.h>
49 #include <sys/systm.h>
50 #include <sys/mman.h>
51 #include <sys/debug.h>
52 #include <sys/cred.h>
53 #include <sys/vmsystm.h>
54 #include <sys/tuneable.h>
55 #include <sys/bitmap.h>
56 #include <sys/swap.h>
57 #include <sys/kmem.h>
58 #include <sys/sysmacros.h>
59 #include <sys/vtrace.h>
60 #include <sys/cmn_err.h>
61 #include <sys/callb.h>
62 #include <sys/vm.h>
63 #include <sys/dumphdr.h>
64 #include <sys/lgrp.h>
65 
66 #include <vm/hat.h>
67 #include <vm/as.h>
68 #include <vm/seg.h>
69 #include <vm/seg_vn.h>
70 #include <vm/pvn.h>
71 #include <vm/anon.h>
72 #include <vm/page.h>
73 #include <vm/vpage.h>
74 #include <sys/proc.h>
75 #include <sys/task.h>
76 #include <sys/project.h>
77 #include <sys/zone.h>
78 #include <sys/shm_impl.h>
79 /*
80  * Private seg op routines.
81  */
82 static int	segvn_dup(struct seg *seg, struct seg *newseg);
83 static int	segvn_unmap(struct seg *seg, caddr_t addr, size_t len);
84 static void	segvn_free(struct seg *seg);
85 static faultcode_t segvn_fault(struct hat *hat, struct seg *seg,
86 		    caddr_t addr, size_t len, enum fault_type type,
87 		    enum seg_rw rw);
88 static faultcode_t segvn_faulta(struct seg *seg, caddr_t addr);
89 static int	segvn_setprot(struct seg *seg, caddr_t addr,
90 		    size_t len, uint_t prot);
91 static int	segvn_checkprot(struct seg *seg, caddr_t addr,
92 		    size_t len, uint_t prot);
93 static int	segvn_kluster(struct seg *seg, caddr_t addr, ssize_t delta);
94 static size_t	segvn_swapout(struct seg *seg);
95 static int	segvn_sync(struct seg *seg, caddr_t addr, size_t len,
96 		    int attr, uint_t flags);
97 static size_t	segvn_incore(struct seg *seg, caddr_t addr, size_t len,
98 		    char *vec);
99 static int	segvn_lockop(struct seg *seg, caddr_t addr, size_t len,
100 		    int attr, int op, ulong_t *lockmap, size_t pos);
101 static int	segvn_getprot(struct seg *seg, caddr_t addr, size_t len,
102 		    uint_t *protv);
103 static u_offset_t	segvn_getoffset(struct seg *seg, caddr_t addr);
104 static int	segvn_gettype(struct seg *seg, caddr_t addr);
105 static int	segvn_getvp(struct seg *seg, caddr_t addr,
106 		    struct vnode **vpp);
107 static int	segvn_advise(struct seg *seg, caddr_t addr, size_t len,
108 		    uint_t behav);
109 static void	segvn_dump(struct seg *seg);
110 static int	segvn_pagelock(struct seg *seg, caddr_t addr, size_t len,
111 		    struct page ***ppp, enum lock_type type, enum seg_rw rw);
112 static int	segvn_setpagesize(struct seg *seg, caddr_t addr, size_t len,
113 		    uint_t szc);
114 static int	segvn_getmemid(struct seg *seg, caddr_t addr,
115 		    memid_t *memidp);
116 static lgrp_mem_policy_info_t	*segvn_getpolicy(struct seg *, caddr_t);
117 static int	segvn_capable(struct seg *seg, segcapability_t capable);
118 
119 struct	seg_ops segvn_ops = {
120 	segvn_dup,
121 	segvn_unmap,
122 	segvn_free,
123 	segvn_fault,
124 	segvn_faulta,
125 	segvn_setprot,
126 	segvn_checkprot,
127 	segvn_kluster,
128 	segvn_swapout,
129 	segvn_sync,
130 	segvn_incore,
131 	segvn_lockop,
132 	segvn_getprot,
133 	segvn_getoffset,
134 	segvn_gettype,
135 	segvn_getvp,
136 	segvn_advise,
137 	segvn_dump,
138 	segvn_pagelock,
139 	segvn_setpagesize,
140 	segvn_getmemid,
141 	segvn_getpolicy,
142 	segvn_capable,
143 };
144 
145 /*
146  * Common zfod structures, provided as a shorthand for others to use.
147  */
148 static segvn_crargs_t zfod_segvn_crargs =
149 	SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL);
150 static segvn_crargs_t kzfod_segvn_crargs =
151 	SEGVN_ZFOD_ARGS(PROT_ZFOD & ~PROT_USER,
152 	PROT_ALL & ~PROT_USER);
153 static segvn_crargs_t stack_noexec_crargs =
154 	SEGVN_ZFOD_ARGS(PROT_ZFOD & ~PROT_EXEC, PROT_ALL);
155 
156 caddr_t	zfod_argsp = (caddr_t)&zfod_segvn_crargs;	/* user zfod argsp */
157 caddr_t	kzfod_argsp = (caddr_t)&kzfod_segvn_crargs;	/* kernel zfod argsp */
158 caddr_t	stack_exec_argsp = (caddr_t)&zfod_segvn_crargs;	/* executable stack */
159 caddr_t	stack_noexec_argsp = (caddr_t)&stack_noexec_crargs; /* noexec stack */
160 
161 #define	vpgtob(n)	((n) * sizeof (struct vpage))	/* For brevity */
162 
163 size_t	segvn_comb_thrshld = UINT_MAX;	/* patchable -- see 1196681 */
164 
165 static int	segvn_concat(struct seg *, struct seg *, int);
166 static int	segvn_extend_prev(struct seg *, struct seg *,
167 		    struct segvn_crargs *, size_t);
168 static int	segvn_extend_next(struct seg *, struct seg *,
169 		    struct segvn_crargs *, size_t);
170 static void	segvn_softunlock(struct seg *, caddr_t, size_t, enum seg_rw);
171 static void	segvn_pagelist_rele(page_t **);
172 static void	segvn_setvnode_mpss(vnode_t *);
173 static void	segvn_relocate_pages(page_t **, page_t *);
174 static int	segvn_full_szcpages(page_t **, uint_t, int *, uint_t *);
175 static int	segvn_fill_vp_pages(struct segvn_data *, vnode_t *, u_offset_t,
176     uint_t, page_t **, page_t **, uint_t *, int *);
177 static faultcode_t segvn_fault_vnodepages(struct hat *, struct seg *, caddr_t,
178     caddr_t, enum fault_type, enum seg_rw, caddr_t, caddr_t, int);
179 static faultcode_t segvn_fault_anonpages(struct hat *, struct seg *, caddr_t,
180     caddr_t, enum fault_type, enum seg_rw, caddr_t, caddr_t, int);
181 static faultcode_t segvn_faultpage(struct hat *, struct seg *, caddr_t,
182     u_offset_t, struct vpage *, page_t **, uint_t,
183     enum fault_type, enum seg_rw, int, int);
184 static void	segvn_vpage(struct seg *);
185 
186 static void segvn_purge(struct seg *seg);
187 static int segvn_reclaim(struct seg *, caddr_t, size_t, struct page **,
188     enum seg_rw);
189 
190 static int sameprot(struct seg *, caddr_t, size_t);
191 
192 static int segvn_demote_range(struct seg *, caddr_t, size_t, int, uint_t);
193 static int segvn_clrszc(struct seg *);
194 static struct seg *segvn_split_seg(struct seg *, caddr_t);
195 static int segvn_claim_pages(struct seg *, struct vpage *, u_offset_t,
196     ulong_t, uint_t);
197 
198 static int segvn_pp_lock_anonpages(page_t *, int);
199 static void segvn_pp_unlock_anonpages(page_t *, int);
200 
201 static struct kmem_cache *segvn_cache;
202 
203 #ifdef VM_STATS
204 static struct segvnvmstats_str {
205 	ulong_t	fill_vp_pages[31];
206 	ulong_t fltvnpages[49];
207 	ulong_t	fullszcpages[10];
208 	ulong_t	relocatepages[3];
209 	ulong_t	fltanpages[17];
210 	ulong_t pagelock[3];
211 	ulong_t	demoterange[3];
212 } segvnvmstats;
213 #endif /* VM_STATS */
214 
215 #define	SDR_RANGE	1		/* demote entire range */
216 #define	SDR_END		2		/* demote non aligned ends only */
217 
218 #define	CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr) {	    \
219 		if ((len) != 0) { 		      	      		      \
220 			lpgaddr = (caddr_t)P2ALIGN((uintptr_t)(addr), pgsz);  \
221 			ASSERT(lpgaddr >= (seg)->s_base);	      	      \
222 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)((addr) +    \
223 			    (len)), pgsz);				      \
224 			ASSERT(lpgeaddr > lpgaddr);		      	      \
225 			ASSERT(lpgeaddr <= (seg)->s_base + (seg)->s_size);    \
226 		} else {					      	      \
227 			lpgeaddr = lpgaddr = (addr);	      		      \
228 		}							      \
229 	}
230 
231 /*ARGSUSED*/
232 static int
233 segvn_cache_constructor(void *buf, void *cdrarg, int kmflags)
234 {
235 	struct segvn_data *svd = buf;
236 
237 	rw_init(&svd->lock, NULL, RW_DEFAULT, NULL);
238 	mutex_init(&svd->segp_slock, NULL, MUTEX_DEFAULT, NULL);
239 	svd->svn_trnext = svd->svn_trprev = NULL;
240 	return (0);
241 }
242 
243 /*ARGSUSED1*/
244 static void
245 segvn_cache_destructor(void *buf, void *cdrarg)
246 {
247 	struct segvn_data *svd = buf;
248 
249 	rw_destroy(&svd->lock);
250 	mutex_destroy(&svd->segp_slock);
251 }
252 
253 /*ARGSUSED*/
254 static int
255 svntr_cache_constructor(void *buf, void *cdrarg, int kmflags)
256 {
257 	bzero(buf, sizeof (svntr_t));
258 	return (0);
259 }
260 
261 /*
262  * Patching this variable to non-zero allows the system to run with
263  * stacks marked as "not executable".  It's a bit of a kludge, but is
264  * provided as a tweakable for platforms that export those ABIs
265  * (e.g. sparc V8) that have executable stacks enabled by default.
266  * There are also some restrictions for platforms that don't actually
267  * implement 'noexec' protections.
268  *
269  * Once enabled, the system is (therefore) unable to provide a fully
270  * ABI-compliant execution environment, though practically speaking,
271  * most everything works.  The exceptions are generally some interpreters
272  * and debuggers that create executable code on the stack and jump
273  * into it (without explicitly mprotecting the address range to include
274  * PROT_EXEC).
275  *
276  * One important class of applications that are disabled are those
277  * that have been transformed into malicious agents using one of the
278  * numerous "buffer overflow" attacks.  See 4007890.
279  */
280 int noexec_user_stack = 0;
281 int noexec_user_stack_log = 1;
282 
283 int segvn_lpg_disable = 0;
284 uint_t segvn_maxpgszc = 0;
285 
286 ulong_t segvn_vmpss_clrszc_cnt;
287 ulong_t segvn_vmpss_clrszc_err;
288 ulong_t segvn_fltvnpages_clrszc_cnt;
289 ulong_t segvn_fltvnpages_clrszc_err;
290 ulong_t segvn_setpgsz_align_err;
291 ulong_t segvn_setpgsz_anon_align_err;
292 ulong_t segvn_setpgsz_getattr_err;
293 ulong_t segvn_setpgsz_eof_err;
294 ulong_t segvn_faultvnmpss_align_err1;
295 ulong_t segvn_faultvnmpss_align_err2;
296 ulong_t segvn_faultvnmpss_align_err3;
297 ulong_t segvn_faultvnmpss_align_err4;
298 ulong_t segvn_faultvnmpss_align_err5;
299 ulong_t	segvn_vmpss_pageio_deadlk_err;
300 
301 /*
302  * Segvn supports text replication optimization for NUMA platforms. Text
303  * replica's are represented by anon maps (amp). There's one amp per text file
304  * region per lgroup. A process chooses the amp for each of its text mappings
305  * based on the lgroup assignment of its main thread (t_tid = 1). All
306  * processes that want a replica on a particular lgroup for the same text file
307  * mapping share the same amp. amp's are looked up in svntr_hashtab hash table
308  * with vp,off,size,szc used as a key. Text replication segments are read only
309  * MAP_PRIVATE|MAP_TEXT segments that map vnode. Replication is achieved by
310  * forcing COW faults from vnode to amp and mapping amp pages instead of vnode
311  * pages. Replication amp is assigned to a segment when it gets its first
312  * pagefault. To handle main thread lgroup rehoming segvn_trasync_thread
313  * rechecks periodically if the process still maps an amp local to the main
314  * thread. If not async thread forces process to remap to an amp in the new
315  * home lgroup of the main thread. Current text replication implementation
316  * only provides the benefit to workloads that do most of their work in the
317  * main thread of a process or all the threads of a process run in the same
318  * lgroup. To extend text replication benefit to different types of
319  * multithreaded workloads further work would be needed in the hat layer to
320  * allow the same virtual address in the same hat to simultaneously map
321  * different physical addresses (i.e. page table replication would be needed
322  * for x86).
323  *
324  * amp pages are used instead of vnode pages as long as segment has a very
325  * simple life cycle.  It's created via segvn_create(), handles S_EXEC
326  * (S_READ) pagefaults and is fully unmapped.  If anything more complicated
327  * happens such as protection is changed, real COW fault happens, pagesize is
328  * changed, MC_LOCK is requested or segment is partially unmapped we turn off
329  * text replication by converting the segment back to vnode only segment
330  * (unmap segment's address range and set svd->amp to NULL).
331  *
332  * The original file can be changed after amp is inserted into
333  * svntr_hashtab. Processes that are launched after the file is already
334  * changed can't use the replica's created prior to the file change. To
335  * implement this functionality hash entries are timestamped. Replica's can
336  * only be used if current file modification time is the same as the timestamp
337  * saved when hash entry was created. However just timestamps alone are not
338  * sufficient to detect file modification via mmap(MAP_SHARED) mappings. We
339  * deal with file changes via MAP_SHARED mappings differently. When writable
340  * MAP_SHARED mappings are created to vnodes marked as executable we mark all
341  * existing replica's for this vnode as not usable for future text
342  * mappings. And we don't create new replica's for files that currently have
343  * potentially writable MAP_SHARED mappings (i.e. vn_is_mapped(V_WRITE) is
344  * true).
345  */
346 
347 #define	SEGVN_TEXTREPL_MAXBYTES_FACTOR	(20)
348 size_t	segvn_textrepl_max_bytes_factor = SEGVN_TEXTREPL_MAXBYTES_FACTOR;
349 
350 static ulong_t			svntr_hashtab_sz = 512;
351 static svntr_bucket_t		*svntr_hashtab = NULL;
352 static struct kmem_cache	*svntr_cache;
353 static svntr_stats_t		*segvn_textrepl_stats;
354 static ksema_t 			segvn_trasync_sem;
355 
356 int				segvn_disable_textrepl = 0;
357 size_t				textrepl_size_thresh = (size_t)-1;
358 size_t				segvn_textrepl_bytes = 0;
359 size_t				segvn_textrepl_max_bytes = 0;
360 clock_t				segvn_update_textrepl_interval = 0;
361 int				segvn_update_tr_time = 10;
362 int				segvn_disable_textrepl_update = 0;
363 
364 static void segvn_textrepl(struct seg *);
365 static void segvn_textunrepl(struct seg *, int);
366 static void segvn_inval_trcache(vnode_t *);
367 static void segvn_trasync_thread(void);
368 static void segvn_trupdate_wakeup(void *);
369 static void segvn_trupdate(void);
370 static void segvn_trupdate_seg(struct seg *, segvn_data_t *, svntr_t *,
371     ulong_t);
372 
373 /*
374  * Initialize segvn data structures
375  */
376 void
377 segvn_init(void)
378 {
379 	uint_t maxszc;
380 	uint_t szc;
381 	size_t pgsz;
382 
383 	segvn_cache = kmem_cache_create("segvn_cache",
384 		sizeof (struct segvn_data), 0,
385 		segvn_cache_constructor, segvn_cache_destructor, NULL,
386 		NULL, NULL, 0);
387 
388 	if (segvn_lpg_disable != 0)
389 		return;
390 	szc = maxszc = page_num_pagesizes() - 1;
391 	if (szc == 0) {
392 		segvn_lpg_disable = 1;
393 		return;
394 	}
395 	if (page_get_pagesize(0) != PAGESIZE) {
396 		panic("segvn_init: bad szc 0");
397 		/*NOTREACHED*/
398 	}
399 	while (szc != 0) {
400 		pgsz = page_get_pagesize(szc);
401 		if (pgsz <= PAGESIZE || !IS_P2ALIGNED(pgsz, pgsz)) {
402 			panic("segvn_init: bad szc %d", szc);
403 			/*NOTREACHED*/
404 		}
405 		szc--;
406 	}
407 	if (segvn_maxpgszc == 0 || segvn_maxpgszc > maxszc)
408 		segvn_maxpgszc = maxszc;
409 
410 	if (lgrp_optimizations() && textrepl_size_thresh != (size_t)-1 &&
411 	    !segvn_disable_textrepl) {
412 		ulong_t i;
413 		size_t hsz = svntr_hashtab_sz * sizeof (svntr_bucket_t);
414 
415 		svntr_cache = kmem_cache_create("svntr_cache",
416 		    sizeof (svntr_t), 0, svntr_cache_constructor, NULL,
417 		    NULL, NULL, NULL, 0);
418 		svntr_hashtab = kmem_zalloc(hsz, KM_SLEEP);
419 		for (i = 0; i < svntr_hashtab_sz; i++) {
420 			mutex_init(&svntr_hashtab[i].tr_lock,  NULL,
421 			    MUTEX_DEFAULT, NULL);
422 		}
423 		segvn_textrepl_max_bytes = ptob(physmem) /
424 		    segvn_textrepl_max_bytes_factor;
425 		segvn_textrepl_stats = kmem_zalloc(NCPU *
426 		    sizeof (svntr_stats_t), KM_SLEEP);
427 		sema_init(&segvn_trasync_sem, 0, NULL, SEMA_DEFAULT, NULL);
428 		(void) thread_create(NULL, 0, segvn_trasync_thread,
429 		    NULL, 0, &p0, TS_RUN, minclsyspri);
430 	}
431 }
432 
433 #define	SEGVN_PAGEIO	((void *)0x1)
434 #define	SEGVN_NOPAGEIO	((void *)0x2)
435 
436 static void
437 segvn_setvnode_mpss(vnode_t *vp)
438 {
439 	int err;
440 
441 	ASSERT(vp->v_mpssdata == NULL ||
442 	    vp->v_mpssdata == SEGVN_PAGEIO ||
443 	    vp->v_mpssdata == SEGVN_NOPAGEIO);
444 
445 	if (vp->v_mpssdata == NULL) {
446 		if (vn_vmpss_usepageio(vp)) {
447 			err = VOP_PAGEIO(vp, (page_t *)NULL,
448 			    (u_offset_t)0, 0, 0, CRED());
449 		} else {
450 			err = ENOSYS;
451 		}
452 		/*
453 		 * set v_mpssdata just once per vnode life
454 		 * so that it never changes.
455 		 */
456 		mutex_enter(&vp->v_lock);
457 		if (vp->v_mpssdata == NULL) {
458 			if (err == EINVAL) {
459 				vp->v_mpssdata = SEGVN_PAGEIO;
460 			} else {
461 				vp->v_mpssdata = SEGVN_NOPAGEIO;
462 			}
463 		}
464 		mutex_exit(&vp->v_lock);
465 	}
466 }
467 
468 int
469 segvn_create(struct seg *seg, void *argsp)
470 {
471 	struct segvn_crargs *a = (struct segvn_crargs *)argsp;
472 	struct segvn_data *svd;
473 	size_t swresv = 0;
474 	struct cred *cred;
475 	struct anon_map *amp;
476 	int error = 0;
477 	size_t pgsz;
478 	lgrp_mem_policy_t mpolicy = LGRP_MEM_POLICY_DEFAULT;
479 	int trok = 0;
480 
481 
482 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
483 
484 	if (a->type != MAP_PRIVATE && a->type != MAP_SHARED) {
485 		panic("segvn_create type");
486 		/*NOTREACHED*/
487 	}
488 
489 	/*
490 	 * Check arguments.  If a shared anon structure is given then
491 	 * it is illegal to also specify a vp.
492 	 */
493 	if (a->amp != NULL && a->vp != NULL) {
494 		panic("segvn_create anon_map");
495 		/*NOTREACHED*/
496 	}
497 
498 	/* MAP_NORESERVE on a MAP_SHARED segment is meaningless. */
499 	if (a->type == MAP_SHARED)
500 		a->flags &= ~MAP_NORESERVE;
501 
502 	if (a->szc != 0) {
503 		if (segvn_lpg_disable != 0 || (a->szc == AS_MAP_NO_LPOOB) ||
504 		    (a->amp != NULL && a->type == MAP_PRIVATE) ||
505 		    (a->flags & MAP_NORESERVE) || seg->s_as == &kas) {
506 			a->szc = 0;
507 		} else {
508 			if (a->szc > segvn_maxpgszc)
509 				a->szc = segvn_maxpgszc;
510 			pgsz = page_get_pagesize(a->szc);
511 			if (!IS_P2ALIGNED(seg->s_base, pgsz) ||
512 			    !IS_P2ALIGNED(seg->s_size, pgsz)) {
513 				a->szc = 0;
514 			} else if (a->vp != NULL) {
515 				extern struct vnode kvp;
516 				if (IS_SWAPFSVP(a->vp) || VN_ISKAS(a->vp)) {
517 					/*
518 					 * paranoid check.
519 					 * hat_page_demote() is not supported
520 					 * on swapfs pages.
521 					 */
522 					a->szc = 0;
523 				} else if (map_addr_vacalign_check(seg->s_base,
524 				    a->offset & PAGEMASK)) {
525 					a->szc = 0;
526 				}
527 			} else if (a->amp != NULL) {
528 				pgcnt_t anum = btopr(a->offset);
529 				pgcnt_t pgcnt = page_get_pagecnt(a->szc);
530 				if (!IS_P2ALIGNED(anum, pgcnt)) {
531 					a->szc = 0;
532 				}
533 			}
534 		}
535 	}
536 
537 	/*
538 	 * If segment may need private pages, reserve them now.
539 	 */
540 	if (!(a->flags & MAP_NORESERVE) && ((a->vp == NULL && a->amp == NULL) ||
541 	    (a->type == MAP_PRIVATE && (a->prot & PROT_WRITE)))) {
542 		if (anon_resv(seg->s_size) == 0)
543 			return (EAGAIN);
544 		swresv = seg->s_size;
545 		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
546 			seg, swresv, 1);
547 	}
548 
549 	/*
550 	 * Reserve any mapping structures that may be required.
551 	 */
552 	hat_map(seg->s_as->a_hat, seg->s_base, seg->s_size, HAT_MAP);
553 
554 	if (a->cred) {
555 		cred = a->cred;
556 		crhold(cred);
557 	} else {
558 		crhold(cred = CRED());
559 	}
560 
561 	/* Inform the vnode of the new mapping */
562 	if (a->vp != NULL) {
563 		error = VOP_ADDMAP(a->vp, a->offset & PAGEMASK,
564 		    seg->s_as, seg->s_base, seg->s_size, a->prot,
565 		    a->maxprot, a->type, cred);
566 		if (error) {
567 			if (swresv != 0) {
568 				anon_unresv(swresv);
569 				TRACE_3(TR_FAC_VM, TR_ANON_PROC,
570 					"anon proc:%p %lu %u",
571 					seg, swresv, 0);
572 			}
573 			crfree(cred);
574 			hat_unload(seg->s_as->a_hat, seg->s_base,
575 				seg->s_size, HAT_UNLOAD_UNMAP);
576 			return (error);
577 		}
578 		trok = ((a->flags & MAP_TEXT) &&
579 		    (seg->s_size > textrepl_size_thresh ||
580 			(a->flags & _MAP_TEXTREPL)) &&
581 		    lgrp_optimizations() && svntr_hashtab != NULL &&
582 		    a->type == MAP_PRIVATE && swresv == 0 &&
583 		    !(a->flags & MAP_NORESERVE) &&
584 		    seg->s_as != &kas && a->vp->v_type == VREG);
585 	}
586 
587 	/*
588 	 * If more than one segment in the address space, and they're adjacent
589 	 * virtually, try to concatenate them.  Don't concatenate if an
590 	 * explicit anon_map structure was supplied (e.g., SystemV shared
591 	 * memory) or if we'll use text replication for this segment.
592 	 */
593 	if (a->amp == NULL && !trok) {
594 		struct seg *pseg, *nseg;
595 		struct segvn_data *psvd, *nsvd;
596 		lgrp_mem_policy_t ppolicy, npolicy;
597 		uint_t	lgrp_mem_policy_flags = 0;
598 		extern lgrp_mem_policy_t lgrp_mem_default_policy;
599 
600 		/*
601 		 * Memory policy flags (lgrp_mem_policy_flags) is valid when
602 		 * extending stack/heap segments.
603 		 */
604 		if ((a->vp == NULL) && (a->type == MAP_PRIVATE) &&
605 		    !(a->flags & MAP_NORESERVE) && (seg->s_as != &kas)) {
606 			lgrp_mem_policy_flags = a->lgrp_mem_policy_flags;
607 		} else {
608 			/*
609 			 * Get policy when not extending it from another segment
610 			 */
611 			mpolicy = lgrp_mem_policy_default(seg->s_size, a->type);
612 		}
613 
614 		/*
615 		 * First, try to concatenate the previous and new segments
616 		 */
617 		pseg = AS_SEGPREV(seg->s_as, seg);
618 		if (pseg != NULL &&
619 		    pseg->s_base + pseg->s_size == seg->s_base &&
620 		    pseg->s_ops == &segvn_ops) {
621 			/*
622 			 * Get memory allocation policy from previous segment.
623 			 * When extension is specified (e.g. for heap) apply
624 			 * this policy to the new segment regardless of the
625 			 * outcome of segment concatenation.  Extension occurs
626 			 * for non-default policy otherwise default policy is
627 			 * used and is based on extended segment size.
628 			 */
629 			psvd = (struct segvn_data *)pseg->s_data;
630 			ppolicy = psvd->policy_info.mem_policy;
631 			if (lgrp_mem_policy_flags ==
632 			    LGRP_MP_FLAG_EXTEND_UP) {
633 				if (ppolicy != lgrp_mem_default_policy) {
634 					mpolicy = ppolicy;
635 				} else {
636 					mpolicy = lgrp_mem_policy_default(
637 					    pseg->s_size + seg->s_size,
638 					    a->type);
639 				}
640 			}
641 
642 			if (mpolicy == ppolicy &&
643 			    (pseg->s_size + seg->s_size <=
644 			    segvn_comb_thrshld || psvd->amp == NULL) &&
645 			    segvn_extend_prev(pseg, seg, a, swresv) == 0) {
646 				/*
647 				 * success! now try to concatenate
648 				 * with following seg
649 				 */
650 				crfree(cred);
651 				nseg = AS_SEGNEXT(pseg->s_as, pseg);
652 				if (nseg != NULL &&
653 				    nseg != pseg &&
654 				    nseg->s_ops == &segvn_ops &&
655 				    pseg->s_base + pseg->s_size ==
656 				    nseg->s_base)
657 					(void) segvn_concat(pseg, nseg, 0);
658 				ASSERT(pseg->s_szc == 0 ||
659 				    (a->szc == pseg->s_szc &&
660 				    IS_P2ALIGNED(pseg->s_base, pgsz) &&
661 				    IS_P2ALIGNED(pseg->s_size, pgsz)));
662 				return (0);
663 			}
664 		}
665 
666 		/*
667 		 * Failed, so try to concatenate with following seg
668 		 */
669 		nseg = AS_SEGNEXT(seg->s_as, seg);
670 		if (nseg != NULL &&
671 		    seg->s_base + seg->s_size == nseg->s_base &&
672 		    nseg->s_ops == &segvn_ops) {
673 			/*
674 			 * Get memory allocation policy from next segment.
675 			 * When extension is specified (e.g. for stack) apply
676 			 * this policy to the new segment regardless of the
677 			 * outcome of segment concatenation.  Extension occurs
678 			 * for non-default policy otherwise default policy is
679 			 * used and is based on extended segment size.
680 			 */
681 			nsvd = (struct segvn_data *)nseg->s_data;
682 			npolicy = nsvd->policy_info.mem_policy;
683 			if (lgrp_mem_policy_flags ==
684 			    LGRP_MP_FLAG_EXTEND_DOWN) {
685 				if (npolicy != lgrp_mem_default_policy) {
686 					mpolicy = npolicy;
687 				} else {
688 					mpolicy = lgrp_mem_policy_default(
689 					    nseg->s_size + seg->s_size,
690 					    a->type);
691 				}
692 			}
693 
694 			if (mpolicy == npolicy &&
695 			    segvn_extend_next(seg, nseg, a, swresv) == 0) {
696 				crfree(cred);
697 				ASSERT(nseg->s_szc == 0 ||
698 				    (a->szc == nseg->s_szc &&
699 				    IS_P2ALIGNED(nseg->s_base, pgsz) &&
700 				    IS_P2ALIGNED(nseg->s_size, pgsz)));
701 				return (0);
702 			}
703 		}
704 	}
705 
706 	if (a->vp != NULL) {
707 		VN_HOLD(a->vp);
708 		if (a->type == MAP_SHARED)
709 			lgrp_shm_policy_init(NULL, a->vp);
710 	}
711 	svd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
712 
713 	seg->s_ops = &segvn_ops;
714 	seg->s_data = (void *)svd;
715 	seg->s_szc = a->szc;
716 
717 	svd->seg = seg;
718 	svd->vp = a->vp;
719 	/*
720 	 * Anonymous mappings have no backing file so the offset is meaningless.
721 	 */
722 	svd->offset = a->vp ? (a->offset & PAGEMASK) : 0;
723 	svd->prot = a->prot;
724 	svd->maxprot = a->maxprot;
725 	svd->pageprot = 0;
726 	svd->type = a->type;
727 	svd->vpage = NULL;
728 	svd->cred = cred;
729 	svd->advice = MADV_NORMAL;
730 	svd->pageadvice = 0;
731 	svd->flags = (ushort_t)a->flags;
732 	svd->softlockcnt = 0;
733 	if (a->szc != 0 && a->vp != NULL) {
734 		segvn_setvnode_mpss(a->vp);
735 	}
736 	if (svd->type == MAP_SHARED && svd->vp != NULL &&
737 	    (svd->vp->v_flag & VVMEXEC) && (svd->prot & PROT_WRITE)) {
738 		ASSERT(vn_is_mapped(svd->vp, V_WRITE));
739 		segvn_inval_trcache(svd->vp);
740 	}
741 
742 	amp = a->amp;
743 	if ((svd->amp = amp) == NULL) {
744 		svd->anon_index = 0;
745 		if (svd->type == MAP_SHARED) {
746 			svd->swresv = 0;
747 			/*
748 			 * Shared mappings to a vp need no other setup.
749 			 * If we have a shared mapping to an anon_map object
750 			 * which hasn't been allocated yet,  allocate the
751 			 * struct now so that it will be properly shared
752 			 * by remembering the swap reservation there.
753 			 */
754 			if (a->vp == NULL) {
755 				svd->amp = anonmap_alloc(seg->s_size, swresv,
756 				    ANON_SLEEP);
757 				svd->amp->a_szc = seg->s_szc;
758 			}
759 		} else {
760 			/*
761 			 * Private mapping (with or without a vp).
762 			 * Allocate anon_map when needed.
763 			 */
764 			svd->swresv = swresv;
765 		}
766 	} else {
767 		pgcnt_t anon_num;
768 
769 		/*
770 		 * Mapping to an existing anon_map structure without a vp.
771 		 * For now we will insure that the segment size isn't larger
772 		 * than the size - offset gives us.  Later on we may wish to
773 		 * have the anon array dynamically allocated itself so that
774 		 * we don't always have to allocate all the anon pointer slots.
775 		 * This of course involves adding extra code to check that we
776 		 * aren't trying to use an anon pointer slot beyond the end
777 		 * of the currently allocated anon array.
778 		 */
779 		if ((amp->size - a->offset) < seg->s_size) {
780 			panic("segvn_create anon_map size");
781 			/*NOTREACHED*/
782 		}
783 
784 		anon_num = btopr(a->offset);
785 
786 		if (a->type == MAP_SHARED) {
787 			/*
788 			 * SHARED mapping to a given anon_map.
789 			 */
790 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
791 			amp->refcnt++;
792 			if (a->szc > amp->a_szc) {
793 				amp->a_szc = a->szc;
794 			}
795 			ANON_LOCK_EXIT(&amp->a_rwlock);
796 			svd->anon_index = anon_num;
797 			svd->swresv = 0;
798 		} else {
799 			/*
800 			 * PRIVATE mapping to a given anon_map.
801 			 * Make sure that all the needed anon
802 			 * structures are created (so that we will
803 			 * share the underlying pages if nothing
804 			 * is written by this mapping) and then
805 			 * duplicate the anon array as is done
806 			 * when a privately mapped segment is dup'ed.
807 			 */
808 			struct anon *ap;
809 			caddr_t addr;
810 			caddr_t eaddr;
811 			ulong_t	anon_idx;
812 			int hat_flag = HAT_LOAD;
813 
814 			if (svd->flags & MAP_TEXT) {
815 				hat_flag |= HAT_LOAD_TEXT;
816 			}
817 
818 			svd->amp = anonmap_alloc(seg->s_size, 0, ANON_SLEEP);
819 			svd->amp->a_szc = seg->s_szc;
820 			svd->anon_index = 0;
821 			svd->swresv = swresv;
822 
823 			/*
824 			 * Prevent 2 threads from allocating anon
825 			 * slots simultaneously.
826 			 */
827 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
828 			eaddr = seg->s_base + seg->s_size;
829 
830 			for (anon_idx = anon_num, addr = seg->s_base;
831 			    addr < eaddr; addr += PAGESIZE, anon_idx++) {
832 				page_t *pp;
833 
834 				if ((ap = anon_get_ptr(amp->ahp,
835 				    anon_idx)) != NULL)
836 					continue;
837 
838 				/*
839 				 * Allocate the anon struct now.
840 				 * Might as well load up translation
841 				 * to the page while we're at it...
842 				 */
843 				pp = anon_zero(seg, addr, &ap, cred);
844 				if (ap == NULL || pp == NULL) {
845 					panic("segvn_create anon_zero");
846 					/*NOTREACHED*/
847 				}
848 
849 				/*
850 				 * Re-acquire the anon_map lock and
851 				 * initialize the anon array entry.
852 				 */
853 				ASSERT(anon_get_ptr(amp->ahp,
854 				    anon_idx) == NULL);
855 				(void) anon_set_ptr(amp->ahp, anon_idx, ap,
856 				    ANON_SLEEP);
857 
858 				ASSERT(seg->s_szc == 0);
859 				ASSERT(!IS_VMODSORT(pp->p_vnode));
860 
861 				hat_memload(seg->s_as->a_hat, addr, pp,
862 					svd->prot & ~PROT_WRITE, hat_flag);
863 
864 				page_unlock(pp);
865 			}
866 			ASSERT(seg->s_szc == 0);
867 			anon_dup(amp->ahp, anon_num, svd->amp->ahp,
868 			    0, seg->s_size);
869 			ANON_LOCK_EXIT(&amp->a_rwlock);
870 		}
871 	}
872 
873 	/*
874 	 * Set default memory allocation policy for segment
875 	 *
876 	 * Always set policy for private memory at least for initialization
877 	 * even if this is a shared memory segment
878 	 */
879 	(void) lgrp_privm_policy_set(mpolicy, &svd->policy_info, seg->s_size);
880 
881 	if (svd->type == MAP_SHARED)
882 		(void) lgrp_shm_policy_set(mpolicy, svd->amp, svd->anon_index,
883 		    svd->vp, svd->offset, seg->s_size);
884 
885 	ASSERT(!trok || !(svd->prot & PROT_WRITE));
886 	svd->tr_state = trok ? SEGVN_TR_INIT : SEGVN_TR_OFF;
887 
888 	return (0);
889 }
890 
891 /*
892  * Concatenate two existing segments, if possible.
893  * Return 0 on success, -1 if two segments are not compatible
894  * or -2 on memory allocation failure.
895  * If amp_cat == 1 then try and concat segments with anon maps
896  */
897 static int
898 segvn_concat(struct seg *seg1, struct seg *seg2, int amp_cat)
899 {
900 	struct segvn_data *svd1 = seg1->s_data;
901 	struct segvn_data *svd2 = seg2->s_data;
902 	struct anon_map *amp1 = svd1->amp;
903 	struct anon_map *amp2 = svd2->amp;
904 	struct vpage *vpage1 = svd1->vpage;
905 	struct vpage *vpage2 = svd2->vpage, *nvpage = NULL;
906 	size_t size, nvpsize;
907 	pgcnt_t npages1, npages2;
908 
909 	ASSERT(seg1->s_as && seg2->s_as && seg1->s_as == seg2->s_as);
910 	ASSERT(AS_WRITE_HELD(seg1->s_as, &seg1->s_as->a_lock));
911 	ASSERT(seg1->s_ops == seg2->s_ops);
912 
913 	/* both segments exist, try to merge them */
914 #define	incompat(x)	(svd1->x != svd2->x)
915 	if (incompat(vp) || incompat(maxprot) ||
916 	    (!svd1->pageadvice && !svd2->pageadvice && incompat(advice)) ||
917 	    (!svd1->pageprot && !svd2->pageprot && incompat(prot)) ||
918 	    incompat(type) || incompat(cred) || incompat(flags) ||
919 	    seg1->s_szc != seg2->s_szc || incompat(policy_info.mem_policy) ||
920 	    (svd2->softlockcnt > 0))
921 		return (-1);
922 #undef incompat
923 
924 	/*
925 	 * vp == NULL implies zfod, offset doesn't matter
926 	 */
927 	if (svd1->vp != NULL &&
928 	    svd1->offset + seg1->s_size != svd2->offset) {
929 		return (-1);
930 	}
931 
932 	/*
933 	 * Don't concatenate if either segment uses text replication.
934 	 */
935 	if (svd1->tr_state != SEGVN_TR_OFF || svd2->tr_state != SEGVN_TR_OFF) {
936 		return (-1);
937 	}
938 
939 	/*
940 	 * Fail early if we're not supposed to concatenate
941 	 * segments with non NULL amp.
942 	 */
943 	if (amp_cat == 0 && (amp1 != NULL || amp2 != NULL)) {
944 		return (-1);
945 	}
946 
947 	if (svd1->vp == NULL && svd1->type == MAP_SHARED) {
948 		if (amp1 != amp2) {
949 			return (-1);
950 		}
951 		if (amp1 != NULL && svd1->anon_index + btop(seg1->s_size) !=
952 		    svd2->anon_index) {
953 			return (-1);
954 		}
955 		ASSERT(amp1 == NULL || amp1->refcnt >= 2);
956 	}
957 
958 	/*
959 	 * If either seg has vpages, create a new merged vpage array.
960 	 */
961 	if (vpage1 != NULL || vpage2 != NULL) {
962 		struct vpage *vp;
963 
964 		npages1 = seg_pages(seg1);
965 		npages2 = seg_pages(seg2);
966 		nvpsize = vpgtob(npages1 + npages2);
967 
968 		if ((nvpage = kmem_zalloc(nvpsize, KM_NOSLEEP)) == NULL) {
969 			return (-2);
970 		}
971 		if (vpage1 != NULL) {
972 			bcopy(vpage1, nvpage, vpgtob(npages1));
973 		}
974 		if (vpage2 != NULL) {
975 			bcopy(vpage2, nvpage + npages1, vpgtob(npages2));
976 		}
977 		for (vp = nvpage; vp < nvpage + npages1; vp++) {
978 			if (svd2->pageprot && !svd1->pageprot) {
979 				VPP_SETPROT(vp, svd1->prot);
980 			}
981 			if (svd2->pageadvice && !svd1->pageadvice) {
982 				VPP_SETADVICE(vp, svd1->advice);
983 			}
984 		}
985 		for (vp = nvpage + npages1;
986 		    vp < nvpage + npages1 + npages2; vp++) {
987 			if (svd1->pageprot && !svd2->pageprot) {
988 				VPP_SETPROT(vp, svd2->prot);
989 			}
990 			if (svd1->pageadvice && !svd2->pageadvice) {
991 				VPP_SETADVICE(vp, svd2->advice);
992 			}
993 		}
994 	}
995 
996 	/*
997 	 * If either segment has private pages, create a new merged anon
998 	 * array. If mergeing shared anon segments just decrement anon map's
999 	 * refcnt.
1000 	 */
1001 	if (amp1 != NULL && svd1->type == MAP_SHARED) {
1002 		ASSERT(amp1 == amp2 && svd1->vp == NULL);
1003 		ANON_LOCK_ENTER(&amp1->a_rwlock, RW_WRITER);
1004 		ASSERT(amp1->refcnt >= 2);
1005 		amp1->refcnt--;
1006 		ANON_LOCK_EXIT(&amp1->a_rwlock);
1007 		svd2->amp = NULL;
1008 	} else if (amp1 != NULL || amp2 != NULL) {
1009 		struct anon_hdr *nahp;
1010 		struct anon_map *namp = NULL;
1011 		size_t asize;
1012 
1013 		ASSERT(svd1->type == MAP_PRIVATE);
1014 
1015 		asize = seg1->s_size + seg2->s_size;
1016 		if ((nahp = anon_create(btop(asize), ANON_NOSLEEP)) == NULL) {
1017 			if (nvpage != NULL) {
1018 				kmem_free(nvpage, nvpsize);
1019 			}
1020 			return (-2);
1021 		}
1022 		if (amp1 != NULL) {
1023 			/*
1024 			 * XXX anon rwlock is not really needed because
1025 			 * this is a private segment and we are writers.
1026 			 */
1027 			ANON_LOCK_ENTER(&amp1->a_rwlock, RW_WRITER);
1028 			ASSERT(amp1->refcnt == 1);
1029 			if (anon_copy_ptr(amp1->ahp, svd1->anon_index,
1030 			    nahp, 0, btop(seg1->s_size), ANON_NOSLEEP)) {
1031 				anon_release(nahp, btop(asize));
1032 				ANON_LOCK_EXIT(&amp1->a_rwlock);
1033 				if (nvpage != NULL) {
1034 					kmem_free(nvpage, nvpsize);
1035 				}
1036 				return (-2);
1037 			}
1038 		}
1039 		if (amp2 != NULL) {
1040 			ANON_LOCK_ENTER(&amp2->a_rwlock, RW_WRITER);
1041 			ASSERT(amp2->refcnt == 1);
1042 			if (anon_copy_ptr(amp2->ahp, svd2->anon_index,
1043 			    nahp, btop(seg1->s_size), btop(seg2->s_size),
1044 			    ANON_NOSLEEP)) {
1045 				anon_release(nahp, btop(asize));
1046 				ANON_LOCK_EXIT(&amp2->a_rwlock);
1047 				if (amp1 != NULL) {
1048 					ANON_LOCK_EXIT(&amp1->a_rwlock);
1049 				}
1050 				if (nvpage != NULL) {
1051 					kmem_free(nvpage, nvpsize);
1052 				}
1053 				return (-2);
1054 			}
1055 		}
1056 		if (amp1 != NULL) {
1057 			namp = amp1;
1058 			anon_release(amp1->ahp, btop(amp1->size));
1059 		}
1060 		if (amp2 != NULL) {
1061 			if (namp == NULL) {
1062 				ASSERT(amp1 == NULL);
1063 				namp = amp2;
1064 				anon_release(amp2->ahp, btop(amp2->size));
1065 			} else {
1066 				amp2->refcnt--;
1067 				ANON_LOCK_EXIT(&amp2->a_rwlock);
1068 				anonmap_free(amp2);
1069 			}
1070 			svd2->amp = NULL; /* needed for seg_free */
1071 		}
1072 		namp->ahp = nahp;
1073 		namp->size = asize;
1074 		svd1->amp = namp;
1075 		svd1->anon_index = 0;
1076 		ANON_LOCK_EXIT(&namp->a_rwlock);
1077 	}
1078 	/*
1079 	 * Now free the old vpage structures.
1080 	 */
1081 	if (nvpage != NULL) {
1082 		if (vpage1 != NULL) {
1083 			kmem_free(vpage1, vpgtob(npages1));
1084 		}
1085 		if (vpage2 != NULL) {
1086 			svd2->vpage = NULL;
1087 			kmem_free(vpage2, vpgtob(npages2));
1088 		}
1089 		if (svd2->pageprot) {
1090 			svd1->pageprot = 1;
1091 		}
1092 		if (svd2->pageadvice) {
1093 			svd1->pageadvice = 1;
1094 		}
1095 		svd1->vpage = nvpage;
1096 	}
1097 
1098 	/* all looks ok, merge segments */
1099 	svd1->swresv += svd2->swresv;
1100 	svd2->swresv = 0;  /* so seg_free doesn't release swap space */
1101 	size = seg2->s_size;
1102 	seg_free(seg2);
1103 	seg1->s_size += size;
1104 	return (0);
1105 }
1106 
1107 /*
1108  * Extend the previous segment (seg1) to include the
1109  * new segment (seg2 + a), if possible.
1110  * Return 0 on success.
1111  */
1112 static int
1113 segvn_extend_prev(seg1, seg2, a, swresv)
1114 	struct seg *seg1, *seg2;
1115 	struct segvn_crargs *a;
1116 	size_t swresv;
1117 {
1118 	struct segvn_data *svd1 = (struct segvn_data *)seg1->s_data;
1119 	size_t size;
1120 	struct anon_map *amp1;
1121 	struct vpage *new_vpage;
1122 
1123 	/*
1124 	 * We don't need any segment level locks for "segvn" data
1125 	 * since the address space is "write" locked.
1126 	 */
1127 	ASSERT(seg1->s_as && AS_WRITE_HELD(seg1->s_as, &seg1->s_as->a_lock));
1128 
1129 	/* second segment is new, try to extend first */
1130 	/* XXX - should also check cred */
1131 	if (svd1->vp != a->vp || svd1->maxprot != a->maxprot ||
1132 	    (!svd1->pageprot && (svd1->prot != a->prot)) ||
1133 	    svd1->type != a->type || svd1->flags != a->flags ||
1134 	    seg1->s_szc != a->szc)
1135 		return (-1);
1136 
1137 	/* vp == NULL implies zfod, offset doesn't matter */
1138 	if (svd1->vp != NULL &&
1139 	    svd1->offset + seg1->s_size != (a->offset & PAGEMASK))
1140 		return (-1);
1141 
1142 	if (svd1->tr_state != SEGVN_TR_OFF) {
1143 		return (-1);
1144 	}
1145 
1146 	amp1 = svd1->amp;
1147 	if (amp1) {
1148 		pgcnt_t newpgs;
1149 
1150 		/*
1151 		 * Segment has private pages, can data structures
1152 		 * be expanded?
1153 		 *
1154 		 * Acquire the anon_map lock to prevent it from changing,
1155 		 * if it is shared.  This ensures that the anon_map
1156 		 * will not change while a thread which has a read/write
1157 		 * lock on an address space references it.
1158 		 * XXX - Don't need the anon_map lock at all if "refcnt"
1159 		 * is 1.
1160 		 *
1161 		 * Can't grow a MAP_SHARED segment with an anonmap because
1162 		 * there may be existing anon slots where we want to extend
1163 		 * the segment and we wouldn't know what to do with them
1164 		 * (e.g., for tmpfs right thing is to just leave them there,
1165 		 * for /dev/zero they should be cleared out).
1166 		 */
1167 		if (svd1->type == MAP_SHARED)
1168 			return (-1);
1169 
1170 		ANON_LOCK_ENTER(&amp1->a_rwlock, RW_WRITER);
1171 		if (amp1->refcnt > 1) {
1172 			ANON_LOCK_EXIT(&amp1->a_rwlock);
1173 			return (-1);
1174 		}
1175 		newpgs = anon_grow(amp1->ahp, &svd1->anon_index,
1176 		    btop(seg1->s_size), btop(seg2->s_size), ANON_NOSLEEP);
1177 
1178 		if (newpgs == 0) {
1179 			ANON_LOCK_EXIT(&amp1->a_rwlock);
1180 			return (-1);
1181 		}
1182 		amp1->size = ptob(newpgs);
1183 		ANON_LOCK_EXIT(&amp1->a_rwlock);
1184 	}
1185 	if (svd1->vpage != NULL) {
1186 		new_vpage =
1187 		    kmem_zalloc(vpgtob(seg_pages(seg1) + seg_pages(seg2)),
1188 			KM_NOSLEEP);
1189 		if (new_vpage == NULL)
1190 			return (-1);
1191 		bcopy(svd1->vpage, new_vpage, vpgtob(seg_pages(seg1)));
1192 		kmem_free(svd1->vpage, vpgtob(seg_pages(seg1)));
1193 		svd1->vpage = new_vpage;
1194 		if (svd1->pageprot) {
1195 			struct vpage *vp, *evp;
1196 
1197 			vp = new_vpage + seg_pages(seg1);
1198 			evp = vp + seg_pages(seg2);
1199 			for (; vp < evp; vp++)
1200 				VPP_SETPROT(vp, a->prot);
1201 		}
1202 	}
1203 	size = seg2->s_size;
1204 	seg_free(seg2);
1205 	seg1->s_size += size;
1206 	svd1->swresv += swresv;
1207 	if (svd1->pageprot && (a->prot & PROT_WRITE) &&
1208 	    svd1->type == MAP_SHARED && svd1->vp != NULL &&
1209 	    (svd1->vp->v_flag & VVMEXEC)) {
1210 		ASSERT(vn_is_mapped(svd1->vp, V_WRITE));
1211 		segvn_inval_trcache(svd1->vp);
1212 	}
1213 	return (0);
1214 }
1215 
1216 /*
1217  * Extend the next segment (seg2) to include the
1218  * new segment (seg1 + a), if possible.
1219  * Return 0 on success.
1220  */
1221 static int
1222 segvn_extend_next(
1223 	struct seg *seg1,
1224 	struct seg *seg2,
1225 	struct segvn_crargs *a,
1226 	size_t swresv)
1227 {
1228 	struct segvn_data *svd2 = (struct segvn_data *)seg2->s_data;
1229 	size_t size;
1230 	struct anon_map *amp2;
1231 	struct vpage *new_vpage;
1232 
1233 	/*
1234 	 * We don't need any segment level locks for "segvn" data
1235 	 * since the address space is "write" locked.
1236 	 */
1237 	ASSERT(seg2->s_as && AS_WRITE_HELD(seg2->s_as, &seg2->s_as->a_lock));
1238 
1239 	/* first segment is new, try to extend second */
1240 	/* XXX - should also check cred */
1241 	if (svd2->vp != a->vp || svd2->maxprot != a->maxprot ||
1242 	    (!svd2->pageprot && (svd2->prot != a->prot)) ||
1243 	    svd2->type != a->type || svd2->flags != a->flags ||
1244 	    seg2->s_szc != a->szc)
1245 		return (-1);
1246 	/* vp == NULL implies zfod, offset doesn't matter */
1247 	if (svd2->vp != NULL &&
1248 	    (a->offset & PAGEMASK) + seg1->s_size != svd2->offset)
1249 		return (-1);
1250 
1251 	if (svd2->tr_state != SEGVN_TR_OFF) {
1252 		return (-1);
1253 	}
1254 
1255 	amp2 = svd2->amp;
1256 	if (amp2) {
1257 		pgcnt_t newpgs;
1258 
1259 		/*
1260 		 * Segment has private pages, can data structures
1261 		 * be expanded?
1262 		 *
1263 		 * Acquire the anon_map lock to prevent it from changing,
1264 		 * if it is shared.  This ensures that the anon_map
1265 		 * will not change while a thread which has a read/write
1266 		 * lock on an address space references it.
1267 		 *
1268 		 * XXX - Don't need the anon_map lock at all if "refcnt"
1269 		 * is 1.
1270 		 */
1271 		if (svd2->type == MAP_SHARED)
1272 			return (-1);
1273 
1274 		ANON_LOCK_ENTER(&amp2->a_rwlock, RW_WRITER);
1275 		if (amp2->refcnt > 1) {
1276 			ANON_LOCK_EXIT(&amp2->a_rwlock);
1277 			return (-1);
1278 		}
1279 		newpgs = anon_grow(amp2->ahp, &svd2->anon_index,
1280 		    btop(seg2->s_size), btop(seg1->s_size),
1281 		    ANON_NOSLEEP | ANON_GROWDOWN);
1282 
1283 		if (newpgs == 0) {
1284 			ANON_LOCK_EXIT(&amp2->a_rwlock);
1285 			return (-1);
1286 		}
1287 		amp2->size = ptob(newpgs);
1288 		ANON_LOCK_EXIT(&amp2->a_rwlock);
1289 	}
1290 	if (svd2->vpage != NULL) {
1291 		new_vpage =
1292 		    kmem_zalloc(vpgtob(seg_pages(seg1) + seg_pages(seg2)),
1293 			KM_NOSLEEP);
1294 		if (new_vpage == NULL) {
1295 			/* Not merging segments so adjust anon_index back */
1296 			if (amp2)
1297 				svd2->anon_index += seg_pages(seg1);
1298 			return (-1);
1299 		}
1300 		bcopy(svd2->vpage, new_vpage + seg_pages(seg1),
1301 		    vpgtob(seg_pages(seg2)));
1302 		kmem_free(svd2->vpage, vpgtob(seg_pages(seg2)));
1303 		svd2->vpage = new_vpage;
1304 		if (svd2->pageprot) {
1305 			struct vpage *vp, *evp;
1306 
1307 			vp = new_vpage;
1308 			evp = vp + seg_pages(seg1);
1309 			for (; vp < evp; vp++)
1310 				VPP_SETPROT(vp, a->prot);
1311 		}
1312 	}
1313 	size = seg1->s_size;
1314 	seg_free(seg1);
1315 	seg2->s_size += size;
1316 	seg2->s_base -= size;
1317 	svd2->offset -= size;
1318 	svd2->swresv += swresv;
1319 	if (svd2->pageprot && (a->prot & PROT_WRITE) &&
1320 	    svd2->type == MAP_SHARED && svd2->vp != NULL &&
1321 	    (svd2->vp->v_flag & VVMEXEC)) {
1322 		ASSERT(vn_is_mapped(svd2->vp, V_WRITE));
1323 		segvn_inval_trcache(svd2->vp);
1324 	}
1325 	return (0);
1326 }
1327 
1328 static int
1329 segvn_dup(struct seg *seg, struct seg *newseg)
1330 {
1331 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1332 	struct segvn_data *newsvd;
1333 	pgcnt_t npages = seg_pages(seg);
1334 	int error = 0;
1335 	uint_t prot;
1336 	size_t len;
1337 	struct anon_map *amp;
1338 
1339 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1340 
1341 	/*
1342 	 * If segment has anon reserved, reserve more for the new seg.
1343 	 * For a MAP_NORESERVE segment swresv will be a count of all the
1344 	 * allocated anon slots; thus we reserve for the child as many slots
1345 	 * as the parent has allocated. This semantic prevents the child or
1346 	 * parent from dieing during a copy-on-write fault caused by trying
1347 	 * to write a shared pre-existing anon page.
1348 	 */
1349 	if ((len = svd->swresv) != 0) {
1350 		if (anon_resv(svd->swresv) == 0)
1351 			return (ENOMEM);
1352 
1353 		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
1354 			seg, len, 0);
1355 	}
1356 
1357 	newsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
1358 
1359 	newseg->s_ops = &segvn_ops;
1360 	newseg->s_data = (void *)newsvd;
1361 	newseg->s_szc = seg->s_szc;
1362 
1363 	newsvd->seg = newseg;
1364 	if ((newsvd->vp = svd->vp) != NULL) {
1365 		VN_HOLD(svd->vp);
1366 		if (svd->type == MAP_SHARED)
1367 			lgrp_shm_policy_init(NULL, svd->vp);
1368 	}
1369 	newsvd->offset = svd->offset;
1370 	newsvd->prot = svd->prot;
1371 	newsvd->maxprot = svd->maxprot;
1372 	newsvd->pageprot = svd->pageprot;
1373 	newsvd->type = svd->type;
1374 	newsvd->cred = svd->cred;
1375 	crhold(newsvd->cred);
1376 	newsvd->advice = svd->advice;
1377 	newsvd->pageadvice = svd->pageadvice;
1378 	newsvd->swresv = svd->swresv;
1379 	newsvd->flags = svd->flags;
1380 	newsvd->softlockcnt = 0;
1381 	newsvd->policy_info = svd->policy_info;
1382 	if ((amp = svd->amp) == NULL || svd->tr_state == SEGVN_TR_ON) {
1383 		/*
1384 		 * Not attaching to a shared anon object.
1385 		 */
1386 		if (svd->tr_state == SEGVN_TR_ON) {
1387 			ASSERT(newsvd->vp != NULL && amp != NULL);
1388 			newsvd->tr_state = SEGVN_TR_INIT;
1389 		} else {
1390 			newsvd->tr_state = svd->tr_state;
1391 		}
1392 		newsvd->amp = NULL;
1393 		newsvd->anon_index = 0;
1394 	} else {
1395 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
1396 		newsvd->tr_state = SEGVN_TR_OFF;
1397 		if (svd->type == MAP_SHARED) {
1398 			newsvd->amp = amp;
1399 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1400 			amp->refcnt++;
1401 			ANON_LOCK_EXIT(&amp->a_rwlock);
1402 			newsvd->anon_index = svd->anon_index;
1403 		} else {
1404 			int reclaim = 1;
1405 
1406 			/*
1407 			 * Allocate and initialize new anon_map structure.
1408 			 */
1409 			newsvd->amp = anonmap_alloc(newseg->s_size, 0,
1410 			    ANON_SLEEP);
1411 			newsvd->amp->a_szc = newseg->s_szc;
1412 			newsvd->anon_index = 0;
1413 
1414 			/*
1415 			 * We don't have to acquire the anon_map lock
1416 			 * for the new segment (since it belongs to an
1417 			 * address space that is still not associated
1418 			 * with any process), or the segment in the old
1419 			 * address space (since all threads in it
1420 			 * are stopped while duplicating the address space).
1421 			 */
1422 
1423 			/*
1424 			 * The goal of the following code is to make sure that
1425 			 * softlocked pages do not end up as copy on write
1426 			 * pages.  This would cause problems where one
1427 			 * thread writes to a page that is COW and a different
1428 			 * thread in the same process has softlocked it.  The
1429 			 * softlock lock would move away from this process
1430 			 * because the write would cause this process to get
1431 			 * a copy (without the softlock).
1432 			 *
1433 			 * The strategy here is to just break the
1434 			 * sharing on pages that could possibly be
1435 			 * softlocked.
1436 			 */
1437 retry:
1438 			if (svd->softlockcnt) {
1439 				struct anon *ap, *newap;
1440 				size_t i;
1441 				uint_t vpprot;
1442 				page_t *anon_pl[1+1], *pp;
1443 				caddr_t addr;
1444 				ulong_t old_idx = svd->anon_index;
1445 				ulong_t new_idx = 0;
1446 
1447 				/*
1448 				 * The softlock count might be non zero
1449 				 * because some pages are still stuck in the
1450 				 * cache for lazy reclaim. Flush the cache
1451 				 * now. This should drop the count to zero.
1452 				 * [or there is really I/O going on to these
1453 				 * pages]. Note, we have the writers lock so
1454 				 * nothing gets inserted during the flush.
1455 				 */
1456 				if (reclaim == 1) {
1457 					segvn_purge(seg);
1458 					reclaim = 0;
1459 					goto retry;
1460 				}
1461 				i = btopr(seg->s_size);
1462 				addr = seg->s_base;
1463 				/*
1464 				 * XXX break cow sharing using PAGESIZE
1465 				 * pages. They will be relocated into larger
1466 				 * pages at fault time.
1467 				 */
1468 				while (i-- > 0) {
1469 					if (ap = anon_get_ptr(amp->ahp,
1470 					    old_idx)) {
1471 						error = anon_getpage(&ap,
1472 						    &vpprot, anon_pl, PAGESIZE,
1473 						    seg, addr, S_READ,
1474 						    svd->cred);
1475 						if (error) {
1476 							newsvd->vpage = NULL;
1477 							goto out;
1478 						}
1479 						/*
1480 						 * prot need not be computed
1481 						 * below 'cause anon_private is
1482 						 * going to ignore it anyway
1483 						 * as child doesn't inherit
1484 						 * pagelock from parent.
1485 						 */
1486 						prot = svd->pageprot ?
1487 						    VPP_PROT(
1488 						    &svd->vpage[
1489 						    seg_page(seg, addr)])
1490 						    : svd->prot;
1491 						pp = anon_private(&newap,
1492 						    newseg, addr, prot,
1493 						    anon_pl[0],	0,
1494 						    newsvd->cred);
1495 						if (pp == NULL) {
1496 							/* no mem abort */
1497 							newsvd->vpage = NULL;
1498 							error = ENOMEM;
1499 							goto out;
1500 						}
1501 						(void) anon_set_ptr(
1502 						    newsvd->amp->ahp, new_idx,
1503 						    newap, ANON_SLEEP);
1504 						page_unlock(pp);
1505 					}
1506 					addr += PAGESIZE;
1507 					old_idx++;
1508 					new_idx++;
1509 				}
1510 			} else {	/* common case */
1511 				if (seg->s_szc != 0) {
1512 					/*
1513 					 * If at least one of anon slots of a
1514 					 * large page exists then make sure
1515 					 * all anon slots of a large page
1516 					 * exist to avoid partial cow sharing
1517 					 * of a large page in the future.
1518 					 */
1519 					anon_dup_fill_holes(amp->ahp,
1520 					    svd->anon_index, newsvd->amp->ahp,
1521 					    0, seg->s_size, seg->s_szc,
1522 					    svd->vp != NULL);
1523 				} else {
1524 					anon_dup(amp->ahp, svd->anon_index,
1525 					    newsvd->amp->ahp, 0, seg->s_size);
1526 				}
1527 
1528 				hat_clrattr(seg->s_as->a_hat, seg->s_base,
1529 				    seg->s_size, PROT_WRITE);
1530 			}
1531 		}
1532 	}
1533 	/*
1534 	 * If necessary, create a vpage structure for the new segment.
1535 	 * Do not copy any page lock indications.
1536 	 */
1537 	if (svd->vpage != NULL) {
1538 		uint_t i;
1539 		struct vpage *ovp = svd->vpage;
1540 		struct vpage *nvp;
1541 
1542 		nvp = newsvd->vpage =
1543 		    kmem_alloc(vpgtob(npages), KM_SLEEP);
1544 		for (i = 0; i < npages; i++) {
1545 			*nvp = *ovp++;
1546 			VPP_CLRPPLOCK(nvp++);
1547 		}
1548 	} else
1549 		newsvd->vpage = NULL;
1550 
1551 	/* Inform the vnode of the new mapping */
1552 	if (newsvd->vp != NULL) {
1553 		error = VOP_ADDMAP(newsvd->vp, (offset_t)newsvd->offset,
1554 		    newseg->s_as, newseg->s_base, newseg->s_size, newsvd->prot,
1555 		    newsvd->maxprot, newsvd->type, newsvd->cred);
1556 	}
1557 out:
1558 	return (error);
1559 }
1560 
1561 
1562 /*
1563  * callback function used by segvn_unmap to invoke free_vp_pages() for only
1564  * those pages actually processed by the HAT
1565  */
1566 extern int free_pages;
1567 
1568 static void
1569 segvn_hat_unload_callback(hat_callback_t *cb)
1570 {
1571 	struct seg		*seg = cb->hcb_data;
1572 	struct segvn_data	*svd = (struct segvn_data *)seg->s_data;
1573 	size_t			len;
1574 	u_offset_t		off;
1575 
1576 	ASSERT(svd->vp != NULL);
1577 	ASSERT(cb->hcb_end_addr > cb->hcb_start_addr);
1578 	ASSERT(cb->hcb_start_addr >= seg->s_base);
1579 
1580 	len = cb->hcb_end_addr - cb->hcb_start_addr;
1581 	off = cb->hcb_start_addr - seg->s_base;
1582 	free_vp_pages(svd->vp, svd->offset + off, len);
1583 }
1584 
1585 
1586 static int
1587 segvn_unmap(struct seg *seg, caddr_t addr, size_t len)
1588 {
1589 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1590 	struct segvn_data *nsvd;
1591 	struct seg *nseg;
1592 	struct anon_map *amp;
1593 	pgcnt_t	opages;		/* old segment size in pages */
1594 	pgcnt_t	npages;		/* new segment size in pages */
1595 	pgcnt_t	dpages;		/* pages being deleted (unmapped) */
1596 	hat_callback_t callback;	/* used for free_vp_pages() */
1597 	hat_callback_t *cbp = NULL;
1598 	caddr_t nbase;
1599 	size_t nsize;
1600 	size_t oswresv;
1601 	int reclaim = 1;
1602 	int unmap = 1;
1603 
1604 	/*
1605 	 * We don't need any segment level locks for "segvn" data
1606 	 * since the address space is "write" locked.
1607 	 */
1608 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1609 
1610 	/*
1611 	 * Fail the unmap if pages are SOFTLOCKed through this mapping.
1612 	 * softlockcnt is protected from change by the as write lock.
1613 	 */
1614 retry:
1615 	if (svd->softlockcnt > 0) {
1616 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
1617 		/*
1618 		 * since we do have the writers lock nobody can fill
1619 		 * the cache during the purge. The flush either succeeds
1620 		 * or we still have pending I/Os.
1621 		 */
1622 		if (reclaim == 1) {
1623 			segvn_purge(seg);
1624 			reclaim = 0;
1625 			goto retry;
1626 		}
1627 		return (EAGAIN);
1628 	}
1629 
1630 	/*
1631 	 * Check for bad sizes
1632 	 */
1633 	if (addr < seg->s_base || addr + len > seg->s_base + seg->s_size ||
1634 	    (len & PAGEOFFSET) || ((uintptr_t)addr & PAGEOFFSET)) {
1635 		panic("segvn_unmap");
1636 		/*NOTREACHED*/
1637 	}
1638 
1639 	if (seg->s_szc != 0) {
1640 		size_t pgsz = page_get_pagesize(seg->s_szc);
1641 		int err;
1642 		if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) {
1643 			ASSERT(seg->s_base != addr || seg->s_size != len);
1644 			if (svd->tr_state == SEGVN_TR_INIT) {
1645 				svd->tr_state = SEGVN_TR_OFF;
1646 			} else if (svd->tr_state == SEGVN_TR_ON) {
1647 				ASSERT(svd->amp != NULL);
1648 				segvn_textunrepl(seg, 1);
1649 				ASSERT(svd->amp == NULL);
1650 				ASSERT(svd->tr_state == SEGVN_TR_OFF);
1651 			}
1652 			VM_STAT_ADD(segvnvmstats.demoterange[0]);
1653 			err = segvn_demote_range(seg, addr, len, SDR_END, 0);
1654 			if (err == 0) {
1655 				return (IE_RETRY);
1656 			}
1657 			return (err);
1658 		}
1659 	}
1660 
1661 	/* Inform the vnode of the unmapping. */
1662 	if (svd->vp) {
1663 		int error;
1664 
1665 		error = VOP_DELMAP(svd->vp,
1666 			(offset_t)svd->offset + (uintptr_t)(addr - seg->s_base),
1667 			seg->s_as, addr, len, svd->prot, svd->maxprot,
1668 			svd->type, svd->cred);
1669 
1670 		if (error == EAGAIN)
1671 			return (error);
1672 	}
1673 
1674 	if (svd->tr_state == SEGVN_TR_INIT) {
1675 		svd->tr_state = SEGVN_TR_OFF;
1676 	} else if (svd->tr_state == SEGVN_TR_ON) {
1677 		ASSERT(svd->amp != NULL);
1678 		ASSERT(svd->pageprot == 0 && !(svd->prot & PROT_WRITE));
1679 		segvn_textunrepl(seg, 1);
1680 		ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
1681 		unmap = 0;
1682 	}
1683 
1684 	/*
1685 	 * Remove any page locks set through this mapping.
1686 	 */
1687 	(void) segvn_lockop(seg, addr, len, 0, MC_UNLOCK, NULL, 0);
1688 
1689 	if (unmap) {
1690 		/*
1691 		 * Unload any hardware translations in the range to be taken
1692 		 * out.  Use a callback to invoke free_vp_pages() effectively.
1693 		 */
1694 		if (svd->vp != NULL && free_pages != 0) {
1695 			callback.hcb_data = seg;
1696 			callback.hcb_function = segvn_hat_unload_callback;
1697 			cbp = &callback;
1698 		}
1699 		hat_unload_callback(seg->s_as->a_hat, addr, len,
1700 		    HAT_UNLOAD_UNMAP, cbp);
1701 
1702 		if (svd->type == MAP_SHARED && svd->vp != NULL &&
1703 		    (svd->vp->v_flag & VVMEXEC) &&
1704 		    ((svd->prot & PROT_WRITE) || svd->pageprot)) {
1705 			segvn_inval_trcache(svd->vp);
1706 		}
1707 	}
1708 
1709 	/*
1710 	 * Check for entire segment
1711 	 */
1712 	if (addr == seg->s_base && len == seg->s_size) {
1713 		seg_free(seg);
1714 		return (0);
1715 	}
1716 
1717 	opages = seg_pages(seg);
1718 	dpages = btop(len);
1719 	npages = opages - dpages;
1720 	amp = svd->amp;
1721 	ASSERT(amp == NULL || amp->a_szc >= seg->s_szc);
1722 
1723 	/*
1724 	 * Check for beginning of segment
1725 	 */
1726 	if (addr == seg->s_base) {
1727 		if (svd->vpage != NULL) {
1728 			size_t nbytes;
1729 			struct vpage *ovpage;
1730 
1731 			ovpage = svd->vpage;	/* keep pointer to vpage */
1732 
1733 			nbytes = vpgtob(npages);
1734 			svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
1735 			bcopy(&ovpage[dpages], svd->vpage, nbytes);
1736 
1737 			/* free up old vpage */
1738 			kmem_free(ovpage, vpgtob(opages));
1739 		}
1740 		if (amp != NULL) {
1741 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1742 			if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
1743 				/*
1744 				 * Free up now unused parts of anon_map array.
1745 				 */
1746 				if (amp->a_szc == seg->s_szc) {
1747 					if (seg->s_szc != 0) {
1748 						anon_free_pages(amp->ahp,
1749 						    svd->anon_index, len,
1750 						    seg->s_szc);
1751 					} else {
1752 						anon_free(amp->ahp,
1753 						    svd->anon_index,
1754 						    len);
1755 					}
1756 				} else {
1757 					ASSERT(svd->type == MAP_SHARED);
1758 					ASSERT(amp->a_szc > seg->s_szc);
1759 					anon_shmap_free_pages(amp,
1760 					    svd->anon_index, len);
1761 				}
1762 
1763 				/*
1764 				 * Unreserve swap space for the
1765 				 * unmapped chunk of this segment in
1766 				 * case it's MAP_SHARED
1767 				 */
1768 				if (svd->type == MAP_SHARED) {
1769 					anon_unresv(len);
1770 					amp->swresv -= len;
1771 				}
1772 			}
1773 			ANON_LOCK_EXIT(&amp->a_rwlock);
1774 			svd->anon_index += dpages;
1775 		}
1776 		if (svd->vp != NULL)
1777 			svd->offset += len;
1778 
1779 		if (svd->swresv) {
1780 			if (svd->flags & MAP_NORESERVE) {
1781 				ASSERT(amp);
1782 				oswresv = svd->swresv;
1783 
1784 				svd->swresv = ptob(anon_pages(amp->ahp,
1785 				    svd->anon_index, npages));
1786 				anon_unresv(oswresv - svd->swresv);
1787 			} else {
1788 				anon_unresv(len);
1789 				svd->swresv -= len;
1790 			}
1791 			TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
1792 				seg, len, 0);
1793 		}
1794 
1795 		seg->s_base += len;
1796 		seg->s_size -= len;
1797 		return (0);
1798 	}
1799 
1800 	/*
1801 	 * Check for end of segment
1802 	 */
1803 	if (addr + len == seg->s_base + seg->s_size) {
1804 		if (svd->vpage != NULL) {
1805 			size_t nbytes;
1806 			struct vpage *ovpage;
1807 
1808 			ovpage = svd->vpage;	/* keep pointer to vpage */
1809 
1810 			nbytes = vpgtob(npages);
1811 			svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
1812 			bcopy(ovpage, svd->vpage, nbytes);
1813 
1814 			/* free up old vpage */
1815 			kmem_free(ovpage, vpgtob(opages));
1816 
1817 		}
1818 		if (amp != NULL) {
1819 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1820 			if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
1821 				/*
1822 				 * Free up now unused parts of anon_map array.
1823 				 */
1824 				ulong_t an_idx = svd->anon_index + npages;
1825 				if (amp->a_szc == seg->s_szc) {
1826 					if (seg->s_szc != 0) {
1827 						anon_free_pages(amp->ahp,
1828 						    an_idx, len,
1829 						    seg->s_szc);
1830 					} else {
1831 						anon_free(amp->ahp, an_idx,
1832 						    len);
1833 					}
1834 				} else {
1835 					ASSERT(svd->type == MAP_SHARED);
1836 					ASSERT(amp->a_szc > seg->s_szc);
1837 					anon_shmap_free_pages(amp,
1838 					    an_idx, len);
1839 				}
1840 
1841 				/*
1842 				 * Unreserve swap space for the
1843 				 * unmapped chunk of this segment in
1844 				 * case it's MAP_SHARED
1845 				 */
1846 				if (svd->type == MAP_SHARED) {
1847 					anon_unresv(len);
1848 					amp->swresv -= len;
1849 				}
1850 			}
1851 			ANON_LOCK_EXIT(&amp->a_rwlock);
1852 		}
1853 
1854 		if (svd->swresv) {
1855 			if (svd->flags & MAP_NORESERVE) {
1856 				ASSERT(amp);
1857 				oswresv = svd->swresv;
1858 				svd->swresv = ptob(anon_pages(amp->ahp,
1859 					svd->anon_index, npages));
1860 				anon_unresv(oswresv - svd->swresv);
1861 			} else {
1862 				anon_unresv(len);
1863 				svd->swresv -= len;
1864 			}
1865 			TRACE_3(TR_FAC_VM, TR_ANON_PROC,
1866 				"anon proc:%p %lu %u", seg, len, 0);
1867 		}
1868 
1869 		seg->s_size -= len;
1870 		return (0);
1871 	}
1872 
1873 	/*
1874 	 * The section to go is in the middle of the segment,
1875 	 * have to make it into two segments.  nseg is made for
1876 	 * the high end while seg is cut down at the low end.
1877 	 */
1878 	nbase = addr + len;				/* new seg base */
1879 	nsize = (seg->s_base + seg->s_size) - nbase;	/* new seg size */
1880 	seg->s_size = addr - seg->s_base;		/* shrink old seg */
1881 	nseg = seg_alloc(seg->s_as, nbase, nsize);
1882 	if (nseg == NULL) {
1883 		panic("segvn_unmap seg_alloc");
1884 		/*NOTREACHED*/
1885 	}
1886 	nseg->s_ops = seg->s_ops;
1887 	nsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
1888 	nseg->s_data = (void *)nsvd;
1889 	nseg->s_szc = seg->s_szc;
1890 	*nsvd = *svd;
1891 	nsvd->seg = nseg;
1892 	nsvd->offset = svd->offset + (uintptr_t)(nseg->s_base - seg->s_base);
1893 	nsvd->swresv = 0;
1894 	nsvd->softlockcnt = 0;
1895 
1896 	if (svd->vp != NULL) {
1897 		VN_HOLD(nsvd->vp);
1898 		if (nsvd->type == MAP_SHARED)
1899 			lgrp_shm_policy_init(NULL, nsvd->vp);
1900 	}
1901 	crhold(svd->cred);
1902 
1903 	if (svd->vpage == NULL) {
1904 		nsvd->vpage = NULL;
1905 	} else {
1906 		/* need to split vpage into two arrays */
1907 		size_t nbytes;
1908 		struct vpage *ovpage;
1909 
1910 		ovpage = svd->vpage;		/* keep pointer to vpage */
1911 
1912 		npages = seg_pages(seg);	/* seg has shrunk */
1913 		nbytes = vpgtob(npages);
1914 		svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
1915 
1916 		bcopy(ovpage, svd->vpage, nbytes);
1917 
1918 		npages = seg_pages(nseg);
1919 		nbytes = vpgtob(npages);
1920 		nsvd->vpage = kmem_alloc(nbytes, KM_SLEEP);
1921 
1922 		bcopy(&ovpage[opages - npages], nsvd->vpage, nbytes);
1923 
1924 		/* free up old vpage */
1925 		kmem_free(ovpage, vpgtob(opages));
1926 	}
1927 
1928 	if (amp == NULL) {
1929 		nsvd->amp = NULL;
1930 		nsvd->anon_index = 0;
1931 	} else {
1932 		/*
1933 		 * Need to create a new anon map for the new segment.
1934 		 * We'll also allocate a new smaller array for the old
1935 		 * smaller segment to save space.
1936 		 */
1937 		opages = btop((uintptr_t)(addr - seg->s_base));
1938 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1939 		if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
1940 			/*
1941 			 * Free up now unused parts of anon_map array.
1942 			 */
1943 			ulong_t an_idx = svd->anon_index + opages;
1944 			if (amp->a_szc == seg->s_szc) {
1945 				if (seg->s_szc != 0) {
1946 					anon_free_pages(amp->ahp, an_idx, len,
1947 					    seg->s_szc);
1948 				} else {
1949 					anon_free(amp->ahp, an_idx,
1950 					    len);
1951 				}
1952 			} else {
1953 				ASSERT(svd->type == MAP_SHARED);
1954 				ASSERT(amp->a_szc > seg->s_szc);
1955 				anon_shmap_free_pages(amp, an_idx, len);
1956 			}
1957 
1958 			/*
1959 			 * Unreserve swap space for the
1960 			 * unmapped chunk of this segment in
1961 			 * case it's MAP_SHARED
1962 			 */
1963 			if (svd->type == MAP_SHARED) {
1964 				anon_unresv(len);
1965 				amp->swresv -= len;
1966 			}
1967 		}
1968 		nsvd->anon_index = svd->anon_index +
1969 		    btop((uintptr_t)(nseg->s_base - seg->s_base));
1970 		if (svd->type == MAP_SHARED) {
1971 			amp->refcnt++;
1972 			nsvd->amp = amp;
1973 		} else {
1974 			struct anon_map *namp;
1975 			struct anon_hdr *nahp;
1976 
1977 			ASSERT(svd->type == MAP_PRIVATE);
1978 			nahp = anon_create(btop(seg->s_size), ANON_SLEEP);
1979 			namp = anonmap_alloc(nseg->s_size, 0, ANON_SLEEP);
1980 			namp->a_szc = seg->s_szc;
1981 			(void) anon_copy_ptr(amp->ahp, svd->anon_index, nahp,
1982 			    0, btop(seg->s_size), ANON_SLEEP);
1983 			(void) anon_copy_ptr(amp->ahp, nsvd->anon_index,
1984 			    namp->ahp, 0, btop(nseg->s_size), ANON_SLEEP);
1985 			anon_release(amp->ahp, btop(amp->size));
1986 			svd->anon_index = 0;
1987 			nsvd->anon_index = 0;
1988 			amp->ahp = nahp;
1989 			amp->size = seg->s_size;
1990 			nsvd->amp = namp;
1991 		}
1992 		ANON_LOCK_EXIT(&amp->a_rwlock);
1993 	}
1994 	if (svd->swresv) {
1995 		if (svd->flags & MAP_NORESERVE) {
1996 			ASSERT(amp);
1997 			oswresv = svd->swresv;
1998 			svd->swresv = ptob(anon_pages(amp->ahp,
1999 				svd->anon_index, btop(seg->s_size)));
2000 			nsvd->swresv = ptob(anon_pages(nsvd->amp->ahp,
2001 				nsvd->anon_index, btop(nseg->s_size)));
2002 			ASSERT(oswresv >= (svd->swresv + nsvd->swresv));
2003 			anon_unresv(oswresv - (svd->swresv + nsvd->swresv));
2004 		} else {
2005 			if (seg->s_size + nseg->s_size + len != svd->swresv) {
2006 				panic("segvn_unmap: "
2007 				    "cannot split swap reservation");
2008 				/*NOTREACHED*/
2009 			}
2010 			anon_unresv(len);
2011 			svd->swresv = seg->s_size;
2012 			nsvd->swresv = nseg->s_size;
2013 		}
2014 		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
2015 			seg, len, 0);
2016 	}
2017 
2018 	return (0);			/* I'm glad that's all over with! */
2019 }
2020 
2021 static void
2022 segvn_free(struct seg *seg)
2023 {
2024 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
2025 	pgcnt_t npages = seg_pages(seg);
2026 	struct anon_map *amp;
2027 	size_t len;
2028 
2029 	/*
2030 	 * We don't need any segment level locks for "segvn" data
2031 	 * since the address space is "write" locked.
2032 	 */
2033 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
2034 	ASSERT(svd->tr_state == SEGVN_TR_OFF);
2035 
2036 	/*
2037 	 * Be sure to unlock pages. XXX Why do things get free'ed instead
2038 	 * of unmapped? XXX
2039 	 */
2040 	(void) segvn_lockop(seg, seg->s_base, seg->s_size,
2041 	    0, MC_UNLOCK, NULL, 0);
2042 
2043 	/*
2044 	 * Deallocate the vpage and anon pointers if necessary and possible.
2045 	 */
2046 	if (svd->vpage != NULL) {
2047 		kmem_free(svd->vpage, vpgtob(npages));
2048 		svd->vpage = NULL;
2049 	}
2050 	if ((amp = svd->amp) != NULL) {
2051 		/*
2052 		 * If there are no more references to this anon_map
2053 		 * structure, then deallocate the structure after freeing
2054 		 * up all the anon slot pointers that we can.
2055 		 */
2056 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2057 		ASSERT(amp->a_szc >= seg->s_szc);
2058 		if (--amp->refcnt == 0) {
2059 			if (svd->type == MAP_PRIVATE) {
2060 				/*
2061 				 * Private - we only need to anon_free
2062 				 * the part that this segment refers to.
2063 				 */
2064 				if (seg->s_szc != 0) {
2065 					anon_free_pages(amp->ahp,
2066 					    svd->anon_index, seg->s_size,
2067 					    seg->s_szc);
2068 				} else {
2069 					anon_free(amp->ahp, svd->anon_index,
2070 					    seg->s_size);
2071 				}
2072 			} else {
2073 				/*
2074 				 * Shared - anon_free the entire
2075 				 * anon_map's worth of stuff and
2076 				 * release any swap reservation.
2077 				 */
2078 				if (amp->a_szc != 0) {
2079 					anon_shmap_free_pages(amp, 0,
2080 					    amp->size);
2081 				} else {
2082 					anon_free(amp->ahp, 0, amp->size);
2083 				}
2084 				if ((len = amp->swresv) != 0) {
2085 					anon_unresv(len);
2086 					TRACE_3(TR_FAC_VM, TR_ANON_PROC,
2087 						"anon proc:%p %lu %u",
2088 						seg, len, 0);
2089 				}
2090 			}
2091 			svd->amp = NULL;
2092 			ANON_LOCK_EXIT(&amp->a_rwlock);
2093 			anonmap_free(amp);
2094 		} else if (svd->type == MAP_PRIVATE) {
2095 			/*
2096 			 * We had a private mapping which still has
2097 			 * a held anon_map so just free up all the
2098 			 * anon slot pointers that we were using.
2099 			 */
2100 			if (seg->s_szc != 0) {
2101 				anon_free_pages(amp->ahp, svd->anon_index,
2102 				    seg->s_size, seg->s_szc);
2103 			} else {
2104 				anon_free(amp->ahp, svd->anon_index,
2105 				    seg->s_size);
2106 			}
2107 			ANON_LOCK_EXIT(&amp->a_rwlock);
2108 		} else {
2109 			ANON_LOCK_EXIT(&amp->a_rwlock);
2110 		}
2111 	}
2112 
2113 	/*
2114 	 * Release swap reservation.
2115 	 */
2116 	if ((len = svd->swresv) != 0) {
2117 		anon_unresv(svd->swresv);
2118 		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
2119 			seg, len, 0);
2120 		svd->swresv = 0;
2121 	}
2122 	/*
2123 	 * Release claim on vnode, credentials, and finally free the
2124 	 * private data.
2125 	 */
2126 	if (svd->vp != NULL) {
2127 		if (svd->type == MAP_SHARED)
2128 			lgrp_shm_policy_fini(NULL, svd->vp);
2129 		VN_RELE(svd->vp);
2130 		svd->vp = NULL;
2131 	}
2132 	crfree(svd->cred);
2133 	svd->cred = NULL;
2134 
2135 	seg->s_data = NULL;
2136 	kmem_cache_free(segvn_cache, svd);
2137 }
2138 
2139 ulong_t segvn_lpglck_limit = 0;
2140 /*
2141  * Support routines used by segvn_pagelock() and softlock faults for anonymous
2142  * pages to implement availrmem accounting in a way that makes sure the
2143  * same memory is accounted just once for all softlock/pagelock purposes.
2144  * This prevents a bug when availrmem is quickly incorrectly exausted from
2145  * several pagelocks to different parts of the same large page since each
2146  * pagelock has to decrement availrmem by the size of the entire large
2147  * page. Note those pages are not COW shared until softunlock/pageunlock so
2148  * we don't need to use cow style accounting here.  We also need to make sure
2149  * the entire large page is accounted even if softlock range is less than the
2150  * entire large page because large anon pages can't be demoted when any of
2151  * constituent pages is locked. The caller calls this routine for every page_t
2152  * it locks. The very first page in the range may not be the root page of a
2153  * large page. For all other pages it's guranteed we are going to visit the
2154  * root of a particular large page before any other constituent page as we are
2155  * locking sequential pages belonging to the same anon map. So we do all the
2156  * locking when the root is encountered except for the very first page.  Since
2157  * softlocking is not supported (except S_READ_NOCOW special case) for vmpss
2158  * segments and since vnode pages can be demoted without locking all
2159  * constituent pages vnode pages don't come here.  Unlocking relies on the
2160  * fact that pagesize can't change whenever any of constituent large pages is
2161  * locked at least SE_SHARED. This allows unlocking code to find the right
2162  * root and decrement availrmem by the same amount it was incremented when the
2163  * page was locked.
2164  */
2165 static int
2166 segvn_pp_lock_anonpages(page_t *pp, int first)
2167 {
2168 	pgcnt_t		pages;
2169 	pfn_t		pfn;
2170 	uchar_t		szc = pp->p_szc;
2171 
2172 	ASSERT(PAGE_LOCKED(pp));
2173 	ASSERT(pp->p_vnode != NULL);
2174 	ASSERT(IS_SWAPFSVP(pp->p_vnode));
2175 
2176 	/*
2177 	 * pagesize won't change as long as any constituent page is locked.
2178 	 */
2179 	pages = page_get_pagecnt(pp->p_szc);
2180 	pfn = page_pptonum(pp);
2181 
2182 	if (!first) {
2183 		if (!IS_P2ALIGNED(pfn, pages)) {
2184 #ifdef DEBUG
2185 			pp = &pp[-(spgcnt_t)(pfn & (pages - 1))];
2186 			pfn = page_pptonum(pp);
2187 			ASSERT(IS_P2ALIGNED(pfn, pages));
2188 			ASSERT(pp->p_szc == szc);
2189 			ASSERT(pp->p_vnode != NULL);
2190 			ASSERT(IS_SWAPFSVP(pp->p_vnode));
2191 			ASSERT(pp->p_slckcnt != 0);
2192 #endif /* DEBUG */
2193 			return (1);
2194 		}
2195 	} else if (!IS_P2ALIGNED(pfn, pages)) {
2196 		pp = &pp[-(spgcnt_t)(pfn & (pages - 1))];
2197 #ifdef DEBUG
2198 		pfn = page_pptonum(pp);
2199 		ASSERT(IS_P2ALIGNED(pfn, pages));
2200 		ASSERT(pp->p_szc == szc);
2201 		ASSERT(pp->p_vnode != NULL);
2202 		ASSERT(IS_SWAPFSVP(pp->p_vnode));
2203 #endif /* DEBUG */
2204 	}
2205 
2206 	/*
2207 	 * pp is a root page.
2208 	 * We haven't locked this large page yet.
2209 	 */
2210 	page_struct_lock(pp);
2211 	if (pp->p_slckcnt != 0) {
2212 		if (pp->p_slckcnt < PAGE_SLOCK_MAXIMUM) {
2213 			pp->p_slckcnt++;
2214 			page_struct_unlock(pp);
2215 			return (1);
2216 		}
2217 		page_struct_unlock(pp);
2218 		segvn_lpglck_limit++;
2219 		return (0);
2220 	}
2221 	mutex_enter(&freemem_lock);
2222 	if (availrmem < tune.t_minarmem + pages) {
2223 		mutex_exit(&freemem_lock);
2224 		page_struct_unlock(pp);
2225 		return (0);
2226 	}
2227 	pp->p_slckcnt++;
2228 	availrmem -= pages;
2229 	mutex_exit(&freemem_lock);
2230 	page_struct_unlock(pp);
2231 	return (1);
2232 }
2233 
2234 static void
2235 segvn_pp_unlock_anonpages(page_t *pp, int first)
2236 {
2237 	pgcnt_t		pages;
2238 	pfn_t		pfn;
2239 
2240 	ASSERT(PAGE_LOCKED(pp));
2241 	ASSERT(pp->p_vnode != NULL);
2242 	ASSERT(IS_SWAPFSVP(pp->p_vnode));
2243 
2244 	/*
2245 	 * pagesize won't change as long as any constituent page is locked.
2246 	 */
2247 	pages = page_get_pagecnt(pp->p_szc);
2248 	pfn = page_pptonum(pp);
2249 
2250 	if (!first) {
2251 		if (!IS_P2ALIGNED(pfn, pages)) {
2252 			return;
2253 		}
2254 	} else if (!IS_P2ALIGNED(pfn, pages)) {
2255 		pp = &pp[-(spgcnt_t)(pfn & (pages - 1))];
2256 #ifdef DEBUG
2257 		pfn = page_pptonum(pp);
2258 		ASSERT(IS_P2ALIGNED(pfn, pages));
2259 #endif /* DEBUG */
2260 	}
2261 	ASSERT(pp->p_vnode != NULL);
2262 	ASSERT(IS_SWAPFSVP(pp->p_vnode));
2263 	ASSERT(pp->p_slckcnt != 0);
2264 	page_struct_lock(pp);
2265 	if (--pp->p_slckcnt == 0) {
2266 		mutex_enter(&freemem_lock);
2267 		availrmem += pages;
2268 		mutex_exit(&freemem_lock);
2269 	}
2270 	page_struct_unlock(pp);
2271 }
2272 
2273 /*
2274  * Do a F_SOFTUNLOCK call over the range requested.  The range must have
2275  * already been F_SOFTLOCK'ed.
2276  * Caller must always match addr and len of a softunlock with a previous
2277  * softlock with exactly the same addr and len.
2278  */
2279 static void
2280 segvn_softunlock(struct seg *seg, caddr_t addr, size_t len, enum seg_rw rw)
2281 {
2282 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
2283 	page_t *pp;
2284 	caddr_t adr;
2285 	struct vnode *vp;
2286 	u_offset_t offset;
2287 	ulong_t anon_index;
2288 	struct anon_map *amp;
2289 	struct anon *ap = NULL;
2290 
2291 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2292 	ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
2293 
2294 	if ((amp = svd->amp) != NULL)
2295 		anon_index = svd->anon_index + seg_page(seg, addr);
2296 
2297 	hat_unlock(seg->s_as->a_hat, addr, len);
2298 	for (adr = addr; adr < addr + len; adr += PAGESIZE) {
2299 		if (amp != NULL) {
2300 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2301 			if ((ap = anon_get_ptr(amp->ahp, anon_index++))
2302 								!= NULL) {
2303 				swap_xlate(ap, &vp, &offset);
2304 			} else {
2305 				vp = svd->vp;
2306 				offset = svd->offset +
2307 				    (uintptr_t)(adr - seg->s_base);
2308 			}
2309 			ANON_LOCK_EXIT(&amp->a_rwlock);
2310 		} else {
2311 			vp = svd->vp;
2312 			offset = svd->offset +
2313 			    (uintptr_t)(adr - seg->s_base);
2314 		}
2315 
2316 		/*
2317 		 * Use page_find() instead of page_lookup() to
2318 		 * find the page since we know that it is locked.
2319 		 */
2320 		pp = page_find(vp, offset);
2321 		if (pp == NULL) {
2322 			panic(
2323 			    "segvn_softunlock: addr %p, ap %p, vp %p, off %llx",
2324 			    (void *)adr, (void *)ap, (void *)vp, offset);
2325 			/*NOTREACHED*/
2326 		}
2327 
2328 		if (rw == S_WRITE) {
2329 			hat_setrefmod(pp);
2330 			if (seg->s_as->a_vbits)
2331 				hat_setstat(seg->s_as, adr, PAGESIZE,
2332 				    P_REF | P_MOD);
2333 		} else if (rw != S_OTHER) {
2334 			hat_setref(pp);
2335 			if (seg->s_as->a_vbits)
2336 				hat_setstat(seg->s_as, adr, PAGESIZE, P_REF);
2337 		}
2338 		TRACE_3(TR_FAC_VM, TR_SEGVN_FAULT,
2339 			"segvn_fault:pp %p vp %p offset %llx", pp, vp, offset);
2340 		if (svd->vp == NULL) {
2341 			segvn_pp_unlock_anonpages(pp, adr == addr);
2342 		}
2343 		page_unlock(pp);
2344 	}
2345 	mutex_enter(&freemem_lock); /* for availrmem */
2346 	if (svd->vp != NULL) {
2347 		availrmem += btop(len);
2348 	}
2349 	segvn_pages_locked -= btop(len);
2350 	svd->softlockcnt -= btop(len);
2351 	mutex_exit(&freemem_lock);
2352 	if (svd->softlockcnt == 0) {
2353 		/*
2354 		 * All SOFTLOCKS are gone. Wakeup any waiting
2355 		 * unmappers so they can try again to unmap.
2356 		 * Check for waiters first without the mutex
2357 		 * held so we don't always grab the mutex on
2358 		 * softunlocks.
2359 		 */
2360 		if (AS_ISUNMAPWAIT(seg->s_as)) {
2361 			mutex_enter(&seg->s_as->a_contents);
2362 			if (AS_ISUNMAPWAIT(seg->s_as)) {
2363 				AS_CLRUNMAPWAIT(seg->s_as);
2364 				cv_broadcast(&seg->s_as->a_cv);
2365 			}
2366 			mutex_exit(&seg->s_as->a_contents);
2367 		}
2368 	}
2369 }
2370 
2371 #define	PAGE_HANDLED	((page_t *)-1)
2372 
2373 /*
2374  * Release all the pages in the NULL terminated ppp list
2375  * which haven't already been converted to PAGE_HANDLED.
2376  */
2377 static void
2378 segvn_pagelist_rele(page_t **ppp)
2379 {
2380 	for (; *ppp != NULL; ppp++) {
2381 		if (*ppp != PAGE_HANDLED)
2382 			page_unlock(*ppp);
2383 	}
2384 }
2385 
2386 static int stealcow = 1;
2387 
2388 /*
2389  * Workaround for viking chip bug.  See bug id 1220902.
2390  * To fix this down in pagefault() would require importing so
2391  * much as and segvn code as to be unmaintainable.
2392  */
2393 int enable_mbit_wa = 0;
2394 
2395 /*
2396  * Handles all the dirty work of getting the right
2397  * anonymous pages and loading up the translations.
2398  * This routine is called only from segvn_fault()
2399  * when looping over the range of addresses requested.
2400  *
2401  * The basic algorithm here is:
2402  * 	If this is an anon_zero case
2403  *		Call anon_zero to allocate page
2404  *		Load up translation
2405  *		Return
2406  *	endif
2407  *	If this is an anon page
2408  *		Use anon_getpage to get the page
2409  *	else
2410  *		Find page in pl[] list passed in
2411  *	endif
2412  *	If not a cow
2413  *		Load up the translation to the page
2414  *		return
2415  *	endif
2416  *	Call anon_private to handle cow
2417  *	Load up (writable) translation to new page
2418  */
2419 static faultcode_t
2420 segvn_faultpage(
2421 	struct hat *hat,		/* the hat to use for mapping */
2422 	struct seg *seg,		/* seg_vn of interest */
2423 	caddr_t addr,			/* address in as */
2424 	u_offset_t off,			/* offset in vp */
2425 	struct vpage *vpage,		/* pointer to vpage for vp, off */
2426 	page_t *pl[],			/* object source page pointer */
2427 	uint_t vpprot,			/* access allowed to object pages */
2428 	enum fault_type type,		/* type of fault */
2429 	enum seg_rw rw,			/* type of access at fault */
2430 	int brkcow,			/* we may need to break cow */
2431 	int first)			/* first page for this fault if 1 */
2432 {
2433 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
2434 	page_t *pp, **ppp;
2435 	uint_t pageflags = 0;
2436 	page_t *anon_pl[1 + 1];
2437 	page_t *opp = NULL;		/* original page */
2438 	uint_t prot;
2439 	int err;
2440 	int cow;
2441 	int claim;
2442 	int steal = 0;
2443 	ulong_t anon_index;
2444 	struct anon *ap, *oldap;
2445 	struct anon_map *amp;
2446 	int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
2447 	int anon_lock = 0;
2448 	anon_sync_obj_t cookie;
2449 
2450 	if (svd->flags & MAP_TEXT) {
2451 		hat_flag |= HAT_LOAD_TEXT;
2452 	}
2453 
2454 	ASSERT(SEGVN_READ_HELD(seg->s_as, &svd->lock));
2455 	ASSERT(seg->s_szc == 0);
2456 
2457 	/*
2458 	 * Initialize protection value for this page.
2459 	 * If we have per page protection values check it now.
2460 	 */
2461 	if (svd->pageprot) {
2462 		uint_t protchk;
2463 
2464 		switch (rw) {
2465 		case S_READ:
2466 			protchk = PROT_READ;
2467 			break;
2468 		case S_WRITE:
2469 			protchk = PROT_WRITE;
2470 			break;
2471 		case S_EXEC:
2472 			protchk = PROT_EXEC;
2473 			break;
2474 		case S_OTHER:
2475 		default:
2476 			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
2477 			break;
2478 		}
2479 
2480 		prot = VPP_PROT(vpage);
2481 		if ((prot & protchk) == 0)
2482 			return (FC_PROT);	/* illegal access type */
2483 	} else {
2484 		prot = svd->prot;
2485 	}
2486 
2487 	if (type == F_SOFTLOCK && svd->vp != NULL) {
2488 		mutex_enter(&freemem_lock);
2489 		if (availrmem <= tune.t_minarmem) {
2490 			mutex_exit(&freemem_lock);
2491 			return (FC_MAKE_ERR(ENOMEM));	/* out of real memory */
2492 		} else {
2493 			availrmem--;
2494 			svd->softlockcnt++;
2495 			segvn_pages_locked++;
2496 		}
2497 		mutex_exit(&freemem_lock);
2498 	}
2499 
2500 	/*
2501 	 * Always acquire the anon array lock to prevent 2 threads from
2502 	 * allocating separate anon slots for the same "addr".
2503 	 */
2504 
2505 	if ((amp = svd->amp) != NULL) {
2506 		ASSERT(RW_READ_HELD(&amp->a_rwlock));
2507 		anon_index = svd->anon_index + seg_page(seg, addr);
2508 		anon_array_enter(amp, anon_index, &cookie);
2509 		anon_lock = 1;
2510 	}
2511 
2512 	if (svd->vp == NULL && amp != NULL) {
2513 		if ((ap = anon_get_ptr(amp->ahp, anon_index)) == NULL) {
2514 			/*
2515 			 * Allocate a (normally) writable anonymous page of
2516 			 * zeroes. If no advance reservations, reserve now.
2517 			 */
2518 			if (svd->flags & MAP_NORESERVE) {
2519 				if (anon_resv_zone(ptob(1),
2520 				    seg->s_as->a_proc->p_zone)) {
2521 					atomic_add_long(&svd->swresv, ptob(1));
2522 				} else {
2523 					err = ENOMEM;
2524 					goto out;
2525 				}
2526 			}
2527 			if ((pp = anon_zero(seg, addr, &ap,
2528 			    svd->cred)) == NULL) {
2529 				err = ENOMEM;
2530 				goto out;	/* out of swap space */
2531 			}
2532 			/*
2533 			 * Re-acquire the anon_map lock and
2534 			 * initialize the anon array entry.
2535 			 */
2536 			(void) anon_set_ptr(amp->ahp, anon_index, ap,
2537 				ANON_SLEEP);
2538 
2539 			ASSERT(pp->p_szc == 0);
2540 
2541 			/*
2542 			 * Handle pages that have been marked for migration
2543 			 */
2544 			if (lgrp_optimizations())
2545 				page_migrate(seg, addr, &pp, 1);
2546 
2547 			if (type == F_SOFTLOCK) {
2548 				if (!segvn_pp_lock_anonpages(pp, first)) {
2549 					page_unlock(pp);
2550 					err = ENOMEM;
2551 					goto out;
2552 				} else {
2553 					mutex_enter(&freemem_lock);
2554 					svd->softlockcnt++;
2555 					segvn_pages_locked++;
2556 					mutex_exit(&freemem_lock);
2557 				}
2558 			}
2559 
2560 			if (enable_mbit_wa) {
2561 				if (rw == S_WRITE)
2562 					hat_setmod(pp);
2563 				else if (!hat_ismod(pp))
2564 					prot &= ~PROT_WRITE;
2565 			}
2566 			/*
2567 			 * If AS_PAGLCK is set in a_flags (via memcntl(2)
2568 			 * with MC_LOCKAS, MCL_FUTURE) and this is a
2569 			 * MAP_NORESERVE segment, we may need to
2570 			 * permanently lock the page as it is being faulted
2571 			 * for the first time. The following text applies
2572 			 * only to MAP_NORESERVE segments:
2573 			 *
2574 			 * As per memcntl(2), if this segment was created
2575 			 * after MCL_FUTURE was applied (a "future"
2576 			 * segment), its pages must be locked.  If this
2577 			 * segment existed at MCL_FUTURE application (a
2578 			 * "past" segment), the interface is unclear.
2579 			 *
2580 			 * We decide to lock only if vpage is present:
2581 			 *
2582 			 * - "future" segments will have a vpage array (see
2583 			 *    as_map), and so will be locked as required
2584 			 *
2585 			 * - "past" segments may not have a vpage array,
2586 			 *    depending on whether events (such as
2587 			 *    mprotect) have occurred. Locking if vpage
2588 			 *    exists will preserve legacy behavior.  Not
2589 			 *    locking if vpage is absent, will not break
2590 			 *    the interface or legacy behavior.  Note that
2591 			 *    allocating vpage here if it's absent requires
2592 			 *    upgrading the segvn reader lock, the cost of
2593 			 *    which does not seem worthwhile.
2594 			 *
2595 			 * Usually testing and setting VPP_ISPPLOCK and
2596 			 * VPP_SETPPLOCK requires holding the segvn lock as
2597 			 * writer, but in this case all readers are
2598 			 * serializing on the anon array lock.
2599 			 */
2600 			if (AS_ISPGLCK(seg->s_as) && vpage != NULL &&
2601 			    (svd->flags & MAP_NORESERVE) &&
2602 			    !VPP_ISPPLOCK(vpage)) {
2603 				proc_t *p = seg->s_as->a_proc;
2604 				ASSERT(svd->type == MAP_PRIVATE);
2605 				mutex_enter(&p->p_lock);
2606 				if (rctl_incr_locked_mem(p, NULL, PAGESIZE,
2607 				    1) == 0) {
2608 					claim = VPP_PROT(vpage) & PROT_WRITE;
2609 					if (page_pp_lock(pp, claim, 0)) {
2610 						VPP_SETPPLOCK(vpage);
2611 					} else {
2612 						rctl_decr_locked_mem(p, NULL,
2613 						    PAGESIZE, 1);
2614 					}
2615 				}
2616 				mutex_exit(&p->p_lock);
2617 			}
2618 
2619 			hat_memload(hat, addr, pp, prot, hat_flag);
2620 
2621 			if (!(hat_flag & HAT_LOAD_LOCK))
2622 				page_unlock(pp);
2623 
2624 			anon_array_exit(&cookie);
2625 			return (0);
2626 		}
2627 	}
2628 
2629 	/*
2630 	 * Obtain the page structure via anon_getpage() if it is
2631 	 * a private copy of an object (the result of a previous
2632 	 * copy-on-write).
2633 	 */
2634 	if (amp != NULL) {
2635 		if ((ap = anon_get_ptr(amp->ahp, anon_index)) != NULL) {
2636 			err = anon_getpage(&ap, &vpprot, anon_pl, PAGESIZE,
2637 			    seg, addr, rw, svd->cred);
2638 			if (err)
2639 				goto out;
2640 
2641 			if (svd->type == MAP_SHARED) {
2642 				/*
2643 				 * If this is a shared mapping to an
2644 				 * anon_map, then ignore the write
2645 				 * permissions returned by anon_getpage().
2646 				 * They apply to the private mappings
2647 				 * of this anon_map.
2648 				 */
2649 				vpprot |= PROT_WRITE;
2650 			}
2651 			opp = anon_pl[0];
2652 		}
2653 	}
2654 
2655 	/*
2656 	 * Search the pl[] list passed in if it is from the
2657 	 * original object (i.e., not a private copy).
2658 	 */
2659 	if (opp == NULL) {
2660 		/*
2661 		 * Find original page.  We must be bringing it in
2662 		 * from the list in pl[].
2663 		 */
2664 		for (ppp = pl; (opp = *ppp) != NULL; ppp++) {
2665 			if (opp == PAGE_HANDLED)
2666 				continue;
2667 			ASSERT(opp->p_vnode == svd->vp); /* XXX */
2668 			if (opp->p_offset == off)
2669 				break;
2670 		}
2671 		if (opp == NULL) {
2672 			panic("segvn_faultpage not found");
2673 			/*NOTREACHED*/
2674 		}
2675 		*ppp = PAGE_HANDLED;
2676 
2677 	}
2678 
2679 	ASSERT(PAGE_LOCKED(opp));
2680 
2681 	TRACE_3(TR_FAC_VM, TR_SEGVN_FAULT,
2682 		"segvn_fault:pp %p vp %p offset %llx",
2683 		opp, NULL, 0);
2684 
2685 	/*
2686 	 * The fault is treated as a copy-on-write fault if a
2687 	 * write occurs on a private segment and the object
2688 	 * page (i.e., mapping) is write protected.  We assume
2689 	 * that fatal protection checks have already been made.
2690 	 */
2691 
2692 	if (brkcow) {
2693 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
2694 		cow = !(vpprot & PROT_WRITE);
2695 	} else if (svd->tr_state == SEGVN_TR_ON) {
2696 		/*
2697 		 * If we are doing text replication COW on first touch.
2698 		 */
2699 		ASSERT(amp != NULL);
2700 		ASSERT(svd->vp != NULL);
2701 		ASSERT(rw != S_WRITE);
2702 		cow = (ap == NULL);
2703 	} else {
2704 		cow = 0;
2705 	}
2706 
2707 	/*
2708 	 * If not a copy-on-write case load the translation
2709 	 * and return.
2710 	 */
2711 	if (cow == 0) {
2712 
2713 		/*
2714 		 * Handle pages that have been marked for migration
2715 		 */
2716 		if (lgrp_optimizations())
2717 			page_migrate(seg, addr, &opp, 1);
2718 
2719 		if (type == F_SOFTLOCK && svd->vp == NULL) {
2720 
2721 			ASSERT(opp->p_szc == 0 ||
2722 			    (svd->type == MAP_SHARED &&
2723 				amp != NULL && amp->a_szc != 0));
2724 
2725 			if (!segvn_pp_lock_anonpages(opp, first)) {
2726 				page_unlock(opp);
2727 				err = ENOMEM;
2728 				goto out;
2729 			} else {
2730 				mutex_enter(&freemem_lock);
2731 				svd->softlockcnt++;
2732 				segvn_pages_locked++;
2733 				mutex_exit(&freemem_lock);
2734 			}
2735 		}
2736 		if (IS_VMODSORT(opp->p_vnode) || enable_mbit_wa) {
2737 			if (rw == S_WRITE)
2738 				hat_setmod(opp);
2739 			else if (rw != S_OTHER && !hat_ismod(opp))
2740 				prot &= ~PROT_WRITE;
2741 		}
2742 
2743 		hat_memload(hat, addr, opp, prot & vpprot, hat_flag);
2744 
2745 		if (!(hat_flag & HAT_LOAD_LOCK))
2746 			page_unlock(opp);
2747 
2748 		if (anon_lock) {
2749 			anon_array_exit(&cookie);
2750 		}
2751 		return (0);
2752 	}
2753 
2754 	hat_setref(opp);
2755 
2756 	ASSERT(amp != NULL && anon_lock);
2757 
2758 	/*
2759 	 * Steal the page only if it isn't a private page
2760 	 * since stealing a private page is not worth the effort.
2761 	 */
2762 	if ((ap = anon_get_ptr(amp->ahp, anon_index)) == NULL)
2763 		steal = 1;
2764 
2765 	/*
2766 	 * Steal the original page if the following conditions are true:
2767 	 *
2768 	 * We are low on memory, the page is not private, page is not large,
2769 	 * not shared, not modified, not `locked' or if we have it `locked'
2770 	 * (i.e., p_cowcnt == 1 and p_lckcnt == 0, which also implies
2771 	 * that the page is not shared) and if it doesn't have any
2772 	 * translations. page_struct_lock isn't needed to look at p_cowcnt
2773 	 * and p_lckcnt because we first get exclusive lock on page.
2774 	 */
2775 	(void) hat_pagesync(opp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD);
2776 
2777 	if (stealcow && freemem < minfree && steal && opp->p_szc == 0 &&
2778 	    page_tryupgrade(opp) && !hat_ismod(opp) &&
2779 	    ((opp->p_lckcnt == 0 && opp->p_cowcnt == 0) ||
2780 	    (opp->p_lckcnt == 0 && opp->p_cowcnt == 1 &&
2781 	    vpage != NULL && VPP_ISPPLOCK(vpage)))) {
2782 		/*
2783 		 * Check if this page has other translations
2784 		 * after unloading our translation.
2785 		 */
2786 		if (hat_page_is_mapped(opp)) {
2787 			hat_unload(seg->s_as->a_hat, addr, PAGESIZE,
2788 				HAT_UNLOAD);
2789 		}
2790 
2791 		/*
2792 		 * hat_unload() might sync back someone else's recent
2793 		 * modification, so check again.
2794 		 */
2795 		if (!hat_ismod(opp) && !hat_page_is_mapped(opp))
2796 			pageflags |= STEAL_PAGE;
2797 	}
2798 
2799 	/*
2800 	 * If we have a vpage pointer, see if it indicates that we have
2801 	 * ``locked'' the page we map -- if so, tell anon_private to
2802 	 * transfer the locking resource to the new page.
2803 	 *
2804 	 * See Statement at the beginning of segvn_lockop regarding
2805 	 * the way lockcnts/cowcnts are handled during COW.
2806 	 *
2807 	 */
2808 	if (vpage != NULL && VPP_ISPPLOCK(vpage))
2809 		pageflags |= LOCK_PAGE;
2810 
2811 	/*
2812 	 * Allocate a private page and perform the copy.
2813 	 * For MAP_NORESERVE reserve swap space now, unless this
2814 	 * is a cow fault on an existing anon page in which case
2815 	 * MAP_NORESERVE will have made advance reservations.
2816 	 */
2817 	if ((svd->flags & MAP_NORESERVE) && (ap == NULL)) {
2818 		if (anon_resv_zone(ptob(1), seg->s_as->a_proc->p_zone)) {
2819 			atomic_add_long(&svd->swresv, ptob(1));
2820 		} else {
2821 			page_unlock(opp);
2822 			err = ENOMEM;
2823 			goto out;
2824 		}
2825 	}
2826 	oldap = ap;
2827 	pp = anon_private(&ap, seg, addr, prot, opp, pageflags, svd->cred);
2828 	if (pp == NULL) {
2829 		err = ENOMEM;	/* out of swap space */
2830 		goto out;
2831 	}
2832 
2833 	/*
2834 	 * If we copied away from an anonymous page, then
2835 	 * we are one step closer to freeing up an anon slot.
2836 	 *
2837 	 * NOTE:  The original anon slot must be released while
2838 	 * holding the "anon_map" lock.  This is necessary to prevent
2839 	 * other threads from obtaining a pointer to the anon slot
2840 	 * which may be freed if its "refcnt" is 1.
2841 	 */
2842 	if (oldap != NULL)
2843 		anon_decref(oldap);
2844 
2845 	(void) anon_set_ptr(amp->ahp, anon_index, ap, ANON_SLEEP);
2846 
2847 	/*
2848 	 * Handle pages that have been marked for migration
2849 	 */
2850 	if (lgrp_optimizations())
2851 		page_migrate(seg, addr, &pp, 1);
2852 
2853 	ASSERT(pp->p_szc == 0);
2854 	if (type == F_SOFTLOCK && svd->vp == NULL) {
2855 		if (!segvn_pp_lock_anonpages(pp, first)) {
2856 			page_unlock(pp);
2857 			err = ENOMEM;
2858 			goto out;
2859 		} else {
2860 			mutex_enter(&freemem_lock);
2861 			svd->softlockcnt++;
2862 			segvn_pages_locked++;
2863 			mutex_exit(&freemem_lock);
2864 		}
2865 	}
2866 
2867 	ASSERT(!IS_VMODSORT(pp->p_vnode));
2868 	if (enable_mbit_wa) {
2869 		if (rw == S_WRITE)
2870 			hat_setmod(pp);
2871 		else if (!hat_ismod(pp))
2872 			prot &= ~PROT_WRITE;
2873 	}
2874 
2875 	hat_memload(hat, addr, pp, prot, hat_flag);
2876 
2877 	if (!(hat_flag & HAT_LOAD_LOCK))
2878 		page_unlock(pp);
2879 
2880 	ASSERT(anon_lock);
2881 	anon_array_exit(&cookie);
2882 	return (0);
2883 out:
2884 	if (anon_lock)
2885 		anon_array_exit(&cookie);
2886 
2887 	if (type == F_SOFTLOCK && svd->vp != NULL) {
2888 		mutex_enter(&freemem_lock);
2889 		availrmem++;
2890 		segvn_pages_locked--;
2891 		svd->softlockcnt--;
2892 		mutex_exit(&freemem_lock);
2893 	}
2894 	return (FC_MAKE_ERR(err));
2895 }
2896 
2897 /*
2898  * relocate a bunch of smaller targ pages into one large repl page. all targ
2899  * pages must be complete pages smaller than replacement pages.
2900  * it's assumed that no page's szc can change since they are all PAGESIZE or
2901  * complete large pages locked SHARED.
2902  */
2903 static void
2904 segvn_relocate_pages(page_t **targ, page_t *replacement)
2905 {
2906 	page_t *pp;
2907 	pgcnt_t repl_npgs, curnpgs;
2908 	pgcnt_t i;
2909 	uint_t repl_szc = replacement->p_szc;
2910 	page_t *first_repl = replacement;
2911 	page_t *repl;
2912 	spgcnt_t npgs;
2913 
2914 	VM_STAT_ADD(segvnvmstats.relocatepages[0]);
2915 
2916 	ASSERT(repl_szc != 0);
2917 	npgs = repl_npgs = page_get_pagecnt(repl_szc);
2918 
2919 	i = 0;
2920 	while (repl_npgs) {
2921 		spgcnt_t nreloc;
2922 		int err;
2923 		ASSERT(replacement != NULL);
2924 		pp = targ[i];
2925 		ASSERT(pp->p_szc < repl_szc);
2926 		ASSERT(PAGE_EXCL(pp));
2927 		ASSERT(!PP_ISFREE(pp));
2928 		curnpgs = page_get_pagecnt(pp->p_szc);
2929 		if (curnpgs == 1) {
2930 			VM_STAT_ADD(segvnvmstats.relocatepages[1]);
2931 			repl = replacement;
2932 			page_sub(&replacement, repl);
2933 			ASSERT(PAGE_EXCL(repl));
2934 			ASSERT(!PP_ISFREE(repl));
2935 			ASSERT(repl->p_szc == repl_szc);
2936 		} else {
2937 			page_t *repl_savepp;
2938 			int j;
2939 			VM_STAT_ADD(segvnvmstats.relocatepages[2]);
2940 			repl_savepp = replacement;
2941 			for (j = 0; j < curnpgs; j++) {
2942 				repl = replacement;
2943 				page_sub(&replacement, repl);
2944 				ASSERT(PAGE_EXCL(repl));
2945 				ASSERT(!PP_ISFREE(repl));
2946 				ASSERT(repl->p_szc == repl_szc);
2947 				ASSERT(page_pptonum(targ[i + j]) ==
2948 				    page_pptonum(targ[i]) + j);
2949 			}
2950 			repl = repl_savepp;
2951 			ASSERT(IS_P2ALIGNED(page_pptonum(repl), curnpgs));
2952 		}
2953 		err = page_relocate(&pp, &repl, 0, 1, &nreloc, NULL);
2954 		if (err || nreloc != curnpgs) {
2955 			panic("segvn_relocate_pages: "
2956 			    "page_relocate failed err=%d curnpgs=%ld "
2957 			    "nreloc=%ld", err, curnpgs, nreloc);
2958 		}
2959 		ASSERT(curnpgs <= repl_npgs);
2960 		repl_npgs -= curnpgs;
2961 		i += curnpgs;
2962 	}
2963 	ASSERT(replacement == NULL);
2964 
2965 	repl = first_repl;
2966 	repl_npgs = npgs;
2967 	for (i = 0; i < repl_npgs; i++) {
2968 		ASSERT(PAGE_EXCL(repl));
2969 		ASSERT(!PP_ISFREE(repl));
2970 		targ[i] = repl;
2971 		page_downgrade(targ[i]);
2972 		repl++;
2973 	}
2974 }
2975 
2976 /*
2977  * Check if all pages in ppa array are complete smaller than szc pages and
2978  * their roots will still be aligned relative to their current size if the
2979  * entire ppa array is relocated into one szc page. If these conditions are
2980  * not met return 0.
2981  *
2982  * If all pages are properly aligned attempt to upgrade their locks
2983  * to exclusive mode. If it fails set *upgrdfail to 1 and return 0.
2984  * upgrdfail was set to 0 by caller.
2985  *
2986  * Return 1 if all pages are aligned and locked exclusively.
2987  *
2988  * If all pages in ppa array happen to be physically contiguous to make one
2989  * szc page and all exclusive locks are successfully obtained promote the page
2990  * size to szc and set *pszc to szc. Return 1 with pages locked shared.
2991  */
2992 static int
2993 segvn_full_szcpages(page_t **ppa, uint_t szc, int *upgrdfail, uint_t *pszc)
2994 {
2995 	page_t *pp;
2996 	pfn_t pfn;
2997 	pgcnt_t totnpgs = page_get_pagecnt(szc);
2998 	pfn_t first_pfn;
2999 	int contig = 1;
3000 	pgcnt_t i;
3001 	pgcnt_t j;
3002 	uint_t curszc;
3003 	pgcnt_t curnpgs;
3004 	int root = 0;
3005 
3006 	ASSERT(szc > 0);
3007 
3008 	VM_STAT_ADD(segvnvmstats.fullszcpages[0]);
3009 
3010 	for (i = 0; i < totnpgs; i++) {
3011 		pp = ppa[i];
3012 		ASSERT(PAGE_SHARED(pp));
3013 		ASSERT(!PP_ISFREE(pp));
3014 		pfn = page_pptonum(pp);
3015 		if (i == 0) {
3016 			if (!IS_P2ALIGNED(pfn, totnpgs)) {
3017 				contig = 0;
3018 			} else {
3019 				first_pfn = pfn;
3020 			}
3021 		} else if (contig && pfn != first_pfn + i) {
3022 			contig = 0;
3023 		}
3024 		if (pp->p_szc == 0) {
3025 			if (root) {
3026 				VM_STAT_ADD(segvnvmstats.fullszcpages[1]);
3027 				return (0);
3028 			}
3029 		} else if (!root) {
3030 			if ((curszc = pp->p_szc) >= szc) {
3031 				VM_STAT_ADD(segvnvmstats.fullszcpages[2]);
3032 				return (0);
3033 			}
3034 			if (curszc == 0) {
3035 				/*
3036 				 * p_szc changed means we don't have all pages
3037 				 * locked. return failure.
3038 				 */
3039 				VM_STAT_ADD(segvnvmstats.fullszcpages[3]);
3040 				return (0);
3041 			}
3042 			curnpgs = page_get_pagecnt(curszc);
3043 			if (!IS_P2ALIGNED(pfn, curnpgs) ||
3044 			    !IS_P2ALIGNED(i, curnpgs)) {
3045 				VM_STAT_ADD(segvnvmstats.fullszcpages[4]);
3046 				return (0);
3047 			}
3048 			root = 1;
3049 		} else {
3050 			ASSERT(i > 0);
3051 			VM_STAT_ADD(segvnvmstats.fullszcpages[5]);
3052 			if (pp->p_szc != curszc) {
3053 				VM_STAT_ADD(segvnvmstats.fullszcpages[6]);
3054 				return (0);
3055 			}
3056 			if (pfn - 1 != page_pptonum(ppa[i - 1])) {
3057 				panic("segvn_full_szcpages: "
3058 				    "large page not physically contiguous");
3059 			}
3060 			if (P2PHASE(pfn, curnpgs) == curnpgs - 1) {
3061 				root = 0;
3062 			}
3063 		}
3064 	}
3065 
3066 	for (i = 0; i < totnpgs; i++) {
3067 		ASSERT(ppa[i]->p_szc < szc);
3068 		if (!page_tryupgrade(ppa[i])) {
3069 			for (j = 0; j < i; j++) {
3070 				page_downgrade(ppa[j]);
3071 			}
3072 			*pszc = ppa[i]->p_szc;
3073 			*upgrdfail = 1;
3074 			VM_STAT_ADD(segvnvmstats.fullszcpages[7]);
3075 			return (0);
3076 		}
3077 	}
3078 
3079 	/*
3080 	 * When a page is put a free cachelist its szc is set to 0.  if file
3081 	 * system reclaimed pages from cachelist targ pages will be physically
3082 	 * contiguous with 0 p_szc.  in this case just upgrade szc of targ
3083 	 * pages without any relocations.
3084 	 * To avoid any hat issues with previous small mappings
3085 	 * hat_pageunload() the target pages first.
3086 	 */
3087 	if (contig) {
3088 		VM_STAT_ADD(segvnvmstats.fullszcpages[8]);
3089 		for (i = 0; i < totnpgs; i++) {
3090 			(void) hat_pageunload(ppa[i], HAT_FORCE_PGUNLOAD);
3091 		}
3092 		for (i = 0; i < totnpgs; i++) {
3093 			ppa[i]->p_szc = szc;
3094 		}
3095 		for (i = 0; i < totnpgs; i++) {
3096 			ASSERT(PAGE_EXCL(ppa[i]));
3097 			page_downgrade(ppa[i]);
3098 		}
3099 		if (pszc != NULL) {
3100 			*pszc = szc;
3101 		}
3102 	}
3103 	VM_STAT_ADD(segvnvmstats.fullszcpages[9]);
3104 	return (1);
3105 }
3106 
3107 /*
3108  * Create physically contiguous pages for [vp, off] - [vp, off +
3109  * page_size(szc)) range and for private segment return them in ppa array.
3110  * Pages are created either via IO or relocations.
3111  *
3112  * Return 1 on sucess and 0 on failure.
3113  *
3114  * If physically contiguos pages already exist for this range return 1 without
3115  * filling ppa array. Caller initializes ppa[0] as NULL to detect that ppa
3116  * array wasn't filled. In this case caller fills ppa array via VOP_GETPAGE().
3117  */
3118 
3119 static int
3120 segvn_fill_vp_pages(struct segvn_data *svd, vnode_t *vp, u_offset_t off,
3121     uint_t szc, page_t **ppa, page_t **ppplist, uint_t *ret_pszc,
3122     int *downsize)
3123 
3124 {
3125 	page_t *pplist = *ppplist;
3126 	size_t pgsz = page_get_pagesize(szc);
3127 	pgcnt_t pages = btop(pgsz);
3128 	ulong_t start_off = off;
3129 	u_offset_t eoff = off + pgsz;
3130 	spgcnt_t nreloc;
3131 	u_offset_t io_off = off;
3132 	size_t io_len;
3133 	page_t *io_pplist = NULL;
3134 	page_t *done_pplist = NULL;
3135 	pgcnt_t pgidx = 0;
3136 	page_t *pp;
3137 	page_t *newpp;
3138 	page_t *targpp;
3139 	int io_err = 0;
3140 	int i;
3141 	pfn_t pfn;
3142 	ulong_t ppages;
3143 	page_t *targ_pplist = NULL;
3144 	page_t *repl_pplist = NULL;
3145 	page_t *tmp_pplist;
3146 	int nios = 0;
3147 	uint_t pszc;
3148 	struct vattr va;
3149 
3150 	VM_STAT_ADD(segvnvmstats.fill_vp_pages[0]);
3151 
3152 	ASSERT(szc != 0);
3153 	ASSERT(pplist->p_szc == szc);
3154 
3155 	/*
3156 	 * downsize will be set to 1 only if we fail to lock pages. this will
3157 	 * allow subsequent faults to try to relocate the page again. If we
3158 	 * fail due to misalignment don't downsize and let the caller map the
3159 	 * whole region with small mappings to avoid more faults into the area
3160 	 * where we can't get large pages anyway.
3161 	 */
3162 	*downsize = 0;
3163 
3164 	while (off < eoff) {
3165 		newpp = pplist;
3166 		ASSERT(newpp != NULL);
3167 		ASSERT(PAGE_EXCL(newpp));
3168 		ASSERT(!PP_ISFREE(newpp));
3169 		/*
3170 		 * we pass NULL for nrelocp to page_lookup_create()
3171 		 * so that it doesn't relocate. We relocate here
3172 		 * later only after we make sure we can lock all
3173 		 * pages in the range we handle and they are all
3174 		 * aligned.
3175 		 */
3176 		pp = page_lookup_create(vp, off, SE_SHARED, newpp, NULL, 0);
3177 		ASSERT(pp != NULL);
3178 		ASSERT(!PP_ISFREE(pp));
3179 		ASSERT(pp->p_vnode == vp);
3180 		ASSERT(pp->p_offset == off);
3181 		if (pp == newpp) {
3182 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[1]);
3183 			page_sub(&pplist, pp);
3184 			ASSERT(PAGE_EXCL(pp));
3185 			ASSERT(page_iolock_assert(pp));
3186 			page_list_concat(&io_pplist, &pp);
3187 			off += PAGESIZE;
3188 			continue;
3189 		}
3190 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[2]);
3191 		pfn = page_pptonum(pp);
3192 		pszc = pp->p_szc;
3193 		if (pszc >= szc && targ_pplist == NULL && io_pplist == NULL &&
3194 		    IS_P2ALIGNED(pfn, pages)) {
3195 			ASSERT(repl_pplist == NULL);
3196 			ASSERT(done_pplist == NULL);
3197 			ASSERT(pplist == *ppplist);
3198 			page_unlock(pp);
3199 			page_free_replacement_page(pplist);
3200 			page_create_putback(pages);
3201 			*ppplist = NULL;
3202 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[3]);
3203 			return (1);
3204 		}
3205 		if (pszc >= szc) {
3206 			page_unlock(pp);
3207 			segvn_faultvnmpss_align_err1++;
3208 			goto out;
3209 		}
3210 		ppages = page_get_pagecnt(pszc);
3211 		if (!IS_P2ALIGNED(pfn, ppages)) {
3212 			ASSERT(pszc > 0);
3213 			/*
3214 			 * sizing down to pszc won't help.
3215 			 */
3216 			page_unlock(pp);
3217 			segvn_faultvnmpss_align_err2++;
3218 			goto out;
3219 		}
3220 		pfn = page_pptonum(newpp);
3221 		if (!IS_P2ALIGNED(pfn, ppages)) {
3222 			ASSERT(pszc > 0);
3223 			/*
3224 			 * sizing down to pszc won't help.
3225 			 */
3226 			page_unlock(pp);
3227 			segvn_faultvnmpss_align_err3++;
3228 			goto out;
3229 		}
3230 		if (!PAGE_EXCL(pp)) {
3231 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[4]);
3232 			page_unlock(pp);
3233 			*downsize = 1;
3234 			*ret_pszc = pp->p_szc;
3235 			goto out;
3236 		}
3237 		targpp = pp;
3238 		if (io_pplist != NULL) {
3239 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[5]);
3240 			io_len = off - io_off;
3241 			/*
3242 			 * Some file systems like NFS don't check EOF
3243 			 * conditions in VOP_PAGEIO(). Check it here
3244 			 * now that pages are locked SE_EXCL. Any file
3245 			 * truncation will wait until the pages are
3246 			 * unlocked so no need to worry that file will
3247 			 * be truncated after we check its size here.
3248 			 * XXX fix NFS to remove this check.
3249 			 */
3250 			va.va_mask = AT_SIZE;
3251 			if (VOP_GETATTR(vp, &va, ATTR_HINT, svd->cred) != 0) {
3252 				VM_STAT_ADD(segvnvmstats.fill_vp_pages[6]);
3253 				page_unlock(targpp);
3254 				goto out;
3255 			}
3256 			if (btopr(va.va_size) < btopr(io_off + io_len)) {
3257 				VM_STAT_ADD(segvnvmstats.fill_vp_pages[7]);
3258 				*downsize = 1;
3259 				*ret_pszc = 0;
3260 				page_unlock(targpp);
3261 				goto out;
3262 			}
3263 			io_err = VOP_PAGEIO(vp, io_pplist, io_off, io_len,
3264 				B_READ, svd->cred);
3265 			if (io_err) {
3266 				VM_STAT_ADD(segvnvmstats.fill_vp_pages[8]);
3267 				page_unlock(targpp);
3268 				if (io_err == EDEADLK) {
3269 					segvn_vmpss_pageio_deadlk_err++;
3270 				}
3271 				goto out;
3272 			}
3273 			nios++;
3274 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[9]);
3275 			while (io_pplist != NULL) {
3276 				pp = io_pplist;
3277 				page_sub(&io_pplist, pp);
3278 				ASSERT(page_iolock_assert(pp));
3279 				page_io_unlock(pp);
3280 				pgidx = (pp->p_offset - start_off) >>
3281 				    PAGESHIFT;
3282 				ASSERT(pgidx < pages);
3283 				ppa[pgidx] = pp;
3284 				page_list_concat(&done_pplist, &pp);
3285 			}
3286 		}
3287 		pp = targpp;
3288 		ASSERT(PAGE_EXCL(pp));
3289 		ASSERT(pp->p_szc <= pszc);
3290 		if (pszc != 0 && !group_page_trylock(pp, SE_EXCL)) {
3291 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[10]);
3292 			page_unlock(pp);
3293 			*downsize = 1;
3294 			*ret_pszc = pp->p_szc;
3295 			goto out;
3296 		}
3297 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[11]);
3298 		/*
3299 		 * page szc chould have changed before the entire group was
3300 		 * locked. reread page szc.
3301 		 */
3302 		pszc = pp->p_szc;
3303 		ppages = page_get_pagecnt(pszc);
3304 
3305 		/* link just the roots */
3306 		page_list_concat(&targ_pplist, &pp);
3307 		page_sub(&pplist, newpp);
3308 		page_list_concat(&repl_pplist, &newpp);
3309 		off += PAGESIZE;
3310 		while (--ppages != 0) {
3311 			newpp = pplist;
3312 			page_sub(&pplist, newpp);
3313 			off += PAGESIZE;
3314 		}
3315 		io_off = off;
3316 	}
3317 	if (io_pplist != NULL) {
3318 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[12]);
3319 		io_len = eoff - io_off;
3320 		va.va_mask = AT_SIZE;
3321 		if (VOP_GETATTR(vp, &va, ATTR_HINT, svd->cred) != 0) {
3322 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[13]);
3323 			goto out;
3324 		}
3325 		if (btopr(va.va_size) < btopr(io_off + io_len)) {
3326 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[14]);
3327 			*downsize = 1;
3328 			*ret_pszc = 0;
3329 			goto out;
3330 		}
3331 		io_err = VOP_PAGEIO(vp, io_pplist, io_off, io_len,
3332 		    B_READ, svd->cred);
3333 		if (io_err) {
3334 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[15]);
3335 			if (io_err == EDEADLK) {
3336 				segvn_vmpss_pageio_deadlk_err++;
3337 			}
3338 			goto out;
3339 		}
3340 		nios++;
3341 		while (io_pplist != NULL) {
3342 			pp = io_pplist;
3343 			page_sub(&io_pplist, pp);
3344 			ASSERT(page_iolock_assert(pp));
3345 			page_io_unlock(pp);
3346 			pgidx = (pp->p_offset - start_off) >> PAGESHIFT;
3347 			ASSERT(pgidx < pages);
3348 			ppa[pgidx] = pp;
3349 		}
3350 	}
3351 	/*
3352 	 * we're now bound to succeed or panic.
3353 	 * remove pages from done_pplist. it's not needed anymore.
3354 	 */
3355 	while (done_pplist != NULL) {
3356 		pp = done_pplist;
3357 		page_sub(&done_pplist, pp);
3358 	}
3359 	VM_STAT_ADD(segvnvmstats.fill_vp_pages[16]);
3360 	ASSERT(pplist == NULL);
3361 	*ppplist = NULL;
3362 	while (targ_pplist != NULL) {
3363 		int ret;
3364 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[17]);
3365 		ASSERT(repl_pplist);
3366 		pp = targ_pplist;
3367 		page_sub(&targ_pplist, pp);
3368 		pgidx = (pp->p_offset - start_off) >> PAGESHIFT;
3369 		newpp = repl_pplist;
3370 		page_sub(&repl_pplist, newpp);
3371 #ifdef DEBUG
3372 		pfn = page_pptonum(pp);
3373 		pszc = pp->p_szc;
3374 		ppages = page_get_pagecnt(pszc);
3375 		ASSERT(IS_P2ALIGNED(pfn, ppages));
3376 		pfn = page_pptonum(newpp);
3377 		ASSERT(IS_P2ALIGNED(pfn, ppages));
3378 		ASSERT(P2PHASE(pfn, pages) == pgidx);
3379 #endif
3380 		nreloc = 0;
3381 		ret = page_relocate(&pp, &newpp, 0, 1, &nreloc, NULL);
3382 		if (ret != 0 || nreloc == 0) {
3383 			panic("segvn_fill_vp_pages: "
3384 			    "page_relocate failed");
3385 		}
3386 		pp = newpp;
3387 		while (nreloc-- != 0) {
3388 			ASSERT(PAGE_EXCL(pp));
3389 			ASSERT(pp->p_vnode == vp);
3390 			ASSERT(pgidx ==
3391 			    ((pp->p_offset - start_off) >> PAGESHIFT));
3392 			ppa[pgidx++] = pp;
3393 			pp++;
3394 		}
3395 	}
3396 
3397 	if (svd->type == MAP_PRIVATE) {
3398 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[18]);
3399 		for (i = 0; i < pages; i++) {
3400 			ASSERT(ppa[i] != NULL);
3401 			ASSERT(PAGE_EXCL(ppa[i]));
3402 			ASSERT(ppa[i]->p_vnode == vp);
3403 			ASSERT(ppa[i]->p_offset ==
3404 			    start_off + (i << PAGESHIFT));
3405 			page_downgrade(ppa[i]);
3406 		}
3407 		ppa[pages] = NULL;
3408 	} else {
3409 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[19]);
3410 		/*
3411 		 * the caller will still call VOP_GETPAGE() for shared segments
3412 		 * to check FS write permissions. For private segments we map
3413 		 * file read only anyway.  so no VOP_GETPAGE is needed.
3414 		 */
3415 		for (i = 0; i < pages; i++) {
3416 			ASSERT(ppa[i] != NULL);
3417 			ASSERT(PAGE_EXCL(ppa[i]));
3418 			ASSERT(ppa[i]->p_vnode == vp);
3419 			ASSERT(ppa[i]->p_offset ==
3420 			    start_off + (i << PAGESHIFT));
3421 			page_unlock(ppa[i]);
3422 		}
3423 		ppa[0] = NULL;
3424 	}
3425 
3426 	return (1);
3427 out:
3428 	/*
3429 	 * Do the cleanup. Unlock target pages we didn't relocate. They are
3430 	 * linked on targ_pplist by root pages. reassemble unused replacement
3431 	 * and io pages back to pplist.
3432 	 */
3433 	if (io_pplist != NULL) {
3434 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[20]);
3435 		pp = io_pplist;
3436 		do {
3437 			ASSERT(pp->p_vnode == vp);
3438 			ASSERT(pp->p_offset == io_off);
3439 			ASSERT(page_iolock_assert(pp));
3440 			page_io_unlock(pp);
3441 			page_hashout(pp, NULL);
3442 			io_off += PAGESIZE;
3443 		} while ((pp = pp->p_next) != io_pplist);
3444 		page_list_concat(&io_pplist, &pplist);
3445 		pplist = io_pplist;
3446 	}
3447 	tmp_pplist = NULL;
3448 	while (targ_pplist != NULL) {
3449 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[21]);
3450 		pp = targ_pplist;
3451 		ASSERT(PAGE_EXCL(pp));
3452 		page_sub(&targ_pplist, pp);
3453 
3454 		pszc = pp->p_szc;
3455 		ppages = page_get_pagecnt(pszc);
3456 		ASSERT(IS_P2ALIGNED(page_pptonum(pp), ppages));
3457 
3458 		if (pszc != 0) {
3459 			group_page_unlock(pp);
3460 		}
3461 		page_unlock(pp);
3462 
3463 		pp = repl_pplist;
3464 		ASSERT(pp != NULL);
3465 		ASSERT(PAGE_EXCL(pp));
3466 		ASSERT(pp->p_szc == szc);
3467 		page_sub(&repl_pplist, pp);
3468 
3469 		ASSERT(IS_P2ALIGNED(page_pptonum(pp), ppages));
3470 
3471 		/* relink replacement page */
3472 		page_list_concat(&tmp_pplist, &pp);
3473 		while (--ppages != 0) {
3474 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[22]);
3475 			pp++;
3476 			ASSERT(PAGE_EXCL(pp));
3477 			ASSERT(pp->p_szc == szc);
3478 			page_list_concat(&tmp_pplist, &pp);
3479 		}
3480 	}
3481 	if (tmp_pplist != NULL) {
3482 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[23]);
3483 		page_list_concat(&tmp_pplist, &pplist);
3484 		pplist = tmp_pplist;
3485 	}
3486 	/*
3487 	 * at this point all pages are either on done_pplist or
3488 	 * pplist. They can't be all on done_pplist otherwise
3489 	 * we'd've been done.
3490 	 */
3491 	ASSERT(pplist != NULL);
3492 	if (nios != 0) {
3493 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[24]);
3494 		pp = pplist;
3495 		do {
3496 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[25]);
3497 			ASSERT(pp->p_szc == szc);
3498 			ASSERT(PAGE_EXCL(pp));
3499 			ASSERT(pp->p_vnode != vp);
3500 			pp->p_szc = 0;
3501 		} while ((pp = pp->p_next) != pplist);
3502 
3503 		pp = done_pplist;
3504 		do {
3505 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[26]);
3506 			ASSERT(pp->p_szc == szc);
3507 			ASSERT(PAGE_EXCL(pp));
3508 			ASSERT(pp->p_vnode == vp);
3509 			pp->p_szc = 0;
3510 		} while ((pp = pp->p_next) != done_pplist);
3511 
3512 		while (pplist != NULL) {
3513 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[27]);
3514 			pp = pplist;
3515 			page_sub(&pplist, pp);
3516 			page_free(pp, 0);
3517 		}
3518 
3519 		while (done_pplist != NULL) {
3520 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[28]);
3521 			pp = done_pplist;
3522 			page_sub(&done_pplist, pp);
3523 			page_unlock(pp);
3524 		}
3525 		*ppplist = NULL;
3526 		return (0);
3527 	}
3528 	ASSERT(pplist == *ppplist);
3529 	if (io_err) {
3530 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[29]);
3531 		/*
3532 		 * don't downsize on io error.
3533 		 * see if vop_getpage succeeds.
3534 		 * pplist may still be used in this case
3535 		 * for relocations.
3536 		 */
3537 		return (0);
3538 	}
3539 	VM_STAT_ADD(segvnvmstats.fill_vp_pages[30]);
3540 	page_free_replacement_page(pplist);
3541 	page_create_putback(pages);
3542 	*ppplist = NULL;
3543 	return (0);
3544 }
3545 
3546 int segvn_anypgsz = 0;
3547 
3548 #define	SEGVN_RESTORE_SOFTLOCK(type, pages) 		\
3549 		if ((type) == F_SOFTLOCK) {		\
3550 			mutex_enter(&freemem_lock);	\
3551 			availrmem += (pages);		\
3552 			segvn_pages_locked -= (pages);	\
3553 			svd->softlockcnt -= (pages);	\
3554 			mutex_exit(&freemem_lock);	\
3555 		}
3556 
3557 #define	SEGVN_UPDATE_MODBITS(ppa, pages, rw, prot, vpprot)		\
3558 		if (IS_VMODSORT((ppa)[0]->p_vnode)) {			\
3559 			if ((rw) == S_WRITE) {				\
3560 				for (i = 0; i < (pages); i++) {		\
3561 					ASSERT((ppa)[i]->p_vnode ==	\
3562 					    (ppa)[0]->p_vnode);		\
3563 					hat_setmod((ppa)[i]);		\
3564 				}					\
3565 			} else if ((rw) != S_OTHER &&			\
3566 			    ((prot) & (vpprot) & PROT_WRITE)) {		\
3567 				for (i = 0; i < (pages); i++) {		\
3568 					ASSERT((ppa)[i]->p_vnode ==	\
3569 					    (ppa)[0]->p_vnode);		\
3570 					if (!hat_ismod((ppa)[i])) {	\
3571 						prot &= ~PROT_WRITE;	\
3572 						break;			\
3573 					}				\
3574 				}					\
3575 			}						\
3576 		}
3577 
3578 #ifdef  VM_STATS
3579 
3580 #define	SEGVN_VMSTAT_FLTVNPAGES(idx)					\
3581 		VM_STAT_ADD(segvnvmstats.fltvnpages[(idx)]);
3582 
3583 #else /* VM_STATS */
3584 
3585 #define	SEGVN_VMSTAT_FLTVNPAGES(idx)
3586 
3587 #endif
3588 
3589 static faultcode_t
3590 segvn_fault_vnodepages(struct hat *hat, struct seg *seg, caddr_t lpgaddr,
3591     caddr_t lpgeaddr, enum fault_type type, enum seg_rw rw, caddr_t addr,
3592     caddr_t eaddr, int brkcow)
3593 {
3594 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
3595 	struct anon_map *amp = svd->amp;
3596 	uchar_t segtype = svd->type;
3597 	uint_t szc = seg->s_szc;
3598 	size_t pgsz = page_get_pagesize(szc);
3599 	size_t maxpgsz = pgsz;
3600 	pgcnt_t pages = btop(pgsz);
3601 	pgcnt_t maxpages = pages;
3602 	size_t ppasize = (pages + 1) * sizeof (page_t *);
3603 	caddr_t a = lpgaddr;
3604 	caddr_t	maxlpgeaddr = lpgeaddr;
3605 	u_offset_t off = svd->offset + (uintptr_t)(a - seg->s_base);
3606 	ulong_t aindx = svd->anon_index + seg_page(seg, a);
3607 	struct vpage *vpage = (svd->vpage != NULL) ?
3608 	    &svd->vpage[seg_page(seg, a)] : NULL;
3609 	vnode_t *vp = svd->vp;
3610 	page_t **ppa;
3611 	uint_t	pszc;
3612 	size_t	ppgsz;
3613 	pgcnt_t	ppages;
3614 	faultcode_t err = 0;
3615 	int ierr;
3616 	int vop_size_err = 0;
3617 	uint_t protchk, prot, vpprot;
3618 	ulong_t i;
3619 	int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
3620 	anon_sync_obj_t an_cookie;
3621 	enum seg_rw arw;
3622 	int alloc_failed = 0;
3623 	int adjszc_chk;
3624 	struct vattr va;
3625 	int xhat = 0;
3626 	page_t *pplist;
3627 	pfn_t pfn;
3628 	int physcontig;
3629 	int upgrdfail;
3630 	int segvn_anypgsz_vnode = 0; /* for now map vnode with 2 page sizes */
3631 	int tron = (svd->tr_state == SEGVN_TR_ON);
3632 
3633 	ASSERT(szc != 0);
3634 	ASSERT(vp != NULL);
3635 	ASSERT(brkcow == 0 || amp != NULL);
3636 	ASSERT(tron == 0 || amp != NULL);
3637 	ASSERT(enable_mbit_wa == 0); /* no mbit simulations with large pages */
3638 	ASSERT(!(svd->flags & MAP_NORESERVE));
3639 	ASSERT(type != F_SOFTUNLOCK);
3640 	ASSERT(IS_P2ALIGNED(a, maxpgsz));
3641 	ASSERT(amp == NULL || IS_P2ALIGNED(aindx, maxpages));
3642 	ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
3643 	ASSERT(seg->s_szc < NBBY * sizeof (int));
3644 	ASSERT(type != F_SOFTLOCK || lpgeaddr - a == maxpgsz);
3645 
3646 	VM_STAT_COND_ADD(type == F_SOFTLOCK, segvnvmstats.fltvnpages[0]);
3647 	VM_STAT_COND_ADD(type != F_SOFTLOCK, segvnvmstats.fltvnpages[1]);
3648 
3649 	if (svd->flags & MAP_TEXT) {
3650 		hat_flag |= HAT_LOAD_TEXT;
3651 	}
3652 
3653 	if (svd->pageprot) {
3654 		switch (rw) {
3655 		case S_READ:
3656 			protchk = PROT_READ;
3657 			break;
3658 		case S_WRITE:
3659 			protchk = PROT_WRITE;
3660 			break;
3661 		case S_EXEC:
3662 			protchk = PROT_EXEC;
3663 			break;
3664 		case S_OTHER:
3665 		default:
3666 			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
3667 			break;
3668 		}
3669 	} else {
3670 		prot = svd->prot;
3671 		/* caller has already done segment level protection check. */
3672 	}
3673 
3674 	if (seg->s_as->a_hat != hat) {
3675 		xhat = 1;
3676 	}
3677 
3678 	if (rw == S_WRITE && segtype == MAP_PRIVATE) {
3679 		SEGVN_VMSTAT_FLTVNPAGES(2);
3680 		arw = S_READ;
3681 	} else {
3682 		arw = rw;
3683 	}
3684 
3685 	ppa = kmem_alloc(ppasize, KM_SLEEP);
3686 
3687 	VM_STAT_COND_ADD(amp != NULL, segvnvmstats.fltvnpages[3]);
3688 
3689 	for (;;) {
3690 		adjszc_chk = 0;
3691 		for (; a < lpgeaddr; a += pgsz, off += pgsz, aindx += pages) {
3692 			if (adjszc_chk) {
3693 				while (szc < seg->s_szc) {
3694 					uintptr_t e;
3695 					uint_t tszc;
3696 					tszc = segvn_anypgsz_vnode ? szc + 1 :
3697 					    seg->s_szc;
3698 					ppgsz = page_get_pagesize(tszc);
3699 					if (!IS_P2ALIGNED(a, ppgsz) ||
3700 					    ((alloc_failed >> tszc) &
3701 						0x1)) {
3702 						break;
3703 					}
3704 					SEGVN_VMSTAT_FLTVNPAGES(4);
3705 					szc = tszc;
3706 					pgsz = ppgsz;
3707 					pages = btop(pgsz);
3708 					e = P2ROUNDUP((uintptr_t)eaddr, pgsz);
3709 					lpgeaddr = (caddr_t)e;
3710 				}
3711 			}
3712 
3713 		again:
3714 			if (IS_P2ALIGNED(a, maxpgsz) && amp != NULL) {
3715 				ASSERT(IS_P2ALIGNED(aindx, maxpages));
3716 				ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
3717 				anon_array_enter(amp, aindx, &an_cookie);
3718 				if (anon_get_ptr(amp->ahp, aindx) != NULL) {
3719 					SEGVN_VMSTAT_FLTVNPAGES(5);
3720 					ASSERT(anon_pages(amp->ahp, aindx,
3721 					    maxpages) == maxpages);
3722 					anon_array_exit(&an_cookie);
3723 					ANON_LOCK_EXIT(&amp->a_rwlock);
3724 					err = segvn_fault_anonpages(hat, seg,
3725 					    a, a + maxpgsz, type, rw,
3726 					    MAX(a, addr),
3727 					    MIN(a + maxpgsz, eaddr), brkcow);
3728 					if (err != 0) {
3729 						SEGVN_VMSTAT_FLTVNPAGES(6);
3730 						goto out;
3731 					}
3732 					if (szc < seg->s_szc) {
3733 						szc = seg->s_szc;
3734 						pgsz = maxpgsz;
3735 						pages = maxpages;
3736 						lpgeaddr = maxlpgeaddr;
3737 					}
3738 					goto next;
3739 				} else {
3740 					ASSERT(anon_pages(amp->ahp, aindx,
3741 					    maxpages) == 0);
3742 					SEGVN_VMSTAT_FLTVNPAGES(7);
3743 					anon_array_exit(&an_cookie);
3744 					ANON_LOCK_EXIT(&amp->a_rwlock);
3745 				}
3746 			}
3747 			ASSERT(!brkcow || IS_P2ALIGNED(a, maxpgsz));
3748 			ASSERT(!tron || IS_P2ALIGNED(a, maxpgsz));
3749 
3750 			if (svd->pageprot != 0 && IS_P2ALIGNED(a, maxpgsz)) {
3751 				ASSERT(vpage != NULL);
3752 				prot = VPP_PROT(vpage);
3753 				ASSERT(sameprot(seg, a, maxpgsz));
3754 				if ((prot & protchk) == 0) {
3755 					SEGVN_VMSTAT_FLTVNPAGES(8);
3756 					err = FC_PROT;
3757 					goto out;
3758 				}
3759 			}
3760 			if (type == F_SOFTLOCK) {
3761 				mutex_enter(&freemem_lock);
3762 				if (availrmem < tune.t_minarmem + pages) {
3763 					mutex_exit(&freemem_lock);
3764 					err = FC_MAKE_ERR(ENOMEM);
3765 					goto out;
3766 				} else {
3767 					availrmem -= pages;
3768 					segvn_pages_locked += pages;
3769 					svd->softlockcnt += pages;
3770 				}
3771 				mutex_exit(&freemem_lock);
3772 			}
3773 
3774 			pplist = NULL;
3775 			physcontig = 0;
3776 			ppa[0] = NULL;
3777 			if (!brkcow && !tron && szc &&
3778 			    !page_exists_physcontig(vp, off, szc,
3779 				segtype == MAP_PRIVATE ? ppa : NULL)) {
3780 				SEGVN_VMSTAT_FLTVNPAGES(9);
3781 				if (page_alloc_pages(vp, seg, a, &pplist, NULL,
3782 				    szc, 0, 0) && type != F_SOFTLOCK) {
3783 					SEGVN_VMSTAT_FLTVNPAGES(10);
3784 					pszc = 0;
3785 					ierr = -1;
3786 					alloc_failed |= (1 << szc);
3787 					break;
3788 				}
3789 				if (pplist != NULL &&
3790 				    vp->v_mpssdata == SEGVN_PAGEIO) {
3791 					int downsize;
3792 					SEGVN_VMSTAT_FLTVNPAGES(11);
3793 					physcontig = segvn_fill_vp_pages(svd,
3794 					    vp, off, szc, ppa, &pplist,
3795 					    &pszc, &downsize);
3796 					ASSERT(!physcontig || pplist == NULL);
3797 					if (!physcontig && downsize &&
3798 					    type != F_SOFTLOCK) {
3799 						ASSERT(pplist == NULL);
3800 						SEGVN_VMSTAT_FLTVNPAGES(12);
3801 						ierr = -1;
3802 						break;
3803 					}
3804 					ASSERT(!physcontig ||
3805 					    segtype == MAP_PRIVATE ||
3806 					    ppa[0] == NULL);
3807 					if (physcontig && ppa[0] == NULL) {
3808 						physcontig = 0;
3809 					}
3810 				}
3811 			} else if (!brkcow && !tron && szc && ppa[0] != NULL) {
3812 				SEGVN_VMSTAT_FLTVNPAGES(13);
3813 				ASSERT(segtype == MAP_PRIVATE);
3814 				physcontig = 1;
3815 			}
3816 
3817 			if (!physcontig) {
3818 				SEGVN_VMSTAT_FLTVNPAGES(14);
3819 				ppa[0] = NULL;
3820 				ierr = VOP_GETPAGE(vp, (offset_t)off, pgsz,
3821 				    &vpprot, ppa, pgsz, seg, a, arw,
3822 				    svd->cred);
3823 #ifdef DEBUG
3824 				if (ierr == 0) {
3825 					for (i = 0; i < pages; i++) {
3826 						ASSERT(PAGE_LOCKED(ppa[i]));
3827 						ASSERT(!PP_ISFREE(ppa[i]));
3828 						ASSERT(ppa[i]->p_vnode == vp);
3829 						ASSERT(ppa[i]->p_offset ==
3830 						    off + (i << PAGESHIFT));
3831 					}
3832 				}
3833 #endif /* DEBUG */
3834 				if (segtype == MAP_PRIVATE) {
3835 					SEGVN_VMSTAT_FLTVNPAGES(15);
3836 					vpprot &= ~PROT_WRITE;
3837 				}
3838 			} else {
3839 				ASSERT(segtype == MAP_PRIVATE);
3840 				SEGVN_VMSTAT_FLTVNPAGES(16);
3841 				vpprot = PROT_ALL & ~PROT_WRITE;
3842 				ierr = 0;
3843 			}
3844 
3845 			if (ierr != 0) {
3846 				SEGVN_VMSTAT_FLTVNPAGES(17);
3847 				if (pplist != NULL) {
3848 					SEGVN_VMSTAT_FLTVNPAGES(18);
3849 					page_free_replacement_page(pplist);
3850 					page_create_putback(pages);
3851 				}
3852 				SEGVN_RESTORE_SOFTLOCK(type, pages);
3853 				if (a + pgsz <= eaddr) {
3854 					SEGVN_VMSTAT_FLTVNPAGES(19);
3855 					err = FC_MAKE_ERR(ierr);
3856 					goto out;
3857 				}
3858 				va.va_mask = AT_SIZE;
3859 				if (VOP_GETATTR(vp, &va, 0, svd->cred) != 0) {
3860 					SEGVN_VMSTAT_FLTVNPAGES(20);
3861 					err = FC_MAKE_ERR(EIO);
3862 					goto out;
3863 				}
3864 				if (btopr(va.va_size) >= btopr(off + pgsz)) {
3865 					SEGVN_VMSTAT_FLTVNPAGES(21);
3866 					err = FC_MAKE_ERR(ierr);
3867 					goto out;
3868 				}
3869 				if (btopr(va.va_size) <
3870 				    btopr(off + (eaddr - a))) {
3871 					SEGVN_VMSTAT_FLTVNPAGES(22);
3872 					err = FC_MAKE_ERR(ierr);
3873 					goto out;
3874 				}
3875 				if (brkcow || tron || type == F_SOFTLOCK) {
3876 					/* can't reduce map area */
3877 					SEGVN_VMSTAT_FLTVNPAGES(23);
3878 					vop_size_err = 1;
3879 					goto out;
3880 				}
3881 				SEGVN_VMSTAT_FLTVNPAGES(24);
3882 				ASSERT(szc != 0);
3883 				pszc = 0;
3884 				ierr = -1;
3885 				break;
3886 			}
3887 
3888 			if (amp != NULL) {
3889 				ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
3890 				anon_array_enter(amp, aindx, &an_cookie);
3891 			}
3892 			if (amp != NULL &&
3893 			    anon_get_ptr(amp->ahp, aindx) != NULL) {
3894 				ulong_t taindx = P2ALIGN(aindx, maxpages);
3895 
3896 				SEGVN_VMSTAT_FLTVNPAGES(25);
3897 				ASSERT(anon_pages(amp->ahp, taindx,
3898 				    maxpages) == maxpages);
3899 				for (i = 0; i < pages; i++) {
3900 					page_unlock(ppa[i]);
3901 				}
3902 				anon_array_exit(&an_cookie);
3903 				ANON_LOCK_EXIT(&amp->a_rwlock);
3904 				if (pplist != NULL) {
3905 					page_free_replacement_page(pplist);
3906 					page_create_putback(pages);
3907 				}
3908 				SEGVN_RESTORE_SOFTLOCK(type, pages);
3909 				if (szc < seg->s_szc) {
3910 					SEGVN_VMSTAT_FLTVNPAGES(26);
3911 					/*
3912 					 * For private segments SOFTLOCK
3913 					 * either always breaks cow (any rw
3914 					 * type except S_READ_NOCOW) or
3915 					 * address space is locked as writer
3916 					 * (S_READ_NOCOW case) and anon slots
3917 					 * can't show up on second check.
3918 					 * Therefore if we are here for
3919 					 * SOFTLOCK case it must be a cow
3920 					 * break but cow break never reduces
3921 					 * szc. text replication (tron) in
3922 					 * this case works as cow break.
3923 					 * Thus the assert below.
3924 					 */
3925 					ASSERT(!brkcow && !tron &&
3926 					    type != F_SOFTLOCK);
3927 					pszc = seg->s_szc;
3928 					ierr = -2;
3929 					break;
3930 				}
3931 				ASSERT(IS_P2ALIGNED(a, maxpgsz));
3932 				goto again;
3933 			}
3934 #ifdef DEBUG
3935 			if (amp != NULL) {
3936 				ulong_t taindx = P2ALIGN(aindx, maxpages);
3937 				ASSERT(!anon_pages(amp->ahp, taindx, maxpages));
3938 			}
3939 #endif /* DEBUG */
3940 
3941 			if (brkcow || tron) {
3942 				ASSERT(amp != NULL);
3943 				ASSERT(pplist == NULL);
3944 				ASSERT(szc == seg->s_szc);
3945 				ASSERT(IS_P2ALIGNED(a, maxpgsz));
3946 				ASSERT(IS_P2ALIGNED(aindx, maxpages));
3947 				SEGVN_VMSTAT_FLTVNPAGES(27);
3948 				ierr = anon_map_privatepages(amp, aindx, szc,
3949 				    seg, a, prot, ppa, vpage, segvn_anypgsz,
3950 				    tron ? PG_LOCAL : 0, svd->cred);
3951 				if (ierr != 0) {
3952 					SEGVN_VMSTAT_FLTVNPAGES(28);
3953 					anon_array_exit(&an_cookie);
3954 					ANON_LOCK_EXIT(&amp->a_rwlock);
3955 					SEGVN_RESTORE_SOFTLOCK(type, pages);
3956 					err = FC_MAKE_ERR(ierr);
3957 					goto out;
3958 				}
3959 
3960 				ASSERT(!IS_VMODSORT(ppa[0]->p_vnode));
3961 				/*
3962 				 * p_szc can't be changed for locked
3963 				 * swapfs pages.
3964 				 */
3965 				hat_memload_array(hat, a, pgsz, ppa, prot,
3966 				    hat_flag);
3967 
3968 				if (!(hat_flag & HAT_LOAD_LOCK)) {
3969 					SEGVN_VMSTAT_FLTVNPAGES(29);
3970 					for (i = 0; i < pages; i++) {
3971 						page_unlock(ppa[i]);
3972 					}
3973 				}
3974 				anon_array_exit(&an_cookie);
3975 				ANON_LOCK_EXIT(&amp->a_rwlock);
3976 				goto next;
3977 			}
3978 
3979 			pfn = page_pptonum(ppa[0]);
3980 			/*
3981 			 * hat_page_demote() needs an EXCl lock on one of
3982 			 * constituent page_t's and it decreases root's p_szc
3983 			 * last. This means if root's p_szc is equal szc and
3984 			 * all its constituent pages are locked
3985 			 * hat_page_demote() that could have changed p_szc to
3986 			 * szc is already done and no new have page_demote()
3987 			 * can start for this large page.
3988 			 */
3989 
3990 			/*
3991 			 * we need to make sure same mapping size is used for
3992 			 * the same address range if there's a possibility the
3993 			 * adddress is already mapped because hat layer panics
3994 			 * when translation is loaded for the range already
3995 			 * mapped with a different page size.  We achieve it
3996 			 * by always using largest page size possible subject
3997 			 * to the constraints of page size, segment page size
3998 			 * and page alignment.  Since mappings are invalidated
3999 			 * when those constraints change and make it
4000 			 * impossible to use previously used mapping size no
4001 			 * mapping size conflicts should happen.
4002 			 */
4003 
4004 		chkszc:
4005 			if ((pszc = ppa[0]->p_szc) == szc &&
4006 			    IS_P2ALIGNED(pfn, pages)) {
4007 
4008 				SEGVN_VMSTAT_FLTVNPAGES(30);
4009 #ifdef DEBUG
4010 				for (i = 0; i < pages; i++) {
4011 					ASSERT(PAGE_LOCKED(ppa[i]));
4012 					ASSERT(!PP_ISFREE(ppa[i]));
4013 					ASSERT(page_pptonum(ppa[i]) ==
4014 					    pfn + i);
4015 					ASSERT(ppa[i]->p_szc == szc);
4016 					ASSERT(ppa[i]->p_vnode == vp);
4017 					ASSERT(ppa[i]->p_offset ==
4018 					    off + (i << PAGESHIFT));
4019 				}
4020 #endif /* DEBUG */
4021 				/*
4022 				 * All pages are of szc we need and they are
4023 				 * all locked so they can't change szc. load
4024 				 * translations.
4025 				 *
4026 				 * if page got promoted since last check
4027 				 * we don't need pplist.
4028 				 */
4029 				if (pplist != NULL) {
4030 					page_free_replacement_page(pplist);
4031 					page_create_putback(pages);
4032 				}
4033 				if (PP_ISMIGRATE(ppa[0])) {
4034 					page_migrate(seg, a, ppa, pages);
4035 				}
4036 				SEGVN_UPDATE_MODBITS(ppa, pages, rw,
4037 				    prot, vpprot);
4038 				if (!xhat) {
4039 					hat_memload_array(hat, a, pgsz, ppa,
4040 					    prot & vpprot, hat_flag);
4041 				} else {
4042 					/*
4043 					 * avoid large xhat mappings to FS
4044 					 * pages so that hat_page_demote()
4045 					 * doesn't need to check for xhat
4046 					 * large mappings.
4047 					 */
4048 					for (i = 0; i < pages; i++) {
4049 						hat_memload(hat,
4050 						    a + (i << PAGESHIFT),
4051 						    ppa[i], prot & vpprot,
4052 						    hat_flag);
4053 					}
4054 				}
4055 
4056 				if (!(hat_flag & HAT_LOAD_LOCK)) {
4057 					for (i = 0; i < pages; i++) {
4058 						page_unlock(ppa[i]);
4059 					}
4060 				}
4061 				if (amp != NULL) {
4062 					anon_array_exit(&an_cookie);
4063 					ANON_LOCK_EXIT(&amp->a_rwlock);
4064 				}
4065 				goto next;
4066 			}
4067 
4068 			/*
4069 			 * See if upsize is possible.
4070 			 */
4071 			if (pszc > szc && szc < seg->s_szc &&
4072 			    (segvn_anypgsz_vnode || pszc >= seg->s_szc)) {
4073 				pgcnt_t aphase;
4074 				uint_t pszc1 = MIN(pszc, seg->s_szc);
4075 				ppgsz = page_get_pagesize(pszc1);
4076 				ppages = btop(ppgsz);
4077 				aphase = btop(P2PHASE((uintptr_t)a, ppgsz));
4078 
4079 				ASSERT(type != F_SOFTLOCK);
4080 
4081 				SEGVN_VMSTAT_FLTVNPAGES(31);
4082 				if (aphase != P2PHASE(pfn, ppages)) {
4083 					segvn_faultvnmpss_align_err4++;
4084 				} else {
4085 					SEGVN_VMSTAT_FLTVNPAGES(32);
4086 					if (pplist != NULL) {
4087 						page_t *pl = pplist;
4088 						page_free_replacement_page(pl);
4089 						page_create_putback(pages);
4090 					}
4091 					for (i = 0; i < pages; i++) {
4092 						page_unlock(ppa[i]);
4093 					}
4094 					if (amp != NULL) {
4095 						anon_array_exit(&an_cookie);
4096 						ANON_LOCK_EXIT(&amp->a_rwlock);
4097 					}
4098 					pszc = pszc1;
4099 					ierr = -2;
4100 					break;
4101 				}
4102 			}
4103 
4104 			/*
4105 			 * check if we should use smallest mapping size.
4106 			 */
4107 			upgrdfail = 0;
4108 			if (szc == 0 || xhat ||
4109 			    (pszc >= szc &&
4110 			    !IS_P2ALIGNED(pfn, pages)) ||
4111 			    (pszc < szc &&
4112 			    !segvn_full_szcpages(ppa, szc, &upgrdfail,
4113 				&pszc))) {
4114 
4115 				if (upgrdfail && type != F_SOFTLOCK) {
4116 					/*
4117 					 * segvn_full_szcpages failed to lock
4118 					 * all pages EXCL. Size down.
4119 					 */
4120 					ASSERT(pszc < szc);
4121 
4122 					SEGVN_VMSTAT_FLTVNPAGES(33);
4123 
4124 					if (pplist != NULL) {
4125 						page_t *pl = pplist;
4126 						page_free_replacement_page(pl);
4127 						page_create_putback(pages);
4128 					}
4129 
4130 					for (i = 0; i < pages; i++) {
4131 						page_unlock(ppa[i]);
4132 					}
4133 					if (amp != NULL) {
4134 						anon_array_exit(&an_cookie);
4135 						ANON_LOCK_EXIT(&amp->a_rwlock);
4136 					}
4137 					ierr = -1;
4138 					break;
4139 				}
4140 				if (szc != 0 && !xhat && !upgrdfail) {
4141 					segvn_faultvnmpss_align_err5++;
4142 				}
4143 				SEGVN_VMSTAT_FLTVNPAGES(34);
4144 				if (pplist != NULL) {
4145 					page_free_replacement_page(pplist);
4146 					page_create_putback(pages);
4147 				}
4148 				SEGVN_UPDATE_MODBITS(ppa, pages, rw,
4149 				    prot, vpprot);
4150 				if (upgrdfail && segvn_anypgsz_vnode) {
4151 					/* SOFTLOCK case */
4152 					hat_memload_array(hat, a, pgsz,
4153 					    ppa, prot & vpprot, hat_flag);
4154 				} else {
4155 					for (i = 0; i < pages; i++) {
4156 						hat_memload(hat,
4157 						    a + (i << PAGESHIFT),
4158 						    ppa[i], prot & vpprot,
4159 						    hat_flag);
4160 					}
4161 				}
4162 				if (!(hat_flag & HAT_LOAD_LOCK)) {
4163 					for (i = 0; i < pages; i++) {
4164 						page_unlock(ppa[i]);
4165 					}
4166 				}
4167 				if (amp != NULL) {
4168 					anon_array_exit(&an_cookie);
4169 					ANON_LOCK_EXIT(&amp->a_rwlock);
4170 				}
4171 				goto next;
4172 			}
4173 
4174 			if (pszc == szc) {
4175 				/*
4176 				 * segvn_full_szcpages() upgraded pages szc.
4177 				 */
4178 				ASSERT(pszc == ppa[0]->p_szc);
4179 				ASSERT(IS_P2ALIGNED(pfn, pages));
4180 				goto chkszc;
4181 			}
4182 
4183 			if (pszc > szc) {
4184 				kmutex_t *szcmtx;
4185 				SEGVN_VMSTAT_FLTVNPAGES(35);
4186 				/*
4187 				 * p_szc of ppa[0] can change since we haven't
4188 				 * locked all constituent pages. Call
4189 				 * page_lock_szc() to prevent szc changes.
4190 				 * This should be a rare case that happens when
4191 				 * multiple segments use a different page size
4192 				 * to map the same file offsets.
4193 				 */
4194 				szcmtx = page_szc_lock(ppa[0]);
4195 				pszc = ppa[0]->p_szc;
4196 				ASSERT(szcmtx != NULL || pszc == 0);
4197 				ASSERT(ppa[0]->p_szc <= pszc);
4198 				if (pszc <= szc) {
4199 					SEGVN_VMSTAT_FLTVNPAGES(36);
4200 					if (szcmtx != NULL) {
4201 						mutex_exit(szcmtx);
4202 					}
4203 					goto chkszc;
4204 				}
4205 				if (pplist != NULL) {
4206 					/*
4207 					 * page got promoted since last check.
4208 					 * we don't need preaalocated large
4209 					 * page.
4210 					 */
4211 					SEGVN_VMSTAT_FLTVNPAGES(37);
4212 					page_free_replacement_page(pplist);
4213 					page_create_putback(pages);
4214 				}
4215 				SEGVN_UPDATE_MODBITS(ppa, pages, rw,
4216 				    prot, vpprot);
4217 				hat_memload_array(hat, a, pgsz, ppa,
4218 				    prot & vpprot, hat_flag);
4219 				mutex_exit(szcmtx);
4220 				if (!(hat_flag & HAT_LOAD_LOCK)) {
4221 					for (i = 0; i < pages; i++) {
4222 						page_unlock(ppa[i]);
4223 					}
4224 				}
4225 				if (amp != NULL) {
4226 					anon_array_exit(&an_cookie);
4227 					ANON_LOCK_EXIT(&amp->a_rwlock);
4228 				}
4229 				goto next;
4230 			}
4231 
4232 			/*
4233 			 * if page got demoted since last check
4234 			 * we could have not allocated larger page.
4235 			 * allocate now.
4236 			 */
4237 			if (pplist == NULL &&
4238 			    page_alloc_pages(vp, seg, a, &pplist, NULL,
4239 				szc, 0, 0) && type != F_SOFTLOCK) {
4240 				SEGVN_VMSTAT_FLTVNPAGES(38);
4241 				for (i = 0; i < pages; i++) {
4242 					page_unlock(ppa[i]);
4243 				}
4244 				if (amp != NULL) {
4245 					anon_array_exit(&an_cookie);
4246 					ANON_LOCK_EXIT(&amp->a_rwlock);
4247 				}
4248 				ierr = -1;
4249 				alloc_failed |= (1 << szc);
4250 				break;
4251 			}
4252 
4253 			SEGVN_VMSTAT_FLTVNPAGES(39);
4254 
4255 			if (pplist != NULL) {
4256 				segvn_relocate_pages(ppa, pplist);
4257 #ifdef DEBUG
4258 			} else {
4259 				ASSERT(type == F_SOFTLOCK);
4260 				SEGVN_VMSTAT_FLTVNPAGES(40);
4261 #endif /* DEBUG */
4262 			}
4263 
4264 			SEGVN_UPDATE_MODBITS(ppa, pages, rw, prot, vpprot);
4265 
4266 			if (pplist == NULL && segvn_anypgsz_vnode == 0) {
4267 				ASSERT(type == F_SOFTLOCK);
4268 				for (i = 0; i < pages; i++) {
4269 					ASSERT(ppa[i]->p_szc < szc);
4270 					hat_memload(hat, a + (i << PAGESHIFT),
4271 					    ppa[i], prot & vpprot, hat_flag);
4272 				}
4273 			} else {
4274 				ASSERT(pplist != NULL || type == F_SOFTLOCK);
4275 				hat_memload_array(hat, a, pgsz, ppa,
4276 				    prot & vpprot, hat_flag);
4277 			}
4278 			if (!(hat_flag & HAT_LOAD_LOCK)) {
4279 				for (i = 0; i < pages; i++) {
4280 					ASSERT(PAGE_SHARED(ppa[i]));
4281 					page_unlock(ppa[i]);
4282 				}
4283 			}
4284 			if (amp != NULL) {
4285 				anon_array_exit(&an_cookie);
4286 				ANON_LOCK_EXIT(&amp->a_rwlock);
4287 			}
4288 
4289 		next:
4290 			if (vpage != NULL) {
4291 				vpage += pages;
4292 			}
4293 			adjszc_chk = 1;
4294 		}
4295 		if (a == lpgeaddr)
4296 			break;
4297 		ASSERT(a < lpgeaddr);
4298 
4299 		ASSERT(!brkcow && !tron && type != F_SOFTLOCK);
4300 
4301 		/*
4302 		 * ierr == -1 means we failed to map with a large page.
4303 		 * (either due to allocation/relocation failures or
4304 		 * misalignment with other mappings to this file.
4305 		 *
4306 		 * ierr == -2 means some other thread allocated a large page
4307 		 * after we gave up tp map with a large page.  retry with
4308 		 * larger mapping.
4309 		 */
4310 		ASSERT(ierr == -1 || ierr == -2);
4311 		ASSERT(ierr == -2 || szc != 0);
4312 		ASSERT(ierr == -1 || szc < seg->s_szc);
4313 		if (ierr == -2) {
4314 			SEGVN_VMSTAT_FLTVNPAGES(41);
4315 			ASSERT(pszc > szc && pszc <= seg->s_szc);
4316 			szc = pszc;
4317 		} else if (segvn_anypgsz_vnode) {
4318 			SEGVN_VMSTAT_FLTVNPAGES(42);
4319 			szc--;
4320 		} else {
4321 			SEGVN_VMSTAT_FLTVNPAGES(43);
4322 			ASSERT(pszc < szc);
4323 			/*
4324 			 * other process created pszc large page.
4325 			 * but we still have to drop to 0 szc.
4326 			 */
4327 			szc = 0;
4328 		}
4329 
4330 		pgsz = page_get_pagesize(szc);
4331 		pages = btop(pgsz);
4332 		if (ierr == -2) {
4333 			/*
4334 			 * Size up case. Note lpgaddr may only be needed for
4335 			 * softlock case so we don't adjust it here.
4336 			 */
4337 			a = (caddr_t)P2ALIGN((uintptr_t)a, pgsz);
4338 			ASSERT(a >= lpgaddr);
4339 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4340 			off = svd->offset + (uintptr_t)(a - seg->s_base);
4341 			aindx = svd->anon_index + seg_page(seg, a);
4342 			vpage = (svd->vpage != NULL) ?
4343 			    &svd->vpage[seg_page(seg, a)] : NULL;
4344 		} else {
4345 			/*
4346 			 * Size down case. Note lpgaddr may only be needed for
4347 			 * softlock case so we don't adjust it here.
4348 			 */
4349 			ASSERT(IS_P2ALIGNED(a, pgsz));
4350 			ASSERT(IS_P2ALIGNED(lpgeaddr, pgsz));
4351 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4352 			ASSERT(a < lpgeaddr);
4353 			if (a < addr) {
4354 				SEGVN_VMSTAT_FLTVNPAGES(44);
4355 				/*
4356 				 * The beginning of the large page region can
4357 				 * be pulled to the right to make a smaller
4358 				 * region. We haven't yet faulted a single
4359 				 * page.
4360 				 */
4361 				a = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
4362 				ASSERT(a >= lpgaddr);
4363 				off = svd->offset +
4364 				    (uintptr_t)(a - seg->s_base);
4365 				aindx = svd->anon_index + seg_page(seg, a);
4366 				vpage = (svd->vpage != NULL) ?
4367 				    &svd->vpage[seg_page(seg, a)] : NULL;
4368 			}
4369 		}
4370 	}
4371 out:
4372 	kmem_free(ppa, ppasize);
4373 	if (!err && !vop_size_err) {
4374 		SEGVN_VMSTAT_FLTVNPAGES(45);
4375 		return (0);
4376 	}
4377 	if (type == F_SOFTLOCK && a > lpgaddr) {
4378 		SEGVN_VMSTAT_FLTVNPAGES(46);
4379 		segvn_softunlock(seg, lpgaddr, a - lpgaddr, S_OTHER);
4380 	}
4381 	if (!vop_size_err) {
4382 		SEGVN_VMSTAT_FLTVNPAGES(47);
4383 		return (err);
4384 	}
4385 	ASSERT(brkcow || tron || type == F_SOFTLOCK);
4386 	/*
4387 	 * Large page end is mapped beyond the end of file and it's a cow
4388 	 * fault (can be a text replication induced cow) or softlock so we can't
4389 	 * reduce the map area.  For now just demote the segment. This should
4390 	 * really only happen if the end of the file changed after the mapping
4391 	 * was established since when large page segments are created we make
4392 	 * sure they don't extend beyond the end of the file.
4393 	 */
4394 	SEGVN_VMSTAT_FLTVNPAGES(48);
4395 
4396 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4397 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4398 	err = 0;
4399 	if (seg->s_szc != 0) {
4400 		segvn_fltvnpages_clrszc_cnt++;
4401 		ASSERT(svd->softlockcnt == 0);
4402 		err = segvn_clrszc(seg);
4403 		if (err != 0) {
4404 			segvn_fltvnpages_clrszc_err++;
4405 		}
4406 	}
4407 	ASSERT(err || seg->s_szc == 0);
4408 	SEGVN_LOCK_DOWNGRADE(seg->s_as, &svd->lock);
4409 	/* segvn_fault will do its job as if szc had been zero to begin with */
4410 	return (err == 0 ? IE_RETRY : FC_MAKE_ERR(err));
4411 }
4412 
4413 /*
4414  * This routine will attempt to fault in one large page.
4415  * it will use smaller pages if that fails.
4416  * It should only be called for pure anonymous segments.
4417  */
4418 static faultcode_t
4419 segvn_fault_anonpages(struct hat *hat, struct seg *seg, caddr_t lpgaddr,
4420     caddr_t lpgeaddr, enum fault_type type, enum seg_rw rw, caddr_t addr,
4421     caddr_t eaddr, int brkcow)
4422 {
4423 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
4424 	struct anon_map *amp = svd->amp;
4425 	uchar_t segtype = svd->type;
4426 	uint_t szc = seg->s_szc;
4427 	size_t pgsz = page_get_pagesize(szc);
4428 	size_t maxpgsz = pgsz;
4429 	pgcnt_t pages = btop(pgsz);
4430 	size_t ppasize = pages * sizeof (page_t *);
4431 	caddr_t a = lpgaddr;
4432 	ulong_t aindx = svd->anon_index + seg_page(seg, a);
4433 	struct vpage *vpage = (svd->vpage != NULL) ?
4434 	    &svd->vpage[seg_page(seg, a)] : NULL;
4435 	page_t **ppa;
4436 	uint_t	ppa_szc;
4437 	faultcode_t err;
4438 	int ierr;
4439 	uint_t protchk, prot, vpprot;
4440 	ulong_t i;
4441 	int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
4442 	anon_sync_obj_t cookie;
4443 	int first = 1;
4444 	int adjszc_chk;
4445 	int purged = 0;
4446 	int pgflags = (svd->tr_state == SEGVN_TR_ON) ? PG_LOCAL : 0;
4447 
4448 	ASSERT(szc != 0);
4449 	ASSERT(amp != NULL);
4450 	ASSERT(enable_mbit_wa == 0); /* no mbit simulations with large pages */
4451 	ASSERT(!(svd->flags & MAP_NORESERVE));
4452 	ASSERT(type != F_SOFTUNLOCK);
4453 	ASSERT(IS_P2ALIGNED(a, maxpgsz));
4454 	ASSERT(!brkcow || svd->tr_state == SEGVN_TR_OFF);
4455 
4456 	ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
4457 
4458 	VM_STAT_COND_ADD(type == F_SOFTLOCK, segvnvmstats.fltanpages[0]);
4459 	VM_STAT_COND_ADD(type != F_SOFTLOCK, segvnvmstats.fltanpages[1]);
4460 
4461 	if (svd->flags & MAP_TEXT) {
4462 		hat_flag |= HAT_LOAD_TEXT;
4463 	}
4464 
4465 	if (svd->pageprot) {
4466 		switch (rw) {
4467 		case S_READ:
4468 			protchk = PROT_READ;
4469 			break;
4470 		case S_WRITE:
4471 			protchk = PROT_WRITE;
4472 			break;
4473 		case S_EXEC:
4474 			protchk = PROT_EXEC;
4475 			break;
4476 		case S_OTHER:
4477 		default:
4478 			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
4479 			break;
4480 		}
4481 		VM_STAT_ADD(segvnvmstats.fltanpages[2]);
4482 	} else {
4483 		prot = svd->prot;
4484 		/* caller has already done segment level protection check. */
4485 	}
4486 
4487 	ppa = kmem_alloc(ppasize, KM_SLEEP);
4488 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
4489 	for (;;) {
4490 		adjszc_chk = 0;
4491 		for (; a < lpgeaddr; a += pgsz, aindx += pages) {
4492 			if (svd->pageprot != 0 && IS_P2ALIGNED(a, maxpgsz)) {
4493 				VM_STAT_ADD(segvnvmstats.fltanpages[3]);
4494 				ASSERT(vpage != NULL);
4495 				prot = VPP_PROT(vpage);
4496 				ASSERT(sameprot(seg, a, maxpgsz));
4497 				if ((prot & protchk) == 0) {
4498 					err = FC_PROT;
4499 					goto error;
4500 				}
4501 			}
4502 			if (adjszc_chk && IS_P2ALIGNED(a, maxpgsz) &&
4503 			    pgsz < maxpgsz) {
4504 				ASSERT(a > lpgaddr);
4505 				szc = seg->s_szc;
4506 				pgsz = maxpgsz;
4507 				pages = btop(pgsz);
4508 				ASSERT(IS_P2ALIGNED(aindx, pages));
4509 				lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr,
4510 				    pgsz);
4511 			}
4512 			if (type == F_SOFTLOCK && svd->vp != NULL) {
4513 				mutex_enter(&freemem_lock);
4514 				if (availrmem < tune.t_minarmem + pages) {
4515 					mutex_exit(&freemem_lock);
4516 					err = FC_MAKE_ERR(ENOMEM);
4517 					goto error;
4518 				} else {
4519 					availrmem -= pages;
4520 					segvn_pages_locked += pages;
4521 					svd->softlockcnt += pages;
4522 				}
4523 				mutex_exit(&freemem_lock);
4524 			}
4525 			anon_array_enter(amp, aindx, &cookie);
4526 			ppa_szc = (uint_t)-1;
4527 			ierr = anon_map_getpages(amp, aindx, szc, seg, a,
4528 				prot, &vpprot, ppa, &ppa_szc, vpage, rw, brkcow,
4529 				segvn_anypgsz, pgflags, svd->cred);
4530 			if (ierr != 0) {
4531 				anon_array_exit(&cookie);
4532 				VM_STAT_ADD(segvnvmstats.fltanpages[4]);
4533 				if (type == F_SOFTLOCK && svd->vp != NULL) {
4534 					VM_STAT_ADD(segvnvmstats.fltanpages[5]);
4535 					mutex_enter(&freemem_lock);
4536 					availrmem += pages;
4537 					segvn_pages_locked -= pages;
4538 					svd->softlockcnt -= pages;
4539 					mutex_exit(&freemem_lock);
4540 				}
4541 				if (ierr > 0) {
4542 					VM_STAT_ADD(segvnvmstats.fltanpages[6]);
4543 					err = FC_MAKE_ERR(ierr);
4544 					goto error;
4545 				}
4546 				break;
4547 			}
4548 
4549 			ASSERT(!IS_VMODSORT(ppa[0]->p_vnode));
4550 
4551 			ASSERT(segtype == MAP_SHARED ||
4552 			    ppa[0]->p_szc <= szc);
4553 			ASSERT(segtype == MAP_PRIVATE ||
4554 			    ppa[0]->p_szc >= szc);
4555 
4556 			/*
4557 			 * Handle pages that have been marked for migration
4558 			 */
4559 			if (lgrp_optimizations())
4560 				page_migrate(seg, a, ppa, pages);
4561 
4562 			if (type == F_SOFTLOCK && svd->vp == NULL) {
4563 				/*
4564 				 * All pages in ppa array belong to the same
4565 				 * large page. This means it's ok to call
4566 				 * segvn_pp_lock_anonpages just for ppa[0].
4567 				 */
4568 				if (!segvn_pp_lock_anonpages(ppa[0], first)) {
4569 					for (i = 0; i < pages; i++) {
4570 						page_unlock(ppa[i]);
4571 					}
4572 					err = FC_MAKE_ERR(ENOMEM);
4573 					goto error;
4574 				}
4575 				first = 0;
4576 				mutex_enter(&freemem_lock);
4577 				svd->softlockcnt += pages;
4578 				segvn_pages_locked += pages;
4579 				mutex_exit(&freemem_lock);
4580 			}
4581 
4582 			if (segtype == MAP_SHARED) {
4583 				vpprot |= PROT_WRITE;
4584 			}
4585 
4586 			hat_memload_array(hat, a, pgsz, ppa,
4587 			    prot & vpprot, hat_flag);
4588 
4589 			if (hat_flag & HAT_LOAD_LOCK) {
4590 				VM_STAT_ADD(segvnvmstats.fltanpages[7]);
4591 			} else {
4592 				VM_STAT_ADD(segvnvmstats.fltanpages[8]);
4593 				for (i = 0; i < pages; i++)
4594 					page_unlock(ppa[i]);
4595 			}
4596 			if (vpage != NULL)
4597 				vpage += pages;
4598 
4599 			anon_array_exit(&cookie);
4600 			adjszc_chk = 1;
4601 		}
4602 		if (a == lpgeaddr)
4603 			break;
4604 		ASSERT(a < lpgeaddr);
4605 		/*
4606 		 * ierr == -1 means we failed to allocate a large page.
4607 		 * so do a size down operation.
4608 		 *
4609 		 * ierr == -2 means some other process that privately shares
4610 		 * pages with this process has allocated a larger page and we
4611 		 * need to retry with larger pages. So do a size up
4612 		 * operation. This relies on the fact that large pages are
4613 		 * never partially shared i.e. if we share any constituent
4614 		 * page of a large page with another process we must share the
4615 		 * entire large page. Note this cannot happen for SOFTLOCK
4616 		 * case, unless current address (a) is at the beginning of the
4617 		 * next page size boundary because the other process couldn't
4618 		 * have relocated locked pages.
4619 		 */
4620 		ASSERT(ierr == -1 || ierr == -2);
4621 		/*
4622 		 * For the very first relocation failure try to purge this
4623 		 * segment's cache so that the relocator can obtain an
4624 		 * exclusive lock on pages we want to relocate.
4625 		 */
4626 		if (!purged && ierr == -1 && ppa_szc != (uint_t)-1 &&
4627 		    svd->softlockcnt != 0) {
4628 			purged = 1;
4629 			segvn_purge(seg);
4630 			continue;
4631 		}
4632 
4633 		if (segvn_anypgsz) {
4634 			ASSERT(ierr == -2 || szc != 0);
4635 			ASSERT(ierr == -1 || szc < seg->s_szc);
4636 			szc = (ierr == -1) ? szc - 1 : szc + 1;
4637 		} else {
4638 			/*
4639 			 * For non COW faults and segvn_anypgsz == 0
4640 			 * we need to be careful not to loop forever
4641 			 * if existing page is found with szc other
4642 			 * than 0 or seg->s_szc. This could be due
4643 			 * to page relocations on behalf of DR or
4644 			 * more likely large page creation. For this
4645 			 * case simply re-size to existing page's szc
4646 			 * if returned by anon_map_getpages().
4647 			 */
4648 			if (ppa_szc == (uint_t)-1) {
4649 				szc = (ierr == -1) ? 0 : seg->s_szc;
4650 			} else {
4651 				ASSERT(ppa_szc <= seg->s_szc);
4652 				ASSERT(ierr == -2 || ppa_szc < szc);
4653 				ASSERT(ierr == -1 || ppa_szc > szc);
4654 				szc = ppa_szc;
4655 			}
4656 		}
4657 
4658 		pgsz = page_get_pagesize(szc);
4659 		pages = btop(pgsz);
4660 		ASSERT(type != F_SOFTLOCK || ierr == -1 ||
4661 		    (IS_P2ALIGNED(a, pgsz) && IS_P2ALIGNED(lpgeaddr, pgsz)));
4662 		if (type == F_SOFTLOCK) {
4663 			/*
4664 			 * For softlocks we cannot reduce the fault area
4665 			 * (calculated based on the largest page size for this
4666 			 * segment) for size down and a is already next
4667 			 * page size aligned as assertted above for size
4668 			 * ups. Therefore just continue in case of softlock.
4669 			 */
4670 			VM_STAT_ADD(segvnvmstats.fltanpages[9]);
4671 			continue; /* keep lint happy */
4672 		} else if (ierr == -2) {
4673 
4674 			/*
4675 			 * Size up case. Note lpgaddr may only be needed for
4676 			 * softlock case so we don't adjust it here.
4677 			 */
4678 			VM_STAT_ADD(segvnvmstats.fltanpages[10]);
4679 			a = (caddr_t)P2ALIGN((uintptr_t)a, pgsz);
4680 			ASSERT(a >= lpgaddr);
4681 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4682 			aindx = svd->anon_index + seg_page(seg, a);
4683 			vpage = (svd->vpage != NULL) ?
4684 			    &svd->vpage[seg_page(seg, a)] : NULL;
4685 		} else {
4686 			/*
4687 			 * Size down case. Note lpgaddr may only be needed for
4688 			 * softlock case so we don't adjust it here.
4689 			 */
4690 			VM_STAT_ADD(segvnvmstats.fltanpages[11]);
4691 			ASSERT(IS_P2ALIGNED(a, pgsz));
4692 			ASSERT(IS_P2ALIGNED(lpgeaddr, pgsz));
4693 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4694 			ASSERT(a < lpgeaddr);
4695 			if (a < addr) {
4696 				/*
4697 				 * The beginning of the large page region can
4698 				 * be pulled to the right to make a smaller
4699 				 * region. We haven't yet faulted a single
4700 				 * page.
4701 				 */
4702 				VM_STAT_ADD(segvnvmstats.fltanpages[12]);
4703 				a = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
4704 				ASSERT(a >= lpgaddr);
4705 				aindx = svd->anon_index + seg_page(seg, a);
4706 				vpage = (svd->vpage != NULL) ?
4707 				    &svd->vpage[seg_page(seg, a)] : NULL;
4708 			}
4709 		}
4710 	}
4711 	VM_STAT_ADD(segvnvmstats.fltanpages[13]);
4712 	ANON_LOCK_EXIT(&amp->a_rwlock);
4713 	kmem_free(ppa, ppasize);
4714 	return (0);
4715 error:
4716 	VM_STAT_ADD(segvnvmstats.fltanpages[14]);
4717 	ANON_LOCK_EXIT(&amp->a_rwlock);
4718 	kmem_free(ppa, ppasize);
4719 	if (type == F_SOFTLOCK && a > lpgaddr) {
4720 		VM_STAT_ADD(segvnvmstats.fltanpages[15]);
4721 		segvn_softunlock(seg, lpgaddr, a - lpgaddr, S_OTHER);
4722 	}
4723 	return (err);
4724 }
4725 
4726 int fltadvice = 1;	/* set to free behind pages for sequential access */
4727 
4728 /*
4729  * This routine is called via a machine specific fault handling routine.
4730  * It is also called by software routines wishing to lock or unlock
4731  * a range of addresses.
4732  *
4733  * Here is the basic algorithm:
4734  *	If unlocking
4735  *		Call segvn_softunlock
4736  *		Return
4737  *	endif
4738  *	Checking and set up work
4739  *	If we will need some non-anonymous pages
4740  *		Call VOP_GETPAGE over the range of non-anonymous pages
4741  *	endif
4742  *	Loop over all addresses requested
4743  *		Call segvn_faultpage passing in page list
4744  *		    to load up translations and handle anonymous pages
4745  *	endloop
4746  *	Load up translation to any additional pages in page list not
4747  *	    already handled that fit into this segment
4748  */
4749 static faultcode_t
4750 segvn_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t len,
4751     enum fault_type type, enum seg_rw rw)
4752 {
4753 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
4754 	page_t **plp, **ppp, *pp;
4755 	u_offset_t off;
4756 	caddr_t a;
4757 	struct vpage *vpage;
4758 	uint_t vpprot, prot;
4759 	int err;
4760 	page_t *pl[PVN_GETPAGE_NUM + 1];
4761 	size_t plsz, pl_alloc_sz;
4762 	size_t page;
4763 	ulong_t anon_index;
4764 	struct anon_map *amp;
4765 	int dogetpage = 0;
4766 	caddr_t	lpgaddr, lpgeaddr;
4767 	size_t pgsz;
4768 	anon_sync_obj_t cookie;
4769 	int brkcow = BREAK_COW_SHARE(rw, type, svd->type);
4770 
4771 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
4772 
4773 	/*
4774 	 * First handle the easy stuff
4775 	 */
4776 	if (type == F_SOFTUNLOCK) {
4777 		if (rw == S_READ_NOCOW) {
4778 			rw = S_READ;
4779 			ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
4780 		}
4781 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
4782 		pgsz = (seg->s_szc == 0) ? PAGESIZE :
4783 		    page_get_pagesize(seg->s_szc);
4784 		VM_STAT_COND_ADD(pgsz > PAGESIZE, segvnvmstats.fltanpages[16]);
4785 		CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
4786 		segvn_softunlock(seg, lpgaddr, lpgeaddr - lpgaddr, rw);
4787 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4788 		return (0);
4789 	}
4790 
4791 	if (brkcow == 0) {
4792 		if (svd->tr_state == SEGVN_TR_INIT) {
4793 			SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4794 			if (svd->tr_state == SEGVN_TR_INIT) {
4795 				ASSERT(svd->vp != NULL && svd->amp == NULL);
4796 				ASSERT(svd->flags & MAP_TEXT);
4797 				ASSERT(svd->type == MAP_PRIVATE);
4798 				segvn_textrepl(seg);
4799 				ASSERT(svd->tr_state != SEGVN_TR_INIT);
4800 				ASSERT(svd->tr_state != SEGVN_TR_ON ||
4801 				    svd->amp != NULL);
4802 			}
4803 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4804 		}
4805 	} else if (svd->tr_state != SEGVN_TR_OFF) {
4806 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4807 		if (svd->tr_state == SEGVN_TR_ON) {
4808 			ASSERT(svd->vp != NULL && svd->amp != NULL);
4809 			segvn_textunrepl(seg, 0);
4810 			ASSERT(svd->amp == NULL &&
4811 			    svd->tr_state == SEGVN_TR_OFF);
4812 		} else if (svd->tr_state != SEGVN_TR_OFF) {
4813 			svd->tr_state = SEGVN_TR_OFF;
4814 		}
4815 		ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
4816 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4817 	}
4818 
4819 top:
4820 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
4821 
4822 	/*
4823 	 * If we have the same protections for the entire segment,
4824 	 * insure that the access being attempted is legitimate.
4825 	 */
4826 
4827 	if (svd->pageprot == 0) {
4828 		uint_t protchk;
4829 
4830 		switch (rw) {
4831 		case S_READ:
4832 		case S_READ_NOCOW:
4833 			protchk = PROT_READ;
4834 			break;
4835 		case S_WRITE:
4836 			protchk = PROT_WRITE;
4837 			break;
4838 		case S_EXEC:
4839 			protchk = PROT_EXEC;
4840 			break;
4841 		case S_OTHER:
4842 		default:
4843 			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
4844 			break;
4845 		}
4846 
4847 		if ((svd->prot & protchk) == 0) {
4848 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4849 			return (FC_PROT);	/* illegal access type */
4850 		}
4851 	}
4852 
4853 	/*
4854 	 * We can't allow the long term use of softlocks for vmpss segments,
4855 	 * because in some file truncation cases we should be able to demote
4856 	 * the segment, which requires that there are no softlocks.  The
4857 	 * only case where it's ok to allow a SOFTLOCK fault against a vmpss
4858 	 * segment is S_READ_NOCOW, where the caller holds the address space
4859 	 * locked as writer and calls softunlock before dropping the as lock.
4860 	 * S_READ_NOCOW is used by /proc to read memory from another user.
4861 	 *
4862 	 * Another deadlock between SOFTLOCK and file truncation can happen
4863 	 * because segvn_fault_vnodepages() calls the FS one pagesize at
4864 	 * a time. A second VOP_GETPAGE() call by segvn_fault_vnodepages()
4865 	 * can cause a deadlock because the first set of page_t's remain
4866 	 * locked SE_SHARED.  To avoid this, we demote segments on a first
4867 	 * SOFTLOCK if they have a length greater than the segment's
4868 	 * page size.
4869 	 *
4870 	 * So for now, we only avoid demoting a segment on a SOFTLOCK when
4871 	 * the access type is S_READ_NOCOW and the fault length is less than
4872 	 * or equal to the segment's page size. While this is quite restrictive,
4873 	 * it should be the most common case of SOFTLOCK against a vmpss
4874 	 * segment.
4875 	 *
4876 	 * For S_READ_NOCOW, it's safe not to do a copy on write because the
4877 	 * caller makes sure no COW will be caused by another thread for a
4878 	 * softlocked page.
4879 	 */
4880 	if (type == F_SOFTLOCK && svd->vp != NULL && seg->s_szc != 0) {
4881 		int demote = 0;
4882 
4883 		if (rw != S_READ_NOCOW) {
4884 			demote = 1;
4885 		}
4886 		if (!demote && len > PAGESIZE) {
4887 			pgsz = page_get_pagesize(seg->s_szc);
4888 			CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr,
4889 			    lpgeaddr);
4890 			if (lpgeaddr - lpgaddr > pgsz) {
4891 				demote = 1;
4892 			}
4893 		}
4894 
4895 		ASSERT(demote || AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
4896 
4897 		if (demote) {
4898 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4899 			SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4900 			if (seg->s_szc != 0) {
4901 				segvn_vmpss_clrszc_cnt++;
4902 				ASSERT(svd->softlockcnt == 0);
4903 				err = segvn_clrszc(seg);
4904 				if (err) {
4905 					segvn_vmpss_clrszc_err++;
4906 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4907 					return (FC_MAKE_ERR(err));
4908 				}
4909 			}
4910 			ASSERT(seg->s_szc == 0);
4911 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4912 			goto top;
4913 		}
4914 	}
4915 
4916 	/*
4917 	 * Check to see if we need to allocate an anon_map structure.
4918 	 */
4919 	if (svd->amp == NULL && (svd->vp == NULL || brkcow)) {
4920 		/*
4921 		 * Drop the "read" lock on the segment and acquire
4922 		 * the "write" version since we have to allocate the
4923 		 * anon_map.
4924 		 */
4925 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4926 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4927 
4928 		if (svd->amp == NULL) {
4929 			svd->amp = anonmap_alloc(seg->s_size, 0, ANON_SLEEP);
4930 			svd->amp->a_szc = seg->s_szc;
4931 		}
4932 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4933 
4934 		/*
4935 		 * Start all over again since segment protections
4936 		 * may have changed after we dropped the "read" lock.
4937 		 */
4938 		goto top;
4939 	}
4940 
4941 	/*
4942 	 * S_READ_NOCOW vs S_READ distinction was
4943 	 * only needed for the code above. After
4944 	 * that we treat it as S_READ.
4945 	 */
4946 	if (rw == S_READ_NOCOW) {
4947 		ASSERT(type == F_SOFTLOCK);
4948 		ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
4949 		rw = S_READ;
4950 	}
4951 
4952 	amp = svd->amp;
4953 
4954 	/*
4955 	 * MADV_SEQUENTIAL work is ignored for large page segments.
4956 	 */
4957 	if (seg->s_szc != 0) {
4958 		pgsz = page_get_pagesize(seg->s_szc);
4959 		ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
4960 		CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
4961 		if (svd->vp == NULL) {
4962 			err = segvn_fault_anonpages(hat, seg, lpgaddr,
4963 			    lpgeaddr, type, rw, addr, addr + len, brkcow);
4964 		} else {
4965 			err = segvn_fault_vnodepages(hat, seg, lpgaddr,
4966 				lpgeaddr, type, rw, addr, addr + len, brkcow);
4967 			if (err == IE_RETRY) {
4968 				ASSERT(seg->s_szc == 0);
4969 				ASSERT(SEGVN_READ_HELD(seg->s_as, &svd->lock));
4970 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4971 				goto top;
4972 			}
4973 		}
4974 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4975 		return (err);
4976 	}
4977 
4978 	page = seg_page(seg, addr);
4979 	if (amp != NULL) {
4980 		anon_index = svd->anon_index + page;
4981 
4982 		if (type == F_PROT && rw == S_READ &&
4983 		    svd->tr_state == SEGVN_TR_OFF &&
4984 		    svd->type == MAP_PRIVATE && svd->pageprot == 0) {
4985 			size_t index = anon_index;
4986 			struct anon *ap;
4987 
4988 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
4989 			/*
4990 			 * The fast path could apply to S_WRITE also, except
4991 			 * that the protection fault could be caused by lazy
4992 			 * tlb flush when ro->rw. In this case, the pte is
4993 			 * RW already. But RO in the other cpu's tlb causes
4994 			 * the fault. Since hat_chgprot won't do anything if
4995 			 * pte doesn't change, we may end up faulting
4996 			 * indefinitely until the RO tlb entry gets replaced.
4997 			 */
4998 			for (a = addr; a < addr + len; a += PAGESIZE, index++) {
4999 				anon_array_enter(amp, index, &cookie);
5000 				ap = anon_get_ptr(amp->ahp, index);
5001 				anon_array_exit(&cookie);
5002 				if ((ap == NULL) || (ap->an_refcnt != 1)) {
5003 					ANON_LOCK_EXIT(&amp->a_rwlock);
5004 					goto slow;
5005 				}
5006 			}
5007 			hat_chgprot(seg->s_as->a_hat, addr, len, svd->prot);
5008 			ANON_LOCK_EXIT(&amp->a_rwlock);
5009 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5010 			return (0);
5011 		}
5012 	}
5013 slow:
5014 
5015 	if (svd->vpage == NULL)
5016 		vpage = NULL;
5017 	else
5018 		vpage = &svd->vpage[page];
5019 
5020 	off = svd->offset + (uintptr_t)(addr - seg->s_base);
5021 
5022 	/*
5023 	 * If MADV_SEQUENTIAL has been set for the particular page we
5024 	 * are faulting on, free behind all pages in the segment and put
5025 	 * them on the free list.
5026 	 */
5027 
5028 	if ((page != 0) && fltadvice && svd->tr_state != SEGVN_TR_ON) {
5029 		struct vpage *vpp;
5030 		ulong_t fanon_index;
5031 		size_t fpage;
5032 		u_offset_t pgoff, fpgoff;
5033 		struct vnode *fvp;
5034 		struct anon *fap = NULL;
5035 
5036 		if (svd->advice == MADV_SEQUENTIAL ||
5037 		    (svd->pageadvice &&
5038 		    VPP_ADVICE(vpage) == MADV_SEQUENTIAL)) {
5039 			pgoff = off - PAGESIZE;
5040 			fpage = page - 1;
5041 			if (vpage != NULL)
5042 				vpp = &svd->vpage[fpage];
5043 			if (amp != NULL)
5044 				fanon_index = svd->anon_index + fpage;
5045 
5046 			while (pgoff > svd->offset) {
5047 				if (svd->advice != MADV_SEQUENTIAL &&
5048 				    (!svd->pageadvice || (vpage &&
5049 				    VPP_ADVICE(vpp) != MADV_SEQUENTIAL)))
5050 					break;
5051 
5052 				/*
5053 				 * If this is an anon page, we must find the
5054 				 * correct <vp, offset> for it
5055 				 */
5056 				fap = NULL;
5057 				if (amp != NULL) {
5058 					ANON_LOCK_ENTER(&amp->a_rwlock,
5059 						RW_READER);
5060 					anon_array_enter(amp, fanon_index,
5061 						&cookie);
5062 					fap = anon_get_ptr(amp->ahp,
5063 					    fanon_index);
5064 					if (fap != NULL) {
5065 						swap_xlate(fap, &fvp, &fpgoff);
5066 					} else {
5067 						fpgoff = pgoff;
5068 						fvp = svd->vp;
5069 					}
5070 					anon_array_exit(&cookie);
5071 					ANON_LOCK_EXIT(&amp->a_rwlock);
5072 				} else {
5073 					fpgoff = pgoff;
5074 					fvp = svd->vp;
5075 				}
5076 				if (fvp == NULL)
5077 					break;	/* XXX */
5078 				/*
5079 				 * Skip pages that are free or have an
5080 				 * "exclusive" lock.
5081 				 */
5082 				pp = page_lookup_nowait(fvp, fpgoff, SE_SHARED);
5083 				if (pp == NULL)
5084 					break;
5085 				/*
5086 				 * We don't need the page_struct_lock to test
5087 				 * as this is only advisory; even if we
5088 				 * acquire it someone might race in and lock
5089 				 * the page after we unlock and before the
5090 				 * PUTPAGE, then VOP_PUTPAGE will do nothing.
5091 				 */
5092 				if (pp->p_lckcnt == 0 && pp->p_cowcnt == 0) {
5093 					/*
5094 					 * Hold the vnode before releasing
5095 					 * the page lock to prevent it from
5096 					 * being freed and re-used by some
5097 					 * other thread.
5098 					 */
5099 					VN_HOLD(fvp);
5100 					page_unlock(pp);
5101 					/*
5102 					 * We should build a page list
5103 					 * to kluster putpages XXX
5104 					 */
5105 					(void) VOP_PUTPAGE(fvp,
5106 					    (offset_t)fpgoff, PAGESIZE,
5107 					    (B_DONTNEED|B_FREE|B_ASYNC),
5108 					    svd->cred);
5109 					VN_RELE(fvp);
5110 				} else {
5111 					/*
5112 					 * XXX - Should the loop terminate if
5113 					 * the page is `locked'?
5114 					 */
5115 					page_unlock(pp);
5116 				}
5117 				--vpp;
5118 				--fanon_index;
5119 				pgoff -= PAGESIZE;
5120 			}
5121 		}
5122 	}
5123 
5124 	plp = pl;
5125 	*plp = NULL;
5126 	pl_alloc_sz = 0;
5127 
5128 	/*
5129 	 * See if we need to call VOP_GETPAGE for
5130 	 * *any* of the range being faulted on.
5131 	 * We can skip all of this work if there
5132 	 * was no original vnode.
5133 	 */
5134 	if (svd->vp != NULL) {
5135 		u_offset_t vp_off;
5136 		size_t vp_len;
5137 		struct anon *ap;
5138 		vnode_t *vp;
5139 
5140 		vp_off = off;
5141 		vp_len = len;
5142 
5143 		if (amp == NULL)
5144 			dogetpage = 1;
5145 		else {
5146 			/*
5147 			 * Only acquire reader lock to prevent amp->ahp
5148 			 * from being changed.  It's ok to miss pages,
5149 			 * hence we don't do anon_array_enter
5150 			 */
5151 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5152 			ap = anon_get_ptr(amp->ahp, anon_index);
5153 
5154 			if (len <= PAGESIZE)
5155 				/* inline non_anon() */
5156 				dogetpage = (ap == NULL);
5157 			else
5158 				dogetpage = non_anon(amp->ahp, anon_index,
5159 				    &vp_off, &vp_len);
5160 			ANON_LOCK_EXIT(&amp->a_rwlock);
5161 		}
5162 
5163 		if (dogetpage) {
5164 			enum seg_rw arw;
5165 			struct as *as = seg->s_as;
5166 
5167 			if (len > ptob((sizeof (pl) / sizeof (pl[0])) - 1)) {
5168 				/*
5169 				 * Page list won't fit in local array,
5170 				 * allocate one of the needed size.
5171 				 */
5172 				pl_alloc_sz =
5173 				    (btop(len) + 1) * sizeof (page_t *);
5174 				plp = kmem_alloc(pl_alloc_sz, KM_SLEEP);
5175 				plp[0] = NULL;
5176 				plsz = len;
5177 			} else if (rw == S_WRITE && svd->type == MAP_PRIVATE ||
5178 			    svd->tr_state == SEGVN_TR_ON || rw == S_OTHER ||
5179 			    (((size_t)(addr + PAGESIZE) <
5180 			    (size_t)(seg->s_base + seg->s_size)) &&
5181 			    hat_probe(as->a_hat, addr + PAGESIZE))) {
5182 				/*
5183 				 * Ask VOP_GETPAGE to return the exact number
5184 				 * of pages if
5185 				 * (a) this is a COW fault, or
5186 				 * (b) this is a software fault, or
5187 				 * (c) next page is already mapped.
5188 				 */
5189 				plsz = len;
5190 			} else {
5191 				/*
5192 				 * Ask VOP_GETPAGE to return adjacent pages
5193 				 * within the segment.
5194 				 */
5195 				plsz = MIN((size_t)PVN_GETPAGE_SZ, (size_t)
5196 					((seg->s_base + seg->s_size) - addr));
5197 				ASSERT((addr + plsz) <=
5198 				    (seg->s_base + seg->s_size));
5199 			}
5200 
5201 			/*
5202 			 * Need to get some non-anonymous pages.
5203 			 * We need to make only one call to GETPAGE to do
5204 			 * this to prevent certain deadlocking conditions
5205 			 * when we are doing locking.  In this case
5206 			 * non_anon() should have picked up the smallest
5207 			 * range which includes all the non-anonymous
5208 			 * pages in the requested range.  We have to
5209 			 * be careful regarding which rw flag to pass in
5210 			 * because on a private mapping, the underlying
5211 			 * object is never allowed to be written.
5212 			 */
5213 			if (rw == S_WRITE && svd->type == MAP_PRIVATE) {
5214 				arw = S_READ;
5215 			} else {
5216 				arw = rw;
5217 			}
5218 			vp = svd->vp;
5219 			TRACE_3(TR_FAC_VM, TR_SEGVN_GETPAGE,
5220 				"segvn_getpage:seg %p addr %p vp %p",
5221 				seg, addr, vp);
5222 			err = VOP_GETPAGE(vp, (offset_t)vp_off, vp_len,
5223 			    &vpprot, plp, plsz, seg, addr + (vp_off - off), arw,
5224 			    svd->cred);
5225 			if (err) {
5226 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5227 				segvn_pagelist_rele(plp);
5228 				if (pl_alloc_sz)
5229 					kmem_free(plp, pl_alloc_sz);
5230 				return (FC_MAKE_ERR(err));
5231 			}
5232 			if (svd->type == MAP_PRIVATE)
5233 				vpprot &= ~PROT_WRITE;
5234 		}
5235 	}
5236 
5237 	/*
5238 	 * N.B. at this time the plp array has all the needed non-anon
5239 	 * pages in addition to (possibly) having some adjacent pages.
5240 	 */
5241 
5242 	/*
5243 	 * Always acquire the anon_array_lock to prevent
5244 	 * 2 threads from allocating separate anon slots for
5245 	 * the same "addr".
5246 	 *
5247 	 * If this is a copy-on-write fault and we don't already
5248 	 * have the anon_array_lock, acquire it to prevent the
5249 	 * fault routine from handling multiple copy-on-write faults
5250 	 * on the same "addr" in the same address space.
5251 	 *
5252 	 * Only one thread should deal with the fault since after
5253 	 * it is handled, the other threads can acquire a translation
5254 	 * to the newly created private page.  This prevents two or
5255 	 * more threads from creating different private pages for the
5256 	 * same fault.
5257 	 *
5258 	 * We grab "serialization" lock here if this is a MAP_PRIVATE segment
5259 	 * to prevent deadlock between this thread and another thread
5260 	 * which has soft-locked this page and wants to acquire serial_lock.
5261 	 * ( bug 4026339 )
5262 	 *
5263 	 * The fix for bug 4026339 becomes unnecessary when using the
5264 	 * locking scheme with per amp rwlock and a global set of hash
5265 	 * lock, anon_array_lock.  If we steal a vnode page when low
5266 	 * on memory and upgrad the page lock through page_rename,
5267 	 * then the page is PAGE_HANDLED, nothing needs to be done
5268 	 * for this page after returning from segvn_faultpage.
5269 	 *
5270 	 * But really, the page lock should be downgraded after
5271 	 * the stolen page is page_rename'd.
5272 	 */
5273 
5274 	if (amp != NULL)
5275 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5276 
5277 	/*
5278 	 * Ok, now loop over the address range and handle faults
5279 	 */
5280 	for (a = addr; a < addr + len; a += PAGESIZE, off += PAGESIZE) {
5281 		err = segvn_faultpage(hat, seg, a, off, vpage, plp, vpprot,
5282 		    type, rw, brkcow, a == addr);
5283 		if (err) {
5284 			if (amp != NULL)
5285 				ANON_LOCK_EXIT(&amp->a_rwlock);
5286 			if (type == F_SOFTLOCK && a > addr) {
5287 				segvn_softunlock(seg, addr, (a - addr),
5288 				    S_OTHER);
5289 			}
5290 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5291 			segvn_pagelist_rele(plp);
5292 			if (pl_alloc_sz)
5293 				kmem_free(plp, pl_alloc_sz);
5294 			return (err);
5295 		}
5296 		if (vpage) {
5297 			vpage++;
5298 		} else if (svd->vpage) {
5299 			page = seg_page(seg, addr);
5300 			vpage = &svd->vpage[++page];
5301 		}
5302 	}
5303 
5304 	/* Didn't get pages from the underlying fs so we're done */
5305 	if (!dogetpage)
5306 		goto done;
5307 
5308 	/*
5309 	 * Now handle any other pages in the list returned.
5310 	 * If the page can be used, load up the translations now.
5311 	 * Note that the for loop will only be entered if "plp"
5312 	 * is pointing to a non-NULL page pointer which means that
5313 	 * VOP_GETPAGE() was called and vpprot has been initialized.
5314 	 */
5315 	if (svd->pageprot == 0)
5316 		prot = svd->prot & vpprot;
5317 
5318 
5319 	/*
5320 	 * Large Files: diff should be unsigned value because we started
5321 	 * supporting > 2GB segment sizes from 2.5.1 and when a
5322 	 * large file of size > 2GB gets mapped to address space
5323 	 * the diff value can be > 2GB.
5324 	 */
5325 
5326 	for (ppp = plp; (pp = *ppp) != NULL; ppp++) {
5327 		size_t diff;
5328 		struct anon *ap;
5329 		int anon_index;
5330 		anon_sync_obj_t cookie;
5331 		int hat_flag = HAT_LOAD_ADV;
5332 
5333 		if (svd->flags & MAP_TEXT) {
5334 			hat_flag |= HAT_LOAD_TEXT;
5335 		}
5336 
5337 		if (pp == PAGE_HANDLED)
5338 			continue;
5339 
5340 		if (svd->tr_state != SEGVN_TR_ON &&
5341 		    pp->p_offset >=  svd->offset &&
5342 		    pp->p_offset < svd->offset + seg->s_size) {
5343 
5344 			diff = pp->p_offset - svd->offset;
5345 
5346 			/*
5347 			 * Large Files: Following is the assertion
5348 			 * validating the above cast.
5349 			 */
5350 			ASSERT(svd->vp == pp->p_vnode);
5351 
5352 			page = btop(diff);
5353 			if (svd->pageprot)
5354 				prot = VPP_PROT(&svd->vpage[page]) & vpprot;
5355 
5356 			/*
5357 			 * Prevent other threads in the address space from
5358 			 * creating private pages (i.e., allocating anon slots)
5359 			 * while we are in the process of loading translations
5360 			 * to additional pages returned by the underlying
5361 			 * object.
5362 			 */
5363 			if (amp != NULL) {
5364 				anon_index = svd->anon_index + page;
5365 				anon_array_enter(amp, anon_index, &cookie);
5366 				ap = anon_get_ptr(amp->ahp, anon_index);
5367 			}
5368 			if ((amp == NULL) || (ap == NULL)) {
5369 				if (IS_VMODSORT(pp->p_vnode) ||
5370 				    enable_mbit_wa) {
5371 					if (rw == S_WRITE)
5372 						hat_setmod(pp);
5373 					else if (rw != S_OTHER &&
5374 					    !hat_ismod(pp))
5375 						prot &= ~PROT_WRITE;
5376 				}
5377 				/*
5378 				 * Skip mapping read ahead pages marked
5379 				 * for migration, so they will get migrated
5380 				 * properly on fault
5381 				 */
5382 				if ((prot & PROT_READ) && !PP_ISMIGRATE(pp)) {
5383 					hat_memload(hat, seg->s_base + diff,
5384 						pp, prot, hat_flag);
5385 				}
5386 			}
5387 			if (amp != NULL)
5388 				anon_array_exit(&cookie);
5389 		}
5390 		page_unlock(pp);
5391 	}
5392 done:
5393 	if (amp != NULL)
5394 		ANON_LOCK_EXIT(&amp->a_rwlock);
5395 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5396 	if (pl_alloc_sz)
5397 		kmem_free(plp, pl_alloc_sz);
5398 	return (0);
5399 }
5400 
5401 /*
5402  * This routine is used to start I/O on pages asynchronously.  XXX it will
5403  * only create PAGESIZE pages. At fault time they will be relocated into
5404  * larger pages.
5405  */
5406 static faultcode_t
5407 segvn_faulta(struct seg *seg, caddr_t addr)
5408 {
5409 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5410 	int err;
5411 	struct anon_map *amp;
5412 	vnode_t *vp;
5413 
5414 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5415 
5416 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
5417 	if ((amp = svd->amp) != NULL) {
5418 		struct anon *ap;
5419 
5420 		/*
5421 		 * Reader lock to prevent amp->ahp from being changed.
5422 		 * This is advisory, it's ok to miss a page, so
5423 		 * we don't do anon_array_enter lock.
5424 		 */
5425 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5426 		if ((ap = anon_get_ptr(amp->ahp,
5427 			svd->anon_index + seg_page(seg, addr))) != NULL) {
5428 
5429 			err = anon_getpage(&ap, NULL, NULL,
5430 			    0, seg, addr, S_READ, svd->cred);
5431 
5432 			ANON_LOCK_EXIT(&amp->a_rwlock);
5433 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5434 			if (err)
5435 				return (FC_MAKE_ERR(err));
5436 			return (0);
5437 		}
5438 		ANON_LOCK_EXIT(&amp->a_rwlock);
5439 	}
5440 
5441 	if (svd->vp == NULL) {
5442 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5443 		return (0);			/* zfod page - do nothing now */
5444 	}
5445 
5446 	vp = svd->vp;
5447 	TRACE_3(TR_FAC_VM, TR_SEGVN_GETPAGE,
5448 		"segvn_getpage:seg %p addr %p vp %p", seg, addr, vp);
5449 	err = VOP_GETPAGE(vp,
5450 	    (offset_t)(svd->offset + (uintptr_t)(addr - seg->s_base)),
5451 	    PAGESIZE, NULL, NULL, 0, seg, addr,
5452 	    S_OTHER, svd->cred);
5453 
5454 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5455 	if (err)
5456 		return (FC_MAKE_ERR(err));
5457 	return (0);
5458 }
5459 
5460 static int
5461 segvn_setprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
5462 {
5463 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5464 	struct vpage *svp, *evp;
5465 	struct vnode *vp;
5466 	size_t pgsz;
5467 	pgcnt_t pgcnt;
5468 	anon_sync_obj_t cookie;
5469 
5470 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5471 
5472 	if ((svd->maxprot & prot) != prot)
5473 		return (EACCES);			/* violated maxprot */
5474 
5475 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
5476 
5477 	/* return if prot is the same */
5478 	if (!svd->pageprot && svd->prot == prot) {
5479 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5480 		return (0);
5481 	}
5482 
5483 	/*
5484 	 * Since we change protections we first have to flush the cache.
5485 	 * This makes sure all the pagelock calls have to recheck
5486 	 * protections.
5487 	 */
5488 	if (svd->softlockcnt > 0) {
5489 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
5490 		/*
5491 		 * Since we do have the segvn writers lock nobody can fill
5492 		 * the cache with entries belonging to this seg during
5493 		 * the purge. The flush either succeeds or we still have
5494 		 * pending I/Os.
5495 		 */
5496 		segvn_purge(seg);
5497 		if (svd->softlockcnt > 0) {
5498 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5499 			return (EAGAIN);
5500 		}
5501 	}
5502 
5503 	if (svd->tr_state == SEGVN_TR_INIT) {
5504 		svd->tr_state = SEGVN_TR_OFF;
5505 	} else if (svd->tr_state == SEGVN_TR_ON) {
5506 		ASSERT(svd->amp != NULL);
5507 		segvn_textunrepl(seg, 0);
5508 		ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
5509 	}
5510 
5511 	if ((prot & PROT_WRITE) && svd->type == MAP_SHARED &&
5512 	    svd->vp != NULL && (svd->vp->v_flag & VVMEXEC)) {
5513 		ASSERT(vn_is_mapped(svd->vp, V_WRITE));
5514 		segvn_inval_trcache(svd->vp);
5515 	}
5516 
5517 	if (seg->s_szc != 0) {
5518 		int err;
5519 		pgsz = page_get_pagesize(seg->s_szc);
5520 		pgcnt = pgsz >> PAGESHIFT;
5521 		ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
5522 		if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) {
5523 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5524 			ASSERT(seg->s_base != addr || seg->s_size != len);
5525 			/*
5526 			 * If we are holding the as lock as a reader then
5527 			 * we need to return IE_RETRY and let the as
5528 			 * layer drop and re-aquire the lock as a writer.
5529 			 */
5530 			if (AS_READ_HELD(seg->s_as, &seg->s_as->a_lock))
5531 				return (IE_RETRY);
5532 			VM_STAT_ADD(segvnvmstats.demoterange[1]);
5533 			if (svd->type == MAP_PRIVATE || svd->vp != NULL) {
5534 				err = segvn_demote_range(seg, addr, len,
5535 				    SDR_END, 0);
5536 			} else {
5537 				uint_t szcvec = map_pgszcvec(seg->s_base,
5538 				    pgsz, (uintptr_t)seg->s_base,
5539 				    (svd->flags & MAP_TEXT), MAPPGSZC_SHM, 0);
5540 				err = segvn_demote_range(seg, addr, len,
5541 				    SDR_END, szcvec);
5542 			}
5543 			if (err == 0)
5544 				return (IE_RETRY);
5545 			if (err == ENOMEM)
5546 				return (IE_NOMEM);
5547 			return (err);
5548 		}
5549 	}
5550 
5551 
5552 	/*
5553 	 * If it's a private mapping and we're making it writable
5554 	 * and no swap space has been reserved, have to reserve
5555 	 * it all now.  If it's a private mapping to a file (i.e., vp != NULL)
5556 	 * and we're removing write permission on the entire segment and
5557 	 * we haven't modified any pages, we can release the swap space.
5558 	 */
5559 	if (svd->type == MAP_PRIVATE) {
5560 		if (prot & PROT_WRITE) {
5561 			size_t sz;
5562 			if (svd->swresv == 0 && !(svd->flags & MAP_NORESERVE)) {
5563 				if (anon_resv_zone(seg->s_size,
5564 				    seg->s_as->a_proc->p_zone) == 0) {
5565 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5566 					return (IE_NOMEM);
5567 				}
5568 				sz = svd->swresv = seg->s_size;
5569 				TRACE_3(TR_FAC_VM, TR_ANON_PROC,
5570 					"anon proc:%p %lu %u",
5571 					seg, sz, 1);
5572 			}
5573 		} else {
5574 			/*
5575 			 * Swap space is released only if this segment
5576 			 * does not map anonymous memory, since read faults
5577 			 * on such segments still need an anon slot to read
5578 			 * in the data.
5579 			 */
5580 			if (svd->swresv != 0 && svd->vp != NULL &&
5581 			    svd->amp == NULL && addr == seg->s_base &&
5582 			    len == seg->s_size && svd->pageprot == 0) {
5583 				anon_unresv_zone(svd->swresv,
5584 				    seg->s_as->a_proc->p_zone);
5585 				svd->swresv = 0;
5586 				TRACE_3(TR_FAC_VM, TR_ANON_PROC,
5587 					"anon proc:%p %lu %u",
5588 					seg, 0, 0);
5589 			}
5590 		}
5591 	}
5592 
5593 	if (addr == seg->s_base && len == seg->s_size && svd->pageprot == 0) {
5594 		if (svd->prot == prot) {
5595 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5596 			return (0);			/* all done */
5597 		}
5598 		svd->prot = (uchar_t)prot;
5599 	} else if (svd->type == MAP_PRIVATE) {
5600 		struct anon *ap = NULL;
5601 		page_t *pp;
5602 		u_offset_t offset, off;
5603 		struct anon_map *amp;
5604 		ulong_t anon_idx = 0;
5605 
5606 		/*
5607 		 * A vpage structure exists or else the change does not
5608 		 * involve the entire segment.  Establish a vpage structure
5609 		 * if none is there.  Then, for each page in the range,
5610 		 * adjust its individual permissions.  Note that write-
5611 		 * enabling a MAP_PRIVATE page can affect the claims for
5612 		 * locked down memory.  Overcommitting memory terminates
5613 		 * the operation.
5614 		 */
5615 		segvn_vpage(seg);
5616 		if ((amp = svd->amp) != NULL) {
5617 			anon_idx = svd->anon_index + seg_page(seg, addr);
5618 			ASSERT(seg->s_szc == 0 ||
5619 			    IS_P2ALIGNED(anon_idx, pgcnt));
5620 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5621 		}
5622 
5623 		offset = svd->offset + (uintptr_t)(addr - seg->s_base);
5624 		evp = &svd->vpage[seg_page(seg, addr + len)];
5625 
5626 		/*
5627 		 * See Statement at the beginning of segvn_lockop regarding
5628 		 * the way cowcnts and lckcnts are handled.
5629 		 */
5630 		for (svp = &svd->vpage[seg_page(seg, addr)]; svp < evp; svp++) {
5631 
5632 			if (seg->s_szc != 0) {
5633 				if (amp != NULL) {
5634 					anon_array_enter(amp, anon_idx,
5635 					    &cookie);
5636 				}
5637 				if (IS_P2ALIGNED(anon_idx, pgcnt) &&
5638 				    !segvn_claim_pages(seg, svp, offset,
5639 					anon_idx, prot)) {
5640 					if (amp != NULL) {
5641 						anon_array_exit(&cookie);
5642 					}
5643 					break;
5644 				}
5645 				if (amp != NULL) {
5646 					anon_array_exit(&cookie);
5647 				}
5648 				anon_idx++;
5649 			} else {
5650 				if (amp != NULL) {
5651 					anon_array_enter(amp, anon_idx,
5652 						&cookie);
5653 					ap = anon_get_ptr(amp->ahp, anon_idx++);
5654 				}
5655 
5656 				if (VPP_ISPPLOCK(svp) &&
5657 				    VPP_PROT(svp) != prot) {
5658 
5659 					if (amp == NULL || ap == NULL) {
5660 						vp = svd->vp;
5661 						off = offset;
5662 					} else
5663 						swap_xlate(ap, &vp, &off);
5664 					if (amp != NULL)
5665 						anon_array_exit(&cookie);
5666 
5667 					if ((pp = page_lookup(vp, off,
5668 					    SE_SHARED)) == NULL) {
5669 						panic("segvn_setprot: no page");
5670 						/*NOTREACHED*/
5671 					}
5672 					ASSERT(seg->s_szc == 0);
5673 					if ((VPP_PROT(svp) ^ prot) &
5674 					    PROT_WRITE) {
5675 						if (prot & PROT_WRITE) {
5676 						    if (!page_addclaim(pp)) {
5677 							page_unlock(pp);
5678 							break;
5679 						    }
5680 						} else {
5681 						    if (!page_subclaim(pp)) {
5682 							page_unlock(pp);
5683 							break;
5684 						    }
5685 						}
5686 					}
5687 					page_unlock(pp);
5688 				} else if (amp != NULL)
5689 					anon_array_exit(&cookie);
5690 			}
5691 			VPP_SETPROT(svp, prot);
5692 			offset += PAGESIZE;
5693 		}
5694 		if (amp != NULL)
5695 			ANON_LOCK_EXIT(&amp->a_rwlock);
5696 
5697 		/*
5698 		 * Did we terminate prematurely?  If so, simply unload
5699 		 * the translations to the things we've updated so far.
5700 		 */
5701 		if (svp != evp) {
5702 			len = (svp - &svd->vpage[seg_page(seg, addr)]) *
5703 			    PAGESIZE;
5704 			ASSERT(seg->s_szc == 0 || IS_P2ALIGNED(len, pgsz));
5705 			if (len != 0)
5706 				hat_unload(seg->s_as->a_hat, addr,
5707 				    len, HAT_UNLOAD);
5708 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5709 			return (IE_NOMEM);
5710 		}
5711 	} else {
5712 		segvn_vpage(seg);
5713 		evp = &svd->vpage[seg_page(seg, addr + len)];
5714 		for (svp = &svd->vpage[seg_page(seg, addr)]; svp < evp; svp++) {
5715 			VPP_SETPROT(svp, prot);
5716 		}
5717 	}
5718 
5719 	if (((prot & PROT_WRITE) != 0 &&
5720 	    (svd->vp != NULL || svd->type == MAP_PRIVATE)) ||
5721 	    (prot & ~PROT_USER) == PROT_NONE) {
5722 		/*
5723 		 * Either private or shared data with write access (in
5724 		 * which case we need to throw out all former translations
5725 		 * so that we get the right translations set up on fault
5726 		 * and we don't allow write access to any copy-on-write pages
5727 		 * that might be around or to prevent write access to pages
5728 		 * representing holes in a file), or we don't have permission
5729 		 * to access the memory at all (in which case we have to
5730 		 * unload any current translations that might exist).
5731 		 */
5732 		hat_unload(seg->s_as->a_hat, addr, len, HAT_UNLOAD);
5733 	} else {
5734 		/*
5735 		 * A shared mapping or a private mapping in which write
5736 		 * protection is going to be denied - just change all the
5737 		 * protections over the range of addresses in question.
5738 		 * segvn does not support any other attributes other
5739 		 * than prot so we can use hat_chgattr.
5740 		 */
5741 		hat_chgattr(seg->s_as->a_hat, addr, len, prot);
5742 	}
5743 
5744 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5745 
5746 	return (0);
5747 }
5748 
5749 /*
5750  * segvn_setpagesize is called via SEGOP_SETPAGESIZE from as_setpagesize,
5751  * to determine if the seg is capable of mapping the requested szc.
5752  */
5753 static int
5754 segvn_setpagesize(struct seg *seg, caddr_t addr, size_t len, uint_t szc)
5755 {
5756 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5757 	struct segvn_data *nsvd;
5758 	struct anon_map *amp = svd->amp;
5759 	struct seg *nseg;
5760 	caddr_t eaddr = addr + len, a;
5761 	size_t pgsz = page_get_pagesize(szc);
5762 	pgcnt_t pgcnt = page_get_pagecnt(szc);
5763 	int err;
5764 	u_offset_t off = svd->offset + (uintptr_t)(addr - seg->s_base);
5765 	extern struct vnode kvp;
5766 
5767 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
5768 	ASSERT(addr >= seg->s_base && eaddr <= seg->s_base + seg->s_size);
5769 
5770 	if (seg->s_szc == szc || segvn_lpg_disable != 0) {
5771 		return (0);
5772 	}
5773 
5774 	/*
5775 	 * addr should always be pgsz aligned but eaddr may be misaligned if
5776 	 * it's at the end of the segment.
5777 	 *
5778 	 * XXX we should assert this condition since as_setpagesize() logic
5779 	 * guarantees it.
5780 	 */
5781 	if (!IS_P2ALIGNED(addr, pgsz) ||
5782 	    (!IS_P2ALIGNED(eaddr, pgsz) &&
5783 		eaddr != seg->s_base + seg->s_size)) {
5784 
5785 		segvn_setpgsz_align_err++;
5786 		return (EINVAL);
5787 	}
5788 
5789 	if (amp != NULL && svd->type == MAP_SHARED) {
5790 		ulong_t an_idx = svd->anon_index + seg_page(seg, addr);
5791 		if (!IS_P2ALIGNED(an_idx, pgcnt)) {
5792 
5793 			segvn_setpgsz_anon_align_err++;
5794 			return (EINVAL);
5795 		}
5796 	}
5797 
5798 	if ((svd->flags & MAP_NORESERVE) || seg->s_as == &kas ||
5799 	    szc > segvn_maxpgszc) {
5800 		return (EINVAL);
5801 	}
5802 
5803 	/* paranoid check */
5804 	if (svd->vp != NULL &&
5805 	    (IS_SWAPFSVP(svd->vp) || VN_ISKAS(svd->vp))) {
5806 		    return (EINVAL);
5807 	}
5808 
5809 	if (seg->s_szc == 0 && svd->vp != NULL &&
5810 	    map_addr_vacalign_check(addr, off)) {
5811 		return (EINVAL);
5812 	}
5813 
5814 	/*
5815 	 * Check that protections are the same within new page
5816 	 * size boundaries.
5817 	 */
5818 	if (svd->pageprot) {
5819 		for (a = addr; a < eaddr; a += pgsz) {
5820 			if ((a + pgsz) > eaddr) {
5821 				if (!sameprot(seg, a, eaddr - a)) {
5822 					return (EINVAL);
5823 				}
5824 			} else {
5825 				if (!sameprot(seg, a, pgsz)) {
5826 					return (EINVAL);
5827 				}
5828 			}
5829 		}
5830 	}
5831 
5832 	/*
5833 	 * Since we are changing page size we first have to flush
5834 	 * the cache. This makes sure all the pagelock calls have
5835 	 * to recheck protections.
5836 	 */
5837 	if (svd->softlockcnt > 0) {
5838 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
5839 		/*
5840 		 * Since we do have the segvn writers lock nobody can fill
5841 		 * the cache with entries belonging to this seg during
5842 		 * the purge. The flush either succeeds or we still have
5843 		 * pending I/Os.
5844 		 */
5845 		segvn_purge(seg);
5846 		if (svd->softlockcnt > 0) {
5847 			return (EAGAIN);
5848 		}
5849 	}
5850 
5851 	if (svd->tr_state == SEGVN_TR_INIT) {
5852 		svd->tr_state = SEGVN_TR_OFF;
5853 	} else if (svd->tr_state == SEGVN_TR_ON) {
5854 		ASSERT(svd->amp != NULL);
5855 		segvn_textunrepl(seg, 1);
5856 		ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
5857 		amp = NULL;
5858 	}
5859 
5860 	/*
5861 	 * Operation for sub range of existing segment.
5862 	 */
5863 	if (addr != seg->s_base || eaddr != (seg->s_base + seg->s_size)) {
5864 		if (szc < seg->s_szc) {
5865 			VM_STAT_ADD(segvnvmstats.demoterange[2]);
5866 			err = segvn_demote_range(seg, addr, len, SDR_RANGE, 0);
5867 			if (err == 0) {
5868 				return (IE_RETRY);
5869 			}
5870 			if (err == ENOMEM) {
5871 				return (IE_NOMEM);
5872 			}
5873 			return (err);
5874 		}
5875 		if (addr != seg->s_base) {
5876 			nseg = segvn_split_seg(seg, addr);
5877 			if (eaddr != (nseg->s_base + nseg->s_size)) {
5878 				/* eaddr is szc aligned */
5879 				(void) segvn_split_seg(nseg, eaddr);
5880 			}
5881 			return (IE_RETRY);
5882 		}
5883 		if (eaddr != (seg->s_base + seg->s_size)) {
5884 			/* eaddr is szc aligned */
5885 			(void) segvn_split_seg(seg, eaddr);
5886 		}
5887 		return (IE_RETRY);
5888 	}
5889 
5890 	/*
5891 	 * Break any low level sharing and reset seg->s_szc to 0.
5892 	 */
5893 	if ((err = segvn_clrszc(seg)) != 0) {
5894 		if (err == ENOMEM) {
5895 			err = IE_NOMEM;
5896 		}
5897 		return (err);
5898 	}
5899 	ASSERT(seg->s_szc == 0);
5900 
5901 	/*
5902 	 * If the end of the current segment is not pgsz aligned
5903 	 * then attempt to concatenate with the next segment.
5904 	 */
5905 	if (!IS_P2ALIGNED(eaddr, pgsz)) {
5906 		nseg = AS_SEGNEXT(seg->s_as, seg);
5907 		if (nseg == NULL || nseg == seg || eaddr != nseg->s_base) {
5908 			return (ENOMEM);
5909 		}
5910 		if (nseg->s_ops != &segvn_ops) {
5911 			return (EINVAL);
5912 		}
5913 		nsvd = (struct segvn_data *)nseg->s_data;
5914 		if (nsvd->softlockcnt > 0) {
5915 			segvn_purge(nseg);
5916 			if (nsvd->softlockcnt > 0) {
5917 				return (EAGAIN);
5918 			}
5919 		}
5920 		err = segvn_clrszc(nseg);
5921 		if (err == ENOMEM) {
5922 			err = IE_NOMEM;
5923 		}
5924 		if (err != 0) {
5925 			return (err);
5926 		}
5927 		err = segvn_concat(seg, nseg, 1);
5928 		if (err == -1) {
5929 			return (EINVAL);
5930 		}
5931 		if (err == -2) {
5932 			return (IE_NOMEM);
5933 		}
5934 		return (IE_RETRY);
5935 	}
5936 
5937 	/*
5938 	 * May need to re-align anon array to
5939 	 * new szc.
5940 	 */
5941 	if (amp != NULL) {
5942 		if (!IS_P2ALIGNED(svd->anon_index, pgcnt)) {
5943 			struct anon_hdr *nahp;
5944 
5945 			ASSERT(svd->type == MAP_PRIVATE);
5946 
5947 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
5948 			ASSERT(amp->refcnt == 1);
5949 			nahp = anon_create(btop(amp->size), ANON_NOSLEEP);
5950 			if (nahp == NULL) {
5951 				ANON_LOCK_EXIT(&amp->a_rwlock);
5952 				return (IE_NOMEM);
5953 			}
5954 			if (anon_copy_ptr(amp->ahp, svd->anon_index,
5955 				nahp, 0, btop(seg->s_size), ANON_NOSLEEP)) {
5956 				anon_release(nahp, btop(amp->size));
5957 				ANON_LOCK_EXIT(&amp->a_rwlock);
5958 				return (IE_NOMEM);
5959 			}
5960 			anon_release(amp->ahp, btop(amp->size));
5961 			amp->ahp = nahp;
5962 			svd->anon_index = 0;
5963 			ANON_LOCK_EXIT(&amp->a_rwlock);
5964 		}
5965 	}
5966 	if (svd->vp != NULL && szc != 0) {
5967 		struct vattr va;
5968 		u_offset_t eoffpage = svd->offset;
5969 		va.va_mask = AT_SIZE;
5970 		eoffpage += seg->s_size;
5971 		eoffpage = btopr(eoffpage);
5972 		if (VOP_GETATTR(svd->vp, &va, 0, svd->cred) != 0) {
5973 			segvn_setpgsz_getattr_err++;
5974 			return (EINVAL);
5975 		}
5976 		if (btopr(va.va_size) < eoffpage) {
5977 			segvn_setpgsz_eof_err++;
5978 			return (EINVAL);
5979 		}
5980 		if (amp != NULL) {
5981 			/*
5982 			 * anon_fill_cow_holes() may call VOP_GETPAGE().
5983 			 * don't take anon map lock here to avoid holding it
5984 			 * across VOP_GETPAGE() calls that may call back into
5985 			 * segvn for klsutering checks. We don't really need
5986 			 * anon map lock here since it's a private segment and
5987 			 * we hold as level lock as writers.
5988 			 */
5989 			if ((err = anon_fill_cow_holes(seg, seg->s_base,
5990 			    amp->ahp, svd->anon_index, svd->vp, svd->offset,
5991 			    seg->s_size, szc, svd->prot, svd->vpage,
5992 			    svd->cred)) != 0) {
5993 				return (EINVAL);
5994 			}
5995 		}
5996 		segvn_setvnode_mpss(svd->vp);
5997 	}
5998 
5999 	if (amp != NULL) {
6000 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
6001 		if (svd->type == MAP_PRIVATE) {
6002 			amp->a_szc = szc;
6003 		} else if (szc > amp->a_szc) {
6004 			amp->a_szc = szc;
6005 		}
6006 		ANON_LOCK_EXIT(&amp->a_rwlock);
6007 	}
6008 
6009 	seg->s_szc = szc;
6010 
6011 	return (0);
6012 }
6013 
6014 static int
6015 segvn_clrszc(struct seg *seg)
6016 {
6017 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6018 	struct anon_map *amp = svd->amp;
6019 	size_t pgsz;
6020 	pgcnt_t pages;
6021 	int err = 0;
6022 	caddr_t a = seg->s_base;
6023 	caddr_t ea = a + seg->s_size;
6024 	ulong_t an_idx = svd->anon_index;
6025 	vnode_t *vp = svd->vp;
6026 	struct vpage *vpage = svd->vpage;
6027 	page_t *anon_pl[1 + 1], *pp;
6028 	struct anon *ap, *oldap;
6029 	uint_t prot = svd->prot, vpprot;
6030 	int pageflag = 0;
6031 	int unmap = 1;
6032 
6033 	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock) ||
6034 	    SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
6035 
6036 	if (vp == NULL && amp == NULL) {
6037 		seg->s_szc = 0;
6038 		return (0);
6039 	}
6040 
6041 	if (svd->tr_state == SEGVN_TR_INIT) {
6042 		svd->tr_state = SEGVN_TR_OFF;
6043 	} else if (svd->tr_state == SEGVN_TR_ON) {
6044 		ASSERT(svd->amp != NULL);
6045 		segvn_textunrepl(seg, 1);
6046 		ASSERT(svd->amp == NULL && svd->tr_state == SEGVN_TR_OFF);
6047 		amp = NULL;
6048 		unmap = 0;
6049 	}
6050 
6051 	if (unmap) {
6052 		/*
6053 		 * do HAT_UNLOAD_UNMAP since we are changing the pagesize.
6054 		 * unload argument is 0 when we are freeing the segment
6055 		 * and unload was already done.
6056 		 */
6057 		hat_unload(seg->s_as->a_hat, seg->s_base, seg->s_size,
6058 		    HAT_UNLOAD_UNMAP);
6059 	}
6060 
6061 	if (amp == NULL || svd->type == MAP_SHARED) {
6062 		seg->s_szc = 0;
6063 		return (0);
6064 	}
6065 
6066 	pgsz = page_get_pagesize(seg->s_szc);
6067 	pages = btop(pgsz);
6068 
6069 	/*
6070 	 * XXX anon rwlock is not really needed because this is a
6071 	 * private segment and we are writers.
6072 	 */
6073 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
6074 
6075 	for (; a < ea; a += pgsz, an_idx += pages) {
6076 		if ((oldap = anon_get_ptr(amp->ahp, an_idx)) != NULL) {
6077 			ASSERT(vpage != NULL || svd->pageprot == 0);
6078 			if (vpage != NULL) {
6079 				ASSERT(sameprot(seg, a, pgsz));
6080 				prot = VPP_PROT(vpage);
6081 				pageflag = VPP_ISPPLOCK(vpage) ? LOCK_PAGE : 0;
6082 			}
6083 			if (seg->s_szc != 0) {
6084 				ASSERT(vp == NULL || anon_pages(amp->ahp,
6085 				    an_idx, pages) == pages);
6086 				if ((err = anon_map_demotepages(amp, an_idx,
6087 				    seg, a, prot, vpage, svd->cred)) != 0) {
6088 					goto out;
6089 				}
6090 			} else {
6091 				if (oldap->an_refcnt == 1) {
6092 					continue;
6093 				}
6094 				if ((err = anon_getpage(&oldap, &vpprot,
6095 				    anon_pl, PAGESIZE, seg, a, S_READ,
6096 				    svd->cred))) {
6097 					goto out;
6098 				}
6099 				if ((pp = anon_private(&ap, seg, a, prot,
6100 				    anon_pl[0], pageflag, svd->cred)) == NULL) {
6101 					err = ENOMEM;
6102 					goto out;
6103 				}
6104 				anon_decref(oldap);
6105 				(void) anon_set_ptr(amp->ahp, an_idx, ap,
6106 				    ANON_SLEEP);
6107 				page_unlock(pp);
6108 			}
6109 		}
6110 		vpage = (vpage == NULL) ? NULL : vpage + pages;
6111 	}
6112 
6113 	amp->a_szc = 0;
6114 	seg->s_szc = 0;
6115 out:
6116 	ANON_LOCK_EXIT(&amp->a_rwlock);
6117 	return (err);
6118 }
6119 
6120 static int
6121 segvn_claim_pages(
6122 	struct seg *seg,
6123 	struct vpage *svp,
6124 	u_offset_t off,
6125 	ulong_t anon_idx,
6126 	uint_t prot)
6127 {
6128 	pgcnt_t	pgcnt = page_get_pagecnt(seg->s_szc);
6129 	size_t ppasize = (pgcnt + 1) * sizeof (page_t *);
6130 	page_t	**ppa;
6131 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6132 	struct anon_map *amp = svd->amp;
6133 	struct vpage *evp = svp + pgcnt;
6134 	caddr_t addr = ((uintptr_t)(svp - svd->vpage) << PAGESHIFT)
6135 	    + seg->s_base;
6136 	struct anon *ap;
6137 	struct vnode *vp = svd->vp;
6138 	page_t *pp;
6139 	pgcnt_t pg_idx, i;
6140 	int err = 0;
6141 	anoff_t aoff;
6142 	int anon = (amp != NULL) ? 1 : 0;
6143 
6144 	ASSERT(svd->type == MAP_PRIVATE);
6145 	ASSERT(svd->vpage != NULL);
6146 	ASSERT(seg->s_szc != 0);
6147 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
6148 	ASSERT(amp == NULL || IS_P2ALIGNED(anon_idx, pgcnt));
6149 	ASSERT(sameprot(seg, addr, pgcnt << PAGESHIFT));
6150 
6151 	if (VPP_PROT(svp) == prot)
6152 		return (1);
6153 	if (!((VPP_PROT(svp) ^ prot) & PROT_WRITE))
6154 		return (1);
6155 
6156 	ppa = kmem_alloc(ppasize, KM_SLEEP);
6157 	if (anon && vp != NULL) {
6158 		if (anon_get_ptr(amp->ahp, anon_idx) == NULL) {
6159 			anon = 0;
6160 			ASSERT(!anon_pages(amp->ahp, anon_idx, pgcnt));
6161 		}
6162 		ASSERT(!anon ||
6163 		    anon_pages(amp->ahp, anon_idx, pgcnt) == pgcnt);
6164 	}
6165 
6166 	for (*ppa = NULL, pg_idx = 0; svp < evp; svp++, anon_idx++) {
6167 		if (!VPP_ISPPLOCK(svp))
6168 			continue;
6169 		if (anon) {
6170 			ap = anon_get_ptr(amp->ahp, anon_idx);
6171 			if (ap == NULL) {
6172 				panic("segvn_claim_pages: no anon slot");
6173 			}
6174 			swap_xlate(ap, &vp, &aoff);
6175 			off = (u_offset_t)aoff;
6176 		}
6177 		ASSERT(vp != NULL);
6178 		if ((pp = page_lookup(vp,
6179 		    (u_offset_t)off, SE_SHARED)) == NULL) {
6180 			panic("segvn_claim_pages: no page");
6181 		}
6182 		ppa[pg_idx++] = pp;
6183 		off += PAGESIZE;
6184 	}
6185 
6186 	if (ppa[0] == NULL) {
6187 		kmem_free(ppa, ppasize);
6188 		return (1);
6189 	}
6190 
6191 	ASSERT(pg_idx <= pgcnt);
6192 	ppa[pg_idx] = NULL;
6193 
6194 	if (prot & PROT_WRITE)
6195 		err = page_addclaim_pages(ppa);
6196 	else
6197 		err = page_subclaim_pages(ppa);
6198 
6199 	for (i = 0; i < pg_idx; i++) {
6200 		ASSERT(ppa[i] != NULL);
6201 		page_unlock(ppa[i]);
6202 	}
6203 
6204 	kmem_free(ppa, ppasize);
6205 	return (err);
6206 }
6207 
6208 /*
6209  * Returns right (upper address) segment if split occured.
6210  * If the address is equal to the beginning or end of its segment it returns
6211  * the current segment.
6212  */
6213 static struct seg *
6214 segvn_split_seg(struct seg *seg, caddr_t addr)
6215 {
6216 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6217 	struct seg *nseg;
6218 	size_t nsize;
6219 	struct segvn_data *nsvd;
6220 
6221 	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
6222 	ASSERT(svd->tr_state == SEGVN_TR_OFF);
6223 
6224 	ASSERT(addr >= seg->s_base);
6225 	ASSERT(addr <= seg->s_base + seg->s_size);
6226 
6227 	if (addr == seg->s_base || addr == seg->s_base + seg->s_size)
6228 		return (seg);
6229 
6230 	nsize = seg->s_base + seg->s_size - addr;
6231 	seg->s_size = addr - seg->s_base;
6232 	nseg = seg_alloc(seg->s_as, addr, nsize);
6233 	ASSERT(nseg != NULL);
6234 	nseg->s_ops = seg->s_ops;
6235 	nsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
6236 	nseg->s_data = (void *)nsvd;
6237 	nseg->s_szc = seg->s_szc;
6238 	*nsvd = *svd;
6239 	nsvd->seg = nseg;
6240 	rw_init(&nsvd->lock, NULL, RW_DEFAULT, NULL);
6241 
6242 	if (nsvd->vp != NULL) {
6243 		VN_HOLD(nsvd->vp);
6244 		nsvd->offset = svd->offset +
6245 		    (uintptr_t)(nseg->s_base - seg->s_base);
6246 		if (nsvd->type == MAP_SHARED)
6247 			lgrp_shm_policy_init(NULL, nsvd->vp);
6248 	} else {
6249 		/*
6250 		 * The offset for an anonymous segment has no signifigance in
6251 		 * terms of an offset into a file. If we were to use the above
6252 		 * calculation instead, the structures read out of
6253 		 * /proc/<pid>/xmap would be more difficult to decipher since
6254 		 * it would be unclear whether two seemingly contiguous
6255 		 * prxmap_t structures represented different segments or a
6256 		 * single segment that had been split up into multiple prxmap_t
6257 		 * structures (e.g. if some part of the segment had not yet
6258 		 * been faulted in).
6259 		 */
6260 		nsvd->offset = 0;
6261 	}
6262 
6263 	ASSERT(svd->softlockcnt == 0);
6264 	crhold(svd->cred);
6265 
6266 	if (svd->vpage != NULL) {
6267 		size_t bytes = vpgtob(seg_pages(seg));
6268 		size_t nbytes = vpgtob(seg_pages(nseg));
6269 		struct vpage *ovpage = svd->vpage;
6270 
6271 		svd->vpage = kmem_alloc(bytes, KM_SLEEP);
6272 		bcopy(ovpage, svd->vpage, bytes);
6273 		nsvd->vpage = kmem_alloc(nbytes, KM_SLEEP);
6274 		bcopy(ovpage + seg_pages(seg), nsvd->vpage, nbytes);
6275 		kmem_free(ovpage, bytes + nbytes);
6276 	}
6277 	if (svd->amp != NULL && svd->type == MAP_PRIVATE) {
6278 		struct anon_map *oamp = svd->amp, *namp;
6279 		struct anon_hdr *nahp;
6280 
6281 		ANON_LOCK_ENTER(&oamp->a_rwlock, RW_WRITER);
6282 		ASSERT(oamp->refcnt == 1);
6283 		nahp = anon_create(btop(seg->s_size), ANON_SLEEP);
6284 		(void) anon_copy_ptr(oamp->ahp, svd->anon_index,
6285 		    nahp, 0, btop(seg->s_size), ANON_SLEEP);
6286 
6287 		namp = anonmap_alloc(nseg->s_size, 0, ANON_SLEEP);
6288 		namp->a_szc = nseg->s_szc;
6289 		(void) anon_copy_ptr(oamp->ahp,
6290 		    svd->anon_index + btop(seg->s_size),
6291 		    namp->ahp, 0, btop(nseg->s_size), ANON_SLEEP);
6292 		anon_release(oamp->ahp, btop(oamp->size));
6293 		oamp->ahp = nahp;
6294 		oamp->size = seg->s_size;
6295 		svd->anon_index = 0;
6296 		nsvd->amp = namp;
6297 		nsvd->anon_index = 0;
6298 		ANON_LOCK_EXIT(&oamp->a_rwlock);
6299 	} else if (svd->amp != NULL) {
6300 		pgcnt_t pgcnt = page_get_pagecnt(seg->s_szc);
6301 		ASSERT(svd->amp == nsvd->amp);
6302 		ASSERT(seg->s_szc <= svd->amp->a_szc);
6303 		nsvd->anon_index = svd->anon_index + seg_pages(seg);
6304 		ASSERT(IS_P2ALIGNED(nsvd->anon_index, pgcnt));
6305 		ANON_LOCK_ENTER(&svd->amp->a_rwlock, RW_WRITER);
6306 		svd->amp->refcnt++;
6307 		ANON_LOCK_EXIT(&svd->amp->a_rwlock);
6308 	}
6309 
6310 	/*
6311 	 * Split amount of swap reserve
6312 	 */
6313 	if (svd->swresv) {
6314 		/*
6315 		 * For MAP_NORESERVE, only allocate swap reserve for pages
6316 		 * being used.  Other segments get enough to cover whole
6317 		 * segment.
6318 		 */
6319 		if (svd->flags & MAP_NORESERVE) {
6320 			size_t	oswresv;
6321 
6322 			ASSERT(svd->amp);
6323 			oswresv = svd->swresv;
6324 			svd->swresv = ptob(anon_pages(svd->amp->ahp,
6325 				svd->anon_index, btop(seg->s_size)));
6326 			nsvd->swresv = ptob(anon_pages(nsvd->amp->ahp,
6327 				nsvd->anon_index, btop(nseg->s_size)));
6328 			ASSERT(oswresv >= (svd->swresv + nsvd->swresv));
6329 		} else {
6330 			ASSERT(svd->swresv == seg->s_size + nseg->s_size);
6331 			svd->swresv = seg->s_size;
6332 			nsvd->swresv = nseg->s_size;
6333 		}
6334 	}
6335 
6336 	return (nseg);
6337 }
6338 
6339 /*
6340  * called on memory operations (unmap, setprot, setpagesize) for a subset
6341  * of a large page segment to either demote the memory range (SDR_RANGE)
6342  * or the ends (SDR_END) by addr/len.
6343  *
6344  * returns 0 on success. returns errno, including ENOMEM, on failure.
6345  */
6346 static int
6347 segvn_demote_range(
6348 	struct seg *seg,
6349 	caddr_t addr,
6350 	size_t len,
6351 	int flag,
6352 	uint_t szcvec)
6353 {
6354 	caddr_t eaddr = addr + len;
6355 	caddr_t lpgaddr, lpgeaddr;
6356 	struct seg *nseg;
6357 	struct seg *badseg1 = NULL;
6358 	struct seg *badseg2 = NULL;
6359 	size_t pgsz;
6360 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6361 	int err;
6362 	uint_t szc = seg->s_szc;
6363 	uint_t tszcvec;
6364 
6365 	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
6366 	ASSERT(svd->tr_state == SEGVN_TR_OFF);
6367 	ASSERT(szc != 0);
6368 	pgsz = page_get_pagesize(szc);
6369 	ASSERT(seg->s_base != addr || seg->s_size != len);
6370 	ASSERT(addr >= seg->s_base && eaddr <= seg->s_base + seg->s_size);
6371 	ASSERT(svd->softlockcnt == 0);
6372 	ASSERT(szcvec == 0 || (flag == SDR_END && svd->type == MAP_SHARED));
6373 
6374 	CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
6375 	ASSERT(flag == SDR_RANGE || eaddr < lpgeaddr || addr > lpgaddr);
6376 	if (flag == SDR_RANGE) {
6377 		/* demote entire range */
6378 		badseg1 = nseg = segvn_split_seg(seg, lpgaddr);
6379 		(void) segvn_split_seg(nseg, lpgeaddr);
6380 		ASSERT(badseg1->s_base == lpgaddr);
6381 		ASSERT(badseg1->s_size == lpgeaddr - lpgaddr);
6382 	} else if (addr != lpgaddr) {
6383 		ASSERT(flag == SDR_END);
6384 		badseg1 = nseg = segvn_split_seg(seg, lpgaddr);
6385 		if (eaddr != lpgeaddr && eaddr > lpgaddr + pgsz &&
6386 		    eaddr < lpgaddr + 2 * pgsz) {
6387 			(void) segvn_split_seg(nseg, lpgeaddr);
6388 			ASSERT(badseg1->s_base == lpgaddr);
6389 			ASSERT(badseg1->s_size == 2 * pgsz);
6390 		} else {
6391 			nseg = segvn_split_seg(nseg, lpgaddr + pgsz);
6392 			ASSERT(badseg1->s_base == lpgaddr);
6393 			ASSERT(badseg1->s_size == pgsz);
6394 			if (eaddr != lpgeaddr && eaddr > lpgaddr + pgsz) {
6395 				ASSERT(lpgeaddr - lpgaddr > 2 * pgsz);
6396 				nseg = segvn_split_seg(nseg, lpgeaddr - pgsz);
6397 				badseg2 = nseg;
6398 				(void) segvn_split_seg(nseg, lpgeaddr);
6399 				ASSERT(badseg2->s_base == lpgeaddr - pgsz);
6400 				ASSERT(badseg2->s_size == pgsz);
6401 			}
6402 		}
6403 	} else {
6404 		ASSERT(flag == SDR_END);
6405 		ASSERT(eaddr < lpgeaddr);
6406 		badseg1 = nseg = segvn_split_seg(seg, lpgeaddr - pgsz);
6407 		(void) segvn_split_seg(nseg, lpgeaddr);
6408 		ASSERT(badseg1->s_base == lpgeaddr - pgsz);
6409 		ASSERT(badseg1->s_size == pgsz);
6410 	}
6411 
6412 	ASSERT(badseg1 != NULL);
6413 	ASSERT(badseg1->s_szc == szc);
6414 	ASSERT(flag == SDR_RANGE || badseg1->s_size == pgsz ||
6415 	    badseg1->s_size == 2 * pgsz);
6416 	ASSERT(sameprot(badseg1, badseg1->s_base, pgsz));
6417 	ASSERT(badseg1->s_size == pgsz ||
6418 	    sameprot(badseg1, badseg1->s_base + pgsz, pgsz));
6419 	if (err = segvn_clrszc(badseg1)) {
6420 		return (err);
6421 	}
6422 	ASSERT(badseg1->s_szc == 0);
6423 
6424 	if (szc > 1 && (tszcvec = P2PHASE(szcvec, 1 << szc)) > 1) {
6425 		uint_t tszc = highbit(tszcvec) - 1;
6426 		caddr_t ta = MAX(addr, badseg1->s_base);
6427 		caddr_t te;
6428 		size_t tpgsz = page_get_pagesize(tszc);
6429 
6430 		ASSERT(svd->type == MAP_SHARED);
6431 		ASSERT(flag == SDR_END);
6432 		ASSERT(tszc < szc && tszc > 0);
6433 
6434 		if (eaddr > badseg1->s_base + badseg1->s_size) {
6435 			te = badseg1->s_base + badseg1->s_size;
6436 		} else {
6437 			te = eaddr;
6438 		}
6439 
6440 		ASSERT(ta <= te);
6441 		badseg1->s_szc = tszc;
6442 		if (!IS_P2ALIGNED(ta, tpgsz) || !IS_P2ALIGNED(te, tpgsz)) {
6443 			if (badseg2 != NULL) {
6444 				err = segvn_demote_range(badseg1, ta, te - ta,
6445 				    SDR_END, tszcvec);
6446 				if (err != 0) {
6447 					return (err);
6448 				}
6449 			} else {
6450 				return (segvn_demote_range(badseg1, ta,
6451 				    te - ta, SDR_END, tszcvec));
6452 			}
6453 		}
6454 	}
6455 
6456 	if (badseg2 == NULL)
6457 		return (0);
6458 	ASSERT(badseg2->s_szc == szc);
6459 	ASSERT(badseg2->s_size == pgsz);
6460 	ASSERT(sameprot(badseg2, badseg2->s_base, badseg2->s_size));
6461 	if (err = segvn_clrszc(badseg2)) {
6462 		return (err);
6463 	}
6464 	ASSERT(badseg2->s_szc == 0);
6465 
6466 	if (szc > 1 && (tszcvec = P2PHASE(szcvec, 1 << szc)) > 1) {
6467 		uint_t tszc = highbit(tszcvec) - 1;
6468 		size_t tpgsz = page_get_pagesize(tszc);
6469 
6470 		ASSERT(svd->type == MAP_SHARED);
6471 		ASSERT(flag == SDR_END);
6472 		ASSERT(tszc < szc && tszc > 0);
6473 		ASSERT(badseg2->s_base > addr);
6474 		ASSERT(eaddr > badseg2->s_base);
6475 		ASSERT(eaddr < badseg2->s_base + badseg2->s_size);
6476 
6477 		badseg2->s_szc = tszc;
6478 		if (!IS_P2ALIGNED(eaddr, tpgsz)) {
6479 			return (segvn_demote_range(badseg2, badseg2->s_base,
6480 			    eaddr - badseg2->s_base, SDR_END, tszcvec));
6481 		}
6482 	}
6483 
6484 	return (0);
6485 }
6486 
6487 static int
6488 segvn_checkprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
6489 {
6490 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6491 	struct vpage *vp, *evp;
6492 
6493 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6494 
6495 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6496 	/*
6497 	 * If segment protection can be used, simply check against them.
6498 	 */
6499 	if (svd->pageprot == 0) {
6500 		int err;
6501 
6502 		err = ((svd->prot & prot) != prot) ? EACCES : 0;
6503 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6504 		return (err);
6505 	}
6506 
6507 	/*
6508 	 * Have to check down to the vpage level.
6509 	 */
6510 	evp = &svd->vpage[seg_page(seg, addr + len)];
6511 	for (vp = &svd->vpage[seg_page(seg, addr)]; vp < evp; vp++) {
6512 		if ((VPP_PROT(vp) & prot) != prot) {
6513 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6514 			return (EACCES);
6515 		}
6516 	}
6517 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6518 	return (0);
6519 }
6520 
6521 static int
6522 segvn_getprot(struct seg *seg, caddr_t addr, size_t len, uint_t *protv)
6523 {
6524 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6525 	size_t pgno = seg_page(seg, addr + len) - seg_page(seg, addr) + 1;
6526 
6527 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6528 
6529 	if (pgno != 0) {
6530 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6531 		if (svd->pageprot == 0) {
6532 			do
6533 				protv[--pgno] = svd->prot;
6534 			while (pgno != 0);
6535 		} else {
6536 			size_t pgoff = seg_page(seg, addr);
6537 
6538 			do {
6539 				pgno--;
6540 				protv[pgno] = VPP_PROT(&svd->vpage[pgno+pgoff]);
6541 			} while (pgno != 0);
6542 		}
6543 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6544 	}
6545 	return (0);
6546 }
6547 
6548 static u_offset_t
6549 segvn_getoffset(struct seg *seg, caddr_t addr)
6550 {
6551 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6552 
6553 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6554 
6555 	return (svd->offset + (uintptr_t)(addr - seg->s_base));
6556 }
6557 
6558 /*ARGSUSED*/
6559 static int
6560 segvn_gettype(struct seg *seg, caddr_t addr)
6561 {
6562 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6563 
6564 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6565 
6566 	return (svd->type | (svd->flags & (MAP_NORESERVE | MAP_TEXT |
6567 	    MAP_INITDATA)));
6568 }
6569 
6570 /*ARGSUSED*/
6571 static int
6572 segvn_getvp(struct seg *seg, caddr_t addr, struct vnode **vpp)
6573 {
6574 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6575 
6576 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6577 
6578 	*vpp = svd->vp;
6579 	return (0);
6580 }
6581 
6582 /*
6583  * Check to see if it makes sense to do kluster/read ahead to
6584  * addr + delta relative to the mapping at addr.  We assume here
6585  * that delta is a signed PAGESIZE'd multiple (which can be negative).
6586  *
6587  * For segvn, we currently "approve" of the action if we are
6588  * still in the segment and it maps from the same vp/off,
6589  * or if the advice stored in segvn_data or vpages allows it.
6590  * Currently, klustering is not allowed only if MADV_RANDOM is set.
6591  */
6592 static int
6593 segvn_kluster(struct seg *seg, caddr_t addr, ssize_t delta)
6594 {
6595 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6596 	struct anon *oap, *ap;
6597 	ssize_t pd;
6598 	size_t page;
6599 	struct vnode *vp1, *vp2;
6600 	u_offset_t off1, off2;
6601 	struct anon_map *amp;
6602 
6603 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6604 	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock) ||
6605 	    SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
6606 
6607 	if (addr + delta < seg->s_base ||
6608 	    addr + delta >= (seg->s_base + seg->s_size))
6609 		return (-1);		/* exceeded segment bounds */
6610 
6611 	pd = delta / (ssize_t)PAGESIZE;	/* divide to preserve sign bit */
6612 	page = seg_page(seg, addr);
6613 
6614 	/*
6615 	 * Check to see if either of the pages addr or addr + delta
6616 	 * have advice set that prevents klustering (if MADV_RANDOM advice
6617 	 * is set for entire segment, or MADV_SEQUENTIAL is set and delta
6618 	 * is negative).
6619 	 */
6620 	if (svd->advice == MADV_RANDOM ||
6621 	    svd->advice == MADV_SEQUENTIAL && delta < 0)
6622 		return (-1);
6623 	else if (svd->pageadvice && svd->vpage) {
6624 		struct vpage *bvpp, *evpp;
6625 
6626 		bvpp = &svd->vpage[page];
6627 		evpp = &svd->vpage[page + pd];
6628 		if (VPP_ADVICE(bvpp) == MADV_RANDOM ||
6629 		    VPP_ADVICE(evpp) == MADV_SEQUENTIAL && delta < 0)
6630 			return (-1);
6631 		if (VPP_ADVICE(bvpp) != VPP_ADVICE(evpp) &&
6632 		    VPP_ADVICE(evpp) == MADV_RANDOM)
6633 			return (-1);
6634 	}
6635 
6636 	if (svd->type == MAP_SHARED)
6637 		return (0);		/* shared mapping - all ok */
6638 
6639 	if ((amp = svd->amp) == NULL)
6640 		return (0);		/* off original vnode */
6641 
6642 	page += svd->anon_index;
6643 
6644 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
6645 
6646 	oap = anon_get_ptr(amp->ahp, page);
6647 	ap = anon_get_ptr(amp->ahp, page + pd);
6648 
6649 	ANON_LOCK_EXIT(&amp->a_rwlock);
6650 
6651 	if ((oap == NULL && ap != NULL) || (oap != NULL && ap == NULL)) {
6652 		return (-1);		/* one with and one without an anon */
6653 	}
6654 
6655 	if (oap == NULL) {		/* implies that ap == NULL */
6656 		return (0);		/* off original vnode */
6657 	}
6658 
6659 	/*
6660 	 * Now we know we have two anon pointers - check to
6661 	 * see if they happen to be properly allocated.
6662 	 */
6663 
6664 	/*
6665 	 * XXX We cheat here and don't lock the anon slots. We can't because
6666 	 * we may have been called from the anon layer which might already
6667 	 * have locked them. We are holding a refcnt on the slots so they
6668 	 * can't disappear. The worst that will happen is we'll get the wrong
6669 	 * names (vp, off) for the slots and make a poor klustering decision.
6670 	 */
6671 	swap_xlate(ap, &vp1, &off1);
6672 	swap_xlate(oap, &vp2, &off2);
6673 
6674 
6675 	if (!VOP_CMP(vp1, vp2) || off1 - off2 != delta)
6676 		return (-1);
6677 	return (0);
6678 }
6679 
6680 /*
6681  * Swap the pages of seg out to secondary storage, returning the
6682  * number of bytes of storage freed.
6683  *
6684  * The basic idea is first to unload all translations and then to call
6685  * VOP_PUTPAGE() for all newly-unmapped pages, to push them out to the
6686  * swap device.  Pages to which other segments have mappings will remain
6687  * mapped and won't be swapped.  Our caller (as_swapout) has already
6688  * performed the unloading step.
6689  *
6690  * The value returned is intended to correlate well with the process's
6691  * memory requirements.  However, there are some caveats:
6692  * 1)	When given a shared segment as argument, this routine will
6693  *	only succeed in swapping out pages for the last sharer of the
6694  *	segment.  (Previous callers will only have decremented mapping
6695  *	reference counts.)
6696  * 2)	We assume that the hat layer maintains a large enough translation
6697  *	cache to capture process reference patterns.
6698  */
6699 static size_t
6700 segvn_swapout(struct seg *seg)
6701 {
6702 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6703 	struct anon_map *amp;
6704 	pgcnt_t pgcnt = 0;
6705 	pgcnt_t npages;
6706 	pgcnt_t page;
6707 	ulong_t anon_index;
6708 
6709 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6710 
6711 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6712 	/*
6713 	 * Find pages unmapped by our caller and force them
6714 	 * out to the virtual swap device.
6715 	 */
6716 	if ((amp = svd->amp) != NULL)
6717 		anon_index = svd->anon_index;
6718 	npages = seg->s_size >> PAGESHIFT;
6719 	for (page = 0; page < npages; page++) {
6720 		page_t *pp;
6721 		struct anon *ap;
6722 		struct vnode *vp;
6723 		u_offset_t off;
6724 		anon_sync_obj_t cookie;
6725 
6726 		/*
6727 		 * Obtain <vp, off> pair for the page, then look it up.
6728 		 *
6729 		 * Note that this code is willing to consider regular
6730 		 * pages as well as anon pages.  Is this appropriate here?
6731 		 */
6732 		ap = NULL;
6733 		if (amp != NULL) {
6734 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
6735 			if (anon_array_try_enter(amp, anon_index + page,
6736 						&cookie)) {
6737 				ANON_LOCK_EXIT(&amp->a_rwlock);
6738 				continue;
6739 			}
6740 			ap = anon_get_ptr(amp->ahp, anon_index + page);
6741 			if (ap != NULL) {
6742 				swap_xlate(ap, &vp, &off);
6743 			} else {
6744 				vp = svd->vp;
6745 				off = svd->offset + ptob(page);
6746 			}
6747 			anon_array_exit(&cookie);
6748 			ANON_LOCK_EXIT(&amp->a_rwlock);
6749 		} else {
6750 			vp = svd->vp;
6751 			off = svd->offset + ptob(page);
6752 		}
6753 		if (vp == NULL) {		/* untouched zfod page */
6754 			ASSERT(ap == NULL);
6755 			continue;
6756 		}
6757 
6758 		pp = page_lookup_nowait(vp, off, SE_SHARED);
6759 		if (pp == NULL)
6760 			continue;
6761 
6762 
6763 		/*
6764 		 * Examine the page to see whether it can be tossed out,
6765 		 * keeping track of how many we've found.
6766 		 */
6767 		if (!page_tryupgrade(pp)) {
6768 			/*
6769 			 * If the page has an i/o lock and no mappings,
6770 			 * it's very likely that the page is being
6771 			 * written out as a result of klustering.
6772 			 * Assume this is so and take credit for it here.
6773 			 */
6774 			if (!page_io_trylock(pp)) {
6775 				if (!hat_page_is_mapped(pp))
6776 					pgcnt++;
6777 			} else {
6778 				page_io_unlock(pp);
6779 			}
6780 			page_unlock(pp);
6781 			continue;
6782 		}
6783 		ASSERT(!page_iolock_assert(pp));
6784 
6785 
6786 		/*
6787 		 * Skip if page is locked or has mappings.
6788 		 * We don't need the page_struct_lock to look at lckcnt
6789 		 * and cowcnt because the page is exclusive locked.
6790 		 */
6791 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
6792 		    hat_page_is_mapped(pp)) {
6793 			page_unlock(pp);
6794 			continue;
6795 		}
6796 
6797 		/*
6798 		 * dispose skips large pages so try to demote first.
6799 		 */
6800 		if (pp->p_szc != 0 && !page_try_demote_pages(pp)) {
6801 			page_unlock(pp);
6802 			/*
6803 			 * XXX should skip the remaining page_t's of this
6804 			 * large page.
6805 			 */
6806 			continue;
6807 		}
6808 
6809 		ASSERT(pp->p_szc == 0);
6810 
6811 		/*
6812 		 * No longer mapped -- we can toss it out.  How
6813 		 * we do so depends on whether or not it's dirty.
6814 		 */
6815 		if (hat_ismod(pp) && pp->p_vnode) {
6816 			/*
6817 			 * We must clean the page before it can be
6818 			 * freed.  Setting B_FREE will cause pvn_done
6819 			 * to free the page when the i/o completes.
6820 			 * XXX:	This also causes it to be accounted
6821 			 *	as a pageout instead of a swap: need
6822 			 *	B_SWAPOUT bit to use instead of B_FREE.
6823 			 *
6824 			 * Hold the vnode before releasing the page lock
6825 			 * to prevent it from being freed and re-used by
6826 			 * some other thread.
6827 			 */
6828 			VN_HOLD(vp);
6829 			page_unlock(pp);
6830 
6831 			/*
6832 			 * Queue all i/o requests for the pageout thread
6833 			 * to avoid saturating the pageout devices.
6834 			 */
6835 			if (!queue_io_request(vp, off))
6836 				VN_RELE(vp);
6837 		} else {
6838 			/*
6839 			 * The page was clean, free it.
6840 			 *
6841 			 * XXX:	Can we ever encounter modified pages
6842 			 *	with no associated vnode here?
6843 			 */
6844 			ASSERT(pp->p_vnode != NULL);
6845 			/*LINTED: constant in conditional context*/
6846 			VN_DISPOSE(pp, B_FREE, 0, kcred);
6847 		}
6848 
6849 		/*
6850 		 * Credit now even if i/o is in progress.
6851 		 */
6852 		pgcnt++;
6853 	}
6854 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6855 
6856 	/*
6857 	 * Wakeup pageout to initiate i/o on all queued requests.
6858 	 */
6859 	cv_signal_pageout();
6860 	return (ptob(pgcnt));
6861 }
6862 
6863 /*
6864  * Synchronize primary storage cache with real object in virtual memory.
6865  *
6866  * XXX - Anonymous pages should not be sync'ed out at all.
6867  */
6868 static int
6869 segvn_sync(struct seg *seg, caddr_t addr, size_t len, int attr, uint_t flags)
6870 {
6871 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6872 	struct vpage *vpp;
6873 	page_t *pp;
6874 	u_offset_t offset;
6875 	struct vnode *vp;
6876 	u_offset_t off;
6877 	caddr_t eaddr;
6878 	int bflags;
6879 	int err = 0;
6880 	int segtype;
6881 	int pageprot;
6882 	int prot;
6883 	ulong_t anon_index;
6884 	struct anon_map *amp;
6885 	struct anon *ap;
6886 	anon_sync_obj_t cookie;
6887 
6888 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6889 
6890 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6891 
6892 	if (svd->softlockcnt > 0) {
6893 		/*
6894 		 * flush all pages from seg cache
6895 		 * otherwise we may deadlock in swap_putpage
6896 		 * for B_INVAL page (4175402).
6897 		 *
6898 		 * Even if we grab segvn WRITER's lock or segp_slock
6899 		 * here, there might be another thread which could've
6900 		 * successfully performed lookup/insert just before
6901 		 * we acquired the lock here.  So, grabbing either
6902 		 * lock here is of not much use.  Until we devise
6903 		 * a strategy at upper layers to solve the
6904 		 * synchronization issues completely, we expect
6905 		 * applications to handle this appropriately.
6906 		 */
6907 		segvn_purge(seg);
6908 		if (svd->softlockcnt > 0) {
6909 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6910 			return (EAGAIN);
6911 		}
6912 	}
6913 
6914 	vpp = svd->vpage;
6915 	offset = svd->offset + (uintptr_t)(addr - seg->s_base);
6916 	bflags = ((flags & MS_ASYNC) ? B_ASYNC : 0) |
6917 	    ((flags & MS_INVALIDATE) ? B_INVAL : 0);
6918 
6919 	if (attr) {
6920 		pageprot = attr & ~(SHARED|PRIVATE);
6921 		segtype = (attr & SHARED) ? MAP_SHARED : MAP_PRIVATE;
6922 
6923 		/*
6924 		 * We are done if the segment types don't match
6925 		 * or if we have segment level protections and
6926 		 * they don't match.
6927 		 */
6928 		if (svd->type != segtype) {
6929 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6930 			return (0);
6931 		}
6932 		if (vpp == NULL) {
6933 			if (svd->prot != pageprot) {
6934 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6935 				return (0);
6936 			}
6937 			prot = svd->prot;
6938 		} else
6939 			vpp = &svd->vpage[seg_page(seg, addr)];
6940 
6941 	} else if (svd->vp && svd->amp == NULL &&
6942 	    (flags & MS_INVALIDATE) == 0) {
6943 
6944 		/*
6945 		 * No attributes, no anonymous pages and MS_INVALIDATE flag
6946 		 * is not on, just use one big request.
6947 		 */
6948 		err = VOP_PUTPAGE(svd->vp, (offset_t)offset, len,
6949 		    bflags, svd->cred);
6950 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6951 		return (err);
6952 	}
6953 
6954 	if ((amp = svd->amp) != NULL)
6955 		anon_index = svd->anon_index + seg_page(seg, addr);
6956 
6957 	for (eaddr = addr + len; addr < eaddr; addr += PAGESIZE) {
6958 		ap = NULL;
6959 		if (amp != NULL) {
6960 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
6961 			anon_array_enter(amp, anon_index, &cookie);
6962 			ap = anon_get_ptr(amp->ahp, anon_index++);
6963 			if (ap != NULL) {
6964 				swap_xlate(ap, &vp, &off);
6965 			} else {
6966 				vp = svd->vp;
6967 				off = offset;
6968 			}
6969 			anon_array_exit(&cookie);
6970 			ANON_LOCK_EXIT(&amp->a_rwlock);
6971 		} else {
6972 			vp = svd->vp;
6973 			off = offset;
6974 		}
6975 		offset += PAGESIZE;
6976 
6977 		if (vp == NULL)		/* untouched zfod page */
6978 			continue;
6979 
6980 		if (attr) {
6981 			if (vpp) {
6982 				prot = VPP_PROT(vpp);
6983 				vpp++;
6984 			}
6985 			if (prot != pageprot) {
6986 				continue;
6987 			}
6988 		}
6989 
6990 		/*
6991 		 * See if any of these pages are locked --  if so, then we
6992 		 * will have to truncate an invalidate request at the first
6993 		 * locked one. We don't need the page_struct_lock to test
6994 		 * as this is only advisory; even if we acquire it someone
6995 		 * might race in and lock the page after we unlock and before
6996 		 * we do the PUTPAGE, then PUTPAGE simply does nothing.
6997 		 */
6998 		if (flags & MS_INVALIDATE) {
6999 			if ((pp = page_lookup(vp, off, SE_SHARED)) != NULL) {
7000 				if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
7001 					page_unlock(pp);
7002 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7003 					return (EBUSY);
7004 				}
7005 				if (ap != NULL && pp->p_szc != 0 &&
7006 				    page_tryupgrade(pp)) {
7007 					if (pp->p_lckcnt == 0 &&
7008 					    pp->p_cowcnt == 0) {
7009 						/*
7010 						 * swapfs VN_DISPOSE() won't
7011 						 * invalidate large pages.
7012 						 * Attempt to demote.
7013 						 * XXX can't help it if it
7014 						 * fails. But for swapfs
7015 						 * pages it is no big deal.
7016 						 */
7017 						(void) page_try_demote_pages(
7018 						    pp);
7019 				    }
7020 				}
7021 				page_unlock(pp);
7022 			}
7023 		} else if (svd->type == MAP_SHARED && amp != NULL) {
7024 			/*
7025 			 * Avoid writting out to disk ISM's large pages
7026 			 * because segspt_free_pages() relies on NULL an_pvp
7027 			 * of anon slots of such pages.
7028 			 */
7029 
7030 			ASSERT(svd->vp == NULL);
7031 			/*
7032 			 * swapfs uses page_lookup_nowait if not freeing or
7033 			 * invalidating and skips a page if
7034 			 * page_lookup_nowait returns NULL.
7035 			 */
7036 			pp = page_lookup_nowait(vp, off, SE_SHARED);
7037 			if (pp == NULL) {
7038 				continue;
7039 			}
7040 			if (pp->p_szc != 0) {
7041 				page_unlock(pp);
7042 				continue;
7043 			}
7044 
7045 			/*
7046 			 * Note ISM pages are created large so (vp, off)'s
7047 			 * page cannot suddenly become large after we unlock
7048 			 * pp.
7049 			 */
7050 			page_unlock(pp);
7051 		}
7052 		/*
7053 		 * XXX - Should ultimately try to kluster
7054 		 * calls to VOP_PUTPAGE() for performance.
7055 		 */
7056 		VN_HOLD(vp);
7057 		err = VOP_PUTPAGE(vp, (offset_t)off, PAGESIZE,
7058 		    bflags, svd->cred);
7059 		VN_RELE(vp);
7060 		if (err)
7061 			break;
7062 	}
7063 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7064 	return (err);
7065 }
7066 
7067 /*
7068  * Determine if we have data corresponding to pages in the
7069  * primary storage virtual memory cache (i.e., "in core").
7070  */
7071 static size_t
7072 segvn_incore(struct seg *seg, caddr_t addr, size_t len, char *vec)
7073 {
7074 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7075 	struct vnode *vp, *avp;
7076 	u_offset_t offset, aoffset;
7077 	size_t p, ep;
7078 	int ret;
7079 	struct vpage *vpp;
7080 	page_t *pp;
7081 	uint_t start;
7082 	struct anon_map *amp;		/* XXX - for locknest */
7083 	struct anon *ap;
7084 	uint_t attr;
7085 	anon_sync_obj_t cookie;
7086 
7087 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
7088 
7089 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7090 	if (svd->amp == NULL && svd->vp == NULL) {
7091 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7092 		bzero(vec, btopr(len));
7093 		return (len);	/* no anonymous pages created yet */
7094 	}
7095 
7096 	p = seg_page(seg, addr);
7097 	ep = seg_page(seg, addr + len);
7098 	start = svd->vp ? SEG_PAGE_VNODEBACKED : 0;
7099 
7100 	amp = svd->amp;
7101 	for (; p < ep; p++, addr += PAGESIZE) {
7102 		vpp = (svd->vpage) ? &svd->vpage[p]: NULL;
7103 		ret = start;
7104 		ap = NULL;
7105 		avp = NULL;
7106 		/* Grab the vnode/offset for the anon slot */
7107 		if (amp != NULL) {
7108 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7109 			anon_array_enter(amp, svd->anon_index + p, &cookie);
7110 			ap = anon_get_ptr(amp->ahp, svd->anon_index + p);
7111 			if (ap != NULL) {
7112 				swap_xlate(ap, &avp, &aoffset);
7113 			}
7114 			anon_array_exit(&cookie);
7115 			ANON_LOCK_EXIT(&amp->a_rwlock);
7116 		}
7117 		if ((avp != NULL) && page_exists(avp, aoffset)) {
7118 			/* A page exists for the anon slot */
7119 			ret |= SEG_PAGE_INCORE;
7120 
7121 			/*
7122 			 * If page is mapped and writable
7123 			 */
7124 			attr = (uint_t)0;
7125 			if ((hat_getattr(seg->s_as->a_hat, addr,
7126 			    &attr) != -1) && (attr & PROT_WRITE)) {
7127 				ret |= SEG_PAGE_ANON;
7128 			}
7129 			/*
7130 			 * Don't get page_struct lock for lckcnt and cowcnt,
7131 			 * since this is purely advisory.
7132 			 */
7133 			if ((pp = page_lookup_nowait(avp, aoffset,
7134 			    SE_SHARED)) != NULL) {
7135 				if (pp->p_lckcnt)
7136 					ret |= SEG_PAGE_SOFTLOCK;
7137 				if (pp->p_cowcnt)
7138 					ret |= SEG_PAGE_HASCOW;
7139 				page_unlock(pp);
7140 			}
7141 		}
7142 
7143 		/* Gather vnode statistics */
7144 		vp = svd->vp;
7145 		offset = svd->offset + (uintptr_t)(addr - seg->s_base);
7146 
7147 		if (vp != NULL) {
7148 			/*
7149 			 * Try to obtain a "shared" lock on the page
7150 			 * without blocking.  If this fails, determine
7151 			 * if the page is in memory.
7152 			 */
7153 			pp = page_lookup_nowait(vp, offset, SE_SHARED);
7154 			if ((pp == NULL) && (page_exists(vp, offset))) {
7155 				/* Page is incore, and is named */
7156 				ret |= (SEG_PAGE_INCORE | SEG_PAGE_VNODE);
7157 			}
7158 			/*
7159 			 * Don't get page_struct lock for lckcnt and cowcnt,
7160 			 * since this is purely advisory.
7161 			 */
7162 			if (pp != NULL) {
7163 				ret |= (SEG_PAGE_INCORE | SEG_PAGE_VNODE);
7164 				if (pp->p_lckcnt)
7165 					ret |= SEG_PAGE_SOFTLOCK;
7166 				if (pp->p_cowcnt)
7167 					ret |= SEG_PAGE_HASCOW;
7168 				page_unlock(pp);
7169 			}
7170 		}
7171 
7172 		/* Gather virtual page information */
7173 		if (vpp) {
7174 			if (VPP_ISPPLOCK(vpp))
7175 				ret |= SEG_PAGE_LOCKED;
7176 			vpp++;
7177 		}
7178 
7179 		*vec++ = (char)ret;
7180 	}
7181 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7182 	return (len);
7183 }
7184 
7185 /*
7186  * Statement for p_cowcnts/p_lckcnts.
7187  *
7188  * p_cowcnt is updated while mlock/munlocking MAP_PRIVATE and PROT_WRITE region
7189  * irrespective of the following factors or anything else:
7190  *
7191  *	(1) anon slots are populated or not
7192  *	(2) cow is broken or not
7193  *	(3) refcnt on ap is 1 or greater than 1
7194  *
7195  * If it's not MAP_PRIVATE and PROT_WRITE, p_lckcnt is updated during mlock
7196  * and munlock.
7197  *
7198  *
7199  * Handling p_cowcnts/p_lckcnts during copy-on-write fault:
7200  *
7201  *	if vpage has PROT_WRITE
7202  *		transfer cowcnt on the oldpage -> cowcnt on the newpage
7203  *	else
7204  *		transfer lckcnt on the oldpage -> lckcnt on the newpage
7205  *
7206  *	During copy-on-write, decrement p_cowcnt on the oldpage and increment
7207  *	p_cowcnt on the newpage *if* the corresponding vpage has PROT_WRITE.
7208  *
7209  *	We may also break COW if softlocking on read access in the physio case.
7210  *	In this case, vpage may not have PROT_WRITE. So, we need to decrement
7211  *	p_lckcnt on the oldpage and increment p_lckcnt on the newpage *if* the
7212  *	vpage doesn't have PROT_WRITE.
7213  *
7214  *
7215  * Handling p_cowcnts/p_lckcnts during mprotect on mlocked region:
7216  *
7217  * 	If a MAP_PRIVATE region loses PROT_WRITE, we decrement p_cowcnt and
7218  *	increment p_lckcnt by calling page_subclaim() which takes care of
7219  * 	availrmem accounting and p_lckcnt overflow.
7220  *
7221  *	If a MAP_PRIVATE region gains PROT_WRITE, we decrement p_lckcnt and
7222  *	increment p_cowcnt by calling page_addclaim() which takes care of
7223  *	availrmem availability and p_cowcnt overflow.
7224  */
7225 
7226 /*
7227  * Lock down (or unlock) pages mapped by this segment.
7228  *
7229  * XXX only creates PAGESIZE pages if anon slots are not initialized.
7230  * At fault time they will be relocated into larger pages.
7231  */
7232 static int
7233 segvn_lockop(struct seg *seg, caddr_t addr, size_t len,
7234     int attr, int op, ulong_t *lockmap, size_t pos)
7235 {
7236 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7237 	struct vpage *vpp;
7238 	struct vpage *evp;
7239 	page_t *pp;
7240 	u_offset_t offset;
7241 	u_offset_t off;
7242 	int segtype;
7243 	int pageprot;
7244 	int claim;
7245 	struct vnode *vp;
7246 	ulong_t anon_index;
7247 	struct anon_map *amp;
7248 	struct anon *ap;
7249 	struct vattr va;
7250 	anon_sync_obj_t cookie;
7251 	struct kshmid *sp = NULL;
7252 	struct proc	*p = curproc;
7253 	kproject_t	*proj = NULL;
7254 	int chargeproc = 1;
7255 	size_t locked_bytes = 0;
7256 	size_t unlocked_bytes = 0;
7257 	int err = 0;
7258 
7259 	/*
7260 	 * Hold write lock on address space because may split or concatenate
7261 	 * segments
7262 	 */
7263 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
7264 
7265 	/*
7266 	 * If this is a shm, use shm's project and zone, else use
7267 	 * project and zone of calling process
7268 	 */
7269 
7270 	/* Determine if this segment backs a sysV shm */
7271 	if (svd->amp != NULL && svd->amp->a_sp != NULL) {
7272 		ASSERT(svd->type == MAP_SHARED);
7273 		ASSERT(svd->tr_state == SEGVN_TR_OFF);
7274 		sp = svd->amp->a_sp;
7275 		proj = sp->shm_perm.ipc_proj;
7276 		chargeproc = 0;
7277 	}
7278 
7279 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
7280 	if (attr) {
7281 		pageprot = attr & ~(SHARED|PRIVATE);
7282 		segtype = attr & SHARED ? MAP_SHARED : MAP_PRIVATE;
7283 
7284 		/*
7285 		 * We are done if the segment types don't match
7286 		 * or if we have segment level protections and
7287 		 * they don't match.
7288 		 */
7289 		if (svd->type != segtype) {
7290 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7291 			return (0);
7292 		}
7293 		if (svd->pageprot == 0 && svd->prot != pageprot) {
7294 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7295 			return (0);
7296 		}
7297 	}
7298 
7299 	if (op == MC_LOCK) {
7300 		if (svd->tr_state == SEGVN_TR_INIT) {
7301 			svd->tr_state = SEGVN_TR_OFF;
7302 		} else if (svd->tr_state == SEGVN_TR_ON) {
7303 			ASSERT(svd->amp != NULL);
7304 			segvn_textunrepl(seg, 0);
7305 			ASSERT(svd->amp == NULL &&
7306 			    svd->tr_state == SEGVN_TR_OFF);
7307 		}
7308 	}
7309 
7310 	/*
7311 	 * If we're locking, then we must create a vpage structure if
7312 	 * none exists.  If we're unlocking, then check to see if there
7313 	 * is a vpage --  if not, then we could not have locked anything.
7314 	 */
7315 
7316 	if ((vpp = svd->vpage) == NULL) {
7317 		if (op == MC_LOCK)
7318 			segvn_vpage(seg);
7319 		else {
7320 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7321 			return (0);
7322 		}
7323 	}
7324 
7325 	/*
7326 	 * The anonymous data vector (i.e., previously
7327 	 * unreferenced mapping to swap space) can be allocated
7328 	 * by lazily testing for its existence.
7329 	 */
7330 	if (op == MC_LOCK && svd->amp == NULL && svd->vp == NULL) {
7331 		svd->amp = anonmap_alloc(seg->s_size, 0, ANON_SLEEP);
7332 		svd->amp->a_szc = seg->s_szc;
7333 	}
7334 
7335 	if ((amp = svd->amp) != NULL) {
7336 		anon_index = svd->anon_index + seg_page(seg, addr);
7337 	}
7338 
7339 	offset = svd->offset + (uintptr_t)(addr - seg->s_base);
7340 	evp = &svd->vpage[seg_page(seg, addr + len)];
7341 
7342 	if (sp != NULL)
7343 		mutex_enter(&sp->shm_mlock);
7344 
7345 	/* determine number of unlocked bytes in range for lock operation */
7346 	if (op == MC_LOCK) {
7347 
7348 		if (sp == NULL) {
7349 			for (vpp = &svd->vpage[seg_page(seg, addr)]; vpp < evp;
7350 			    vpp++) {
7351 				if (!VPP_ISPPLOCK(vpp))
7352 					unlocked_bytes += PAGESIZE;
7353 			}
7354 		} else {
7355 			ulong_t		i_idx, i_edx;
7356 			anon_sync_obj_t	i_cookie;
7357 			struct anon	*i_ap;
7358 			struct vnode	*i_vp;
7359 			u_offset_t	i_off;
7360 
7361 			/* Only count sysV pages once for locked memory */
7362 			i_edx = svd->anon_index + seg_page(seg, addr + len);
7363 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7364 			for (i_idx = anon_index; i_idx < i_edx; i_idx++) {
7365 				anon_array_enter(amp, i_idx, &i_cookie);
7366 				i_ap = anon_get_ptr(amp->ahp, i_idx);
7367 				if (i_ap == NULL) {
7368 					unlocked_bytes += PAGESIZE;
7369 					anon_array_exit(&i_cookie);
7370 					continue;
7371 				}
7372 				swap_xlate(i_ap, &i_vp, &i_off);
7373 				anon_array_exit(&i_cookie);
7374 				pp = page_lookup(i_vp, i_off, SE_SHARED);
7375 				if (pp == NULL) {
7376 					unlocked_bytes += PAGESIZE;
7377 					continue;
7378 				} else if (pp->p_lckcnt == 0)
7379 					unlocked_bytes += PAGESIZE;
7380 				page_unlock(pp);
7381 			}
7382 			ANON_LOCK_EXIT(&amp->a_rwlock);
7383 		}
7384 
7385 		mutex_enter(&p->p_lock);
7386 		err = rctl_incr_locked_mem(p, proj, unlocked_bytes,
7387 		    chargeproc);
7388 		mutex_exit(&p->p_lock);
7389 
7390 		if (err) {
7391 			if (sp != NULL)
7392 				mutex_exit(&sp->shm_mlock);
7393 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7394 			return (err);
7395 		}
7396 	}
7397 	/*
7398 	 * Loop over all pages in the range.  Process if we're locking and
7399 	 * page has not already been locked in this mapping; or if we're
7400 	 * unlocking and the page has been locked.
7401 	 */
7402 	for (vpp = &svd->vpage[seg_page(seg, addr)]; vpp < evp;
7403 	    vpp++, pos++, addr += PAGESIZE, offset += PAGESIZE, anon_index++) {
7404 		if ((attr == 0 || VPP_PROT(vpp) == pageprot) &&
7405 		    ((op == MC_LOCK && !VPP_ISPPLOCK(vpp)) ||
7406 		    (op == MC_UNLOCK && VPP_ISPPLOCK(vpp)))) {
7407 
7408 			if (amp != NULL)
7409 				ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7410 			/*
7411 			 * If this isn't a MAP_NORESERVE segment and
7412 			 * we're locking, allocate anon slots if they
7413 			 * don't exist.  The page is brought in later on.
7414 			 */
7415 			if (op == MC_LOCK && svd->vp == NULL &&
7416 			    ((svd->flags & MAP_NORESERVE) == 0) &&
7417 			    amp != NULL &&
7418 			    ((ap = anon_get_ptr(amp->ahp, anon_index))
7419 								== NULL)) {
7420 				anon_array_enter(amp, anon_index, &cookie);
7421 
7422 				if ((ap = anon_get_ptr(amp->ahp,
7423 						anon_index)) == NULL) {
7424 					pp = anon_zero(seg, addr, &ap,
7425 					    svd->cred);
7426 					if (pp == NULL) {
7427 						anon_array_exit(&cookie);
7428 						ANON_LOCK_EXIT(&amp->a_rwlock);
7429 						err = ENOMEM;
7430 						goto out;
7431 					}
7432 					ASSERT(anon_get_ptr(amp->ahp,
7433 						anon_index) == NULL);
7434 					(void) anon_set_ptr(amp->ahp,
7435 						anon_index, ap, ANON_SLEEP);
7436 					page_unlock(pp);
7437 				}
7438 				anon_array_exit(&cookie);
7439 			}
7440 
7441 			/*
7442 			 * Get name for page, accounting for
7443 			 * existence of private copy.
7444 			 */
7445 			ap = NULL;
7446 			if (amp != NULL) {
7447 				anon_array_enter(amp, anon_index, &cookie);
7448 				ap = anon_get_ptr(amp->ahp, anon_index);
7449 				if (ap != NULL) {
7450 					swap_xlate(ap, &vp, &off);
7451 				} else {
7452 					if (svd->vp == NULL &&
7453 					    (svd->flags & MAP_NORESERVE)) {
7454 						anon_array_exit(&cookie);
7455 						ANON_LOCK_EXIT(&amp->a_rwlock);
7456 						continue;
7457 					}
7458 					vp = svd->vp;
7459 					off = offset;
7460 				}
7461 				anon_array_exit(&cookie);
7462 				ANON_LOCK_EXIT(&amp->a_rwlock);
7463 			} else {
7464 				vp = svd->vp;
7465 				off = offset;
7466 			}
7467 
7468 			/*
7469 			 * Get page frame.  It's ok if the page is
7470 			 * not available when we're unlocking, as this
7471 			 * may simply mean that a page we locked got
7472 			 * truncated out of existence after we locked it.
7473 			 *
7474 			 * Invoke VOP_GETPAGE() to obtain the page struct
7475 			 * since we may need to read it from disk if its
7476 			 * been paged out.
7477 			 */
7478 			if (op != MC_LOCK)
7479 				pp = page_lookup(vp, off, SE_SHARED);
7480 			else {
7481 				page_t *pl[1 + 1];
7482 				int error;
7483 
7484 				ASSERT(vp != NULL);
7485 
7486 				error = VOP_GETPAGE(vp, (offset_t)off, PAGESIZE,
7487 				    (uint_t *)NULL, pl, PAGESIZE, seg, addr,
7488 				    S_OTHER, svd->cred);
7489 
7490 				/*
7491 				 * If the error is EDEADLK then we must bounce
7492 				 * up and drop all vm subsystem locks and then
7493 				 * retry the operation later
7494 				 * This behavior is a temporary measure because
7495 				 * ufs/sds logging is badly designed and will
7496 				 * deadlock if we don't allow this bounce to
7497 				 * happen.  The real solution is to re-design
7498 				 * the logging code to work properly.  See bug
7499 				 * 4125102 for details of the problem.
7500 				 */
7501 				if (error == EDEADLK) {
7502 					err = error;
7503 					goto out;
7504 				}
7505 				/*
7506 				 * Quit if we fail to fault in the page.  Treat
7507 				 * the failure as an error, unless the addr
7508 				 * is mapped beyond the end of a file.
7509 				 */
7510 				if (error && svd->vp) {
7511 					va.va_mask = AT_SIZE;
7512 					if (VOP_GETATTR(svd->vp, &va, 0,
7513 					    svd->cred) != 0) {
7514 						err = EIO;
7515 						goto out;
7516 					}
7517 					if (btopr(va.va_size) >=
7518 					    btopr(off + 1)) {
7519 						err = EIO;
7520 						goto out;
7521 					}
7522 					goto out;
7523 
7524 				} else if (error) {
7525 					err = EIO;
7526 					goto out;
7527 				}
7528 				pp = pl[0];
7529 				ASSERT(pp != NULL);
7530 			}
7531 
7532 			/*
7533 			 * See Statement at the beginning of this routine.
7534 			 *
7535 			 * claim is always set if MAP_PRIVATE and PROT_WRITE
7536 			 * irrespective of following factors:
7537 			 *
7538 			 * (1) anon slots are populated or not
7539 			 * (2) cow is broken or not
7540 			 * (3) refcnt on ap is 1 or greater than 1
7541 			 *
7542 			 * See 4140683 for details
7543 			 */
7544 			claim = ((VPP_PROT(vpp) & PROT_WRITE) &&
7545 				(svd->type == MAP_PRIVATE));
7546 
7547 			/*
7548 			 * Perform page-level operation appropriate to
7549 			 * operation.  If locking, undo the SOFTLOCK
7550 			 * performed to bring the page into memory
7551 			 * after setting the lock.  If unlocking,
7552 			 * and no page was found, account for the claim
7553 			 * separately.
7554 			 */
7555 			if (op == MC_LOCK) {
7556 				int ret = 1;	/* Assume success */
7557 
7558 				ASSERT(!VPP_ISPPLOCK(vpp));
7559 
7560 				ret = page_pp_lock(pp, claim, 0);
7561 				if (ret == 0) {
7562 					/* locking page failed */
7563 					page_unlock(pp);
7564 					err = EAGAIN;
7565 					goto out;
7566 				}
7567 				VPP_SETPPLOCK(vpp);
7568 				if (sp != NULL) {
7569 					if (pp->p_lckcnt == 1)
7570 						locked_bytes += PAGESIZE;
7571 				} else
7572 					locked_bytes += PAGESIZE;
7573 
7574 				if (lockmap != (ulong_t *)NULL)
7575 					BT_SET(lockmap, pos);
7576 
7577 				page_unlock(pp);
7578 			} else {
7579 				ASSERT(VPP_ISPPLOCK(vpp));
7580 				if (pp != NULL) {
7581 					/* sysV pages should be locked */
7582 					ASSERT(sp == NULL || pp->p_lckcnt > 0);
7583 					page_pp_unlock(pp, claim, 0);
7584 					if (sp != NULL) {
7585 						if (pp->p_lckcnt == 0)
7586 							unlocked_bytes
7587 							    += PAGESIZE;
7588 					} else
7589 						unlocked_bytes += PAGESIZE;
7590 					page_unlock(pp);
7591 				} else {
7592 					ASSERT(sp == NULL);
7593 					unlocked_bytes += PAGESIZE;
7594 				}
7595 				VPP_CLRPPLOCK(vpp);
7596 			}
7597 		}
7598 	}
7599 out:
7600 	if (op == MC_LOCK) {
7601 		/* Credit back bytes that did not get locked */
7602 		if ((unlocked_bytes - locked_bytes) > 0) {
7603 			if (proj == NULL)
7604 				mutex_enter(&p->p_lock);
7605 			rctl_decr_locked_mem(p, proj,
7606 			    (unlocked_bytes - locked_bytes), chargeproc);
7607 			if (proj == NULL)
7608 				mutex_exit(&p->p_lock);
7609 		}
7610 
7611 	} else {
7612 		/* Account bytes that were unlocked */
7613 		if (unlocked_bytes > 0) {
7614 			if (proj == NULL)
7615 				mutex_enter(&p->p_lock);
7616 			rctl_decr_locked_mem(p, proj, unlocked_bytes,
7617 			    chargeproc);
7618 			if (proj == NULL)
7619 				mutex_exit(&p->p_lock);
7620 		}
7621 	}
7622 	if (sp != NULL)
7623 		mutex_exit(&sp->shm_mlock);
7624 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7625 
7626 	return (err);
7627 }
7628 
7629 /*
7630  * Set advice from user for specified pages
7631  * There are 5 types of advice:
7632  *	MADV_NORMAL	- Normal (default) behavior (whatever that is)
7633  *	MADV_RANDOM	- Random page references
7634  *				do not allow readahead or 'klustering'
7635  *	MADV_SEQUENTIAL	- Sequential page references
7636  *				Pages previous to the one currently being
7637  *				accessed (determined by fault) are 'not needed'
7638  *				and are freed immediately
7639  *	MADV_WILLNEED	- Pages are likely to be used (fault ahead in mctl)
7640  *	MADV_DONTNEED	- Pages are not needed (synced out in mctl)
7641  *	MADV_FREE	- Contents can be discarded
7642  *	MADV_ACCESS_DEFAULT- Default access
7643  *	MADV_ACCESS_LWP	- Next LWP will access heavily
7644  *	MADV_ACCESS_MANY- Many LWPs or processes will access heavily
7645  */
7646 static int
7647 segvn_advise(struct seg *seg, caddr_t addr, size_t len, uint_t behav)
7648 {
7649 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7650 	size_t page;
7651 	int err = 0;
7652 	int already_set;
7653 	struct anon_map *amp;
7654 	ulong_t anon_index;
7655 	struct seg *next;
7656 	lgrp_mem_policy_t policy;
7657 	struct seg *prev;
7658 	struct vnode *vp;
7659 
7660 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
7661 
7662 	/*
7663 	 * In case of MADV_FREE, we won't be modifying any segment private
7664 	 * data structures; so, we only need to grab READER's lock
7665 	 */
7666 	if (behav != MADV_FREE) {
7667 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
7668 		if (svd->tr_state != SEGVN_TR_OFF) {
7669 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7670 			return (0);
7671 		}
7672 	} else {
7673 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7674 	}
7675 
7676 	/*
7677 	 * Large pages are assumed to be only turned on when accesses to the
7678 	 * segment's address range have spatial and temporal locality. That
7679 	 * justifies ignoring MADV_SEQUENTIAL for large page segments.
7680 	 * Also, ignore advice affecting lgroup memory allocation
7681 	 * if don't need to do lgroup optimizations on this system
7682 	 */
7683 
7684 	if ((behav == MADV_SEQUENTIAL && seg->s_szc != 0) ||
7685 	    (!lgrp_optimizations() && (behav == MADV_ACCESS_DEFAULT ||
7686 	    behav == MADV_ACCESS_LWP || behav == MADV_ACCESS_MANY))) {
7687 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7688 		return (0);
7689 	}
7690 
7691 	if (behav == MADV_SEQUENTIAL || behav == MADV_ACCESS_DEFAULT ||
7692 	    behav == MADV_ACCESS_LWP || behav == MADV_ACCESS_MANY) {
7693 		/*
7694 		 * Since we are going to unload hat mappings
7695 		 * we first have to flush the cache. Otherwise
7696 		 * this might lead to system panic if another
7697 		 * thread is doing physio on the range whose
7698 		 * mappings are unloaded by madvise(3C).
7699 		 */
7700 		if (svd->softlockcnt > 0) {
7701 			/*
7702 			 * Since we do have the segvn writers lock
7703 			 * nobody can fill the cache with entries
7704 			 * belonging to this seg during the purge.
7705 			 * The flush either succeeds or we still
7706 			 * have pending I/Os. In the later case,
7707 			 * madvise(3C) fails.
7708 			 */
7709 			segvn_purge(seg);
7710 			if (svd->softlockcnt > 0) {
7711 				/*
7712 				 * Since madvise(3C) is advisory and
7713 				 * it's not part of UNIX98, madvise(3C)
7714 				 * failure here doesn't cause any hardship.
7715 				 * Note that we don't block in "as" layer.
7716 				 */
7717 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7718 				return (EAGAIN);
7719 			}
7720 		}
7721 	}
7722 
7723 	amp = svd->amp;
7724 	vp = svd->vp;
7725 	if (behav == MADV_FREE) {
7726 		/*
7727 		 * MADV_FREE is not supported for segments with
7728 		 * underlying object; if anonmap is NULL, anon slots
7729 		 * are not yet populated and there is nothing for
7730 		 * us to do. As MADV_FREE is advisory, we don't
7731 		 * return error in either case.
7732 		 */
7733 		if (vp != NULL || amp == NULL) {
7734 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7735 			return (0);
7736 		}
7737 
7738 		page = seg_page(seg, addr);
7739 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7740 		anon_disclaim(amp, svd->anon_index + page, len, 0);
7741 		ANON_LOCK_EXIT(&amp->a_rwlock);
7742 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7743 		return (0);
7744 	}
7745 
7746 	/*
7747 	 * If advice is to be applied to entire segment,
7748 	 * use advice field in seg_data structure
7749 	 * otherwise use appropriate vpage entry.
7750 	 */
7751 	if ((addr == seg->s_base) && (len == seg->s_size)) {
7752 		switch (behav) {
7753 		case MADV_ACCESS_LWP:
7754 		case MADV_ACCESS_MANY:
7755 		case MADV_ACCESS_DEFAULT:
7756 			/*
7757 			 * Set memory allocation policy for this segment
7758 			 */
7759 			policy = lgrp_madv_to_policy(behav, len, svd->type);
7760 			if (svd->type == MAP_SHARED)
7761 				already_set = lgrp_shm_policy_set(policy, amp,
7762 				    svd->anon_index, vp, svd->offset, len);
7763 			else {
7764 				/*
7765 				 * For private memory, need writers lock on
7766 				 * address space because the segment may be
7767 				 * split or concatenated when changing policy
7768 				 */
7769 				if (AS_READ_HELD(seg->s_as,
7770 				    &seg->s_as->a_lock)) {
7771 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7772 					return (IE_RETRY);
7773 				}
7774 
7775 				already_set = lgrp_privm_policy_set(policy,
7776 				    &svd->policy_info, len);
7777 			}
7778 
7779 			/*
7780 			 * If policy set already and it shouldn't be reapplied,
7781 			 * don't do anything.
7782 			 */
7783 			if (already_set &&
7784 			    !LGRP_MEM_POLICY_REAPPLICABLE(policy))
7785 				break;
7786 
7787 			/*
7788 			 * Mark any existing pages in given range for
7789 			 * migration
7790 			 */
7791 			page_mark_migrate(seg, addr, len, amp, svd->anon_index,
7792 			    vp, svd->offset, 1);
7793 
7794 			/*
7795 			 * If same policy set already or this is a shared
7796 			 * memory segment, don't need to try to concatenate
7797 			 * segment with adjacent ones.
7798 			 */
7799 			if (already_set || svd->type == MAP_SHARED)
7800 				break;
7801 
7802 			/*
7803 			 * Try to concatenate this segment with previous
7804 			 * one and next one, since we changed policy for
7805 			 * this one and it may be compatible with adjacent
7806 			 * ones now.
7807 			 */
7808 			prev = AS_SEGPREV(seg->s_as, seg);
7809 			next = AS_SEGNEXT(seg->s_as, seg);
7810 
7811 			if (next && next->s_ops == &segvn_ops &&
7812 			    addr + len == next->s_base)
7813 				(void) segvn_concat(seg, next, 1);
7814 
7815 			if (prev && prev->s_ops == &segvn_ops &&
7816 			    addr == prev->s_base + prev->s_size) {
7817 				/*
7818 				 * Drop lock for private data of current
7819 				 * segment before concatenating (deleting) it
7820 				 * and return IE_REATTACH to tell as_ctl() that
7821 				 * current segment has changed
7822 				 */
7823 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7824 				if (!segvn_concat(prev, seg, 1))
7825 					err = IE_REATTACH;
7826 
7827 				return (err);
7828 			}
7829 			break;
7830 
7831 		case MADV_SEQUENTIAL:
7832 			/*
7833 			 * unloading mapping guarantees
7834 			 * detection in segvn_fault
7835 			 */
7836 			ASSERT(seg->s_szc == 0);
7837 			hat_unload(seg->s_as->a_hat, addr, len,
7838 				HAT_UNLOAD);
7839 			/* FALLTHROUGH */
7840 		case MADV_NORMAL:
7841 		case MADV_RANDOM:
7842 			svd->advice = (uchar_t)behav;
7843 			svd->pageadvice = 0;
7844 			break;
7845 		case MADV_WILLNEED:	/* handled in memcntl */
7846 		case MADV_DONTNEED:	/* handled in memcntl */
7847 		case MADV_FREE:		/* handled above */
7848 			break;
7849 		default:
7850 			err = EINVAL;
7851 		}
7852 	} else {
7853 		caddr_t			eaddr;
7854 		struct seg		*new_seg;
7855 		struct segvn_data	*new_svd;
7856 		u_offset_t		off;
7857 		caddr_t			oldeaddr;
7858 
7859 		page = seg_page(seg, addr);
7860 
7861 		segvn_vpage(seg);
7862 
7863 		switch (behav) {
7864 			struct vpage *bvpp, *evpp;
7865 
7866 		case MADV_ACCESS_LWP:
7867 		case MADV_ACCESS_MANY:
7868 		case MADV_ACCESS_DEFAULT:
7869 			/*
7870 			 * Set memory allocation policy for portion of this
7871 			 * segment
7872 			 */
7873 
7874 			/*
7875 			 * Align address and length of advice to page
7876 			 * boundaries for large pages
7877 			 */
7878 			if (seg->s_szc != 0) {
7879 				size_t	pgsz;
7880 
7881 				pgsz = page_get_pagesize(seg->s_szc);
7882 				addr = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
7883 				len = P2ROUNDUP(len, pgsz);
7884 			}
7885 
7886 			/*
7887 			 * Check to see whether policy is set already
7888 			 */
7889 			policy = lgrp_madv_to_policy(behav, len, svd->type);
7890 
7891 			anon_index = svd->anon_index + page;
7892 			off = svd->offset + (uintptr_t)(addr - seg->s_base);
7893 
7894 			if (svd->type == MAP_SHARED)
7895 				already_set = lgrp_shm_policy_set(policy, amp,
7896 				    anon_index, vp, off, len);
7897 			else
7898 				already_set =
7899 				    (policy == svd->policy_info.mem_policy);
7900 
7901 			/*
7902 			 * If policy set already and it shouldn't be reapplied,
7903 			 * don't do anything.
7904 			 */
7905 			if (already_set &&
7906 			    !LGRP_MEM_POLICY_REAPPLICABLE(policy))
7907 				break;
7908 
7909 			/*
7910 			 * For private memory, need writers lock on
7911 			 * address space because the segment may be
7912 			 * split or concatenated when changing policy
7913 			 */
7914 			if (svd->type == MAP_PRIVATE &&
7915 			    AS_READ_HELD(seg->s_as, &seg->s_as->a_lock)) {
7916 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7917 				return (IE_RETRY);
7918 			}
7919 
7920 			/*
7921 			 * Mark any existing pages in given range for
7922 			 * migration
7923 			 */
7924 			page_mark_migrate(seg, addr, len, amp, svd->anon_index,
7925 			    vp, svd->offset, 1);
7926 
7927 			/*
7928 			 * Don't need to try to split or concatenate
7929 			 * segments, since policy is same or this is a shared
7930 			 * memory segment
7931 			 */
7932 			if (already_set || svd->type == MAP_SHARED)
7933 				break;
7934 
7935 			/*
7936 			 * Split off new segment if advice only applies to a
7937 			 * portion of existing segment starting in middle
7938 			 */
7939 			new_seg = NULL;
7940 			eaddr = addr + len;
7941 			oldeaddr = seg->s_base + seg->s_size;
7942 			if (addr > seg->s_base) {
7943 				/*
7944 				 * Must flush I/O page cache
7945 				 * before splitting segment
7946 				 */
7947 				if (svd->softlockcnt > 0)
7948 					segvn_purge(seg);
7949 
7950 				/*
7951 				 * Split segment and return IE_REATTACH to tell
7952 				 * as_ctl() that current segment changed
7953 				 */
7954 				new_seg = segvn_split_seg(seg, addr);
7955 				new_svd = (struct segvn_data *)new_seg->s_data;
7956 				err = IE_REATTACH;
7957 
7958 				/*
7959 				 * If new segment ends where old one
7960 				 * did, try to concatenate the new
7961 				 * segment with next one.
7962 				 */
7963 				if (eaddr == oldeaddr) {
7964 					/*
7965 					 * Set policy for new segment
7966 					 */
7967 					(void) lgrp_privm_policy_set(policy,
7968 					    &new_svd->policy_info,
7969 					    new_seg->s_size);
7970 
7971 					next = AS_SEGNEXT(new_seg->s_as,
7972 					    new_seg);
7973 
7974 					if (next &&
7975 					    next->s_ops == &segvn_ops &&
7976 					    eaddr == next->s_base)
7977 						(void) segvn_concat(new_seg,
7978 						    next, 1);
7979 				}
7980 			}
7981 
7982 			/*
7983 			 * Split off end of existing segment if advice only
7984 			 * applies to a portion of segment ending before
7985 			 * end of the existing segment
7986 			 */
7987 			if (eaddr < oldeaddr) {
7988 				/*
7989 				 * Must flush I/O page cache
7990 				 * before splitting segment
7991 				 */
7992 				if (svd->softlockcnt > 0)
7993 					segvn_purge(seg);
7994 
7995 				/*
7996 				 * If beginning of old segment was already
7997 				 * split off, use new segment to split end off
7998 				 * from.
7999 				 */
8000 				if (new_seg != NULL && new_seg != seg) {
8001 					/*
8002 					 * Split segment
8003 					 */
8004 					(void) segvn_split_seg(new_seg, eaddr);
8005 
8006 					/*
8007 					 * Set policy for new segment
8008 					 */
8009 					(void) lgrp_privm_policy_set(policy,
8010 					    &new_svd->policy_info,
8011 					    new_seg->s_size);
8012 				} else {
8013 					/*
8014 					 * Split segment and return IE_REATTACH
8015 					 * to tell as_ctl() that current
8016 					 * segment changed
8017 					 */
8018 					(void) segvn_split_seg(seg, eaddr);
8019 					err = IE_REATTACH;
8020 
8021 					(void) lgrp_privm_policy_set(policy,
8022 					    &svd->policy_info, seg->s_size);
8023 
8024 					/*
8025 					 * If new segment starts where old one
8026 					 * did, try to concatenate it with
8027 					 * previous segment.
8028 					 */
8029 					if (addr == seg->s_base) {
8030 						prev = AS_SEGPREV(seg->s_as,
8031 						    seg);
8032 
8033 						/*
8034 						 * Drop lock for private data
8035 						 * of current segment before
8036 						 * concatenating (deleting) it
8037 						 */
8038 						if (prev &&
8039 						    prev->s_ops ==
8040 						    &segvn_ops &&
8041 						    addr == prev->s_base +
8042 						    prev->s_size) {
8043 							SEGVN_LOCK_EXIT(
8044 							    seg->s_as,
8045 							    &svd->lock);
8046 							(void) segvn_concat(
8047 							    prev, seg, 1);
8048 							return (err);
8049 						}
8050 					}
8051 				}
8052 			}
8053 			break;
8054 		case MADV_SEQUENTIAL:
8055 			ASSERT(seg->s_szc == 0);
8056 			hat_unload(seg->s_as->a_hat, addr, len, HAT_UNLOAD);
8057 			/* FALLTHROUGH */
8058 		case MADV_NORMAL:
8059 		case MADV_RANDOM:
8060 			bvpp = &svd->vpage[page];
8061 			evpp = &svd->vpage[page + (len >> PAGESHIFT)];
8062 			for (; bvpp < evpp; bvpp++)
8063 				VPP_SETADVICE(bvpp, behav);
8064 			svd->advice = MADV_NORMAL;
8065 			break;
8066 		case MADV_WILLNEED:	/* handled in memcntl */
8067 		case MADV_DONTNEED:	/* handled in memcntl */
8068 		case MADV_FREE:		/* handled above */
8069 			break;
8070 		default:
8071 			err = EINVAL;
8072 		}
8073 	}
8074 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8075 	return (err);
8076 }
8077 
8078 /*
8079  * Create a vpage structure for this seg.
8080  */
8081 static void
8082 segvn_vpage(struct seg *seg)
8083 {
8084 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8085 	struct vpage *vp, *evp;
8086 
8087 	ASSERT(SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
8088 
8089 	/*
8090 	 * If no vpage structure exists, allocate one.  Copy the protections
8091 	 * and the advice from the segment itself to the individual pages.
8092 	 */
8093 	if (svd->vpage == NULL) {
8094 		svd->pageprot = 1;
8095 		svd->pageadvice = 1;
8096 		svd->vpage = kmem_zalloc(seg_pages(seg) * sizeof (struct vpage),
8097 		    KM_SLEEP);
8098 		evp = &svd->vpage[seg_page(seg, seg->s_base + seg->s_size)];
8099 		for (vp = svd->vpage; vp < evp; vp++) {
8100 			VPP_SETPROT(vp, svd->prot);
8101 			VPP_SETADVICE(vp, svd->advice);
8102 		}
8103 	}
8104 }
8105 
8106 /*
8107  * Dump the pages belonging to this segvn segment.
8108  */
8109 static void
8110 segvn_dump(struct seg *seg)
8111 {
8112 	struct segvn_data *svd;
8113 	page_t *pp;
8114 	struct anon_map *amp;
8115 	ulong_t	anon_index;
8116 	struct vnode *vp;
8117 	u_offset_t off, offset;
8118 	pfn_t pfn;
8119 	pgcnt_t page, npages;
8120 	caddr_t addr;
8121 
8122 	npages = seg_pages(seg);
8123 	svd = (struct segvn_data *)seg->s_data;
8124 	vp = svd->vp;
8125 	off = offset = svd->offset;
8126 	addr = seg->s_base;
8127 
8128 	if ((amp = svd->amp) != NULL) {
8129 		anon_index = svd->anon_index;
8130 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
8131 	}
8132 
8133 	for (page = 0; page < npages; page++, offset += PAGESIZE) {
8134 		struct anon *ap;
8135 		int we_own_it = 0;
8136 
8137 		if (amp && (ap = anon_get_ptr(svd->amp->ahp, anon_index++))) {
8138 			swap_xlate_nopanic(ap, &vp, &off);
8139 		} else {
8140 			vp = svd->vp;
8141 			off = offset;
8142 		}
8143 
8144 		/*
8145 		 * If pp == NULL, the page either does not exist
8146 		 * or is exclusively locked.  So determine if it
8147 		 * exists before searching for it.
8148 		 */
8149 
8150 		if ((pp = page_lookup_nowait(vp, off, SE_SHARED)))
8151 			we_own_it = 1;
8152 		else
8153 			pp = page_exists(vp, off);
8154 
8155 		if (pp) {
8156 			pfn = page_pptonum(pp);
8157 			dump_addpage(seg->s_as, addr, pfn);
8158 			if (we_own_it)
8159 				page_unlock(pp);
8160 		}
8161 		addr += PAGESIZE;
8162 		dump_timeleft = dump_timeout;
8163 	}
8164 
8165 	if (amp != NULL)
8166 		ANON_LOCK_EXIT(&amp->a_rwlock);
8167 }
8168 
8169 /*
8170  * lock/unlock anon pages over a given range. Return shadow list
8171  */
8172 static int
8173 segvn_pagelock(struct seg *seg, caddr_t addr, size_t len, struct page ***ppp,
8174     enum lock_type type, enum seg_rw rw)
8175 {
8176 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8177 	size_t np, adjustpages = 0, npages = (len >> PAGESHIFT);
8178 	ulong_t anon_index;
8179 	uint_t protchk;
8180 	uint_t error;
8181 	struct anon_map *amp;
8182 	struct page **pplist, **pl, *pp;
8183 	caddr_t a;
8184 	size_t page;
8185 	caddr_t lpgaddr, lpgeaddr;
8186 	pgcnt_t szc0_npages = 0;
8187 
8188 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_START,
8189 		"segvn_pagelock: start seg %p addr %p", seg, addr);
8190 
8191 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
8192 	if (seg->s_szc != 0 && (type == L_PAGELOCK || type == L_PAGEUNLOCK)) {
8193 		/*
8194 		 * We are adjusting the pagelock region to the large page size
8195 		 * boundary because the unlocked part of a large page cannot
8196 		 * be freed anyway unless all constituent pages of a large
8197 		 * page are locked. Therefore this adjustment allows us to
8198 		 * decrement availrmem by the right value (note we don't want
8199 		 * to just decrement availrem by the large page size without
8200 		 * adjusting addr and len because then we may end up
8201 		 * decrementing availrmem by large page size for every
8202 		 * constituent page locked by a new as_pagelock call).
8203 		 * as_pageunlock caller must always match as_pagelock call's
8204 		 * addr and len.
8205 		 *
8206 		 * Note segment's page size cannot change while we are holding
8207 		 * as lock.  And then it cannot change while softlockcnt is
8208 		 * not 0. This will allow us to correctly recalculate large
8209 		 * page size region for the matching pageunlock/reclaim call.
8210 		 *
8211 		 * for pageunlock *ppp points to the pointer of page_t that
8212 		 * corresponds to the real unadjusted start address. Similar
8213 		 * for pagelock *ppp must point to the pointer of page_t that
8214 		 * corresponds to the real unadjusted start address.
8215 		 */
8216 		size_t pgsz = page_get_pagesize(seg->s_szc);
8217 		CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
8218 		adjustpages = ((uintptr_t)(addr - lpgaddr)) >> PAGESHIFT;
8219 	}
8220 
8221 	if (type == L_PAGEUNLOCK) {
8222 
8223 		/*
8224 		 * update hat ref bits for /proc. We need to make sure
8225 		 * that threads tracing the ref and mod bits of the
8226 		 * address space get the right data.
8227 		 * Note: page ref and mod bits are updated at reclaim time
8228 		 */
8229 		if (seg->s_as->a_vbits) {
8230 			for (a = addr; a < addr + len; a += PAGESIZE) {
8231 				if (rw == S_WRITE) {
8232 					hat_setstat(seg->s_as, a,
8233 					    PAGESIZE, P_REF | P_MOD);
8234 				} else {
8235 					hat_setstat(seg->s_as, a,
8236 					    PAGESIZE, P_REF);
8237 				}
8238 			}
8239 		}
8240 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
8241 		if (seg->s_szc != 0) {
8242 			VM_STAT_ADD(segvnvmstats.pagelock[0]);
8243 			seg_pinactive(seg, lpgaddr, lpgeaddr - lpgaddr,
8244 			    *ppp - adjustpages, rw, segvn_reclaim);
8245 		} else {
8246 			seg_pinactive(seg, addr, len, *ppp, rw, segvn_reclaim);
8247 		}
8248 
8249 		/*
8250 		 * If someone is blocked while unmapping, we purge
8251 		 * segment page cache and thus reclaim pplist synchronously
8252 		 * without waiting for seg_pasync_thread. This speeds up
8253 		 * unmapping in cases where munmap(2) is called, while
8254 		 * raw async i/o is still in progress or where a thread
8255 		 * exits on data fault in a multithreaded application.
8256 		 */
8257 		if (AS_ISUNMAPWAIT(seg->s_as) && (svd->softlockcnt > 0)) {
8258 			/*
8259 			 * Even if we grab segvn WRITER's lock or segp_slock
8260 			 * here, there might be another thread which could've
8261 			 * successfully performed lookup/insert just before
8262 			 * we acquired the lock here.  So, grabbing either
8263 			 * lock here is of not much use.  Until we devise
8264 			 * a strategy at upper layers to solve the
8265 			 * synchronization issues completely, we expect
8266 			 * applications to handle this appropriately.
8267 			 */
8268 			segvn_purge(seg);
8269 		}
8270 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8271 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_UNLOCK_END,
8272 			"segvn_pagelock: unlock seg %p addr %p", seg, addr);
8273 		return (0);
8274 	} else if (type == L_PAGERECLAIM) {
8275 		VM_STAT_COND_ADD(seg->s_szc != 0, segvnvmstats.pagelock[1]);
8276 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
8277 		(void) segvn_reclaim(seg, addr, len, *ppp, rw);
8278 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8279 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_UNLOCK_END,
8280 			"segvn_pagelock: reclaim seg %p addr %p", seg, addr);
8281 		return (0);
8282 	}
8283 
8284 	if (seg->s_szc != 0) {
8285 		VM_STAT_ADD(segvnvmstats.pagelock[2]);
8286 		addr = lpgaddr;
8287 		len = lpgeaddr - lpgaddr;
8288 		npages = (len >> PAGESHIFT);
8289 	}
8290 
8291 	/*
8292 	 * for now we only support pagelock to anon memory. We've to check
8293 	 * protections for vnode objects and call into the vnode driver.
8294 	 * That's too much for a fast path. Let the fault entry point handle it.
8295 	 */
8296 	if (svd->vp != NULL) {
8297 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_MISS_END,
8298 		    "segvn_pagelock: mapped vnode seg %p addr %p", seg, addr);
8299 		*ppp = NULL;
8300 		return (ENOTSUP);
8301 	}
8302 
8303 	/*
8304 	 * if anonmap is not yet created, let the fault entry point populate it
8305 	 * with anon ptrs.
8306 	 */
8307 	if ((amp = svd->amp) == NULL) {
8308 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_MISS_END,
8309 		    "segvn_pagelock: anonmap null seg %p addr %p", seg, addr);
8310 		*ppp = NULL;
8311 		return (EFAULT);
8312 	}
8313 
8314 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
8315 
8316 	/*
8317 	 * we acquire segp_slock to prevent duplicate entries
8318 	 * in seg_pcache
8319 	 */
8320 	mutex_enter(&svd->segp_slock);
8321 
8322 	/*
8323 	 * try to find pages in segment page cache
8324 	 */
8325 	pplist = seg_plookup(seg, addr, len, rw);
8326 	if (pplist != NULL) {
8327 		mutex_exit(&svd->segp_slock);
8328 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8329 		*ppp = pplist + adjustpages;
8330 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_HIT_END,
8331 			"segvn_pagelock: cache hit seg %p addr %p", seg, addr);
8332 		return (0);
8333 	}
8334 
8335 	if (rw == S_READ) {
8336 		protchk = PROT_READ;
8337 	} else {
8338 		protchk = PROT_WRITE;
8339 	}
8340 
8341 	if (svd->pageprot == 0) {
8342 		if ((svd->prot & protchk) == 0) {
8343 			mutex_exit(&svd->segp_slock);
8344 			error = EFAULT;
8345 			goto out;
8346 		}
8347 	} else {
8348 		/*
8349 		 * check page protections
8350 		 */
8351 		for (a = addr; a < addr + len; a += PAGESIZE) {
8352 			struct vpage *vp;
8353 
8354 			vp = &svd->vpage[seg_page(seg, a)];
8355 			if ((VPP_PROT(vp) & protchk) == 0) {
8356 				mutex_exit(&svd->segp_slock);
8357 				error = EFAULT;
8358 				goto out;
8359 			}
8360 		}
8361 	}
8362 
8363 	/*
8364 	 * Avoid per page overhead of segvn_pp_lock_anonpages() for small
8365 	 * pages. For large pages segvn_pp_lock_anonpages() only does real
8366 	 * work once per large page.  The tradeoff is that we may decrement
8367 	 * availrmem more than once for the same page but this is ok
8368 	 * for small pages.
8369 	 */
8370 	if (seg->s_szc == 0) {
8371 		mutex_enter(&freemem_lock);
8372 		if (availrmem < tune.t_minarmem + npages) {
8373 			mutex_exit(&freemem_lock);
8374 			mutex_exit(&svd->segp_slock);
8375 			error = ENOMEM;
8376 			goto out;
8377 		}
8378 		availrmem -= npages;
8379 		mutex_exit(&freemem_lock);
8380 	}
8381 
8382 	pplist = kmem_alloc(sizeof (page_t *) * npages, KM_SLEEP);
8383 	pl = pplist;
8384 	*ppp = pplist + adjustpages;
8385 
8386 	page = seg_page(seg, addr);
8387 	anon_index = svd->anon_index + page;
8388 
8389 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
8390 	for (a = addr; a < addr + len; a += PAGESIZE, anon_index++) {
8391 		struct anon *ap;
8392 		struct vnode *vp;
8393 		u_offset_t off;
8394 		anon_sync_obj_t cookie;
8395 
8396 		anon_array_enter(amp, anon_index, &cookie);
8397 		ap = anon_get_ptr(amp->ahp, anon_index);
8398 		if (ap == NULL) {
8399 			anon_array_exit(&cookie);
8400 			break;
8401 		} else {
8402 			/*
8403 			 * We must never use seg_pcache for COW pages
8404 			 * because we might end up with original page still
8405 			 * lying in seg_pcache even after private page is
8406 			 * created. This leads to data corruption as
8407 			 * aio_write refers to the page still in cache
8408 			 * while all other accesses refer to the private
8409 			 * page.
8410 			 */
8411 			if (ap->an_refcnt != 1) {
8412 				anon_array_exit(&cookie);
8413 				break;
8414 			}
8415 		}
8416 		swap_xlate(ap, &vp, &off);
8417 		anon_array_exit(&cookie);
8418 
8419 		pp = page_lookup_nowait(vp, off, SE_SHARED);
8420 		if (pp == NULL) {
8421 			break;
8422 		}
8423 		if (seg->s_szc != 0 || pp->p_szc != 0) {
8424 			if (!segvn_pp_lock_anonpages(pp, a == addr)) {
8425 				page_unlock(pp);
8426 				break;
8427 			}
8428 		} else {
8429 			szc0_npages++;
8430 		}
8431 		*pplist++ = pp;
8432 	}
8433 	ANON_LOCK_EXIT(&amp->a_rwlock);
8434 
8435 	ASSERT(npages >= szc0_npages);
8436 
8437 	if (a >= addr + len) {
8438 		mutex_enter(&freemem_lock);
8439 		if (seg->s_szc == 0 && npages != szc0_npages) {
8440 			ASSERT(svd->type == MAP_SHARED && amp->a_szc > 0);
8441 			availrmem += (npages - szc0_npages);
8442 		}
8443 		svd->softlockcnt += npages;
8444 		segvn_pages_locked += npages;
8445 		mutex_exit(&freemem_lock);
8446 		(void) seg_pinsert(seg, addr, len, pl, rw, SEGP_ASYNC_FLUSH,
8447 			segvn_reclaim);
8448 		mutex_exit(&svd->segp_slock);
8449 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8450 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_FILL_END,
8451 		    "segvn_pagelock: cache fill seg %p addr %p", seg, addr);
8452 		return (0);
8453 	}
8454 
8455 	mutex_exit(&svd->segp_slock);
8456 	if (seg->s_szc == 0) {
8457 		mutex_enter(&freemem_lock);
8458 		availrmem += npages;
8459 		mutex_exit(&freemem_lock);
8460 	}
8461 	error = EFAULT;
8462 	pplist = pl;
8463 	np = ((uintptr_t)(a - addr)) >> PAGESHIFT;
8464 	while (np > (uint_t)0) {
8465 		ASSERT(PAGE_LOCKED(*pplist));
8466 		if (seg->s_szc != 0 || (*pplist)->p_szc != 0) {
8467 			segvn_pp_unlock_anonpages(*pplist, pplist == pl);
8468 		}
8469 		page_unlock(*pplist);
8470 		np--;
8471 		pplist++;
8472 	}
8473 	kmem_free(pl, sizeof (page_t *) * npages);
8474 out:
8475 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8476 	*ppp = NULL;
8477 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_MISS_END,
8478 		"segvn_pagelock: cache miss seg %p addr %p", seg, addr);
8479 	return (error);
8480 }
8481 
8482 /*
8483  * purge any cached pages in the I/O page cache
8484  */
8485 static void
8486 segvn_purge(struct seg *seg)
8487 {
8488 	seg_ppurge(seg);
8489 }
8490 
8491 static int
8492 segvn_reclaim(struct seg *seg, caddr_t addr, size_t len, struct page **pplist,
8493 	enum seg_rw rw)
8494 {
8495 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8496 	pgcnt_t np, npages;
8497 	struct page **pl;
8498 	pgcnt_t szc0_npages = 0;
8499 
8500 #ifdef lint
8501 	addr = addr;
8502 #endif
8503 
8504 	npages = np = (len >> PAGESHIFT);
8505 	ASSERT(npages);
8506 	pl = pplist;
8507 	if (seg->s_szc != 0) {
8508 		size_t pgsz = page_get_pagesize(seg->s_szc);
8509 		if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) {
8510 			panic("segvn_reclaim: unaligned addr or len");
8511 			/*NOTREACHED*/
8512 		}
8513 	}
8514 
8515 	ASSERT(svd->vp == NULL && svd->amp != NULL);
8516 
8517 	while (np > (uint_t)0) {
8518 		if (rw == S_WRITE) {
8519 			hat_setrefmod(*pplist);
8520 		} else {
8521 			hat_setref(*pplist);
8522 		}
8523 		if (seg->s_szc != 0 || (*pplist)->p_szc != 0) {
8524 			segvn_pp_unlock_anonpages(*pplist, pplist == pl);
8525 		} else {
8526 			szc0_npages++;
8527 		}
8528 		page_unlock(*pplist);
8529 		np--;
8530 		pplist++;
8531 	}
8532 	kmem_free(pl, sizeof (page_t *) * npages);
8533 
8534 	mutex_enter(&freemem_lock);
8535 	segvn_pages_locked -= npages;
8536 	svd->softlockcnt -= npages;
8537 	if (szc0_npages != 0) {
8538 		availrmem += szc0_npages;
8539 	}
8540 	mutex_exit(&freemem_lock);
8541 	if (svd->softlockcnt <= 0) {
8542 		if (AS_ISUNMAPWAIT(seg->s_as)) {
8543 			mutex_enter(&seg->s_as->a_contents);
8544 			if (AS_ISUNMAPWAIT(seg->s_as)) {
8545 				AS_CLRUNMAPWAIT(seg->s_as);
8546 				cv_broadcast(&seg->s_as->a_cv);
8547 			}
8548 			mutex_exit(&seg->s_as->a_contents);
8549 		}
8550 	}
8551 	return (0);
8552 }
8553 /*
8554  * get a memory ID for an addr in a given segment
8555  *
8556  * XXX only creates PAGESIZE pages if anon slots are not initialized.
8557  * At fault time they will be relocated into larger pages.
8558  */
8559 static int
8560 segvn_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
8561 {
8562 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8563 	struct anon 	*ap = NULL;
8564 	ulong_t		anon_index;
8565 	struct anon_map	*amp;
8566 	anon_sync_obj_t cookie;
8567 
8568 	if (svd->type == MAP_PRIVATE) {
8569 		memidp->val[0] = (uintptr_t)seg->s_as;
8570 		memidp->val[1] = (uintptr_t)addr;
8571 		return (0);
8572 	}
8573 
8574 	if (svd->type == MAP_SHARED) {
8575 		if (svd->vp) {
8576 			memidp->val[0] = (uintptr_t)svd->vp;
8577 			memidp->val[1] = (u_longlong_t)svd->offset +
8578 			    (uintptr_t)(addr - seg->s_base);
8579 			return (0);
8580 		} else {
8581 
8582 			SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
8583 			if ((amp = svd->amp) != NULL) {
8584 				anon_index = svd->anon_index +
8585 				    seg_page(seg, addr);
8586 			}
8587 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8588 
8589 			ASSERT(amp != NULL);
8590 
8591 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
8592 			anon_array_enter(amp, anon_index, &cookie);
8593 			ap = anon_get_ptr(amp->ahp, anon_index);
8594 			if (ap == NULL) {
8595 				page_t		*pp;
8596 
8597 				pp = anon_zero(seg, addr, &ap, svd->cred);
8598 				if (pp == NULL) {
8599 					anon_array_exit(&cookie);
8600 					ANON_LOCK_EXIT(&amp->a_rwlock);
8601 					return (ENOMEM);
8602 				}
8603 				ASSERT(anon_get_ptr(amp->ahp, anon_index)
8604 								== NULL);
8605 				(void) anon_set_ptr(amp->ahp, anon_index,
8606 				    ap, ANON_SLEEP);
8607 				page_unlock(pp);
8608 			}
8609 
8610 			anon_array_exit(&cookie);
8611 			ANON_LOCK_EXIT(&amp->a_rwlock);
8612 
8613 			memidp->val[0] = (uintptr_t)ap;
8614 			memidp->val[1] = (uintptr_t)addr & PAGEOFFSET;
8615 			return (0);
8616 		}
8617 	}
8618 	return (EINVAL);
8619 }
8620 
8621 static int
8622 sameprot(struct seg *seg, caddr_t a, size_t len)
8623 {
8624 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8625 	struct vpage *vpage;
8626 	spgcnt_t pages = btop(len);
8627 	uint_t prot;
8628 
8629 	if (svd->pageprot == 0)
8630 		return (1);
8631 
8632 	ASSERT(svd->vpage != NULL);
8633 
8634 	vpage = &svd->vpage[seg_page(seg, a)];
8635 	prot = VPP_PROT(vpage);
8636 	vpage++;
8637 	pages--;
8638 	while (pages-- > 0) {
8639 		if (prot != VPP_PROT(vpage))
8640 			return (0);
8641 		vpage++;
8642 	}
8643 	return (1);
8644 }
8645 
8646 /*
8647  * Get memory allocation policy info for specified address in given segment
8648  */
8649 static lgrp_mem_policy_info_t *
8650 segvn_getpolicy(struct seg *seg, caddr_t addr)
8651 {
8652 	struct anon_map		*amp;
8653 	ulong_t			anon_index;
8654 	lgrp_mem_policy_info_t	*policy_info;
8655 	struct segvn_data	*svn_data;
8656 	u_offset_t		vn_off;
8657 	vnode_t			*vp;
8658 
8659 	ASSERT(seg != NULL);
8660 
8661 	svn_data = (struct segvn_data *)seg->s_data;
8662 	if (svn_data == NULL)
8663 		return (NULL);
8664 
8665 	/*
8666 	 * Get policy info for private or shared memory
8667 	 */
8668 	if (svn_data->type != MAP_SHARED) {
8669 		if (svn_data->tr_state != SEGVN_TR_ON) {
8670 			policy_info = &svn_data->policy_info;
8671 		} else {
8672 			policy_info = &svn_data->tr_policy_info;
8673 			ASSERT(policy_info->mem_policy ==
8674 			    LGRP_MEM_POLICY_NEXT_SEG);
8675 		}
8676 	} else {
8677 		amp = svn_data->amp;
8678 		anon_index = svn_data->anon_index + seg_page(seg, addr);
8679 		vp = svn_data->vp;
8680 		vn_off = svn_data->offset + (uintptr_t)(addr - seg->s_base);
8681 		policy_info = lgrp_shm_policy_get(amp, anon_index, vp, vn_off);
8682 	}
8683 
8684 	return (policy_info);
8685 }
8686 
8687 /*ARGSUSED*/
8688 static int
8689 segvn_capable(struct seg *seg, segcapability_t capability)
8690 {
8691 	return (0);
8692 }
8693 
8694 /*
8695  * Bind text vnode segment to an amp. If we bind successfully mappings will be
8696  * established to per vnode mapping per lgroup amp pages instead of to vnode
8697  * pages. There's one amp per vnode text mapping per lgroup. Many processes
8698  * may share the same text replication amp. If a suitable amp doesn't already
8699  * exist in svntr hash table create a new one.  We may fail to bind to amp if
8700  * segment is not eligible for text replication.  Code below first checks for
8701  * these conditions. If binding is successful segment tr_state is set to on
8702  * and svd->amp points to the amp to use. Otherwise tr_state is set to off and
8703  * svd->amp remains as NULL.
8704  */
8705 static void
8706 segvn_textrepl(struct seg *seg)
8707 {
8708 	struct segvn_data	*svd = (struct segvn_data *)seg->s_data;
8709 	vnode_t			*vp = svd->vp;
8710 	u_offset_t		off = svd->offset;
8711 	size_t			size = seg->s_size;
8712 	u_offset_t		eoff = off + size;
8713 	uint_t			szc = seg->s_szc;
8714 	ulong_t			hash = SVNTR_HASH_FUNC(vp);
8715 	svntr_t			*svntrp;
8716 	struct vattr		va;
8717 	proc_t			*p = seg->s_as->a_proc;
8718 	lgrp_id_t		lgrp_id;
8719 	lgrp_id_t		olid;
8720 	int			first;
8721 	struct anon_map		*amp;
8722 
8723 	ASSERT(AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
8724 	ASSERT(SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
8725 	ASSERT(p != NULL);
8726 	ASSERT(svd->tr_state == SEGVN_TR_INIT);
8727 	ASSERT(svd->flags & MAP_TEXT);
8728 	ASSERT(svd->type == MAP_PRIVATE);
8729 	ASSERT(vp != NULL && svd->amp == NULL);
8730 	ASSERT(!svd->pageprot && !(svd->prot & PROT_WRITE));
8731 	ASSERT(!(svd->flags & MAP_NORESERVE) && svd->swresv == 0);
8732 	ASSERT(seg->s_as != &kas);
8733 	ASSERT(off < eoff);
8734 	ASSERT(svntr_hashtab != NULL);
8735 
8736 	/*
8737 	 * If numa optimizations are no longer desired bail out.
8738 	 */
8739 	if (!lgrp_optimizations()) {
8740 		svd->tr_state = SEGVN_TR_OFF;
8741 		return;
8742 	}
8743 
8744 	/*
8745 	 * Avoid creating anon maps with size bigger than the file size.
8746 	 * If VOP_GETATTR() call fails bail out.
8747 	 */
8748 	va.va_mask = AT_SIZE | AT_MTIME;
8749 	if (VOP_GETATTR(vp, &va, 0, svd->cred) != 0) {
8750 		svd->tr_state = SEGVN_TR_OFF;
8751 		SEGVN_TR_ADDSTAT(gaerr);
8752 		return;
8753 	}
8754 	if (btopr(va.va_size) < btopr(eoff)) {
8755 		svd->tr_state = SEGVN_TR_OFF;
8756 		SEGVN_TR_ADDSTAT(overmap);
8757 		return;
8758 	}
8759 
8760 	/*
8761 	 * VVMEXEC may not be set yet if exec() prefaults text segment. Set
8762 	 * this flag now before vn_is_mapped(V_WRITE) so that MAP_SHARED
8763 	 * mapping that checks if trcache for this vnode needs to be
8764 	 * invalidated can't miss us.
8765 	 */
8766 	if (!(vp->v_flag & VVMEXEC)) {
8767 		mutex_enter(&vp->v_lock);
8768 		vp->v_flag |= VVMEXEC;
8769 		mutex_exit(&vp->v_lock);
8770 	}
8771 	mutex_enter(&svntr_hashtab[hash].tr_lock);
8772 	/*
8773 	 * Bail out if potentially MAP_SHARED writable mappings exist to this
8774 	 * vnode.  We don't want to use old file contents from existing
8775 	 * replicas if this mapping was established after the original file
8776 	 * was changed.
8777 	 */
8778 	if (vn_is_mapped(vp, V_WRITE)) {
8779 		mutex_exit(&svntr_hashtab[hash].tr_lock);
8780 		svd->tr_state = SEGVN_TR_OFF;
8781 		SEGVN_TR_ADDSTAT(wrcnt);
8782 		return;
8783 	}
8784 	svntrp = svntr_hashtab[hash].tr_head;
8785 	for (; svntrp != NULL; svntrp = svntrp->tr_next) {
8786 		ASSERT(svntrp->tr_refcnt != 0);
8787 		if (svntrp->tr_vp != vp) {
8788 			continue;
8789 		}
8790 		/*
8791 		 * Bail out if file was changed after this replication entry
8792 		 * was created since we need to use the latest file contents.
8793 		 */
8794 		if (!svntrp->tr_valid ||
8795 		    svntrp->tr_mtime.tv_sec != va.va_mtime.tv_sec ||
8796 		    svntrp->tr_mtime.tv_nsec != va.va_mtime.tv_nsec) {
8797 			mutex_exit(&svntr_hashtab[hash].tr_lock);
8798 			svd->tr_state = SEGVN_TR_OFF;
8799 			SEGVN_TR_ADDSTAT(stale);
8800 			return;
8801 		}
8802 		/*
8803 		 * if off, eoff and szc match current segment we found the
8804 		 * existing entry we can use.
8805 		 */
8806 		if (svntrp->tr_off == off && svntrp->tr_eoff == eoff &&
8807 		    svntrp->tr_szc == szc) {
8808 			break;
8809 		}
8810 		/*
8811 		 * Don't create different but overlapping in file offsets
8812 		 * entries to avoid replication of the same file pages more
8813 		 * than once per lgroup.
8814 		 */
8815 		if ((off >= svntrp->tr_off && off < svntrp->tr_eoff) ||
8816 		    (eoff > svntrp->tr_off && eoff <= svntrp->tr_eoff)) {
8817 			mutex_exit(&svntr_hashtab[hash].tr_lock);
8818 			svd->tr_state = SEGVN_TR_OFF;
8819 			SEGVN_TR_ADDSTAT(overlap);
8820 			return;
8821 		}
8822 	}
8823 	/*
8824 	 * If we didn't find existing entry create a new one.
8825 	 */
8826 	if (svntrp == NULL) {
8827 		svntrp = kmem_cache_alloc(svntr_cache, KM_NOSLEEP);
8828 		if (svntrp == NULL) {
8829 			mutex_exit(&svntr_hashtab[hash].tr_lock);
8830 			svd->tr_state = SEGVN_TR_OFF;
8831 			SEGVN_TR_ADDSTAT(nokmem);
8832 			return;
8833 		}
8834 #ifdef DEBUG
8835 		{
8836 			lgrp_id_t i;
8837 			for (i = 0; i < NLGRPS_MAX; i++) {
8838 				ASSERT(svntrp->tr_amp[i] == NULL);
8839 			}
8840 		}
8841 #endif /* DEBUG */
8842 		svntrp->tr_vp = vp;
8843 		svntrp->tr_off = off;
8844 		svntrp->tr_eoff = eoff;
8845 		svntrp->tr_szc = szc;
8846 		svntrp->tr_valid = 1;
8847 		svntrp->tr_mtime = va.va_mtime;
8848 		svntrp->tr_refcnt = 0;
8849 		svntrp->tr_next = svntr_hashtab[hash].tr_head;
8850 		svntr_hashtab[hash].tr_head = svntrp;
8851 	}
8852 	first = 1;
8853 again:
8854 	/*
8855 	 * We want to pick a replica with pages on main thread's (t_tid = 1,
8856 	 * aka T1) lgrp. Currently text replication is only optimized for
8857 	 * workloads that either have all threads of a process on the same
8858 	 * lgrp or execute their large text primarily on main thread.
8859 	 */
8860 	lgrp_id = p->p_t1_lgrpid;
8861 	if (lgrp_id == LGRP_NONE) {
8862 		/*
8863 		 * In case exec() prefaults text on non main thread use
8864 		 * current thread lgrpid.  It will become main thread anyway
8865 		 * soon.
8866 		 */
8867 		lgrp_id = lgrp_home_id(curthread);
8868 	}
8869 	/*
8870 	 * Set p_tr_lgrpid to lgrpid if it hasn't been set yet.  Otherwise
8871 	 * just set it to NLGRPS_MAX if it's different from current process T1
8872 	 * home lgrp.  p_tr_lgrpid is used to detect if process uses text
8873 	 * replication and T1 new home is different from lgrp used for text
8874 	 * replication. When this happens asyncronous segvn thread rechecks if
8875 	 * segments should change lgrps used for text replication.  If we fail
8876 	 * to set p_tr_lgrpid with cas32 then set it to NLGRPS_MAX without cas
8877 	 * if it's not already NLGRPS_MAX and not equal lgrp_id we want to
8878 	 * use.  We don't need to use cas in this case because another thread
8879 	 * that races in between our non atomic check and set may only change
8880 	 * p_tr_lgrpid to NLGRPS_MAX at this point.
8881 	 */
8882 	ASSERT(lgrp_id != LGRP_NONE && lgrp_id < NLGRPS_MAX);
8883 	olid = p->p_tr_lgrpid;
8884 	if (lgrp_id != olid && olid != NLGRPS_MAX) {
8885 		lgrp_id_t nlid = (olid == LGRP_NONE) ? lgrp_id : NLGRPS_MAX;
8886 		if (cas32((uint32_t *)&p->p_tr_lgrpid, olid, nlid) != olid) {
8887 			olid = p->p_tr_lgrpid;
8888 			ASSERT(olid != LGRP_NONE);
8889 			if (olid != lgrp_id && olid != NLGRPS_MAX) {
8890 				p->p_tr_lgrpid = NLGRPS_MAX;
8891 			}
8892 		}
8893 		ASSERT(p->p_tr_lgrpid != LGRP_NONE);
8894 		membar_producer();
8895 		/*
8896 		 * lgrp_move_thread() won't schedule async recheck after
8897 		 * p->p_t1_lgrpid update unless p->p_tr_lgrpid is not
8898 		 * LGRP_NONE. Recheck p_t1_lgrpid once now that p->p_tr_lgrpid
8899 		 * is not LGRP_NONE.
8900 		 */
8901 		if (first && p->p_t1_lgrpid != LGRP_NONE &&
8902 		    p->p_t1_lgrpid != lgrp_id) {
8903 			first = 0;
8904 			goto again;
8905 		}
8906 	}
8907 	/*
8908 	 * If no amp was created yet for lgrp_id create a new one as long as
8909 	 * we have enough memory to afford it.
8910 	 */
8911 	if ((amp = svntrp->tr_amp[lgrp_id]) == NULL) {
8912 		size_t trmem = atomic_add_long_nv(&segvn_textrepl_bytes, size);
8913 		if (trmem > segvn_textrepl_max_bytes) {
8914 			SEGVN_TR_ADDSTAT(normem);
8915 			goto fail;
8916 		}
8917 		if (anon_try_resv_zone(size, NULL) == 0) {
8918 			SEGVN_TR_ADDSTAT(noanon);
8919 			goto fail;
8920 		}
8921 		amp = anonmap_alloc(size, size, ANON_NOSLEEP);
8922 		if (amp == NULL) {
8923 			anon_unresv_zone(size, NULL);
8924 			SEGVN_TR_ADDSTAT(nokmem);
8925 			goto fail;
8926 		}
8927 		ASSERT(amp->refcnt == 1);
8928 		amp->a_szc = szc;
8929 		svntrp->tr_amp[lgrp_id] = amp;
8930 		SEGVN_TR_ADDSTAT(newamp);
8931 	}
8932 	svntrp->tr_refcnt++;
8933 	ASSERT(svd->svn_trnext == NULL);
8934 	ASSERT(svd->svn_trprev == NULL);
8935 	svd->svn_trnext = svntrp->tr_svnhead;
8936 	svd->svn_trprev = NULL;
8937 	if (svntrp->tr_svnhead != NULL) {
8938 		svntrp->tr_svnhead->svn_trprev = svd;
8939 	}
8940 	svntrp->tr_svnhead = svd;
8941 	ASSERT(amp->a_szc == szc && amp->size == size && amp->swresv == size);
8942 	ASSERT(amp->refcnt >= 1);
8943 	svd->amp = amp;
8944 	svd->anon_index = 0;
8945 	svd->tr_policy_info.mem_policy = LGRP_MEM_POLICY_NEXT_SEG;
8946 	svd->tr_policy_info.mem_lgrpid = lgrp_id;
8947 	svd->tr_state = SEGVN_TR_ON;
8948 	mutex_exit(&svntr_hashtab[hash].tr_lock);
8949 	SEGVN_TR_ADDSTAT(repl);
8950 	return;
8951 fail:
8952 	ASSERT(segvn_textrepl_bytes >= size);
8953 	atomic_add_long(&segvn_textrepl_bytes, -size);
8954 	ASSERT(svntrp != NULL);
8955 	ASSERT(svntrp->tr_amp[lgrp_id] == NULL);
8956 	if (svntrp->tr_refcnt == 0) {
8957 		ASSERT(svntrp == svntr_hashtab[hash].tr_head);
8958 		svntr_hashtab[hash].tr_head = svntrp->tr_next;
8959 		mutex_exit(&svntr_hashtab[hash].tr_lock);
8960 		kmem_cache_free(svntr_cache, svntrp);
8961 	} else {
8962 		mutex_exit(&svntr_hashtab[hash].tr_lock);
8963 	}
8964 	svd->tr_state = SEGVN_TR_OFF;
8965 }
8966 
8967 /*
8968  * Convert seg back to regular vnode mapping seg by unbinding it from its text
8969  * replication amp.  This routine is most typically called when segment is
8970  * unmapped but can also be called when segment no longer qualifies for text
8971  * replication (e.g. due to protection changes). If unload_unmap is set use
8972  * HAT_UNLOAD_UNMAP flag in hat_unload_callback().  If we are the last user of
8973  * svntr free all its anon maps and remove it from the hash table.
8974  */
8975 static void
8976 segvn_textunrepl(struct seg *seg, int unload_unmap)
8977 {
8978 	struct segvn_data	*svd = (struct segvn_data *)seg->s_data;
8979 	vnode_t			*vp = svd->vp;
8980 	u_offset_t		off = svd->offset;
8981 	size_t			size = seg->s_size;
8982 	u_offset_t		eoff = off + size;
8983 	uint_t			szc = seg->s_szc;
8984 	ulong_t			hash = SVNTR_HASH_FUNC(vp);
8985 	svntr_t			*svntrp;
8986 	svntr_t			**prv_svntrp;
8987 	lgrp_id_t		lgrp_id = svd->tr_policy_info.mem_lgrpid;
8988 	lgrp_id_t		i;
8989 
8990 	ASSERT(AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
8991 	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock) ||
8992 	    SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
8993 	ASSERT(svd->tr_state == SEGVN_TR_ON);
8994 	ASSERT(svd->amp != NULL);
8995 	ASSERT(svd->amp->refcnt >= 1);
8996 	ASSERT(svd->anon_index == 0);
8997 	ASSERT(lgrp_id != LGRP_NONE && lgrp_id < NLGRPS_MAX);
8998 	ASSERT(svntr_hashtab != NULL);
8999 
9000 	mutex_enter(&svntr_hashtab[hash].tr_lock);
9001 	prv_svntrp = &svntr_hashtab[hash].tr_head;
9002 	for (; (svntrp = *prv_svntrp) != NULL; prv_svntrp = &svntrp->tr_next) {
9003 		ASSERT(svntrp->tr_refcnt != 0);
9004 		if (svntrp->tr_vp == vp && svntrp->tr_off == off &&
9005 		    svntrp->tr_eoff == eoff && svntrp->tr_szc == szc) {
9006 			break;
9007 		}
9008 	}
9009 	if (svntrp == NULL) {
9010 		panic("segvn_textunrepl: svntr record not found");
9011 	}
9012 	if (svntrp->tr_amp[lgrp_id] != svd->amp) {
9013 		panic("segvn_textunrepl: amp mismatch");
9014 	}
9015 	svd->tr_state = SEGVN_TR_OFF;
9016 	svd->amp = NULL;
9017 	if (svd->svn_trprev == NULL) {
9018 		ASSERT(svntrp->tr_svnhead == svd);
9019 		svntrp->tr_svnhead = svd->svn_trnext;
9020 		if (svntrp->tr_svnhead != NULL) {
9021 			svntrp->tr_svnhead->svn_trprev = NULL;
9022 		}
9023 		svd->svn_trnext = NULL;
9024 	} else {
9025 		svd->svn_trprev->svn_trnext = svd->svn_trnext;
9026 		if (svd->svn_trnext != NULL) {
9027 			svd->svn_trnext->svn_trprev = svd->svn_trprev;
9028 			svd->svn_trnext = NULL;
9029 		}
9030 		svd->svn_trprev = NULL;
9031 	}
9032 	if (--svntrp->tr_refcnt) {
9033 		mutex_exit(&svntr_hashtab[hash].tr_lock);
9034 		goto done;
9035 	}
9036 	*prv_svntrp = svntrp->tr_next;
9037 	mutex_exit(&svntr_hashtab[hash].tr_lock);
9038 	for (i = 0; i < NLGRPS_MAX; i++) {
9039 		struct anon_map *amp = svntrp->tr_amp[i];
9040 		if (amp == NULL) {
9041 			continue;
9042 		}
9043 		ASSERT(amp->refcnt == 1);
9044 		ASSERT(amp->swresv == size);
9045 		ASSERT(amp->size == size);
9046 		ASSERT(amp->a_szc == szc);
9047 		if (amp->a_szc != 0) {
9048 			anon_free_pages(amp->ahp, 0, size, szc);
9049 		} else {
9050 			anon_free(amp->ahp, 0, size);
9051 		}
9052 		svntrp->tr_amp[i] = NULL;
9053 		ASSERT(segvn_textrepl_bytes >= size);
9054 		atomic_add_long(&segvn_textrepl_bytes, -size);
9055 		anon_unresv_zone(amp->swresv, NULL);
9056 		amp->refcnt = 0;
9057 		anonmap_free(amp);
9058 	}
9059 	kmem_cache_free(svntr_cache, svntrp);
9060 done:
9061 	hat_unload_callback(seg->s_as->a_hat, seg->s_base, size,
9062 	    unload_unmap ? HAT_UNLOAD_UNMAP : 0, NULL);
9063 }
9064 
9065 /*
9066  * This is called when a MAP_SHARED writabble mapping is created to a vnode
9067  * that is currently used for execution (VVMEXEC flag is set). In this case we
9068  * need to prevent further use of existing replicas.
9069  */
9070 static void
9071 segvn_inval_trcache(vnode_t *vp)
9072 {
9073 	ulong_t			hash = SVNTR_HASH_FUNC(vp);
9074 	svntr_t			*svntrp;
9075 
9076 	ASSERT(vp->v_flag & VVMEXEC);
9077 
9078 	if (svntr_hashtab == NULL) {
9079 		return;
9080 	}
9081 
9082 	mutex_enter(&svntr_hashtab[hash].tr_lock);
9083 	svntrp = svntr_hashtab[hash].tr_head;
9084 	for (; svntrp != NULL; svntrp = svntrp->tr_next) {
9085 		ASSERT(svntrp->tr_refcnt != 0);
9086 		if (svntrp->tr_vp == vp && svntrp->tr_valid) {
9087 			svntrp->tr_valid = 0;
9088 		}
9089 	}
9090 	mutex_exit(&svntr_hashtab[hash].tr_lock);
9091 }
9092 
9093 static void
9094 segvn_trasync_thread(void)
9095 {
9096 	callb_cpr_t cpr_info;
9097 	kmutex_t cpr_lock;	/* just for CPR stuff */
9098 
9099 	mutex_init(&cpr_lock, NULL, MUTEX_DEFAULT, NULL);
9100 
9101 	CALLB_CPR_INIT(&cpr_info, &cpr_lock,
9102 	    callb_generic_cpr, "segvn_async");
9103 
9104 	if (segvn_update_textrepl_interval == 0) {
9105 		segvn_update_textrepl_interval = segvn_update_tr_time * hz;
9106 	} else {
9107 		segvn_update_textrepl_interval *= hz;
9108 	}
9109 	(void) timeout(segvn_trupdate_wakeup, NULL,
9110 	    segvn_update_textrepl_interval);
9111 
9112 	for (;;) {
9113 		mutex_enter(&cpr_lock);
9114 		CALLB_CPR_SAFE_BEGIN(&cpr_info);
9115 		mutex_exit(&cpr_lock);
9116 		sema_p(&segvn_trasync_sem);
9117 		mutex_enter(&cpr_lock);
9118 		CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
9119 		mutex_exit(&cpr_lock);
9120 		segvn_trupdate();
9121 	}
9122 }
9123 
9124 static uint64_t segvn_lgrp_trthr_migrs_snpsht = 0;
9125 
9126 static void
9127 segvn_trupdate_wakeup(void *dummy)
9128 {
9129 	uint64_t cur_lgrp_trthr_migrs = lgrp_get_trthr_migrations();
9130 
9131 	if (cur_lgrp_trthr_migrs != segvn_lgrp_trthr_migrs_snpsht) {
9132 		segvn_lgrp_trthr_migrs_snpsht = cur_lgrp_trthr_migrs;
9133 		sema_v(&segvn_trasync_sem);
9134 	}
9135 
9136 	if (!segvn_disable_textrepl_update &&
9137 	    segvn_update_textrepl_interval != 0) {
9138 		(void) timeout(segvn_trupdate_wakeup, dummy,
9139 		    segvn_update_textrepl_interval);
9140 	}
9141 }
9142 
9143 static void
9144 segvn_trupdate(void)
9145 {
9146 	ulong_t		hash;
9147 	svntr_t		*svntrp;
9148 	segvn_data_t	*svd;
9149 
9150 	ASSERT(svntr_hashtab != NULL);
9151 
9152 	for (hash = 0; hash < svntr_hashtab_sz; hash++) {
9153 		mutex_enter(&svntr_hashtab[hash].tr_lock);
9154 		svntrp = svntr_hashtab[hash].tr_head;
9155 		for (; svntrp != NULL; svntrp = svntrp->tr_next) {
9156 			ASSERT(svntrp->tr_refcnt != 0);
9157 			svd = svntrp->tr_svnhead;
9158 			for (; svd != NULL; svd = svd->svn_trnext) {
9159 				segvn_trupdate_seg(svd->seg, svd, svntrp,
9160 				    hash);
9161 			}
9162 		}
9163 		mutex_exit(&svntr_hashtab[hash].tr_lock);
9164 	}
9165 }
9166 
9167 static void
9168 segvn_trupdate_seg(struct seg *seg,
9169 	segvn_data_t *svd,
9170 	svntr_t *svntrp,
9171 	ulong_t hash)
9172 {
9173 	proc_t			*p;
9174 	lgrp_id_t		lgrp_id;
9175 	struct as		*as;
9176 	size_t			size;
9177 	struct anon_map		*amp;
9178 
9179 	ASSERT(svd->vp != NULL);
9180 	ASSERT(svd->vp == svntrp->tr_vp);
9181 	ASSERT(svd->offset == svntrp->tr_off);
9182 	ASSERT(svd->offset + seg->s_size == svntrp->tr_eoff);
9183 	ASSERT(seg != NULL);
9184 	ASSERT(svd->seg == seg);
9185 	ASSERT(seg->s_data == (void *)svd);
9186 	ASSERT(seg->s_szc == svntrp->tr_szc);
9187 	ASSERT(svd->tr_state == SEGVN_TR_ON);
9188 	ASSERT(svd->amp != NULL);
9189 	ASSERT(svd->tr_policy_info.mem_policy == LGRP_MEM_POLICY_NEXT_SEG);
9190 	ASSERT(svd->tr_policy_info.mem_lgrpid != LGRP_NONE);
9191 	ASSERT(svd->tr_policy_info.mem_lgrpid < NLGRPS_MAX);
9192 	ASSERT(svntrp->tr_amp[svd->tr_policy_info.mem_lgrpid] == svd->amp);
9193 	ASSERT(svntrp->tr_refcnt != 0);
9194 	ASSERT(mutex_owned(&svntr_hashtab[hash].tr_lock));
9195 
9196 	as = seg->s_as;
9197 	ASSERT(as != NULL && as != &kas);
9198 	p = as->a_proc;
9199 	ASSERT(p != NULL);
9200 	ASSERT(p->p_tr_lgrpid != LGRP_NONE);
9201 	lgrp_id = p->p_t1_lgrpid;
9202 	if (lgrp_id == LGRP_NONE) {
9203 		return;
9204 	}
9205 	ASSERT(lgrp_id < NLGRPS_MAX);
9206 	if (svd->tr_policy_info.mem_lgrpid == lgrp_id) {
9207 		return;
9208 	}
9209 
9210 	/*
9211 	 * Use tryenter locking since we are locking as/seg and svntr hash
9212 	 * lock in reverse from syncrounous thread order.
9213 	 */
9214 	if (!AS_LOCK_TRYENTER(as, &as->a_lock, RW_READER)) {
9215 		SEGVN_TR_ADDSTAT(nolock);
9216 		if (segvn_lgrp_trthr_migrs_snpsht) {
9217 			segvn_lgrp_trthr_migrs_snpsht = 0;
9218 		}
9219 		return;
9220 	}
9221 	if (!SEGVN_LOCK_TRYENTER(seg->s_as, &svd->lock, RW_WRITER)) {
9222 		AS_LOCK_EXIT(as, &as->a_lock);
9223 		SEGVN_TR_ADDSTAT(nolock);
9224 		if (segvn_lgrp_trthr_migrs_snpsht) {
9225 			segvn_lgrp_trthr_migrs_snpsht = 0;
9226 		}
9227 		return;
9228 	}
9229 	size = seg->s_size;
9230 	if (svntrp->tr_amp[lgrp_id] == NULL) {
9231 		size_t trmem = atomic_add_long_nv(&segvn_textrepl_bytes, size);
9232 		if (trmem > segvn_textrepl_max_bytes) {
9233 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
9234 			AS_LOCK_EXIT(as, &as->a_lock);
9235 			atomic_add_long(&segvn_textrepl_bytes, -size);
9236 			SEGVN_TR_ADDSTAT(normem);
9237 			return;
9238 		}
9239 		if (anon_try_resv_zone(size, NULL) == 0) {
9240 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
9241 			AS_LOCK_EXIT(as, &as->a_lock);
9242 			atomic_add_long(&segvn_textrepl_bytes, -size);
9243 			SEGVN_TR_ADDSTAT(noanon);
9244 			return;
9245 		}
9246 		amp = anonmap_alloc(size, size, KM_NOSLEEP);
9247 		if (amp == NULL) {
9248 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
9249 			AS_LOCK_EXIT(as, &as->a_lock);
9250 			atomic_add_long(&segvn_textrepl_bytes, -size);
9251 			anon_unresv_zone(size, NULL);
9252 			SEGVN_TR_ADDSTAT(nokmem);
9253 			return;
9254 		}
9255 		ASSERT(amp->refcnt == 1);
9256 		amp->a_szc = seg->s_szc;
9257 		svntrp->tr_amp[lgrp_id] = amp;
9258 	}
9259 	/*
9260 	 * We don't need to drop the bucket lock but here we give other
9261 	 * threads a chance.  svntr and svd can't be unlinked as long as
9262 	 * segment lock is held as a writer and AS held as well.  After we
9263 	 * retake bucket lock we'll continue from where we left. We'll be able
9264 	 * to reach the end of either list since new entries are always added
9265 	 * to the beginning of the lists.
9266 	 */
9267 	mutex_exit(&svntr_hashtab[hash].tr_lock);
9268 	hat_unload_callback(as->a_hat, seg->s_base, size, 0, NULL);
9269 	mutex_enter(&svntr_hashtab[hash].tr_lock);
9270 
9271 	ASSERT(svd->tr_state == SEGVN_TR_ON);
9272 	ASSERT(svd->amp != NULL);
9273 	ASSERT(svd->tr_policy_info.mem_policy == LGRP_MEM_POLICY_NEXT_SEG);
9274 	ASSERT(svd->tr_policy_info.mem_lgrpid != lgrp_id);
9275 	ASSERT(svd->amp != svntrp->tr_amp[lgrp_id]);
9276 
9277 	svd->tr_policy_info.mem_lgrpid = lgrp_id;
9278 	svd->amp = svntrp->tr_amp[lgrp_id];
9279 	p->p_tr_lgrpid = NLGRPS_MAX;
9280 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
9281 	AS_LOCK_EXIT(as, &as->a_lock);
9282 
9283 	ASSERT(svntrp->tr_refcnt != 0);
9284 	ASSERT(svd->vp == svntrp->tr_vp);
9285 	ASSERT(svd->tr_policy_info.mem_lgrpid == lgrp_id);
9286 	ASSERT(svd->amp != NULL && svd->amp == svntrp->tr_amp[lgrp_id]);
9287 	ASSERT(svd->seg == seg);
9288 	ASSERT(svd->tr_state == SEGVN_TR_ON);
9289 
9290 	SEGVN_TR_ADDSTAT(asyncrepl);
9291 }
9292