xref: /titanic_50/usr/src/uts/common/vm/seg_spt.c (revision 8461248208fabd3a8230615f8615e5bf1b4dcdcb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/param.h>
30 #include <sys/user.h>
31 #include <sys/mman.h>
32 #include <sys/kmem.h>
33 #include <sys/sysmacros.h>
34 #include <sys/cmn_err.h>
35 #include <sys/systm.h>
36 #include <sys/tuneable.h>
37 #include <vm/hat.h>
38 #include <vm/seg.h>
39 #include <vm/as.h>
40 #include <vm/anon.h>
41 #include <vm/page.h>
42 #include <sys/buf.h>
43 #include <sys/swap.h>
44 #include <sys/atomic.h>
45 #include <vm/seg_spt.h>
46 #include <sys/debug.h>
47 #include <sys/vtrace.h>
48 #include <sys/shm.h>
49 #include <sys/lgrp.h>
50 #include <sys/vmsystm.h>
51 
52 #include <sys/tnf_probe.h>
53 
54 #define	SEGSPTADDR	(caddr_t)0x0
55 
56 /*
57  * # pages used for spt
58  */
59 static size_t	spt_used;
60 
61 /*
62  * segspt_minfree is the memory left for system after ISM
63  * locked its pages; it is set up to 5% of availrmem in
64  * sptcreate when ISM is created.  ISM should not use more
65  * than ~90% of availrmem; if it does, then the performance
66  * of the system may decrease. Machines with large memories may
67  * be able to use up more memory for ISM so we set the default
68  * segspt_minfree to 5% (which gives ISM max 95% of availrmem.
69  * If somebody wants even more memory for ISM (risking hanging
70  * the system) they can patch the segspt_minfree to smaller number.
71  */
72 pgcnt_t segspt_minfree = 0;
73 
74 static int segspt_create(struct seg *seg, caddr_t argsp);
75 static int segspt_unmap(struct seg *seg, caddr_t raddr, size_t ssize);
76 static void segspt_free(struct seg *seg);
77 static void segspt_free_pages(struct seg *seg, caddr_t addr, size_t len);
78 static lgrp_mem_policy_info_t *segspt_getpolicy(struct seg *seg, caddr_t addr);
79 
80 static void
81 segspt_badop()
82 {
83 	panic("segspt_badop called");
84 	/*NOTREACHED*/
85 }
86 
87 #define	SEGSPT_BADOP(t)	(t(*)())segspt_badop
88 
89 struct seg_ops segspt_ops = {
90 	SEGSPT_BADOP(int),		/* dup */
91 	segspt_unmap,
92 	segspt_free,
93 	SEGSPT_BADOP(int),		/* fault */
94 	SEGSPT_BADOP(faultcode_t),	/* faulta */
95 	SEGSPT_BADOP(int),		/* setprot */
96 	SEGSPT_BADOP(int),		/* checkprot */
97 	SEGSPT_BADOP(int),		/* kluster */
98 	SEGSPT_BADOP(size_t),		/* swapout */
99 	SEGSPT_BADOP(int),		/* sync */
100 	SEGSPT_BADOP(size_t),		/* incore */
101 	SEGSPT_BADOP(int),		/* lockop */
102 	SEGSPT_BADOP(int),		/* getprot */
103 	SEGSPT_BADOP(u_offset_t), 	/* getoffset */
104 	SEGSPT_BADOP(int),		/* gettype */
105 	SEGSPT_BADOP(int),		/* getvp */
106 	SEGSPT_BADOP(int),		/* advise */
107 	SEGSPT_BADOP(void),		/* dump */
108 	SEGSPT_BADOP(int),		/* pagelock */
109 	SEGSPT_BADOP(int),		/* setpgsz */
110 	SEGSPT_BADOP(int),		/* getmemid */
111 	segspt_getpolicy,		/* getpolicy */
112 };
113 
114 static int segspt_shmdup(struct seg *seg, struct seg *newseg);
115 static int segspt_shmunmap(struct seg *seg, caddr_t raddr, size_t ssize);
116 static void segspt_shmfree(struct seg *seg);
117 static faultcode_t segspt_shmfault(struct hat *hat, struct seg *seg,
118 		caddr_t addr, size_t len, enum fault_type type, enum seg_rw rw);
119 static faultcode_t segspt_shmfaulta(struct seg *seg, caddr_t addr);
120 static int segspt_shmsetprot(register struct seg *seg, register caddr_t addr,
121 			register size_t len, register uint_t prot);
122 static int segspt_shmcheckprot(struct seg *seg, caddr_t addr, size_t size,
123 			uint_t prot);
124 static int	segspt_shmkluster(struct seg *seg, caddr_t addr, ssize_t delta);
125 static size_t	segspt_shmswapout(struct seg *seg);
126 static size_t segspt_shmincore(struct seg *seg, caddr_t addr, size_t len,
127 			register char *vec);
128 static int segspt_shmsync(struct seg *seg, register caddr_t addr, size_t len,
129 			int attr, uint_t flags);
130 static int segspt_shmlockop(struct seg *seg, caddr_t addr, size_t len,
131 			int attr, int op, ulong_t *lockmap, size_t pos);
132 static int segspt_shmgetprot(struct seg *seg, caddr_t addr, size_t len,
133 			uint_t *protv);
134 static u_offset_t segspt_shmgetoffset(struct seg *seg, caddr_t addr);
135 static int segspt_shmgettype(struct seg *seg, caddr_t addr);
136 static int segspt_shmgetvp(struct seg *seg, caddr_t addr, struct vnode **vpp);
137 static int segspt_shmadvise(struct seg *seg, caddr_t addr, size_t len,
138 			uint_t behav);
139 static void segspt_shmdump(struct seg *seg);
140 static int segspt_shmpagelock(struct seg *, caddr_t, size_t,
141 			struct page ***, enum lock_type, enum seg_rw);
142 static int segspt_shmsetpgsz(struct seg *, caddr_t, size_t, uint_t);
143 static int segspt_shmgetmemid(struct seg *, caddr_t, memid_t *);
144 static lgrp_mem_policy_info_t *segspt_shmgetpolicy(struct seg *, caddr_t);
145 
146 struct seg_ops segspt_shmops = {
147 	segspt_shmdup,
148 	segspt_shmunmap,
149 	segspt_shmfree,
150 	segspt_shmfault,
151 	segspt_shmfaulta,
152 	segspt_shmsetprot,
153 	segspt_shmcheckprot,
154 	segspt_shmkluster,
155 	segspt_shmswapout,
156 	segspt_shmsync,
157 	segspt_shmincore,
158 	segspt_shmlockop,
159 	segspt_shmgetprot,
160 	segspt_shmgetoffset,
161 	segspt_shmgettype,
162 	segspt_shmgetvp,
163 	segspt_shmadvise,	/* advise */
164 	segspt_shmdump,
165 	segspt_shmpagelock,
166 	segspt_shmsetpgsz,
167 	segspt_shmgetmemid,
168 	segspt_shmgetpolicy,
169 };
170 
171 static void segspt_purge(struct seg *seg);
172 static int segspt_reclaim(struct seg *, caddr_t, size_t, struct page **,
173 		enum seg_rw);
174 static int spt_anon_getpages(struct seg *seg, caddr_t addr, size_t len,
175 		page_t **ppa);
176 
177 
178 
179 /*ARGSUSED*/
180 int
181 sptcreate(size_t size, struct seg **sptseg, struct anon_map *amp,
182     uint_t prot, uint_t flags, uint_t share_szc)
183 {
184 	int 	err;
185 	struct  as	*newas;
186 	struct	segspt_crargs sptcargs;
187 
188 #ifdef DEBUG
189 	TNF_PROBE_1(sptcreate, "spt", /* CSTYLED */,
190                 	tnf_ulong, size, size );
191 #endif
192 	if (segspt_minfree == 0)	/* leave min 5% of availrmem for */
193 		segspt_minfree = availrmem/20;	/* for the system */
194 
195 	if (!hat_supported(HAT_SHARED_PT, (void *)0))
196 		return (EINVAL);
197 
198 	/*
199 	 * get a new as for this shared memory segment
200 	 */
201 	newas = as_alloc();
202 	sptcargs.amp = amp;
203 	sptcargs.prot = prot;
204 	sptcargs.flags = flags;
205 	sptcargs.szc = share_szc;
206 
207 	/*
208 	 * create a shared page table (spt) segment
209 	 */
210 
211 	if (err = as_map(newas, SEGSPTADDR, size, segspt_create, &sptcargs)) {
212 		as_free(newas);
213 		return (err);
214 	}
215 	*sptseg = sptcargs.seg_spt;
216 	return (0);
217 }
218 
219 void
220 sptdestroy(struct as *as, struct anon_map *amp)
221 {
222 
223 #ifdef DEBUG
224 	TNF_PROBE_0(sptdestroy, "spt", /* CSTYLED */);
225 #endif
226 	(void) as_unmap(as, SEGSPTADDR, amp->size);
227 	as_free(as);
228 }
229 
230 /*
231  * called from seg_free().
232  * free (i.e., unlock, unmap, return to free list)
233  *  all the pages in the given seg.
234  */
235 void
236 segspt_free(struct seg	*seg)
237 {
238 	struct spt_data *sptd = (struct spt_data *)seg->s_data;
239 
240 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
241 
242 	if (sptd != NULL) {
243 		if (sptd->spt_realsize)
244 			segspt_free_pages(seg, seg->s_base, sptd->spt_realsize);
245 
246 		if (sptd->spt_ppa_lckcnt)
247 			kmem_free(sptd->spt_ppa_lckcnt,
248 				sizeof (*sptd->spt_ppa_lckcnt)
249 				* btopr(sptd->spt_amp->size));
250 		kmem_free(sptd->spt_vp, sizeof (*sptd->spt_vp));
251 		mutex_destroy(&sptd->spt_lock);
252 		kmem_free(sptd, sizeof (*sptd));
253 	}
254 }
255 
256 /*ARGSUSED*/
257 static int
258 segspt_shmsync(struct seg *seg, caddr_t addr, size_t len, int attr,
259 	uint_t flags)
260 {
261 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
262 
263 	return (0);
264 }
265 
266 /*ARGSUSED*/
267 static size_t
268 segspt_shmincore(struct seg *seg, caddr_t addr, size_t len, char *vec)
269 {
270 	caddr_t	eo_seg;
271 	pgcnt_t	npages;
272 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
273 	struct seg	*sptseg;
274 	struct spt_data *sptd;
275 
276 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
277 #ifdef lint
278 	seg = seg;
279 #endif
280 	sptseg = shmd->shm_sptseg;
281 	sptd = sptseg->s_data;
282 
283 	if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
284 		eo_seg = addr + len;
285 		while (addr < eo_seg) {
286 			/* page exists, and it's locked. */
287 			*vec++ = SEG_PAGE_INCORE | SEG_PAGE_LOCKED |
288 				SEG_PAGE_ANON;
289 			addr += PAGESIZE;
290 		}
291 		return (len);
292 	} else {
293 		struct  anon_map *amp = shmd->shm_amp;
294 		struct  anon	*ap;
295 		page_t		*pp;
296 		pgcnt_t 	anon_index;
297 		struct vnode 	*vp;
298 		u_offset_t 	off;
299 		ulong_t		i;
300 		int		ret;
301 		anon_sync_obj_t	cookie;
302 
303 		addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
304 		anon_index = seg_page(seg, addr);
305 		npages = btopr(len);
306 		if (anon_index + npages > btopr(shmd->shm_amp->size)) {
307 			return (EINVAL);
308 		}
309 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
310 		for (i = 0; i < npages; i++, anon_index++) {
311 			ret = 0;
312 			anon_array_enter(amp, anon_index, &cookie);
313 			ap = anon_get_ptr(amp->ahp, anon_index);
314 			if (ap != NULL) {
315 				swap_xlate(ap, &vp, &off);
316 				anon_array_exit(&cookie);
317 				pp = page_lookup_nowait(vp, off, SE_SHARED);
318 				if (pp != NULL) {
319 					ret |= SEG_PAGE_INCORE | SEG_PAGE_ANON;
320 					page_unlock(pp);
321 				}
322 			} else {
323 				anon_array_exit(&cookie);
324 			}
325 			if (shmd->shm_vpage[anon_index] & DISM_PG_LOCKED) {
326 				ret |= SEG_PAGE_LOCKED;
327 			}
328 			*vec++ = (char)ret;
329 		}
330 		ANON_LOCK_EXIT(&amp->a_rwlock);
331 		return (len);
332 	}
333 }
334 
335 static int
336 segspt_unmap(struct seg *seg, caddr_t raddr, size_t ssize)
337 {
338 	size_t share_size;
339 
340 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
341 
342 	/*
343 	 * seg.s_size may have been rounded up to the largest page size
344 	 * in shmat().
345 	 * XXX This should be cleanedup. sptdestroy should take a length
346 	 * argument which should be the same as sptcreate. Then
347 	 * this rounding would not be needed (or is done in shm.c)
348 	 * Only the check for full segment will be needed.
349 	 *
350 	 * XXX -- shouldn't raddr == 0 always? These tests don't seem
351 	 * to be useful at all.
352 	 */
353 	share_size = page_get_pagesize(seg->s_szc);
354 	ssize = P2ROUNDUP(ssize, share_size);
355 
356 	if (raddr == seg->s_base && ssize == seg->s_size) {
357 		seg_free(seg);
358 		return (0);
359 	} else
360 		return (EINVAL);
361 }
362 
363 int
364 segspt_create(struct seg *seg, caddr_t argsp)
365 {
366 	int		err;
367 	caddr_t		addr = seg->s_base;
368 	struct spt_data *sptd;
369 	struct 	segspt_crargs *sptcargs = (struct segspt_crargs *)argsp;
370 	struct anon_map *amp = sptcargs->amp;
371 	struct	cred	*cred = CRED();
372 	ulong_t		i, j, anon_index = 0;
373 	pgcnt_t		npages = btopr(amp->size);
374 	struct vnode	*vp;
375 	page_t		**ppa;
376 	uint_t		hat_flags;
377 
378 	/*
379 	 * We are holding the a_lock on the underlying dummy as,
380 	 * so we can make calls to the HAT layer.
381 	 */
382 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
383 
384 #ifdef DEBUG
385 	TNF_PROBE_2(segspt_create, "spt", /* CSTYLED */,
386                                 tnf_opaque, addr, addr,
387 				tnf_ulong, len, seg->s_size);
388 #endif
389 	if ((sptcargs->flags & SHM_PAGEABLE) == 0) {
390 		if (err = anon_swap_adjust(npages))
391 			return (err);
392 	}
393 	err = ENOMEM;
394 
395 	if ((sptd = kmem_zalloc(sizeof (*sptd), KM_NOSLEEP)) == NULL)
396 		goto out1;
397 
398 	if ((sptcargs->flags & SHM_PAGEABLE) == 0) {
399 		if ((ppa = kmem_zalloc(((sizeof (page_t *)) * npages),
400 		    KM_NOSLEEP)) == NULL)
401 			goto out2;
402 	}
403 
404 	mutex_init(&sptd->spt_lock, NULL, MUTEX_DEFAULT, NULL);
405 
406 	if ((vp = kmem_zalloc(sizeof (*vp), KM_NOSLEEP)) == NULL)
407 		goto out3;
408 
409 	seg->s_ops = &segspt_ops;
410 	sptd->spt_vp = vp;
411 	sptd->spt_amp = amp;
412 	sptd->spt_prot = sptcargs->prot;
413 	sptd->spt_flags = sptcargs->flags;
414 	seg->s_data = (caddr_t)sptd;
415 	sptd->spt_ppa = NULL;
416 	sptd->spt_ppa_lckcnt = NULL;
417 	seg->s_szc = sptcargs->szc;
418 
419 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
420 	amp->a_szc = seg->s_szc;
421 	ANON_LOCK_EXIT(&amp->a_rwlock);
422 
423 	/*
424 	 * Set policy to affect initial allocation of pages in
425 	 * anon_map_createpages()
426 	 */
427 	(void) lgrp_shm_policy_set(LGRP_MEM_POLICY_DEFAULT, amp, anon_index,
428 	    NULL, 0, ptob(npages));
429 
430 	if (sptcargs->flags & SHM_PAGEABLE) {
431 		size_t  share_sz;
432 		pgcnt_t new_npgs, more_pgs;
433 		struct anon_hdr *nahp;
434 
435 		share_sz = page_get_pagesize(seg->s_szc);
436 		if (!IS_P2ALIGNED(amp->size, share_sz)) {
437 			/*
438 			 * We are rounding up the size of the anon array
439 			 * on 4 M boundary because we always create 4 M
440 			 * of page(s) when locking, faulting pages and we
441 			 * don't have to check for all corner cases e.g.
442 			 * if there is enough space to allocate 4 M
443 			 * page.
444 			 */
445 			new_npgs = btop(P2ROUNDUP(amp->size, share_sz));
446 			more_pgs = new_npgs - npages;
447 
448 			if (anon_resv(ptob(more_pgs)) == 0) {
449 				err = ENOMEM;
450 				goto out4;
451 			}
452 			nahp = anon_create(new_npgs, ANON_SLEEP);
453 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
454 			(void) anon_copy_ptr(amp->ahp, 0, nahp, 0, npages,
455 			    ANON_SLEEP);
456 			anon_release(amp->ahp, npages);
457 			amp->ahp = nahp;
458 			amp->swresv = amp->size = ptob(new_npgs);
459 			ANON_LOCK_EXIT(&amp->a_rwlock);
460 			npages = new_npgs;
461 		}
462 
463 		sptd->spt_ppa_lckcnt = kmem_zalloc(npages *
464 		    sizeof (*sptd->spt_ppa_lckcnt), KM_SLEEP);
465 		sptd->spt_pcachecnt = 0;
466 		sptd->spt_realsize = ptob(npages);
467 		sptcargs->seg_spt = seg;
468 		return (0);
469 	}
470 
471 	/*
472 	 * get array of pages for each anon slot in amp
473 	 */
474 	if ((err = anon_map_createpages(amp, anon_index, ptob(npages), ppa,
475 	    seg, addr, S_CREATE, cred)) != 0)
476 		goto out4;
477 
478 	/*
479 	 * addr is initial address corresponding to the first page on ppa list
480 	 */
481 	for (i = 0; i < npages; i++) {
482 		/* attempt to lock all pages */
483 		if (!page_pp_lock(ppa[i], 0, 1)) {
484 			/*
485 			 * if unable to lock any page, unlock all
486 			 * of them and return error
487 			 */
488 			for (j = 0; j < i; j++)
489 				page_pp_unlock(ppa[j], 0, 1);
490 			for (i = 0; i < npages; i++) {
491 				page_unlock(ppa[i]);
492 			}
493 			err = ENOMEM;
494 			goto out4;
495 		}
496 	}
497 
498 	/*
499 	 * Some platforms assume that ISM mappings are HAT_LOAD_LOCK
500 	 * for the entire life of the segment. For example platforms
501 	 * that do not support Dynamic Reconfiguration.
502 	 */
503 	hat_flags = HAT_LOAD_SHARE;
504 	if (!hat_supported(HAT_DYNAMIC_ISM_UNMAP, NULL))
505 		hat_flags |= HAT_LOAD_LOCK;
506 
507 	hat_memload_array(seg->s_as->a_hat, addr, ptob(npages),
508 	    ppa, sptd->spt_prot, hat_flags);
509 
510 	/*
511 	 * On platforms that do not support HAT_DYNAMIC_ISM_UNMAP,
512 	 * we will leave the pages locked SE_SHARED for the life
513 	 * of the ISM segment. This will prevent any calls to
514 	 * hat_pageunload() on this ISM segment for those platforms.
515 	 */
516 	if (!(hat_flags & HAT_LOAD_LOCK)) {
517 		/*
518 		 * On platforms that support HAT_DYNAMIC_ISM_UNMAP,
519 		 * we no longer need to hold the SE_SHARED lock on the pages,
520 		 * since L_PAGELOCK and F_SOFTLOCK calls will grab the
521 		 * SE_SHARED lock on the pages as necessary.
522 		 */
523 		for (i = 0; i < npages; i++)
524 			page_unlock(ppa[i]);
525 	}
526 	sptd->spt_pcachecnt = 0;
527 	kmem_free(ppa, ((sizeof (page_t *)) * npages));
528 	sptd->spt_realsize = ptob(npages);
529 	atomic_add_long(&spt_used, npages);
530 	sptcargs->seg_spt = seg;
531 	return (0);
532 
533 out4:
534 	seg->s_data = NULL;
535 	kmem_free(vp, sizeof (*vp));
536 out3:
537 	mutex_destroy(&sptd->spt_lock);
538 	if ((sptcargs->flags & SHM_PAGEABLE) == 0)
539 		kmem_free(ppa, (sizeof (*ppa) * npages));
540 out2:
541 	kmem_free(sptd, sizeof (*sptd));
542 out1:
543 	if ((sptcargs->flags & SHM_PAGEABLE) == 0)
544 		anon_swap_restore(npages);
545 	return (err);
546 }
547 
548 /*ARGSUSED*/
549 void
550 segspt_free_pages(struct seg *seg, caddr_t addr, size_t len)
551 {
552 	struct page 	*pp;
553 	struct spt_data *sptd = (struct spt_data *)seg->s_data;
554 	pgcnt_t		npages;
555 	ulong_t		anon_idx;
556 	struct anon_map *amp;
557 	struct anon 	*ap;
558 	struct vnode 	*vp;
559 	u_offset_t 	off;
560 	uint_t		hat_flags;
561 	int		root = 0;
562 	pgcnt_t		pgs, curnpgs = 0;
563 	page_t		*rootpp;
564 
565 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
566 
567 	len = P2ROUNDUP(len, PAGESIZE);
568 
569 	npages = btop(len);
570 
571 	hat_flags = HAT_UNLOAD_UNLOCK;
572 	if ((hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) ||
573 	    (sptd->spt_flags & SHM_PAGEABLE)) {
574 		hat_flags = HAT_UNLOAD;
575 	}
576 
577 	hat_unload(seg->s_as->a_hat, addr, len, hat_flags);
578 
579 	amp = sptd->spt_amp;
580 	if (sptd->spt_flags & SHM_PAGEABLE)
581 		npages = btop(amp->size);
582 
583 	ASSERT(amp);
584 	for (anon_idx = 0; anon_idx < npages; anon_idx++) {
585 		if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
586 			if ((ap = anon_get_ptr(amp->ahp, anon_idx)) == NULL) {
587 				panic("segspt_free_pages: null app");
588 				/*NOTREACHED*/
589 			}
590 		} else {
591 			if ((ap = anon_get_next_ptr(amp->ahp, &anon_idx))
592 			    == NULL)
593 				continue;
594 		}
595 		ASSERT(ANON_ISBUSY(anon_get_slot(amp->ahp, anon_idx)) == 0);
596 		swap_xlate(ap, &vp, &off);
597 
598 		/*
599 		 * If this platform supports HAT_DYNAMIC_ISM_UNMAP,
600 		 * the pages won't be having SE_SHARED lock at this
601 		 * point.
602 		 *
603 		 * On platforms that do not support HAT_DYNAMIC_ISM_UNMAP,
604 		 * the pages are still held SE_SHARED locked from the
605 		 * original segspt_create()
606 		 *
607 		 * Our goal is to get SE_EXCL lock on each page, remove
608 		 * permanent lock on it and invalidate the page.
609 		 */
610 		if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
611 			if (hat_flags == HAT_UNLOAD)
612 				pp = page_lookup(vp, off, SE_EXCL);
613 			else {
614 				if ((pp = page_find(vp, off)) == NULL) {
615 					panic("segspt_free_pages: "
616 					    "page not locked");
617 					/*NOTREACHED*/
618 				}
619 				if (!page_tryupgrade(pp)) {
620 					page_unlock(pp);
621 					pp = page_lookup(vp, off, SE_EXCL);
622 				}
623 			}
624 			if (pp == NULL) {
625 				panic("segspt_free_pages: "
626 				    "page not in the system");
627 				/*NOTREACHED*/
628 			}
629 			page_pp_unlock(pp, 0, 1);
630 		} else {
631 			if ((pp = page_lookup(vp, off, SE_EXCL)) == NULL)
632 				continue;
633 			page_pp_unlock(pp, 0, 0);
634 		}
635 		/*
636 		 * It's logical to invalidate the pages here as in most cases
637 		 * these were created by segspt.
638 		 */
639 		if (pp->p_szc != 0) {
640 			/*
641 			 * For DISM swap is released in shm_rm_amp.
642 			 */
643 			if ((sptd->spt_flags & SHM_PAGEABLE) == 0 &&
644 			    ap->an_pvp != NULL) {
645 				panic("segspt_free_pages: pvp non NULL");
646 				/*NOTREACHED*/
647 			}
648 			if (root == 0) {
649 				ASSERT(curnpgs == 0);
650 				root = 1;
651 				rootpp = pp;
652 				pgs = curnpgs = page_get_pagecnt(pp->p_szc);
653 				ASSERT(pgs > 1);
654 				ASSERT(IS_P2ALIGNED(pgs, pgs));
655 				ASSERT(!(page_pptonum(pp) & (pgs - 1)));
656 				curnpgs--;
657 			} else if ((page_pptonum(pp) & (pgs - 1)) == pgs - 1) {
658 				ASSERT(curnpgs == 1);
659 				ASSERT(page_pptonum(pp) ==
660 				    page_pptonum(rootpp) + (pgs - 1));
661 				page_destroy_pages(rootpp);
662 				root = 0;
663 				curnpgs = 0;
664 			} else {
665 				ASSERT(curnpgs > 1);
666 				ASSERT(page_pptonum(pp) ==
667 				    page_pptonum(rootpp) + (pgs - curnpgs));
668 				curnpgs--;
669 			}
670 		} else {
671 			if (root != 0 || curnpgs != 0) {
672 				panic("segspt_free_pages: bad large page");
673 				/*NOTREACHED*/
674 			}
675 			/*LINTED: constant in conditional context */
676 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
677 		}
678 	}
679 
680 	if (root != 0 || curnpgs != 0) {
681 		panic("segspt_free_pages: bad large page");
682 		/*NOTREACHED*/
683 	}
684 
685 	/*
686 	 * mark that pages have been released
687 	 */
688 	sptd->spt_realsize = 0;
689 
690 	if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
691 		atomic_add_long(&spt_used, -npages);
692 		anon_swap_restore(npages);
693 	}
694 }
695 
696 /*
697  * Get memory allocation policy info for specified address in given segment
698  */
699 static lgrp_mem_policy_info_t *
700 segspt_getpolicy(struct seg *seg, caddr_t addr)
701 {
702 	struct anon_map		*amp;
703 	ulong_t			anon_index;
704 	lgrp_mem_policy_info_t	*policy_info;
705 	struct spt_data		*spt_data;
706 
707 	ASSERT(seg != NULL);
708 
709 	/*
710 	 * Get anon_map from segspt
711 	 *
712 	 * Assume that no lock needs to be held on anon_map, since
713 	 * it should be protected by its reference count which must be
714 	 * nonzero for an existing segment
715 	 * Need to grab readers lock on policy tree though
716 	 */
717 	spt_data = (struct spt_data *)seg->s_data;
718 	if (spt_data == NULL)
719 		return (NULL);
720 	amp = spt_data->spt_amp;
721 	ASSERT(amp->refcnt != 0);
722 
723 	/*
724 	 * Get policy info
725 	 *
726 	 * Assume starting anon index of 0
727 	 */
728 	anon_index = seg_page(seg, addr);
729 	policy_info = lgrp_shm_policy_get(amp, anon_index, NULL, 0);
730 
731 	return (policy_info);
732 }
733 
734 /*
735  * DISM only.
736  * Return locked pages over a given range.
737  *
738  * We will cache all DISM locked pages and save the pplist for the
739  * entire segment in the ppa field of the underlying DISM segment structure.
740  * Later, during a call to segspt_reclaim() we will use this ppa array
741  * to page_unlock() all of the pages and then we will free this ppa list.
742  */
743 /*ARGSUSED*/
744 static int
745 segspt_dismpagelock(struct seg *seg, caddr_t addr, size_t len,
746     struct page ***ppp, enum lock_type type, enum seg_rw rw)
747 {
748 	struct  shm_data *shmd = (struct shm_data *)seg->s_data;
749 	struct  seg	*sptseg = shmd->shm_sptseg;
750 	struct  spt_data *sptd = sptseg->s_data;
751 	pgcnt_t pg_idx, npages, tot_npages, npgs;
752 	struct  page **pplist, **pl, **ppa, *pp;
753 	struct  anon_map *amp;
754 	spgcnt_t	an_idx;
755 	int 	ret = ENOTSUP;
756 	uint_t	pl_built = 0;
757 	struct  anon *ap;
758 	struct  vnode *vp;
759 	u_offset_t off;
760 	pgcnt_t claim_availrmem = 0;
761 	uint_t	szc;
762 
763 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
764 
765 	/*
766 	 * We want to lock/unlock the entire ISM segment. Therefore,
767 	 * we will be using the underlying sptseg and it's base address
768 	 * and length for the caching arguments.
769 	 */
770 	ASSERT(sptseg);
771 	ASSERT(sptd);
772 
773 	pg_idx = seg_page(seg, addr);
774 	npages = btopr(len);
775 
776 	/*
777 	 * check if the request is larger than number of pages covered
778 	 * by amp
779 	 */
780 	if (pg_idx + npages > btopr(sptd->spt_amp->size)) {
781 		*ppp = NULL;
782 		return (ENOTSUP);
783 	}
784 
785 	if (type == L_PAGEUNLOCK) {
786 		ASSERT(sptd->spt_ppa != NULL);
787 
788 		seg_pinactive(seg, seg->s_base, sptd->spt_amp->size,
789 		    sptd->spt_ppa, sptd->spt_prot, segspt_reclaim);
790 
791 		/*
792 		 * If someone is blocked while unmapping, we purge
793 		 * segment page cache and thus reclaim pplist synchronously
794 		 * without waiting for seg_pasync_thread. This speeds up
795 		 * unmapping in cases where munmap(2) is called, while
796 		 * raw async i/o is still in progress or where a thread
797 		 * exits on data fault in a multithreaded application.
798 		 */
799 		if (AS_ISUNMAPWAIT(seg->s_as) && (shmd->shm_softlockcnt > 0)) {
800 			segspt_purge(seg);
801 		}
802 		return (0);
803 	} else if (type == L_PAGERECLAIM) {
804 		ASSERT(sptd->spt_ppa != NULL);
805 		(void) segspt_reclaim(seg, seg->s_base, sptd->spt_amp->size,
806 		    sptd->spt_ppa, sptd->spt_prot);
807 		return (0);
808 	}
809 
810 	if (sptd->spt_flags & DISM_PPA_CHANGED) {
811 		segspt_purge(seg);
812 		/*
813 		 * for DISM ppa needs to be rebuild since
814 		 * number of locked pages could be changed
815 		 */
816 		*ppp = NULL;
817 		return (ENOTSUP);
818 	}
819 
820 	/*
821 	 * First try to find pages in segment page cache, without
822 	 * holding the segment lock.
823 	 */
824 	pplist = seg_plookup(seg, seg->s_base, sptd->spt_amp->size,
825 	    sptd->spt_prot);
826 	if (pplist != NULL) {
827 		ASSERT(sptd->spt_ppa != NULL);
828 		ASSERT(sptd->spt_ppa == pplist);
829 		ppa = sptd->spt_ppa;
830 		for (an_idx = pg_idx; an_idx < pg_idx + npages; ) {
831 			if (ppa[an_idx] == NULL) {
832 				seg_pinactive(seg, seg->s_base,
833 				    sptd->spt_amp->size, ppa,
834 				    sptd->spt_prot, segspt_reclaim);
835 				*ppp = NULL;
836 				return (ENOTSUP);
837 			}
838 			if ((szc = ppa[an_idx]->p_szc) != 0) {
839 				npgs = page_get_pagecnt(szc);
840 				an_idx = P2ROUNDUP(an_idx + 1, npgs);
841 			} else {
842 				an_idx++;
843 			}
844 		}
845 		/*
846 		 * Since we cache the entire DISM segment, we want to
847 		 * set ppp to point to the first slot that corresponds
848 		 * to the requested addr, i.e. pg_idx.
849 		 */
850 		*ppp = &(sptd->spt_ppa[pg_idx]);
851 		return (0);
852 	}
853 
854 	/* The L_PAGELOCK case... */
855 	mutex_enter(&sptd->spt_lock);
856 	/*
857 	 * try to find pages in segment page cache with mutex
858 	 */
859 	pplist = seg_plookup(seg, seg->s_base, sptd->spt_amp->size,
860 	    sptd->spt_prot);
861 	if (pplist != NULL) {
862 		ASSERT(sptd->spt_ppa != NULL);
863 		ASSERT(sptd->spt_ppa == pplist);
864 		ppa = sptd->spt_ppa;
865 		for (an_idx = pg_idx; an_idx < pg_idx + npages; ) {
866 			if (ppa[an_idx] == NULL) {
867 				mutex_exit(&sptd->spt_lock);
868 				seg_pinactive(seg, seg->s_base,
869 				    sptd->spt_amp->size, ppa,
870 				    sptd->spt_prot, segspt_reclaim);
871 				*ppp = NULL;
872 				return (ENOTSUP);
873 			}
874 			if ((szc = ppa[an_idx]->p_szc) != 0) {
875 				npgs = page_get_pagecnt(szc);
876 				an_idx = P2ROUNDUP(an_idx + 1, npgs);
877 			} else {
878 				an_idx++;
879 			}
880 		}
881 		/*
882 		 * Since we cache the entire DISM segment, we want to
883 		 * set ppp to point to the first slot that corresponds
884 		 * to the requested addr, i.e. pg_idx.
885 		 */
886 		mutex_exit(&sptd->spt_lock);
887 		*ppp = &(sptd->spt_ppa[pg_idx]);
888 		return (0);
889 	}
890 	if (seg_pinsert_check(seg, sptd->spt_amp->size, SEGP_FORCE_WIRED) ==
891 	    SEGP_FAIL) {
892 		mutex_exit(&sptd->spt_lock);
893 		*ppp = NULL;
894 		return (ENOTSUP);
895 	}
896 
897 	/*
898 	 * No need to worry about protections because DISM pages are always rw.
899 	 */
900 	pl = pplist = NULL;
901 	amp = sptd->spt_amp;
902 
903 	/*
904 	 * Do we need to build the ppa array?
905 	 */
906 	if (sptd->spt_ppa == NULL) {
907 		pgcnt_t lpg_cnt = 0;
908 
909 		pl_built = 1;
910 		tot_npages = btopr(sptd->spt_amp->size);
911 
912 		ASSERT(sptd->spt_pcachecnt == 0);
913 		pplist = kmem_zalloc(sizeof (page_t *) * tot_npages, KM_SLEEP);
914 		pl = pplist;
915 
916 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
917 		for (an_idx = 0; an_idx < tot_npages; ) {
918 			ap = anon_get_ptr(amp->ahp, an_idx);
919 			/*
920 			 * Cache only mlocked pages. For large pages
921 			 * if one (constituent) page is mlocked
922 			 * all pages for that large page
923 			 * are cached also. This is for quick
924 			 * lookups of ppa array;
925 			 */
926 			if ((ap != NULL) && (lpg_cnt != 0 ||
927 			    (sptd->spt_ppa_lckcnt[an_idx] != 0))) {
928 
929 				swap_xlate(ap, &vp, &off);
930 				pp = page_lookup(vp, off, SE_SHARED);
931 				ASSERT(pp != NULL);
932 				if (lpg_cnt == 0) {
933 					npgs = page_get_pagecnt(pp->p_szc);
934 					if (!IS_P2ALIGNED(an_idx, npgs)) {
935 						an_idx = P2ALIGN(an_idx, npgs);
936 						page_unlock(pp);
937 						continue;
938 					}
939 				}
940 				if (++lpg_cnt == npgs)
941 					lpg_cnt = 0;
942 
943 				/*
944 				 * availrmem is decremented only
945 				 * for unlocked pages
946 				 */
947 				if (sptd->spt_ppa_lckcnt[an_idx] == 0)
948 					claim_availrmem++;
949 				pplist[an_idx] = pp;
950 			}
951 			an_idx++;
952 		}
953 		ANON_LOCK_EXIT(&amp->a_rwlock);
954 
955 		mutex_enter(&freemem_lock);
956 		if (availrmem < tune.t_minarmem + claim_availrmem) {
957 			mutex_exit(&freemem_lock);
958 			ret = FC_MAKE_ERR(ENOMEM);
959 			claim_availrmem = 0;
960 			goto insert_fail;
961 		} else {
962 			availrmem -= claim_availrmem;
963 		}
964 		mutex_exit(&freemem_lock);
965 
966 		sptd->spt_ppa = pl;
967 	} else {
968 		/*
969 		 * We already have a valid ppa[].
970 		 */
971 		pl = sptd->spt_ppa;
972 	}
973 
974 	ASSERT(pl != NULL);
975 
976 	ret = seg_pinsert(seg, seg->s_base, sptd->spt_amp->size,
977 	    pl, sptd->spt_prot, SEGP_FORCE_WIRED | SEGP_ASYNC_FLUSH,
978 	    segspt_reclaim);
979 	if (ret == SEGP_FAIL) {
980 		/*
981 		 * seg_pinsert failed. We return
982 		 * ENOTSUP, so that the as_pagelock() code will
983 		 * then try the slower F_SOFTLOCK path.
984 		 */
985 		sptd->spt_ppa = NULL;
986 		ret = ENOTSUP;
987 		goto insert_fail;
988 	}
989 
990 	/*
991 	 * In either case, we increment softlockcnt on the 'real' segment.
992 	 */
993 	sptd->spt_pcachecnt++;
994 	atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), 1);
995 
996 	ppa = sptd->spt_ppa;
997 	for (an_idx = pg_idx; an_idx < pg_idx + npages; ) {
998 		if (ppa[an_idx] == NULL) {
999 			mutex_exit(&sptd->spt_lock);
1000 			seg_pinactive(seg, seg->s_base, sptd->spt_amp->size,
1001 			    pl, sptd->spt_prot, segspt_reclaim);
1002 			*ppp = NULL;
1003 			return (ENOTSUP);
1004 		}
1005 		if ((szc = ppa[an_idx]->p_szc) != 0) {
1006 			npgs = page_get_pagecnt(szc);
1007 			an_idx = P2ROUNDUP(an_idx + 1, npgs);
1008 		} else {
1009 			an_idx++;
1010 		}
1011 	}
1012 	/*
1013 	 * We can now drop the sptd->spt_lock since the ppa[]
1014 	 * exists and he have incremented pacachecnt.
1015 	 */
1016 	mutex_exit(&sptd->spt_lock);
1017 
1018 	/*
1019 	 * Since we cache the entire segment, we want to
1020 	 * set ppp to point to the first slot that corresponds
1021 	 * to the requested addr, i.e. pg_idx.
1022 	 */
1023 	*ppp = &(sptd->spt_ppa[pg_idx]);
1024 	return (ret);
1025 
1026 insert_fail:
1027 	/*
1028 	 * We will only reach this code if we tried and failed.
1029 	 *
1030 	 * And we can drop the lock on the dummy seg, once we've failed
1031 	 * to set up a new ppa[].
1032 	 */
1033 	mutex_exit(&sptd->spt_lock);
1034 
1035 	if (pl_built) {
1036 		mutex_enter(&freemem_lock);
1037 		availrmem += claim_availrmem;
1038 		mutex_exit(&freemem_lock);
1039 
1040 		/*
1041 		 * We created pl and we need to destroy it.
1042 		 */
1043 		pplist = pl;
1044 		for (an_idx = 0; an_idx < tot_npages; an_idx++) {
1045 			if (pplist[an_idx] != NULL)
1046 				page_unlock(pplist[an_idx]);
1047 		}
1048 		kmem_free(pl, sizeof (page_t *) * tot_npages);
1049 	}
1050 
1051 	if (shmd->shm_softlockcnt <= 0) {
1052 		if (AS_ISUNMAPWAIT(seg->s_as)) {
1053 			mutex_enter(&seg->s_as->a_contents);
1054 			if (AS_ISUNMAPWAIT(seg->s_as)) {
1055 				AS_CLRUNMAPWAIT(seg->s_as);
1056 				cv_broadcast(&seg->s_as->a_cv);
1057 			}
1058 			mutex_exit(&seg->s_as->a_contents);
1059 		}
1060 	}
1061 	*ppp = NULL;
1062 	return (ret);
1063 }
1064 
1065 
1066 
1067 /*
1068  * return locked pages over a given range.
1069  *
1070  * We will cache the entire ISM segment and save the pplist for the
1071  * entire segment in the ppa field of the underlying ISM segment structure.
1072  * Later, during a call to segspt_reclaim() we will use this ppa array
1073  * to page_unlock() all of the pages and then we will free this ppa list.
1074  */
1075 /*ARGSUSED*/
1076 static int
1077 segspt_shmpagelock(struct seg *seg, caddr_t addr, size_t len,
1078     struct page ***ppp, enum lock_type type, enum seg_rw rw)
1079 {
1080 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
1081 	struct seg	*sptseg = shmd->shm_sptseg;
1082 	struct spt_data *sptd = sptseg->s_data;
1083 	pgcnt_t np, page_index, npages;
1084 	caddr_t a, spt_base;
1085 	struct page **pplist, **pl, *pp;
1086 	struct anon_map *amp;
1087 	ulong_t anon_index;
1088 	int ret = ENOTSUP;
1089 	uint_t	pl_built = 0;
1090 	struct anon *ap;
1091 	struct vnode *vp;
1092 	u_offset_t off;
1093 
1094 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1095 
1096 	/*
1097 	 * We want to lock/unlock the entire ISM segment. Therefore,
1098 	 * we will be using the underlying sptseg and it's base address
1099 	 * and length for the caching arguments.
1100 	 */
1101 	ASSERT(sptseg);
1102 	ASSERT(sptd);
1103 
1104 	if (sptd->spt_flags & SHM_PAGEABLE) {
1105 		return (segspt_dismpagelock(seg, addr, len, ppp, type, rw));
1106 	}
1107 
1108 	page_index = seg_page(seg, addr);
1109 	npages = btopr(len);
1110 
1111 	/*
1112 	 * check if the request is larger than number of pages covered
1113 	 * by amp
1114 	 */
1115 	if (page_index + npages > btopr(sptd->spt_amp->size)) {
1116 		*ppp = NULL;
1117 		return (ENOTSUP);
1118 	}
1119 
1120 	if (type == L_PAGEUNLOCK) {
1121 
1122 		ASSERT(sptd->spt_ppa != NULL);
1123 
1124 		seg_pinactive(seg, seg->s_base, sptd->spt_amp->size,
1125 		    sptd->spt_ppa, sptd->spt_prot, segspt_reclaim);
1126 
1127 		/*
1128 		 * If someone is blocked while unmapping, we purge
1129 		 * segment page cache and thus reclaim pplist synchronously
1130 		 * without waiting for seg_pasync_thread. This speeds up
1131 		 * unmapping in cases where munmap(2) is called, while
1132 		 * raw async i/o is still in progress or where a thread
1133 		 * exits on data fault in a multithreaded application.
1134 		 */
1135 		if (AS_ISUNMAPWAIT(seg->s_as) && (shmd->shm_softlockcnt > 0)) {
1136 			segspt_purge(seg);
1137 		}
1138 		return (0);
1139 	} else if (type == L_PAGERECLAIM) {
1140 		ASSERT(sptd->spt_ppa != NULL);
1141 
1142 		(void) segspt_reclaim(seg, seg->s_base, sptd->spt_amp->size,
1143 		    sptd->spt_ppa, sptd->spt_prot);
1144 		return (0);
1145 	}
1146 
1147 	/*
1148 	 * First try to find pages in segment page cache, without
1149 	 * holding the segment lock.
1150 	 */
1151 	pplist = seg_plookup(seg, seg->s_base, sptd->spt_amp->size,
1152 	    sptd->spt_prot);
1153 	if (pplist != NULL) {
1154 		ASSERT(sptd->spt_ppa == pplist);
1155 		ASSERT(sptd->spt_ppa[page_index]);
1156 		/*
1157 		 * Since we cache the entire ISM segment, we want to
1158 		 * set ppp to point to the first slot that corresponds
1159 		 * to the requested addr, i.e. page_index.
1160 		 */
1161 		*ppp = &(sptd->spt_ppa[page_index]);
1162 		return (0);
1163 	}
1164 
1165 	/* The L_PAGELOCK case... */
1166 	mutex_enter(&sptd->spt_lock);
1167 
1168 	/*
1169 	 * try to find pages in segment page cache
1170 	 */
1171 	pplist = seg_plookup(seg, seg->s_base, sptd->spt_amp->size,
1172 	    sptd->spt_prot);
1173 	if (pplist != NULL) {
1174 		ASSERT(sptd->spt_ppa == pplist);
1175 		/*
1176 		 * Since we cache the entire segment, we want to
1177 		 * set ppp to point to the first slot that corresponds
1178 		 * to the requested addr, i.e. page_index.
1179 		 */
1180 		mutex_exit(&sptd->spt_lock);
1181 		*ppp = &(sptd->spt_ppa[page_index]);
1182 		return (0);
1183 	}
1184 
1185 	if (seg_pinsert_check(seg, sptd->spt_amp->size, SEGP_FORCE_WIRED) ==
1186 	    SEGP_FAIL) {
1187 		mutex_exit(&sptd->spt_lock);
1188 		*ppp = NULL;
1189 		return (ENOTSUP);
1190 	}
1191 
1192 	/*
1193 	 * No need to worry about protections because ISM pages
1194 	 * are always rw.
1195 	 */
1196 	pl = pplist = NULL;
1197 
1198 	/*
1199 	 * Do we need to build the ppa array?
1200 	 */
1201 	if (sptd->spt_ppa == NULL) {
1202 		ASSERT(sptd->spt_ppa == pplist);
1203 
1204 		spt_base = sptseg->s_base;
1205 		pl_built = 1;
1206 
1207 		/*
1208 		 * availrmem is decremented once during anon_swap_adjust()
1209 		 * and is incremented during the anon_unresv(), which is
1210 		 * called from shm_rm_amp() when the segment is destroyed.
1211 		 */
1212 		amp = sptd->spt_amp;
1213 		ASSERT(amp != NULL);
1214 
1215 		/* pcachecnt is protected by sptd->spt_lock */
1216 		ASSERT(sptd->spt_pcachecnt == 0);
1217 		pplist = kmem_zalloc(sizeof (page_t *)
1218 		    * btopr(sptd->spt_amp->size), KM_SLEEP);
1219 		pl = pplist;
1220 
1221 		anon_index = seg_page(sptseg, spt_base);
1222 
1223 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1224 		for (a = spt_base; a < (spt_base + sptd->spt_amp->size);
1225 		    a += PAGESIZE, anon_index++, pplist++) {
1226 			ap = anon_get_ptr(amp->ahp, anon_index);
1227 			ASSERT(ap != NULL);
1228 			swap_xlate(ap, &vp, &off);
1229 			pp = page_lookup(vp, off, SE_SHARED);
1230 			ASSERT(pp != NULL);
1231 			*pplist = pp;
1232 		}
1233 		ANON_LOCK_EXIT(&amp->a_rwlock);
1234 
1235 		if (a < (spt_base + sptd->spt_amp->size)) {
1236 			ret = ENOTSUP;
1237 			goto insert_fail;
1238 		}
1239 		sptd->spt_ppa = pl;
1240 	} else {
1241 		/*
1242 		 * We already have a valid ppa[].
1243 		 */
1244 		pl = sptd->spt_ppa;
1245 	}
1246 
1247 	ASSERT(pl != NULL);
1248 
1249 	ret = seg_pinsert(seg, seg->s_base, sptd->spt_amp->size,
1250 	    pl, sptd->spt_prot, SEGP_FORCE_WIRED, segspt_reclaim);
1251 	if (ret == SEGP_FAIL) {
1252 		/*
1253 		 * seg_pinsert failed. We return
1254 		 * ENOTSUP, so that the as_pagelock() code will
1255 		 * then try the slower F_SOFTLOCK path.
1256 		 */
1257 		if (pl_built) {
1258 			/*
1259 			 * No one else has referenced the ppa[].
1260 			 * We created it and we need to destroy it.
1261 			 */
1262 			sptd->spt_ppa = NULL;
1263 		}
1264 		ret = ENOTSUP;
1265 		goto insert_fail;
1266 	}
1267 
1268 	/*
1269 	 * In either case, we increment softlockcnt on the 'real' segment.
1270 	 */
1271 	sptd->spt_pcachecnt++;
1272 	atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), 1);
1273 
1274 	/*
1275 	 * We can now drop the sptd->spt_lock since the ppa[]
1276 	 * exists and he have incremented pacachecnt.
1277 	 */
1278 	mutex_exit(&sptd->spt_lock);
1279 
1280 	/*
1281 	 * Since we cache the entire segment, we want to
1282 	 * set ppp to point to the first slot that corresponds
1283 	 * to the requested addr, i.e. page_index.
1284 	 */
1285 	*ppp = &(sptd->spt_ppa[page_index]);
1286 	return (ret);
1287 
1288 insert_fail:
1289 	/*
1290 	 * We will only reach this code if we tried and failed.
1291 	 *
1292 	 * And we can drop the lock on the dummy seg, once we've failed
1293 	 * to set up a new ppa[].
1294 	 */
1295 	mutex_exit(&sptd->spt_lock);
1296 
1297 	if (pl_built) {
1298 		/*
1299 		 * We created pl and we need to destroy it.
1300 		 */
1301 		pplist = pl;
1302 		np = (((uintptr_t)(a - spt_base)) >> PAGESHIFT);
1303 		while (np) {
1304 			page_unlock(*pplist);
1305 			np--;
1306 			pplist++;
1307 		}
1308 		kmem_free(pl, sizeof (page_t *) *
1309 				btopr(sptd->spt_amp->size));
1310 	}
1311 	if (shmd->shm_softlockcnt <= 0) {
1312 		if (AS_ISUNMAPWAIT(seg->s_as)) {
1313 			mutex_enter(&seg->s_as->a_contents);
1314 			if (AS_ISUNMAPWAIT(seg->s_as)) {
1315 				AS_CLRUNMAPWAIT(seg->s_as);
1316 				cv_broadcast(&seg->s_as->a_cv);
1317 			}
1318 			mutex_exit(&seg->s_as->a_contents);
1319 		}
1320 	}
1321 	*ppp = NULL;
1322 	return (ret);
1323 }
1324 
1325 /*
1326  * purge any cached pages in the I/O page cache
1327  */
1328 static void
1329 segspt_purge(struct seg *seg)
1330 {
1331 	seg_ppurge(seg);
1332 }
1333 
1334 static int
1335 segspt_reclaim(struct seg *seg, caddr_t addr, size_t len, struct page **pplist,
1336 	enum seg_rw rw)
1337 {
1338 	struct	shm_data *shmd = (struct shm_data *)seg->s_data;
1339 	struct	seg	*sptseg;
1340 	struct	spt_data *sptd;
1341 	pgcnt_t npages, i, free_availrmem = 0;
1342 	int	done = 0;
1343 
1344 #ifdef lint
1345 	addr = addr;
1346 #endif
1347 	sptseg = shmd->shm_sptseg;
1348 	sptd = sptseg->s_data;
1349 	npages = (len >> PAGESHIFT);
1350 	ASSERT(npages);
1351 	ASSERT(sptd->spt_pcachecnt != 0);
1352 	ASSERT(sptd->spt_ppa == pplist);
1353 	ASSERT(npages == btopr(sptd->spt_amp->size));
1354 
1355 	/*
1356 	 * Acquire the lock on the dummy seg and destroy the
1357 	 * ppa array IF this is the last pcachecnt.
1358 	 */
1359 	mutex_enter(&sptd->spt_lock);
1360 	if (--sptd->spt_pcachecnt == 0) {
1361 		for (i = 0; i < npages; i++) {
1362 			if (pplist[i] == NULL) {
1363 				continue;
1364 			}
1365 			if (rw == S_WRITE) {
1366 				hat_setrefmod(pplist[i]);
1367 			} else {
1368 				hat_setref(pplist[i]);
1369 			}
1370 			if ((sptd->spt_flags & SHM_PAGEABLE) &&
1371 				(sptd->spt_ppa_lckcnt[i] == 0))
1372 				free_availrmem++;
1373 			page_unlock(pplist[i]);
1374 		}
1375 		if (sptd->spt_flags & SHM_PAGEABLE) {
1376 			mutex_enter(&freemem_lock);
1377 			availrmem += free_availrmem;
1378 			mutex_exit(&freemem_lock);
1379 		}
1380 		/*
1381 		 * Since we want to cach/uncache the entire ISM segment,
1382 		 * we will track the pplist in a segspt specific field
1383 		 * ppa, that is initialized at the time we add an entry to
1384 		 * the cache.
1385 		 */
1386 		ASSERT(sptd->spt_pcachecnt == 0);
1387 		kmem_free(pplist, sizeof (page_t *) * npages);
1388 		sptd->spt_ppa = NULL;
1389 		sptd->spt_flags &= ~DISM_PPA_CHANGED;
1390 		done = 1;
1391 	}
1392 	mutex_exit(&sptd->spt_lock);
1393 	/*
1394 	 * Now decrement softlockcnt.
1395 	 */
1396 	atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), -1);
1397 
1398 	if (shmd->shm_softlockcnt <= 0) {
1399 		if (AS_ISUNMAPWAIT(seg->s_as)) {
1400 			mutex_enter(&seg->s_as->a_contents);
1401 			if (AS_ISUNMAPWAIT(seg->s_as)) {
1402 				AS_CLRUNMAPWAIT(seg->s_as);
1403 				cv_broadcast(&seg->s_as->a_cv);
1404 			}
1405 			mutex_exit(&seg->s_as->a_contents);
1406 		}
1407 	}
1408 	return (done);
1409 }
1410 
1411 /*
1412  * Do a F_SOFTUNLOCK call over the range requested.
1413  * The range must have already been F_SOFTLOCK'ed.
1414  *
1415  * The calls to acquire and release the anon map lock mutex were
1416  * removed in order to avoid a deadly embrace during a DR
1417  * memory delete operation.  (Eg. DR blocks while waiting for a
1418  * exclusive lock on a page that is being used for kaio; the
1419  * thread that will complete the kaio and call segspt_softunlock
1420  * blocks on the anon map lock; another thread holding the anon
1421  * map lock blocks on another page lock via the segspt_shmfault
1422  * -> page_lookup -> page_lookup_create -> page_lock_es code flow.)
1423  *
1424  * The appropriateness of the removal is based upon the following:
1425  * 1. If we are holding a segment's reader lock and the page is held
1426  * shared, then the corresponding element in anonmap which points to
1427  * anon struct cannot change and there is no need to acquire the
1428  * anonymous map lock.
1429  * 2. Threads in segspt_softunlock have a reader lock on the segment
1430  * and already have the shared page lock, so we are guaranteed that
1431  * the anon map slot cannot change and therefore can call anon_get_ptr()
1432  * without grabbing the anonymous map lock.
1433  * 3. Threads that softlock a shared page break copy-on-write, even if
1434  * its a read.  Thus cow faults can be ignored with respect to soft
1435  * unlocking, since the breaking of cow means that the anon slot(s) will
1436  * not be shared.
1437  */
1438 static void
1439 segspt_softunlock(struct seg *seg, caddr_t sptseg_addr,
1440 	size_t len, enum seg_rw rw)
1441 {
1442 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
1443 	struct seg	*sptseg;
1444 	struct spt_data *sptd;
1445 	page_t *pp;
1446 	caddr_t adr;
1447 	struct vnode *vp;
1448 	u_offset_t offset;
1449 	ulong_t anon_index;
1450 	struct anon_map *amp;		/* XXX - for locknest */
1451 	struct anon *ap = NULL;
1452 	pgcnt_t npages;
1453 
1454 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1455 
1456 	sptseg = shmd->shm_sptseg;
1457 	sptd = sptseg->s_data;
1458 
1459 	/*
1460 	 * Some platforms assume that ISM mappings are HAT_LOAD_LOCK
1461 	 * and therefore their pages are SE_SHARED locked
1462 	 * for the entire life of the segment.
1463 	 */
1464 	if ((!hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) &&
1465 		((sptd->spt_flags & SHM_PAGEABLE) == 0)) {
1466 		goto softlock_decrement;
1467 	}
1468 
1469 	/*
1470 	 * Any thread is free to do a page_find and
1471 	 * page_unlock() on the pages within this seg.
1472 	 *
1473 	 * We are already holding the as->a_lock on the user's
1474 	 * real segment, but we need to hold the a_lock on the
1475 	 * underlying dummy as. This is mostly to satisfy the
1476 	 * underlying HAT layer.
1477 	 */
1478 	AS_LOCK_ENTER(sptseg->s_as, &sptseg->s_as->a_lock, RW_READER);
1479 	hat_unlock(sptseg->s_as->a_hat, sptseg_addr, len);
1480 	AS_LOCK_EXIT(sptseg->s_as, &sptseg->s_as->a_lock);
1481 
1482 	amp = sptd->spt_amp;
1483 	ASSERT(amp != NULL);
1484 	anon_index = seg_page(sptseg, sptseg_addr);
1485 
1486 	for (adr = sptseg_addr; adr < sptseg_addr + len; adr += PAGESIZE) {
1487 		ap = anon_get_ptr(amp->ahp, anon_index++);
1488 		ASSERT(ap != NULL);
1489 		swap_xlate(ap, &vp, &offset);
1490 
1491 		/*
1492 		 * Use page_find() instead of page_lookup() to
1493 		 * find the page since we know that it has a
1494 		 * "shared" lock.
1495 		 */
1496 		pp = page_find(vp, offset);
1497 		ASSERT(ap == anon_get_ptr(amp->ahp, anon_index - 1));
1498 		if (pp == NULL) {
1499 			panic("segspt_softunlock: "
1500 			    "addr %p, ap %p, vp %p, off %llx",
1501 			    (void *)adr, (void *)ap, (void *)vp, offset);
1502 			/*NOTREACHED*/
1503 		}
1504 
1505 		if (rw == S_WRITE) {
1506 			hat_setrefmod(pp);
1507 		} else if (rw != S_OTHER) {
1508 			hat_setref(pp);
1509 		}
1510 		page_unlock(pp);
1511 	}
1512 
1513 softlock_decrement:
1514 	npages = btopr(len);
1515 	atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), -npages);
1516 	if (shmd->shm_softlockcnt == 0) {
1517 		/*
1518 		 * All SOFTLOCKS are gone. Wakeup any waiting
1519 		 * unmappers so they can try again to unmap.
1520 		 * Check for waiters first without the mutex
1521 		 * held so we don't always grab the mutex on
1522 		 * softunlocks.
1523 		 */
1524 		if (AS_ISUNMAPWAIT(seg->s_as)) {
1525 			mutex_enter(&seg->s_as->a_contents);
1526 			if (AS_ISUNMAPWAIT(seg->s_as)) {
1527 				AS_CLRUNMAPWAIT(seg->s_as);
1528 				cv_broadcast(&seg->s_as->a_cv);
1529 			}
1530 			mutex_exit(&seg->s_as->a_contents);
1531 		}
1532 	}
1533 }
1534 
1535 int
1536 segspt_shmattach(struct seg *seg, caddr_t *argsp)
1537 {
1538 	struct shm_data *shmd_arg = (struct shm_data *)argsp;
1539 	struct shm_data *shmd;
1540 	struct anon_map *shm_amp = shmd_arg->shm_amp;
1541 	struct spt_data *sptd;
1542 	int error = 0;
1543 
1544 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1545 
1546 	shmd = kmem_zalloc((sizeof (*shmd)), KM_NOSLEEP);
1547 	if (shmd == NULL)
1548 		return (ENOMEM);
1549 
1550 	shmd->shm_sptas = shmd_arg->shm_sptas;
1551 	shmd->shm_amp = shm_amp;
1552 	shmd->shm_sptseg = shmd_arg->shm_sptseg;
1553 
1554 	(void) lgrp_shm_policy_set(LGRP_MEM_POLICY_DEFAULT, shm_amp, 0,
1555 	    NULL, 0, seg->s_size);
1556 
1557 	seg->s_data = (void *)shmd;
1558 	seg->s_ops = &segspt_shmops;
1559 	seg->s_szc = shmd->shm_sptseg->s_szc;
1560 	sptd = shmd->shm_sptseg->s_data;
1561 
1562 	if (sptd->spt_flags & SHM_PAGEABLE) {
1563 		if ((shmd->shm_vpage = kmem_zalloc(btopr(shm_amp->size),
1564 		    KM_NOSLEEP)) == NULL) {
1565 			seg->s_data = (void *)NULL;
1566 			kmem_free(shmd, (sizeof (*shmd)));
1567 			return (ENOMEM);
1568 		}
1569 		shmd->shm_lckpgs = 0;
1570 		if (hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) {
1571 			if ((error = hat_share(seg->s_as->a_hat, seg->s_base,
1572 			    shmd_arg->shm_sptas->a_hat, SEGSPTADDR,
1573 			    seg->s_size, seg->s_szc)) != 0) {
1574 				kmem_free(shmd->shm_vpage,
1575 					btopr(shm_amp->size));
1576 			}
1577 		}
1578 	} else {
1579 		error = hat_share(seg->s_as->a_hat, seg->s_base,
1580 				shmd_arg->shm_sptas->a_hat, SEGSPTADDR,
1581 				seg->s_size, seg->s_szc);
1582 	}
1583 	if (error) {
1584 		seg->s_szc = 0;
1585 		seg->s_data = (void *)NULL;
1586 		kmem_free(shmd, (sizeof (*shmd)));
1587 	} else {
1588 		ANON_LOCK_ENTER(&shm_amp->a_rwlock, RW_WRITER);
1589 		shm_amp->refcnt++;
1590 		ANON_LOCK_EXIT(&shm_amp->a_rwlock);
1591 	}
1592 	return (error);
1593 }
1594 
1595 int
1596 segspt_shmunmap(struct seg *seg, caddr_t raddr, size_t ssize)
1597 {
1598 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
1599 	int reclaim = 1;
1600 
1601 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1602 retry:
1603 	if (shmd->shm_softlockcnt > 0) {
1604 		if (reclaim == 1) {
1605 			segspt_purge(seg);
1606 			reclaim = 0;
1607 			goto retry;
1608 		}
1609 		return (EAGAIN);
1610 	}
1611 
1612 	if (ssize != seg->s_size) {
1613 #ifdef DEBUG
1614 		cmn_err(CE_WARN, "Incompatible ssize %lx s_size %lx\n",
1615 		    ssize, seg->s_size);
1616 #endif
1617 		return (EINVAL);
1618 	}
1619 
1620 	(void) segspt_shmlockop(seg, raddr, shmd->shm_amp->size, 0, MC_UNLOCK,
1621 	    NULL, 0);
1622 	hat_unshare(seg->s_as->a_hat, raddr, ssize, seg->s_szc);
1623 
1624 	seg_free(seg);
1625 
1626 	return (0);
1627 }
1628 
1629 void
1630 segspt_shmfree(struct seg *seg)
1631 {
1632 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
1633 	struct anon_map *shm_amp = shmd->shm_amp;
1634 
1635 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1636 
1637 	(void) segspt_shmlockop(seg, seg->s_base, shm_amp->size, 0,
1638 		MC_UNLOCK, NULL, 0);
1639 
1640 	/*
1641 	 * Need to increment refcnt when attaching
1642 	 * and decrement when detaching because of dup().
1643 	 */
1644 	ANON_LOCK_ENTER(&shm_amp->a_rwlock, RW_WRITER);
1645 	shm_amp->refcnt--;
1646 	ANON_LOCK_EXIT(&shm_amp->a_rwlock);
1647 
1648 	if (shmd->shm_vpage) {	/* only for DISM */
1649 		kmem_free(shmd->shm_vpage, btopr(shm_amp->size));
1650 		shmd->shm_vpage = NULL;
1651 	}
1652 	kmem_free(shmd, sizeof (*shmd));
1653 }
1654 
1655 /*ARGSUSED*/
1656 int
1657 segspt_shmsetprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
1658 {
1659 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1660 
1661 	/*
1662 	 * Shared page table is more than shared mapping.
1663 	 *  Individual process sharing page tables can't change prot
1664 	 *  because there is only one set of page tables.
1665 	 *  This will be allowed after private page table is
1666 	 *  supported.
1667 	 */
1668 /* need to return correct status error? */
1669 	return (0);
1670 }
1671 
1672 
1673 faultcode_t
1674 segspt_dismfault(struct hat *hat, struct seg *seg, caddr_t addr,
1675     size_t len, enum fault_type type, enum seg_rw rw)
1676 {
1677 	struct  shm_data 	*shmd = (struct shm_data *)seg->s_data;
1678 	struct  seg		*sptseg = shmd->shm_sptseg;
1679 	struct  as		*curspt = shmd->shm_sptas;
1680 	struct  spt_data 	*sptd = sptseg->s_data;
1681 	pgcnt_t npages;
1682 	size_t  share_sz, size;
1683 	caddr_t segspt_addr, shm_addr;
1684 	page_t  **ppa;
1685 	int	i;
1686 	ulong_t an_idx = 0;
1687 	int	err = 0;
1688 
1689 #ifdef lint
1690 	hat = hat;
1691 #endif
1692 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1693 
1694 	/*
1695 	 * Because of the way spt is implemented
1696 	 * the realsize of the segment does not have to be
1697 	 * equal to the segment size itself. The segment size is
1698 	 * often in multiples of a page size larger than PAGESIZE.
1699 	 * The realsize is rounded up to the nearest PAGESIZE
1700 	 * based on what the user requested. This is a bit of
1701 	 * ungliness that is historical but not easily fixed
1702 	 * without re-designing the higher levels of ISM.
1703 	 */
1704 	ASSERT(addr >= seg->s_base);
1705 	if (((addr + len) - seg->s_base) > sptd->spt_realsize)
1706 		return (FC_NOMAP);
1707 	/*
1708 	 * For all of the following cases except F_PROT, we need to
1709 	 * make any necessary adjustments to addr and len
1710 	 * and get all of the necessary page_t's into an array called ppa[].
1711 	 *
1712 	 * The code in shmat() forces base addr and len of ISM segment
1713 	 * to be aligned to largest page size supported. Therefore,
1714 	 * we are able to handle F_SOFTLOCK and F_INVAL calls in "large
1715 	 * pagesize" chunks. We want to make sure that we HAT_LOAD_LOCK
1716 	 * in large pagesize chunks, or else we will screw up the HAT
1717 	 * layer by calling hat_memload_array() with differing page sizes
1718 	 * over a given virtual range.
1719 	 */
1720 	share_sz = page_get_pagesize(sptseg->s_szc);
1721 	shm_addr = (caddr_t)P2ALIGN((uintptr_t)(addr), share_sz);
1722 	size = P2ROUNDUP((uintptr_t)(((addr + len) - shm_addr)), share_sz);
1723 	npages = btopr(size);
1724 
1725 	/*
1726 	 * Now we need to convert from addr in segshm to addr in segspt.
1727 	 */
1728 	an_idx = seg_page(seg, shm_addr);
1729 	segspt_addr = sptseg->s_base + ptob(an_idx);
1730 
1731 	ASSERT((segspt_addr + ptob(npages)) <=
1732 		(sptseg->s_base + sptd->spt_realsize));
1733 	ASSERT(segspt_addr < (sptseg->s_base + sptseg->s_size));
1734 
1735 	switch (type) {
1736 
1737 	case F_SOFTLOCK:
1738 
1739 		mutex_enter(&freemem_lock);
1740 		if (availrmem < tune.t_minarmem + npages) {
1741 			mutex_exit(&freemem_lock);
1742 			return (FC_MAKE_ERR(ENOMEM));
1743 		} else {
1744 			availrmem -= npages;
1745 		}
1746 		mutex_exit(&freemem_lock);
1747 		atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), npages);
1748 		/*
1749 		 * Fall through to the F_INVAL case to load up the hat layer
1750 		 * entries with the HAT_LOAD_LOCK flag.
1751 		 */
1752 		/* FALLTHRU */
1753 	case F_INVAL:
1754 
1755 		if ((rw == S_EXEC) && !(sptd->spt_prot & PROT_EXEC))
1756 			return (FC_NOMAP);
1757 
1758 		ppa = kmem_zalloc(npages * sizeof (page_t *), KM_SLEEP);
1759 
1760 		err = spt_anon_getpages(sptseg, segspt_addr, size, ppa);
1761 		if (err != 0) {
1762 			if (type == F_SOFTLOCK) {
1763 				mutex_enter(&freemem_lock);
1764 				availrmem += npages;
1765 				mutex_exit(&freemem_lock);
1766 				atomic_add_long((ulong_t *)(
1767 				    &(shmd->shm_softlockcnt)), -npages);
1768 			}
1769 			goto dism_err;
1770 		}
1771 		AS_LOCK_ENTER(sptseg->s_as, &sptseg->s_as->a_lock, RW_READER);
1772 		if (type == F_SOFTLOCK) {
1773 
1774 			/*
1775 			 * Load up the translation keeping it
1776 			 * locked and don't unlock the page.
1777 			 */
1778 			hat_memload_array(sptseg->s_as->a_hat, segspt_addr,
1779 			    size, ppa, sptd->spt_prot,
1780 			    HAT_LOAD_LOCK | HAT_LOAD_SHARE);
1781 		} else {
1782 			if (hat == seg->s_as->a_hat) {
1783 
1784 				/*
1785 				 * Migrate pages marked for migration
1786 				 */
1787 				if (lgrp_optimizations())
1788 					page_migrate(seg, shm_addr, ppa,
1789 					    npages);
1790 
1791 				/* CPU HAT */
1792 				hat_memload_array(sptseg->s_as->a_hat,
1793 				    segspt_addr, size, ppa, sptd->spt_prot,
1794 				    HAT_LOAD_SHARE);
1795 			} else {
1796 				/* XHAT. Pass real address */
1797 				hat_memload_array(hat, shm_addr,
1798 				    size, ppa, sptd->spt_prot, HAT_LOAD_SHARE);
1799 			}
1800 
1801 			/*
1802 			 * And now drop the SE_SHARED lock(s).
1803 			 */
1804 			for (i = 0; i < npages; i++)
1805 				page_unlock(ppa[i]);
1806 		}
1807 
1808 		if (!hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) {
1809 			if (hat_share(seg->s_as->a_hat, shm_addr,
1810 			    curspt->a_hat, segspt_addr, ptob(npages),
1811 			    seg->s_szc) != 0) {
1812 				panic("hat_share err in DISM fault");
1813 				/* NOTREACHED */
1814 			}
1815 		}
1816 		AS_LOCK_EXIT(sptseg->s_as, &sptseg->s_as->a_lock);
1817 dism_err:
1818 		kmem_free(ppa, npages * sizeof (page_t *));
1819 		return (err);
1820 
1821 	case F_SOFTUNLOCK:
1822 
1823 		mutex_enter(&freemem_lock);
1824 		availrmem += npages;
1825 		mutex_exit(&freemem_lock);
1826 
1827 		/*
1828 		 * This is a bit ugly, we pass in the real seg pointer,
1829 		 * but the segspt_addr is the virtual address within the
1830 		 * dummy seg.
1831 		 */
1832 		segspt_softunlock(seg, segspt_addr, size, rw);
1833 		return (0);
1834 
1835 	case F_PROT:
1836 
1837 		/*
1838 		 * This takes care of the unusual case where a user
1839 		 * allocates a stack in shared memory and a register
1840 		 * window overflow is written to that stack page before
1841 		 * it is otherwise modified.
1842 		 *
1843 		 * We can get away with this because ISM segments are
1844 		 * always rw. Other than this unusual case, there
1845 		 * should be no instances of protection violations.
1846 		 */
1847 		return (0);
1848 
1849 	default:
1850 #ifdef DEBUG
1851 		panic("segspt_dismfault default type?");
1852 #else
1853 		return (FC_NOMAP);
1854 #endif
1855 	}
1856 }
1857 
1858 
1859 faultcode_t
1860 segspt_shmfault(struct hat *hat, struct seg *seg, caddr_t addr,
1861     size_t len, enum fault_type type, enum seg_rw rw)
1862 {
1863 	struct shm_data 	*shmd = (struct shm_data *)seg->s_data;
1864 	struct seg		*sptseg = shmd->shm_sptseg;
1865 	struct as		*curspt = shmd->shm_sptas;
1866 	struct spt_data 	*sptd   = sptseg->s_data;
1867 	pgcnt_t npages;
1868 	size_t share_size, size;
1869 	caddr_t sptseg_addr, shm_addr;
1870 	page_t *pp, **ppa;
1871 	int	i;
1872 	u_offset_t offset;
1873 	ulong_t anon_index = 0;
1874 	struct vnode *vp;
1875 	struct anon_map *amp;		/* XXX - for locknest */
1876 	struct anon *ap = NULL;
1877 	anon_sync_obj_t cookie;
1878 
1879 #ifdef lint
1880 	hat = hat;
1881 #endif
1882 
1883 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
1884 
1885 	if (sptd->spt_flags & SHM_PAGEABLE) {
1886 		return (segspt_dismfault(hat, seg, addr, len, type, rw));
1887 	}
1888 
1889 	/*
1890 	 * Because of the way spt is implemented
1891 	 * the realsize of the segment does not have to be
1892 	 * equal to the segment size itself. The segment size is
1893 	 * often in multiples of a page size larger than PAGESIZE.
1894 	 * The realsize is rounded up to the nearest PAGESIZE
1895 	 * based on what the user requested. This is a bit of
1896 	 * ungliness that is historical but not easily fixed
1897 	 * without re-designing the higher levels of ISM.
1898 	 */
1899 	ASSERT(addr >= seg->s_base);
1900 	if (((addr + len) - seg->s_base) > sptd->spt_realsize)
1901 		return (FC_NOMAP);
1902 	/*
1903 	 * For all of the following cases except F_PROT, we need to
1904 	 * make any necessary adjustments to addr and len
1905 	 * and get all of the necessary page_t's into an array called ppa[].
1906 	 *
1907 	 * The code in shmat() forces base addr and len of ISM segment
1908 	 * to be aligned to largest page size supported. Therefore,
1909 	 * we are able to handle F_SOFTLOCK and F_INVAL calls in "large
1910 	 * pagesize" chunks. We want to make sure that we HAT_LOAD_LOCK
1911 	 * in large pagesize chunks, or else we will screw up the HAT
1912 	 * layer by calling hat_memload_array() with differing page sizes
1913 	 * over a given virtual range.
1914 	 */
1915 	share_size = page_get_pagesize(sptseg->s_szc);
1916 	shm_addr = (caddr_t)P2ALIGN((uintptr_t)(addr), share_size);
1917 	size = P2ROUNDUP((uintptr_t)(((addr + len) - shm_addr)), share_size);
1918 	npages = btopr(size);
1919 
1920 	/*
1921 	 * Now we need to convert from addr in segshm to addr in segspt.
1922 	 */
1923 	anon_index = seg_page(seg, shm_addr);
1924 	sptseg_addr = sptseg->s_base + ptob(anon_index);
1925 
1926 	/*
1927 	 * And now we may have to adjust npages downward if we have
1928 	 * exceeded the realsize of the segment or initial anon
1929 	 * allocations.
1930 	 */
1931 	if ((sptseg_addr + ptob(npages)) >
1932 	    (sptseg->s_base + sptd->spt_realsize))
1933 		size = (sptseg->s_base + sptd->spt_realsize) - sptseg_addr;
1934 
1935 	npages = btopr(size);
1936 
1937 	ASSERT(sptseg_addr < (sptseg->s_base + sptseg->s_size));
1938 	ASSERT((sptd->spt_flags & SHM_PAGEABLE) == 0);
1939 
1940 	switch (type) {
1941 
1942 	case F_SOFTLOCK:
1943 
1944 		/*
1945 		 * availrmem is decremented once during anon_swap_adjust()
1946 		 * and is incremented during the anon_unresv(), which is
1947 		 * called from shm_rm_amp() when the segment is destroyed.
1948 		 */
1949 		atomic_add_long((ulong_t *)(&(shmd->shm_softlockcnt)), npages);
1950 		/*
1951 		 * Some platforms assume that ISM pages are SE_SHARED
1952 		 * locked for the entire life of the segment.
1953 		 */
1954 		if (!hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0))
1955 			return (0);
1956 		/*
1957 		 * Fall through to the F_INVAL case to load up the hat layer
1958 		 * entries with the HAT_LOAD_LOCK flag.
1959 		 */
1960 
1961 		/* FALLTHRU */
1962 	case F_INVAL:
1963 
1964 		if ((rw == S_EXEC) && !(sptd->spt_prot & PROT_EXEC))
1965 			return (FC_NOMAP);
1966 
1967 		/*
1968 		 * Some platforms that do NOT support DYNAMIC_ISM_UNMAP
1969 		 * may still rely on this call to hat_share(). That
1970 		 * would imply that those hat's can fault on a
1971 		 * HAT_LOAD_LOCK translation, which would seem
1972 		 * contradictory.
1973 		 */
1974 		if (!hat_supported(HAT_DYNAMIC_ISM_UNMAP, (void *)0)) {
1975 			if (hat_share(seg->s_as->a_hat, seg->s_base,
1976 			    curspt->a_hat, sptseg->s_base,
1977 			    sptseg->s_size, sptseg->s_szc) != 0) {
1978 				panic("hat_share error in ISM fault");
1979 				/*NOTREACHED*/
1980 			}
1981 			return (0);
1982 		}
1983 		ppa = kmem_zalloc(sizeof (page_t *) * npages, KM_SLEEP);
1984 
1985 		/*
1986 		 * I see no need to lock the real seg,
1987 		 * here, because all of our work will be on the underlying
1988 		 * dummy seg.
1989 		 *
1990 		 * sptseg_addr and npages now account for large pages.
1991 		 */
1992 		amp = sptd->spt_amp;
1993 		ASSERT(amp != NULL);
1994 		anon_index = seg_page(sptseg, sptseg_addr);
1995 
1996 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
1997 		for (i = 0; i < npages; i++) {
1998 			anon_array_enter(amp, anon_index, &cookie);
1999 			ap = anon_get_ptr(amp->ahp, anon_index++);
2000 			ASSERT(ap != NULL);
2001 			swap_xlate(ap, &vp, &offset);
2002 			anon_array_exit(&cookie);
2003 			pp = page_lookup(vp, offset, SE_SHARED);
2004 			ASSERT(pp != NULL);
2005 			ppa[i] = pp;
2006 		}
2007 		ANON_LOCK_EXIT(&amp->a_rwlock);
2008 		ASSERT(i == npages);
2009 
2010 		/*
2011 		 * We are already holding the as->a_lock on the user's
2012 		 * real segment, but we need to hold the a_lock on the
2013 		 * underlying dummy as. This is mostly to satisfy the
2014 		 * underlying HAT layer.
2015 		 */
2016 		AS_LOCK_ENTER(sptseg->s_as, &sptseg->s_as->a_lock, RW_READER);
2017 		if (type == F_SOFTLOCK) {
2018 			/*
2019 			 * Load up the translation keeping it
2020 			 * locked and don't unlock the page.
2021 			 */
2022 			hat_memload_array(sptseg->s_as->a_hat, sptseg_addr,
2023 			    ptob(npages), ppa, sptd->spt_prot,
2024 			    HAT_LOAD_LOCK | HAT_LOAD_SHARE);
2025 		} else {
2026 			if (hat == seg->s_as->a_hat) {
2027 
2028 				/*
2029 				 * Migrate pages marked for migration.
2030 				 */
2031 				if (lgrp_optimizations())
2032 					page_migrate(seg, shm_addr, ppa,
2033 					    npages);
2034 
2035 				/* CPU HAT */
2036 				hat_memload_array(sptseg->s_as->a_hat,
2037 				    sptseg_addr, ptob(npages), ppa,
2038 				    sptd->spt_prot, HAT_LOAD_SHARE);
2039 			} else {
2040 				/* XHAT. Pass real address */
2041 				hat_memload_array(hat, shm_addr,
2042 				    ptob(npages), ppa, sptd->spt_prot,
2043 				    HAT_LOAD_SHARE);
2044 			}
2045 
2046 			/*
2047 			 * And now drop the SE_SHARED lock(s).
2048 			 */
2049 			for (i = 0; i < npages; i++)
2050 				page_unlock(ppa[i]);
2051 		}
2052 		AS_LOCK_EXIT(sptseg->s_as, &sptseg->s_as->a_lock);
2053 
2054 		kmem_free(ppa, sizeof (page_t *) * npages);
2055 		return (0);
2056 	case F_SOFTUNLOCK:
2057 
2058 		/*
2059 		 * This is a bit ugly, we pass in the real seg pointer,
2060 		 * but the sptseg_addr is the virtual address within the
2061 		 * dummy seg.
2062 		 */
2063 		segspt_softunlock(seg, sptseg_addr, ptob(npages), rw);
2064 		return (0);
2065 
2066 	case F_PROT:
2067 
2068 		/*
2069 		 * This takes care of the unusual case where a user
2070 		 * allocates a stack in shared memory and a register
2071 		 * window overflow is written to that stack page before
2072 		 * it is otherwise modified.
2073 		 *
2074 		 * We can get away with this because ISM segments are
2075 		 * always rw. Other than this unusual case, there
2076 		 * should be no instances of protection violations.
2077 		 */
2078 		return (0);
2079 
2080 	default:
2081 #ifdef DEBUG
2082 		cmn_err(CE_WARN, "segspt_shmfault default type?");
2083 #endif
2084 		return (FC_NOMAP);
2085 	}
2086 }
2087 
2088 /*ARGSUSED*/
2089 static faultcode_t
2090 segspt_shmfaulta(struct seg *seg, caddr_t addr)
2091 {
2092 	return (0);
2093 }
2094 
2095 /*ARGSUSED*/
2096 static int
2097 segspt_shmkluster(struct seg *seg, caddr_t addr, ssize_t delta)
2098 {
2099 	return (0);
2100 }
2101 
2102 /*ARGSUSED*/
2103 static size_t
2104 segspt_shmswapout(struct seg *seg)
2105 {
2106 	return (0);
2107 }
2108 
2109 /*
2110  * duplicate the shared page tables
2111  */
2112 int
2113 segspt_shmdup(struct seg *seg, struct seg *newseg)
2114 {
2115 	struct shm_data		*shmd = (struct shm_data *)seg->s_data;
2116 	struct anon_map 	*amp = shmd->shm_amp;
2117 	struct shm_data 	*shmd_new;
2118 	struct seg		*spt_seg = shmd->shm_sptseg;
2119 	struct spt_data		*sptd = spt_seg->s_data;
2120 
2121 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
2122 
2123 	shmd_new = kmem_zalloc((sizeof (*shmd_new)), KM_SLEEP);
2124 	newseg->s_data = (void *)shmd_new;
2125 	shmd_new->shm_sptas = shmd->shm_sptas;
2126 	shmd_new->shm_amp = amp;
2127 	shmd_new->shm_sptseg = shmd->shm_sptseg;
2128 	newseg->s_ops = &segspt_shmops;
2129 	newseg->s_szc = seg->s_szc;
2130 	ASSERT(seg->s_szc == shmd->shm_sptseg->s_szc);
2131 
2132 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2133 	amp->refcnt++;
2134 	ANON_LOCK_EXIT(&amp->a_rwlock);
2135 
2136 	if (sptd->spt_flags & SHM_PAGEABLE) {
2137 		shmd_new->shm_vpage = kmem_zalloc(btopr(amp->size), KM_SLEEP);
2138 		shmd_new->shm_lckpgs = 0;
2139 	}
2140 	return (hat_share(newseg->s_as->a_hat, newseg->s_base,
2141 	    shmd->shm_sptas->a_hat, SEGSPTADDR, seg->s_size, seg->s_szc));
2142 }
2143 
2144 /*ARGSUSED*/
2145 int
2146 segspt_shmcheckprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot)
2147 {
2148 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
2149 	struct spt_data *sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2150 
2151 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2152 
2153 	/*
2154 	 * ISM segment is always rw.
2155 	 */
2156 	return (((sptd->spt_prot & prot) != prot) ? EACCES : 0);
2157 }
2158 
2159 /*
2160  * Return an array of locked large pages, for empty slots allocate
2161  * private zero-filled anon pages.
2162  */
2163 static int
2164 spt_anon_getpages(
2165 	struct seg *sptseg,
2166 	caddr_t sptaddr,
2167 	size_t len,
2168 	page_t *ppa[])
2169 {
2170 	struct  spt_data *sptd = sptseg->s_data;
2171 	struct  anon_map *amp = sptd->spt_amp;
2172 	enum 	seg_rw rw = sptd->spt_prot;
2173 	uint_t	szc = sptseg->s_szc;
2174 	size_t	pg_sz, share_sz = page_get_pagesize(szc);
2175 	pgcnt_t	lp_npgs;
2176 	caddr_t	lp_addr, e_sptaddr;
2177 	uint_t	vpprot, ppa_szc = 0;
2178 	struct  vpage *vpage = NULL;
2179 	ulong_t	j, ppa_idx;
2180 	int	err, ierr = 0;
2181 	pgcnt_t	an_idx;
2182 	anon_sync_obj_t cookie;
2183 
2184 	ASSERT(IS_P2ALIGNED(sptaddr, share_sz) && IS_P2ALIGNED(len, share_sz));
2185 	ASSERT(len != 0);
2186 
2187 	pg_sz = share_sz;
2188 	lp_npgs = btop(pg_sz);
2189 	lp_addr = sptaddr;
2190 	e_sptaddr = sptaddr + len;
2191 	an_idx = seg_page(sptseg, sptaddr);
2192 	ppa_idx = 0;
2193 
2194 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2195 	/*CONSTCOND*/
2196 	while (1) {
2197 		for (; lp_addr < e_sptaddr;
2198 			an_idx += lp_npgs, lp_addr += pg_sz,
2199 			ppa_idx += lp_npgs) {
2200 
2201 			anon_array_enter(amp, an_idx, &cookie);
2202 			ppa_szc = (uint_t)-1;
2203 			ierr = anon_map_getpages(amp, an_idx, szc, sptseg,
2204 			    lp_addr, sptd->spt_prot, &vpprot, &ppa[ppa_idx],
2205 			    &ppa_szc, vpage, rw, 0, segvn_anypgsz, kcred);
2206 			anon_array_exit(&cookie);
2207 
2208 			if (ierr != 0) {
2209 				if (ierr > 0) {
2210 					err = FC_MAKE_ERR(ierr);
2211 					goto lpgs_err;
2212 				}
2213 				break;
2214 			}
2215 		}
2216 		if (lp_addr == e_sptaddr) {
2217 			break;
2218 		}
2219 		ASSERT(lp_addr < e_sptaddr);
2220 
2221 		/*
2222 		 * ierr == -1 means we failed to allocate a large page.
2223 		 * so do a size down operation.
2224 		 *
2225 		 * ierr == -2 means some other process that privately shares
2226 		 * pages with this process has allocated a larger page and we
2227 		 * need to retry with larger pages. So do a size up
2228 		 * operation. This relies on the fact that large pages are
2229 		 * never partially shared i.e. if we share any constituent
2230 		 * page of a large page with another process we must share the
2231 		 * entire large page. Note this cannot happen for SOFTLOCK
2232 		 * case, unless current address (lpaddr) is at the beginning
2233 		 * of the next page size boundary because the other process
2234 		 * couldn't have relocated locked pages.
2235 		 */
2236 		ASSERT(ierr == -1 || ierr == -2);
2237 		if (segvn_anypgsz) {
2238 			ASSERT(ierr == -2 || szc != 0);
2239 			ASSERT(ierr == -1 || szc < sptseg->s_szc);
2240 			szc = (ierr == -1) ? szc - 1 : szc + 1;
2241 		} else {
2242 			/*
2243 			 * For faults and segvn_anypgsz == 0
2244 			 * we need to be careful not to loop forever
2245 			 * if existing page is found with szc other
2246 			 * than 0 or seg->s_szc. This could be due
2247 			 * to page relocations on behalf of DR or
2248 			 * more likely large page creation. For this
2249 			 * case simply re-size to existing page's szc
2250 			 * if returned by anon_map_getpages().
2251 			 */
2252 			if (ppa_szc == (uint_t)-1) {
2253 				szc = (ierr == -1) ? 0 : sptseg->s_szc;
2254 			} else {
2255 				ASSERT(ppa_szc <= sptseg->s_szc);
2256 				ASSERT(ierr == -2 || ppa_szc < szc);
2257 				ASSERT(ierr == -1 || ppa_szc > szc);
2258 				szc = ppa_szc;
2259 			}
2260 		}
2261 		pg_sz = page_get_pagesize(szc);
2262 		lp_npgs = btop(pg_sz);
2263 		ASSERT(IS_P2ALIGNED(lp_addr, pg_sz));
2264 	}
2265 	ANON_LOCK_EXIT(&amp->a_rwlock);
2266 	return (0);
2267 
2268 lpgs_err:
2269 	ANON_LOCK_EXIT(&amp->a_rwlock);
2270 	for (j = 0; j < ppa_idx; j++)
2271 		page_unlock(ppa[j]);
2272 	return (err);
2273 }
2274 
2275 int
2276 spt_lockpages(struct seg *seg, pgcnt_t anon_index, pgcnt_t npages,
2277     page_t **ppa, ulong_t *lockmap, size_t pos)
2278 {
2279 	struct shm_data *shmd = seg->s_data;
2280 	struct spt_data *sptd = shmd->shm_sptseg->s_data;
2281 	ulong_t	i;
2282 	int	kernel;
2283 
2284 	for (i = 0; i < npages; anon_index++, pos++, i++) {
2285 		if (!(shmd->shm_vpage[anon_index] & DISM_PG_LOCKED)) {
2286 			if (sptd->spt_ppa_lckcnt[anon_index] <
2287 			    (ushort_t)DISM_LOCK_MAX) {
2288 				if (++sptd->spt_ppa_lckcnt[anon_index] ==
2289 				    (ushort_t)DISM_LOCK_MAX) {
2290 					cmn_err(CE_WARN,
2291 					    "DISM page lock limit "
2292 					    "reached on DISM offset 0x%lx\n",
2293 					    anon_index << PAGESHIFT);
2294 				}
2295 				kernel = (sptd->spt_ppa &&
2296 				    sptd->spt_ppa[anon_index]) ? 1 : 0;
2297 				if (!page_pp_lock(ppa[i], 0, kernel)) {
2298 					/* unlock rest of the pages */
2299 					for (; i < npages; i++)
2300 						page_unlock(ppa[i]);
2301 					sptd->spt_ppa_lckcnt[anon_index]--;
2302 					return (EAGAIN);
2303 				}
2304 				shmd->shm_lckpgs++;
2305 				shmd->shm_vpage[anon_index] |= DISM_PG_LOCKED;
2306 				if (lockmap != NULL)
2307 					BT_SET(lockmap, pos);
2308 			}
2309 		}
2310 		page_unlock(ppa[i]);
2311 	}
2312 	return (0);
2313 }
2314 
2315 /*ARGSUSED*/
2316 static int
2317 segspt_shmlockop(struct seg *seg, caddr_t addr, size_t len,
2318     int attr, int op, ulong_t *lockmap, size_t pos)
2319 {
2320 	struct shm_data *shmd = seg->s_data;
2321 	struct seg	*sptseg = shmd->shm_sptseg;
2322 	struct spt_data *sptd = sptseg->s_data;
2323 	pgcnt_t		npages, a_npages;
2324 	page_t		**ppa;
2325 	pgcnt_t 	an_idx, a_an_idx, ppa_idx;
2326 	caddr_t		spt_addr, a_addr;	/* spt and aligned address */
2327 	size_t		a_len;			/* aligned len */
2328 	size_t		share_sz;
2329 	ulong_t		i;
2330 	int		sts = 0;
2331 
2332 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2333 
2334 	if ((sptd->spt_flags & SHM_PAGEABLE) == 0) {
2335 		return (0);
2336 	}
2337 
2338 	addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
2339 	an_idx = seg_page(seg, addr);
2340 	npages = btopr(len);
2341 
2342 	if (an_idx + npages > btopr(shmd->shm_amp->size)) {
2343 		return (ENOMEM);
2344 	}
2345 
2346 	if (op == MC_LOCK) {
2347 		/*
2348 		 * Need to align addr and size request if they are not
2349 		 * aligned so we can always allocate large page(s) however
2350 		 * we only lock what was requested in initial request.
2351 		 */
2352 		share_sz = page_get_pagesize(sptseg->s_szc);
2353 		a_addr = (caddr_t)P2ALIGN((uintptr_t)(addr), share_sz);
2354 		a_len = P2ROUNDUP((uintptr_t)(((addr + len) - a_addr)),
2355 				share_sz);
2356 		a_npages = btop(a_len);
2357 		a_an_idx = seg_page(seg, a_addr);
2358 		spt_addr = sptseg->s_base + ptob(a_an_idx);
2359 		ppa_idx = an_idx - a_an_idx;
2360 
2361 		if ((ppa = kmem_zalloc(((sizeof (page_t *)) * a_npages),
2362 			KM_NOSLEEP)) == NULL) {
2363 			return (ENOMEM);
2364 		}
2365 
2366 		/*
2367 		 * Don't cache any new pages for IO and
2368 		 * flush any cached pages.
2369 		 */
2370 		mutex_enter(&sptd->spt_lock);
2371 		if (sptd->spt_ppa != NULL)
2372 			sptd->spt_flags |= DISM_PPA_CHANGED;
2373 
2374 		sts = spt_anon_getpages(sptseg, spt_addr, a_len, ppa);
2375 		if (sts != 0) {
2376 			mutex_exit(&sptd->spt_lock);
2377 			kmem_free(ppa, ((sizeof (page_t *)) * a_npages));
2378 			return (sts);
2379 		}
2380 
2381 		sts = spt_lockpages(seg, an_idx, npages,
2382 		    &ppa[ppa_idx], lockmap, pos);
2383 		/*
2384 		 * unlock remaining pages for requests which are not
2385 		 * aligned or not in 4 M chunks
2386 		 */
2387 		for (i = 0; i < ppa_idx; i++)
2388 			page_unlock(ppa[i]);
2389 		for (i = ppa_idx + npages; i < a_npages; i++)
2390 			page_unlock(ppa[i]);
2391 		if (sptd->spt_ppa != NULL)
2392 			sptd->spt_flags |= DISM_PPA_CHANGED;
2393 		mutex_exit(&sptd->spt_lock);
2394 
2395 		kmem_free(ppa, ((sizeof (page_t *)) * a_npages));
2396 
2397 	} else if (op == MC_UNLOCK) { /* unlock */
2398 		struct anon_map *amp;
2399 		struct anon 	*ap;
2400 		struct vnode 	*vp;
2401 		u_offset_t 	off;
2402 		struct page	*pp;
2403 		int		kernel;
2404 		anon_sync_obj_t cookie;
2405 
2406 		amp = sptd->spt_amp;
2407 		mutex_enter(&sptd->spt_lock);
2408 		if (shmd->shm_lckpgs == 0) {
2409 			mutex_exit(&sptd->spt_lock);
2410 			return (0);
2411 		}
2412 		/*
2413 		 * Don't cache new IO pages.
2414 		 */
2415 		if (sptd->spt_ppa != NULL)
2416 			sptd->spt_flags |= DISM_PPA_CHANGED;
2417 
2418 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2419 		for (i = 0; i < npages; i++, an_idx++) {
2420 			if (shmd->shm_vpage[an_idx] & DISM_PG_LOCKED) {
2421 				anon_array_enter(amp, an_idx, &cookie);
2422 				ap = anon_get_ptr(amp->ahp, an_idx);
2423 				ASSERT(ap);
2424 				ASSERT(sptd->spt_ppa_lckcnt[an_idx] > 0);
2425 
2426 				swap_xlate(ap, &vp, &off);
2427 				anon_array_exit(&cookie);
2428 				pp = page_lookup(vp, off, SE_SHARED);
2429 				ASSERT(pp);
2430 				/*
2431 				 * the availrmem is decremented only for
2432 				 * pages which are not in seg pcache,
2433 				 * for pages in seg pcache availrmem was
2434 				 * decremented in _dismpagelock() (if
2435 				 * they were not locked here)
2436 				 */
2437 				kernel = (sptd->spt_ppa &&
2438 				    sptd->spt_ppa[an_idx]) ? 1 : 0;
2439 				page_pp_unlock(pp, 0, kernel);
2440 				page_unlock(pp);
2441 				shmd->shm_vpage[an_idx] &= ~DISM_PG_LOCKED;
2442 				sptd->spt_ppa_lckcnt[an_idx]--;
2443 				shmd->shm_lckpgs--;
2444 			}
2445 		}
2446 		ANON_LOCK_EXIT(&amp->a_rwlock);
2447 		if (sptd->spt_ppa != NULL)
2448 			sptd->spt_flags |= DISM_PPA_CHANGED;
2449 		mutex_exit(&sptd->spt_lock);
2450 	}
2451 	return (sts);
2452 }
2453 
2454 /*ARGSUSED*/
2455 int
2456 segspt_shmgetprot(struct seg *seg, caddr_t addr, size_t len, uint_t *protv)
2457 {
2458 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
2459 	struct spt_data *sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2460 	spgcnt_t pgno = seg_page(seg, addr+len) - seg_page(seg, addr) + 1;
2461 
2462 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2463 
2464 	/*
2465 	 * ISM segment is always rw.
2466 	 */
2467 	while (--pgno >= 0)
2468 		*protv++ = sptd->spt_prot;
2469 	return (0);
2470 }
2471 
2472 /*ARGSUSED*/
2473 u_offset_t
2474 segspt_shmgetoffset(struct seg *seg, caddr_t addr)
2475 {
2476 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2477 
2478 	/* Offset does not matter in ISM memory */
2479 
2480 	return ((u_offset_t)0);
2481 }
2482 
2483 /* ARGSUSED */
2484 int
2485 segspt_shmgettype(struct seg *seg, caddr_t addr)
2486 {
2487 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
2488 	struct spt_data *sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2489 
2490 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2491 
2492 	/*
2493 	 * The shared memory mapping is always MAP_SHARED, SWAP is only
2494 	 * reserved for DISM
2495 	 */
2496 	return (MAP_SHARED |
2497 		((sptd->spt_flags & SHM_PAGEABLE) ? 0 : MAP_NORESERVE));
2498 }
2499 
2500 /*ARGSUSED*/
2501 int
2502 segspt_shmgetvp(struct seg *seg, caddr_t addr, struct vnode **vpp)
2503 {
2504 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
2505 	struct spt_data *sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2506 
2507 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2508 
2509 	*vpp = sptd->spt_vp;
2510 	return (0);
2511 }
2512 
2513 /*ARGSUSED*/
2514 static int
2515 segspt_shmadvise(struct seg *seg, caddr_t addr, size_t len, uint_t behav)
2516 {
2517 	struct shm_data 	*shmd = (struct shm_data *)seg->s_data;
2518 	struct spt_data	*sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2519 	struct anon_map	*amp;
2520 	pgcnt_t		pg_idx;
2521 
2522 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2523 
2524 	if (behav == MADV_FREE) {
2525 		if ((sptd->spt_flags & SHM_PAGEABLE) == 0)
2526 			return (0);
2527 
2528 		amp = sptd->spt_amp;
2529 		pg_idx = seg_page(seg, addr);
2530 
2531 		mutex_enter(&sptd->spt_lock);
2532 		if (sptd->spt_ppa != NULL)
2533 			sptd->spt_flags |= DISM_PPA_CHANGED;
2534 		mutex_exit(&sptd->spt_lock);
2535 
2536 		/*
2537 		 * Purge all DISM cached pages
2538 		 */
2539 		seg_ppurge_seg(segspt_reclaim);
2540 
2541 		mutex_enter(&sptd->spt_lock);
2542 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2543 		anon_disclaim(amp, pg_idx, len, ANON_PGLOOKUP_BLK);
2544 		ANON_LOCK_EXIT(&amp->a_rwlock);
2545 		mutex_exit(&sptd->spt_lock);
2546 	} else if (lgrp_optimizations() && (behav == MADV_ACCESS_LWP ||
2547 	    behav == MADV_ACCESS_MANY || behav == MADV_ACCESS_DEFAULT)) {
2548 		int			already_set;
2549 		ulong_t			anon_index;
2550 		lgrp_mem_policy_t	policy;
2551 		caddr_t			shm_addr;
2552 		size_t			share_size;
2553 		size_t			size;
2554 		struct seg		*sptseg = shmd->shm_sptseg;
2555 		caddr_t			sptseg_addr;
2556 
2557 		/*
2558 		 * Align address and length to page size of underlying segment
2559 		 */
2560 		share_size = page_get_pagesize(shmd->shm_sptseg->s_szc);
2561 		shm_addr = (caddr_t)P2ALIGN((uintptr_t)(addr), share_size);
2562 		size = P2ROUNDUP((uintptr_t)(((addr + len) - shm_addr)),
2563 		    share_size);
2564 
2565 		amp = shmd->shm_amp;
2566 		anon_index = seg_page(seg, shm_addr);
2567 
2568 		/*
2569 		 * And now we may have to adjust size downward if we have
2570 		 * exceeded the realsize of the segment or initial anon
2571 		 * allocations.
2572 		 */
2573 		sptseg_addr = sptseg->s_base + ptob(anon_index);
2574 		if ((sptseg_addr + size) >
2575 		    (sptseg->s_base + sptd->spt_realsize))
2576 			size = (sptseg->s_base + sptd->spt_realsize) -
2577 			    sptseg_addr;
2578 
2579 		/*
2580 		 * Set memory allocation policy for this segment
2581 		 */
2582 		policy = lgrp_madv_to_policy(behav, len, MAP_SHARED);
2583 		already_set = lgrp_shm_policy_set(policy, amp, anon_index,
2584 		    NULL, 0, len);
2585 
2586 		/*
2587 		 * If random memory allocation policy set already,
2588 		 * don't bother reapplying it.
2589 		 */
2590 		if (already_set && !LGRP_MEM_POLICY_REAPPLICABLE(policy))
2591 			return (0);
2592 
2593 		/*
2594 		 * Mark any existing pages in the given range for
2595 		 * migration, flushing the I/O page cache, and using
2596 		 * underlying segment to calculate anon index and get
2597 		 * anonmap and vnode pointer from
2598 		 */
2599 		if (shmd->shm_softlockcnt > 0)
2600 			segspt_purge(seg);
2601 
2602 		page_mark_migrate(seg, shm_addr, size, amp, 0, NULL, 0, 0);
2603 	}
2604 
2605 	return (0);
2606 }
2607 
2608 /*ARGSUSED*/
2609 void
2610 segspt_shmdump(struct seg *seg)
2611 {
2612 	/* no-op for ISM segment */
2613 }
2614 
2615 /*ARGSUSED*/
2616 static faultcode_t
2617 segspt_shmsetpgsz(struct seg *seg, caddr_t addr, size_t len, uint_t szc)
2618 {
2619 	return (ENOTSUP);
2620 }
2621 
2622 /*
2623  * get a memory ID for an addr in a given segment
2624  */
2625 static int
2626 segspt_shmgetmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
2627 {
2628 	struct shm_data *shmd = (struct shm_data *)seg->s_data;
2629 	struct anon 	*ap;
2630 	size_t		anon_index;
2631 	struct anon_map	*amp = shmd->shm_amp;
2632 	struct spt_data	*sptd = shmd->shm_sptseg->s_data;
2633 	struct seg	*sptseg = shmd->shm_sptseg;
2634 	anon_sync_obj_t	cookie;
2635 
2636 	anon_index = seg_page(seg, addr);
2637 
2638 	if (addr > (seg->s_base + sptd->spt_realsize)) {
2639 		return (EFAULT);
2640 	}
2641 
2642 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2643 	anon_array_enter(amp, anon_index, &cookie);
2644 	ap = anon_get_ptr(amp->ahp, anon_index);
2645 	if (ap == NULL) {
2646 		struct page *pp;
2647 		caddr_t spt_addr = sptseg->s_base + ptob(anon_index);
2648 
2649 		pp = anon_zero(sptseg, spt_addr, &ap, kcred);
2650 		if (pp == NULL) {
2651 			anon_array_exit(&cookie);
2652 			ANON_LOCK_EXIT(&amp->a_rwlock);
2653 			return (ENOMEM);
2654 		}
2655 		(void) anon_set_ptr(amp->ahp, anon_index, ap, ANON_SLEEP);
2656 		page_unlock(pp);
2657 	}
2658 	anon_array_exit(&cookie);
2659 	ANON_LOCK_EXIT(&amp->a_rwlock);
2660 	memidp->val[0] = (uintptr_t)ap;
2661 	memidp->val[1] = (uintptr_t)addr & PAGEOFFSET;
2662 	return (0);
2663 }
2664 
2665 /*
2666  * Get memory allocation policy info for specified address in given segment
2667  */
2668 static lgrp_mem_policy_info_t *
2669 segspt_shmgetpolicy(struct seg *seg, caddr_t addr)
2670 {
2671 	struct anon_map		*amp;
2672 	ulong_t			anon_index;
2673 	lgrp_mem_policy_info_t	*policy_info;
2674 	struct shm_data		*shm_data;
2675 
2676 	ASSERT(seg != NULL);
2677 
2678 	/*
2679 	 * Get anon_map from segshm
2680 	 *
2681 	 * Assume that no lock needs to be held on anon_map, since
2682 	 * it should be protected by its reference count which must be
2683 	 * nonzero for an existing segment
2684 	 * Need to grab readers lock on policy tree though
2685 	 */
2686 	shm_data = (struct shm_data *)seg->s_data;
2687 	if (shm_data == NULL)
2688 		return (NULL);
2689 	amp = shm_data->shm_amp;
2690 	ASSERT(amp->refcnt != 0);
2691 
2692 	/*
2693 	 * Get policy info
2694 	 *
2695 	 * Assume starting anon index of 0
2696 	 */
2697 	anon_index = seg_page(seg, addr);
2698 	policy_info = lgrp_shm_policy_get(amp, anon_index, NULL, 0);
2699 
2700 	return (policy_info);
2701 }
2702