xref: /titanic_50/usr/src/uts/common/vm/seg_vn.c (revision b7f45089ccbe01bab3d7c7377b49d80d2ae18a69)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 /*
31  * University Copyright- Copyright (c) 1982, 1986, 1988
32  * The Regents of the University of California
33  * All Rights Reserved
34  *
35  * University Acknowledgment- Portions of this document are derived from
36  * software developed by the University of California, Berkeley, and its
37  * contributors.
38  */
39 
40 #pragma ident	"%Z%%M%	%I%	%E% SMI"
41 
42 /*
43  * VM - shared or copy-on-write from a vnode/anonymous memory.
44  */
45 
46 #include <sys/types.h>
47 #include <sys/param.h>
48 #include <sys/t_lock.h>
49 #include <sys/errno.h>
50 #include <sys/systm.h>
51 #include <sys/mman.h>
52 #include <sys/debug.h>
53 #include <sys/cred.h>
54 #include <sys/vmsystm.h>
55 #include <sys/tuneable.h>
56 #include <sys/bitmap.h>
57 #include <sys/swap.h>
58 #include <sys/kmem.h>
59 #include <sys/sysmacros.h>
60 #include <sys/vtrace.h>
61 #include <sys/cmn_err.h>
62 #include <sys/vm.h>
63 #include <sys/dumphdr.h>
64 #include <sys/lgrp.h>
65 
66 #include <vm/hat.h>
67 #include <vm/as.h>
68 #include <vm/seg.h>
69 #include <vm/seg_vn.h>
70 #include <vm/pvn.h>
71 #include <vm/anon.h>
72 #include <vm/page.h>
73 #include <vm/vpage.h>
74 
75 /*
76  * Private seg op routines.
77  */
78 static int	segvn_dup(struct seg *seg, struct seg *newseg);
79 static int	segvn_unmap(struct seg *seg, caddr_t addr, size_t len);
80 static void	segvn_free(struct seg *seg);
81 static faultcode_t segvn_fault(struct hat *hat, struct seg *seg,
82 		    caddr_t addr, size_t len, enum fault_type type,
83 		    enum seg_rw rw);
84 static faultcode_t segvn_faulta(struct seg *seg, caddr_t addr);
85 static int	segvn_setprot(struct seg *seg, caddr_t addr,
86 		    size_t len, uint_t prot);
87 static int	segvn_checkprot(struct seg *seg, caddr_t addr,
88 		    size_t len, uint_t prot);
89 static int	segvn_kluster(struct seg *seg, caddr_t addr, ssize_t delta);
90 static size_t	segvn_swapout(struct seg *seg);
91 static int	segvn_sync(struct seg *seg, caddr_t addr, size_t len,
92 		    int attr, uint_t flags);
93 static size_t	segvn_incore(struct seg *seg, caddr_t addr, size_t len,
94 		    char *vec);
95 static int	segvn_lockop(struct seg *seg, caddr_t addr, size_t len,
96 		    int attr, int op, ulong_t *lockmap, size_t pos);
97 static int	segvn_getprot(struct seg *seg, caddr_t addr, size_t len,
98 		    uint_t *protv);
99 static u_offset_t	segvn_getoffset(struct seg *seg, caddr_t addr);
100 static int	segvn_gettype(struct seg *seg, caddr_t addr);
101 static int	segvn_getvp(struct seg *seg, caddr_t addr,
102 		    struct vnode **vpp);
103 static int	segvn_advise(struct seg *seg, caddr_t addr, size_t len,
104 		    uint_t behav);
105 static void	segvn_dump(struct seg *seg);
106 static int	segvn_pagelock(struct seg *seg, caddr_t addr, size_t len,
107 		    struct page ***ppp, enum lock_type type, enum seg_rw rw);
108 static int	segvn_setpagesize(struct seg *seg, caddr_t addr, size_t len,
109 		    uint_t szc);
110 static int	segvn_getmemid(struct seg *seg, caddr_t addr,
111 		    memid_t *memidp);
112 static lgrp_mem_policy_info_t	*segvn_getpolicy(struct seg *, caddr_t);
113 
114 struct	seg_ops segvn_ops = {
115 	segvn_dup,
116 	segvn_unmap,
117 	segvn_free,
118 	segvn_fault,
119 	segvn_faulta,
120 	segvn_setprot,
121 	segvn_checkprot,
122 	segvn_kluster,
123 	segvn_swapout,
124 	segvn_sync,
125 	segvn_incore,
126 	segvn_lockop,
127 	segvn_getprot,
128 	segvn_getoffset,
129 	segvn_gettype,
130 	segvn_getvp,
131 	segvn_advise,
132 	segvn_dump,
133 	segvn_pagelock,
134 	segvn_setpagesize,
135 	segvn_getmemid,
136 	segvn_getpolicy,
137 };
138 
139 /*
140  * Common zfod structures, provided as a shorthand for others to use.
141  */
142 static segvn_crargs_t zfod_segvn_crargs =
143 	SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL);
144 static segvn_crargs_t kzfod_segvn_crargs =
145 	SEGVN_ZFOD_ARGS(PROT_ZFOD & ~PROT_USER,
146 	PROT_ALL & ~PROT_USER);
147 static segvn_crargs_t stack_noexec_crargs =
148 	SEGVN_ZFOD_ARGS(PROT_ZFOD & ~PROT_EXEC, PROT_ALL);
149 
150 caddr_t	zfod_argsp = (caddr_t)&zfod_segvn_crargs;	/* user zfod argsp */
151 caddr_t	kzfod_argsp = (caddr_t)&kzfod_segvn_crargs;	/* kernel zfod argsp */
152 caddr_t	stack_exec_argsp = (caddr_t)&zfod_segvn_crargs;	/* executable stack */
153 caddr_t	stack_noexec_argsp = (caddr_t)&stack_noexec_crargs; /* noexec stack */
154 
155 #define	vpgtob(n)	((n) * sizeof (struct vpage))	/* For brevity */
156 
157 size_t	segvn_comb_thrshld = UINT_MAX;	/* patchable -- see 1196681 */
158 
159 static int	segvn_concat(struct seg *, struct seg *, int);
160 static int	segvn_extend_prev(struct seg *, struct seg *,
161 		    struct segvn_crargs *, size_t);
162 static int	segvn_extend_next(struct seg *, struct seg *,
163 		    struct segvn_crargs *, size_t);
164 static void	segvn_softunlock(struct seg *, caddr_t, size_t, enum seg_rw);
165 static void	segvn_pagelist_rele(page_t **);
166 static void	segvn_setvnode_mpss(vnode_t *);
167 static void	segvn_relocate_pages(page_t **, page_t *);
168 static int	segvn_full_szcpages(page_t **, uint_t, int *, uint_t *);
169 static int	segvn_fill_vp_pages(struct segvn_data *, vnode_t *, u_offset_t,
170     uint_t, page_t **, page_t **, uint_t *, int *);
171 static faultcode_t segvn_fault_vnodepages(struct hat *, struct seg *, caddr_t,
172     caddr_t, enum fault_type, enum seg_rw, caddr_t, caddr_t, int);
173 static faultcode_t segvn_fault_anonpages(struct hat *, struct seg *, caddr_t,
174     caddr_t, enum fault_type, enum seg_rw, caddr_t, caddr_t, int);
175 static faultcode_t segvn_faultpage(struct hat *, struct seg *, caddr_t,
176     u_offset_t, struct vpage *, page_t **, uint_t,
177     enum fault_type, enum seg_rw, int);
178 static void	segvn_vpage(struct seg *);
179 
180 static void segvn_purge(struct seg *seg);
181 static int segvn_reclaim(struct seg *, caddr_t, size_t, struct page **,
182     enum seg_rw);
183 
184 static int sameprot(struct seg *, caddr_t, size_t);
185 
186 static int segvn_demote_range(struct seg *, caddr_t, size_t, int);
187 static int segvn_clrszc(struct seg *);
188 static struct seg *segvn_split_seg(struct seg *, caddr_t);
189 static int segvn_claim_pages(struct seg *, struct vpage *, u_offset_t,
190     ulong_t, uint_t);
191 
192 static struct kmem_cache *segvn_cache;
193 
194 #ifdef VM_STATS
195 static struct segvnvmstats_str {
196 	ulong_t	fill_vp_pages[31];
197 	ulong_t fltvnpages[49];
198 	ulong_t	fullszcpages[10];
199 	ulong_t	relocatepages[3];
200 	ulong_t	fltanpages[17];
201 	ulong_t pagelock[3];
202 	ulong_t	demoterange[3];
203 } segvnvmstats;
204 #endif /* VM_STATS */
205 
206 #define	SDR_RANGE	1		/* demote entire range */
207 #define	SDR_END		2		/* demote non aligned ends only */
208 
209 #define	CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr) {            \
210 		if ((len) != 0) { 		      	      		      \
211 			lpgaddr = (caddr_t)P2ALIGN((uintptr_t)(addr), pgsz);  \
212 			ASSERT(lpgaddr >= (seg)->s_base);	      	      \
213 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)((addr) +    \
214 			    (len)), pgsz);				      \
215 			ASSERT(lpgeaddr > lpgaddr);		      	      \
216 			ASSERT(lpgeaddr <= (seg)->s_base + (seg)->s_size);    \
217 		} else {					      	      \
218 			lpgeaddr = lpgaddr = (addr);	      		      \
219 		}							      \
220 	}
221 
222 /*ARGSUSED*/
223 static int
224 segvn_cache_constructor(void *buf, void *cdrarg, int kmflags)
225 {
226 	struct segvn_data *svd = buf;
227 
228 	rw_init(&svd->lock, NULL, RW_DEFAULT, NULL);
229 	mutex_init(&svd->segp_slock, NULL, MUTEX_DEFAULT, NULL);
230 	return (0);
231 }
232 
233 /*ARGSUSED1*/
234 static void
235 segvn_cache_destructor(void *buf, void *cdrarg)
236 {
237 	struct segvn_data *svd = buf;
238 
239 	rw_destroy(&svd->lock);
240 	mutex_destroy(&svd->segp_slock);
241 }
242 
243 /*
244  * Patching this variable to non-zero allows the system to run with
245  * stacks marked as "not executable".  It's a bit of a kludge, but is
246  * provided as a tweakable for platforms that export those ABIs
247  * (e.g. sparc V8) that have executable stacks enabled by default.
248  * There are also some restrictions for platforms that don't actually
249  * implement 'noexec' protections.
250  *
251  * Once enabled, the system is (therefore) unable to provide a fully
252  * ABI-compliant execution environment, though practically speaking,
253  * most everything works.  The exceptions are generally some interpreters
254  * and debuggers that create executable code on the stack and jump
255  * into it (without explicitly mprotecting the address range to include
256  * PROT_EXEC).
257  *
258  * One important class of applications that are disabled are those
259  * that have been transformed into malicious agents using one of the
260  * numerous "buffer overflow" attacks.  See 4007890.
261  */
262 int noexec_user_stack = 0;
263 int noexec_user_stack_log = 1;
264 
265 int segvn_lpg_disable = 0;
266 uint_t segvn_maxpgszc = 0;
267 
268 ulong_t segvn_vmpss_clrszc_cnt;
269 ulong_t segvn_vmpss_clrszc_err;
270 ulong_t segvn_fltvnpages_clrszc_cnt;
271 ulong_t segvn_fltvnpages_clrszc_err;
272 ulong_t segvn_setpgsz_align_err;
273 ulong_t segvn_setpgsz_getattr_err;
274 ulong_t segvn_setpgsz_eof_err;
275 ulong_t segvn_faultvnmpss_align_err1;
276 ulong_t segvn_faultvnmpss_align_err2;
277 ulong_t segvn_faultvnmpss_align_err3;
278 ulong_t segvn_faultvnmpss_align_err4;
279 ulong_t segvn_faultvnmpss_align_err5;
280 ulong_t	segvn_vmpss_pageio_deadlk_err;
281 
282 /*
283  * Initialize segvn data structures
284  */
285 void
286 segvn_init(void)
287 {
288 	uint_t maxszc;
289 	uint_t szc;
290 	size_t pgsz;
291 
292 	segvn_cache = kmem_cache_create("segvn_cache",
293 		sizeof (struct segvn_data), 0,
294 		segvn_cache_constructor, segvn_cache_destructor, NULL,
295 		NULL, NULL, 0);
296 
297 	if (segvn_lpg_disable != 0)
298 		return;
299 	szc = maxszc = page_num_pagesizes() - 1;
300 	if (szc == 0) {
301 		segvn_lpg_disable = 1;
302 		return;
303 	}
304 	if (page_get_pagesize(0) != PAGESIZE) {
305 		panic("segvn_init: bad szc 0");
306 		/*NOTREACHED*/
307 	}
308 	while (szc != 0) {
309 		pgsz = page_get_pagesize(szc);
310 		if (pgsz <= PAGESIZE || !IS_P2ALIGNED(pgsz, pgsz)) {
311 			panic("segvn_init: bad szc %d", szc);
312 			/*NOTREACHED*/
313 		}
314 		szc--;
315 	}
316 	if (segvn_maxpgszc == 0 || segvn_maxpgszc > maxszc)
317 		segvn_maxpgszc = maxszc;
318 }
319 
320 #define	SEGVN_PAGEIO	((void *)0x1)
321 #define	SEGVN_NOPAGEIO	((void *)0x2)
322 
323 static void
324 segvn_setvnode_mpss(vnode_t *vp)
325 {
326 	int err;
327 
328 	ASSERT(vp->v_mpssdata == NULL ||
329 	    vp->v_mpssdata == SEGVN_PAGEIO ||
330 	    vp->v_mpssdata == SEGVN_NOPAGEIO);
331 
332 	if (vp->v_mpssdata == NULL) {
333 		if (vn_vmpss_usepageio(vp)) {
334 			err = VOP_PAGEIO(vp, (page_t *)NULL,
335 			    (u_offset_t)0, 0, 0, CRED());
336 		} else {
337 			err = ENOSYS;
338 		}
339 		/*
340 		 * set v_mpssdata just once per vnode life
341 		 * so that it never changes.
342 		 */
343 		mutex_enter(&vp->v_lock);
344 		if (vp->v_mpssdata == NULL) {
345 			if (err == EINVAL) {
346 				vp->v_mpssdata = SEGVN_PAGEIO;
347 			} else {
348 				vp->v_mpssdata = SEGVN_NOPAGEIO;
349 			}
350 		}
351 		mutex_exit(&vp->v_lock);
352 	}
353 }
354 
355 int
356 segvn_create(struct seg *seg, void *argsp)
357 {
358 	struct segvn_crargs *a = (struct segvn_crargs *)argsp;
359 	struct segvn_data *svd;
360 	size_t swresv = 0;
361 	struct cred *cred;
362 	struct anon_map *amp;
363 	int error = 0;
364 	size_t pgsz;
365 	lgrp_mem_policy_t mpolicy = LGRP_MEM_POLICY_DEFAULT;
366 
367 
368 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
369 
370 	if (a->type != MAP_PRIVATE && a->type != MAP_SHARED) {
371 		panic("segvn_create type");
372 		/*NOTREACHED*/
373 	}
374 
375 	/*
376 	 * Check arguments.  If a shared anon structure is given then
377 	 * it is illegal to also specify a vp.
378 	 */
379 	if (a->amp != NULL && a->vp != NULL) {
380 		panic("segvn_create anon_map");
381 		/*NOTREACHED*/
382 	}
383 
384 	/* MAP_NORESERVE on a MAP_SHARED segment is meaningless. */
385 	if (a->type == MAP_SHARED)
386 		a->flags &= ~MAP_NORESERVE;
387 
388 	if (a->szc != 0) {
389 		if (segvn_lpg_disable != 0 || a->amp != NULL ||
390 		    (a->type == MAP_SHARED && a->vp == NULL) ||
391 		    (a->flags & MAP_NORESERVE) || seg->s_as == &kas) {
392 			a->szc = 0;
393 		} else {
394 			if (a->szc > segvn_maxpgszc)
395 				a->szc = segvn_maxpgszc;
396 			pgsz = page_get_pagesize(a->szc);
397 			if (!IS_P2ALIGNED(seg->s_base, pgsz) ||
398 			    !IS_P2ALIGNED(seg->s_size, pgsz)) {
399 				a->szc = 0;
400 			} else if (a->vp != NULL) {
401 				extern struct vnode kvp;
402 				if (IS_SWAPFSVP(a->vp) || a->vp == &kvp) {
403 					/*
404 					 * paranoid check.
405 					 * hat_page_demote() is not supported
406 					 * on swapfs pages.
407 					 */
408 					a->szc = 0;
409 				} else if (map_addr_vacalign_check(seg->s_base,
410 				    a->offset & PAGEMASK)) {
411 					a->szc = 0;
412 				}
413 			}
414 		}
415 	}
416 
417 	/*
418 	 * If segment may need private pages, reserve them now.
419 	 */
420 	if (!(a->flags & MAP_NORESERVE) && ((a->vp == NULL && a->amp == NULL) ||
421 	    (a->type == MAP_PRIVATE && (a->prot & PROT_WRITE)))) {
422 		if (anon_resv(seg->s_size) == 0)
423 			return (EAGAIN);
424 		swresv = seg->s_size;
425 		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
426 			seg, swresv, 1);
427 	}
428 
429 	/*
430 	 * Reserve any mapping structures that may be required.
431 	 */
432 	hat_map(seg->s_as->a_hat, seg->s_base, seg->s_size, HAT_MAP);
433 
434 	if (a->cred) {
435 		cred = a->cred;
436 		crhold(cred);
437 	} else {
438 		crhold(cred = CRED());
439 	}
440 
441 	/* Inform the vnode of the new mapping */
442 	if (a->vp) {
443 		error = VOP_ADDMAP(a->vp, a->offset & PAGEMASK,
444 		    seg->s_as, seg->s_base, seg->s_size, a->prot,
445 		    a->maxprot, a->type, cred);
446 		if (error) {
447 			if (swresv != 0) {
448 				anon_unresv(swresv);
449 				TRACE_3(TR_FAC_VM, TR_ANON_PROC,
450 					"anon proc:%p %lu %u",
451 					seg, swresv, 0);
452 			}
453 			crfree(cred);
454 			hat_unload(seg->s_as->a_hat, seg->s_base,
455 				seg->s_size, HAT_UNLOAD_UNMAP);
456 			return (error);
457 		}
458 	}
459 
460 	/*
461 	 * If more than one segment in the address space, and
462 	 * they're adjacent virtually, try to concatenate them.
463 	 * Don't concatenate if an explicit anon_map structure
464 	 * was supplied (e.g., SystemV shared memory).
465 	 */
466 	if (a->amp == NULL) {
467 		struct seg *pseg, *nseg;
468 		struct segvn_data *psvd, *nsvd;
469 		lgrp_mem_policy_t ppolicy, npolicy;
470 		uint_t	lgrp_mem_policy_flags = 0;
471 		extern lgrp_mem_policy_t lgrp_mem_default_policy;
472 
473 		/*
474 		 * Memory policy flags (lgrp_mem_policy_flags) is valid when
475 		 * extending stack/heap segments.
476 		 */
477 		if ((a->vp == NULL) && (a->type == MAP_PRIVATE) &&
478 			!(a->flags & MAP_NORESERVE) && (seg->s_as != &kas)) {
479 			lgrp_mem_policy_flags = a->lgrp_mem_policy_flags;
480 		} else {
481 			/*
482 			 * Get policy when not extending it from another segment
483 			 */
484 			mpolicy = lgrp_mem_policy_default(seg->s_size, a->type);
485 		}
486 
487 		/*
488 		 * First, try to concatenate the previous and new segments
489 		 */
490 		pseg = AS_SEGPREV(seg->s_as, seg);
491 		if (pseg != NULL &&
492 		    pseg->s_base + pseg->s_size == seg->s_base &&
493 		    pseg->s_ops == &segvn_ops) {
494 			/*
495 			 * Get memory allocation policy from previous segment.
496 			 * When extension is specified (e.g. for heap) apply
497 			 * this policy to the new segment regardless of the
498 			 * outcome of segment concatenation.  Extension occurs
499 			 * for non-default policy otherwise default policy is
500 			 * used and is based on extended segment size.
501 			 */
502 			psvd = (struct segvn_data *)pseg->s_data;
503 			ppolicy = psvd->policy_info.mem_policy;
504 			if (lgrp_mem_policy_flags ==
505 			    LGRP_MP_FLAG_EXTEND_UP) {
506 				if (ppolicy != lgrp_mem_default_policy) {
507 					mpolicy = ppolicy;
508 				} else {
509 					mpolicy = lgrp_mem_policy_default(
510 					    pseg->s_size + seg->s_size,
511 					    a->type);
512 				}
513 			}
514 
515 			if (mpolicy == ppolicy &&
516 			    (pseg->s_size + seg->s_size <=
517 			    segvn_comb_thrshld || psvd->amp == NULL) &&
518 			    segvn_extend_prev(pseg, seg, a, swresv) == 0) {
519 				/*
520 				 * success! now try to concatenate
521 				 * with following seg
522 				 */
523 				crfree(cred);
524 				nseg = AS_SEGNEXT(pseg->s_as, pseg);
525 				if (nseg != NULL &&
526 				    nseg != pseg &&
527 				    nseg->s_ops == &segvn_ops &&
528 				    pseg->s_base + pseg->s_size ==
529 				    nseg->s_base)
530 					(void) segvn_concat(pseg, nseg, 0);
531 				ASSERT(pseg->s_szc == 0 ||
532 				    (a->szc == pseg->s_szc &&
533 				    IS_P2ALIGNED(pseg->s_base, pgsz) &&
534 				    IS_P2ALIGNED(pseg->s_size, pgsz)));
535 				return (0);
536 			}
537 		}
538 
539 		/*
540 		 * Failed, so try to concatenate with following seg
541 		 */
542 		nseg = AS_SEGNEXT(seg->s_as, seg);
543 		if (nseg != NULL &&
544 		    seg->s_base + seg->s_size == nseg->s_base &&
545 		    nseg->s_ops == &segvn_ops) {
546 			/*
547 			 * Get memory allocation policy from next segment.
548 			 * When extension is specified (e.g. for stack) apply
549 			 * this policy to the new segment regardless of the
550 			 * outcome of segment concatenation.  Extension occurs
551 			 * for non-default policy otherwise default policy is
552 			 * used and is based on extended segment size.
553 			 */
554 			nsvd = (struct segvn_data *)nseg->s_data;
555 			npolicy = nsvd->policy_info.mem_policy;
556 			if (lgrp_mem_policy_flags ==
557 			    LGRP_MP_FLAG_EXTEND_DOWN) {
558 				if (npolicy != lgrp_mem_default_policy) {
559 					mpolicy = npolicy;
560 				} else {
561 					mpolicy = lgrp_mem_policy_default(
562 					    nseg->s_size + seg->s_size,
563 					    a->type);
564 				}
565 			}
566 
567 			if (mpolicy == npolicy &&
568 			    segvn_extend_next(seg, nseg, a, swresv) == 0) {
569 				crfree(cred);
570 				ASSERT(nseg->s_szc == 0 ||
571 				    (a->szc == nseg->s_szc &&
572 				    IS_P2ALIGNED(nseg->s_base, pgsz) &&
573 				    IS_P2ALIGNED(nseg->s_size, pgsz)));
574 				return (0);
575 			}
576 		}
577 	}
578 
579 	if (a->vp != NULL) {
580 		VN_HOLD(a->vp);
581 		if (a->type == MAP_SHARED)
582 			lgrp_shm_policy_init(NULL, a->vp);
583 	}
584 	svd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
585 
586 	seg->s_ops = &segvn_ops;
587 	seg->s_data = (void *)svd;
588 	seg->s_szc = a->szc;
589 
590 	svd->vp = a->vp;
591 	/*
592 	 * Anonymous mappings have no backing file so the offset is meaningless.
593 	 */
594 	svd->offset = a->vp ? (a->offset & PAGEMASK) : 0;
595 	svd->prot = a->prot;
596 	svd->maxprot = a->maxprot;
597 	svd->pageprot = 0;
598 	svd->type = a->type;
599 	svd->vpage = NULL;
600 	svd->cred = cred;
601 	svd->advice = MADV_NORMAL;
602 	svd->pageadvice = 0;
603 	svd->flags = (ushort_t)a->flags;
604 	svd->softlockcnt = 0;
605 	if (a->szc != 0 && a->vp != NULL) {
606 		segvn_setvnode_mpss(a->vp);
607 	}
608 
609 	amp = a->amp;
610 	if ((svd->amp = amp) == NULL) {
611 		svd->anon_index = 0;
612 		if (svd->type == MAP_SHARED) {
613 			svd->swresv = 0;
614 			/*
615 			 * Shared mappings to a vp need no other setup.
616 			 * If we have a shared mapping to an anon_map object
617 			 * which hasn't been allocated yet,  allocate the
618 			 * struct now so that it will be properly shared
619 			 * by remembering the swap reservation there.
620 			 */
621 			if (a->vp == NULL) {
622 				svd->amp = anonmap_alloc(seg->s_size, swresv);
623 				svd->amp->a_szc = seg->s_szc;
624 			}
625 		} else {
626 			/*
627 			 * Private mapping (with or without a vp).
628 			 * Allocate anon_map when needed.
629 			 */
630 			svd->swresv = swresv;
631 		}
632 	} else {
633 		pgcnt_t anon_num;
634 
635 		/*
636 		 * Mapping to an existing anon_map structure without a vp.
637 		 * For now we will insure that the segment size isn't larger
638 		 * than the size - offset gives us.  Later on we may wish to
639 		 * have the anon array dynamically allocated itself so that
640 		 * we don't always have to allocate all the anon pointer slots.
641 		 * This of course involves adding extra code to check that we
642 		 * aren't trying to use an anon pointer slot beyond the end
643 		 * of the currently allocated anon array.
644 		 */
645 		if ((amp->size - a->offset) < seg->s_size) {
646 			panic("segvn_create anon_map size");
647 			/*NOTREACHED*/
648 		}
649 
650 		anon_num = btopr(a->offset);
651 
652 		if (a->type == MAP_SHARED) {
653 			/*
654 			 * SHARED mapping to a given anon_map.
655 			 */
656 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
657 			amp->refcnt++;
658 			ANON_LOCK_EXIT(&amp->a_rwlock);
659 			svd->anon_index = anon_num;
660 			svd->swresv = 0;
661 		} else {
662 			/*
663 			 * PRIVATE mapping to a given anon_map.
664 			 * Make sure that all the needed anon
665 			 * structures are created (so that we will
666 			 * share the underlying pages if nothing
667 			 * is written by this mapping) and then
668 			 * duplicate the anon array as is done
669 			 * when a privately mapped segment is dup'ed.
670 			 */
671 			struct anon *ap;
672 			caddr_t addr;
673 			caddr_t eaddr;
674 			ulong_t	anon_idx;
675 			int hat_flag = HAT_LOAD;
676 
677 			if (svd->flags & MAP_TEXT) {
678 				hat_flag |= HAT_LOAD_TEXT;
679 			}
680 
681 			svd->amp = anonmap_alloc(seg->s_size, 0);
682 			svd->amp->a_szc = seg->s_szc;
683 			svd->anon_index = 0;
684 			svd->swresv = swresv;
685 
686 			/*
687 			 * Prevent 2 threads from allocating anon
688 			 * slots simultaneously.
689 			 */
690 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
691 			eaddr = seg->s_base + seg->s_size;
692 
693 			for (anon_idx = anon_num, addr = seg->s_base;
694 			    addr < eaddr; addr += PAGESIZE, anon_idx++) {
695 				page_t *pp;
696 
697 				if ((ap = anon_get_ptr(amp->ahp,
698 				    anon_idx)) != NULL)
699 					continue;
700 
701 				/*
702 				 * Allocate the anon struct now.
703 				 * Might as well load up translation
704 				 * to the page while we're at it...
705 				 */
706 				pp = anon_zero(seg, addr, &ap, cred);
707 				if (ap == NULL || pp == NULL) {
708 					panic("segvn_create anon_zero");
709 					/*NOTREACHED*/
710 				}
711 
712 				/*
713 				 * Re-acquire the anon_map lock and
714 				 * initialize the anon array entry.
715 				 */
716 				ASSERT(anon_get_ptr(amp->ahp,
717 				    anon_idx) == NULL);
718 				(void) anon_set_ptr(amp->ahp, anon_idx, ap,
719 				    ANON_SLEEP);
720 
721 				ASSERT(seg->s_szc == 0);
722 				ASSERT(!IS_VMODSORT(pp->p_vnode));
723 
724 				hat_memload(seg->s_as->a_hat, addr, pp,
725 					svd->prot & ~PROT_WRITE, hat_flag);
726 
727 				page_unlock(pp);
728 			}
729 			ASSERT(seg->s_szc == 0);
730 			anon_dup(amp->ahp, anon_num, svd->amp->ahp,
731 			    0, seg->s_size);
732 			ANON_LOCK_EXIT(&amp->a_rwlock);
733 		}
734 	}
735 
736 	/*
737 	 * Set default memory allocation policy for segment
738 	 *
739 	 * Always set policy for private memory at least for initialization
740 	 * even if this is a shared memory segment
741 	 */
742 	(void) lgrp_privm_policy_set(mpolicy, &svd->policy_info, seg->s_size);
743 
744 	if (svd->type == MAP_SHARED)
745 		(void) lgrp_shm_policy_set(mpolicy, svd->amp, svd->anon_index,
746 		    svd->vp, svd->offset, seg->s_size);
747 
748 	return (0);
749 }
750 
751 /*
752  * Concatenate two existing segments, if possible.
753  * Return 0 on success, -1 if two segments are not compatible
754  * or -2 on memory allocation failure.
755  * If private == 1 then try and concat segments with private pages.
756  */
757 static int
758 segvn_concat(struct seg *seg1, struct seg *seg2, int private)
759 {
760 	struct segvn_data *svd1 = seg1->s_data;
761 	struct segvn_data *svd2 = seg2->s_data;
762 	struct anon_map *amp1 = svd1->amp;
763 	struct anon_map *amp2 = svd2->amp;
764 	struct vpage *vpage1 = svd1->vpage;
765 	struct vpage *vpage2 = svd2->vpage, *nvpage = NULL;
766 	size_t size, nvpsize;
767 	pgcnt_t npages1, npages2;
768 
769 	ASSERT(seg1->s_as && seg2->s_as && seg1->s_as == seg2->s_as);
770 	ASSERT(AS_WRITE_HELD(seg1->s_as, &seg1->s_as->a_lock));
771 	ASSERT(seg1->s_ops == seg2->s_ops);
772 
773 	/* both segments exist, try to merge them */
774 #define	incompat(x)	(svd1->x != svd2->x)
775 	if (incompat(vp) || incompat(maxprot) ||
776 	    (!svd1->pageadvice && !svd2->pageadvice && incompat(advice)) ||
777 	    (!svd1->pageprot && !svd2->pageprot && incompat(prot)) ||
778 	    incompat(type) || incompat(cred) || incompat(flags) ||
779 	    seg1->s_szc != seg2->s_szc || incompat(policy_info.mem_policy) ||
780 	    (svd2->softlockcnt > 0))
781 		return (-1);
782 #undef incompat
783 
784 	/*
785 	 * vp == NULL implies zfod, offset doesn't matter
786 	 */
787 	if (svd1->vp != NULL &&
788 	    svd1->offset + seg1->s_size != svd2->offset) {
789 		return (-1);
790 	}
791 
792 	/*
793 	 * Fail early if we're not supposed to concatenate
794 	 * private pages.
795 	 */
796 	if ((private == 0 || svd1->type != MAP_PRIVATE) &&
797 	    (amp1 != NULL || amp2 != NULL)) {
798 		return (-1);
799 	}
800 
801 	/*
802 	 * If either seg has vpages, create a new merged vpage array.
803 	 */
804 	if (vpage1 != NULL || vpage2 != NULL) {
805 		struct vpage *vp;
806 
807 		npages1 = seg_pages(seg1);
808 		npages2 = seg_pages(seg2);
809 		nvpsize = vpgtob(npages1 + npages2);
810 
811 		if ((nvpage = kmem_zalloc(nvpsize, KM_NOSLEEP)) == NULL) {
812 			return (-2);
813 		}
814 		if (vpage1 != NULL) {
815 			bcopy(vpage1, nvpage, vpgtob(npages1));
816 		}
817 		if (vpage2 != NULL) {
818 			bcopy(vpage2, nvpage + npages1, vpgtob(npages2));
819 		}
820 		for (vp = nvpage; vp < nvpage + npages1; vp++) {
821 			if (svd2->pageprot && !svd1->pageprot) {
822 				VPP_SETPROT(vp, svd1->prot);
823 			}
824 			if (svd2->pageadvice && !svd1->pageadvice) {
825 				VPP_SETADVICE(vp, svd1->advice);
826 			}
827 		}
828 		for (vp = nvpage + npages1;
829 		    vp < nvpage + npages1 + npages2; vp++) {
830 			if (svd1->pageprot && !svd2->pageprot) {
831 				VPP_SETPROT(vp, svd2->prot);
832 			}
833 			if (svd1->pageadvice && !svd2->pageadvice) {
834 				VPP_SETADVICE(vp, svd2->advice);
835 			}
836 		}
837 	}
838 
839 	/*
840 	 * If either segment has private pages, create a new merged anon
841 	 * array.
842 	 */
843 	if (amp1 != NULL || amp2 != NULL) {
844 		struct anon_hdr *nahp;
845 		struct anon_map *namp = NULL;
846 		size_t asize = seg1->s_size + seg2->s_size;
847 
848 		if ((nahp = anon_create(btop(asize), ANON_NOSLEEP)) == NULL) {
849 			if (nvpage != NULL) {
850 				kmem_free(nvpage, nvpsize);
851 			}
852 			return (-2);
853 		}
854 		if (amp1 != NULL) {
855 			/*
856 			 * XXX anon rwlock is not really needed because
857 			 * this is a private segment and we are writers.
858 			 */
859 			ANON_LOCK_ENTER(&amp1->a_rwlock, RW_WRITER);
860 			ASSERT(amp1->refcnt == 1);
861 			if (anon_copy_ptr(amp1->ahp, svd1->anon_index,
862 			    nahp, 0, btop(seg1->s_size), ANON_NOSLEEP)) {
863 				anon_release(nahp, btop(asize));
864 				ANON_LOCK_EXIT(&amp1->a_rwlock);
865 				if (nvpage != NULL) {
866 					kmem_free(nvpage, nvpsize);
867 				}
868 				return (-2);
869 			}
870 		}
871 		if (amp2 != NULL) {
872 			ANON_LOCK_ENTER(&amp2->a_rwlock, RW_WRITER);
873 			ASSERT(amp2->refcnt == 1);
874 			if (anon_copy_ptr(amp2->ahp, svd2->anon_index,
875 			    nahp, btop(seg1->s_size), btop(seg2->s_size),
876 			    ANON_NOSLEEP)) {
877 				anon_release(nahp, btop(asize));
878 				ANON_LOCK_EXIT(&amp2->a_rwlock);
879 				if (amp1 != NULL) {
880 					ANON_LOCK_EXIT(&amp1->a_rwlock);
881 				}
882 				if (nvpage != NULL) {
883 					kmem_free(nvpage, nvpsize);
884 				}
885 				return (-2);
886 			}
887 		}
888 		if (amp1 != NULL) {
889 			namp = amp1;
890 			anon_release(amp1->ahp, btop(amp1->size));
891 		}
892 		if (amp2 != NULL) {
893 			if (namp == NULL) {
894 				ASSERT(amp1 == NULL);
895 				namp = amp2;
896 				anon_release(amp2->ahp, btop(amp2->size));
897 			} else {
898 				amp2->refcnt--;
899 				ANON_LOCK_EXIT(&amp2->a_rwlock);
900 				anonmap_free(amp2);
901 			}
902 			svd2->amp = NULL; /* needed for seg_free */
903 		}
904 		namp->ahp = nahp;
905 		namp->size = asize;
906 		svd1->amp = namp;
907 		svd1->anon_index = 0;
908 		ANON_LOCK_EXIT(&namp->a_rwlock);
909 	}
910 	/*
911 	 * Now free the old vpage structures.
912 	 */
913 	if (nvpage != NULL) {
914 		if (vpage1 != NULL) {
915 			kmem_free(vpage1, vpgtob(npages1));
916 		}
917 		if (vpage2 != NULL) {
918 			svd2->vpage = NULL;
919 			kmem_free(vpage2, vpgtob(npages2));
920 		}
921 		if (svd2->pageprot) {
922 			svd1->pageprot = 1;
923 		}
924 		if (svd2->pageadvice) {
925 			svd1->pageadvice = 1;
926 		}
927 		svd1->vpage = nvpage;
928 	}
929 
930 	/* all looks ok, merge segments */
931 	svd1->swresv += svd2->swresv;
932 	svd2->swresv = 0;  /* so seg_free doesn't release swap space */
933 	size = seg2->s_size;
934 	seg_free(seg2);
935 	seg1->s_size += size;
936 	return (0);
937 }
938 
939 /*
940  * Extend the previous segment (seg1) to include the
941  * new segment (seg2 + a), if possible.
942  * Return 0 on success.
943  */
944 static int
945 segvn_extend_prev(seg1, seg2, a, swresv)
946 	struct seg *seg1, *seg2;
947 	struct segvn_crargs *a;
948 	size_t swresv;
949 {
950 	struct segvn_data *svd1 = (struct segvn_data *)seg1->s_data;
951 	size_t size;
952 	struct anon_map *amp1;
953 	struct vpage *new_vpage;
954 
955 	/*
956 	 * We don't need any segment level locks for "segvn" data
957 	 * since the address space is "write" locked.
958 	 */
959 	ASSERT(seg1->s_as && AS_WRITE_HELD(seg1->s_as, &seg1->s_as->a_lock));
960 
961 	/* second segment is new, try to extend first */
962 	/* XXX - should also check cred */
963 	if (svd1->vp != a->vp || svd1->maxprot != a->maxprot ||
964 	    (!svd1->pageprot && (svd1->prot != a->prot)) ||
965 	    svd1->type != a->type || svd1->flags != a->flags ||
966 	    seg1->s_szc != a->szc)
967 		return (-1);
968 
969 	/* vp == NULL implies zfod, offset doesn't matter */
970 	if (svd1->vp != NULL &&
971 	    svd1->offset + seg1->s_size != (a->offset & PAGEMASK))
972 		return (-1);
973 
974 	amp1 = svd1->amp;
975 	if (amp1) {
976 		pgcnt_t newpgs;
977 
978 		/*
979 		 * Segment has private pages, can data structures
980 		 * be expanded?
981 		 *
982 		 * Acquire the anon_map lock to prevent it from changing,
983 		 * if it is shared.  This ensures that the anon_map
984 		 * will not change while a thread which has a read/write
985 		 * lock on an address space references it.
986 		 * XXX - Don't need the anon_map lock at all if "refcnt"
987 		 * is 1.
988 		 *
989 		 * Can't grow a MAP_SHARED segment with an anonmap because
990 		 * there may be existing anon slots where we want to extend
991 		 * the segment and we wouldn't know what to do with them
992 		 * (e.g., for tmpfs right thing is to just leave them there,
993 		 * for /dev/zero they should be cleared out).
994 		 */
995 		if (svd1->type == MAP_SHARED)
996 			return (-1);
997 
998 		ANON_LOCK_ENTER(&amp1->a_rwlock, RW_WRITER);
999 		if (amp1->refcnt > 1) {
1000 			ANON_LOCK_EXIT(&amp1->a_rwlock);
1001 			return (-1);
1002 		}
1003 		newpgs = anon_grow(amp1->ahp, &svd1->anon_index,
1004 		    btop(seg1->s_size), btop(seg2->s_size), ANON_NOSLEEP);
1005 
1006 		if (newpgs == 0) {
1007 			ANON_LOCK_EXIT(&amp1->a_rwlock);
1008 			return (-1);
1009 		}
1010 		amp1->size = ptob(newpgs);
1011 		ANON_LOCK_EXIT(&amp1->a_rwlock);
1012 	}
1013 	if (svd1->vpage != NULL) {
1014 		new_vpage =
1015 		    kmem_zalloc(vpgtob(seg_pages(seg1) + seg_pages(seg2)),
1016 			KM_NOSLEEP);
1017 		if (new_vpage == NULL)
1018 			return (-1);
1019 		bcopy(svd1->vpage, new_vpage, vpgtob(seg_pages(seg1)));
1020 		kmem_free(svd1->vpage, vpgtob(seg_pages(seg1)));
1021 		svd1->vpage = new_vpage;
1022 		if (svd1->pageprot) {
1023 			struct vpage *vp, *evp;
1024 
1025 			vp = new_vpage + seg_pages(seg1);
1026 			evp = vp + seg_pages(seg2);
1027 			for (; vp < evp; vp++)
1028 				VPP_SETPROT(vp, a->prot);
1029 		}
1030 	}
1031 	size = seg2->s_size;
1032 	seg_free(seg2);
1033 	seg1->s_size += size;
1034 	svd1->swresv += swresv;
1035 	return (0);
1036 }
1037 
1038 /*
1039  * Extend the next segment (seg2) to include the
1040  * new segment (seg1 + a), if possible.
1041  * Return 0 on success.
1042  */
1043 static int
1044 segvn_extend_next(
1045 	struct seg *seg1,
1046 	struct seg *seg2,
1047 	struct segvn_crargs *a,
1048 	size_t swresv)
1049 {
1050 	struct segvn_data *svd2 = (struct segvn_data *)seg2->s_data;
1051 	size_t size;
1052 	struct anon_map *amp2;
1053 	struct vpage *new_vpage;
1054 
1055 	/*
1056 	 * We don't need any segment level locks for "segvn" data
1057 	 * since the address space is "write" locked.
1058 	 */
1059 	ASSERT(seg2->s_as && AS_WRITE_HELD(seg2->s_as, &seg2->s_as->a_lock));
1060 
1061 	/* first segment is new, try to extend second */
1062 	/* XXX - should also check cred */
1063 	if (svd2->vp != a->vp || svd2->maxprot != a->maxprot ||
1064 	    (!svd2->pageprot && (svd2->prot != a->prot)) ||
1065 	    svd2->type != a->type || svd2->flags != a->flags ||
1066 	    seg2->s_szc != a->szc)
1067 		return (-1);
1068 	/* vp == NULL implies zfod, offset doesn't matter */
1069 	if (svd2->vp != NULL &&
1070 	    (a->offset & PAGEMASK) + seg1->s_size != svd2->offset)
1071 		return (-1);
1072 
1073 	amp2 = svd2->amp;
1074 	if (amp2) {
1075 		pgcnt_t newpgs;
1076 
1077 		/*
1078 		 * Segment has private pages, can data structures
1079 		 * be expanded?
1080 		 *
1081 		 * Acquire the anon_map lock to prevent it from changing,
1082 		 * if it is shared.  This ensures that the anon_map
1083 		 * will not change while a thread which has a read/write
1084 		 * lock on an address space references it.
1085 		 *
1086 		 * XXX - Don't need the anon_map lock at all if "refcnt"
1087 		 * is 1.
1088 		 */
1089 		if (svd2->type == MAP_SHARED)
1090 			return (-1);
1091 
1092 		ANON_LOCK_ENTER(&amp2->a_rwlock, RW_WRITER);
1093 		if (amp2->refcnt > 1) {
1094 			ANON_LOCK_EXIT(&amp2->a_rwlock);
1095 			return (-1);
1096 		}
1097 		newpgs = anon_grow(amp2->ahp, &svd2->anon_index,
1098 		    btop(seg2->s_size), btop(seg1->s_size),
1099 		    ANON_NOSLEEP | ANON_GROWDOWN);
1100 
1101 		if (newpgs == 0) {
1102 			ANON_LOCK_EXIT(&amp2->a_rwlock);
1103 			return (-1);
1104 		}
1105 		amp2->size = ptob(newpgs);
1106 		ANON_LOCK_EXIT(&amp2->a_rwlock);
1107 	}
1108 	if (svd2->vpage != NULL) {
1109 		new_vpage =
1110 		    kmem_zalloc(vpgtob(seg_pages(seg1) + seg_pages(seg2)),
1111 			KM_NOSLEEP);
1112 		if (new_vpage == NULL) {
1113 			/* Not merging segments so adjust anon_index back */
1114 			if (amp2)
1115 				svd2->anon_index += seg_pages(seg1);
1116 			return (-1);
1117 		}
1118 		bcopy(svd2->vpage, new_vpage + seg_pages(seg1),
1119 		    vpgtob(seg_pages(seg2)));
1120 		kmem_free(svd2->vpage, vpgtob(seg_pages(seg2)));
1121 		svd2->vpage = new_vpage;
1122 		if (svd2->pageprot) {
1123 			struct vpage *vp, *evp;
1124 
1125 			vp = new_vpage;
1126 			evp = vp + seg_pages(seg1);
1127 			for (; vp < evp; vp++)
1128 				VPP_SETPROT(vp, a->prot);
1129 		}
1130 	}
1131 	size = seg1->s_size;
1132 	seg_free(seg1);
1133 	seg2->s_size += size;
1134 	seg2->s_base -= size;
1135 	svd2->offset -= size;
1136 	svd2->swresv += swresv;
1137 	return (0);
1138 }
1139 
1140 static int
1141 segvn_dup(struct seg *seg, struct seg *newseg)
1142 {
1143 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1144 	struct segvn_data *newsvd;
1145 	pgcnt_t npages = seg_pages(seg);
1146 	int error = 0;
1147 	uint_t prot;
1148 	size_t len;
1149 
1150 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1151 
1152 	/*
1153 	 * If segment has anon reserved, reserve more for the new seg.
1154 	 * For a MAP_NORESERVE segment swresv will be a count of all the
1155 	 * allocated anon slots; thus we reserve for the child as many slots
1156 	 * as the parent has allocated. This semantic prevents the child or
1157 	 * parent from dieing during a copy-on-write fault caused by trying
1158 	 * to write a shared pre-existing anon page.
1159 	 */
1160 	if ((len = svd->swresv) != 0) {
1161 		if (anon_resv(svd->swresv) == 0)
1162 			return (ENOMEM);
1163 
1164 		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
1165 			seg, len, 0);
1166 	}
1167 
1168 	newsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
1169 
1170 	newseg->s_ops = &segvn_ops;
1171 	newseg->s_data = (void *)newsvd;
1172 	newseg->s_szc = seg->s_szc;
1173 
1174 	if ((newsvd->vp = svd->vp) != NULL) {
1175 		VN_HOLD(svd->vp);
1176 		if (svd->type == MAP_SHARED)
1177 			lgrp_shm_policy_init(NULL, svd->vp);
1178 	}
1179 	newsvd->offset = svd->offset;
1180 	newsvd->prot = svd->prot;
1181 	newsvd->maxprot = svd->maxprot;
1182 	newsvd->pageprot = svd->pageprot;
1183 	newsvd->type = svd->type;
1184 	newsvd->cred = svd->cred;
1185 	crhold(newsvd->cred);
1186 	newsvd->advice = svd->advice;
1187 	newsvd->pageadvice = svd->pageadvice;
1188 	newsvd->swresv = svd->swresv;
1189 	newsvd->flags = svd->flags;
1190 	newsvd->softlockcnt = 0;
1191 	newsvd->policy_info = svd->policy_info;
1192 	if ((newsvd->amp = svd->amp) == NULL) {
1193 		/*
1194 		 * Not attaching to a shared anon object.
1195 		 */
1196 		newsvd->anon_index = 0;
1197 	} else {
1198 		struct anon_map *amp;
1199 
1200 		amp = svd->amp;
1201 		if (svd->type == MAP_SHARED) {
1202 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1203 			amp->refcnt++;
1204 			ANON_LOCK_EXIT(&amp->a_rwlock);
1205 			newsvd->anon_index = svd->anon_index;
1206 		} else {
1207 			int reclaim = 1;
1208 
1209 			/*
1210 			 * Allocate and initialize new anon_map structure.
1211 			 */
1212 			newsvd->amp = anonmap_alloc(newseg->s_size, 0);
1213 			newsvd->amp->a_szc = newseg->s_szc;
1214 			newsvd->anon_index = 0;
1215 
1216 			/*
1217 			 * We don't have to acquire the anon_map lock
1218 			 * for the new segment (since it belongs to an
1219 			 * address space that is still not associated
1220 			 * with any process), or the segment in the old
1221 			 * address space (since all threads in it
1222 			 * are stopped while duplicating the address space).
1223 			 */
1224 
1225 			/*
1226 			 * The goal of the following code is to make sure that
1227 			 * softlocked pages do not end up as copy on write
1228 			 * pages.  This would cause problems where one
1229 			 * thread writes to a page that is COW and a different
1230 			 * thread in the same process has softlocked it.  The
1231 			 * softlock lock would move away from this process
1232 			 * because the write would cause this process to get
1233 			 * a copy (without the softlock).
1234 			 *
1235 			 * The strategy here is to just break the
1236 			 * sharing on pages that could possibly be
1237 			 * softlocked.
1238 			 */
1239 retry:
1240 			if (svd->softlockcnt) {
1241 				struct anon *ap, *newap;
1242 				size_t i;
1243 				uint_t vpprot;
1244 				page_t *anon_pl[1+1], *pp;
1245 				caddr_t addr;
1246 				ulong_t anon_idx = 0;
1247 
1248 				/*
1249 				 * The softlock count might be non zero
1250 				 * because some pages are still stuck in the
1251 				 * cache for lazy reclaim. Flush the cache
1252 				 * now. This should drop the count to zero.
1253 				 * [or there is really I/O going on to these
1254 				 * pages]. Note, we have the writers lock so
1255 				 * nothing gets inserted during the flush.
1256 				 */
1257 				if (reclaim == 1) {
1258 					segvn_purge(seg);
1259 					reclaim = 0;
1260 					goto retry;
1261 				}
1262 				i = btopr(seg->s_size);
1263 				addr = seg->s_base;
1264 				/*
1265 				 * XXX break cow sharing using PAGESIZE
1266 				 * pages. They will be relocated into larger
1267 				 * pages at fault time.
1268 				 */
1269 				while (i-- > 0) {
1270 					if (ap = anon_get_ptr(amp->ahp,
1271 					    anon_idx)) {
1272 						error = anon_getpage(&ap,
1273 						    &vpprot, anon_pl, PAGESIZE,
1274 						    seg, addr, S_READ,
1275 						    svd->cred);
1276 						if (error) {
1277 							newsvd->vpage = NULL;
1278 							goto out;
1279 						}
1280 						/*
1281 						 * prot need not be computed
1282 						 * below 'cause anon_private is
1283 						 * going to ignore it anyway
1284 						 * as child doesn't inherit
1285 						 * pagelock from parent.
1286 						 */
1287 						prot = svd->pageprot ?
1288 						    VPP_PROT(
1289 						    &svd->vpage[
1290 						    seg_page(seg, addr)])
1291 						    : svd->prot;
1292 						pp = anon_private(&newap,
1293 						    newseg, addr, prot,
1294 						    anon_pl[0],	0,
1295 						    newsvd->cred);
1296 						if (pp == NULL) {
1297 							/* no mem abort */
1298 							newsvd->vpage = NULL;
1299 							error = ENOMEM;
1300 							goto out;
1301 						}
1302 						(void) anon_set_ptr(
1303 						    newsvd->amp->ahp, anon_idx,
1304 						    newap, ANON_SLEEP);
1305 						page_unlock(pp);
1306 					}
1307 					addr += PAGESIZE;
1308 					anon_idx++;
1309 				}
1310 			} else {	/* common case */
1311 				if (seg->s_szc != 0) {
1312 					/*
1313 					 * If at least one of anon slots of a
1314 					 * large page exists then make sure
1315 					 * all anon slots of a large page
1316 					 * exist to avoid partial cow sharing
1317 					 * of a large page in the future.
1318 					 */
1319 					anon_dup_fill_holes(amp->ahp,
1320 					    svd->anon_index, newsvd->amp->ahp,
1321 					    0, seg->s_size, seg->s_szc,
1322 					    svd->vp != NULL);
1323 				} else {
1324 					anon_dup(amp->ahp, svd->anon_index,
1325 					    newsvd->amp->ahp, 0, seg->s_size);
1326 				}
1327 
1328 				hat_clrattr(seg->s_as->a_hat, seg->s_base,
1329 				    seg->s_size, PROT_WRITE);
1330 			}
1331 		}
1332 	}
1333 	/*
1334 	 * If necessary, create a vpage structure for the new segment.
1335 	 * Do not copy any page lock indications.
1336 	 */
1337 	if (svd->vpage != NULL) {
1338 		uint_t i;
1339 		struct vpage *ovp = svd->vpage;
1340 		struct vpage *nvp;
1341 
1342 		nvp = newsvd->vpage =
1343 		    kmem_alloc(vpgtob(npages), KM_SLEEP);
1344 		for (i = 0; i < npages; i++) {
1345 			*nvp = *ovp++;
1346 			VPP_CLRPPLOCK(nvp++);
1347 		}
1348 	} else
1349 		newsvd->vpage = NULL;
1350 
1351 	/* Inform the vnode of the new mapping */
1352 	if (newsvd->vp != NULL) {
1353 		error = VOP_ADDMAP(newsvd->vp, (offset_t)newsvd->offset,
1354 		    newseg->s_as, newseg->s_base, newseg->s_size, newsvd->prot,
1355 		    newsvd->maxprot, newsvd->type, newsvd->cred);
1356 	}
1357 out:
1358 	return (error);
1359 }
1360 
1361 
1362 /*
1363  * callback function used by segvn_unmap to invoke free_vp_pages() for only
1364  * those pages actually processed by the HAT
1365  */
1366 extern int free_pages;
1367 
1368 static void
1369 segvn_hat_unload_callback(hat_callback_t *cb)
1370 {
1371 	struct seg		*seg = cb->hcb_data;
1372 	struct segvn_data	*svd = (struct segvn_data *)seg->s_data;
1373 	size_t			len;
1374 	u_offset_t		off;
1375 
1376 	ASSERT(svd->vp != NULL);
1377 	ASSERT(cb->hcb_end_addr > cb->hcb_start_addr);
1378 	ASSERT(cb->hcb_start_addr >= seg->s_base);
1379 
1380 	len = cb->hcb_end_addr - cb->hcb_start_addr;
1381 	off = cb->hcb_start_addr - seg->s_base;
1382 	free_vp_pages(svd->vp, svd->offset + off, len);
1383 }
1384 
1385 
1386 static int
1387 segvn_unmap(struct seg *seg, caddr_t addr, size_t len)
1388 {
1389 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1390 	struct segvn_data *nsvd;
1391 	struct seg *nseg;
1392 	struct anon_map *amp;
1393 	pgcnt_t	opages;		/* old segment size in pages */
1394 	pgcnt_t	npages;		/* new segment size in pages */
1395 	pgcnt_t	dpages;		/* pages being deleted (unmapped) */
1396 	hat_callback_t callback;	/* used for free_vp_pages() */
1397 	hat_callback_t *cbp = NULL;
1398 	caddr_t nbase;
1399 	size_t nsize;
1400 	size_t oswresv;
1401 	int reclaim = 1;
1402 
1403 	/*
1404 	 * We don't need any segment level locks for "segvn" data
1405 	 * since the address space is "write" locked.
1406 	 */
1407 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1408 
1409 	/*
1410 	 * Fail the unmap if pages are SOFTLOCKed through this mapping.
1411 	 * softlockcnt is protected from change by the as write lock.
1412 	 */
1413 retry:
1414 	if (svd->softlockcnt > 0) {
1415 		/*
1416 		 * since we do have the writers lock nobody can fill
1417 		 * the cache during the purge. The flush either succeeds
1418 		 * or we still have pending I/Os.
1419 		 */
1420 		if (reclaim == 1) {
1421 			segvn_purge(seg);
1422 			reclaim = 0;
1423 			goto retry;
1424 		}
1425 		return (EAGAIN);
1426 	}
1427 
1428 	/*
1429 	 * Check for bad sizes
1430 	 */
1431 	if (addr < seg->s_base || addr + len > seg->s_base + seg->s_size ||
1432 	    (len & PAGEOFFSET) || ((uintptr_t)addr & PAGEOFFSET)) {
1433 		panic("segvn_unmap");
1434 		/*NOTREACHED*/
1435 	}
1436 
1437 	if (seg->s_szc != 0) {
1438 		size_t pgsz = page_get_pagesize(seg->s_szc);
1439 		int err;
1440 		if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) {
1441 			ASSERT(seg->s_base != addr || seg->s_size != len);
1442 			VM_STAT_ADD(segvnvmstats.demoterange[0]);
1443 			err = segvn_demote_range(seg, addr, len, SDR_END);
1444 			if (err == 0) {
1445 				return (IE_RETRY);
1446 			}
1447 			return (err);
1448 		}
1449 	}
1450 
1451 	/* Inform the vnode of the unmapping. */
1452 	if (svd->vp) {
1453 		int error;
1454 
1455 		error = VOP_DELMAP(svd->vp,
1456 			(offset_t)svd->offset + (uintptr_t)(addr - seg->s_base),
1457 			seg->s_as, addr, len, svd->prot, svd->maxprot,
1458 			svd->type, svd->cred);
1459 
1460 		if (error == EAGAIN)
1461 			return (error);
1462 	}
1463 	/*
1464 	 * Remove any page locks set through this mapping.
1465 	 */
1466 	(void) segvn_lockop(seg, addr, len, 0, MC_UNLOCK, NULL, 0);
1467 
1468 	/*
1469 	 * Unload any hardware translations in the range to be taken out.
1470 	 * Use a callback to invoke free_vp_pages() effectively.
1471 	 */
1472 	if (svd->vp != NULL && free_pages != 0) {
1473 		callback.hcb_data = seg;
1474 		callback.hcb_function = segvn_hat_unload_callback;
1475 		cbp = &callback;
1476 	}
1477 	hat_unload_callback(seg->s_as->a_hat, addr, len, HAT_UNLOAD_UNMAP, cbp);
1478 
1479 	/*
1480 	 * Check for entire segment
1481 	 */
1482 	if (addr == seg->s_base && len == seg->s_size) {
1483 		seg_free(seg);
1484 		return (0);
1485 	}
1486 
1487 	opages = seg_pages(seg);
1488 	dpages = btop(len);
1489 	npages = opages - dpages;
1490 	amp = svd->amp;
1491 
1492 	/*
1493 	 * Check for beginning of segment
1494 	 */
1495 	if (addr == seg->s_base) {
1496 		if (svd->vpage != NULL) {
1497 			size_t nbytes;
1498 			struct vpage *ovpage;
1499 
1500 			ovpage = svd->vpage;	/* keep pointer to vpage */
1501 
1502 			nbytes = vpgtob(npages);
1503 			svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
1504 			bcopy(&ovpage[dpages], svd->vpage, nbytes);
1505 
1506 			/* free up old vpage */
1507 			kmem_free(ovpage, vpgtob(opages));
1508 		}
1509 		if (amp != NULL) {
1510 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1511 			if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
1512 				/*
1513 				 * Free up now unused parts of anon_map array.
1514 				 */
1515 				if (seg->s_szc != 0) {
1516 					anon_free_pages(amp->ahp,
1517 					    svd->anon_index, len, seg->s_szc);
1518 				} else {
1519 					anon_free(amp->ahp, svd->anon_index,
1520 					    len);
1521 				}
1522 
1523 				/*
1524 				 * Unreserve swap space for the unmapped chunk
1525 				 * of this segment in case it's MAP_SHARED
1526 				 */
1527 				if (svd->type == MAP_SHARED) {
1528 					anon_unresv(len);
1529 					amp->swresv -= len;
1530 				}
1531 			}
1532 			ANON_LOCK_EXIT(&amp->a_rwlock);
1533 			svd->anon_index += dpages;
1534 		}
1535 		if (svd->vp != NULL)
1536 			svd->offset += len;
1537 
1538 		if (svd->swresv) {
1539 			if (svd->flags & MAP_NORESERVE) {
1540 				ASSERT(amp);
1541 				oswresv = svd->swresv;
1542 
1543 				svd->swresv = ptob(anon_pages(amp->ahp,
1544 				    svd->anon_index, npages));
1545 				anon_unresv(oswresv - svd->swresv);
1546 			} else {
1547 				anon_unresv(len);
1548 				svd->swresv -= len;
1549 			}
1550 			TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
1551 				seg, len, 0);
1552 		}
1553 
1554 		seg->s_base += len;
1555 		seg->s_size -= len;
1556 		return (0);
1557 	}
1558 
1559 	/*
1560 	 * Check for end of segment
1561 	 */
1562 	if (addr + len == seg->s_base + seg->s_size) {
1563 		if (svd->vpage != NULL) {
1564 			size_t nbytes;
1565 			struct vpage *ovpage;
1566 
1567 			ovpage = svd->vpage;	/* keep pointer to vpage */
1568 
1569 			nbytes = vpgtob(npages);
1570 			svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
1571 			bcopy(ovpage, svd->vpage, nbytes);
1572 
1573 			/* free up old vpage */
1574 			kmem_free(ovpage, vpgtob(opages));
1575 
1576 		}
1577 		if (amp != NULL) {
1578 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1579 			if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
1580 				/*
1581 				 * Free up now unused parts of anon_map array
1582 				 */
1583 				if (seg->s_szc != 0) {
1584 					ulong_t an_idx = svd->anon_index +
1585 					    npages;
1586 					anon_free_pages(amp->ahp, an_idx,
1587 					    len, seg->s_szc);
1588 				} else {
1589 					anon_free(amp->ahp,
1590 					    svd->anon_index + npages, len);
1591 				}
1592 				/*
1593 				 * Unreserve swap space for the unmapped chunk
1594 				 * of this segment in case it's MAP_SHARED
1595 				 */
1596 				if (svd->type == MAP_SHARED) {
1597 					anon_unresv(len);
1598 					amp->swresv -= len;
1599 				}
1600 			}
1601 			ANON_LOCK_EXIT(&amp->a_rwlock);
1602 		}
1603 
1604 		if (svd->swresv) {
1605 			if (svd->flags & MAP_NORESERVE) {
1606 				ASSERT(amp);
1607 				oswresv = svd->swresv;
1608 				svd->swresv = ptob(anon_pages(amp->ahp,
1609 					svd->anon_index, npages));
1610 				anon_unresv(oswresv - svd->swresv);
1611 			} else {
1612 				anon_unresv(len);
1613 				svd->swresv -= len;
1614 			}
1615 			TRACE_3(TR_FAC_VM, TR_ANON_PROC,
1616 				"anon proc:%p %lu %u", seg, len, 0);
1617 		}
1618 
1619 		seg->s_size -= len;
1620 		return (0);
1621 	}
1622 
1623 	/*
1624 	 * The section to go is in the middle of the segment,
1625 	 * have to make it into two segments.  nseg is made for
1626 	 * the high end while seg is cut down at the low end.
1627 	 */
1628 	nbase = addr + len;				/* new seg base */
1629 	nsize = (seg->s_base + seg->s_size) - nbase;	/* new seg size */
1630 	seg->s_size = addr - seg->s_base;		/* shrink old seg */
1631 	nseg = seg_alloc(seg->s_as, nbase, nsize);
1632 	if (nseg == NULL) {
1633 		panic("segvn_unmap seg_alloc");
1634 		/*NOTREACHED*/
1635 	}
1636 	nseg->s_ops = seg->s_ops;
1637 	nsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
1638 	nseg->s_data = (void *)nsvd;
1639 	nseg->s_szc = seg->s_szc;
1640 	*nsvd = *svd;
1641 	nsvd->offset = svd->offset + (uintptr_t)(nseg->s_base - seg->s_base);
1642 	nsvd->swresv = 0;
1643 	nsvd->softlockcnt = 0;
1644 
1645 	if (svd->vp != NULL) {
1646 		VN_HOLD(nsvd->vp);
1647 		if (nsvd->type == MAP_SHARED)
1648 			lgrp_shm_policy_init(NULL, nsvd->vp);
1649 	}
1650 	crhold(svd->cred);
1651 
1652 	if (svd->vpage == NULL) {
1653 		nsvd->vpage = NULL;
1654 	} else {
1655 		/* need to split vpage into two arrays */
1656 		size_t nbytes;
1657 		struct vpage *ovpage;
1658 
1659 		ovpage = svd->vpage;		/* keep pointer to vpage */
1660 
1661 		npages = seg_pages(seg);	/* seg has shrunk */
1662 		nbytes = vpgtob(npages);
1663 		svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
1664 
1665 		bcopy(ovpage, svd->vpage, nbytes);
1666 
1667 		npages = seg_pages(nseg);
1668 		nbytes = vpgtob(npages);
1669 		nsvd->vpage = kmem_alloc(nbytes, KM_SLEEP);
1670 
1671 		bcopy(&ovpage[opages - npages], nsvd->vpage, nbytes);
1672 
1673 		/* free up old vpage */
1674 		kmem_free(ovpage, vpgtob(opages));
1675 	}
1676 
1677 	if (amp == NULL) {
1678 		nsvd->amp = NULL;
1679 		nsvd->anon_index = 0;
1680 	} else {
1681 		/*
1682 		 * Need to create a new anon map for the new segment.
1683 		 * We'll also allocate a new smaller array for the old
1684 		 * smaller segment to save space.
1685 		 */
1686 		opages = btop((uintptr_t)(addr - seg->s_base));
1687 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1688 		if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
1689 			/*
1690 			 * Free up now unused parts of anon_map array
1691 			 */
1692 			if (seg->s_szc != 0) {
1693 				ulong_t an_idx = svd->anon_index + opages;
1694 				anon_free_pages(amp->ahp, an_idx, len,
1695 				    seg->s_szc);
1696 			} else {
1697 				anon_free(amp->ahp, svd->anon_index + opages,
1698 				    len);
1699 			}
1700 
1701 			/*
1702 			 * Unreserve swap space for the unmapped chunk
1703 			 * of this segment in case it's MAP_SHARED
1704 			 */
1705 			if (svd->type == MAP_SHARED) {
1706 				anon_unresv(len);
1707 				amp->swresv -= len;
1708 			}
1709 		}
1710 
1711 		nsvd->anon_index = svd->anon_index +
1712 		    btop((uintptr_t)(nseg->s_base - seg->s_base));
1713 		if (svd->type == MAP_SHARED) {
1714 			ASSERT(seg->s_szc == 0);
1715 			amp->refcnt++;
1716 			nsvd->amp = amp;
1717 		} else {
1718 			struct anon_map *namp;
1719 			struct anon_hdr *nahp;
1720 
1721 			ASSERT(svd->type == MAP_PRIVATE);
1722 			nahp = anon_create(btop(seg->s_size), ANON_SLEEP);
1723 			namp = anonmap_alloc(nseg->s_size, 0);
1724 			namp->a_szc = seg->s_szc;
1725 			(void) anon_copy_ptr(amp->ahp, svd->anon_index, nahp,
1726 			    0, btop(seg->s_size), ANON_SLEEP);
1727 			(void) anon_copy_ptr(amp->ahp, nsvd->anon_index,
1728 			    namp->ahp, 0, btop(nseg->s_size), ANON_SLEEP);
1729 			anon_release(amp->ahp, btop(amp->size));
1730 			svd->anon_index = 0;
1731 			nsvd->anon_index = 0;
1732 			amp->ahp = nahp;
1733 			amp->size = seg->s_size;
1734 			nsvd->amp = namp;
1735 		}
1736 		ANON_LOCK_EXIT(&amp->a_rwlock);
1737 	}
1738 	if (svd->swresv) {
1739 		if (svd->flags & MAP_NORESERVE) {
1740 			ASSERT(amp);
1741 			oswresv = svd->swresv;
1742 			svd->swresv = ptob(anon_pages(amp->ahp,
1743 				svd->anon_index, btop(seg->s_size)));
1744 			nsvd->swresv = ptob(anon_pages(nsvd->amp->ahp,
1745 				nsvd->anon_index, btop(nseg->s_size)));
1746 			ASSERT(oswresv >= (svd->swresv + nsvd->swresv));
1747 			anon_unresv(oswresv - (svd->swresv + nsvd->swresv));
1748 		} else {
1749 			if (seg->s_size + nseg->s_size + len != svd->swresv) {
1750 				panic("segvn_unmap: "
1751 				    "cannot split swap reservation");
1752 				/*NOTREACHED*/
1753 			}
1754 			anon_unresv(len);
1755 			svd->swresv = seg->s_size;
1756 			nsvd->swresv = nseg->s_size;
1757 		}
1758 		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
1759 			seg, len, 0);
1760 	}
1761 
1762 	return (0);			/* I'm glad that's all over with! */
1763 }
1764 
1765 static void
1766 segvn_free(struct seg *seg)
1767 {
1768 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1769 	pgcnt_t npages = seg_pages(seg);
1770 	struct anon_map *amp;
1771 	size_t len;
1772 
1773 	/*
1774 	 * We don't need any segment level locks for "segvn" data
1775 	 * since the address space is "write" locked.
1776 	 */
1777 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1778 
1779 	/*
1780 	 * Be sure to unlock pages. XXX Why do things get free'ed instead
1781 	 * of unmapped? XXX
1782 	 */
1783 	(void) segvn_lockop(seg, seg->s_base, seg->s_size,
1784 	    0, MC_UNLOCK, NULL, 0);
1785 
1786 	/*
1787 	 * Deallocate the vpage and anon pointers if necessary and possible.
1788 	 */
1789 	if (svd->vpage != NULL) {
1790 		kmem_free(svd->vpage, vpgtob(npages));
1791 		svd->vpage = NULL;
1792 	}
1793 	if ((amp = svd->amp) != NULL) {
1794 		/*
1795 		 * If there are no more references to this anon_map
1796 		 * structure, then deallocate the structure after freeing
1797 		 * up all the anon slot pointers that we can.
1798 		 */
1799 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1800 		if (--amp->refcnt == 0) {
1801 			if (svd->type == MAP_PRIVATE) {
1802 				/*
1803 				 * Private - we only need to anon_free
1804 				 * the part that this segment refers to.
1805 				 */
1806 				if (seg->s_szc != 0) {
1807 					anon_free_pages(amp->ahp,
1808 					    svd->anon_index, seg->s_size,
1809 					    seg->s_szc);
1810 				} else {
1811 					anon_free(amp->ahp, svd->anon_index,
1812 					    seg->s_size);
1813 				}
1814 			} else {
1815 				/*
1816 				 * Shared - anon_free the entire
1817 				 * anon_map's worth of stuff and
1818 				 * release any swap reservation.
1819 				 */
1820 				ASSERT(seg->s_szc == 0);
1821 				anon_free(amp->ahp, 0, amp->size);
1822 				if ((len = amp->swresv) != 0) {
1823 					anon_unresv(len);
1824 					TRACE_3(TR_FAC_VM, TR_ANON_PROC,
1825 						"anon proc:%p %lu %u",
1826 						seg, len, 0);
1827 				}
1828 			}
1829 			svd->amp = NULL;
1830 			ANON_LOCK_EXIT(&amp->a_rwlock);
1831 			anonmap_free(amp);
1832 		} else if (svd->type == MAP_PRIVATE) {
1833 			/*
1834 			 * We had a private mapping which still has
1835 			 * a held anon_map so just free up all the
1836 			 * anon slot pointers that we were using.
1837 			 */
1838 			if (seg->s_szc != 0) {
1839 				anon_free_pages(amp->ahp, svd->anon_index,
1840 				    seg->s_size, seg->s_szc);
1841 			} else {
1842 				anon_free(amp->ahp, svd->anon_index,
1843 				    seg->s_size);
1844 			}
1845 			ANON_LOCK_EXIT(&amp->a_rwlock);
1846 		} else {
1847 			ANON_LOCK_EXIT(&amp->a_rwlock);
1848 		}
1849 	}
1850 
1851 	/*
1852 	 * Release swap reservation.
1853 	 */
1854 	if ((len = svd->swresv) != 0) {
1855 		anon_unresv(svd->swresv);
1856 		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
1857 			seg, len, 0);
1858 		svd->swresv = 0;
1859 	}
1860 	/*
1861 	 * Release claim on vnode, credentials, and finally free the
1862 	 * private data.
1863 	 */
1864 	if (svd->vp != NULL) {
1865 		if (svd->type == MAP_SHARED)
1866 			lgrp_shm_policy_fini(NULL, svd->vp);
1867 		VN_RELE(svd->vp);
1868 		svd->vp = NULL;
1869 	}
1870 	crfree(svd->cred);
1871 	svd->cred = NULL;
1872 
1873 	seg->s_data = NULL;
1874 	kmem_cache_free(segvn_cache, svd);
1875 }
1876 
1877 /*
1878  * Do a F_SOFTUNLOCK call over the range requested.  The range must have
1879  * already been F_SOFTLOCK'ed.
1880  * Caller must always match addr and len of a softunlock with a previous
1881  * softlock with exactly the same addr and len.
1882  */
1883 static void
1884 segvn_softunlock(struct seg *seg, caddr_t addr, size_t len, enum seg_rw rw)
1885 {
1886 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1887 	page_t *pp;
1888 	caddr_t adr;
1889 	struct vnode *vp;
1890 	u_offset_t offset;
1891 	ulong_t anon_index;
1892 	struct anon_map *amp;
1893 	struct anon *ap = NULL;
1894 
1895 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1896 	ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
1897 
1898 	if ((amp = svd->amp) != NULL)
1899 		anon_index = svd->anon_index + seg_page(seg, addr);
1900 
1901 	hat_unlock(seg->s_as->a_hat, addr, len);
1902 	for (adr = addr; adr < addr + len; adr += PAGESIZE) {
1903 		if (amp != NULL) {
1904 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
1905 			if ((ap = anon_get_ptr(amp->ahp, anon_index++))
1906 								!= NULL) {
1907 				swap_xlate(ap, &vp, &offset);
1908 			} else {
1909 				vp = svd->vp;
1910 				offset = svd->offset +
1911 				    (uintptr_t)(adr - seg->s_base);
1912 			}
1913 			ANON_LOCK_EXIT(&amp->a_rwlock);
1914 		} else {
1915 			vp = svd->vp;
1916 			offset = svd->offset +
1917 			    (uintptr_t)(adr - seg->s_base);
1918 		}
1919 
1920 		/*
1921 		 * Use page_find() instead of page_lookup() to
1922 		 * find the page since we know that it is locked.
1923 		 */
1924 		pp = page_find(vp, offset);
1925 		if (pp == NULL) {
1926 			panic(
1927 			    "segvn_softunlock: addr %p, ap %p, vp %p, off %llx",
1928 			    (void *)adr, (void *)ap, (void *)vp, offset);
1929 			/*NOTREACHED*/
1930 		}
1931 
1932 		if (rw == S_WRITE) {
1933 			hat_setrefmod(pp);
1934 			if (seg->s_as->a_vbits)
1935 				hat_setstat(seg->s_as, adr, PAGESIZE,
1936 				    P_REF | P_MOD);
1937 		} else if (rw != S_OTHER) {
1938 			hat_setref(pp);
1939 			if (seg->s_as->a_vbits)
1940 				hat_setstat(seg->s_as, adr, PAGESIZE, P_REF);
1941 		}
1942 		TRACE_3(TR_FAC_VM, TR_SEGVN_FAULT,
1943 			"segvn_fault:pp %p vp %p offset %llx", pp, vp, offset);
1944 		page_unlock(pp);
1945 	}
1946 	mutex_enter(&freemem_lock); /* for availrmem */
1947 	availrmem += btop(len);
1948 	segvn_pages_locked -= btop(len);
1949 	svd->softlockcnt -= btop(len);
1950 	mutex_exit(&freemem_lock);
1951 	if (svd->softlockcnt == 0) {
1952 		/*
1953 		 * All SOFTLOCKS are gone. Wakeup any waiting
1954 		 * unmappers so they can try again to unmap.
1955 		 * Check for waiters first without the mutex
1956 		 * held so we don't always grab the mutex on
1957 		 * softunlocks.
1958 		 */
1959 		if (AS_ISUNMAPWAIT(seg->s_as)) {
1960 			mutex_enter(&seg->s_as->a_contents);
1961 			if (AS_ISUNMAPWAIT(seg->s_as)) {
1962 				AS_CLRUNMAPWAIT(seg->s_as);
1963 				cv_broadcast(&seg->s_as->a_cv);
1964 			}
1965 			mutex_exit(&seg->s_as->a_contents);
1966 		}
1967 	}
1968 }
1969 
1970 #define	PAGE_HANDLED	((page_t *)-1)
1971 
1972 /*
1973  * Release all the pages in the NULL terminated ppp list
1974  * which haven't already been converted to PAGE_HANDLED.
1975  */
1976 static void
1977 segvn_pagelist_rele(page_t **ppp)
1978 {
1979 	for (; *ppp != NULL; ppp++) {
1980 		if (*ppp != PAGE_HANDLED)
1981 			page_unlock(*ppp);
1982 	}
1983 }
1984 
1985 static int stealcow = 1;
1986 
1987 /*
1988  * Workaround for viking chip bug.  See bug id 1220902.
1989  * To fix this down in pagefault() would require importing so
1990  * much as and segvn code as to be unmaintainable.
1991  */
1992 int enable_mbit_wa = 0;
1993 
1994 /*
1995  * Handles all the dirty work of getting the right
1996  * anonymous pages and loading up the translations.
1997  * This routine is called only from segvn_fault()
1998  * when looping over the range of addresses requested.
1999  *
2000  * The basic algorithm here is:
2001  * 	If this is an anon_zero case
2002  *		Call anon_zero to allocate page
2003  *		Load up translation
2004  *		Return
2005  *	endif
2006  *	If this is an anon page
2007  *		Use anon_getpage to get the page
2008  *	else
2009  *		Find page in pl[] list passed in
2010  *	endif
2011  *	If not a cow
2012  *		Load up the translation to the page
2013  *		return
2014  *	endif
2015  *	Call anon_private to handle cow
2016  *	Load up (writable) translation to new page
2017  */
2018 static faultcode_t
2019 segvn_faultpage(
2020 	struct hat *hat,		/* the hat to use for mapping */
2021 	struct seg *seg,		/* seg_vn of interest */
2022 	caddr_t addr,			/* address in as */
2023 	u_offset_t off,			/* offset in vp */
2024 	struct vpage *vpage,		/* pointer to vpage for vp, off */
2025 	page_t *pl[],			/* object source page pointer */
2026 	uint_t vpprot,			/* access allowed to object pages */
2027 	enum fault_type type,		/* type of fault */
2028 	enum seg_rw rw,			/* type of access at fault */
2029 	int brkcow)			/* we may need to break cow */
2030 {
2031 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
2032 	page_t *pp, **ppp;
2033 	uint_t pageflags = 0;
2034 	page_t *anon_pl[1 + 1];
2035 	page_t *opp = NULL;		/* original page */
2036 	uint_t prot;
2037 	int err;
2038 	int cow;
2039 	int claim;
2040 	int steal = 0;
2041 	ulong_t anon_index;
2042 	struct anon *ap, *oldap;
2043 	struct anon_map *amp;
2044 	int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
2045 	int anon_lock = 0;
2046 	anon_sync_obj_t cookie;
2047 
2048 	if (svd->flags & MAP_TEXT) {
2049 		hat_flag |= HAT_LOAD_TEXT;
2050 	}
2051 
2052 	ASSERT(SEGVN_READ_HELD(seg->s_as, &svd->lock));
2053 	ASSERT(seg->s_szc == 0);
2054 
2055 	/*
2056 	 * Initialize protection value for this page.
2057 	 * If we have per page protection values check it now.
2058 	 */
2059 	if (svd->pageprot) {
2060 		uint_t protchk;
2061 
2062 		switch (rw) {
2063 		case S_READ:
2064 			protchk = PROT_READ;
2065 			break;
2066 		case S_WRITE:
2067 			protchk = PROT_WRITE;
2068 			break;
2069 		case S_EXEC:
2070 			protchk = PROT_EXEC;
2071 			break;
2072 		case S_OTHER:
2073 		default:
2074 			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
2075 			break;
2076 		}
2077 
2078 		prot = VPP_PROT(vpage);
2079 		if ((prot & protchk) == 0)
2080 			return (FC_PROT);	/* illegal access type */
2081 	} else {
2082 		prot = svd->prot;
2083 	}
2084 
2085 	if (type == F_SOFTLOCK) {
2086 		mutex_enter(&freemem_lock);
2087 		if (availrmem <= tune.t_minarmem) {
2088 			mutex_exit(&freemem_lock);
2089 			return (FC_MAKE_ERR(ENOMEM));	/* out of real memory */
2090 		} else {
2091 			svd->softlockcnt++;
2092 			availrmem--;
2093 			segvn_pages_locked++;
2094 		}
2095 		mutex_exit(&freemem_lock);
2096 	}
2097 
2098 	/*
2099 	 * Always acquire the anon array lock to prevent 2 threads from
2100 	 * allocating separate anon slots for the same "addr".
2101 	 */
2102 
2103 	if ((amp = svd->amp) != NULL) {
2104 		ASSERT(RW_READ_HELD(&amp->a_rwlock));
2105 		anon_index = svd->anon_index + seg_page(seg, addr);
2106 		anon_array_enter(amp, anon_index, &cookie);
2107 		anon_lock = 1;
2108 	}
2109 
2110 	if (svd->vp == NULL && amp != NULL) {
2111 		if ((ap = anon_get_ptr(amp->ahp, anon_index)) == NULL) {
2112 			/*
2113 			 * Allocate a (normally) writable anonymous page of
2114 			 * zeroes. If no advance reservations, reserve now.
2115 			 */
2116 			if (svd->flags & MAP_NORESERVE) {
2117 				if (anon_resv(ptob(1))) {
2118 					svd->swresv += ptob(1);
2119 				} else {
2120 					err = ENOMEM;
2121 					goto out;
2122 				}
2123 			}
2124 			if ((pp = anon_zero(seg, addr, &ap,
2125 			    svd->cred)) == NULL) {
2126 				err = ENOMEM;
2127 				goto out;	/* out of swap space */
2128 			}
2129 			/*
2130 			 * Re-acquire the anon_map lock and
2131 			 * initialize the anon array entry.
2132 			 */
2133 			(void) anon_set_ptr(amp->ahp, anon_index, ap,
2134 				ANON_SLEEP);
2135 			if (enable_mbit_wa) {
2136 				if (rw == S_WRITE)
2137 					hat_setmod(pp);
2138 				else if (!hat_ismod(pp))
2139 					prot &= ~PROT_WRITE;
2140 			}
2141 			/*
2142 			 * If AS_PAGLCK is set in a_flags (via memcntl(2)
2143 			 * with MC_LOCKAS, MCL_FUTURE) and this is a
2144 			 * MAP_NORESERVE segment, we may need to
2145 			 * permanently lock the page as it is being faulted
2146 			 * for the first time. The following text applies
2147 			 * only to MAP_NORESERVE segments:
2148 			 *
2149 			 * As per memcntl(2), if this segment was created
2150 			 * after MCL_FUTURE was applied (a "future"
2151 			 * segment), its pages must be locked.  If this
2152 			 * segment existed at MCL_FUTURE application (a
2153 			 * "past" segment), the interface is unclear.
2154 			 *
2155 			 * We decide to lock only if vpage is present:
2156 			 *
2157 			 * - "future" segments will have a vpage array (see
2158 			 *    as_map), and so will be locked as required
2159 			 *
2160 			 * - "past" segments may not have a vpage array,
2161 			 *    depending on whether events (such as
2162 			 *    mprotect) have occurred. Locking if vpage
2163 			 *    exists will preserve legacy behavior.  Not
2164 			 *    locking if vpage is absent, will not break
2165 			 *    the interface or legacy behavior.  Note that
2166 			 *    allocating vpage here if it's absent requires
2167 			 *    upgrading the segvn reader lock, the cost of
2168 			 *    which does not seem worthwhile.
2169 			 */
2170 			if (AS_ISPGLCK(seg->s_as) && vpage != NULL &&
2171 			    (svd->flags & MAP_NORESERVE)) {
2172 				claim = VPP_PROT(vpage) & PROT_WRITE;
2173 				ASSERT(svd->type == MAP_PRIVATE);
2174 				if (page_pp_lock(pp, claim, 0))
2175 					VPP_SETPPLOCK(vpage);
2176 			}
2177 
2178 
2179 			/*
2180 			 * Handle pages that have been marked for migration
2181 			 */
2182 			if (lgrp_optimizations())
2183 				page_migrate(seg, addr, &pp, 1);
2184 			hat_memload(hat, addr, pp, prot, hat_flag);
2185 
2186 			if (!(hat_flag & HAT_LOAD_LOCK))
2187 				page_unlock(pp);
2188 
2189 			anon_array_exit(&cookie);
2190 			return (0);
2191 		}
2192 	}
2193 
2194 	/*
2195 	 * Obtain the page structure via anon_getpage() if it is
2196 	 * a private copy of an object (the result of a previous
2197 	 * copy-on-write).
2198 	 */
2199 	if (amp != NULL) {
2200 		if ((ap = anon_get_ptr(amp->ahp, anon_index)) != NULL) {
2201 			err = anon_getpage(&ap, &vpprot, anon_pl, PAGESIZE,
2202 			    seg, addr, rw, svd->cred);
2203 			if (err)
2204 				goto out;
2205 
2206 			if (svd->type == MAP_SHARED) {
2207 				/*
2208 				 * If this is a shared mapping to an
2209 				 * anon_map, then ignore the write
2210 				 * permissions returned by anon_getpage().
2211 				 * They apply to the private mappings
2212 				 * of this anon_map.
2213 				 */
2214 				vpprot |= PROT_WRITE;
2215 			}
2216 			opp = anon_pl[0];
2217 		}
2218 	}
2219 
2220 	/*
2221 	 * Search the pl[] list passed in if it is from the
2222 	 * original object (i.e., not a private copy).
2223 	 */
2224 	if (opp == NULL) {
2225 		/*
2226 		 * Find original page.  We must be bringing it in
2227 		 * from the list in pl[].
2228 		 */
2229 		for (ppp = pl; (opp = *ppp) != NULL; ppp++) {
2230 			if (opp == PAGE_HANDLED)
2231 				continue;
2232 			ASSERT(opp->p_vnode == svd->vp); /* XXX */
2233 			if (opp->p_offset == off)
2234 				break;
2235 		}
2236 		if (opp == NULL) {
2237 			panic("segvn_faultpage not found");
2238 			/*NOTREACHED*/
2239 		}
2240 		*ppp = PAGE_HANDLED;
2241 
2242 	}
2243 
2244 	ASSERT(PAGE_LOCKED(opp));
2245 
2246 	TRACE_3(TR_FAC_VM, TR_SEGVN_FAULT,
2247 		"segvn_fault:pp %p vp %p offset %llx",
2248 		opp, NULL, 0);
2249 
2250 	/*
2251 	 * The fault is treated as a copy-on-write fault if a
2252 	 * write occurs on a private segment and the object
2253 	 * page (i.e., mapping) is write protected.  We assume
2254 	 * that fatal protection checks have already been made.
2255 	 */
2256 
2257 	cow = brkcow && ((vpprot & PROT_WRITE) == 0);
2258 
2259 	/*
2260 	 * If not a copy-on-write case load the translation
2261 	 * and return.
2262 	 */
2263 	if (cow == 0) {
2264 		if (IS_VMODSORT(opp->p_vnode) || enable_mbit_wa) {
2265 			if (rw == S_WRITE)
2266 				hat_setmod(opp);
2267 			else if (rw != S_OTHER && !hat_ismod(opp))
2268 				prot &= ~PROT_WRITE;
2269 		}
2270 
2271 		/*
2272 		 * Handle pages that have been marked for migration
2273 		 */
2274 		if (lgrp_optimizations())
2275 			page_migrate(seg, addr, &opp, 1);
2276 
2277 		hat_memload(hat, addr, opp, prot & vpprot, hat_flag);
2278 
2279 		if (!(hat_flag & HAT_LOAD_LOCK))
2280 			page_unlock(opp);
2281 
2282 		if (anon_lock) {
2283 			anon_array_exit(&cookie);
2284 		}
2285 		return (0);
2286 	}
2287 
2288 	hat_setref(opp);
2289 
2290 	ASSERT(amp != NULL && anon_lock);
2291 
2292 	/*
2293 	 * Steal the page only if it isn't a private page
2294 	 * since stealing a private page is not worth the effort.
2295 	 */
2296 	if ((ap = anon_get_ptr(amp->ahp, anon_index)) == NULL)
2297 		steal = 1;
2298 
2299 	/*
2300 	 * Steal the original page if the following conditions are true:
2301 	 *
2302 	 * We are low on memory, the page is not private, page is not large,
2303 	 * not shared, not modified, not `locked' or if we have it `locked'
2304 	 * (i.e., p_cowcnt == 1 and p_lckcnt == 0, which also implies
2305 	 * that the page is not shared) and if it doesn't have any
2306 	 * translations. page_struct_lock isn't needed to look at p_cowcnt
2307 	 * and p_lckcnt because we first get exclusive lock on page.
2308 	 */
2309 	(void) hat_pagesync(opp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD);
2310 
2311 	if (stealcow && freemem < minfree && steal && opp->p_szc == 0 &&
2312 	    page_tryupgrade(opp) && !hat_ismod(opp) &&
2313 	    ((opp->p_lckcnt == 0 && opp->p_cowcnt == 0) ||
2314 	    (opp->p_lckcnt == 0 && opp->p_cowcnt == 1 &&
2315 	    vpage != NULL && VPP_ISPPLOCK(vpage)))) {
2316 		/*
2317 		 * Check if this page has other translations
2318 		 * after unloading our translation.
2319 		 */
2320 		if (hat_page_is_mapped(opp)) {
2321 			hat_unload(seg->s_as->a_hat, addr, PAGESIZE,
2322 				HAT_UNLOAD);
2323 		}
2324 
2325 		/*
2326 		 * hat_unload() might sync back someone else's recent
2327 		 * modification, so check again.
2328 		 */
2329 		if (!hat_ismod(opp) && !hat_page_is_mapped(opp))
2330 			pageflags |= STEAL_PAGE;
2331 	}
2332 
2333 	/*
2334 	 * If we have a vpage pointer, see if it indicates that we have
2335 	 * ``locked'' the page we map -- if so, tell anon_private to
2336 	 * transfer the locking resource to the new page.
2337 	 *
2338 	 * See Statement at the beginning of segvn_lockop regarding
2339 	 * the way lockcnts/cowcnts are handled during COW.
2340 	 *
2341 	 */
2342 	if (vpage != NULL && VPP_ISPPLOCK(vpage))
2343 		pageflags |= LOCK_PAGE;
2344 
2345 	/*
2346 	 * Allocate a private page and perform the copy.
2347 	 * For MAP_NORESERVE reserve swap space now, unless this
2348 	 * is a cow fault on an existing anon page in which case
2349 	 * MAP_NORESERVE will have made advance reservations.
2350 	 */
2351 	if ((svd->flags & MAP_NORESERVE) && (ap == NULL)) {
2352 		if (anon_resv(ptob(1))) {
2353 			svd->swresv += ptob(1);
2354 		} else {
2355 			page_unlock(opp);
2356 			err = ENOMEM;
2357 			goto out;
2358 		}
2359 	}
2360 	oldap = ap;
2361 	pp = anon_private(&ap, seg, addr, prot, opp, pageflags, svd->cred);
2362 	if (pp == NULL) {
2363 		err = ENOMEM;	/* out of swap space */
2364 		goto out;
2365 	}
2366 
2367 	/*
2368 	 * If we copied away from an anonymous page, then
2369 	 * we are one step closer to freeing up an anon slot.
2370 	 *
2371 	 * NOTE:  The original anon slot must be released while
2372 	 * holding the "anon_map" lock.  This is necessary to prevent
2373 	 * other threads from obtaining a pointer to the anon slot
2374 	 * which may be freed if its "refcnt" is 1.
2375 	 */
2376 	if (oldap != NULL)
2377 		anon_decref(oldap);
2378 
2379 	(void) anon_set_ptr(amp->ahp, anon_index, ap, ANON_SLEEP);
2380 
2381 	ASSERT(!IS_VMODSORT(pp->p_vnode));
2382 	if (enable_mbit_wa) {
2383 		if (rw == S_WRITE)
2384 			hat_setmod(pp);
2385 		else if (!hat_ismod(pp))
2386 			prot &= ~PROT_WRITE;
2387 	}
2388 
2389 
2390 	/*
2391 	 * Handle pages that have been marked for migration
2392 	 */
2393 	if (lgrp_optimizations())
2394 		page_migrate(seg, addr, &pp, 1);
2395 	hat_memload(hat, addr, pp, prot, hat_flag);
2396 
2397 	if (!(hat_flag & HAT_LOAD_LOCK))
2398 		page_unlock(pp);
2399 
2400 	ASSERT(anon_lock);
2401 	anon_array_exit(&cookie);
2402 	return (0);
2403 out:
2404 	if (anon_lock)
2405 		anon_array_exit(&cookie);
2406 
2407 	if (type == F_SOFTLOCK) {
2408 		mutex_enter(&freemem_lock);
2409 		availrmem++;
2410 		segvn_pages_locked--;
2411 		svd->softlockcnt--;
2412 		mutex_exit(&freemem_lock);
2413 	}
2414 	return (FC_MAKE_ERR(err));
2415 }
2416 
2417 /*
2418  * relocate a bunch of smaller targ pages into one large repl page. all targ
2419  * pages must be complete pages smaller than replacement pages.
2420  * it's assumed that no page's szc can change since they are all PAGESIZE or
2421  * complete large pages locked SHARED.
2422  */
2423 static void
2424 segvn_relocate_pages(page_t **targ, page_t *replacement)
2425 {
2426 	page_t *pp;
2427 	pgcnt_t repl_npgs, curnpgs;
2428 	pgcnt_t i;
2429 	uint_t repl_szc = replacement->p_szc;
2430 	page_t *first_repl = replacement;
2431 	page_t *repl;
2432 	spgcnt_t npgs;
2433 
2434 	VM_STAT_ADD(segvnvmstats.relocatepages[0]);
2435 
2436 	ASSERT(repl_szc != 0);
2437 	npgs = repl_npgs = page_get_pagecnt(repl_szc);
2438 
2439 	i = 0;
2440 	while (repl_npgs) {
2441 		spgcnt_t nreloc;
2442 		int err;
2443 		ASSERT(replacement != NULL);
2444 		pp = targ[i];
2445 		ASSERT(pp->p_szc < repl_szc);
2446 		ASSERT(PAGE_EXCL(pp));
2447 		ASSERT(!PP_ISFREE(pp));
2448 		curnpgs = page_get_pagecnt(pp->p_szc);
2449 		if (curnpgs == 1) {
2450 			VM_STAT_ADD(segvnvmstats.relocatepages[1]);
2451 			repl = replacement;
2452 			page_sub(&replacement, repl);
2453 			ASSERT(PAGE_EXCL(repl));
2454 			ASSERT(!PP_ISFREE(repl));
2455 			ASSERT(repl->p_szc == repl_szc);
2456 		} else {
2457 			page_t *repl_savepp;
2458 			int j;
2459 			VM_STAT_ADD(segvnvmstats.relocatepages[2]);
2460 			repl_savepp = replacement;
2461 			for (j = 0; j < curnpgs; j++) {
2462 				repl = replacement;
2463 				page_sub(&replacement, repl);
2464 				ASSERT(PAGE_EXCL(repl));
2465 				ASSERT(!PP_ISFREE(repl));
2466 				ASSERT(repl->p_szc == repl_szc);
2467 				ASSERT(page_pptonum(targ[i + j]) ==
2468 				    page_pptonum(targ[i]) + j);
2469 			}
2470 			repl = repl_savepp;
2471 			ASSERT(IS_P2ALIGNED(page_pptonum(repl), curnpgs));
2472 		}
2473 		err = page_relocate(&pp, &repl, 0, 1, &nreloc, NULL);
2474 		if (err || nreloc != curnpgs) {
2475 			panic("segvn_relocate_pages: "
2476 			    "page_relocate failed err=%d curnpgs=%ld "
2477 			    "nreloc=%ld", err, curnpgs, nreloc);
2478 		}
2479 		ASSERT(curnpgs <= repl_npgs);
2480 		repl_npgs -= curnpgs;
2481 		i += curnpgs;
2482 	}
2483 	ASSERT(replacement == NULL);
2484 
2485 	repl = first_repl;
2486 	repl_npgs = npgs;
2487 	for (i = 0; i < repl_npgs; i++) {
2488 		ASSERT(PAGE_EXCL(repl));
2489 		ASSERT(!PP_ISFREE(repl));
2490 		targ[i] = repl;
2491 		page_downgrade(targ[i]);
2492 		repl = page_next(repl);
2493 	}
2494 }
2495 
2496 /*
2497  * Check if all pages in ppa array are complete smaller than szc pages and
2498  * their roots will still be aligned relative to their current size if the
2499  * entire ppa array is relocated into one szc page. If these conditions are
2500  * not met return 0.
2501  *
2502  * If all pages are properly aligned attempt to upgrade their locks
2503  * to exclusive mode. If it fails set *upgrdfail to 1 and return 0.
2504  * upgrdfail was set to 0 by caller.
2505  *
2506  * Return 1 if all pages are aligned and locked exclusively.
2507  *
2508  * If all pages in ppa array happen to be physically contiguous to make one
2509  * szc page and all exclusive locks are successfully obtained promote the page
2510  * size to szc and set *pszc to szc. Return 1 with pages locked shared.
2511  */
2512 static int
2513 segvn_full_szcpages(page_t **ppa, uint_t szc, int *upgrdfail, uint_t *pszc)
2514 {
2515 	page_t *pp;
2516 	pfn_t pfn;
2517 	pgcnt_t totnpgs = page_get_pagecnt(szc);
2518 	pfn_t first_pfn;
2519 	int contig = 1;
2520 	pgcnt_t i;
2521 	pgcnt_t j;
2522 	uint_t curszc;
2523 	pgcnt_t curnpgs;
2524 	int root = 0;
2525 
2526 	ASSERT(szc > 0);
2527 
2528 	VM_STAT_ADD(segvnvmstats.fullszcpages[0]);
2529 
2530 	for (i = 0; i < totnpgs; i++) {
2531 		pp = ppa[i];
2532 		ASSERT(PAGE_SHARED(pp));
2533 		ASSERT(!PP_ISFREE(pp));
2534 		pfn = page_pptonum(pp);
2535 		if (i == 0) {
2536 			if (!IS_P2ALIGNED(pfn, totnpgs)) {
2537 				contig = 0;
2538 			} else {
2539 				first_pfn = pfn;
2540 			}
2541 		} else if (contig && pfn != first_pfn + i) {
2542 			contig = 0;
2543 		}
2544 		if (pp->p_szc == 0) {
2545 			if (root) {
2546 				VM_STAT_ADD(segvnvmstats.fullszcpages[1]);
2547 				return (0);
2548 			}
2549 		} else if (!root) {
2550 			if ((curszc = pp->p_szc) >= szc) {
2551 				VM_STAT_ADD(segvnvmstats.fullszcpages[2]);
2552 				return (0);
2553 			}
2554 			if (curszc == 0) {
2555 				/*
2556 				 * p_szc changed means we don't have all pages
2557 				 * locked. return failure.
2558 				 */
2559 				VM_STAT_ADD(segvnvmstats.fullszcpages[3]);
2560 				return (0);
2561 			}
2562 			curnpgs = page_get_pagecnt(curszc);
2563 			if (!IS_P2ALIGNED(pfn, curnpgs) ||
2564 			    !IS_P2ALIGNED(i, curnpgs)) {
2565 				VM_STAT_ADD(segvnvmstats.fullszcpages[4]);
2566 				return (0);
2567 			}
2568 			root = 1;
2569 		} else {
2570 			ASSERT(i > 0);
2571 			VM_STAT_ADD(segvnvmstats.fullszcpages[5]);
2572 			if (pp->p_szc != curszc) {
2573 				VM_STAT_ADD(segvnvmstats.fullszcpages[6]);
2574 				return (0);
2575 			}
2576 			if (pfn - 1 != page_pptonum(ppa[i - 1])) {
2577 				panic("segvn_full_szcpages: "
2578 				    "large page not physically contiguous");
2579 			}
2580 			if (P2PHASE(pfn, curnpgs) == curnpgs - 1) {
2581 				root = 0;
2582 			}
2583 		}
2584 	}
2585 
2586 	for (i = 0; i < totnpgs; i++) {
2587 		ASSERT(ppa[i]->p_szc < szc);
2588 		if (!page_tryupgrade(ppa[i])) {
2589 			for (j = 0; j < i; j++) {
2590 				page_downgrade(ppa[j]);
2591 			}
2592 			*pszc = ppa[i]->p_szc;
2593 			*upgrdfail = 1;
2594 			VM_STAT_ADD(segvnvmstats.fullszcpages[7]);
2595 			return (0);
2596 		}
2597 	}
2598 
2599 	/*
2600 	 * When a page is put a free cachelist its szc is set to 0.  if file
2601 	 * system reclaimed pages from cachelist targ pages will be physically
2602 	 * contiguous with 0 p_szc.  in this case just upgrade szc of targ
2603 	 * pages without any relocations.
2604 	 * To avoid any hat issues with previous small mappings
2605 	 * hat_pageunload() the target pages first.
2606 	 */
2607 	if (contig) {
2608 		VM_STAT_ADD(segvnvmstats.fullszcpages[8]);
2609 		for (i = 0; i < totnpgs; i++) {
2610 			(void) hat_pageunload(ppa[i], HAT_FORCE_PGUNLOAD);
2611 		}
2612 		for (i = 0; i < totnpgs; i++) {
2613 			ppa[i]->p_szc = szc;
2614 		}
2615 		for (i = 0; i < totnpgs; i++) {
2616 			ASSERT(PAGE_EXCL(ppa[i]));
2617 			page_downgrade(ppa[i]);
2618 		}
2619 		if (pszc != NULL) {
2620 			*pszc = szc;
2621 		}
2622 	}
2623 	VM_STAT_ADD(segvnvmstats.fullszcpages[9]);
2624 	return (1);
2625 }
2626 
2627 /*
2628  * Create physically contiguous pages for [vp, off] - [vp, off +
2629  * page_size(szc)) range and for private segment return them in ppa array.
2630  * Pages are created either via IO or relocations.
2631  *
2632  * Return 1 on sucess and 0 on failure.
2633  *
2634  * If physically contiguos pages already exist for this range return 1 without
2635  * filling ppa array. Caller initializes ppa[0] as NULL to detect that ppa
2636  * array wasn't filled. In this case caller fills ppa array via VOP_GETPAGE().
2637  */
2638 
2639 static int
2640 segvn_fill_vp_pages(struct segvn_data *svd, vnode_t *vp, u_offset_t off,
2641     uint_t szc, page_t **ppa, page_t **ppplist, uint_t *ret_pszc,
2642     int *downsize)
2643 
2644 {
2645 	page_t *pplist = *ppplist;
2646 	size_t pgsz = page_get_pagesize(szc);
2647 	pgcnt_t pages = btop(pgsz);
2648 	ulong_t start_off = off;
2649 	u_offset_t eoff = off + pgsz;
2650 	spgcnt_t nreloc;
2651 	u_offset_t io_off = off;
2652 	size_t io_len;
2653 	page_t *io_pplist = NULL;
2654 	page_t *done_pplist = NULL;
2655 	pgcnt_t pgidx = 0;
2656 	page_t *pp;
2657 	page_t *newpp;
2658 	page_t *targpp;
2659 	int io_err = 0;
2660 	int i;
2661 	pfn_t pfn;
2662 	ulong_t ppages;
2663 	page_t *targ_pplist = NULL;
2664 	page_t *repl_pplist = NULL;
2665 	page_t *tmp_pplist;
2666 	int nios = 0;
2667 	uint_t pszc;
2668 	struct vattr va;
2669 
2670 	VM_STAT_ADD(segvnvmstats.fill_vp_pages[0]);
2671 
2672 	ASSERT(szc != 0);
2673 	ASSERT(pplist->p_szc == szc);
2674 
2675 	/*
2676 	 * downsize will be set to 1 only if we fail to lock pages. this will
2677 	 * allow subsequent faults to try to relocate the page again. If we
2678 	 * fail due to misalignment don't downsize and let the caller map the
2679 	 * whole region with small mappings to avoid more faults into the area
2680 	 * where we can't get large pages anyway.
2681 	 */
2682 	*downsize = 0;
2683 
2684 	while (off < eoff) {
2685 		newpp = pplist;
2686 		ASSERT(newpp != NULL);
2687 		ASSERT(PAGE_EXCL(newpp));
2688 		ASSERT(!PP_ISFREE(newpp));
2689 		/*
2690 		 * we pass NULL for nrelocp to page_lookup_create()
2691 		 * so that it doesn't relocate. We relocate here
2692 		 * later only after we make sure we can lock all
2693 		 * pages in the range we handle and they are all
2694 		 * aligned.
2695 		 */
2696 		pp = page_lookup_create(vp, off, SE_SHARED, newpp, NULL, 0);
2697 		ASSERT(pp != NULL);
2698 		ASSERT(!PP_ISFREE(pp));
2699 		ASSERT(pp->p_vnode == vp);
2700 		ASSERT(pp->p_offset == off);
2701 		if (pp == newpp) {
2702 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[1]);
2703 			page_sub(&pplist, pp);
2704 			ASSERT(PAGE_EXCL(pp));
2705 			ASSERT(page_iolock_assert(pp));
2706 			page_list_concat(&io_pplist, &pp);
2707 			off += PAGESIZE;
2708 			continue;
2709 		}
2710 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[2]);
2711 		pfn = page_pptonum(pp);
2712 		pszc = pp->p_szc;
2713 		if (pszc >= szc && targ_pplist == NULL && io_pplist == NULL &&
2714 		    IS_P2ALIGNED(pfn, pages)) {
2715 			ASSERT(repl_pplist == NULL);
2716 			ASSERT(done_pplist == NULL);
2717 			ASSERT(pplist == *ppplist);
2718 			page_unlock(pp);
2719 			page_free_replacement_page(pplist);
2720 			page_create_putback(pages);
2721 			*ppplist = NULL;
2722 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[3]);
2723 			return (1);
2724 		}
2725 		if (pszc >= szc) {
2726 			page_unlock(pp);
2727 			segvn_faultvnmpss_align_err1++;
2728 			goto out;
2729 		}
2730 		ppages = page_get_pagecnt(pszc);
2731 		if (!IS_P2ALIGNED(pfn, ppages)) {
2732 			ASSERT(pszc > 0);
2733 			/*
2734 			 * sizing down to pszc won't help.
2735 			 */
2736 			page_unlock(pp);
2737 			segvn_faultvnmpss_align_err2++;
2738 			goto out;
2739 		}
2740 		pfn = page_pptonum(newpp);
2741 		if (!IS_P2ALIGNED(pfn, ppages)) {
2742 			ASSERT(pszc > 0);
2743 			/*
2744 			 * sizing down to pszc won't help.
2745 			 */
2746 			page_unlock(pp);
2747 			segvn_faultvnmpss_align_err3++;
2748 			goto out;
2749 		}
2750 		if (!PAGE_EXCL(pp)) {
2751 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[4]);
2752 			page_unlock(pp);
2753 			*downsize = 1;
2754 			*ret_pszc = pp->p_szc;
2755 			goto out;
2756 		}
2757 		targpp = pp;
2758 		if (io_pplist != NULL) {
2759 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[5]);
2760 			io_len = off - io_off;
2761 			/*
2762 			 * Some file systems like NFS don't check EOF
2763 			 * conditions in VOP_PAGEIO(). Check it here
2764 			 * now that pages are locked SE_EXCL. Any file
2765 			 * truncation will wait until the pages are
2766 			 * unlocked so no need to worry that file will
2767 			 * be truncated after we check its size here.
2768 			 * XXX fix NFS to remove this check.
2769 			 */
2770 			va.va_mask = AT_SIZE;
2771 			if (VOP_GETATTR(vp, &va, ATTR_HINT, svd->cred) != 0) {
2772 				VM_STAT_ADD(segvnvmstats.fill_vp_pages[6]);
2773 				page_unlock(targpp);
2774 				goto out;
2775 			}
2776 			if (btopr(va.va_size) < btopr(io_off + io_len)) {
2777 				VM_STAT_ADD(segvnvmstats.fill_vp_pages[7]);
2778 				*downsize = 1;
2779 				*ret_pszc = 0;
2780 				page_unlock(targpp);
2781 				goto out;
2782 			}
2783 			io_err = VOP_PAGEIO(vp, io_pplist, io_off, io_len,
2784 				B_READ, svd->cred);
2785 			if (io_err) {
2786 				VM_STAT_ADD(segvnvmstats.fill_vp_pages[8]);
2787 				page_unlock(targpp);
2788 				if (io_err == EDEADLK) {
2789 					segvn_vmpss_pageio_deadlk_err++;
2790 				}
2791 				goto out;
2792 			}
2793 			nios++;
2794 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[9]);
2795 			while (io_pplist != NULL) {
2796 				pp = io_pplist;
2797 				page_sub(&io_pplist, pp);
2798 				ASSERT(page_iolock_assert(pp));
2799 				page_io_unlock(pp);
2800 				pgidx = (pp->p_offset - start_off) >>
2801 				    PAGESHIFT;
2802 				ASSERT(pgidx < pages);
2803 				ppa[pgidx] = pp;
2804 				page_list_concat(&done_pplist, &pp);
2805 			}
2806 		}
2807 		pp = targpp;
2808 		ASSERT(PAGE_EXCL(pp));
2809 		ASSERT(pp->p_szc <= pszc);
2810 		if (pszc != 0 && !group_page_trylock(pp, SE_EXCL)) {
2811 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[10]);
2812 			page_unlock(pp);
2813 			*downsize = 1;
2814 			*ret_pszc = pp->p_szc;
2815 			goto out;
2816 		}
2817 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[11]);
2818 		/*
2819 		 * page szc chould have changed before the entire group was
2820 		 * locked. reread page szc.
2821 		 */
2822 		pszc = pp->p_szc;
2823 		ppages = page_get_pagecnt(pszc);
2824 
2825 		/* link just the roots */
2826 		page_list_concat(&targ_pplist, &pp);
2827 		page_sub(&pplist, newpp);
2828 		page_list_concat(&repl_pplist, &newpp);
2829 		off += PAGESIZE;
2830 		while (--ppages != 0) {
2831 			newpp = pplist;
2832 			page_sub(&pplist, newpp);
2833 			off += PAGESIZE;
2834 		}
2835 		io_off = off;
2836 	}
2837 	if (io_pplist != NULL) {
2838 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[12]);
2839 		io_len = eoff - io_off;
2840 		va.va_mask = AT_SIZE;
2841 		if (VOP_GETATTR(vp, &va, ATTR_HINT, svd->cred) != 0) {
2842 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[13]);
2843 			goto out;
2844 		}
2845 		if (btopr(va.va_size) < btopr(io_off + io_len)) {
2846 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[14]);
2847 			*downsize = 1;
2848 			*ret_pszc = 0;
2849 			goto out;
2850 		}
2851 		io_err = VOP_PAGEIO(vp, io_pplist, io_off, io_len,
2852 		    B_READ, svd->cred);
2853 		if (io_err) {
2854 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[15]);
2855 			if (io_err == EDEADLK) {
2856 				segvn_vmpss_pageio_deadlk_err++;
2857 			}
2858 			goto out;
2859 		}
2860 		nios++;
2861 		while (io_pplist != NULL) {
2862 			pp = io_pplist;
2863 			page_sub(&io_pplist, pp);
2864 			ASSERT(page_iolock_assert(pp));
2865 			page_io_unlock(pp);
2866 			pgidx = (pp->p_offset - start_off) >> PAGESHIFT;
2867 			ASSERT(pgidx < pages);
2868 			ppa[pgidx] = pp;
2869 		}
2870 	}
2871 	/*
2872 	 * we're now bound to succeed or panic.
2873 	 * remove pages from done_pplist. it's not needed anymore.
2874 	 */
2875 	while (done_pplist != NULL) {
2876 		pp = done_pplist;
2877 		page_sub(&done_pplist, pp);
2878 	}
2879 	VM_STAT_ADD(segvnvmstats.fill_vp_pages[16]);
2880 	ASSERT(pplist == NULL);
2881 	*ppplist = NULL;
2882 	while (targ_pplist != NULL) {
2883 		int ret;
2884 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[17]);
2885 		ASSERT(repl_pplist);
2886 		pp = targ_pplist;
2887 		page_sub(&targ_pplist, pp);
2888 		pgidx = (pp->p_offset - start_off) >> PAGESHIFT;
2889 		newpp = repl_pplist;
2890 		page_sub(&repl_pplist, newpp);
2891 #ifdef DEBUG
2892 		pfn = page_pptonum(pp);
2893 		pszc = pp->p_szc;
2894 		ppages = page_get_pagecnt(pszc);
2895 		ASSERT(IS_P2ALIGNED(pfn, ppages));
2896 		pfn = page_pptonum(newpp);
2897 		ASSERT(IS_P2ALIGNED(pfn, ppages));
2898 		ASSERT(P2PHASE(pfn, pages) == pgidx);
2899 #endif
2900 		nreloc = 0;
2901 		ret = page_relocate(&pp, &newpp, 0, 1, &nreloc, NULL);
2902 		if (ret != 0 || nreloc == 0) {
2903 			panic("segvn_fill_vp_pages: "
2904 			    "page_relocate failed");
2905 		}
2906 		pp = newpp;
2907 		while (nreloc-- != 0) {
2908 			ASSERT(PAGE_EXCL(pp));
2909 			ASSERT(pp->p_vnode == vp);
2910 			ASSERT(pgidx ==
2911 			    ((pp->p_offset - start_off) >> PAGESHIFT));
2912 			ppa[pgidx++] = pp;
2913 			pp = page_next(pp);
2914 		}
2915 	}
2916 
2917 	if (svd->type == MAP_PRIVATE) {
2918 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[18]);
2919 		for (i = 0; i < pages; i++) {
2920 			ASSERT(ppa[i] != NULL);
2921 			ASSERT(PAGE_EXCL(ppa[i]));
2922 			ASSERT(ppa[i]->p_vnode == vp);
2923 			ASSERT(ppa[i]->p_offset ==
2924 			    start_off + (i << PAGESHIFT));
2925 			page_downgrade(ppa[i]);
2926 		}
2927 		ppa[pages] = NULL;
2928 	} else {
2929 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[19]);
2930 		/*
2931 		 * the caller will still call VOP_GETPAGE() for shared segments
2932 		 * to check FS write permissions. For private segments we map
2933 		 * file read only anyway.  so no VOP_GETPAGE is needed.
2934 		 */
2935 		for (i = 0; i < pages; i++) {
2936 			ASSERT(ppa[i] != NULL);
2937 			ASSERT(PAGE_EXCL(ppa[i]));
2938 			ASSERT(ppa[i]->p_vnode == vp);
2939 			ASSERT(ppa[i]->p_offset ==
2940 			    start_off + (i << PAGESHIFT));
2941 			page_unlock(ppa[i]);
2942 		}
2943 		ppa[0] = NULL;
2944 	}
2945 
2946 	return (1);
2947 out:
2948 	/*
2949 	 * Do the cleanup. Unlock target pages we didn't relocate. They are
2950 	 * linked on targ_pplist by root pages. reassemble unused replacement
2951 	 * and io pages back to pplist.
2952 	 */
2953 	if (io_pplist != NULL) {
2954 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[20]);
2955 		pp = io_pplist;
2956 		do {
2957 			ASSERT(pp->p_vnode == vp);
2958 			ASSERT(pp->p_offset == io_off);
2959 			ASSERT(page_iolock_assert(pp));
2960 			page_io_unlock(pp);
2961 			page_hashout(pp, NULL);
2962 			io_off += PAGESIZE;
2963 		} while ((pp = pp->p_next) != io_pplist);
2964 		page_list_concat(&io_pplist, &pplist);
2965 		pplist = io_pplist;
2966 	}
2967 	tmp_pplist = NULL;
2968 	while (targ_pplist != NULL) {
2969 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[21]);
2970 		pp = targ_pplist;
2971 		ASSERT(PAGE_EXCL(pp));
2972 		page_sub(&targ_pplist, pp);
2973 
2974 		pszc = pp->p_szc;
2975 		ppages = page_get_pagecnt(pszc);
2976 		ASSERT(IS_P2ALIGNED(page_pptonum(pp), ppages));
2977 
2978 		if (pszc != 0) {
2979 			group_page_unlock(pp);
2980 		}
2981 		page_unlock(pp);
2982 
2983 		pp = repl_pplist;
2984 		ASSERT(pp != NULL);
2985 		ASSERT(PAGE_EXCL(pp));
2986 		ASSERT(pp->p_szc == szc);
2987 		page_sub(&repl_pplist, pp);
2988 
2989 		ASSERT(IS_P2ALIGNED(page_pptonum(pp), ppages));
2990 
2991 		/* relink replacement page */
2992 		page_list_concat(&tmp_pplist, &pp);
2993 		while (--ppages != 0) {
2994 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[22]);
2995 			pp = page_next(pp);
2996 			ASSERT(PAGE_EXCL(pp));
2997 			ASSERT(pp->p_szc == szc);
2998 			page_list_concat(&tmp_pplist, &pp);
2999 		}
3000 	}
3001 	if (tmp_pplist != NULL) {
3002 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[23]);
3003 		page_list_concat(&tmp_pplist, &pplist);
3004 		pplist = tmp_pplist;
3005 	}
3006 	/*
3007 	 * at this point all pages are either on done_pplist or
3008 	 * pplist. They can't be all on done_pplist otherwise
3009 	 * we'd've been done.
3010 	 */
3011 	ASSERT(pplist != NULL);
3012 	if (nios != 0) {
3013 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[24]);
3014 		pp = pplist;
3015 		do {
3016 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[25]);
3017 			ASSERT(pp->p_szc == szc);
3018 			ASSERT(PAGE_EXCL(pp));
3019 			ASSERT(pp->p_vnode != vp);
3020 			pp->p_szc = 0;
3021 		} while ((pp = pp->p_next) != pplist);
3022 
3023 		pp = done_pplist;
3024 		do {
3025 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[26]);
3026 			ASSERT(pp->p_szc == szc);
3027 			ASSERT(PAGE_EXCL(pp));
3028 			ASSERT(pp->p_vnode == vp);
3029 			pp->p_szc = 0;
3030 		} while ((pp = pp->p_next) != done_pplist);
3031 
3032 		while (pplist != NULL) {
3033 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[27]);
3034 			pp = pplist;
3035 			page_sub(&pplist, pp);
3036 			page_free(pp, 0);
3037 		}
3038 
3039 		while (done_pplist != NULL) {
3040 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[28]);
3041 			pp = done_pplist;
3042 			page_sub(&done_pplist, pp);
3043 			page_unlock(pp);
3044 		}
3045 		*ppplist = NULL;
3046 		return (0);
3047 	}
3048 	ASSERT(pplist == *ppplist);
3049 	if (io_err) {
3050 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[29]);
3051 		/*
3052 		 * don't downsize on io error.
3053 		 * see if vop_getpage succeeds.
3054 		 * pplist may still be used in this case
3055 		 * for relocations.
3056 		 */
3057 		return (0);
3058 	}
3059 	VM_STAT_ADD(segvnvmstats.fill_vp_pages[30]);
3060 	page_free_replacement_page(pplist);
3061 	page_create_putback(pages);
3062 	*ppplist = NULL;
3063 	return (0);
3064 }
3065 
3066 int segvn_anypgsz = 0;
3067 
3068 #define	SEGVN_RESTORE_SOFTLOCK(type, pages) 		\
3069 		if ((type) == F_SOFTLOCK) {		\
3070 			mutex_enter(&freemem_lock);	\
3071 			availrmem += (pages);		\
3072 			segvn_pages_locked -= (pages);	\
3073 			svd->softlockcnt -= (pages);	\
3074 			mutex_exit(&freemem_lock);	\
3075 		}
3076 
3077 #define	SEGVN_UPDATE_MODBITS(ppa, pages, rw, prot, vpprot)		\
3078 		if (IS_VMODSORT((ppa)[0]->p_vnode)) {			\
3079 			if ((rw) == S_WRITE) {				\
3080 				for (i = 0; i < (pages); i++) {		\
3081 					ASSERT((ppa)[i]->p_vnode ==	\
3082 					    (ppa)[0]->p_vnode);		\
3083 					hat_setmod((ppa)[i]);		\
3084 				}					\
3085 			} else if ((rw) != S_OTHER &&			\
3086 			    ((prot) & (vpprot) & PROT_WRITE)) {		\
3087 				for (i = 0; i < (pages); i++) {		\
3088 					ASSERT((ppa)[i]->p_vnode ==	\
3089 					    (ppa)[0]->p_vnode);		\
3090 					if (!hat_ismod((ppa)[i])) {	\
3091 						prot &= ~PROT_WRITE;	\
3092 						break;			\
3093 					}				\
3094 				}					\
3095 			}						\
3096 		}
3097 
3098 #ifdef  VM_STATS
3099 
3100 #define	SEGVN_VMSTAT_FLTVNPAGES(idx)					\
3101 		VM_STAT_ADD(segvnvmstats.fltvnpages[(idx)]);
3102 
3103 #else /* VM_STATS */
3104 
3105 #define	SEGVN_VMSTAT_FLTVNPAGES(idx)
3106 
3107 #endif
3108 
3109 static faultcode_t
3110 segvn_fault_vnodepages(struct hat *hat, struct seg *seg, caddr_t lpgaddr,
3111     caddr_t lpgeaddr, enum fault_type type, enum seg_rw rw, caddr_t addr,
3112     caddr_t eaddr, int brkcow)
3113 {
3114 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
3115 	struct anon_map *amp = svd->amp;
3116 	uchar_t segtype = svd->type;
3117 	uint_t szc = seg->s_szc;
3118 	size_t pgsz = page_get_pagesize(szc);
3119 	size_t maxpgsz = pgsz;
3120 	pgcnt_t pages = btop(pgsz);
3121 	pgcnt_t maxpages = pages;
3122 	size_t ppasize = (pages + 1) * sizeof (page_t *);
3123 	caddr_t a = lpgaddr;
3124 	caddr_t	maxlpgeaddr = lpgeaddr;
3125 	u_offset_t off = svd->offset + (uintptr_t)(a - seg->s_base);
3126 	ulong_t aindx = svd->anon_index + seg_page(seg, a);
3127 	struct vpage *vpage = (svd->vpage != NULL) ?
3128 	    &svd->vpage[seg_page(seg, a)] : NULL;
3129 	vnode_t *vp = svd->vp;
3130 	page_t **ppa;
3131 	uint_t	pszc;
3132 	size_t	ppgsz;
3133 	pgcnt_t	ppages;
3134 	faultcode_t err = 0;
3135 	int ierr;
3136 	int vop_size_err = 0;
3137 	uint_t protchk, prot, vpprot;
3138 	ulong_t i;
3139 	int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
3140 	anon_sync_obj_t an_cookie;
3141 	enum seg_rw arw;
3142 	int alloc_failed = 0;
3143 	int adjszc_chk;
3144 	struct vattr va;
3145 	int xhat = 0;
3146 	page_t *pplist;
3147 	pfn_t pfn;
3148 	int physcontig;
3149 	int upgrdfail;
3150 	int segvn_anypgsz_vnode = 0; /* for now map vnode with 2 page sizes */
3151 
3152 	ASSERT(szc != 0);
3153 	ASSERT(vp != NULL);
3154 	ASSERT(brkcow == 0 || amp != NULL);
3155 	ASSERT(enable_mbit_wa == 0); /* no mbit simulations with large pages */
3156 	ASSERT(!(svd->flags & MAP_NORESERVE));
3157 	ASSERT(type != F_SOFTUNLOCK);
3158 	ASSERT(IS_P2ALIGNED(a, maxpgsz));
3159 	ASSERT(amp == NULL || IS_P2ALIGNED(aindx, maxpages));
3160 	ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
3161 	ASSERT(seg->s_szc < NBBY * sizeof (int));
3162 	ASSERT(type != F_SOFTLOCK || lpgeaddr - a == maxpgsz);
3163 
3164 	VM_STAT_COND_ADD(type == F_SOFTLOCK, segvnvmstats.fltvnpages[0]);
3165 	VM_STAT_COND_ADD(type != F_SOFTLOCK, segvnvmstats.fltvnpages[1]);
3166 
3167 	if (svd->flags & MAP_TEXT) {
3168 		hat_flag |= HAT_LOAD_TEXT;
3169 	}
3170 
3171 	if (svd->pageprot) {
3172 		switch (rw) {
3173 		case S_READ:
3174 			protchk = PROT_READ;
3175 			break;
3176 		case S_WRITE:
3177 			protchk = PROT_WRITE;
3178 			break;
3179 		case S_EXEC:
3180 			protchk = PROT_EXEC;
3181 			break;
3182 		case S_OTHER:
3183 		default:
3184 			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
3185 			break;
3186 		}
3187 	} else {
3188 		prot = svd->prot;
3189 		/* caller has already done segment level protection check. */
3190 	}
3191 
3192 	if (seg->s_as->a_hat != hat) {
3193 		xhat = 1;
3194 	}
3195 
3196 	if (rw == S_WRITE && segtype == MAP_PRIVATE) {
3197 		SEGVN_VMSTAT_FLTVNPAGES(2);
3198 		arw = S_READ;
3199 	} else {
3200 		arw = rw;
3201 	}
3202 
3203 	ppa = kmem_alloc(ppasize, KM_SLEEP);
3204 
3205 	VM_STAT_COND_ADD(amp != NULL, segvnvmstats.fltvnpages[3]);
3206 
3207 	for (;;) {
3208 		adjszc_chk = 0;
3209 		for (; a < lpgeaddr; a += pgsz, off += pgsz, aindx += pages) {
3210 			if (adjszc_chk) {
3211 				while (szc < seg->s_szc) {
3212 					uintptr_t e;
3213 					uint_t tszc;
3214 					tszc = segvn_anypgsz_vnode ? szc + 1 :
3215 					    seg->s_szc;
3216 					ppgsz = page_get_pagesize(tszc);
3217 					if (!IS_P2ALIGNED(a, ppgsz) ||
3218 					    ((alloc_failed >> tszc) &
3219 						0x1)) {
3220 						break;
3221 					}
3222 					SEGVN_VMSTAT_FLTVNPAGES(4);
3223 					szc = tszc;
3224 					pgsz = ppgsz;
3225 					pages = btop(pgsz);
3226 					e = P2ROUNDUP((uintptr_t)eaddr, pgsz);
3227 					lpgeaddr = (caddr_t)e;
3228 				}
3229 			}
3230 
3231 		again:
3232 			if (IS_P2ALIGNED(a, maxpgsz) && amp != NULL) {
3233 				ASSERT(IS_P2ALIGNED(aindx, maxpages));
3234 				ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
3235 				anon_array_enter(amp, aindx, &an_cookie);
3236 				if (anon_get_ptr(amp->ahp, aindx) != NULL) {
3237 					SEGVN_VMSTAT_FLTVNPAGES(5);
3238 					if (anon_pages(amp->ahp, aindx,
3239 					    maxpages) != maxpages) {
3240 						panic("segvn_fault_vnodepages:"
3241 						    " empty anon slots\n");
3242 					}
3243 					anon_array_exit(&an_cookie);
3244 					ANON_LOCK_EXIT(&amp->a_rwlock);
3245 					err = segvn_fault_anonpages(hat, seg,
3246 					    a, a + maxpgsz, type, rw,
3247 					    MAX(a, addr),
3248 					    MIN(a + maxpgsz, eaddr), brkcow);
3249 					if (err != 0) {
3250 						SEGVN_VMSTAT_FLTVNPAGES(6);
3251 						goto out;
3252 					}
3253 					if (szc < seg->s_szc) {
3254 						szc = seg->s_szc;
3255 						pgsz = maxpgsz;
3256 						pages = maxpages;
3257 						lpgeaddr = maxlpgeaddr;
3258 					}
3259 					goto next;
3260 				} else if (anon_pages(amp->ahp, aindx,
3261 				    maxpages)) {
3262 					panic("segvn_fault_vnodepages:"
3263 						" non empty anon slots\n");
3264 				} else {
3265 					SEGVN_VMSTAT_FLTVNPAGES(7);
3266 					anon_array_exit(&an_cookie);
3267 					ANON_LOCK_EXIT(&amp->a_rwlock);
3268 				}
3269 			}
3270 			ASSERT(!brkcow || IS_P2ALIGNED(a, maxpgsz));
3271 
3272 			if (svd->pageprot != 0 && IS_P2ALIGNED(a, maxpgsz)) {
3273 				ASSERT(vpage != NULL);
3274 				prot = VPP_PROT(vpage);
3275 				ASSERT(sameprot(seg, a, maxpgsz));
3276 				if ((prot & protchk) == 0) {
3277 					SEGVN_VMSTAT_FLTVNPAGES(8);
3278 					err = FC_PROT;
3279 					goto out;
3280 				}
3281 			}
3282 			if (type == F_SOFTLOCK) {
3283 				mutex_enter(&freemem_lock);
3284 				if (availrmem < tune.t_minarmem + pages) {
3285 					mutex_exit(&freemem_lock);
3286 					err = FC_MAKE_ERR(ENOMEM);
3287 					goto out;
3288 				} else {
3289 					availrmem -= pages;
3290 					segvn_pages_locked += pages;
3291 					svd->softlockcnt += pages;
3292 				}
3293 				mutex_exit(&freemem_lock);
3294 			}
3295 
3296 			pplist = NULL;
3297 			physcontig = 0;
3298 			ppa[0] = NULL;
3299 			if (!brkcow && szc &&
3300 			    !page_exists_physcontig(vp, off, szc,
3301 				segtype == MAP_PRIVATE ? ppa : NULL)) {
3302 				SEGVN_VMSTAT_FLTVNPAGES(9);
3303 				if (page_alloc_pages(seg, a, &pplist, NULL,
3304 				    szc, 0) && type != F_SOFTLOCK) {
3305 					SEGVN_VMSTAT_FLTVNPAGES(10);
3306 					pszc = 0;
3307 					ierr = -1;
3308 					alloc_failed |= (1 << szc);
3309 					break;
3310 				}
3311 				if (pplist != NULL &&
3312 				    vp->v_mpssdata == SEGVN_PAGEIO) {
3313 					int downsize;
3314 					SEGVN_VMSTAT_FLTVNPAGES(11);
3315 					physcontig = segvn_fill_vp_pages(svd,
3316 					    vp, off, szc, ppa, &pplist,
3317 					    &pszc, &downsize);
3318 					ASSERT(!physcontig || pplist == NULL);
3319 					if (!physcontig && downsize &&
3320 					    type != F_SOFTLOCK) {
3321 						ASSERT(pplist == NULL);
3322 						SEGVN_VMSTAT_FLTVNPAGES(12);
3323 						ierr = -1;
3324 						break;
3325 					}
3326 					ASSERT(!physcontig ||
3327 					    segtype == MAP_PRIVATE ||
3328 					    ppa[0] == NULL);
3329 					if (physcontig && ppa[0] == NULL) {
3330 						physcontig = 0;
3331 					}
3332 				}
3333 			} else if (!brkcow && szc && ppa[0] != NULL) {
3334 				SEGVN_VMSTAT_FLTVNPAGES(13);
3335 				ASSERT(segtype == MAP_PRIVATE);
3336 				physcontig = 1;
3337 			}
3338 
3339 			if (!physcontig) {
3340 				SEGVN_VMSTAT_FLTVNPAGES(14);
3341 				ppa[0] = NULL;
3342 				ierr = VOP_GETPAGE(vp, (offset_t)off, pgsz,
3343 				    &vpprot, ppa, pgsz, seg, a, arw,
3344 				    svd->cred);
3345 				if (segtype == MAP_PRIVATE) {
3346 					SEGVN_VMSTAT_FLTVNPAGES(15);
3347 					vpprot &= ~PROT_WRITE;
3348 				}
3349 			} else {
3350 				ASSERT(segtype == MAP_PRIVATE);
3351 				SEGVN_VMSTAT_FLTVNPAGES(16);
3352 				vpprot = PROT_ALL & ~PROT_WRITE;
3353 				ierr = 0;
3354 			}
3355 
3356 			if (ierr != 0) {
3357 				SEGVN_VMSTAT_FLTVNPAGES(17);
3358 				if (pplist != NULL) {
3359 					SEGVN_VMSTAT_FLTVNPAGES(18);
3360 					page_free_replacement_page(pplist);
3361 					page_create_putback(pages);
3362 				}
3363 				SEGVN_RESTORE_SOFTLOCK(type, pages);
3364 				if (a + pgsz <= eaddr) {
3365 					SEGVN_VMSTAT_FLTVNPAGES(19);
3366 					err = FC_MAKE_ERR(ierr);
3367 					goto out;
3368 				}
3369 				va.va_mask = AT_SIZE;
3370 				if (VOP_GETATTR(vp, &va, 0, svd->cred) != 0) {
3371 					SEGVN_VMSTAT_FLTVNPAGES(20);
3372 					err = FC_MAKE_ERR(EIO);
3373 					goto out;
3374 				}
3375 				if (btopr(va.va_size) >= btopr(off + pgsz)) {
3376 					SEGVN_VMSTAT_FLTVNPAGES(21);
3377 					err = FC_MAKE_ERR(EIO);
3378 					goto out;
3379 				}
3380 				if (btopr(va.va_size) <
3381 				    btopr(off + (eaddr - a))) {
3382 					SEGVN_VMSTAT_FLTVNPAGES(22);
3383 					err = FC_MAKE_ERR(EIO);
3384 					goto out;
3385 				}
3386 				if (brkcow || type == F_SOFTLOCK) {
3387 					/* can't reduce map area */
3388 					SEGVN_VMSTAT_FLTVNPAGES(23);
3389 					vop_size_err = 1;
3390 					goto out;
3391 				}
3392 				SEGVN_VMSTAT_FLTVNPAGES(24);
3393 				ASSERT(szc != 0);
3394 				pszc = 0;
3395 				ierr = -1;
3396 				break;
3397 			}
3398 
3399 			if (amp != NULL) {
3400 				ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
3401 				anon_array_enter(amp, aindx, &an_cookie);
3402 			}
3403 			if (amp != NULL &&
3404 			    anon_get_ptr(amp->ahp, aindx) != NULL) {
3405 				ulong_t taindx = P2ALIGN(aindx, maxpages);
3406 
3407 				SEGVN_VMSTAT_FLTVNPAGES(25);
3408 				if (anon_pages(amp->ahp, taindx, maxpages) !=
3409 				    maxpages) {
3410 					panic("segvn_fault_vnodepages:"
3411 					    " empty anon slots\n");
3412 				}
3413 				for (i = 0; i < pages; i++) {
3414 					page_unlock(ppa[i]);
3415 				}
3416 				anon_array_exit(&an_cookie);
3417 				ANON_LOCK_EXIT(&amp->a_rwlock);
3418 				if (pplist != NULL) {
3419 					page_free_replacement_page(pplist);
3420 					page_create_putback(pages);
3421 				}
3422 				SEGVN_RESTORE_SOFTLOCK(type, pages);
3423 				if (szc < seg->s_szc) {
3424 					SEGVN_VMSTAT_FLTVNPAGES(26);
3425 					/*
3426 					 * For private segments SOFTLOCK
3427 					 * either always breaks cow (any rw
3428 					 * type except S_READ_NOCOW) or
3429 					 * address space is locked as writer
3430 					 * (S_READ_NOCOW case) and anon slots
3431 					 * can't show up on second check.
3432 					 * Therefore if we are here for
3433 					 * SOFTLOCK case it must be a cow
3434 					 * break but cow break never reduces
3435 					 * szc. Thus the assert below.
3436 					 */
3437 					ASSERT(!brkcow && type != F_SOFTLOCK);
3438 					pszc = seg->s_szc;
3439 					ierr = -2;
3440 					break;
3441 				}
3442 				ASSERT(IS_P2ALIGNED(a, maxpgsz));
3443 				goto again;
3444 			}
3445 #ifdef DEBUG
3446 			if (amp != NULL) {
3447 				ulong_t taindx = P2ALIGN(aindx, maxpages);
3448 				ASSERT(!anon_pages(amp->ahp, taindx, maxpages));
3449 			}
3450 #endif /* DEBUG */
3451 
3452 			if (brkcow) {
3453 				ASSERT(amp != NULL);
3454 				ASSERT(pplist == NULL);
3455 				ASSERT(szc == seg->s_szc);
3456 				ASSERT(IS_P2ALIGNED(a, maxpgsz));
3457 				ASSERT(IS_P2ALIGNED(aindx, maxpages));
3458 				SEGVN_VMSTAT_FLTVNPAGES(27);
3459 				ierr = anon_map_privatepages(amp, aindx, szc,
3460 				    seg, a, prot, ppa, vpage, segvn_anypgsz,
3461 				    svd->cred);
3462 				if (ierr != 0) {
3463 					SEGVN_VMSTAT_FLTVNPAGES(28);
3464 					anon_array_exit(&an_cookie);
3465 					ANON_LOCK_EXIT(&amp->a_rwlock);
3466 					SEGVN_RESTORE_SOFTLOCK(type, pages);
3467 					err = FC_MAKE_ERR(ierr);
3468 					goto out;
3469 				}
3470 
3471 				ASSERT(!IS_VMODSORT(ppa[0]->p_vnode));
3472 				/*
3473 				 * p_szc can't be changed for locked
3474 				 * swapfs pages.
3475 				 */
3476 				hat_memload_array(hat, a, pgsz, ppa, prot,
3477 				    hat_flag);
3478 
3479 				if (!(hat_flag & HAT_LOAD_LOCK)) {
3480 					SEGVN_VMSTAT_FLTVNPAGES(29);
3481 					for (i = 0; i < pages; i++) {
3482 						page_unlock(ppa[i]);
3483 					}
3484 				}
3485 				anon_array_exit(&an_cookie);
3486 				ANON_LOCK_EXIT(&amp->a_rwlock);
3487 				goto next;
3488 			}
3489 
3490 			pfn = page_pptonum(ppa[0]);
3491 			/*
3492 			 * hat_page_demote() needs an EXCl lock on one of
3493 			 * constituent page_t's and it decreases root's p_szc
3494 			 * last. This means if root's p_szc is equal szc and
3495 			 * all its constituent pages are locked
3496 			 * hat_page_demote() that could have changed p_szc to
3497 			 * szc is already done and no new have page_demote()
3498 			 * can start for this large page.
3499 			 */
3500 
3501 			/*
3502 			 * we need to make sure same mapping size is used for
3503 			 * the same address range if there's a possibility the
3504 			 * adddress is already mapped because hat layer panics
3505 			 * when translation is loaded for the range already
3506 			 * mapped with a different page size.  We achieve it
3507 			 * by always using largest page size possible subject
3508 			 * to the constraints of page size, segment page size
3509 			 * and page alignment.  Since mappings are invalidated
3510 			 * when those constraints change and make it
3511 			 * impossible to use previously used mapping size no
3512 			 * mapping size conflicts should happen.
3513 			 */
3514 
3515 		chkszc:
3516 			if ((pszc = ppa[0]->p_szc) == szc &&
3517 			    IS_P2ALIGNED(pfn, pages)) {
3518 
3519 				SEGVN_VMSTAT_FLTVNPAGES(30);
3520 #ifdef DEBUG
3521 				for (i = 0; i < pages; i++) {
3522 					ASSERT(PAGE_LOCKED(ppa[i]));
3523 					ASSERT(!PP_ISFREE(ppa[i]));
3524 					ASSERT(page_pptonum(ppa[i]) ==
3525 					    pfn + i);
3526 					ASSERT(ppa[i]->p_szc == szc);
3527 					ASSERT(ppa[i]->p_vnode == vp);
3528 					ASSERT(ppa[i]->p_offset ==
3529 					    off + (i << PAGESHIFT));
3530 				}
3531 #endif /* DEBUG */
3532 				/*
3533 				 * All pages are of szc we need and they are
3534 				 * all locked so they can't change szc. load
3535 				 * translations.
3536 				 *
3537 				 * if page got promoted since last check
3538 				 * we don't need pplist.
3539 				 */
3540 				if (pplist != NULL) {
3541 					page_free_replacement_page(pplist);
3542 					page_create_putback(pages);
3543 				}
3544 				if (PP_ISMIGRATE(ppa[0])) {
3545 					page_migrate(seg, a, ppa, pages);
3546 				}
3547 				SEGVN_UPDATE_MODBITS(ppa, pages, rw,
3548 				    prot, vpprot);
3549 				if (!xhat) {
3550 					hat_memload_array(hat, a, pgsz, ppa,
3551 					    prot & vpprot, hat_flag);
3552 				} else {
3553 					/*
3554 					 * avoid large xhat mappings to FS
3555 					 * pages so that hat_page_demote()
3556 					 * doesn't need to check for xhat
3557 					 * large mappings.
3558 					 */
3559 					for (i = 0; i < pages; i++) {
3560 						hat_memload(hat,
3561 						    a + (i << PAGESHIFT),
3562 						    ppa[i], prot & vpprot,
3563 						    hat_flag);
3564 					}
3565 				}
3566 
3567 				if (!(hat_flag & HAT_LOAD_LOCK)) {
3568 					for (i = 0; i < pages; i++) {
3569 						page_unlock(ppa[i]);
3570 					}
3571 				}
3572 				if (amp != NULL) {
3573 					anon_array_exit(&an_cookie);
3574 					ANON_LOCK_EXIT(&amp->a_rwlock);
3575 				}
3576 				goto next;
3577 			}
3578 
3579 			/*
3580 			 * See if upsize is possible.
3581 			 */
3582 			if (pszc > szc && szc < seg->s_szc &&
3583 			    (segvn_anypgsz_vnode || pszc >= seg->s_szc)) {
3584 				pgcnt_t aphase;
3585 				uint_t pszc1 = MIN(pszc, seg->s_szc);
3586 				ppgsz = page_get_pagesize(pszc1);
3587 				ppages = btop(ppgsz);
3588 				aphase = btop(P2PHASE((uintptr_t)a, ppgsz));
3589 
3590 				ASSERT(type != F_SOFTLOCK);
3591 
3592 				SEGVN_VMSTAT_FLTVNPAGES(31);
3593 				if (aphase != P2PHASE(pfn, ppages)) {
3594 					segvn_faultvnmpss_align_err4++;
3595 				} else {
3596 					SEGVN_VMSTAT_FLTVNPAGES(32);
3597 					if (pplist != NULL) {
3598 						page_t *pl = pplist;
3599 						page_free_replacement_page(pl);
3600 						page_create_putback(pages);
3601 					}
3602 					for (i = 0; i < pages; i++) {
3603 						page_unlock(ppa[i]);
3604 					}
3605 					if (amp != NULL) {
3606 						anon_array_exit(&an_cookie);
3607 						ANON_LOCK_EXIT(&amp->a_rwlock);
3608 					}
3609 					pszc = pszc1;
3610 					ierr = -2;
3611 					break;
3612 				}
3613 			}
3614 
3615 			/*
3616 			 * check if we should use smallest mapping size.
3617 			 */
3618 			upgrdfail = 0;
3619 			if (szc == 0 || xhat ||
3620 			    (pszc >= szc &&
3621 			    !IS_P2ALIGNED(pfn, pages)) ||
3622 			    (pszc < szc &&
3623 			    !segvn_full_szcpages(ppa, szc, &upgrdfail,
3624 				&pszc))) {
3625 
3626 				if (upgrdfail && type != F_SOFTLOCK) {
3627 					/*
3628 					 * segvn_full_szcpages failed to lock
3629 					 * all pages EXCL. Size down.
3630 					 */
3631 					ASSERT(pszc < szc);
3632 
3633 					SEGVN_VMSTAT_FLTVNPAGES(33);
3634 
3635 					if (pplist != NULL) {
3636 						page_t *pl = pplist;
3637 						page_free_replacement_page(pl);
3638 						page_create_putback(pages);
3639 					}
3640 
3641 					for (i = 0; i < pages; i++) {
3642 						page_unlock(ppa[i]);
3643 					}
3644 					if (amp != NULL) {
3645 						anon_array_exit(&an_cookie);
3646 						ANON_LOCK_EXIT(&amp->a_rwlock);
3647 					}
3648 					ierr = -1;
3649 					break;
3650 				}
3651 				if (szc != 0 && !xhat) {
3652 					segvn_faultvnmpss_align_err5++;
3653 				}
3654 				SEGVN_VMSTAT_FLTVNPAGES(34);
3655 				if (pplist != NULL) {
3656 					page_free_replacement_page(pplist);
3657 					page_create_putback(pages);
3658 				}
3659 				SEGVN_UPDATE_MODBITS(ppa, pages, rw,
3660 				    prot, vpprot);
3661 				for (i = 0; i < pages; i++) {
3662 					hat_memload(hat, a + (i << PAGESHIFT),
3663 					    ppa[i], prot & vpprot, hat_flag);
3664 				}
3665 				if (!(hat_flag & HAT_LOAD_LOCK)) {
3666 					for (i = 0; i < pages; i++) {
3667 						page_unlock(ppa[i]);
3668 					}
3669 				}
3670 				if (amp != NULL) {
3671 					anon_array_exit(&an_cookie);
3672 					ANON_LOCK_EXIT(&amp->a_rwlock);
3673 				}
3674 				goto next;
3675 			}
3676 
3677 			if (pszc == szc) {
3678 				/*
3679 				 * segvn_full_szcpages() upgraded pages szc.
3680 				 */
3681 				ASSERT(pszc == ppa[0]->p_szc);
3682 				ASSERT(IS_P2ALIGNED(pfn, pages));
3683 				goto chkszc;
3684 			}
3685 
3686 			if (pszc > szc) {
3687 				kmutex_t *szcmtx;
3688 				SEGVN_VMSTAT_FLTVNPAGES(35);
3689 				/*
3690 				 * p_szc of ppa[0] can change since we haven't
3691 				 * locked all constituent pages. Call
3692 				 * page_lock_szc() to prevent szc changes.
3693 				 * This should be a rare case that happens when
3694 				 * multiple segments use a different page size
3695 				 * to map the same file offsets.
3696 				 */
3697 				szcmtx = page_szc_lock(ppa[0]);
3698 				pszc = ppa[0]->p_szc;
3699 				ASSERT(szcmtx != NULL || pszc == 0);
3700 				ASSERT(ppa[0]->p_szc <= pszc);
3701 				if (pszc <= szc) {
3702 					SEGVN_VMSTAT_FLTVNPAGES(36);
3703 					if (szcmtx != NULL) {
3704 						mutex_exit(szcmtx);
3705 					}
3706 					goto chkszc;
3707 				}
3708 				if (pplist != NULL) {
3709 					/*
3710 					 * page got promoted since last check.
3711 					 * we don't need preaalocated large
3712 					 * page.
3713 					 */
3714 					SEGVN_VMSTAT_FLTVNPAGES(37);
3715 					page_free_replacement_page(pplist);
3716 					page_create_putback(pages);
3717 				}
3718 				SEGVN_UPDATE_MODBITS(ppa, pages, rw,
3719 				    prot, vpprot);
3720 				hat_memload_array(hat, a, pgsz, ppa,
3721 				    prot & vpprot, hat_flag);
3722 				mutex_exit(szcmtx);
3723 				if (!(hat_flag & HAT_LOAD_LOCK)) {
3724 					for (i = 0; i < pages; i++) {
3725 						page_unlock(ppa[i]);
3726 					}
3727 				}
3728 				if (amp != NULL) {
3729 					anon_array_exit(&an_cookie);
3730 					ANON_LOCK_EXIT(&amp->a_rwlock);
3731 				}
3732 				goto next;
3733 			}
3734 
3735 			/*
3736 			 * if page got demoted since last check
3737 			 * we could have not allocated larger page.
3738 			 * allocate now.
3739 			 */
3740 			if (pplist == NULL &&
3741 			    page_alloc_pages(seg, a, &pplist, NULL, szc, 0) &&
3742 			    type != F_SOFTLOCK) {
3743 				SEGVN_VMSTAT_FLTVNPAGES(38);
3744 				for (i = 0; i < pages; i++) {
3745 					page_unlock(ppa[i]);
3746 				}
3747 				if (amp != NULL) {
3748 					anon_array_exit(&an_cookie);
3749 					ANON_LOCK_EXIT(&amp->a_rwlock);
3750 				}
3751 				ierr = -1;
3752 				alloc_failed |= (1 << szc);
3753 				break;
3754 			}
3755 
3756 			SEGVN_VMSTAT_FLTVNPAGES(39);
3757 
3758 			if (pplist != NULL) {
3759 				segvn_relocate_pages(ppa, pplist);
3760 #ifdef DEBUG
3761 			} else {
3762 				ASSERT(type == F_SOFTLOCK);
3763 				SEGVN_VMSTAT_FLTVNPAGES(40);
3764 #endif /* DEBUG */
3765 			}
3766 
3767 			SEGVN_UPDATE_MODBITS(ppa, pages, rw, prot, vpprot);
3768 
3769 			if (pplist == NULL && segvn_anypgsz_vnode == 0) {
3770 				ASSERT(type == F_SOFTLOCK);
3771 				for (i = 0; i < pages; i++) {
3772 					ASSERT(ppa[i]->p_szc < szc);
3773 					hat_memload(hat, a + (i << PAGESHIFT),
3774 					    ppa[i], prot & vpprot, hat_flag);
3775 				}
3776 			} else {
3777 				ASSERT(pplist != NULL || type == F_SOFTLOCK);
3778 				hat_memload_array(hat, a, pgsz, ppa,
3779 				    prot & vpprot, hat_flag);
3780 			}
3781 			if (!(hat_flag & HAT_LOAD_LOCK)) {
3782 				for (i = 0; i < pages; i++) {
3783 					ASSERT(PAGE_SHARED(ppa[i]));
3784 					page_unlock(ppa[i]);
3785 				}
3786 			}
3787 			if (amp != NULL) {
3788 				anon_array_exit(&an_cookie);
3789 				ANON_LOCK_EXIT(&amp->a_rwlock);
3790 			}
3791 
3792 		next:
3793 			if (vpage != NULL) {
3794 				vpage += pages;
3795 			}
3796 			adjszc_chk = 1;
3797 		}
3798 		if (a == lpgeaddr)
3799 			break;
3800 		ASSERT(a < lpgeaddr);
3801 
3802 		ASSERT(!brkcow && type != F_SOFTLOCK);
3803 
3804 		/*
3805 		 * ierr == -1 means we failed to map with a large page.
3806 		 * (either due to allocation/relocation failures or
3807 		 * misalignment with other mappings to this file.
3808 		 *
3809 		 * ierr == -2 means some other thread allocated a large page
3810 		 * after we gave up tp map with a large page.  retry with
3811 		 * larger mapping.
3812 		 */
3813 		ASSERT(ierr == -1 || ierr == -2);
3814 		ASSERT(ierr == -2 || szc != 0);
3815 		ASSERT(ierr == -1 || szc < seg->s_szc);
3816 		if (ierr == -2) {
3817 			SEGVN_VMSTAT_FLTVNPAGES(41);
3818 			ASSERT(pszc > szc && pszc <= seg->s_szc);
3819 			szc = pszc;
3820 		} else if (segvn_anypgsz_vnode) {
3821 			SEGVN_VMSTAT_FLTVNPAGES(42);
3822 			szc--;
3823 		} else {
3824 			SEGVN_VMSTAT_FLTVNPAGES(43);
3825 			ASSERT(pszc < szc);
3826 			/*
3827 			 * other process created pszc large page.
3828 			 * but we still have to drop to 0 szc.
3829 			 */
3830 			szc = 0;
3831 		}
3832 
3833 		pgsz = page_get_pagesize(szc);
3834 		pages = btop(pgsz);
3835 		if (ierr == -2) {
3836 			/*
3837 			 * Size up case. Note lpgaddr may only be needed for
3838 			 * softlock case so we don't adjust it here.
3839 			 */
3840 			a = (caddr_t)P2ALIGN((uintptr_t)a, pgsz);
3841 			ASSERT(a >= lpgaddr);
3842 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
3843 			off = svd->offset + (uintptr_t)(a - seg->s_base);
3844 			aindx = svd->anon_index + seg_page(seg, a);
3845 			vpage = (svd->vpage != NULL) ?
3846 			    &svd->vpage[seg_page(seg, a)] : NULL;
3847 		} else {
3848 			/*
3849 			 * Size down case. Note lpgaddr may only be needed for
3850 			 * softlock case so we don't adjust it here.
3851 			 */
3852 			ASSERT(IS_P2ALIGNED(a, pgsz));
3853 			ASSERT(IS_P2ALIGNED(lpgeaddr, pgsz));
3854 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
3855 			ASSERT(a < lpgeaddr);
3856 			if (a < addr) {
3857 				SEGVN_VMSTAT_FLTVNPAGES(44);
3858 				/*
3859 				 * The beginning of the large page region can
3860 				 * be pulled to the right to make a smaller
3861 				 * region. We haven't yet faulted a single
3862 				 * page.
3863 				 */
3864 				a = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
3865 				ASSERT(a >= lpgaddr);
3866 				off = svd->offset +
3867 				    (uintptr_t)(a - seg->s_base);
3868 				aindx = svd->anon_index + seg_page(seg, a);
3869 				vpage = (svd->vpage != NULL) ?
3870 				    &svd->vpage[seg_page(seg, a)] : NULL;
3871 			}
3872 		}
3873 	}
3874 out:
3875 	kmem_free(ppa, ppasize);
3876 	if (!err && !vop_size_err) {
3877 		SEGVN_VMSTAT_FLTVNPAGES(45);
3878 		return (0);
3879 	}
3880 	if (type == F_SOFTLOCK && a > lpgaddr) {
3881 		SEGVN_VMSTAT_FLTVNPAGES(46);
3882 		segvn_softunlock(seg, lpgaddr, a - lpgaddr, S_OTHER);
3883 	}
3884 	if (!vop_size_err) {
3885 		SEGVN_VMSTAT_FLTVNPAGES(47);
3886 		return (err);
3887 	}
3888 	ASSERT(brkcow || type == F_SOFTLOCK);
3889 	/*
3890 	 * Large page end is mapped beyond the end of file and it's a cow
3891 	 * fault or softlock so we can't reduce the map area.  For now just
3892 	 * demote the segment. This should really only happen if the end of
3893 	 * the file changed after the mapping was established since when large
3894 	 * page segments are created we make sure they don't extend beyond the
3895 	 * end of the file.
3896 	 */
3897 	SEGVN_VMSTAT_FLTVNPAGES(48);
3898 
3899 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
3900 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
3901 	err = 0;
3902 	if (seg->s_szc != 0) {
3903 		segvn_fltvnpages_clrszc_cnt++;
3904 		ASSERT(svd->softlockcnt == 0);
3905 		err = segvn_clrszc(seg);
3906 		if (err != 0) {
3907 			segvn_fltvnpages_clrszc_err++;
3908 		}
3909 	}
3910 	ASSERT(err || seg->s_szc == 0);
3911 	SEGVN_LOCK_DOWNGRADE(seg->s_as, &svd->lock);
3912 	/* segvn_fault will do its job as if szc had been zero to begin with */
3913 	return (err == 0 ? IE_RETRY : FC_MAKE_ERR(err));
3914 }
3915 
3916 /*
3917  * This routine will attempt to fault in one large page.
3918  * it will use smaller pages if that fails.
3919  * It should only be called for pure anonymous segments.
3920  */
3921 static faultcode_t
3922 segvn_fault_anonpages(struct hat *hat, struct seg *seg, caddr_t lpgaddr,
3923     caddr_t lpgeaddr, enum fault_type type, enum seg_rw rw, caddr_t addr,
3924     caddr_t eaddr, int brkcow)
3925 {
3926 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
3927 	struct anon_map *amp = svd->amp;
3928 	uchar_t segtype = svd->type;
3929 	uint_t szc = seg->s_szc;
3930 	size_t pgsz = page_get_pagesize(szc);
3931 	size_t maxpgsz = pgsz;
3932 	pgcnt_t pages = btop(pgsz);
3933 	size_t ppasize = pages * sizeof (page_t *);
3934 	caddr_t a = lpgaddr;
3935 	ulong_t aindx = svd->anon_index + seg_page(seg, a);
3936 	struct vpage *vpage = (svd->vpage != NULL) ?
3937 	    &svd->vpage[seg_page(seg, a)] : NULL;
3938 	page_t **ppa;
3939 	uint_t	ppa_szc;
3940 	faultcode_t err;
3941 	int ierr;
3942 	uint_t protchk, prot, vpprot;
3943 	int i;
3944 	int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
3945 	anon_sync_obj_t cookie;
3946 
3947 	ASSERT(szc != 0);
3948 	ASSERT(amp != NULL);
3949 	ASSERT(enable_mbit_wa == 0); /* no mbit simulations with large pages */
3950 	ASSERT(!(svd->flags & MAP_NORESERVE));
3951 	ASSERT(type != F_SOFTUNLOCK);
3952 	ASSERT(segtype == MAP_PRIVATE);
3953 	ASSERT(IS_P2ALIGNED(a, maxpgsz));
3954 
3955 	ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
3956 
3957 	VM_STAT_COND_ADD(type == F_SOFTLOCK, segvnvmstats.fltanpages[0]);
3958 	VM_STAT_COND_ADD(type != F_SOFTLOCK, segvnvmstats.fltanpages[1]);
3959 
3960 	if (svd->flags & MAP_TEXT) {
3961 		hat_flag |= HAT_LOAD_TEXT;
3962 	}
3963 
3964 	if (svd->pageprot) {
3965 		switch (rw) {
3966 		case S_READ:
3967 			protchk = PROT_READ;
3968 			break;
3969 		case S_WRITE:
3970 			protchk = PROT_WRITE;
3971 			break;
3972 		case S_EXEC:
3973 			protchk = PROT_EXEC;
3974 			break;
3975 		case S_OTHER:
3976 		default:
3977 			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
3978 			break;
3979 		}
3980 		VM_STAT_ADD(segvnvmstats.fltanpages[2]);
3981 	} else {
3982 		prot = svd->prot;
3983 		/* caller has already done segment level protection check. */
3984 	}
3985 
3986 	ppa = kmem_alloc(ppasize, KM_SLEEP);
3987 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
3988 	for (;;) {
3989 		for (; a < lpgeaddr; a += pgsz, aindx += pages) {
3990 			if (svd->pageprot != 0 && IS_P2ALIGNED(a, maxpgsz)) {
3991 				VM_STAT_ADD(segvnvmstats.fltanpages[3]);
3992 				ASSERT(vpage != NULL);
3993 				prot = VPP_PROT(vpage);
3994 				ASSERT(sameprot(seg, a, maxpgsz));
3995 				if ((prot & protchk) == 0) {
3996 					err = FC_PROT;
3997 					goto error;
3998 				}
3999 			}
4000 			if (type == F_SOFTLOCK) {
4001 				mutex_enter(&freemem_lock);
4002 				if (availrmem < tune.t_minarmem + pages) {
4003 					mutex_exit(&freemem_lock);
4004 					err = FC_MAKE_ERR(ENOMEM);
4005 					goto error;
4006 				} else {
4007 					availrmem -= pages;
4008 					segvn_pages_locked += pages;
4009 					svd->softlockcnt += pages;
4010 				}
4011 				mutex_exit(&freemem_lock);
4012 			}
4013 			anon_array_enter(amp, aindx, &cookie);
4014 			ppa_szc = (uint_t)-1;
4015 			ierr = anon_map_getpages(amp, aindx, szc, seg, a,
4016 				prot, &vpprot, ppa, &ppa_szc, vpage, rw, brkcow,
4017 				segvn_anypgsz, svd->cred);
4018 			if (ierr != 0) {
4019 				anon_array_exit(&cookie);
4020 				VM_STAT_ADD(segvnvmstats.fltanpages[4]);
4021 				if (type == F_SOFTLOCK) {
4022 					VM_STAT_ADD(segvnvmstats.fltanpages[5]);
4023 					mutex_enter(&freemem_lock);
4024 					availrmem += pages;
4025 					segvn_pages_locked -= pages;
4026 					svd->softlockcnt -= pages;
4027 					mutex_exit(&freemem_lock);
4028 				}
4029 				if (ierr > 0) {
4030 					VM_STAT_ADD(segvnvmstats.fltanpages[6]);
4031 					err = FC_MAKE_ERR(ierr);
4032 					goto error;
4033 				}
4034 				break;
4035 			}
4036 
4037 			ASSERT(!IS_VMODSORT(ppa[0]->p_vnode));
4038 
4039 			/*
4040 			 * Handle pages that have been marked for migration
4041 			 */
4042 			if (lgrp_optimizations())
4043 				page_migrate(seg, a, ppa, pages);
4044 
4045 			hat_memload_array(hat, a, pgsz, ppa,
4046 			    prot & vpprot, hat_flag);
4047 
4048 			if (hat_flag & HAT_LOAD_LOCK) {
4049 				VM_STAT_ADD(segvnvmstats.fltanpages[7]);
4050 			} else {
4051 				VM_STAT_ADD(segvnvmstats.fltanpages[8]);
4052 				for (i = 0; i < pages; i++)
4053 					page_unlock(ppa[i]);
4054 			}
4055 			if (vpage != NULL)
4056 				vpage += pages;
4057 
4058 			anon_array_exit(&cookie);
4059 		}
4060 		if (a == lpgeaddr)
4061 			break;
4062 		ASSERT(a < lpgeaddr);
4063 		/*
4064 		 * ierr == -1 means we failed to allocate a large page.
4065 		 * so do a size down operation.
4066 		 *
4067 		 * ierr == -2 means some other process that privately shares
4068 		 * pages with this process has allocated a larger page and we
4069 		 * need to retry with larger pages. So do a size up
4070 		 * operation. This relies on the fact that large pages are
4071 		 * never partially shared i.e. if we share any constituent
4072 		 * page of a large page with another process we must share the
4073 		 * entire large page. Note this cannot happen for SOFTLOCK
4074 		 * case, unless current address (a) is at the beginning of the
4075 		 * next page size boundary because the other process couldn't
4076 		 * have relocated locked pages.
4077 		 */
4078 		ASSERT(ierr == -1 || ierr == -2);
4079 		if (segvn_anypgsz) {
4080 			ASSERT(ierr == -2 || szc != 0);
4081 			ASSERT(ierr == -1 || szc < seg->s_szc);
4082 			szc = (ierr == -1) ? szc - 1 : szc + 1;
4083 		} else {
4084 			/*
4085 			 * For non COW faults and segvn_anypgsz == 0
4086 			 * we need to be careful not to loop forever
4087 			 * if existing page is found with szc other
4088 			 * than 0 or seg->s_szc. This could be due
4089 			 * to page relocations on behalf of DR or
4090 			 * more likely large page creation. For this
4091 			 * case simply re-size to existing page's szc
4092 			 * if returned by anon_map_getpages().
4093 			 */
4094 			if (ppa_szc == (uint_t)-1) {
4095 				szc = (ierr == -1) ? 0 : seg->s_szc;
4096 			} else {
4097 				ASSERT(ppa_szc <= seg->s_szc);
4098 				ASSERT(ierr == -2 || ppa_szc < szc);
4099 				ASSERT(ierr == -1 || ppa_szc > szc);
4100 				szc = ppa_szc;
4101 			}
4102 		}
4103 
4104 		pgsz = page_get_pagesize(szc);
4105 		pages = btop(pgsz);
4106 		ASSERT(type != F_SOFTLOCK || ierr == -1 ||
4107 		    (IS_P2ALIGNED(a, pgsz) && IS_P2ALIGNED(lpgeaddr, pgsz)));
4108 		if (type == F_SOFTLOCK) {
4109 			/*
4110 			 * For softlocks we cannot reduce the fault area
4111 			 * (calculated based on the largest page size for this
4112 			 * segment) for size down and a is already next
4113 			 * page size aligned as assertted above for size
4114 			 * ups. Therefore just continue in case of softlock.
4115 			 */
4116 			VM_STAT_ADD(segvnvmstats.fltanpages[9]);
4117 			continue; /* keep lint happy */
4118 		} else if (ierr == -2) {
4119 
4120 			/*
4121 			 * Size up case. Note lpgaddr may only be needed for
4122 			 * softlock case so we don't adjust it here.
4123 			 */
4124 			VM_STAT_ADD(segvnvmstats.fltanpages[10]);
4125 			a = (caddr_t)P2ALIGN((uintptr_t)a, pgsz);
4126 			ASSERT(a >= lpgaddr);
4127 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4128 			aindx = svd->anon_index + seg_page(seg, a);
4129 			vpage = (svd->vpage != NULL) ?
4130 			    &svd->vpage[seg_page(seg, a)] : NULL;
4131 		} else {
4132 			/*
4133 			 * Size down case. Note lpgaddr may only be needed for
4134 			 * softlock case so we don't adjust it here.
4135 			 */
4136 			VM_STAT_ADD(segvnvmstats.fltanpages[11]);
4137 			ASSERT(IS_P2ALIGNED(a, pgsz));
4138 			ASSERT(IS_P2ALIGNED(lpgeaddr, pgsz));
4139 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4140 			ASSERT(a < lpgeaddr);
4141 			if (a < addr) {
4142 				/*
4143 				 * The beginning of the large page region can
4144 				 * be pulled to the right to make a smaller
4145 				 * region. We haven't yet faulted a single
4146 				 * page.
4147 				 */
4148 				VM_STAT_ADD(segvnvmstats.fltanpages[12]);
4149 				a = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
4150 				ASSERT(a >= lpgaddr);
4151 				aindx = svd->anon_index + seg_page(seg, a);
4152 				vpage = (svd->vpage != NULL) ?
4153 				    &svd->vpage[seg_page(seg, a)] : NULL;
4154 			}
4155 		}
4156 	}
4157 	VM_STAT_ADD(segvnvmstats.fltanpages[13]);
4158 	ANON_LOCK_EXIT(&amp->a_rwlock);
4159 	kmem_free(ppa, ppasize);
4160 	return (0);
4161 error:
4162 	VM_STAT_ADD(segvnvmstats.fltanpages[14]);
4163 	ANON_LOCK_EXIT(&amp->a_rwlock);
4164 	kmem_free(ppa, ppasize);
4165 	if (type == F_SOFTLOCK && a > lpgaddr) {
4166 		VM_STAT_ADD(segvnvmstats.fltanpages[15]);
4167 		segvn_softunlock(seg, lpgaddr, a - lpgaddr, S_OTHER);
4168 	}
4169 	return (err);
4170 }
4171 
4172 int fltadvice = 1;	/* set to free behind pages for sequential access */
4173 
4174 /*
4175  * This routine is called via a machine specific fault handling routine.
4176  * It is also called by software routines wishing to lock or unlock
4177  * a range of addresses.
4178  *
4179  * Here is the basic algorithm:
4180  *	If unlocking
4181  *		Call segvn_softunlock
4182  *		Return
4183  *	endif
4184  *	Checking and set up work
4185  *	If we will need some non-anonymous pages
4186  *		Call VOP_GETPAGE over the range of non-anonymous pages
4187  *	endif
4188  *	Loop over all addresses requested
4189  *		Call segvn_faultpage passing in page list
4190  *		    to load up translations and handle anonymous pages
4191  *	endloop
4192  *	Load up translation to any additional pages in page list not
4193  *	    already handled that fit into this segment
4194  */
4195 static faultcode_t
4196 segvn_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t len,
4197     enum fault_type type, enum seg_rw rw)
4198 {
4199 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
4200 	page_t **plp, **ppp, *pp;
4201 	u_offset_t off;
4202 	caddr_t a;
4203 	struct vpage *vpage;
4204 	uint_t vpprot, prot;
4205 	int err;
4206 	page_t *pl[PVN_GETPAGE_NUM + 1];
4207 	size_t plsz, pl_alloc_sz;
4208 	size_t page;
4209 	ulong_t anon_index;
4210 	struct anon_map *amp;
4211 	int dogetpage = 0;
4212 	caddr_t	lpgaddr, lpgeaddr;
4213 	size_t pgsz;
4214 	anon_sync_obj_t cookie;
4215 	int brkcow = BREAK_COW_SHARE(rw, type, svd->type);
4216 
4217 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
4218 
4219 	/*
4220 	 * First handle the easy stuff
4221 	 */
4222 	if (type == F_SOFTUNLOCK) {
4223 		if (rw == S_READ_NOCOW) {
4224 			rw = S_READ;
4225 			ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
4226 		}
4227 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
4228 		pgsz = (seg->s_szc == 0) ? PAGESIZE :
4229 		    page_get_pagesize(seg->s_szc);
4230 		VM_STAT_COND_ADD(pgsz > PAGESIZE, segvnvmstats.fltanpages[16]);
4231 		CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
4232 		segvn_softunlock(seg, lpgaddr, lpgeaddr - lpgaddr, rw);
4233 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4234 		return (0);
4235 	}
4236 
4237 top:
4238 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
4239 
4240 	/*
4241 	 * If we have the same protections for the entire segment,
4242 	 * insure that the access being attempted is legitimate.
4243 	 */
4244 
4245 	if (svd->pageprot == 0) {
4246 		uint_t protchk;
4247 
4248 		switch (rw) {
4249 		case S_READ:
4250 		case S_READ_NOCOW:
4251 			protchk = PROT_READ;
4252 			break;
4253 		case S_WRITE:
4254 			protchk = PROT_WRITE;
4255 			break;
4256 		case S_EXEC:
4257 			protchk = PROT_EXEC;
4258 			break;
4259 		case S_OTHER:
4260 		default:
4261 			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
4262 			break;
4263 		}
4264 
4265 		if ((svd->prot & protchk) == 0) {
4266 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4267 			return (FC_PROT);	/* illegal access type */
4268 		}
4269 	}
4270 
4271 	/*
4272 	 * We can't allow the long term use of softlocks for vmpss segments,
4273 	 * because in some file truncation cases we should be able to demote
4274 	 * the segment, which requires that there are no softlocks.  The
4275 	 * only case where it's ok to allow a SOFTLOCK fault against a vmpss
4276 	 * segment is S_READ_NOCOW, where the caller holds the address space
4277 	 * locked as writer and calls softunlock before dropping the as lock.
4278 	 * S_READ_NOCOW is used by /proc to read memory from another user.
4279 	 *
4280 	 * Another deadlock between SOFTLOCK and file truncation can happen
4281 	 * because segvn_fault_vnodepages() calls the FS one pagesize at
4282 	 * a time. A second VOP_GETPAGE() call by segvn_fault_vnodepages()
4283 	 * can cause a deadlock because the first set of page_t's remain
4284 	 * locked SE_SHARED.  To avoid this, we demote segments on a first
4285 	 * SOFTLOCK if they have a length greater than the segment's
4286 	 * page size.
4287 	 *
4288 	 * So for now, we only avoid demoting a segment on a SOFTLOCK when
4289 	 * the access type is S_READ_NOCOW and the fault length is less than
4290 	 * or equal to the segment's page size. While this is quite restrictive,
4291 	 * it should be the most common case of SOFTLOCK against a vmpss
4292 	 * segment.
4293 	 *
4294 	 * For S_READ_NOCOW, it's safe not to do a copy on write because the
4295 	 * caller makes sure no COW will be caused by another thread for a
4296 	 * softlocked page.
4297 	 */
4298 	if (type == F_SOFTLOCK && svd->vp != NULL && seg->s_szc != 0) {
4299 		int demote = 0;
4300 
4301 		if (rw != S_READ_NOCOW) {
4302 			demote = 1;
4303 		}
4304 		if (!demote && len > PAGESIZE) {
4305 			pgsz = page_get_pagesize(seg->s_szc);
4306 			CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr,
4307 			    lpgeaddr);
4308 			if (lpgeaddr - lpgaddr > pgsz) {
4309 				demote = 1;
4310 			}
4311 		}
4312 
4313 		ASSERT(demote || AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
4314 
4315 		if (demote) {
4316 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4317 			SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4318 			if (seg->s_szc != 0) {
4319 				segvn_vmpss_clrszc_cnt++;
4320 				ASSERT(svd->softlockcnt == 0);
4321 				err = segvn_clrszc(seg);
4322 				if (err) {
4323 					segvn_vmpss_clrszc_err++;
4324 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4325 					return (FC_MAKE_ERR(err));
4326 				}
4327 			}
4328 			ASSERT(seg->s_szc == 0);
4329 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4330 			goto top;
4331 		}
4332 	}
4333 
4334 	/*
4335 	 * S_READ_NOCOW vs S_READ distinction was
4336 	 * only needed for the code above. After
4337 	 * that we treat it as S_READ.
4338 	 */
4339 	if (rw == S_READ_NOCOW) {
4340 		ASSERT(type == F_SOFTLOCK);
4341 		ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
4342 		rw = S_READ;
4343 	}
4344 
4345 	/*
4346 	 * Check to see if we need to allocate an anon_map structure.
4347 	 */
4348 	if (svd->amp == NULL && (svd->vp == NULL || brkcow)) {
4349 		/*
4350 		 * Drop the "read" lock on the segment and acquire
4351 		 * the "write" version since we have to allocate the
4352 		 * anon_map.
4353 		 */
4354 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4355 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4356 
4357 		if (svd->amp == NULL) {
4358 			svd->amp = anonmap_alloc(seg->s_size, 0);
4359 			svd->amp->a_szc = seg->s_szc;
4360 		}
4361 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4362 
4363 		/*
4364 		 * Start all over again since segment protections
4365 		 * may have changed after we dropped the "read" lock.
4366 		 */
4367 		goto top;
4368 	}
4369 
4370 	amp = svd->amp;
4371 
4372 	/*
4373 	 * MADV_SEQUENTIAL work is ignored for large page segments.
4374 	 */
4375 	if (seg->s_szc != 0) {
4376 		pgsz = page_get_pagesize(seg->s_szc);
4377 		ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
4378 		/*
4379 		 * We may need to do relocations so purge seg_pcache to allow
4380 		 * pages to be locked exclusively.
4381 		 */
4382 		if (svd->softlockcnt != 0)
4383 			segvn_purge(seg);
4384 		CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
4385 		if (svd->vp == NULL) {
4386 			ASSERT(svd->type == MAP_PRIVATE);
4387 			err = segvn_fault_anonpages(hat, seg, lpgaddr,
4388 			    lpgeaddr, type, rw, addr, addr + len, brkcow);
4389 		} else {
4390 			err = segvn_fault_vnodepages(hat, seg, lpgaddr,
4391 				lpgeaddr, type, rw, addr, addr + len, brkcow);
4392 			if (err == IE_RETRY) {
4393 				ASSERT(seg->s_szc == 0);
4394 				ASSERT(SEGVN_READ_HELD(seg->s_as, &svd->lock));
4395 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4396 				goto top;
4397 			}
4398 		}
4399 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4400 		return (err);
4401 	}
4402 
4403 	page = seg_page(seg, addr);
4404 	if (amp != NULL) {
4405 		anon_index = svd->anon_index + page;
4406 
4407 		if ((type == F_PROT) && (rw == S_READ) &&
4408 		    svd->type == MAP_PRIVATE && svd->pageprot == 0) {
4409 			size_t index = anon_index;
4410 			struct anon *ap;
4411 
4412 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
4413 			/*
4414 			 * The fast path could apply to S_WRITE also, except
4415 			 * that the protection fault could be caused by lazy
4416 			 * tlb flush when ro->rw. In this case, the pte is
4417 			 * RW already. But RO in the other cpu's tlb causes
4418 			 * the fault. Since hat_chgprot won't do anything if
4419 			 * pte doesn't change, we may end up faulting
4420 			 * indefinitely until the RO tlb entry gets replaced.
4421 			 */
4422 			for (a = addr; a < addr + len; a += PAGESIZE, index++) {
4423 				anon_array_enter(amp, index, &cookie);
4424 				ap = anon_get_ptr(amp->ahp, index);
4425 				anon_array_exit(&cookie);
4426 				if ((ap == NULL) || (ap->an_refcnt != 1)) {
4427 					ANON_LOCK_EXIT(&amp->a_rwlock);
4428 					goto slow;
4429 				}
4430 			}
4431 			hat_chgprot(seg->s_as->a_hat, addr, len, svd->prot);
4432 			ANON_LOCK_EXIT(&amp->a_rwlock);
4433 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4434 			return (0);
4435 		}
4436 	}
4437 slow:
4438 
4439 	if (svd->vpage == NULL)
4440 		vpage = NULL;
4441 	else
4442 		vpage = &svd->vpage[page];
4443 
4444 	off = svd->offset + (uintptr_t)(addr - seg->s_base);
4445 
4446 	/*
4447 	 * If MADV_SEQUENTIAL has been set for the particular page we
4448 	 * are faulting on, free behind all pages in the segment and put
4449 	 * them on the free list.
4450 	 */
4451 	if ((page != 0) && fltadvice) {	/* not if first page in segment */
4452 		struct vpage *vpp;
4453 		ulong_t fanon_index;
4454 		size_t fpage;
4455 		u_offset_t pgoff, fpgoff;
4456 		struct vnode *fvp;
4457 		struct anon *fap = NULL;
4458 
4459 		if (svd->advice == MADV_SEQUENTIAL ||
4460 		    (svd->pageadvice &&
4461 		    VPP_ADVICE(vpage) == MADV_SEQUENTIAL)) {
4462 			pgoff = off - PAGESIZE;
4463 			fpage = page - 1;
4464 			if (vpage != NULL)
4465 				vpp = &svd->vpage[fpage];
4466 			if (amp != NULL)
4467 				fanon_index = svd->anon_index + fpage;
4468 
4469 			while (pgoff > svd->offset) {
4470 				if (svd->advice != MADV_SEQUENTIAL &&
4471 				    (!svd->pageadvice || (vpage &&
4472 				    VPP_ADVICE(vpp) != MADV_SEQUENTIAL)))
4473 					break;
4474 
4475 				/*
4476 				 * If this is an anon page, we must find the
4477 				 * correct <vp, offset> for it
4478 				 */
4479 				fap = NULL;
4480 				if (amp != NULL) {
4481 					ANON_LOCK_ENTER(&amp->a_rwlock,
4482 						RW_READER);
4483 					anon_array_enter(amp, fanon_index,
4484 						&cookie);
4485 					fap = anon_get_ptr(amp->ahp,
4486 					    fanon_index);
4487 					if (fap != NULL) {
4488 						swap_xlate(fap, &fvp, &fpgoff);
4489 					} else {
4490 						fpgoff = pgoff;
4491 						fvp = svd->vp;
4492 					}
4493 					anon_array_exit(&cookie);
4494 					ANON_LOCK_EXIT(&amp->a_rwlock);
4495 				} else {
4496 					fpgoff = pgoff;
4497 					fvp = svd->vp;
4498 				}
4499 				if (fvp == NULL)
4500 					break;	/* XXX */
4501 				/*
4502 				 * Skip pages that are free or have an
4503 				 * "exclusive" lock.
4504 				 */
4505 				pp = page_lookup_nowait(fvp, fpgoff, SE_SHARED);
4506 				if (pp == NULL)
4507 					break;
4508 				/*
4509 				 * We don't need the page_struct_lock to test
4510 				 * as this is only advisory; even if we
4511 				 * acquire it someone might race in and lock
4512 				 * the page after we unlock and before the
4513 				 * PUTPAGE, then VOP_PUTPAGE will do nothing.
4514 				 */
4515 				if (pp->p_lckcnt == 0 && pp->p_cowcnt == 0) {
4516 					/*
4517 					 * Hold the vnode before releasing
4518 					 * the page lock to prevent it from
4519 					 * being freed and re-used by some
4520 					 * other thread.
4521 					 */
4522 					VN_HOLD(fvp);
4523 					page_unlock(pp);
4524 					/*
4525 					 * We should build a page list
4526 					 * to kluster putpages XXX
4527 					 */
4528 					(void) VOP_PUTPAGE(fvp,
4529 					    (offset_t)fpgoff, PAGESIZE,
4530 					    (B_DONTNEED|B_FREE|B_ASYNC),
4531 					    svd->cred);
4532 					VN_RELE(fvp);
4533 				} else {
4534 					/*
4535 					 * XXX - Should the loop terminate if
4536 					 * the page is `locked'?
4537 					 */
4538 					page_unlock(pp);
4539 				}
4540 				--vpp;
4541 				--fanon_index;
4542 				pgoff -= PAGESIZE;
4543 			}
4544 		}
4545 	}
4546 
4547 	plp = pl;
4548 	*plp = NULL;
4549 	pl_alloc_sz = 0;
4550 
4551 	/*
4552 	 * See if we need to call VOP_GETPAGE for
4553 	 * *any* of the range being faulted on.
4554 	 * We can skip all of this work if there
4555 	 * was no original vnode.
4556 	 */
4557 	if (svd->vp != NULL) {
4558 		u_offset_t vp_off;
4559 		size_t vp_len;
4560 		struct anon *ap;
4561 		vnode_t *vp;
4562 
4563 		vp_off = off;
4564 		vp_len = len;
4565 
4566 		if (amp == NULL)
4567 			dogetpage = 1;
4568 		else {
4569 			/*
4570 			 * Only acquire reader lock to prevent amp->ahp
4571 			 * from being changed.  It's ok to miss pages,
4572 			 * hence we don't do anon_array_enter
4573 			 */
4574 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
4575 			ap = anon_get_ptr(amp->ahp, anon_index);
4576 
4577 			if (len <= PAGESIZE)
4578 				/* inline non_anon() */
4579 				dogetpage = (ap == NULL);
4580 			else
4581 				dogetpage = non_anon(amp->ahp, anon_index,
4582 				    &vp_off, &vp_len);
4583 			ANON_LOCK_EXIT(&amp->a_rwlock);
4584 		}
4585 
4586 		if (dogetpage) {
4587 			enum seg_rw arw;
4588 			struct as *as = seg->s_as;
4589 
4590 			if (len > ptob((sizeof (pl) / sizeof (pl[0])) - 1)) {
4591 				/*
4592 				 * Page list won't fit in local array,
4593 				 * allocate one of the needed size.
4594 				 */
4595 				pl_alloc_sz =
4596 				    (btop(len) + 1) * sizeof (page_t *);
4597 				plp = kmem_alloc(pl_alloc_sz, KM_SLEEP);
4598 				plp[0] = NULL;
4599 				plsz = len;
4600 			} else if (rw == S_WRITE && svd->type == MAP_PRIVATE ||
4601 			    rw == S_OTHER ||
4602 			    (((size_t)(addr + PAGESIZE) <
4603 			    (size_t)(seg->s_base + seg->s_size)) &&
4604 			    hat_probe(as->a_hat, addr + PAGESIZE))) {
4605 				/*
4606 				 * Ask VOP_GETPAGE to return the exact number
4607 				 * of pages if
4608 				 * (a) this is a COW fault, or
4609 				 * (b) this is a software fault, or
4610 				 * (c) next page is already mapped.
4611 				 */
4612 				plsz = len;
4613 			} else {
4614 				/*
4615 				 * Ask VOP_GETPAGE to return adjacent pages
4616 				 * within the segment.
4617 				 */
4618 				plsz = MIN((size_t)PVN_GETPAGE_SZ, (size_t)
4619 					((seg->s_base + seg->s_size) - addr));
4620 				ASSERT((addr + plsz) <=
4621 				    (seg->s_base + seg->s_size));
4622 			}
4623 
4624 			/*
4625 			 * Need to get some non-anonymous pages.
4626 			 * We need to make only one call to GETPAGE to do
4627 			 * this to prevent certain deadlocking conditions
4628 			 * when we are doing locking.  In this case
4629 			 * non_anon() should have picked up the smallest
4630 			 * range which includes all the non-anonymous
4631 			 * pages in the requested range.  We have to
4632 			 * be careful regarding which rw flag to pass in
4633 			 * because on a private mapping, the underlying
4634 			 * object is never allowed to be written.
4635 			 */
4636 			if (rw == S_WRITE && svd->type == MAP_PRIVATE) {
4637 				arw = S_READ;
4638 			} else {
4639 				arw = rw;
4640 			}
4641 			vp = svd->vp;
4642 			TRACE_3(TR_FAC_VM, TR_SEGVN_GETPAGE,
4643 				"segvn_getpage:seg %p addr %p vp %p",
4644 				seg, addr, vp);
4645 			err = VOP_GETPAGE(vp, (offset_t)vp_off, vp_len,
4646 			    &vpprot, plp, plsz, seg, addr + (vp_off - off), arw,
4647 			    svd->cred);
4648 			if (err) {
4649 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4650 				segvn_pagelist_rele(plp);
4651 				if (pl_alloc_sz)
4652 					kmem_free(plp, pl_alloc_sz);
4653 				return (FC_MAKE_ERR(err));
4654 			}
4655 			if (svd->type == MAP_PRIVATE)
4656 				vpprot &= ~PROT_WRITE;
4657 		}
4658 	}
4659 
4660 	/*
4661 	 * N.B. at this time the plp array has all the needed non-anon
4662 	 * pages in addition to (possibly) having some adjacent pages.
4663 	 */
4664 
4665 	/*
4666 	 * Always acquire the anon_array_lock to prevent
4667 	 * 2 threads from allocating separate anon slots for
4668 	 * the same "addr".
4669 	 *
4670 	 * If this is a copy-on-write fault and we don't already
4671 	 * have the anon_array_lock, acquire it to prevent the
4672 	 * fault routine from handling multiple copy-on-write faults
4673 	 * on the same "addr" in the same address space.
4674 	 *
4675 	 * Only one thread should deal with the fault since after
4676 	 * it is handled, the other threads can acquire a translation
4677 	 * to the newly created private page.  This prevents two or
4678 	 * more threads from creating different private pages for the
4679 	 * same fault.
4680 	 *
4681 	 * We grab "serialization" lock here if this is a MAP_PRIVATE segment
4682 	 * to prevent deadlock between this thread and another thread
4683 	 * which has soft-locked this page and wants to acquire serial_lock.
4684 	 * ( bug 4026339 )
4685 	 *
4686 	 * The fix for bug 4026339 becomes unnecessary when using the
4687 	 * locking scheme with per amp rwlock and a global set of hash
4688 	 * lock, anon_array_lock.  If we steal a vnode page when low
4689 	 * on memory and upgrad the page lock through page_rename,
4690 	 * then the page is PAGE_HANDLED, nothing needs to be done
4691 	 * for this page after returning from segvn_faultpage.
4692 	 *
4693 	 * But really, the page lock should be downgraded after
4694 	 * the stolen page is page_rename'd.
4695 	 */
4696 
4697 	if (amp != NULL)
4698 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
4699 
4700 	/*
4701 	 * Ok, now loop over the address range and handle faults
4702 	 */
4703 	for (a = addr; a < addr + len; a += PAGESIZE, off += PAGESIZE) {
4704 		err = segvn_faultpage(hat, seg, a, off, vpage, plp, vpprot,
4705 		    type, rw, brkcow);
4706 		if (err) {
4707 			if (amp != NULL)
4708 				ANON_LOCK_EXIT(&amp->a_rwlock);
4709 			if (type == F_SOFTLOCK && a > addr)
4710 				segvn_softunlock(seg, addr, (a - addr),
4711 				    S_OTHER);
4712 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4713 			segvn_pagelist_rele(plp);
4714 			if (pl_alloc_sz)
4715 				kmem_free(plp, pl_alloc_sz);
4716 			return (err);
4717 		}
4718 		if (vpage) {
4719 			vpage++;
4720 		} else if (svd->vpage) {
4721 			page = seg_page(seg, addr);
4722 			vpage = &svd->vpage[++page];
4723 		}
4724 	}
4725 
4726 	/* Didn't get pages from the underlying fs so we're done */
4727 	if (!dogetpage)
4728 		goto done;
4729 
4730 	/*
4731 	 * Now handle any other pages in the list returned.
4732 	 * If the page can be used, load up the translations now.
4733 	 * Note that the for loop will only be entered if "plp"
4734 	 * is pointing to a non-NULL page pointer which means that
4735 	 * VOP_GETPAGE() was called and vpprot has been initialized.
4736 	 */
4737 	if (svd->pageprot == 0)
4738 		prot = svd->prot & vpprot;
4739 
4740 
4741 	/*
4742 	 * Large Files: diff should be unsigned value because we started
4743 	 * supporting > 2GB segment sizes from 2.5.1 and when a
4744 	 * large file of size > 2GB gets mapped to address space
4745 	 * the diff value can be > 2GB.
4746 	 */
4747 
4748 	for (ppp = plp; (pp = *ppp) != NULL; ppp++) {
4749 		size_t diff;
4750 		struct anon *ap;
4751 		int anon_index;
4752 		anon_sync_obj_t cookie;
4753 		int hat_flag = HAT_LOAD_ADV;
4754 
4755 		if (svd->flags & MAP_TEXT) {
4756 			hat_flag |= HAT_LOAD_TEXT;
4757 		}
4758 
4759 		if (pp == PAGE_HANDLED)
4760 			continue;
4761 
4762 		if (pp->p_offset >=  svd->offset &&
4763 			(pp->p_offset < svd->offset + seg->s_size)) {
4764 
4765 			diff = pp->p_offset - svd->offset;
4766 
4767 			/*
4768 			 * Large Files: Following is the assertion
4769 			 * validating the above cast.
4770 			 */
4771 			ASSERT(svd->vp == pp->p_vnode);
4772 
4773 			page = btop(diff);
4774 			if (svd->pageprot)
4775 				prot = VPP_PROT(&svd->vpage[page]) & vpprot;
4776 
4777 			/*
4778 			 * Prevent other threads in the address space from
4779 			 * creating private pages (i.e., allocating anon slots)
4780 			 * while we are in the process of loading translations
4781 			 * to additional pages returned by the underlying
4782 			 * object.
4783 			 */
4784 			if (amp != NULL) {
4785 				anon_index = svd->anon_index + page;
4786 				anon_array_enter(amp, anon_index, &cookie);
4787 				ap = anon_get_ptr(amp->ahp, anon_index);
4788 			}
4789 			if ((amp == NULL) || (ap == NULL)) {
4790 				if (IS_VMODSORT(pp->p_vnode) ||
4791 				    enable_mbit_wa) {
4792 					if (rw == S_WRITE)
4793 						hat_setmod(pp);
4794 					else if (rw != S_OTHER &&
4795 					    !hat_ismod(pp))
4796 						prot &= ~PROT_WRITE;
4797 				}
4798 				/*
4799 				 * Skip mapping read ahead pages marked
4800 				 * for migration, so they will get migrated
4801 				 * properly on fault
4802 				 */
4803 				if ((prot & PROT_READ) && !PP_ISMIGRATE(pp)) {
4804 					hat_memload(hat, seg->s_base + diff,
4805 						pp, prot, hat_flag);
4806 				}
4807 			}
4808 			if (amp != NULL)
4809 				anon_array_exit(&cookie);
4810 		}
4811 		page_unlock(pp);
4812 	}
4813 done:
4814 	if (amp != NULL)
4815 		ANON_LOCK_EXIT(&amp->a_rwlock);
4816 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4817 	if (pl_alloc_sz)
4818 		kmem_free(plp, pl_alloc_sz);
4819 	return (0);
4820 }
4821 
4822 /*
4823  * This routine is used to start I/O on pages asynchronously.  XXX it will
4824  * only create PAGESIZE pages. At fault time they will be relocated into
4825  * larger pages.
4826  */
4827 static faultcode_t
4828 segvn_faulta(struct seg *seg, caddr_t addr)
4829 {
4830 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
4831 	int err;
4832 	struct anon_map *amp;
4833 	vnode_t *vp;
4834 
4835 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
4836 
4837 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
4838 	if ((amp = svd->amp) != NULL) {
4839 		struct anon *ap;
4840 
4841 		/*
4842 		 * Reader lock to prevent amp->ahp from being changed.
4843 		 * This is advisory, it's ok to miss a page, so
4844 		 * we don't do anon_array_enter lock.
4845 		 */
4846 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
4847 		if ((ap = anon_get_ptr(amp->ahp,
4848 			svd->anon_index + seg_page(seg, addr))) != NULL) {
4849 
4850 			err = anon_getpage(&ap, NULL, NULL,
4851 			    0, seg, addr, S_READ, svd->cred);
4852 
4853 			ANON_LOCK_EXIT(&amp->a_rwlock);
4854 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4855 			if (err)
4856 				return (FC_MAKE_ERR(err));
4857 			return (0);
4858 		}
4859 		ANON_LOCK_EXIT(&amp->a_rwlock);
4860 	}
4861 
4862 	if (svd->vp == NULL) {
4863 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4864 		return (0);			/* zfod page - do nothing now */
4865 	}
4866 
4867 	vp = svd->vp;
4868 	TRACE_3(TR_FAC_VM, TR_SEGVN_GETPAGE,
4869 		"segvn_getpage:seg %p addr %p vp %p", seg, addr, vp);
4870 	err = VOP_GETPAGE(vp,
4871 	    (offset_t)(svd->offset + (uintptr_t)(addr - seg->s_base)),
4872 	    PAGESIZE, NULL, NULL, 0, seg, addr,
4873 	    S_OTHER, svd->cred);
4874 
4875 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4876 	if (err)
4877 		return (FC_MAKE_ERR(err));
4878 	return (0);
4879 }
4880 
4881 static int
4882 segvn_setprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
4883 {
4884 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
4885 	struct vpage *svp, *evp;
4886 	struct vnode *vp;
4887 	size_t pgsz;
4888 	pgcnt_t pgcnt;
4889 	anon_sync_obj_t cookie;
4890 
4891 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
4892 
4893 	if ((svd->maxprot & prot) != prot)
4894 		return (EACCES);			/* violated maxprot */
4895 
4896 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4897 
4898 	/* return if prot is the same */
4899 	if (!svd->pageprot && svd->prot == prot) {
4900 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4901 		return (0);
4902 	}
4903 
4904 	/*
4905 	 * Since we change protections we first have to flush the cache.
4906 	 * This makes sure all the pagelock calls have to recheck
4907 	 * protections.
4908 	 */
4909 	if (svd->softlockcnt > 0) {
4910 		/*
4911 		 * Since we do have the segvn writers lock nobody can fill
4912 		 * the cache with entries belonging to this seg during
4913 		 * the purge. The flush either succeeds or we still have
4914 		 * pending I/Os.
4915 		 */
4916 		segvn_purge(seg);
4917 		if (svd->softlockcnt > 0) {
4918 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4919 			return (EAGAIN);
4920 		}
4921 	}
4922 
4923 	if (seg->s_szc != 0) {
4924 		int err;
4925 		pgsz = page_get_pagesize(seg->s_szc);
4926 		pgcnt = pgsz >> PAGESHIFT;
4927 		ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
4928 		if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) {
4929 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4930 			ASSERT(seg->s_base != addr || seg->s_size != len);
4931 			/*
4932 			 * If we are holding the as lock as a reader then
4933 			 * we need to return IE_RETRY and let the as
4934 			 * layer drop and re-aquire the lock as a writer.
4935 			 */
4936 			if (AS_READ_HELD(seg->s_as, &seg->s_as->a_lock))
4937 				return (IE_RETRY);
4938 			VM_STAT_ADD(segvnvmstats.demoterange[1]);
4939 			err = segvn_demote_range(seg, addr, len, SDR_END);
4940 			if (err == 0)
4941 				return (IE_RETRY);
4942 			if (err == ENOMEM)
4943 				return (IE_NOMEM);
4944 			return (err);
4945 		}
4946 	}
4947 
4948 
4949 	/*
4950 	 * If it's a private mapping and we're making it writable
4951 	 * and no swap space has been reserved, have to reserve
4952 	 * it all now.  If it's a private mapping to a file (i.e., vp != NULL)
4953 	 * and we're removing write permission on the entire segment and
4954 	 * we haven't modified any pages, we can release the swap space.
4955 	 */
4956 	if (svd->type == MAP_PRIVATE) {
4957 		if (prot & PROT_WRITE) {
4958 			size_t sz;
4959 			if (svd->swresv == 0 && !(svd->flags & MAP_NORESERVE)) {
4960 				if (anon_resv(seg->s_size) == 0) {
4961 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4962 					return (IE_NOMEM);
4963 				}
4964 				sz = svd->swresv = seg->s_size;
4965 				TRACE_3(TR_FAC_VM, TR_ANON_PROC,
4966 					"anon proc:%p %lu %u",
4967 					seg, sz, 1);
4968 			}
4969 		} else {
4970 			/*
4971 			 * Swap space is released only if this segment
4972 			 * does not map anonymous memory, since read faults
4973 			 * on such segments still need an anon slot to read
4974 			 * in the data.
4975 			 */
4976 			if (svd->swresv != 0 && svd->vp != NULL &&
4977 			    svd->amp == NULL && addr == seg->s_base &&
4978 			    len == seg->s_size && svd->pageprot == 0) {
4979 				anon_unresv(svd->swresv);
4980 				svd->swresv = 0;
4981 				TRACE_3(TR_FAC_VM, TR_ANON_PROC,
4982 					"anon proc:%p %lu %u",
4983 					seg, 0, 0);
4984 			}
4985 		}
4986 	}
4987 
4988 	if (addr == seg->s_base && len == seg->s_size && svd->pageprot == 0) {
4989 		if (svd->prot == prot) {
4990 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4991 			return (0);			/* all done */
4992 		}
4993 		svd->prot = (uchar_t)prot;
4994 	} else {
4995 		struct anon *ap = NULL;
4996 		page_t *pp;
4997 		u_offset_t offset, off;
4998 		struct anon_map *amp;
4999 		ulong_t anon_idx = 0;
5000 
5001 		/*
5002 		 * A vpage structure exists or else the change does not
5003 		 * involve the entire segment.  Establish a vpage structure
5004 		 * if none is there.  Then, for each page in the range,
5005 		 * adjust its individual permissions.  Note that write-
5006 		 * enabling a MAP_PRIVATE page can affect the claims for
5007 		 * locked down memory.  Overcommitting memory terminates
5008 		 * the operation.
5009 		 */
5010 		segvn_vpage(seg);
5011 		if ((amp = svd->amp) != NULL) {
5012 			anon_idx = svd->anon_index + seg_page(seg, addr);
5013 			ASSERT(seg->s_szc == 0 ||
5014 			    IS_P2ALIGNED(anon_idx, pgcnt));
5015 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5016 		}
5017 
5018 		offset = svd->offset + (uintptr_t)(addr - seg->s_base);
5019 		evp = &svd->vpage[seg_page(seg, addr + len)];
5020 
5021 		/*
5022 		 * See Statement at the beginning of segvn_lockop regarding
5023 		 * the way cowcnts and lckcnts are handled.
5024 		 */
5025 		for (svp = &svd->vpage[seg_page(seg, addr)]; svp < evp; svp++) {
5026 
5027 			ASSERT(seg->s_szc == 0 ||
5028 			    (svd->vp != NULL || svd->type == MAP_PRIVATE));
5029 
5030 			if (seg->s_szc != 0 && svd->type == MAP_PRIVATE) {
5031 				if (amp != NULL) {
5032 					anon_array_enter(amp, anon_idx,
5033 					    &cookie);
5034 				}
5035 				if (IS_P2ALIGNED(anon_idx, pgcnt) &&
5036 				    !segvn_claim_pages(seg, svp, offset,
5037 					anon_idx, prot)) {
5038 					if (amp != NULL) {
5039 						anon_array_exit(&cookie);
5040 					}
5041 					break;
5042 				}
5043 				if (amp != NULL) {
5044 					anon_array_exit(&cookie);
5045 				}
5046 				anon_idx++;
5047 			} else {
5048 				if (amp != NULL) {
5049 					anon_array_enter(amp, anon_idx,
5050 						&cookie);
5051 					ap = anon_get_ptr(amp->ahp, anon_idx++);
5052 				}
5053 
5054 				if (VPP_ISPPLOCK(svp) &&
5055 				    (VPP_PROT(svp) != prot) &&
5056 				    (svd->type == MAP_PRIVATE)) {
5057 
5058 					if (amp == NULL || ap == NULL) {
5059 						vp = svd->vp;
5060 						off = offset;
5061 					} else
5062 						swap_xlate(ap, &vp, &off);
5063 					if (amp != NULL)
5064 						anon_array_exit(&cookie);
5065 
5066 					if ((pp = page_lookup(vp, off,
5067 					    SE_SHARED)) == NULL) {
5068 						panic("segvn_setprot: no page");
5069 						/*NOTREACHED*/
5070 					}
5071 					ASSERT(seg->s_szc == 0);
5072 					if ((VPP_PROT(svp) ^ prot) &
5073 					    PROT_WRITE) {
5074 						if (prot & PROT_WRITE) {
5075 						    if (!page_addclaim(pp)) {
5076 							page_unlock(pp);
5077 							break;
5078 						    }
5079 						} else {
5080 						    if (!page_subclaim(pp)) {
5081 							page_unlock(pp);
5082 							break;
5083 						    }
5084 						}
5085 					}
5086 					page_unlock(pp);
5087 				} else if (amp != NULL)
5088 					anon_array_exit(&cookie);
5089 			}
5090 			VPP_SETPROT(svp, prot);
5091 			offset += PAGESIZE;
5092 		}
5093 		if (amp != NULL)
5094 			ANON_LOCK_EXIT(&amp->a_rwlock);
5095 
5096 		/*
5097 		 * Did we terminate prematurely?  If so, simply unload
5098 		 * the translations to the things we've updated so far.
5099 		 */
5100 		if (svp != evp) {
5101 			len = (svp - &svd->vpage[seg_page(seg, addr)]) *
5102 			    PAGESIZE;
5103 			ASSERT(seg->s_szc == 0 || IS_P2ALIGNED(len, pgsz));
5104 			if (len != 0)
5105 				hat_unload(seg->s_as->a_hat, addr,
5106 				    len, HAT_UNLOAD);
5107 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5108 			return (IE_NOMEM);
5109 		}
5110 	}
5111 
5112 	if ((prot & PROT_WRITE) != 0 || (prot & ~PROT_USER) == PROT_NONE) {
5113 		/*
5114 		 * Either private or shared data with write access (in
5115 		 * which case we need to throw out all former translations
5116 		 * so that we get the right translations set up on fault
5117 		 * and we don't allow write access to any copy-on-write pages
5118 		 * that might be around or to prevent write access to pages
5119 		 * representing holes in a file), or we don't have permission
5120 		 * to access the memory at all (in which case we have to
5121 		 * unload any current translations that might exist).
5122 		 */
5123 		hat_unload(seg->s_as->a_hat, addr, len, HAT_UNLOAD);
5124 	} else {
5125 		/*
5126 		 * A shared mapping or a private mapping in which write
5127 		 * protection is going to be denied - just change all the
5128 		 * protections over the range of addresses in question.
5129 		 * segvn does not support any other attributes other
5130 		 * than prot so we can use hat_chgattr.
5131 		 */
5132 		hat_chgattr(seg->s_as->a_hat, addr, len, prot);
5133 	}
5134 
5135 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5136 
5137 	return (0);
5138 }
5139 
5140 /*
5141  * segvn_setpagesize is called via SEGOP_SETPAGESIZE from as_setpagesize,
5142  * to determine if the seg is capable of mapping the requested szc.
5143  */
5144 static int
5145 segvn_setpagesize(struct seg *seg, caddr_t addr, size_t len, uint_t szc)
5146 {
5147 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5148 	struct segvn_data *nsvd;
5149 	struct anon_map *amp = svd->amp;
5150 	struct seg *nseg;
5151 	caddr_t eaddr = addr + len, a;
5152 	size_t pgsz = page_get_pagesize(szc);
5153 	int err;
5154 	u_offset_t off = svd->offset + (uintptr_t)(addr - seg->s_base);
5155 	extern struct vnode kvp;
5156 
5157 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
5158 	ASSERT(addr >= seg->s_base && eaddr <= seg->s_base + seg->s_size);
5159 
5160 	if (seg->s_szc == szc || segvn_lpg_disable != 0) {
5161 		return (0);
5162 	}
5163 
5164 	/*
5165 	 * addr should always be pgsz aligned but eaddr may be misaligned if
5166 	 * it's at the end of the segment.
5167 	 *
5168 	 * XXX we should assert this condition since as_setpagesize() logic
5169 	 * guarantees it.
5170 	 */
5171 	if (!IS_P2ALIGNED(addr, pgsz) ||
5172 	    (!IS_P2ALIGNED(eaddr, pgsz) &&
5173 		eaddr != seg->s_base + seg->s_size)) {
5174 
5175 		segvn_setpgsz_align_err++;
5176 		return (EINVAL);
5177 	}
5178 
5179 	if ((svd->vp == NULL && svd->type == MAP_SHARED) ||
5180 	    (svd->flags & MAP_NORESERVE) || seg->s_as == &kas ||
5181 	    szc > segvn_maxpgszc) {
5182 		return (EINVAL);
5183 	}
5184 
5185 	/* paranoid check */
5186 	if (svd->vp != NULL &&
5187 	    (IS_SWAPFSVP(svd->vp) || svd->vp == &kvp)) {
5188 		    return (EINVAL);
5189 	}
5190 
5191 	if (seg->s_szc == 0 && svd->vp != NULL &&
5192 	    map_addr_vacalign_check(addr, off)) {
5193 		return (EINVAL);
5194 	}
5195 
5196 	/*
5197 	 * Check that protections are the same within new page
5198 	 * size boundaries.
5199 	 */
5200 	if (svd->pageprot) {
5201 		for (a = addr; a < eaddr; a += pgsz) {
5202 			if ((a + pgsz) > eaddr) {
5203 				if (!sameprot(seg, a, eaddr - a)) {
5204 					return (EINVAL);
5205 				}
5206 			} else {
5207 				if (!sameprot(seg, a, pgsz)) {
5208 					return (EINVAL);
5209 				}
5210 			}
5211 		}
5212 	}
5213 
5214 	/*
5215 	 * Since we are changing page size we first have to flush
5216 	 * the cache. This makes sure all the pagelock calls have
5217 	 * to recheck protections.
5218 	 */
5219 	if (svd->softlockcnt > 0) {
5220 		/*
5221 		 * Since we do have the segvn writers lock nobody can fill
5222 		 * the cache with entries belonging to this seg during
5223 		 * the purge. The flush either succeeds or we still have
5224 		 * pending I/Os.
5225 		 */
5226 		segvn_purge(seg);
5227 		if (svd->softlockcnt > 0) {
5228 			return (EAGAIN);
5229 		}
5230 	}
5231 
5232 	/*
5233 	 * Operation for sub range of existing segment.
5234 	 */
5235 	if (addr != seg->s_base || eaddr != (seg->s_base + seg->s_size)) {
5236 		if (szc < seg->s_szc) {
5237 			VM_STAT_ADD(segvnvmstats.demoterange[2]);
5238 			err = segvn_demote_range(seg, addr, len, SDR_RANGE);
5239 			if (err == 0) {
5240 				return (IE_RETRY);
5241 			}
5242 			if (err == ENOMEM) {
5243 				return (IE_NOMEM);
5244 			}
5245 			return (err);
5246 		}
5247 		if (addr != seg->s_base) {
5248 			nseg = segvn_split_seg(seg, addr);
5249 			if (eaddr != (nseg->s_base + nseg->s_size)) {
5250 				/* eaddr is szc aligned */
5251 				(void) segvn_split_seg(nseg, eaddr);
5252 			}
5253 			return (IE_RETRY);
5254 		}
5255 		if (eaddr != (seg->s_base + seg->s_size)) {
5256 			/* eaddr is szc aligned */
5257 			(void) segvn_split_seg(seg, eaddr);
5258 		}
5259 		return (IE_RETRY);
5260 	}
5261 
5262 	/*
5263 	 * Break any low level sharing and reset seg->s_szc to 0.
5264 	 */
5265 	if ((err = segvn_clrszc(seg)) != 0) {
5266 		if (err == ENOMEM) {
5267 			err = IE_NOMEM;
5268 		}
5269 		return (err);
5270 	}
5271 	ASSERT(seg->s_szc == 0);
5272 
5273 	/*
5274 	 * If the end of the current segment is not pgsz aligned
5275 	 * then attempt to concatenate with the next segment.
5276 	 */
5277 	if (!IS_P2ALIGNED(eaddr, pgsz)) {
5278 		nseg = AS_SEGNEXT(seg->s_as, seg);
5279 		if (nseg == NULL || nseg == seg || eaddr != nseg->s_base) {
5280 			return (ENOMEM);
5281 		}
5282 		if (nseg->s_ops != &segvn_ops) {
5283 			return (EINVAL);
5284 		}
5285 		nsvd = (struct segvn_data *)nseg->s_data;
5286 		if (nsvd->softlockcnt > 0) {
5287 			segvn_purge(nseg);
5288 			if (nsvd->softlockcnt > 0) {
5289 				return (EAGAIN);
5290 			}
5291 		}
5292 		err = segvn_clrszc(nseg);
5293 		if (err == ENOMEM) {
5294 			err = IE_NOMEM;
5295 		}
5296 		if (err != 0) {
5297 			return (err);
5298 		}
5299 		err = segvn_concat(seg, nseg, 1);
5300 		if (err == -1) {
5301 			return (EINVAL);
5302 		}
5303 		if (err == -2) {
5304 			return (IE_NOMEM);
5305 		}
5306 		return (IE_RETRY);
5307 	}
5308 
5309 	/*
5310 	 * May need to re-align anon array to
5311 	 * new szc.
5312 	 */
5313 	if (amp != NULL) {
5314 		pgcnt_t pgcnt = pgsz >> PAGESHIFT;
5315 		if (!IS_P2ALIGNED(svd->anon_index, pgcnt)) {
5316 			struct anon_hdr *nahp;
5317 
5318 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
5319 			ASSERT(amp->refcnt == 1);
5320 			nahp = anon_create(btop(amp->size), ANON_NOSLEEP);
5321 			if (nahp == NULL) {
5322 				ANON_LOCK_EXIT(&amp->a_rwlock);
5323 				return (IE_NOMEM);
5324 			}
5325 			if (anon_copy_ptr(amp->ahp, svd->anon_index,
5326 				nahp, 0, btop(seg->s_size), ANON_NOSLEEP)) {
5327 				anon_release(nahp, btop(amp->size));
5328 				ANON_LOCK_EXIT(&amp->a_rwlock);
5329 				return (IE_NOMEM);
5330 			}
5331 			anon_release(amp->ahp, btop(amp->size));
5332 			amp->ahp = nahp;
5333 			svd->anon_index = 0;
5334 			ANON_LOCK_EXIT(&amp->a_rwlock);
5335 		}
5336 	}
5337 	if (svd->vp != NULL && szc != 0) {
5338 		struct vattr va;
5339 		u_offset_t eoffpage = svd->offset;
5340 		va.va_mask = AT_SIZE;
5341 		eoffpage += seg->s_size;
5342 		eoffpage = btopr(eoffpage);
5343 		if (VOP_GETATTR(svd->vp, &va, 0, svd->cred) != 0) {
5344 			segvn_setpgsz_getattr_err++;
5345 			return (EINVAL);
5346 		}
5347 		if (btopr(va.va_size) < eoffpage) {
5348 			segvn_setpgsz_eof_err++;
5349 			return (EINVAL);
5350 		}
5351 		if (amp != NULL) {
5352 			/*
5353 			 * anon_fill_cow_holes() may call VOP_GETPAGE().
5354 			 * don't take anon map lock here to avoid holding it
5355 			 * across VOP_GETPAGE() calls that may call back into
5356 			 * segvn for klsutering checks. We don't really need
5357 			 * anon map lock here since it's a private segment and
5358 			 * we hold as level lock as writers.
5359 			 */
5360 			if ((err = anon_fill_cow_holes(seg, seg->s_base,
5361 			    amp->ahp, svd->anon_index, svd->vp, svd->offset,
5362 			    seg->s_size, szc, svd->prot, svd->vpage,
5363 			    svd->cred)) != 0) {
5364 				return (EINVAL);
5365 			}
5366 		}
5367 		segvn_setvnode_mpss(svd->vp);
5368 	}
5369 
5370 	if (amp != NULL) {
5371 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
5372 		amp->a_szc = szc;
5373 		ANON_LOCK_EXIT(&amp->a_rwlock);
5374 	}
5375 
5376 	seg->s_szc = szc;
5377 
5378 	return (0);
5379 }
5380 
5381 static int
5382 segvn_clrszc(struct seg *seg)
5383 {
5384 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5385 	struct anon_map *amp = svd->amp;
5386 	size_t pgsz;
5387 	pgcnt_t pages;
5388 	int err = 0;
5389 	caddr_t a = seg->s_base;
5390 	caddr_t ea = a + seg->s_size;
5391 	ulong_t an_idx = svd->anon_index;
5392 	vnode_t *vp = svd->vp;
5393 	struct vpage *vpage = svd->vpage;
5394 	page_t *anon_pl[1 + 1], *pp;
5395 	struct anon *ap, *oldap;
5396 	uint_t prot = svd->prot, vpprot;
5397 
5398 	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock) ||
5399 	    SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
5400 	ASSERT(svd->type == MAP_PRIVATE ||
5401 	    (vp != NULL && svd->amp == NULL));
5402 
5403 	if (vp == NULL && amp == NULL) {
5404 		seg->s_szc = 0;
5405 		return (0);
5406 	}
5407 
5408 	/*
5409 	 * do HAT_UNLOAD_UNMAP since we are changing the pagesize.
5410 	 * unload argument is 0 when we are freeing the segment
5411 	 * and unload was already done.
5412 	 */
5413 	hat_unload(seg->s_as->a_hat, seg->s_base, seg->s_size,
5414 	    HAT_UNLOAD_UNMAP);
5415 
5416 	if (amp == NULL) {
5417 		seg->s_szc = 0;
5418 		return (0);
5419 	}
5420 
5421 	pgsz = page_get_pagesize(seg->s_szc);
5422 	pages = btop(pgsz);
5423 
5424 	/*
5425 	 * XXX anon rwlock is not really needed because this is a
5426 	 * private segment and we are writers.
5427 	 */
5428 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
5429 
5430 	for (; a < ea; a += pgsz, an_idx += pages) {
5431 		if ((oldap = anon_get_ptr(amp->ahp, an_idx)) != NULL) {
5432 			if (svd->pageprot != 0) {
5433 				ASSERT(vpage != NULL);
5434 				prot = VPP_PROT(vpage);
5435 				ASSERT(sameprot(seg, a, pgsz));
5436 			}
5437 			if (seg->s_szc != 0) {
5438 				ASSERT(vp == NULL || anon_pages(amp->ahp,
5439 				    an_idx, pages) == pages);
5440 				if ((err = anon_map_demotepages(amp, an_idx,
5441 				    seg, a, prot, vpage, svd->cred)) != 0) {
5442 					goto out;
5443 				}
5444 			} else {
5445 				if (oldap->an_refcnt == 1) {
5446 					continue;
5447 				}
5448 				if ((err = anon_getpage(&oldap, &vpprot,
5449 				    anon_pl, PAGESIZE, seg, a, S_READ,
5450 				    svd->cred))) {
5451 					goto out;
5452 				}
5453 				if ((pp = anon_private(&ap, seg, a, prot,
5454 				    anon_pl[0], 0, svd->cred)) == NULL) {
5455 					err = ENOMEM;
5456 					goto out;
5457 				}
5458 				anon_decref(oldap);
5459 				(void) anon_set_ptr(amp->ahp, an_idx, ap,
5460 				    ANON_SLEEP);
5461 				page_unlock(pp);
5462 			}
5463 		}
5464 		vpage = (vpage == NULL) ? NULL : vpage + pages;
5465 	}
5466 
5467 	amp->a_szc = 0;
5468 	seg->s_szc = 0;
5469 out:
5470 	ANON_LOCK_EXIT(&amp->a_rwlock);
5471 	return (err);
5472 }
5473 
5474 static int
5475 segvn_claim_pages(
5476 	struct seg *seg,
5477 	struct vpage *svp,
5478 	u_offset_t off,
5479 	ulong_t anon_idx,
5480 	uint_t prot)
5481 {
5482 	pgcnt_t	pgcnt = page_get_pagecnt(seg->s_szc);
5483 	size_t ppasize = (pgcnt + 1) * sizeof (page_t *);
5484 	page_t	**ppa;
5485 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5486 	struct anon_map *amp = svd->amp;
5487 	struct vpage *evp = svp + pgcnt;
5488 	caddr_t addr = ((uintptr_t)(svp - svd->vpage) << PAGESHIFT)
5489 	    + seg->s_base;
5490 	struct anon *ap;
5491 	struct vnode *vp = svd->vp;
5492 	page_t *pp;
5493 	pgcnt_t pg_idx, i;
5494 	int err = 0;
5495 	anoff_t	aoff;
5496 	int anon = (amp != NULL) ? 1 : 0;
5497 
5498 	ASSERT(svd->type == MAP_PRIVATE);
5499 	ASSERT(svd->vpage != NULL);
5500 	ASSERT(seg->s_szc != 0);
5501 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
5502 	ASSERT(amp == NULL || IS_P2ALIGNED(anon_idx, pgcnt));
5503 	ASSERT(sameprot(seg, addr, pgcnt << PAGESHIFT));
5504 
5505 	if (VPP_PROT(svp) == prot)
5506 		return (1);
5507 	if (!((VPP_PROT(svp) ^ prot) & PROT_WRITE))
5508 		return (1);
5509 
5510 	ppa = kmem_alloc(ppasize, KM_SLEEP);
5511 	if (anon && vp != NULL) {
5512 		if (anon_get_ptr(amp->ahp, anon_idx) == NULL) {
5513 			anon = 0;
5514 			ASSERT(!anon_pages(amp->ahp, anon_idx, pgcnt));
5515 		}
5516 		ASSERT(!anon ||
5517 		    anon_pages(amp->ahp, anon_idx, pgcnt) == pgcnt);
5518 	}
5519 
5520 	for (*ppa = NULL, pg_idx = 0; svp < evp; svp++, anon_idx++) {
5521 		if (!VPP_ISPPLOCK(svp))
5522 			continue;
5523 		if (anon) {
5524 			ap = anon_get_ptr(amp->ahp, anon_idx);
5525 			if (ap == NULL) {
5526 				panic("segvn_claim_pages: no anon slot");
5527 			}
5528 			swap_xlate(ap, &vp, &aoff);
5529 			off = (u_offset_t)aoff;
5530 		}
5531 		ASSERT(vp != NULL);
5532 		if ((pp = page_lookup(vp,
5533 		    (u_offset_t)off, SE_SHARED)) == NULL) {
5534 			panic("segvn_claim_pages: no page");
5535 		}
5536 		ppa[pg_idx++] = pp;
5537 		off += PAGESIZE;
5538 	}
5539 
5540 	if (ppa[0] == NULL) {
5541 		kmem_free(ppa, ppasize);
5542 		return (1);
5543 	}
5544 
5545 	ASSERT(pg_idx <= pgcnt);
5546 	ppa[pg_idx] = NULL;
5547 
5548 	if (prot & PROT_WRITE)
5549 		err = page_addclaim_pages(ppa);
5550 	else
5551 		err = page_subclaim_pages(ppa);
5552 
5553 	for (i = 0; i < pg_idx; i++) {
5554 		ASSERT(ppa[i] != NULL);
5555 		page_unlock(ppa[i]);
5556 	}
5557 
5558 	kmem_free(ppa, ppasize);
5559 	return (err);
5560 }
5561 
5562 /*
5563  * Returns right (upper address) segment if split occured.
5564  * If the address is equal to the beginning or end of its segment it returns
5565  * the current segment.
5566  */
5567 static struct seg *
5568 segvn_split_seg(struct seg *seg, caddr_t addr)
5569 {
5570 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5571 	struct seg *nseg;
5572 	size_t nsize;
5573 	struct segvn_data *nsvd;
5574 
5575 	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
5576 	ASSERT(svd->type == MAP_PRIVATE || svd->amp == NULL);
5577 	ASSERT(addr >= seg->s_base);
5578 	ASSERT(addr <= seg->s_base + seg->s_size);
5579 
5580 	if (addr == seg->s_base || addr == seg->s_base + seg->s_size)
5581 		return (seg);
5582 
5583 	nsize = seg->s_base + seg->s_size - addr;
5584 	seg->s_size = addr - seg->s_base;
5585 	nseg = seg_alloc(seg->s_as, addr, nsize);
5586 	ASSERT(nseg != NULL);
5587 	nseg->s_ops = seg->s_ops;
5588 	nsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
5589 	nseg->s_data = (void *)nsvd;
5590 	nseg->s_szc = seg->s_szc;
5591 	*nsvd = *svd;
5592 	rw_init(&nsvd->lock, NULL, RW_DEFAULT, NULL);
5593 
5594 	if (nsvd->vp != NULL) {
5595 		VN_HOLD(nsvd->vp);
5596 		nsvd->offset = svd->offset +
5597 		    (uintptr_t)(nseg->s_base - seg->s_base);
5598 		if (nsvd->type == MAP_SHARED)
5599 			lgrp_shm_policy_init(NULL, nsvd->vp);
5600 	} else {
5601 		/*
5602 		 * The offset for an anonymous segment has no signifigance in
5603 		 * terms of an offset into a file. If we were to use the above
5604 		 * calculation instead, the structures read out of
5605 		 * /proc/<pid>/xmap would be more difficult to decipher since
5606 		 * it would be unclear whether two seemingly contiguous
5607 		 * prxmap_t structures represented different segments or a
5608 		 * single segment that had been split up into multiple prxmap_t
5609 		 * structures (e.g. if some part of the segment had not yet
5610 		 * been faulted in).
5611 		 */
5612 		nsvd->offset = 0;
5613 	}
5614 
5615 	ASSERT(svd->softlockcnt == 0);
5616 	crhold(svd->cred);
5617 
5618 	if (svd->vpage != NULL) {
5619 		size_t bytes = vpgtob(seg_pages(seg));
5620 		size_t nbytes = vpgtob(seg_pages(nseg));
5621 		struct vpage *ovpage = svd->vpage;
5622 
5623 		svd->vpage = kmem_alloc(bytes, KM_SLEEP);
5624 		bcopy(ovpage, svd->vpage, bytes);
5625 		nsvd->vpage = kmem_alloc(nbytes, KM_SLEEP);
5626 		bcopy(ovpage + seg_pages(seg), nsvd->vpage, nbytes);
5627 		kmem_free(ovpage, bytes + nbytes);
5628 	}
5629 	if (svd->amp != NULL) {
5630 		struct anon_map *oamp = svd->amp, *namp;
5631 		struct anon_hdr *nahp;
5632 
5633 		ANON_LOCK_ENTER(&oamp->a_rwlock, RW_WRITER);
5634 		ASSERT(oamp->refcnt == 1);
5635 		nahp = anon_create(btop(seg->s_size), ANON_SLEEP);
5636 		(void) anon_copy_ptr(oamp->ahp, svd->anon_index,
5637 		    nahp, 0, btop(seg->s_size), ANON_SLEEP);
5638 
5639 		namp = anonmap_alloc(nseg->s_size, 0);
5640 		namp->a_szc = nseg->s_szc;
5641 		(void) anon_copy_ptr(oamp->ahp,
5642 		    svd->anon_index + btop(seg->s_size),
5643 		    namp->ahp, 0, btop(nseg->s_size), ANON_SLEEP);
5644 		anon_release(oamp->ahp, btop(oamp->size));
5645 		oamp->ahp = nahp;
5646 		oamp->size = seg->s_size;
5647 		svd->anon_index = 0;
5648 		nsvd->amp = namp;
5649 		nsvd->anon_index = 0;
5650 		ANON_LOCK_EXIT(&oamp->a_rwlock);
5651 	}
5652 
5653 	/*
5654 	 * Split amount of swap reserve
5655 	 */
5656 	if (svd->swresv) {
5657 		/*
5658 		 * For MAP_NORESERVE, only allocate swap reserve for pages
5659 		 * being used.  Other segments get enough to cover whole
5660 		 * segment.
5661 		 */
5662 		if (svd->flags & MAP_NORESERVE) {
5663 			size_t	oswresv;
5664 
5665 			ASSERT(svd->amp);
5666 			oswresv = svd->swresv;
5667 			svd->swresv = ptob(anon_pages(svd->amp->ahp,
5668 				svd->anon_index, btop(seg->s_size)));
5669 			nsvd->swresv = ptob(anon_pages(nsvd->amp->ahp,
5670 				nsvd->anon_index, btop(nseg->s_size)));
5671 			ASSERT(oswresv >= (svd->swresv + nsvd->swresv));
5672 		} else {
5673 			ASSERT(svd->swresv == seg->s_size + nseg->s_size);
5674 			svd->swresv = seg->s_size;
5675 			nsvd->swresv = nseg->s_size;
5676 		}
5677 	}
5678 
5679 	return (nseg);
5680 }
5681 
5682 
5683 /*
5684  * called on memory operations (unmap, setprot, setpagesize) for a subset
5685  * of a large page segment to either demote the memory range (SDR_RANGE)
5686  * or the ends (SDR_END) by addr/len.
5687  *
5688  * returns 0 on success. returns errno, including ENOMEM, on failure.
5689  */
5690 static int
5691 segvn_demote_range(struct seg *seg, caddr_t addr, size_t len, int flag)
5692 {
5693 	caddr_t eaddr = addr + len;
5694 	caddr_t lpgaddr, lpgeaddr;
5695 	struct seg *nseg;
5696 	struct seg *badseg1 = NULL;
5697 	struct seg *badseg2 = NULL;
5698 	size_t pgsz;
5699 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5700 	int err;
5701 
5702 	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
5703 	ASSERT(seg->s_szc != 0);
5704 	pgsz = page_get_pagesize(seg->s_szc);
5705 	ASSERT(seg->s_base != addr || seg->s_size != len);
5706 	ASSERT(addr >= seg->s_base && eaddr <= seg->s_base + seg->s_size);
5707 	ASSERT(svd->softlockcnt == 0);
5708 	ASSERT(svd->type == MAP_PRIVATE ||
5709 	    (svd->vp != NULL && svd->amp == NULL));
5710 
5711 	CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
5712 	ASSERT(flag == SDR_RANGE || eaddr < lpgeaddr || addr > lpgaddr);
5713 	if (flag == SDR_RANGE) {
5714 		/* demote entire range */
5715 		badseg1 = nseg = segvn_split_seg(seg, lpgaddr);
5716 		(void) segvn_split_seg(nseg, lpgeaddr);
5717 		ASSERT(badseg1->s_base == lpgaddr);
5718 		ASSERT(badseg1->s_size == lpgeaddr - lpgaddr);
5719 	} else if (addr != lpgaddr) {
5720 		ASSERT(flag == SDR_END);
5721 		badseg1 = nseg = segvn_split_seg(seg, lpgaddr);
5722 		if (eaddr != lpgeaddr && eaddr > lpgaddr + pgsz &&
5723 		    eaddr < lpgaddr + 2 * pgsz) {
5724 			(void) segvn_split_seg(nseg, lpgeaddr);
5725 			ASSERT(badseg1->s_base == lpgaddr);
5726 			ASSERT(badseg1->s_size == 2 * pgsz);
5727 		} else {
5728 			nseg = segvn_split_seg(nseg, lpgaddr + pgsz);
5729 			ASSERT(badseg1->s_base == lpgaddr);
5730 			ASSERT(badseg1->s_size == pgsz);
5731 			if (eaddr != lpgeaddr && eaddr > lpgaddr + pgsz) {
5732 				ASSERT(lpgeaddr - lpgaddr > 2 * pgsz);
5733 				nseg = segvn_split_seg(nseg, lpgeaddr - pgsz);
5734 				badseg2 = nseg;
5735 				(void) segvn_split_seg(nseg, lpgeaddr);
5736 				ASSERT(badseg2->s_base == lpgeaddr - pgsz);
5737 				ASSERT(badseg2->s_size == pgsz);
5738 			}
5739 		}
5740 	} else {
5741 		ASSERT(flag == SDR_END);
5742 		ASSERT(eaddr < lpgeaddr);
5743 		badseg1 = nseg = segvn_split_seg(seg, lpgeaddr - pgsz);
5744 		(void) segvn_split_seg(nseg, lpgeaddr);
5745 		ASSERT(badseg1->s_base == lpgeaddr - pgsz);
5746 		ASSERT(badseg1->s_size == pgsz);
5747 	}
5748 
5749 	ASSERT(badseg1 != NULL);
5750 	ASSERT(badseg1->s_szc != 0);
5751 	ASSERT(page_get_pagesize(badseg1->s_szc) == pgsz);
5752 	ASSERT(flag == SDR_RANGE || badseg1->s_size == pgsz ||
5753 	    badseg1->s_size == 2 * pgsz);
5754 	if (err = segvn_clrszc(badseg1)) {
5755 		return (err);
5756 	}
5757 	ASSERT(badseg1->s_szc == 0);
5758 
5759 	if (badseg2 == NULL)
5760 		return (0);
5761 	ASSERT(badseg2->s_szc != 0);
5762 	ASSERT(page_get_pagesize(badseg2->s_szc) == pgsz);
5763 	ASSERT(badseg2->s_size == pgsz);
5764 	ASSERT(sameprot(badseg2, badseg2->s_base, badseg2->s_size));
5765 	if (err = segvn_clrszc(badseg2)) {
5766 		return (err);
5767 	}
5768 	ASSERT(badseg2->s_szc == 0);
5769 	return (0);
5770 }
5771 
5772 static int
5773 segvn_checkprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
5774 {
5775 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5776 	struct vpage *vp, *evp;
5777 
5778 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5779 
5780 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
5781 	/*
5782 	 * If segment protection can be used, simply check against them.
5783 	 */
5784 	if (svd->pageprot == 0) {
5785 		int err;
5786 
5787 		err = ((svd->prot & prot) != prot) ? EACCES : 0;
5788 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5789 		return (err);
5790 	}
5791 
5792 	/*
5793 	 * Have to check down to the vpage level.
5794 	 */
5795 	evp = &svd->vpage[seg_page(seg, addr + len)];
5796 	for (vp = &svd->vpage[seg_page(seg, addr)]; vp < evp; vp++) {
5797 		if ((VPP_PROT(vp) & prot) != prot) {
5798 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5799 			return (EACCES);
5800 		}
5801 	}
5802 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5803 	return (0);
5804 }
5805 
5806 static int
5807 segvn_getprot(struct seg *seg, caddr_t addr, size_t len, uint_t *protv)
5808 {
5809 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5810 	size_t pgno = seg_page(seg, addr + len) - seg_page(seg, addr) + 1;
5811 
5812 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5813 
5814 	if (pgno != 0) {
5815 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
5816 		if (svd->pageprot == 0) {
5817 			do
5818 				protv[--pgno] = svd->prot;
5819 			while (pgno != 0);
5820 		} else {
5821 			size_t pgoff = seg_page(seg, addr);
5822 
5823 			do {
5824 				pgno--;
5825 				protv[pgno] = VPP_PROT(&svd->vpage[pgno+pgoff]);
5826 			} while (pgno != 0);
5827 		}
5828 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5829 	}
5830 	return (0);
5831 }
5832 
5833 static u_offset_t
5834 segvn_getoffset(struct seg *seg, caddr_t addr)
5835 {
5836 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5837 
5838 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5839 
5840 	return (svd->offset + (uintptr_t)(addr - seg->s_base));
5841 }
5842 
5843 /*ARGSUSED*/
5844 static int
5845 segvn_gettype(struct seg *seg, caddr_t addr)
5846 {
5847 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5848 
5849 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5850 
5851 	return (svd->type | (svd->flags & MAP_NORESERVE));
5852 }
5853 
5854 /*ARGSUSED*/
5855 static int
5856 segvn_getvp(struct seg *seg, caddr_t addr, struct vnode **vpp)
5857 {
5858 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5859 
5860 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5861 
5862 	*vpp = svd->vp;
5863 	return (0);
5864 }
5865 
5866 /*
5867  * Check to see if it makes sense to do kluster/read ahead to
5868  * addr + delta relative to the mapping at addr.  We assume here
5869  * that delta is a signed PAGESIZE'd multiple (which can be negative).
5870  *
5871  * For segvn, we currently "approve" of the action if we are
5872  * still in the segment and it maps from the same vp/off,
5873  * or if the advice stored in segvn_data or vpages allows it.
5874  * Currently, klustering is not allowed only if MADV_RANDOM is set.
5875  */
5876 static int
5877 segvn_kluster(struct seg *seg, caddr_t addr, ssize_t delta)
5878 {
5879 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5880 	struct anon *oap, *ap;
5881 	ssize_t pd;
5882 	size_t page;
5883 	struct vnode *vp1, *vp2;
5884 	u_offset_t off1, off2;
5885 	struct anon_map *amp;
5886 
5887 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5888 	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock) ||
5889 	    SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
5890 
5891 	if (addr + delta < seg->s_base ||
5892 	    addr + delta >= (seg->s_base + seg->s_size))
5893 		return (-1);		/* exceeded segment bounds */
5894 
5895 	pd = delta / (ssize_t)PAGESIZE;	/* divide to preserve sign bit */
5896 	page = seg_page(seg, addr);
5897 
5898 	/*
5899 	 * Check to see if either of the pages addr or addr + delta
5900 	 * have advice set that prevents klustering (if MADV_RANDOM advice
5901 	 * is set for entire segment, or MADV_SEQUENTIAL is set and delta
5902 	 * is negative).
5903 	 */
5904 	if (svd->advice == MADV_RANDOM ||
5905 	    svd->advice == MADV_SEQUENTIAL && delta < 0)
5906 		return (-1);
5907 	else if (svd->pageadvice && svd->vpage) {
5908 		struct vpage *bvpp, *evpp;
5909 
5910 		bvpp = &svd->vpage[page];
5911 		evpp = &svd->vpage[page + pd];
5912 		if (VPP_ADVICE(bvpp) == MADV_RANDOM ||
5913 		    VPP_ADVICE(evpp) == MADV_SEQUENTIAL && delta < 0)
5914 			return (-1);
5915 		if (VPP_ADVICE(bvpp) != VPP_ADVICE(evpp) &&
5916 		    VPP_ADVICE(evpp) == MADV_RANDOM)
5917 			return (-1);
5918 	}
5919 
5920 	if (svd->type == MAP_SHARED)
5921 		return (0);		/* shared mapping - all ok */
5922 
5923 	if ((amp = svd->amp) == NULL)
5924 		return (0);		/* off original vnode */
5925 
5926 	page += svd->anon_index;
5927 
5928 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5929 
5930 	oap = anon_get_ptr(amp->ahp, page);
5931 	ap = anon_get_ptr(amp->ahp, page + pd);
5932 
5933 	ANON_LOCK_EXIT(&amp->a_rwlock);
5934 
5935 	if ((oap == NULL && ap != NULL) || (oap != NULL && ap == NULL)) {
5936 		return (-1);		/* one with and one without an anon */
5937 	}
5938 
5939 	if (oap == NULL) {		/* implies that ap == NULL */
5940 		return (0);		/* off original vnode */
5941 	}
5942 
5943 	/*
5944 	 * Now we know we have two anon pointers - check to
5945 	 * see if they happen to be properly allocated.
5946 	 */
5947 
5948 	/*
5949 	 * XXX We cheat here and don't lock the anon slots. We can't because
5950 	 * we may have been called from the anon layer which might already
5951 	 * have locked them. We are holding a refcnt on the slots so they
5952 	 * can't disappear. The worst that will happen is we'll get the wrong
5953 	 * names (vp, off) for the slots and make a poor klustering decision.
5954 	 */
5955 	swap_xlate(ap, &vp1, &off1);
5956 	swap_xlate(oap, &vp2, &off2);
5957 
5958 
5959 	if (!VOP_CMP(vp1, vp2) || off1 - off2 != delta)
5960 		return (-1);
5961 	return (0);
5962 }
5963 
5964 /*
5965  * Swap the pages of seg out to secondary storage, returning the
5966  * number of bytes of storage freed.
5967  *
5968  * The basic idea is first to unload all translations and then to call
5969  * VOP_PUTPAGE() for all newly-unmapped pages, to push them out to the
5970  * swap device.  Pages to which other segments have mappings will remain
5971  * mapped and won't be swapped.  Our caller (as_swapout) has already
5972  * performed the unloading step.
5973  *
5974  * The value returned is intended to correlate well with the process's
5975  * memory requirements.  However, there are some caveats:
5976  * 1)	When given a shared segment as argument, this routine will
5977  *	only succeed in swapping out pages for the last sharer of the
5978  *	segment.  (Previous callers will only have decremented mapping
5979  *	reference counts.)
5980  * 2)	We assume that the hat layer maintains a large enough translation
5981  *	cache to capture process reference patterns.
5982  */
5983 static size_t
5984 segvn_swapout(struct seg *seg)
5985 {
5986 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5987 	struct anon_map *amp;
5988 	pgcnt_t pgcnt = 0;
5989 	pgcnt_t npages;
5990 	pgcnt_t page;
5991 	ulong_t anon_index;
5992 
5993 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5994 
5995 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
5996 	/*
5997 	 * Find pages unmapped by our caller and force them
5998 	 * out to the virtual swap device.
5999 	 */
6000 	if ((amp = svd->amp) != NULL)
6001 		anon_index = svd->anon_index;
6002 	npages = seg->s_size >> PAGESHIFT;
6003 	for (page = 0; page < npages; page++) {
6004 		page_t *pp;
6005 		struct anon *ap;
6006 		struct vnode *vp;
6007 		u_offset_t off;
6008 		anon_sync_obj_t cookie;
6009 
6010 		/*
6011 		 * Obtain <vp, off> pair for the page, then look it up.
6012 		 *
6013 		 * Note that this code is willing to consider regular
6014 		 * pages as well as anon pages.  Is this appropriate here?
6015 		 */
6016 		ap = NULL;
6017 		if (amp != NULL) {
6018 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
6019 			anon_array_enter(amp, anon_index + page, &cookie);
6020 			ap = anon_get_ptr(amp->ahp, anon_index + page);
6021 			if (ap != NULL) {
6022 				swap_xlate(ap, &vp, &off);
6023 			} else {
6024 				vp = svd->vp;
6025 				off = svd->offset + ptob(page);
6026 			}
6027 			anon_array_exit(&cookie);
6028 			ANON_LOCK_EXIT(&amp->a_rwlock);
6029 		} else {
6030 			vp = svd->vp;
6031 			off = svd->offset + ptob(page);
6032 		}
6033 		if (vp == NULL) {		/* untouched zfod page */
6034 			ASSERT(ap == NULL);
6035 			continue;
6036 		}
6037 
6038 		pp = page_lookup_nowait(vp, off, SE_SHARED);
6039 		if (pp == NULL)
6040 			continue;
6041 
6042 
6043 		/*
6044 		 * Examine the page to see whether it can be tossed out,
6045 		 * keeping track of how many we've found.
6046 		 */
6047 		if (!page_tryupgrade(pp)) {
6048 			/*
6049 			 * If the page has an i/o lock and no mappings,
6050 			 * it's very likely that the page is being
6051 			 * written out as a result of klustering.
6052 			 * Assume this is so and take credit for it here.
6053 			 */
6054 			if (!page_io_trylock(pp)) {
6055 				if (!hat_page_is_mapped(pp))
6056 					pgcnt++;
6057 			} else {
6058 				page_io_unlock(pp);
6059 			}
6060 			page_unlock(pp);
6061 			continue;
6062 		}
6063 		ASSERT(!page_iolock_assert(pp));
6064 
6065 
6066 		/*
6067 		 * Skip if page is locked or has mappings.
6068 		 * We don't need the page_struct_lock to look at lckcnt
6069 		 * and cowcnt because the page is exclusive locked.
6070 		 */
6071 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
6072 		    hat_page_is_mapped(pp)) {
6073 			page_unlock(pp);
6074 			continue;
6075 		}
6076 
6077 		/*
6078 		 * dispose skips large pages so try to demote first.
6079 		 */
6080 		if (pp->p_szc != 0 && !page_try_demote_pages(pp)) {
6081 			page_unlock(pp);
6082 			/*
6083 			 * XXX should skip the remaining page_t's of this
6084 			 * large page.
6085 			 */
6086 			continue;
6087 		}
6088 
6089 		ASSERT(pp->p_szc == 0);
6090 
6091 		/*
6092 		 * No longer mapped -- we can toss it out.  How
6093 		 * we do so depends on whether or not it's dirty.
6094 		 */
6095 		if (hat_ismod(pp) && pp->p_vnode) {
6096 			/*
6097 			 * We must clean the page before it can be
6098 			 * freed.  Setting B_FREE will cause pvn_done
6099 			 * to free the page when the i/o completes.
6100 			 * XXX:	This also causes it to be accounted
6101 			 *	as a pageout instead of a swap: need
6102 			 *	B_SWAPOUT bit to use instead of B_FREE.
6103 			 *
6104 			 * Hold the vnode before releasing the page lock
6105 			 * to prevent it from being freed and re-used by
6106 			 * some other thread.
6107 			 */
6108 			VN_HOLD(vp);
6109 			page_unlock(pp);
6110 
6111 			/*
6112 			 * Queue all i/o requests for the pageout thread
6113 			 * to avoid saturating the pageout devices.
6114 			 */
6115 			if (!queue_io_request(vp, off))
6116 				VN_RELE(vp);
6117 		} else {
6118 			/*
6119 			 * The page was clean, free it.
6120 			 *
6121 			 * XXX:	Can we ever encounter modified pages
6122 			 *	with no associated vnode here?
6123 			 */
6124 			ASSERT(pp->p_vnode != NULL);
6125 			/*LINTED: constant in conditional context*/
6126 			VN_DISPOSE(pp, B_FREE, 0, kcred);
6127 		}
6128 
6129 		/*
6130 		 * Credit now even if i/o is in progress.
6131 		 */
6132 		pgcnt++;
6133 	}
6134 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6135 
6136 	/*
6137 	 * Wakeup pageout to initiate i/o on all queued requests.
6138 	 */
6139 	cv_signal_pageout();
6140 	return (ptob(pgcnt));
6141 }
6142 
6143 /*
6144  * Synchronize primary storage cache with real object in virtual memory.
6145  *
6146  * XXX - Anonymous pages should not be sync'ed out at all.
6147  */
6148 static int
6149 segvn_sync(struct seg *seg, caddr_t addr, size_t len, int attr, uint_t flags)
6150 {
6151 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6152 	struct vpage *vpp;
6153 	page_t *pp;
6154 	u_offset_t offset;
6155 	struct vnode *vp;
6156 	u_offset_t off;
6157 	caddr_t eaddr;
6158 	int bflags;
6159 	int err = 0;
6160 	int segtype;
6161 	int pageprot;
6162 	int prot;
6163 	ulong_t anon_index;
6164 	struct anon_map *amp;
6165 	struct anon *ap;
6166 	anon_sync_obj_t cookie;
6167 
6168 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6169 
6170 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6171 
6172 	if (svd->softlockcnt > 0) {
6173 		/*
6174 		 * flush all pages from seg cache
6175 		 * otherwise we may deadlock in swap_putpage
6176 		 * for B_INVAL page (4175402).
6177 		 *
6178 		 * Even if we grab segvn WRITER's lock or segp_slock
6179 		 * here, there might be another thread which could've
6180 		 * successfully performed lookup/insert just before
6181 		 * we acquired the lock here.  So, grabbing either
6182 		 * lock here is of not much use.  Until we devise
6183 		 * a strategy at upper layers to solve the
6184 		 * synchronization issues completely, we expect
6185 		 * applications to handle this appropriately.
6186 		 */
6187 		segvn_purge(seg);
6188 		if (svd->softlockcnt > 0) {
6189 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6190 			return (EAGAIN);
6191 		}
6192 	}
6193 
6194 	vpp = svd->vpage;
6195 	offset = svd->offset + (uintptr_t)(addr - seg->s_base);
6196 	bflags = ((flags & MS_ASYNC) ? B_ASYNC : 0) |
6197 	    ((flags & MS_INVALIDATE) ? B_INVAL : 0);
6198 
6199 	if (attr) {
6200 		pageprot = attr & ~(SHARED|PRIVATE);
6201 		segtype = (attr & SHARED) ? MAP_SHARED : MAP_PRIVATE;
6202 
6203 		/*
6204 		 * We are done if the segment types don't match
6205 		 * or if we have segment level protections and
6206 		 * they don't match.
6207 		 */
6208 		if (svd->type != segtype) {
6209 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6210 			return (0);
6211 		}
6212 		if (vpp == NULL) {
6213 			if (svd->prot != pageprot) {
6214 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6215 				return (0);
6216 			}
6217 			prot = svd->prot;
6218 		} else
6219 			vpp = &svd->vpage[seg_page(seg, addr)];
6220 
6221 	} else if (svd->vp && svd->amp == NULL &&
6222 	    (flags & MS_INVALIDATE) == 0) {
6223 
6224 		/*
6225 		 * No attributes, no anonymous pages and MS_INVALIDATE flag
6226 		 * is not on, just use one big request.
6227 		 */
6228 		err = VOP_PUTPAGE(svd->vp, (offset_t)offset, len,
6229 		    bflags, svd->cred);
6230 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6231 		return (err);
6232 	}
6233 
6234 	if ((amp = svd->amp) != NULL)
6235 		anon_index = svd->anon_index + seg_page(seg, addr);
6236 
6237 	for (eaddr = addr + len; addr < eaddr; addr += PAGESIZE) {
6238 		ap = NULL;
6239 		if (amp != NULL) {
6240 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
6241 			anon_array_enter(amp, anon_index, &cookie);
6242 			ap = anon_get_ptr(amp->ahp, anon_index++);
6243 			if (ap != NULL) {
6244 				swap_xlate(ap, &vp, &off);
6245 			} else {
6246 				vp = svd->vp;
6247 				off = offset;
6248 			}
6249 			anon_array_exit(&cookie);
6250 			ANON_LOCK_EXIT(&amp->a_rwlock);
6251 		} else {
6252 			vp = svd->vp;
6253 			off = offset;
6254 		}
6255 		offset += PAGESIZE;
6256 
6257 		if (vp == NULL)		/* untouched zfod page */
6258 			continue;
6259 
6260 		if (attr) {
6261 			if (vpp) {
6262 				prot = VPP_PROT(vpp);
6263 				vpp++;
6264 			}
6265 			if (prot != pageprot) {
6266 				continue;
6267 			}
6268 		}
6269 
6270 		/*
6271 		 * See if any of these pages are locked --  if so, then we
6272 		 * will have to truncate an invalidate request at the first
6273 		 * locked one. We don't need the page_struct_lock to test
6274 		 * as this is only advisory; even if we acquire it someone
6275 		 * might race in and lock the page after we unlock and before
6276 		 * we do the PUTPAGE, then PUTPAGE simply does nothing.
6277 		 */
6278 		if (flags & MS_INVALIDATE) {
6279 			if ((pp = page_lookup(vp, off, SE_SHARED)) != NULL) {
6280 				if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
6281 					page_unlock(pp);
6282 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6283 					return (EBUSY);
6284 				}
6285 				if (ap != NULL && pp->p_szc != 0 &&
6286 				    page_tryupgrade(pp)) {
6287 					if (pp->p_lckcnt == 0 &&
6288 					    pp->p_cowcnt == 0) {
6289 						/*
6290 						 * swapfs VN_DISPOSE() won't
6291 						 * invalidate large pages.
6292 						 * Attempt to demote.
6293 						 * XXX can't help it if it
6294 						 * fails. But for swapfs
6295 						 * pages it is no big deal.
6296 						 */
6297 						(void) page_try_demote_pages(
6298 						    pp);
6299 				    }
6300 				}
6301 				page_unlock(pp);
6302 			}
6303 		} else if (svd->type == MAP_SHARED && amp != NULL) {
6304 			/*
6305 			 * Avoid writting out to disk ISM's large pages
6306 			 * because segspt_free_pages() relies on NULL an_pvp
6307 			 * of anon slots of such pages.
6308 			 */
6309 
6310 			ASSERT(svd->vp == NULL);
6311 			/*
6312 			 * swapfs uses page_lookup_nowait if not freeing or
6313 			 * invalidating and skips a page if
6314 			 * page_lookup_nowait returns NULL.
6315 			 */
6316 			pp = page_lookup_nowait(vp, off, SE_SHARED);
6317 			if (pp == NULL) {
6318 				continue;
6319 			}
6320 			if (pp->p_szc != 0) {
6321 				page_unlock(pp);
6322 				continue;
6323 			}
6324 
6325 			/*
6326 			 * Note ISM pages are created large so (vp, off)'s
6327 			 * page cannot suddenly become large after we unlock
6328 			 * pp.
6329 			 */
6330 			page_unlock(pp);
6331 		}
6332 		/*
6333 		 * XXX - Should ultimately try to kluster
6334 		 * calls to VOP_PUTPAGE() for performance.
6335 		 */
6336 		VN_HOLD(vp);
6337 		err = VOP_PUTPAGE(vp, (offset_t)off, PAGESIZE,
6338 		    bflags, svd->cred);
6339 		VN_RELE(vp);
6340 		if (err)
6341 			break;
6342 	}
6343 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6344 	return (err);
6345 }
6346 
6347 /*
6348  * Determine if we have data corresponding to pages in the
6349  * primary storage virtual memory cache (i.e., "in core").
6350  */
6351 static size_t
6352 segvn_incore(struct seg *seg, caddr_t addr, size_t len, char *vec)
6353 {
6354 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6355 	struct vnode *vp, *avp;
6356 	u_offset_t offset, aoffset;
6357 	size_t p, ep;
6358 	int ret;
6359 	struct vpage *vpp;
6360 	page_t *pp;
6361 	uint_t start;
6362 	struct anon_map *amp;		/* XXX - for locknest */
6363 	struct anon *ap;
6364 	uint_t attr;
6365 	anon_sync_obj_t cookie;
6366 
6367 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6368 
6369 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6370 	if (svd->amp == NULL && svd->vp == NULL) {
6371 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6372 		bzero(vec, btopr(len));
6373 		return (len);	/* no anonymous pages created yet */
6374 	}
6375 
6376 	p = seg_page(seg, addr);
6377 	ep = seg_page(seg, addr + len);
6378 	start = svd->vp ? SEG_PAGE_VNODEBACKED : 0;
6379 
6380 	amp = svd->amp;
6381 	for (; p < ep; p++, addr += PAGESIZE) {
6382 		vpp = (svd->vpage) ? &svd->vpage[p]: NULL;
6383 		ret = start;
6384 		ap = NULL;
6385 		avp = NULL;
6386 		/* Grab the vnode/offset for the anon slot */
6387 		if (amp != NULL) {
6388 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
6389 			anon_array_enter(amp, svd->anon_index + p, &cookie);
6390 			ap = anon_get_ptr(amp->ahp, svd->anon_index + p);
6391 			if (ap != NULL) {
6392 				swap_xlate(ap, &avp, &aoffset);
6393 			}
6394 			anon_array_exit(&cookie);
6395 			ANON_LOCK_EXIT(&amp->a_rwlock);
6396 		}
6397 		if ((avp != NULL) && page_exists(avp, aoffset)) {
6398 			/* A page exists for the anon slot */
6399 			ret |= SEG_PAGE_INCORE;
6400 
6401 			/*
6402 			 * If page is mapped and writable
6403 			 */
6404 			attr = (uint_t)0;
6405 			if ((hat_getattr(seg->s_as->a_hat, addr,
6406 			    &attr) != -1) && (attr & PROT_WRITE)) {
6407 				ret |= SEG_PAGE_ANON;
6408 			}
6409 			/*
6410 			 * Don't get page_struct lock for lckcnt and cowcnt,
6411 			 * since this is purely advisory.
6412 			 */
6413 			if ((pp = page_lookup_nowait(avp, aoffset,
6414 			    SE_SHARED)) != NULL) {
6415 				if (pp->p_lckcnt)
6416 					ret |= SEG_PAGE_SOFTLOCK;
6417 				if (pp->p_cowcnt)
6418 					ret |= SEG_PAGE_HASCOW;
6419 				page_unlock(pp);
6420 			}
6421 		}
6422 
6423 		/* Gather vnode statistics */
6424 		vp = svd->vp;
6425 		offset = svd->offset + (uintptr_t)(addr - seg->s_base);
6426 
6427 		if (vp != NULL) {
6428 			/*
6429 			 * Try to obtain a "shared" lock on the page
6430 			 * without blocking.  If this fails, determine
6431 			 * if the page is in memory.
6432 			 */
6433 			pp = page_lookup_nowait(vp, offset, SE_SHARED);
6434 			if ((pp == NULL) && (page_exists(vp, offset))) {
6435 				/* Page is incore, and is named */
6436 				ret |= (SEG_PAGE_INCORE | SEG_PAGE_VNODE);
6437 			}
6438 			/*
6439 			 * Don't get page_struct lock for lckcnt and cowcnt,
6440 			 * since this is purely advisory.
6441 			 */
6442 			if (pp != NULL) {
6443 				ret |= (SEG_PAGE_INCORE | SEG_PAGE_VNODE);
6444 				if (pp->p_lckcnt)
6445 					ret |= SEG_PAGE_SOFTLOCK;
6446 				if (pp->p_cowcnt)
6447 					ret |= SEG_PAGE_HASCOW;
6448 				page_unlock(pp);
6449 			}
6450 		}
6451 
6452 		/* Gather virtual page information */
6453 		if (vpp) {
6454 			if (VPP_ISPPLOCK(vpp))
6455 				ret |= SEG_PAGE_LOCKED;
6456 			vpp++;
6457 		}
6458 
6459 		*vec++ = (char)ret;
6460 	}
6461 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6462 	return (len);
6463 }
6464 
6465 /*
6466  * Statement for p_cowcnts/p_lckcnts.
6467  *
6468  * p_cowcnt is updated while mlock/munlocking MAP_PRIVATE and PROT_WRITE region
6469  * irrespective of the following factors or anything else:
6470  *
6471  *	(1) anon slots are populated or not
6472  *	(2) cow is broken or not
6473  *	(3) refcnt on ap is 1 or greater than 1
6474  *
6475  * If it's not MAP_PRIVATE and PROT_WRITE, p_lckcnt is updated during mlock
6476  * and munlock.
6477  *
6478  *
6479  * Handling p_cowcnts/p_lckcnts during copy-on-write fault:
6480  *
6481  *	if vpage has PROT_WRITE
6482  *		transfer cowcnt on the oldpage -> cowcnt on the newpage
6483  *	else
6484  *		transfer lckcnt on the oldpage -> lckcnt on the newpage
6485  *
6486  *	During copy-on-write, decrement p_cowcnt on the oldpage and increment
6487  *	p_cowcnt on the newpage *if* the corresponding vpage has PROT_WRITE.
6488  *
6489  *	We may also break COW if softlocking on read access in the physio case.
6490  *	In this case, vpage may not have PROT_WRITE. So, we need to decrement
6491  *	p_lckcnt on the oldpage and increment p_lckcnt on the newpage *if* the
6492  *	vpage doesn't have PROT_WRITE.
6493  *
6494  *
6495  * Handling p_cowcnts/p_lckcnts during mprotect on mlocked region:
6496  *
6497  * 	If a MAP_PRIVATE region loses PROT_WRITE, we decrement p_cowcnt and
6498  *	increment p_lckcnt by calling page_subclaim() which takes care of
6499  * 	availrmem accounting and p_lckcnt overflow.
6500  *
6501  *	If a MAP_PRIVATE region gains PROT_WRITE, we decrement p_lckcnt and
6502  *	increment p_cowcnt by calling page_addclaim() which takes care of
6503  *	availrmem availability and p_cowcnt overflow.
6504  */
6505 
6506 /*
6507  * Lock down (or unlock) pages mapped by this segment.
6508  *
6509  * XXX only creates PAGESIZE pages if anon slots are not initialized.
6510  * At fault time they will be relocated into larger pages.
6511  */
6512 static int
6513 segvn_lockop(struct seg *seg, caddr_t addr, size_t len,
6514     int attr, int op, ulong_t *lockmap, size_t pos)
6515 {
6516 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6517 	struct vpage *vpp;
6518 	struct vpage *evp;
6519 	page_t *pp;
6520 	u_offset_t offset;
6521 	u_offset_t off;
6522 	int segtype;
6523 	int pageprot;
6524 	int claim;
6525 	struct vnode *vp;
6526 	ulong_t anon_index;
6527 	struct anon_map *amp;
6528 	struct anon *ap;
6529 	struct vattr va;
6530 	anon_sync_obj_t cookie;
6531 
6532 	/*
6533 	 * Hold write lock on address space because may split or concatenate
6534 	 * segments
6535 	 */
6536 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6537 
6538 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
6539 	if (attr) {
6540 		pageprot = attr & ~(SHARED|PRIVATE);
6541 		segtype = attr & SHARED ? MAP_SHARED : MAP_PRIVATE;
6542 
6543 		/*
6544 		 * We are done if the segment types don't match
6545 		 * or if we have segment level protections and
6546 		 * they don't match.
6547 		 */
6548 		if (svd->type != segtype) {
6549 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6550 			return (0);
6551 		}
6552 		if (svd->pageprot == 0 && svd->prot != pageprot) {
6553 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6554 			return (0);
6555 		}
6556 	}
6557 
6558 	/*
6559 	 * If we're locking, then we must create a vpage structure if
6560 	 * none exists.  If we're unlocking, then check to see if there
6561 	 * is a vpage --  if not, then we could not have locked anything.
6562 	 */
6563 
6564 	if ((vpp = svd->vpage) == NULL) {
6565 		if (op == MC_LOCK)
6566 			segvn_vpage(seg);
6567 		else {
6568 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6569 			return (0);
6570 		}
6571 	}
6572 
6573 	/*
6574 	 * The anonymous data vector (i.e., previously
6575 	 * unreferenced mapping to swap space) can be allocated
6576 	 * by lazily testing for its existence.
6577 	 */
6578 	if (op == MC_LOCK && svd->amp == NULL && svd->vp == NULL) {
6579 		svd->amp = anonmap_alloc(seg->s_size, 0);
6580 		svd->amp->a_szc = seg->s_szc;
6581 	}
6582 
6583 	if ((amp = svd->amp) != NULL) {
6584 		anon_index = svd->anon_index + seg_page(seg, addr);
6585 	}
6586 
6587 	offset = svd->offset + (uintptr_t)(addr - seg->s_base);
6588 	evp = &svd->vpage[seg_page(seg, addr + len)];
6589 
6590 	/*
6591 	 * Loop over all pages in the range.  Process if we're locking and
6592 	 * page has not already been locked in this mapping; or if we're
6593 	 * unlocking and the page has been locked.
6594 	 */
6595 	for (vpp = &svd->vpage[seg_page(seg, addr)]; vpp < evp;
6596 	    vpp++, pos++, addr += PAGESIZE, offset += PAGESIZE, anon_index++) {
6597 		if ((attr == 0 || VPP_PROT(vpp) == pageprot) &&
6598 		    ((op == MC_LOCK && !VPP_ISPPLOCK(vpp)) ||
6599 		    (op == MC_UNLOCK && VPP_ISPPLOCK(vpp)))) {
6600 
6601 			if (amp != NULL)
6602 				ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
6603 			/*
6604 			 * If this isn't a MAP_NORESERVE segment and
6605 			 * we're locking, allocate anon slots if they
6606 			 * don't exist.  The page is brought in later on.
6607 			 */
6608 			if (op == MC_LOCK && svd->vp == NULL &&
6609 			    ((svd->flags & MAP_NORESERVE) == 0) &&
6610 			    amp != NULL &&
6611 			    ((ap = anon_get_ptr(amp->ahp, anon_index))
6612 								== NULL)) {
6613 				anon_array_enter(amp, anon_index, &cookie);
6614 
6615 				if ((ap = anon_get_ptr(amp->ahp,
6616 						anon_index)) == NULL) {
6617 					pp = anon_zero(seg, addr, &ap,
6618 					    svd->cred);
6619 					if (pp == NULL) {
6620 						anon_array_exit(&cookie);
6621 						ANON_LOCK_EXIT(&amp->a_rwlock);
6622 						SEGVN_LOCK_EXIT(seg->s_as,
6623 						    &svd->lock);
6624 						return (ENOMEM);
6625 					}
6626 					ASSERT(anon_get_ptr(amp->ahp,
6627 						anon_index) == NULL);
6628 					(void) anon_set_ptr(amp->ahp,
6629 						anon_index, ap, ANON_SLEEP);
6630 					page_unlock(pp);
6631 				}
6632 				anon_array_exit(&cookie);
6633 			}
6634 
6635 			/*
6636 			 * Get name for page, accounting for
6637 			 * existence of private copy.
6638 			 */
6639 			ap = NULL;
6640 			if (amp != NULL) {
6641 				anon_array_enter(amp, anon_index, &cookie);
6642 				ap = anon_get_ptr(amp->ahp, anon_index);
6643 				if (ap != NULL) {
6644 					swap_xlate(ap, &vp, &off);
6645 				} else {
6646 					if (svd->vp == NULL &&
6647 					    (svd->flags & MAP_NORESERVE)) {
6648 						anon_array_exit(&cookie);
6649 						ANON_LOCK_EXIT(&amp->a_rwlock);
6650 						continue;
6651 					}
6652 					vp = svd->vp;
6653 					off = offset;
6654 				}
6655 				anon_array_exit(&cookie);
6656 				ANON_LOCK_EXIT(&amp->a_rwlock);
6657 			} else {
6658 				vp = svd->vp;
6659 				off = offset;
6660 			}
6661 
6662 			/*
6663 			 * Get page frame.  It's ok if the page is
6664 			 * not available when we're unlocking, as this
6665 			 * may simply mean that a page we locked got
6666 			 * truncated out of existence after we locked it.
6667 			 *
6668 			 * Invoke VOP_GETPAGE() to obtain the page struct
6669 			 * since we may need to read it from disk if its
6670 			 * been paged out.
6671 			 */
6672 			if (op != MC_LOCK)
6673 				pp = page_lookup(vp, off, SE_SHARED);
6674 			else {
6675 				page_t *pl[1 + 1];
6676 				int error;
6677 
6678 				ASSERT(vp != NULL);
6679 
6680 				error = VOP_GETPAGE(vp, (offset_t)off, PAGESIZE,
6681 				    (uint_t *)NULL, pl, PAGESIZE, seg, addr,
6682 				    S_OTHER, svd->cred);
6683 
6684 				/*
6685 				 * If the error is EDEADLK then we must bounce
6686 				 * up and drop all vm subsystem locks and then
6687 				 * retry the operation later
6688 				 * This behavior is a temporary measure because
6689 				 * ufs/sds logging is badly designed and will
6690 				 * deadlock if we don't allow this bounce to
6691 				 * happen.  The real solution is to re-design
6692 				 * the logging code to work properly.  See bug
6693 				 * 4125102 for details of the problem.
6694 				 */
6695 				if (error == EDEADLK) {
6696 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6697 					return (error);
6698 				}
6699 				/*
6700 				 * Quit if we fail to fault in the page.  Treat
6701 				 * the failure as an error, unless the addr
6702 				 * is mapped beyond the end of a file.
6703 				 */
6704 				if (error && svd->vp) {
6705 					va.va_mask = AT_SIZE;
6706 					if (VOP_GETATTR(svd->vp, &va, 0,
6707 					    svd->cred) != 0) {
6708 						SEGVN_LOCK_EXIT(seg->s_as,
6709 						    &svd->lock);
6710 						return (EIO);
6711 					}
6712 					if (btopr(va.va_size) >=
6713 					    btopr(off + 1)) {
6714 						SEGVN_LOCK_EXIT(seg->s_as,
6715 						    &svd->lock);
6716 						return (EIO);
6717 					}
6718 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6719 					return (0);
6720 				} else if (error) {
6721 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6722 					return (EIO);
6723 				}
6724 				pp = pl[0];
6725 				ASSERT(pp != NULL);
6726 			}
6727 
6728 			/*
6729 			 * See Statement at the beginning of this routine.
6730 			 *
6731 			 * claim is always set if MAP_PRIVATE and PROT_WRITE
6732 			 * irrespective of following factors:
6733 			 *
6734 			 * (1) anon slots are populated or not
6735 			 * (2) cow is broken or not
6736 			 * (3) refcnt on ap is 1 or greater than 1
6737 			 *
6738 			 * See 4140683 for details
6739 			 */
6740 			claim = ((VPP_PROT(vpp) & PROT_WRITE) &&
6741 				(svd->type == MAP_PRIVATE));
6742 
6743 			/*
6744 			 * Perform page-level operation appropriate to
6745 			 * operation.  If locking, undo the SOFTLOCK
6746 			 * performed to bring the page into memory
6747 			 * after setting the lock.  If unlocking,
6748 			 * and no page was found, account for the claim
6749 			 * separately.
6750 			 */
6751 			if (op == MC_LOCK) {
6752 				int ret = 1;	/* Assume success */
6753 
6754 				/*
6755 				 * Make sure another thread didn't lock
6756 				 * the page after we released the segment
6757 				 * lock.
6758 				 */
6759 				if ((attr == 0 || VPP_PROT(vpp) == pageprot) &&
6760 				    !VPP_ISPPLOCK(vpp)) {
6761 					ret = page_pp_lock(pp, claim, 0);
6762 					if (ret != 0) {
6763 						VPP_SETPPLOCK(vpp);
6764 						if (lockmap != (ulong_t *)NULL)
6765 							BT_SET(lockmap, pos);
6766 					}
6767 				}
6768 				page_unlock(pp);
6769 				if (ret == 0) {
6770 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6771 					return (EAGAIN);
6772 				}
6773 			} else {
6774 				if (pp != NULL) {
6775 					if ((attr == 0 ||
6776 					    VPP_PROT(vpp) == pageprot) &&
6777 					    VPP_ISPPLOCK(vpp))
6778 						page_pp_unlock(pp, claim, 0);
6779 					page_unlock(pp);
6780 				}
6781 				VPP_CLRPPLOCK(vpp);
6782 			}
6783 		}
6784 	}
6785 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6786 	return (0);
6787 }
6788 
6789 /*
6790  * Set advice from user for specified pages
6791  * There are 5 types of advice:
6792  *	MADV_NORMAL	- Normal (default) behavior (whatever that is)
6793  *	MADV_RANDOM	- Random page references
6794  *				do not allow readahead or 'klustering'
6795  *	MADV_SEQUENTIAL	- Sequential page references
6796  *				Pages previous to the one currently being
6797  *				accessed (determined by fault) are 'not needed'
6798  *				and are freed immediately
6799  *	MADV_WILLNEED	- Pages are likely to be used (fault ahead in mctl)
6800  *	MADV_DONTNEED	- Pages are not needed (synced out in mctl)
6801  *	MADV_FREE	- Contents can be discarded
6802  *	MADV_ACCESS_DEFAULT- Default access
6803  *	MADV_ACCESS_LWP	- Next LWP will access heavily
6804  *	MADV_ACCESS_MANY- Many LWPs or processes will access heavily
6805  */
6806 static int
6807 segvn_advise(struct seg *seg, caddr_t addr, size_t len, uint_t behav)
6808 {
6809 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6810 	size_t page;
6811 	int err = 0;
6812 	int already_set;
6813 	struct anon_map *amp;
6814 	ulong_t anon_index;
6815 	struct seg *next;
6816 	lgrp_mem_policy_t policy;
6817 	struct seg *prev;
6818 	struct vnode *vp;
6819 
6820 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6821 
6822 	/*
6823 	 * In case of MADV_FREE, we won't be modifying any segment private
6824 	 * data structures; so, we only need to grab READER's lock
6825 	 */
6826 	if (behav != MADV_FREE)
6827 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
6828 	else
6829 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6830 
6831 	/*
6832 	 * Large pages are assumed to be only turned on when accesses to the
6833 	 * segment's address range have spatial and temporal locality. That
6834 	 * justifies ignoring MADV_SEQUENTIAL for large page segments.
6835 	 * Also, ignore advice affecting lgroup memory allocation
6836 	 * if don't need to do lgroup optimizations on this system
6837 	 */
6838 
6839 	if ((behav == MADV_SEQUENTIAL && seg->s_szc != 0) ||
6840 	    (!lgrp_optimizations() && (behav == MADV_ACCESS_DEFAULT ||
6841 	    behav == MADV_ACCESS_LWP || behav == MADV_ACCESS_MANY))) {
6842 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6843 		return (0);
6844 	}
6845 
6846 	if (behav == MADV_SEQUENTIAL || behav == MADV_ACCESS_DEFAULT ||
6847 	    behav == MADV_ACCESS_LWP || behav == MADV_ACCESS_MANY) {
6848 		/*
6849 		 * Since we are going to unload hat mappings
6850 		 * we first have to flush the cache. Otherwise
6851 		 * this might lead to system panic if another
6852 		 * thread is doing physio on the range whose
6853 		 * mappings are unloaded by madvise(3C).
6854 		 */
6855 		if (svd->softlockcnt > 0) {
6856 			/*
6857 			 * Since we do have the segvn writers lock
6858 			 * nobody can fill the cache with entries
6859 			 * belonging to this seg during the purge.
6860 			 * The flush either succeeds or we still
6861 			 * have pending I/Os. In the later case,
6862 			 * madvise(3C) fails.
6863 			 */
6864 			segvn_purge(seg);
6865 			if (svd->softlockcnt > 0) {
6866 				/*
6867 				 * Since madvise(3C) is advisory and
6868 				 * it's not part of UNIX98, madvise(3C)
6869 				 * failure here doesn't cause any hardship.
6870 				 * Note that we don't block in "as" layer.
6871 				 */
6872 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6873 				return (EAGAIN);
6874 			}
6875 		}
6876 	}
6877 
6878 	amp = svd->amp;
6879 	vp = svd->vp;
6880 	if (behav == MADV_FREE) {
6881 		/*
6882 		 * MADV_FREE is not supported for segments with
6883 		 * underlying object; if anonmap is NULL, anon slots
6884 		 * are not yet populated and there is nothing for
6885 		 * us to do. As MADV_FREE is advisory, we don't
6886 		 * return error in either case.
6887 		 */
6888 		if (vp || amp == NULL) {
6889 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6890 			return (0);
6891 		}
6892 
6893 		page = seg_page(seg, addr);
6894 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
6895 		anon_disclaim(amp, svd->anon_index + page, len, 0);
6896 		ANON_LOCK_EXIT(&amp->a_rwlock);
6897 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6898 		return (0);
6899 	}
6900 
6901 	/*
6902 	 * If advice is to be applied to entire segment,
6903 	 * use advice field in seg_data structure
6904 	 * otherwise use appropriate vpage entry.
6905 	 */
6906 	if ((addr == seg->s_base) && (len == seg->s_size)) {
6907 		switch (behav) {
6908 		case MADV_ACCESS_LWP:
6909 		case MADV_ACCESS_MANY:
6910 		case MADV_ACCESS_DEFAULT:
6911 			/*
6912 			 * Set memory allocation policy for this segment
6913 			 */
6914 			policy = lgrp_madv_to_policy(behav, len, svd->type);
6915 			if (svd->type == MAP_SHARED)
6916 				already_set = lgrp_shm_policy_set(policy, amp,
6917 				    svd->anon_index, vp, svd->offset, len);
6918 			else {
6919 				/*
6920 				 * For private memory, need writers lock on
6921 				 * address space because the segment may be
6922 				 * split or concatenated when changing policy
6923 				 */
6924 				if (AS_READ_HELD(seg->s_as,
6925 				    &seg->s_as->a_lock)) {
6926 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6927 					return (IE_RETRY);
6928 				}
6929 
6930 				already_set = lgrp_privm_policy_set(policy,
6931 				    &svd->policy_info, len);
6932 			}
6933 
6934 			/*
6935 			 * If policy set already and it shouldn't be reapplied,
6936 			 * don't do anything.
6937 			 */
6938 			if (already_set &&
6939 			    !LGRP_MEM_POLICY_REAPPLICABLE(policy))
6940 				break;
6941 
6942 			/*
6943 			 * Mark any existing pages in given range for
6944 			 * migration
6945 			 */
6946 			page_mark_migrate(seg, addr, len, amp, svd->anon_index,
6947 			    vp, svd->offset, 1);
6948 
6949 			/*
6950 			 * If same policy set already or this is a shared
6951 			 * memory segment, don't need to try to concatenate
6952 			 * segment with adjacent ones.
6953 			 */
6954 			if (already_set || svd->type == MAP_SHARED)
6955 				break;
6956 
6957 			/*
6958 			 * Try to concatenate this segment with previous
6959 			 * one and next one, since we changed policy for
6960 			 * this one and it may be compatible with adjacent
6961 			 * ones now.
6962 			 */
6963 			prev = AS_SEGPREV(seg->s_as, seg);
6964 			next = AS_SEGNEXT(seg->s_as, seg);
6965 
6966 			if (next && next->s_ops == &segvn_ops &&
6967 			    addr + len == next->s_base)
6968 				(void) segvn_concat(seg, next, 1);
6969 
6970 			if (prev && prev->s_ops == &segvn_ops &&
6971 			    addr == prev->s_base + prev->s_size) {
6972 				/*
6973 				 * Drop lock for private data of current
6974 				 * segment before concatenating (deleting) it
6975 				 * and return IE_REATTACH to tell as_ctl() that
6976 				 * current segment has changed
6977 				 */
6978 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6979 				if (!segvn_concat(prev, seg, 1))
6980 					err = IE_REATTACH;
6981 
6982 				return (err);
6983 			}
6984 			break;
6985 
6986 		case MADV_SEQUENTIAL:
6987 			/*
6988 			 * unloading mapping guarantees
6989 			 * detection in segvn_fault
6990 			 */
6991 			ASSERT(seg->s_szc == 0);
6992 			hat_unload(seg->s_as->a_hat, addr, len,
6993 				HAT_UNLOAD);
6994 			/* FALLTHROUGH */
6995 		case MADV_NORMAL:
6996 		case MADV_RANDOM:
6997 			svd->advice = (uchar_t)behav;
6998 			svd->pageadvice = 0;
6999 			break;
7000 		case MADV_WILLNEED:	/* handled in memcntl */
7001 		case MADV_DONTNEED:	/* handled in memcntl */
7002 		case MADV_FREE:		/* handled above */
7003 			break;
7004 		default:
7005 			err = EINVAL;
7006 		}
7007 	} else {
7008 		caddr_t			eaddr;
7009 		struct seg		*new_seg;
7010 		struct segvn_data	*new_svd;
7011 		u_offset_t		off;
7012 		caddr_t			oldeaddr;
7013 
7014 		page = seg_page(seg, addr);
7015 
7016 		segvn_vpage(seg);
7017 
7018 		switch (behav) {
7019 			struct vpage *bvpp, *evpp;
7020 
7021 		case MADV_ACCESS_LWP:
7022 		case MADV_ACCESS_MANY:
7023 		case MADV_ACCESS_DEFAULT:
7024 			/*
7025 			 * Set memory allocation policy for portion of this
7026 			 * segment
7027 			 */
7028 
7029 			/*
7030 			 * Align address and length of advice to page
7031 			 * boundaries for large pages
7032 			 */
7033 			if (seg->s_szc != 0) {
7034 				size_t	pgsz;
7035 
7036 				pgsz = page_get_pagesize(seg->s_szc);
7037 				addr = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
7038 				len = P2ROUNDUP(len, pgsz);
7039 			}
7040 
7041 			/*
7042 			 * Check to see whether policy is set already
7043 			 */
7044 			policy = lgrp_madv_to_policy(behav, len, svd->type);
7045 
7046 			anon_index = svd->anon_index + page;
7047 			off = svd->offset + (uintptr_t)(addr - seg->s_base);
7048 
7049 			if (svd->type == MAP_SHARED)
7050 				already_set = lgrp_shm_policy_set(policy, amp,
7051 				    anon_index, vp, off, len);
7052 			else
7053 				already_set =
7054 				    (policy == svd->policy_info.mem_policy);
7055 
7056 			/*
7057 			 * If policy set already and it shouldn't be reapplied,
7058 			 * don't do anything.
7059 			 */
7060 			if (already_set &&
7061 			    !LGRP_MEM_POLICY_REAPPLICABLE(policy))
7062 				break;
7063 
7064 			/*
7065 			 * For private memory, need writers lock on
7066 			 * address space because the segment may be
7067 			 * split or concatenated when changing policy
7068 			 */
7069 			if (svd->type == MAP_PRIVATE &&
7070 			    AS_READ_HELD(seg->s_as, &seg->s_as->a_lock)) {
7071 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7072 				return (IE_RETRY);
7073 			}
7074 
7075 			/*
7076 			 * Mark any existing pages in given range for
7077 			 * migration
7078 			 */
7079 			page_mark_migrate(seg, addr, len, amp, svd->anon_index,
7080 			    vp, svd->offset, 1);
7081 
7082 			/*
7083 			 * Don't need to try to split or concatenate
7084 			 * segments, since policy is same or this is a shared
7085 			 * memory segment
7086 			 */
7087 			if (already_set || svd->type == MAP_SHARED)
7088 				break;
7089 
7090 			/*
7091 			 * Split off new segment if advice only applies to a
7092 			 * portion of existing segment starting in middle
7093 			 */
7094 			new_seg = NULL;
7095 			eaddr = addr + len;
7096 			oldeaddr = seg->s_base + seg->s_size;
7097 			if (addr > seg->s_base) {
7098 				/*
7099 				 * Must flush I/O page cache
7100 				 * before splitting segment
7101 				 */
7102 				if (svd->softlockcnt > 0)
7103 					segvn_purge(seg);
7104 
7105 				/*
7106 				 * Split segment and return IE_REATTACH to tell
7107 				 * as_ctl() that current segment changed
7108 				 */
7109 				new_seg = segvn_split_seg(seg, addr);
7110 				new_svd = (struct segvn_data *)new_seg->s_data;
7111 				err = IE_REATTACH;
7112 
7113 				/*
7114 				 * If new segment ends where old one
7115 				 * did, try to concatenate the new
7116 				 * segment with next one.
7117 				 */
7118 				if (eaddr == oldeaddr) {
7119 					/*
7120 					 * Set policy for new segment
7121 					 */
7122 					(void) lgrp_privm_policy_set(policy,
7123 					    &new_svd->policy_info,
7124 					    new_seg->s_size);
7125 
7126 					next = AS_SEGNEXT(new_seg->s_as,
7127 					    new_seg);
7128 
7129 					if (next &&
7130 					    next->s_ops == &segvn_ops &&
7131 					    eaddr == next->s_base)
7132 						(void) segvn_concat(new_seg,
7133 						    next, 1);
7134 				}
7135 			}
7136 
7137 			/*
7138 			 * Split off end of existing segment if advice only
7139 			 * applies to a portion of segment ending before
7140 			 * end of the existing segment
7141 			 */
7142 			if (eaddr < oldeaddr) {
7143 				/*
7144 				 * Must flush I/O page cache
7145 				 * before splitting segment
7146 				 */
7147 				if (svd->softlockcnt > 0)
7148 					segvn_purge(seg);
7149 
7150 				/*
7151 				 * If beginning of old segment was already
7152 				 * split off, use new segment to split end off
7153 				 * from.
7154 				 */
7155 				if (new_seg != NULL && new_seg != seg) {
7156 					/*
7157 					 * Split segment
7158 					 */
7159 					(void) segvn_split_seg(new_seg, eaddr);
7160 
7161 					/*
7162 					 * Set policy for new segment
7163 					 */
7164 					(void) lgrp_privm_policy_set(policy,
7165 					    &new_svd->policy_info,
7166 					    new_seg->s_size);
7167 				} else {
7168 					/*
7169 					 * Split segment and return IE_REATTACH
7170 					 * to tell as_ctl() that current
7171 					 * segment changed
7172 					 */
7173 					(void) segvn_split_seg(seg, eaddr);
7174 					err = IE_REATTACH;
7175 
7176 					(void) lgrp_privm_policy_set(policy,
7177 					    &svd->policy_info, seg->s_size);
7178 
7179 					/*
7180 					 * If new segment starts where old one
7181 					 * did, try to concatenate it with
7182 					 * previous segment.
7183 					 */
7184 					if (addr == seg->s_base) {
7185 						prev = AS_SEGPREV(seg->s_as,
7186 						    seg);
7187 
7188 						/*
7189 						 * Drop lock for private data
7190 						 * of current segment before
7191 						 * concatenating (deleting) it
7192 						 */
7193 						if (prev &&
7194 						    prev->s_ops ==
7195 						    &segvn_ops &&
7196 						    addr == prev->s_base +
7197 						    prev->s_size) {
7198 							SEGVN_LOCK_EXIT(
7199 							    seg->s_as,
7200 							    &svd->lock);
7201 							(void) segvn_concat(
7202 							    prev, seg, 1);
7203 							return (err);
7204 						}
7205 					}
7206 				}
7207 			}
7208 			break;
7209 		case MADV_SEQUENTIAL:
7210 			ASSERT(seg->s_szc == 0);
7211 			hat_unload(seg->s_as->a_hat, addr, len, HAT_UNLOAD);
7212 			/* FALLTHROUGH */
7213 		case MADV_NORMAL:
7214 		case MADV_RANDOM:
7215 			bvpp = &svd->vpage[page];
7216 			evpp = &svd->vpage[page + (len >> PAGESHIFT)];
7217 			for (; bvpp < evpp; bvpp++)
7218 				VPP_SETADVICE(bvpp, behav);
7219 			svd->advice = MADV_NORMAL;
7220 			break;
7221 		case MADV_WILLNEED:	/* handled in memcntl */
7222 		case MADV_DONTNEED:	/* handled in memcntl */
7223 		case MADV_FREE:		/* handled above */
7224 			break;
7225 		default:
7226 			err = EINVAL;
7227 		}
7228 	}
7229 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7230 	return (err);
7231 }
7232 
7233 /*
7234  * Create a vpage structure for this seg.
7235  */
7236 static void
7237 segvn_vpage(struct seg *seg)
7238 {
7239 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7240 	struct vpage *vp, *evp;
7241 
7242 	ASSERT(SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
7243 
7244 	/*
7245 	 * If no vpage structure exists, allocate one.  Copy the protections
7246 	 * and the advice from the segment itself to the individual pages.
7247 	 */
7248 	if (svd->vpage == NULL) {
7249 		svd->pageprot = 1;
7250 		svd->pageadvice = 1;
7251 		svd->vpage = kmem_zalloc(seg_pages(seg) * sizeof (struct vpage),
7252 		    KM_SLEEP);
7253 		evp = &svd->vpage[seg_page(seg, seg->s_base + seg->s_size)];
7254 		for (vp = svd->vpage; vp < evp; vp++) {
7255 			VPP_SETPROT(vp, svd->prot);
7256 			VPP_SETADVICE(vp, svd->advice);
7257 		}
7258 	}
7259 }
7260 
7261 /*
7262  * Dump the pages belonging to this segvn segment.
7263  */
7264 static void
7265 segvn_dump(struct seg *seg)
7266 {
7267 	struct segvn_data *svd;
7268 	page_t *pp;
7269 	struct anon_map *amp;
7270 	ulong_t	anon_index;
7271 	struct vnode *vp;
7272 	u_offset_t off, offset;
7273 	pfn_t pfn;
7274 	pgcnt_t page, npages;
7275 	caddr_t addr;
7276 
7277 	npages = seg_pages(seg);
7278 	svd = (struct segvn_data *)seg->s_data;
7279 	vp = svd->vp;
7280 	off = offset = svd->offset;
7281 	addr = seg->s_base;
7282 
7283 	if ((amp = svd->amp) != NULL) {
7284 		anon_index = svd->anon_index;
7285 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7286 	}
7287 
7288 	for (page = 0; page < npages; page++, offset += PAGESIZE) {
7289 		struct anon *ap;
7290 		int we_own_it = 0;
7291 
7292 		if (amp && (ap = anon_get_ptr(svd->amp->ahp, anon_index++))) {
7293 			swap_xlate_nopanic(ap, &vp, &off);
7294 		} else {
7295 			vp = svd->vp;
7296 			off = offset;
7297 		}
7298 
7299 		/*
7300 		 * If pp == NULL, the page either does not exist
7301 		 * or is exclusively locked.  So determine if it
7302 		 * exists before searching for it.
7303 		 */
7304 
7305 		if ((pp = page_lookup_nowait(vp, off, SE_SHARED)))
7306 			we_own_it = 1;
7307 		else
7308 			pp = page_exists(vp, off);
7309 
7310 		if (pp) {
7311 			pfn = page_pptonum(pp);
7312 			dump_addpage(seg->s_as, addr, pfn);
7313 			if (we_own_it)
7314 				page_unlock(pp);
7315 		}
7316 		addr += PAGESIZE;
7317 		dump_timeleft = dump_timeout;
7318 	}
7319 
7320 	if (amp != NULL)
7321 		ANON_LOCK_EXIT(&amp->a_rwlock);
7322 }
7323 
7324 /*
7325  * lock/unlock anon pages over a given range. Return shadow list
7326  */
7327 static int
7328 segvn_pagelock(struct seg *seg, caddr_t addr, size_t len, struct page ***ppp,
7329     enum lock_type type, enum seg_rw rw)
7330 {
7331 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7332 	size_t np, adjustpages = 0, npages = (len >> PAGESHIFT);
7333 	ulong_t anon_index;
7334 	uint_t protchk;
7335 	uint_t error;
7336 	struct anon_map *amp;
7337 	struct page **pplist, **pl, *pp;
7338 	caddr_t a;
7339 	size_t page;
7340 	caddr_t lpgaddr, lpgeaddr;
7341 
7342 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_START,
7343 		"segvn_pagelock: start seg %p addr %p", seg, addr);
7344 
7345 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
7346 	if (seg->s_szc != 0 && (type == L_PAGELOCK || type == L_PAGEUNLOCK)) {
7347 		/*
7348 		 * We are adjusting the pagelock region to the large page size
7349 		 * boundary because the unlocked part of a large page cannot
7350 		 * be freed anyway unless all constituent pages of a large
7351 		 * page are locked. Therefore this adjustment allows us to
7352 		 * decrement availrmem by the right value (note we don't want
7353 		 * to just decrement availrem by the large page size without
7354 		 * adjusting addr and len because then we may end up
7355 		 * decrementing availrmem by large page size for every
7356 		 * constituent page locked by a new as_pagelock call).
7357 		 * as_pageunlock caller must always match as_pagelock call's
7358 		 * addr and len.
7359 		 *
7360 		 * Note segment's page size cannot change while we are holding
7361 		 * as lock.  And then it cannot change while softlockcnt is
7362 		 * not 0. This will allow us to correctly recalculate large
7363 		 * page size region for the matching pageunlock/reclaim call.
7364 		 *
7365 		 * for pageunlock *ppp points to the pointer of page_t that
7366 		 * corresponds to the real unadjusted start address. Similar
7367 		 * for pagelock *ppp must point to the pointer of page_t that
7368 		 * corresponds to the real unadjusted start address.
7369 		 */
7370 		size_t pgsz = page_get_pagesize(seg->s_szc);
7371 		CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
7372 		adjustpages = ((uintptr_t)(addr - lpgaddr)) >> PAGESHIFT;
7373 	}
7374 
7375 	if (type == L_PAGEUNLOCK) {
7376 
7377 		/*
7378 		 * update hat ref bits for /proc. We need to make sure
7379 		 * that threads tracing the ref and mod bits of the
7380 		 * address space get the right data.
7381 		 * Note: page ref and mod bits are updated at reclaim time
7382 		 */
7383 		if (seg->s_as->a_vbits) {
7384 			for (a = addr; a < addr + len; a += PAGESIZE) {
7385 				if (rw == S_WRITE) {
7386 					hat_setstat(seg->s_as, a,
7387 					    PAGESIZE, P_REF | P_MOD);
7388 				} else {
7389 					hat_setstat(seg->s_as, a,
7390 					    PAGESIZE, P_REF);
7391 				}
7392 			}
7393 		}
7394 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7395 		if (seg->s_szc != 0) {
7396 			VM_STAT_ADD(segvnvmstats.pagelock[0]);
7397 			seg_pinactive(seg, lpgaddr, lpgeaddr - lpgaddr,
7398 			    *ppp - adjustpages, rw, segvn_reclaim);
7399 		} else {
7400 			seg_pinactive(seg, addr, len, *ppp, rw, segvn_reclaim);
7401 		}
7402 
7403 		/*
7404 		 * If someone is blocked while unmapping, we purge
7405 		 * segment page cache and thus reclaim pplist synchronously
7406 		 * without waiting for seg_pasync_thread. This speeds up
7407 		 * unmapping in cases where munmap(2) is called, while
7408 		 * raw async i/o is still in progress or where a thread
7409 		 * exits on data fault in a multithreaded application.
7410 		 */
7411 		if (AS_ISUNMAPWAIT(seg->s_as) && (svd->softlockcnt > 0)) {
7412 			/*
7413 			 * Even if we grab segvn WRITER's lock or segp_slock
7414 			 * here, there might be another thread which could've
7415 			 * successfully performed lookup/insert just before
7416 			 * we acquired the lock here.  So, grabbing either
7417 			 * lock here is of not much use.  Until we devise
7418 			 * a strategy at upper layers to solve the
7419 			 * synchronization issues completely, we expect
7420 			 * applications to handle this appropriately.
7421 			 */
7422 			segvn_purge(seg);
7423 		}
7424 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7425 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_UNLOCK_END,
7426 			"segvn_pagelock: unlock seg %p addr %p", seg, addr);
7427 		return (0);
7428 	} else if (type == L_PAGERECLAIM) {
7429 		VM_STAT_COND_ADD(seg->s_szc != 0, segvnvmstats.pagelock[1]);
7430 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7431 		(void) segvn_reclaim(seg, addr, len, *ppp, rw);
7432 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7433 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_UNLOCK_END,
7434 			"segvn_pagelock: reclaim seg %p addr %p", seg, addr);
7435 		return (0);
7436 	}
7437 
7438 	if (seg->s_szc != 0) {
7439 		VM_STAT_ADD(segvnvmstats.pagelock[2]);
7440 		addr = lpgaddr;
7441 		len = lpgeaddr - lpgaddr;
7442 		npages = (len >> PAGESHIFT);
7443 	}
7444 
7445 	/*
7446 	 * for now we only support pagelock to anon memory. We've to check
7447 	 * protections for vnode objects and call into the vnode driver.
7448 	 * That's too much for a fast path. Let the fault entry point handle it.
7449 	 */
7450 	if (svd->vp != NULL) {
7451 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_MISS_END,
7452 		    "segvn_pagelock: mapped vnode seg %p addr %p", seg, addr);
7453 		*ppp = NULL;
7454 		return (ENOTSUP);
7455 	}
7456 
7457 	/*
7458 	 * if anonmap is not yet created, let the fault entry point populate it
7459 	 * with anon ptrs.
7460 	 */
7461 	if ((amp = svd->amp) == NULL) {
7462 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_MISS_END,
7463 		    "segvn_pagelock: anonmap null seg %p addr %p", seg, addr);
7464 		*ppp = NULL;
7465 		return (EFAULT);
7466 	}
7467 
7468 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7469 
7470 	/*
7471 	 * we acquire segp_slock to prevent duplicate entries
7472 	 * in seg_pcache
7473 	 */
7474 	mutex_enter(&svd->segp_slock);
7475 
7476 	/*
7477 	 * try to find pages in segment page cache
7478 	 */
7479 	pplist = seg_plookup(seg, addr, len, rw);
7480 	if (pplist != NULL) {
7481 		mutex_exit(&svd->segp_slock);
7482 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7483 		*ppp = pplist + adjustpages;
7484 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_HIT_END,
7485 			"segvn_pagelock: cache hit seg %p addr %p", seg, addr);
7486 		return (0);
7487 	}
7488 
7489 	if (rw == S_READ) {
7490 		protchk = PROT_READ;
7491 	} else {
7492 		protchk = PROT_WRITE;
7493 	}
7494 
7495 	if (svd->pageprot == 0) {
7496 		if ((svd->prot & protchk) == 0) {
7497 			mutex_exit(&svd->segp_slock);
7498 			error = EFAULT;
7499 			goto out;
7500 		}
7501 	} else {
7502 		/*
7503 		 * check page protections
7504 		 */
7505 		for (a = addr; a < addr + len; a += PAGESIZE) {
7506 			struct vpage *vp;
7507 
7508 			vp = &svd->vpage[seg_page(seg, a)];
7509 			if ((VPP_PROT(vp) & protchk) == 0) {
7510 				mutex_exit(&svd->segp_slock);
7511 				error = EFAULT;
7512 				goto out;
7513 			}
7514 		}
7515 	}
7516 
7517 	mutex_enter(&freemem_lock);
7518 	if (availrmem < tune.t_minarmem + npages) {
7519 		mutex_exit(&freemem_lock);
7520 		mutex_exit(&svd->segp_slock);
7521 		error = ENOMEM;
7522 		goto out;
7523 	} else {
7524 		svd->softlockcnt += npages;
7525 		availrmem -= npages;
7526 		segvn_pages_locked += npages;
7527 	}
7528 	mutex_exit(&freemem_lock);
7529 
7530 	pplist = kmem_alloc(sizeof (page_t *) * npages, KM_SLEEP);
7531 	pl = pplist;
7532 	*ppp = pplist + adjustpages;
7533 
7534 	page = seg_page(seg, addr);
7535 	anon_index = svd->anon_index + page;
7536 
7537 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7538 	for (a = addr; a < addr + len; a += PAGESIZE, anon_index++) {
7539 		struct anon *ap;
7540 		struct vnode *vp;
7541 		u_offset_t off;
7542 		anon_sync_obj_t cookie;
7543 
7544 		anon_array_enter(amp, anon_index, &cookie);
7545 		ap = anon_get_ptr(amp->ahp, anon_index);
7546 		if (ap == NULL) {
7547 			anon_array_exit(&cookie);
7548 			break;
7549 		} else {
7550 			/*
7551 			 * We must never use seg_pcache for COW pages
7552 			 * because we might end up with original page still
7553 			 * lying in seg_pcache even after private page is
7554 			 * created. This leads to data corruption as
7555 			 * aio_write refers to the page still in cache
7556 			 * while all other accesses refer to the private
7557 			 * page.
7558 			 */
7559 			if (ap->an_refcnt != 1) {
7560 				anon_array_exit(&cookie);
7561 				break;
7562 			}
7563 		}
7564 		swap_xlate(ap, &vp, &off);
7565 		anon_array_exit(&cookie);
7566 
7567 		pp = page_lookup_nowait(vp, off, SE_SHARED);
7568 		if (pp == NULL) {
7569 			break;
7570 		}
7571 		*pplist++ = pp;
7572 	}
7573 	ANON_LOCK_EXIT(&amp->a_rwlock);
7574 
7575 	if (a >= addr + len) {
7576 		(void) seg_pinsert(seg, addr, len, pl, rw, SEGP_ASYNC_FLUSH,
7577 			segvn_reclaim);
7578 		mutex_exit(&svd->segp_slock);
7579 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7580 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_FILL_END,
7581 		    "segvn_pagelock: cache fill seg %p addr %p", seg, addr);
7582 		return (0);
7583 	}
7584 
7585 	mutex_exit(&svd->segp_slock);
7586 	error = EFAULT;
7587 	pplist = pl;
7588 	np = ((uintptr_t)(a - addr)) >> PAGESHIFT;
7589 	while (np > (uint_t)0) {
7590 		page_unlock(*pplist);
7591 		np--;
7592 		pplist++;
7593 	}
7594 	kmem_free(pl, sizeof (page_t *) * npages);
7595 	mutex_enter(&freemem_lock);
7596 	svd->softlockcnt -= npages;
7597 	availrmem += npages;
7598 	segvn_pages_locked -= npages;
7599 	mutex_exit(&freemem_lock);
7600 	if (svd->softlockcnt <= 0) {
7601 		if (AS_ISUNMAPWAIT(seg->s_as)) {
7602 			mutex_enter(&seg->s_as->a_contents);
7603 			if (AS_ISUNMAPWAIT(seg->s_as)) {
7604 				AS_CLRUNMAPWAIT(seg->s_as);
7605 				cv_broadcast(&seg->s_as->a_cv);
7606 			}
7607 			mutex_exit(&seg->s_as->a_contents);
7608 		}
7609 	}
7610 
7611 out:
7612 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7613 	*ppp = NULL;
7614 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_MISS_END,
7615 		"segvn_pagelock: cache miss seg %p addr %p", seg, addr);
7616 	return (error);
7617 }
7618 
7619 /*
7620  * purge any cached pages in the I/O page cache
7621  */
7622 static void
7623 segvn_purge(struct seg *seg)
7624 {
7625 	seg_ppurge(seg);
7626 }
7627 
7628 static int
7629 segvn_reclaim(struct seg *seg, caddr_t addr, size_t len, struct page **pplist,
7630 	enum seg_rw rw)
7631 {
7632 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7633 	pgcnt_t np, npages;
7634 	struct page **pl;
7635 
7636 #ifdef lint
7637 	addr = addr;
7638 #endif
7639 
7640 	npages = np = (len >> PAGESHIFT);
7641 	ASSERT(npages);
7642 	pl = pplist;
7643 	if (seg->s_szc != 0) {
7644 		size_t pgsz = page_get_pagesize(seg->s_szc);
7645 		if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) {
7646 			panic("segvn_reclaim: unaligned addr or len");
7647 			/*NOTREACHED*/
7648 		}
7649 	}
7650 
7651 	while (np > (uint_t)0) {
7652 		if (rw == S_WRITE) {
7653 			hat_setrefmod(*pplist);
7654 		} else {
7655 			hat_setref(*pplist);
7656 		}
7657 		page_unlock(*pplist);
7658 		np--;
7659 		pplist++;
7660 	}
7661 	kmem_free(pl, sizeof (page_t *) * npages);
7662 
7663 	mutex_enter(&freemem_lock);
7664 	availrmem += npages;
7665 	segvn_pages_locked -= npages;
7666 	svd->softlockcnt -= npages;
7667 	mutex_exit(&freemem_lock);
7668 	if (svd->softlockcnt <= 0) {
7669 		if (AS_ISUNMAPWAIT(seg->s_as)) {
7670 			mutex_enter(&seg->s_as->a_contents);
7671 			if (AS_ISUNMAPWAIT(seg->s_as)) {
7672 				AS_CLRUNMAPWAIT(seg->s_as);
7673 				cv_broadcast(&seg->s_as->a_cv);
7674 			}
7675 			mutex_exit(&seg->s_as->a_contents);
7676 		}
7677 	}
7678 	return (0);
7679 }
7680 /*
7681  * get a memory ID for an addr in a given segment
7682  *
7683  * XXX only creates PAGESIZE pages if anon slots are not initialized.
7684  * At fault time they will be relocated into larger pages.
7685  */
7686 static int
7687 segvn_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
7688 {
7689 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7690 	struct anon 	*ap = NULL;
7691 	ulong_t		anon_index;
7692 	struct anon_map	*amp;
7693 	anon_sync_obj_t cookie;
7694 
7695 	if (svd->type == MAP_PRIVATE) {
7696 		memidp->val[0] = (uintptr_t)seg->s_as;
7697 		memidp->val[1] = (uintptr_t)addr;
7698 		return (0);
7699 	}
7700 
7701 	if (svd->type == MAP_SHARED) {
7702 		if (svd->vp) {
7703 			memidp->val[0] = (uintptr_t)svd->vp;
7704 			memidp->val[1] = (u_longlong_t)svd->offset +
7705 			    (uintptr_t)(addr - seg->s_base);
7706 			return (0);
7707 		} else {
7708 
7709 			SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7710 			if ((amp = svd->amp) != NULL) {
7711 				anon_index = svd->anon_index +
7712 				    seg_page(seg, addr);
7713 			}
7714 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7715 
7716 			ASSERT(amp != NULL);
7717 
7718 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7719 			anon_array_enter(amp, anon_index, &cookie);
7720 			ap = anon_get_ptr(amp->ahp, anon_index);
7721 			if (ap == NULL) {
7722 				page_t		*pp;
7723 
7724 				pp = anon_zero(seg, addr, &ap, svd->cred);
7725 				if (pp == NULL) {
7726 					anon_array_exit(&cookie);
7727 					ANON_LOCK_EXIT(&amp->a_rwlock);
7728 					return (ENOMEM);
7729 				}
7730 				ASSERT(anon_get_ptr(amp->ahp, anon_index)
7731 								== NULL);
7732 				(void) anon_set_ptr(amp->ahp, anon_index,
7733 				    ap, ANON_SLEEP);
7734 				page_unlock(pp);
7735 			}
7736 
7737 			anon_array_exit(&cookie);
7738 			ANON_LOCK_EXIT(&amp->a_rwlock);
7739 
7740 			memidp->val[0] = (uintptr_t)ap;
7741 			memidp->val[1] = (uintptr_t)addr & PAGEOFFSET;
7742 			return (0);
7743 		}
7744 	}
7745 	return (EINVAL);
7746 }
7747 
7748 static int
7749 sameprot(struct seg *seg, caddr_t a, size_t len)
7750 {
7751 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7752 	struct vpage *vpage;
7753 	spgcnt_t pages = btop(len);
7754 	uint_t prot;
7755 
7756 	if (svd->pageprot == 0)
7757 		return (1);
7758 
7759 	ASSERT(svd->vpage != NULL);
7760 
7761 	vpage = &svd->vpage[seg_page(seg, a)];
7762 	prot = VPP_PROT(vpage);
7763 	vpage++;
7764 	pages--;
7765 	while (pages-- > 0) {
7766 		if (prot != VPP_PROT(vpage))
7767 			return (0);
7768 		vpage++;
7769 	}
7770 	return (1);
7771 }
7772 
7773 /*
7774  * Get memory allocation policy info for specified address in given segment
7775  */
7776 static lgrp_mem_policy_info_t *
7777 segvn_getpolicy(struct seg *seg, caddr_t addr)
7778 {
7779 	struct anon_map		*amp;
7780 	ulong_t			anon_index;
7781 	lgrp_mem_policy_info_t	*policy_info;
7782 	struct segvn_data	*svn_data;
7783 	u_offset_t		vn_off;
7784 	vnode_t			*vp;
7785 
7786 	ASSERT(seg != NULL);
7787 
7788 	svn_data = (struct segvn_data *)seg->s_data;
7789 	if (svn_data == NULL)
7790 		return (NULL);
7791 
7792 	/*
7793 	 * Get policy info for private or shared memory
7794 	 */
7795 	if (svn_data->type != MAP_SHARED)
7796 		policy_info = &svn_data->policy_info;
7797 	else {
7798 		amp = svn_data->amp;
7799 		anon_index = svn_data->anon_index + seg_page(seg, addr);
7800 		vp = svn_data->vp;
7801 		vn_off = svn_data->offset + (uintptr_t)(addr - seg->s_base);
7802 		policy_info = lgrp_shm_policy_get(amp, anon_index, vp, vn_off);
7803 	}
7804 
7805 	return (policy_info);
7806 }
7807