xref: /titanic_50/usr/src/uts/common/vm/seg_map.c (revision 8cb74972a66bde0af7b1a957d01e0095b82a8b91)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * Portions of this source code were derived from Berkeley 4.3 BSD
31  * under license from the Regents of the University of California.
32  */
33 
34 /*
35  * VM - generic vnode mapping segment.
36  *
37  * The segmap driver is used only by the kernel to get faster (than seg_vn)
38  * mappings [lower routine overhead; more persistent cache] to random
39  * vnode/offsets.  Note than the kernel may (and does) use seg_vn as well.
40  */
41 
42 #include <sys/types.h>
43 #include <sys/t_lock.h>
44 #include <sys/param.h>
45 #include <sys/sysmacros.h>
46 #include <sys/buf.h>
47 #include <sys/systm.h>
48 #include <sys/vnode.h>
49 #include <sys/mman.h>
50 #include <sys/errno.h>
51 #include <sys/cred.h>
52 #include <sys/kmem.h>
53 #include <sys/vtrace.h>
54 #include <sys/cmn_err.h>
55 #include <sys/debug.h>
56 #include <sys/thread.h>
57 #include <sys/dumphdr.h>
58 #include <sys/bitmap.h>
59 #include <sys/lgrp.h>
60 
61 #include <vm/seg_kmem.h>
62 #include <vm/hat.h>
63 #include <vm/as.h>
64 #include <vm/seg.h>
65 #include <vm/seg_kpm.h>
66 #include <vm/seg_map.h>
67 #include <vm/page.h>
68 #include <vm/pvn.h>
69 #include <vm/rm.h>
70 
71 /*
72  * Private seg op routines.
73  */
74 static void	segmap_free(struct seg *seg);
75 faultcode_t segmap_fault(struct hat *hat, struct seg *seg, caddr_t addr,
76 			size_t len, enum fault_type type, enum seg_rw rw);
77 static faultcode_t segmap_faulta(struct seg *seg, caddr_t addr);
78 static int	segmap_checkprot(struct seg *seg, caddr_t addr, size_t len,
79 			uint_t prot);
80 static int	segmap_kluster(struct seg *seg, caddr_t addr, ssize_t);
81 static int	segmap_getprot(struct seg *seg, caddr_t addr, size_t len,
82 			uint_t *protv);
83 static u_offset_t	segmap_getoffset(struct seg *seg, caddr_t addr);
84 static int	segmap_gettype(struct seg *seg, caddr_t addr);
85 static int	segmap_getvp(struct seg *seg, caddr_t addr, struct vnode **vpp);
86 static void	segmap_dump(struct seg *seg);
87 static int	segmap_pagelock(struct seg *seg, caddr_t addr, size_t len,
88 			struct page ***ppp, enum lock_type type,
89 			enum seg_rw rw);
90 static void	segmap_badop(void);
91 static int	segmap_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp);
92 static lgrp_mem_policy_info_t	*segmap_getpolicy(struct seg *seg,
93     caddr_t addr);
94 static int	segmap_capable(struct seg *seg, segcapability_t capability);
95 
96 /* segkpm support */
97 static caddr_t	segmap_pagecreate_kpm(struct seg *, vnode_t *, u_offset_t,
98 			struct smap *, enum seg_rw);
99 struct smap	*get_smap_kpm(caddr_t, page_t **);
100 
101 #define	SEGMAP_BADOP(t)	(t(*)())segmap_badop
102 
103 static struct seg_ops segmap_ops = {
104 	SEGMAP_BADOP(int),	/* dup */
105 	SEGMAP_BADOP(int),	/* unmap */
106 	segmap_free,
107 	segmap_fault,
108 	segmap_faulta,
109 	SEGMAP_BADOP(int),	/* setprot */
110 	segmap_checkprot,
111 	segmap_kluster,
112 	SEGMAP_BADOP(size_t),	/* swapout */
113 	SEGMAP_BADOP(int),	/* sync */
114 	SEGMAP_BADOP(size_t),	/* incore */
115 	SEGMAP_BADOP(int),	/* lockop */
116 	segmap_getprot,
117 	segmap_getoffset,
118 	segmap_gettype,
119 	segmap_getvp,
120 	SEGMAP_BADOP(int),	/* advise */
121 	segmap_dump,
122 	segmap_pagelock,	/* pagelock */
123 	SEGMAP_BADOP(int),	/* setpgsz */
124 	segmap_getmemid,	/* getmemid */
125 	segmap_getpolicy,	/* getpolicy */
126 	segmap_capable,		/* capable */
127 };
128 
129 /*
130  * Private segmap routines.
131  */
132 static void	segmap_unlock(struct hat *hat, struct seg *seg, caddr_t addr,
133 			size_t len, enum seg_rw rw, struct smap *smp);
134 static void	segmap_smapadd(struct smap *smp);
135 static struct smap *segmap_hashin(struct smap *smp, struct vnode *vp,
136 			u_offset_t off, int hashid);
137 static void	segmap_hashout(struct smap *smp);
138 
139 
140 /*
141  * Statistics for segmap operations.
142  *
143  * No explicit locking to protect these stats.
144  */
145 struct segmapcnt segmapcnt = {
146 	{ "fault",		KSTAT_DATA_ULONG },
147 	{ "faulta",		KSTAT_DATA_ULONG },
148 	{ "getmap",		KSTAT_DATA_ULONG },
149 	{ "get_use",		KSTAT_DATA_ULONG },
150 	{ "get_reclaim",	KSTAT_DATA_ULONG },
151 	{ "get_reuse",		KSTAT_DATA_ULONG },
152 	{ "get_unused",		KSTAT_DATA_ULONG },
153 	{ "get_nofree",		KSTAT_DATA_ULONG },
154 	{ "rel_async",		KSTAT_DATA_ULONG },
155 	{ "rel_write",		KSTAT_DATA_ULONG },
156 	{ "rel_free",		KSTAT_DATA_ULONG },
157 	{ "rel_abort",		KSTAT_DATA_ULONG },
158 	{ "rel_dontneed",	KSTAT_DATA_ULONG },
159 	{ "release",		KSTAT_DATA_ULONG },
160 	{ "pagecreate",		KSTAT_DATA_ULONG },
161 	{ "free_notfree",	KSTAT_DATA_ULONG },
162 	{ "free_dirty",		KSTAT_DATA_ULONG },
163 	{ "free",		KSTAT_DATA_ULONG },
164 	{ "stolen",		KSTAT_DATA_ULONG },
165 	{ "get_nomtx",		KSTAT_DATA_ULONG }
166 };
167 
168 kstat_named_t *segmapcnt_ptr = (kstat_named_t *)&segmapcnt;
169 uint_t segmapcnt_ndata = sizeof (segmapcnt) / sizeof (kstat_named_t);
170 
171 /*
172  * Return number of map pages in segment.
173  */
174 #define	MAP_PAGES(seg)		((seg)->s_size >> MAXBSHIFT)
175 
176 /*
177  * Translate addr into smap number within segment.
178  */
179 #define	MAP_PAGE(seg, addr)  (((addr) - (seg)->s_base) >> MAXBSHIFT)
180 
181 /*
182  * Translate addr in seg into struct smap pointer.
183  */
184 #define	GET_SMAP(seg, addr)	\
185 	&(((struct segmap_data *)((seg)->s_data))->smd_sm[MAP_PAGE(seg, addr)])
186 
187 /*
188  * Bit in map (16 bit bitmap).
189  */
190 #define	SMAP_BIT_MASK(bitindex)	(1 << ((bitindex) & 0xf))
191 
192 static int smd_colormsk = 0;
193 static int smd_ncolor = 0;
194 static int smd_nfree = 0;
195 static int smd_freemsk = 0;
196 #ifdef DEBUG
197 static int *colors_used;
198 #endif
199 static struct smap *smd_smap;
200 static struct smaphash *smd_hash;
201 #ifdef SEGMAP_HASHSTATS
202 static unsigned int *smd_hash_len;
203 #endif
204 static struct smfree *smd_free;
205 static ulong_t smd_hashmsk = 0;
206 
207 #define	SEGMAP_MAXCOLOR		2
208 #define	SEGMAP_CACHE_PAD	64
209 
210 union segmap_cpu {
211 	struct {
212 		uint32_t	scpu_free_ndx[SEGMAP_MAXCOLOR];
213 		struct smap	*scpu_last_smap;
214 		ulong_t		scpu_getmap;
215 		ulong_t		scpu_release;
216 		ulong_t		scpu_get_reclaim;
217 		ulong_t		scpu_fault;
218 		ulong_t		scpu_pagecreate;
219 		ulong_t		scpu_get_reuse;
220 	} scpu;
221 	char	scpu_pad[SEGMAP_CACHE_PAD];
222 };
223 static union segmap_cpu *smd_cpu;
224 
225 /*
226  * There are three locks in seg_map:
227  *	- per freelist mutexes
228  *	- per hashchain mutexes
229  *	- per smap mutexes
230  *
231  * The lock ordering is to get the smap mutex to lock down the slot
232  * first then the hash lock (for hash in/out (vp, off) list) or the
233  * freelist lock to put the slot back on the free list.
234  *
235  * The hash search is done by only holding the hashchain lock, when a wanted
236  * slot is found, we drop the hashchain lock then lock the slot so there
237  * is no overlapping of hashchain and smap locks. After the slot is
238  * locked, we verify again if the slot is still what we are looking
239  * for.
240  *
241  * Allocation of a free slot is done by holding the freelist lock,
242  * then locking the smap slot at the head of the freelist. This is
243  * in reversed lock order so mutex_tryenter() is used.
244  *
245  * The smap lock protects all fields in smap structure except for
246  * the link fields for hash/free lists which are protected by
247  * hashchain and freelist locks.
248  */
249 
250 #define	SHASHMTX(hashid)	(&smd_hash[hashid].sh_mtx)
251 
252 #define	SMP2SMF(smp)		(&smd_free[(smp - smd_smap) & smd_freemsk])
253 #define	SMP2SMF_NDX(smp)	(ushort_t)((smp - smd_smap) & smd_freemsk)
254 
255 #define	SMAPMTX(smp) (&smp->sm_mtx)
256 
257 #define	SMAP_HASHFUNC(vp, off, hashid) \
258 	{ \
259 	hashid = ((((uintptr_t)(vp) >> 6) + ((uintptr_t)(vp) >> 3) + \
260 		((off) >> MAXBSHIFT)) & smd_hashmsk); \
261 	}
262 
263 /*
264  * The most frequently updated kstat counters are kept in the
265  * per cpu array to avoid hot cache blocks. The update function
266  * sums the cpu local counters to update the global counters.
267  */
268 
269 /* ARGSUSED */
270 int
271 segmap_kstat_update(kstat_t *ksp, int rw)
272 {
273 	int i;
274 	ulong_t	getmap, release, get_reclaim;
275 	ulong_t	fault, pagecreate, get_reuse;
276 
277 	if (rw == KSTAT_WRITE)
278 		return (EACCES);
279 	getmap = release = get_reclaim = (ulong_t)0;
280 	fault = pagecreate = get_reuse = (ulong_t)0;
281 	for (i = 0; i < max_ncpus; i++) {
282 		getmap += smd_cpu[i].scpu.scpu_getmap;
283 		release  += smd_cpu[i].scpu.scpu_release;
284 		get_reclaim += smd_cpu[i].scpu.scpu_get_reclaim;
285 		fault  += smd_cpu[i].scpu.scpu_fault;
286 		pagecreate  += smd_cpu[i].scpu.scpu_pagecreate;
287 		get_reuse += smd_cpu[i].scpu.scpu_get_reuse;
288 	}
289 	segmapcnt.smp_getmap.value.ul = getmap;
290 	segmapcnt.smp_release.value.ul = release;
291 	segmapcnt.smp_get_reclaim.value.ul = get_reclaim;
292 	segmapcnt.smp_fault.value.ul = fault;
293 	segmapcnt.smp_pagecreate.value.ul = pagecreate;
294 	segmapcnt.smp_get_reuse.value.ul = get_reuse;
295 	return (0);
296 }
297 
298 int
299 segmap_create(struct seg *seg, void *argsp)
300 {
301 	struct segmap_data *smd;
302 	struct smap *smp;
303 	struct smfree *sm;
304 	struct segmap_crargs *a = (struct segmap_crargs *)argsp;
305 	struct smaphash *shashp;
306 	union segmap_cpu *scpu;
307 	long i, npages;
308 	size_t hashsz;
309 	uint_t nfreelist;
310 	extern void prefetch_smap_w(void *);
311 	extern int max_ncpus;
312 
313 	ASSERT(seg->s_as && RW_WRITE_HELD(&seg->s_as->a_lock));
314 
315 	if (((uintptr_t)seg->s_base | seg->s_size) & MAXBOFFSET) {
316 		panic("segkmap not MAXBSIZE aligned");
317 		/*NOTREACHED*/
318 	}
319 
320 	smd = kmem_zalloc(sizeof (struct segmap_data), KM_SLEEP);
321 
322 	seg->s_data = (void *)smd;
323 	seg->s_ops = &segmap_ops;
324 	smd->smd_prot = a->prot;
325 
326 	/*
327 	 * Scale the number of smap freelists to be
328 	 * proportional to max_ncpus * number of virtual colors.
329 	 * The caller can over-ride this scaling by providing
330 	 * a non-zero a->nfreelist argument.
331 	 */
332 	nfreelist = a->nfreelist;
333 	if (nfreelist == 0)
334 		nfreelist = max_ncpus;
335 	else if (nfreelist < 0 || nfreelist > 4 * max_ncpus) {
336 		cmn_err(CE_WARN, "segmap_create: nfreelist out of range "
337 		"%d, using %d", nfreelist, max_ncpus);
338 		nfreelist = max_ncpus;
339 	}
340 	if (nfreelist & (nfreelist - 1)) {
341 		/* round up nfreelist to the next power of two. */
342 		nfreelist = 1 << (highbit(nfreelist));
343 	}
344 
345 	/*
346 	 * Get the number of virtual colors - must be a power of 2.
347 	 */
348 	if (a->shmsize)
349 		smd_ncolor = a->shmsize >> MAXBSHIFT;
350 	else
351 		smd_ncolor = 1;
352 	ASSERT((smd_ncolor & (smd_ncolor - 1)) == 0);
353 	ASSERT(smd_ncolor <= SEGMAP_MAXCOLOR);
354 	smd_colormsk = smd_ncolor - 1;
355 	smd->smd_nfree = smd_nfree = smd_ncolor * nfreelist;
356 	smd_freemsk = smd_nfree - 1;
357 
358 	/*
359 	 * Allocate and initialize the freelist headers.
360 	 * Note that sm_freeq[1] starts out as the release queue. This
361 	 * is known when the smap structures are initialized below.
362 	 */
363 	smd_free = smd->smd_free =
364 	    kmem_zalloc(smd_nfree * sizeof (struct smfree), KM_SLEEP);
365 	for (i = 0; i < smd_nfree; i++) {
366 		sm = &smd->smd_free[i];
367 		mutex_init(&sm->sm_freeq[0].smq_mtx, NULL, MUTEX_DEFAULT, NULL);
368 		mutex_init(&sm->sm_freeq[1].smq_mtx, NULL, MUTEX_DEFAULT, NULL);
369 		sm->sm_allocq = &sm->sm_freeq[0];
370 		sm->sm_releq = &sm->sm_freeq[1];
371 	}
372 
373 	/*
374 	 * Allocate and initialize the smap hash chain headers.
375 	 * Compute hash size rounding down to the next power of two.
376 	 */
377 	npages = MAP_PAGES(seg);
378 	smd->smd_npages = npages;
379 	hashsz = npages / SMAP_HASHAVELEN;
380 	hashsz = 1 << (highbit(hashsz)-1);
381 	smd_hashmsk = hashsz - 1;
382 	smd_hash = smd->smd_hash =
383 	    kmem_alloc(hashsz * sizeof (struct smaphash), KM_SLEEP);
384 #ifdef SEGMAP_HASHSTATS
385 	smd_hash_len =
386 	    kmem_zalloc(hashsz * sizeof (unsigned int), KM_SLEEP);
387 #endif
388 	for (i = 0, shashp = smd_hash; i < hashsz; i++, shashp++) {
389 		shashp->sh_hash_list = NULL;
390 		mutex_init(&shashp->sh_mtx, NULL, MUTEX_DEFAULT, NULL);
391 	}
392 
393 	/*
394 	 * Allocate and initialize the smap structures.
395 	 * Link all slots onto the appropriate freelist.
396 	 * The smap array is large enough to affect boot time
397 	 * on large systems, so use memory prefetching and only
398 	 * go through the array 1 time. Inline a optimized version
399 	 * of segmap_smapadd to add structures to freelists with
400 	 * knowledge that no locks are needed here.
401 	 */
402 	smd_smap = smd->smd_sm =
403 	    kmem_alloc(sizeof (struct smap) * npages, KM_SLEEP);
404 
405 	for (smp = &smd->smd_sm[MAP_PAGES(seg) - 1];
406 	    smp >= smd->smd_sm; smp--) {
407 		struct smap *smpfreelist;
408 		struct sm_freeq *releq;
409 
410 		prefetch_smap_w((char *)smp);
411 
412 		smp->sm_vp = NULL;
413 		smp->sm_hash = NULL;
414 		smp->sm_off = 0;
415 		smp->sm_bitmap = 0;
416 		smp->sm_refcnt = 0;
417 		mutex_init(&smp->sm_mtx, NULL, MUTEX_DEFAULT, NULL);
418 		smp->sm_free_ndx = SMP2SMF_NDX(smp);
419 
420 		sm = SMP2SMF(smp);
421 		releq = sm->sm_releq;
422 
423 		smpfreelist = releq->smq_free;
424 		if (smpfreelist == 0) {
425 			releq->smq_free = smp->sm_next = smp->sm_prev = smp;
426 		} else {
427 			smp->sm_next = smpfreelist;
428 			smp->sm_prev = smpfreelist->sm_prev;
429 			smpfreelist->sm_prev = smp;
430 			smp->sm_prev->sm_next = smp;
431 			releq->smq_free = smp->sm_next;
432 		}
433 
434 		/*
435 		 * sm_flag = 0 (no SM_QNDX_ZERO) implies smap on sm_freeq[1]
436 		 */
437 		smp->sm_flags = 0;
438 
439 #ifdef	SEGKPM_SUPPORT
440 		/*
441 		 * Due to the fragile prefetch loop no
442 		 * separate function is used here.
443 		 */
444 		smp->sm_kpme_next = NULL;
445 		smp->sm_kpme_prev = NULL;
446 		smp->sm_kpme_page = NULL;
447 #endif
448 	}
449 
450 	/*
451 	 * Allocate the per color indices that distribute allocation
452 	 * requests over the free lists. Each cpu will have a private
453 	 * rotor index to spread the allocations even across the available
454 	 * smap freelists. Init the scpu_last_smap field to the first
455 	 * smap element so there is no need to check for NULL.
456 	 */
457 	smd_cpu =
458 	    kmem_zalloc(sizeof (union segmap_cpu) * max_ncpus, KM_SLEEP);
459 	for (i = 0, scpu = smd_cpu; i < max_ncpus; i++, scpu++) {
460 		int j;
461 		for (j = 0; j < smd_ncolor; j++)
462 			scpu->scpu.scpu_free_ndx[j] = j;
463 		scpu->scpu.scpu_last_smap = smd_smap;
464 	}
465 
466 	vpm_init();
467 
468 #ifdef DEBUG
469 	/*
470 	 * Keep track of which colors are used more often.
471 	 */
472 	colors_used = kmem_zalloc(smd_nfree * sizeof (int), KM_SLEEP);
473 #endif /* DEBUG */
474 
475 	return (0);
476 }
477 
478 static void
479 segmap_free(seg)
480 	struct seg *seg;
481 {
482 	ASSERT(seg->s_as && RW_WRITE_HELD(&seg->s_as->a_lock));
483 }
484 
485 /*
486  * Do a F_SOFTUNLOCK call over the range requested.
487  * The range must have already been F_SOFTLOCK'ed.
488  */
489 static void
490 segmap_unlock(
491 	struct hat *hat,
492 	struct seg *seg,
493 	caddr_t addr,
494 	size_t len,
495 	enum seg_rw rw,
496 	struct smap *smp)
497 {
498 	page_t *pp;
499 	caddr_t adr;
500 	u_offset_t off;
501 	struct vnode *vp;
502 	kmutex_t *smtx;
503 
504 	ASSERT(smp->sm_refcnt > 0);
505 
506 #ifdef lint
507 	seg = seg;
508 #endif
509 
510 	if (segmap_kpm && IS_KPM_ADDR(addr)) {
511 
512 		/*
513 		 * We're called only from segmap_fault and this was a
514 		 * NOP in case of a kpm based smap, so dangerous things
515 		 * must have happened in the meantime. Pages are prefaulted
516 		 * and locked in segmap_getmapflt and they will not be
517 		 * unlocked until segmap_release.
518 		 */
519 		panic("segmap_unlock: called with kpm addr %p", (void *)addr);
520 		/*NOTREACHED*/
521 	}
522 
523 	vp = smp->sm_vp;
524 	off = smp->sm_off + (u_offset_t)((uintptr_t)addr & MAXBOFFSET);
525 
526 	hat_unlock(hat, addr, P2ROUNDUP(len, PAGESIZE));
527 	for (adr = addr; adr < addr + len; adr += PAGESIZE, off += PAGESIZE) {
528 		ushort_t bitmask;
529 
530 		/*
531 		 * Use page_find() instead of page_lookup() to
532 		 * find the page since we know that it has
533 		 * "shared" lock.
534 		 */
535 		pp = page_find(vp, off);
536 		if (pp == NULL) {
537 			panic("segmap_unlock: page not found");
538 			/*NOTREACHED*/
539 		}
540 
541 		if (rw == S_WRITE) {
542 			hat_setrefmod(pp);
543 		} else if (rw != S_OTHER) {
544 			TRACE_3(TR_FAC_VM, TR_SEGMAP_FAULT,
545 			"segmap_fault:pp %p vp %p offset %llx", pp, vp, off);
546 			hat_setref(pp);
547 		}
548 
549 		/*
550 		 * Clear bitmap, if the bit corresponding to "off" is set,
551 		 * since the page and translation are being unlocked.
552 		 */
553 		bitmask = SMAP_BIT_MASK((off - smp->sm_off) >> PAGESHIFT);
554 
555 		/*
556 		 * Large Files: Following assertion is to verify
557 		 * the correctness of the cast to (int) above.
558 		 */
559 		ASSERT((u_offset_t)(off - smp->sm_off) <= INT_MAX);
560 		smtx = SMAPMTX(smp);
561 		mutex_enter(smtx);
562 		if (smp->sm_bitmap & bitmask) {
563 			smp->sm_bitmap &= ~bitmask;
564 		}
565 		mutex_exit(smtx);
566 
567 		page_unlock(pp);
568 	}
569 }
570 
571 #define	MAXPPB	(MAXBSIZE/4096)	/* assumes minimum page size of 4k */
572 
573 /*
574  * This routine is called via a machine specific fault handling
575  * routine.  It is also called by software routines wishing to
576  * lock or unlock a range of addresses.
577  *
578  * Note that this routine expects a page-aligned "addr".
579  */
580 faultcode_t
581 segmap_fault(
582 	struct hat *hat,
583 	struct seg *seg,
584 	caddr_t addr,
585 	size_t len,
586 	enum fault_type type,
587 	enum seg_rw rw)
588 {
589 	struct segmap_data *smd = (struct segmap_data *)seg->s_data;
590 	struct smap *smp;
591 	page_t *pp, **ppp;
592 	struct vnode *vp;
593 	u_offset_t off;
594 	page_t *pl[MAXPPB + 1];
595 	uint_t prot;
596 	u_offset_t addroff;
597 	caddr_t adr;
598 	int err;
599 	u_offset_t sm_off;
600 	int hat_flag;
601 
602 	if (segmap_kpm && IS_KPM_ADDR(addr)) {
603 		int newpage;
604 		kmutex_t *smtx;
605 
606 		/*
607 		 * Pages are successfully prefaulted and locked in
608 		 * segmap_getmapflt and can't be unlocked until
609 		 * segmap_release. No hat mappings have to be locked
610 		 * and they also can't be unlocked as long as the
611 		 * caller owns an active kpm addr.
612 		 */
613 #ifndef DEBUG
614 		if (type != F_SOFTUNLOCK)
615 			return (0);
616 #endif
617 
618 		if ((smp = get_smap_kpm(addr, NULL)) == NULL) {
619 			panic("segmap_fault: smap not found "
620 			    "for addr %p", (void *)addr);
621 			/*NOTREACHED*/
622 		}
623 
624 		smtx = SMAPMTX(smp);
625 #ifdef	DEBUG
626 		newpage = smp->sm_flags & SM_KPM_NEWPAGE;
627 		if (newpage) {
628 			cmn_err(CE_WARN, "segmap_fault: newpage? smp %p",
629 			    (void *)smp);
630 		}
631 
632 		if (type != F_SOFTUNLOCK) {
633 			mutex_exit(smtx);
634 			return (0);
635 		}
636 #endif
637 		mutex_exit(smtx);
638 		vp = smp->sm_vp;
639 		sm_off = smp->sm_off;
640 
641 		if (vp == NULL)
642 			return (FC_MAKE_ERR(EIO));
643 
644 		ASSERT(smp->sm_refcnt > 0);
645 
646 		addroff = (u_offset_t)((uintptr_t)addr & MAXBOFFSET);
647 		if (addroff + len > MAXBSIZE)
648 			panic("segmap_fault: endaddr %p exceeds MAXBSIZE chunk",
649 			    (void *)(addr + len));
650 
651 		off = sm_off + addroff;
652 
653 		pp = page_find(vp, off);
654 
655 		if (pp == NULL)
656 			panic("segmap_fault: softunlock page not found");
657 
658 		/*
659 		 * Set ref bit also here in case of S_OTHER to avoid the
660 		 * overhead of supporting other cases than F_SOFTUNLOCK
661 		 * with segkpm. We can do this because the underlying
662 		 * pages are locked anyway.
663 		 */
664 		if (rw == S_WRITE) {
665 			hat_setrefmod(pp);
666 		} else {
667 			TRACE_3(TR_FAC_VM, TR_SEGMAP_FAULT,
668 			    "segmap_fault:pp %p vp %p offset %llx",
669 			    pp, vp, off);
670 			hat_setref(pp);
671 		}
672 
673 		return (0);
674 	}
675 
676 	smd_cpu[CPU->cpu_seqid].scpu.scpu_fault++;
677 	smp = GET_SMAP(seg, addr);
678 	vp = smp->sm_vp;
679 	sm_off = smp->sm_off;
680 
681 	if (vp == NULL)
682 		return (FC_MAKE_ERR(EIO));
683 
684 	ASSERT(smp->sm_refcnt > 0);
685 
686 	addroff = (u_offset_t)((uintptr_t)addr & MAXBOFFSET);
687 	if (addroff + len > MAXBSIZE) {
688 		panic("segmap_fault: endaddr %p "
689 		    "exceeds MAXBSIZE chunk", (void *)(addr + len));
690 		/*NOTREACHED*/
691 	}
692 	off = sm_off + addroff;
693 
694 	/*
695 	 * First handle the easy stuff
696 	 */
697 	if (type == F_SOFTUNLOCK) {
698 		segmap_unlock(hat, seg, addr, len, rw, smp);
699 		return (0);
700 	}
701 
702 	TRACE_3(TR_FAC_VM, TR_SEGMAP_GETPAGE,
703 	    "segmap_getpage:seg %p addr %p vp %p", seg, addr, vp);
704 	err = VOP_GETPAGE(vp, (offset_t)off, len, &prot, pl, MAXBSIZE,
705 	    seg, addr, rw, CRED(), NULL);
706 
707 	if (err)
708 		return (FC_MAKE_ERR(err));
709 
710 	prot &= smd->smd_prot;
711 
712 	/*
713 	 * Handle all pages returned in the pl[] array.
714 	 * This loop is coded on the assumption that if
715 	 * there was no error from the VOP_GETPAGE routine,
716 	 * that the page list returned will contain all the
717 	 * needed pages for the vp from [off..off + len].
718 	 */
719 	ppp = pl;
720 	while ((pp = *ppp++) != NULL) {
721 		u_offset_t poff;
722 		ASSERT(pp->p_vnode == vp);
723 		hat_flag = HAT_LOAD;
724 
725 		/*
726 		 * Verify that the pages returned are within the range
727 		 * of this segmap region.  Note that it is theoretically
728 		 * possible for pages outside this range to be returned,
729 		 * but it is not very likely.  If we cannot use the
730 		 * page here, just release it and go on to the next one.
731 		 */
732 		if (pp->p_offset < sm_off ||
733 		    pp->p_offset >= sm_off + MAXBSIZE) {
734 			(void) page_release(pp, 1);
735 			continue;
736 		}
737 
738 		ASSERT(hat == kas.a_hat);
739 		poff = pp->p_offset;
740 		adr = addr + (poff - off);
741 		if (adr >= addr && adr < addr + len) {
742 			hat_setref(pp);
743 			TRACE_3(TR_FAC_VM, TR_SEGMAP_FAULT,
744 			    "segmap_fault:pp %p vp %p offset %llx",
745 			    pp, vp, poff);
746 			if (type == F_SOFTLOCK)
747 				hat_flag = HAT_LOAD_LOCK;
748 		}
749 
750 		/*
751 		 * Deal with VMODSORT pages here. If we know this is a write
752 		 * do the setmod now and allow write protection.
753 		 * As long as it's modified or not S_OTHER, remove write
754 		 * protection. With S_OTHER it's up to the FS to deal with this.
755 		 */
756 		if (IS_VMODSORT(vp)) {
757 			if (rw == S_WRITE)
758 				hat_setmod(pp);
759 			else if (rw != S_OTHER && !hat_ismod(pp))
760 				prot &= ~PROT_WRITE;
761 		}
762 
763 		hat_memload(hat, adr, pp, prot, hat_flag);
764 		if (hat_flag != HAT_LOAD_LOCK)
765 			page_unlock(pp);
766 	}
767 	return (0);
768 }
769 
770 /*
771  * This routine is used to start I/O on pages asynchronously.
772  */
773 static faultcode_t
774 segmap_faulta(struct seg *seg, caddr_t addr)
775 {
776 	struct smap *smp;
777 	struct vnode *vp;
778 	u_offset_t off;
779 	int err;
780 
781 	if (segmap_kpm && IS_KPM_ADDR(addr)) {
782 		int	newpage;
783 		kmutex_t *smtx;
784 
785 		/*
786 		 * Pages are successfully prefaulted and locked in
787 		 * segmap_getmapflt and can't be unlocked until
788 		 * segmap_release. No hat mappings have to be locked
789 		 * and they also can't be unlocked as long as the
790 		 * caller owns an active kpm addr.
791 		 */
792 #ifdef	DEBUG
793 		if ((smp = get_smap_kpm(addr, NULL)) == NULL) {
794 			panic("segmap_faulta: smap not found "
795 			    "for addr %p", (void *)addr);
796 			/*NOTREACHED*/
797 		}
798 
799 		smtx = SMAPMTX(smp);
800 		newpage = smp->sm_flags & SM_KPM_NEWPAGE;
801 		mutex_exit(smtx);
802 		if (newpage)
803 			cmn_err(CE_WARN, "segmap_faulta: newpage? smp %p",
804 			    (void *)smp);
805 #endif
806 		return (0);
807 	}
808 
809 	segmapcnt.smp_faulta.value.ul++;
810 	smp = GET_SMAP(seg, addr);
811 
812 	ASSERT(smp->sm_refcnt > 0);
813 
814 	vp = smp->sm_vp;
815 	off = smp->sm_off;
816 
817 	if (vp == NULL) {
818 		cmn_err(CE_WARN, "segmap_faulta - no vp");
819 		return (FC_MAKE_ERR(EIO));
820 	}
821 
822 	TRACE_3(TR_FAC_VM, TR_SEGMAP_GETPAGE,
823 	    "segmap_getpage:seg %p addr %p vp %p", seg, addr, vp);
824 
825 	err = VOP_GETPAGE(vp, (offset_t)(off + ((offset_t)((uintptr_t)addr
826 	    & MAXBOFFSET))), PAGESIZE, (uint_t *)NULL, (page_t **)NULL, 0,
827 	    seg, addr, S_READ, CRED(), NULL);
828 
829 	if (err)
830 		return (FC_MAKE_ERR(err));
831 	return (0);
832 }
833 
834 /*ARGSUSED*/
835 static int
836 segmap_checkprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
837 {
838 	struct segmap_data *smd = (struct segmap_data *)seg->s_data;
839 
840 	ASSERT(seg->s_as && RW_LOCK_HELD(&seg->s_as->a_lock));
841 
842 	/*
843 	 * Need not acquire the segment lock since
844 	 * "smd_prot" is a read-only field.
845 	 */
846 	return (((smd->smd_prot & prot) != prot) ? EACCES : 0);
847 }
848 
849 static int
850 segmap_getprot(struct seg *seg, caddr_t addr, size_t len, uint_t *protv)
851 {
852 	struct segmap_data *smd = (struct segmap_data *)seg->s_data;
853 	size_t pgno = seg_page(seg, addr + len) - seg_page(seg, addr) + 1;
854 
855 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
856 
857 	if (pgno != 0) {
858 		do {
859 			protv[--pgno] = smd->smd_prot;
860 		} while (pgno != 0);
861 	}
862 	return (0);
863 }
864 
865 static u_offset_t
866 segmap_getoffset(struct seg *seg, caddr_t addr)
867 {
868 	struct segmap_data *smd = (struct segmap_data *)seg->s_data;
869 
870 	ASSERT(seg->s_as && RW_READ_HELD(&seg->s_as->a_lock));
871 
872 	return ((u_offset_t)smd->smd_sm->sm_off + (addr - seg->s_base));
873 }
874 
875 /*ARGSUSED*/
876 static int
877 segmap_gettype(struct seg *seg, caddr_t addr)
878 {
879 	ASSERT(seg->s_as && RW_READ_HELD(&seg->s_as->a_lock));
880 
881 	return (MAP_SHARED);
882 }
883 
884 /*ARGSUSED*/
885 static int
886 segmap_getvp(struct seg *seg, caddr_t addr, struct vnode **vpp)
887 {
888 	struct segmap_data *smd = (struct segmap_data *)seg->s_data;
889 
890 	ASSERT(seg->s_as && RW_READ_HELD(&seg->s_as->a_lock));
891 
892 	/* XXX - This doesn't make any sense */
893 	*vpp = smd->smd_sm->sm_vp;
894 	return (0);
895 }
896 
897 /*
898  * Check to see if it makes sense to do kluster/read ahead to
899  * addr + delta relative to the mapping at addr.  We assume here
900  * that delta is a signed PAGESIZE'd multiple (which can be negative).
901  *
902  * For segmap we always "approve" of this action from our standpoint.
903  */
904 /*ARGSUSED*/
905 static int
906 segmap_kluster(struct seg *seg, caddr_t addr, ssize_t delta)
907 {
908 	return (0);
909 }
910 
911 static void
912 segmap_badop()
913 {
914 	panic("segmap_badop");
915 	/*NOTREACHED*/
916 }
917 
918 /*
919  * Special private segmap operations
920  */
921 
922 /*
923  * Add smap to the appropriate free list.
924  */
925 static void
926 segmap_smapadd(struct smap *smp)
927 {
928 	struct smfree *sm;
929 	struct smap *smpfreelist;
930 	struct sm_freeq *releq;
931 
932 	ASSERT(MUTEX_HELD(SMAPMTX(smp)));
933 
934 	if (smp->sm_refcnt != 0) {
935 		panic("segmap_smapadd");
936 		/*NOTREACHED*/
937 	}
938 
939 	sm = &smd_free[smp->sm_free_ndx];
940 	/*
941 	 * Add to the tail of the release queue
942 	 * Note that sm_releq and sm_allocq could toggle
943 	 * before we get the lock. This does not affect
944 	 * correctness as the 2 queues are only maintained
945 	 * to reduce lock pressure.
946 	 */
947 	releq = sm->sm_releq;
948 	if (releq == &sm->sm_freeq[0])
949 		smp->sm_flags |= SM_QNDX_ZERO;
950 	else
951 		smp->sm_flags &= ~SM_QNDX_ZERO;
952 	mutex_enter(&releq->smq_mtx);
953 	smpfreelist = releq->smq_free;
954 	if (smpfreelist == 0) {
955 		int want;
956 
957 		releq->smq_free = smp->sm_next = smp->sm_prev = smp;
958 		/*
959 		 * Both queue mutexes held to set sm_want;
960 		 * snapshot the value before dropping releq mutex.
961 		 * If sm_want appears after the releq mutex is dropped,
962 		 * then the smap just freed is already gone.
963 		 */
964 		want = sm->sm_want;
965 		mutex_exit(&releq->smq_mtx);
966 		/*
967 		 * See if there was a waiter before dropping the releq mutex
968 		 * then recheck after obtaining sm_freeq[0] mutex as
969 		 * the another thread may have already signaled.
970 		 */
971 		if (want) {
972 			mutex_enter(&sm->sm_freeq[0].smq_mtx);
973 			if (sm->sm_want)
974 				cv_signal(&sm->sm_free_cv);
975 			mutex_exit(&sm->sm_freeq[0].smq_mtx);
976 		}
977 	} else {
978 		smp->sm_next = smpfreelist;
979 		smp->sm_prev = smpfreelist->sm_prev;
980 		smpfreelist->sm_prev = smp;
981 		smp->sm_prev->sm_next = smp;
982 		mutex_exit(&releq->smq_mtx);
983 	}
984 }
985 
986 
987 static struct smap *
988 segmap_hashin(struct smap *smp, struct vnode *vp, u_offset_t off, int hashid)
989 {
990 	struct smap **hpp;
991 	struct smap *tmp;
992 	kmutex_t *hmtx;
993 
994 	ASSERT(MUTEX_HELD(SMAPMTX(smp)));
995 	ASSERT(smp->sm_vp == NULL);
996 	ASSERT(smp->sm_hash == NULL);
997 	ASSERT(smp->sm_prev == NULL);
998 	ASSERT(smp->sm_next == NULL);
999 	ASSERT(hashid >= 0 && hashid <= smd_hashmsk);
1000 
1001 	hmtx = SHASHMTX(hashid);
1002 
1003 	mutex_enter(hmtx);
1004 	/*
1005 	 * First we need to verify that no one has created a smp
1006 	 * with (vp,off) as its tag before we us.
1007 	 */
1008 	for (tmp = smd_hash[hashid].sh_hash_list;
1009 	    tmp != NULL; tmp = tmp->sm_hash)
1010 		if (tmp->sm_vp == vp && tmp->sm_off == off)
1011 			break;
1012 
1013 	if (tmp == NULL) {
1014 		/*
1015 		 * No one created one yet.
1016 		 *
1017 		 * Funniness here - we don't increment the ref count on the
1018 		 * vnode * even though we have another pointer to it here.
1019 		 * The reason for this is that we don't want the fact that
1020 		 * a seg_map entry somewhere refers to a vnode to prevent the
1021 		 * vnode * itself from going away.  This is because this
1022 		 * reference to the vnode is a "soft one".  In the case where
1023 		 * a mapping is being used by a rdwr [or directory routine?]
1024 		 * there already has to be a non-zero ref count on the vnode.
1025 		 * In the case where the vp has been freed and the the smap
1026 		 * structure is on the free list, there are no pages in memory
1027 		 * that can refer to the vnode.  Thus even if we reuse the same
1028 		 * vnode/smap structure for a vnode which has the same
1029 		 * address but represents a different object, we are ok.
1030 		 */
1031 		smp->sm_vp = vp;
1032 		smp->sm_off = off;
1033 
1034 		hpp = &smd_hash[hashid].sh_hash_list;
1035 		smp->sm_hash = *hpp;
1036 		*hpp = smp;
1037 #ifdef SEGMAP_HASHSTATS
1038 		smd_hash_len[hashid]++;
1039 #endif
1040 	}
1041 	mutex_exit(hmtx);
1042 
1043 	return (tmp);
1044 }
1045 
1046 static void
1047 segmap_hashout(struct smap *smp)
1048 {
1049 	struct smap **hpp, *hp;
1050 	struct vnode *vp;
1051 	kmutex_t *mtx;
1052 	int hashid;
1053 	u_offset_t off;
1054 
1055 	ASSERT(MUTEX_HELD(SMAPMTX(smp)));
1056 
1057 	vp = smp->sm_vp;
1058 	off = smp->sm_off;
1059 
1060 	SMAP_HASHFUNC(vp, off, hashid);	/* macro assigns hashid */
1061 	mtx = SHASHMTX(hashid);
1062 	mutex_enter(mtx);
1063 
1064 	hpp = &smd_hash[hashid].sh_hash_list;
1065 	for (;;) {
1066 		hp = *hpp;
1067 		if (hp == NULL) {
1068 			panic("segmap_hashout");
1069 			/*NOTREACHED*/
1070 		}
1071 		if (hp == smp)
1072 			break;
1073 		hpp = &hp->sm_hash;
1074 	}
1075 
1076 	*hpp = smp->sm_hash;
1077 	smp->sm_hash = NULL;
1078 #ifdef SEGMAP_HASHSTATS
1079 	smd_hash_len[hashid]--;
1080 #endif
1081 	mutex_exit(mtx);
1082 
1083 	smp->sm_vp = NULL;
1084 	smp->sm_off = (u_offset_t)0;
1085 
1086 }
1087 
1088 /*
1089  * Attempt to free unmodified, unmapped, and non locked segmap
1090  * pages.
1091  */
1092 void
1093 segmap_pagefree(struct vnode *vp, u_offset_t off)
1094 {
1095 	u_offset_t pgoff;
1096 	page_t  *pp;
1097 
1098 	for (pgoff = off; pgoff < off + MAXBSIZE; pgoff += PAGESIZE) {
1099 
1100 		if ((pp = page_lookup_nowait(vp, pgoff, SE_EXCL)) == NULL)
1101 			continue;
1102 
1103 		switch (page_release(pp, 1)) {
1104 		case PGREL_NOTREL:
1105 			segmapcnt.smp_free_notfree.value.ul++;
1106 			break;
1107 		case PGREL_MOD:
1108 			segmapcnt.smp_free_dirty.value.ul++;
1109 			break;
1110 		case PGREL_CLEAN:
1111 			segmapcnt.smp_free.value.ul++;
1112 			break;
1113 		}
1114 	}
1115 }
1116 
1117 /*
1118  * Locks held on entry: smap lock
1119  * Locks held on exit : smap lock.
1120  */
1121 
1122 static void
1123 grab_smp(struct smap *smp, page_t *pp)
1124 {
1125 	ASSERT(MUTEX_HELD(SMAPMTX(smp)));
1126 	ASSERT(smp->sm_refcnt == 0);
1127 
1128 	if (smp->sm_vp != (struct vnode *)NULL) {
1129 		struct vnode	*vp = smp->sm_vp;
1130 		u_offset_t 	off = smp->sm_off;
1131 		/*
1132 		 * Destroy old vnode association and
1133 		 * unload any hardware translations to
1134 		 * the old object.
1135 		 */
1136 		smd_cpu[CPU->cpu_seqid].scpu.scpu_get_reuse++;
1137 		segmap_hashout(smp);
1138 
1139 		/*
1140 		 * This node is off freelist and hashlist,
1141 		 * so there is no reason to drop/reacquire sm_mtx
1142 		 * across calls to hat_unload.
1143 		 */
1144 		if (segmap_kpm) {
1145 			caddr_t vaddr;
1146 			int hat_unload_needed = 0;
1147 
1148 			/*
1149 			 * unload kpm mapping
1150 			 */
1151 			if (pp != NULL) {
1152 				vaddr = hat_kpm_page2va(pp, 1);
1153 				hat_kpm_mapout(pp, GET_KPME(smp), vaddr);
1154 				page_unlock(pp);
1155 			}
1156 
1157 			/*
1158 			 * Check if we have (also) the rare case of a
1159 			 * non kpm mapping.
1160 			 */
1161 			if (smp->sm_flags & SM_NOTKPM_RELEASED) {
1162 				hat_unload_needed = 1;
1163 				smp->sm_flags &= ~SM_NOTKPM_RELEASED;
1164 			}
1165 
1166 			if (hat_unload_needed) {
1167 				hat_unload(kas.a_hat, segkmap->s_base +
1168 				    ((smp - smd_smap) * MAXBSIZE),
1169 				    MAXBSIZE, HAT_UNLOAD);
1170 			}
1171 
1172 		} else {
1173 			ASSERT(smp->sm_flags & SM_NOTKPM_RELEASED);
1174 			smp->sm_flags &= ~SM_NOTKPM_RELEASED;
1175 			hat_unload(kas.a_hat, segkmap->s_base +
1176 			    ((smp - smd_smap) * MAXBSIZE),
1177 			    MAXBSIZE, HAT_UNLOAD);
1178 		}
1179 		segmap_pagefree(vp, off);
1180 	}
1181 }
1182 
1183 static struct smap *
1184 get_free_smp(int free_ndx)
1185 {
1186 	struct smfree *sm;
1187 	kmutex_t *smtx;
1188 	struct smap *smp, *first;
1189 	struct sm_freeq *allocq, *releq;
1190 	struct kpme *kpme;
1191 	page_t *pp = NULL;
1192 	int end_ndx, page_locked = 0;
1193 
1194 	end_ndx = free_ndx;
1195 	sm = &smd_free[free_ndx];
1196 
1197 retry_queue:
1198 	allocq = sm->sm_allocq;
1199 	mutex_enter(&allocq->smq_mtx);
1200 
1201 	if ((smp = allocq->smq_free) == NULL) {
1202 
1203 skip_queue:
1204 		/*
1205 		 * The alloc list is empty or this queue is being skipped;
1206 		 * first see if the allocq toggled.
1207 		 */
1208 		if (sm->sm_allocq != allocq) {
1209 			/* queue changed */
1210 			mutex_exit(&allocq->smq_mtx);
1211 			goto retry_queue;
1212 		}
1213 		releq = sm->sm_releq;
1214 		if (!mutex_tryenter(&releq->smq_mtx)) {
1215 			/* cannot get releq; a free smp may be there now */
1216 			mutex_exit(&allocq->smq_mtx);
1217 
1218 			/*
1219 			 * This loop could spin forever if this thread has
1220 			 * higher priority than the thread that is holding
1221 			 * releq->smq_mtx. In order to force the other thread
1222 			 * to run, we'll lock/unlock the mutex which is safe
1223 			 * since we just unlocked the allocq mutex.
1224 			 */
1225 			mutex_enter(&releq->smq_mtx);
1226 			mutex_exit(&releq->smq_mtx);
1227 			goto retry_queue;
1228 		}
1229 		if (releq->smq_free == NULL) {
1230 			/*
1231 			 * This freelist is empty.
1232 			 * This should not happen unless clients
1233 			 * are failing to release the segmap
1234 			 * window after accessing the data.
1235 			 * Before resorting to sleeping, try
1236 			 * the next list of the same color.
1237 			 */
1238 			free_ndx = (free_ndx + smd_ncolor) & smd_freemsk;
1239 			if (free_ndx != end_ndx) {
1240 				mutex_exit(&releq->smq_mtx);
1241 				mutex_exit(&allocq->smq_mtx);
1242 				sm = &smd_free[free_ndx];
1243 				goto retry_queue;
1244 			}
1245 			/*
1246 			 * Tried all freelists of the same color once,
1247 			 * wait on this list and hope something gets freed.
1248 			 */
1249 			segmapcnt.smp_get_nofree.value.ul++;
1250 			sm->sm_want++;
1251 			mutex_exit(&sm->sm_freeq[1].smq_mtx);
1252 			cv_wait(&sm->sm_free_cv,
1253 			    &sm->sm_freeq[0].smq_mtx);
1254 			sm->sm_want--;
1255 			mutex_exit(&sm->sm_freeq[0].smq_mtx);
1256 			sm = &smd_free[free_ndx];
1257 			goto retry_queue;
1258 		} else {
1259 			/*
1260 			 * Something on the rele queue; flip the alloc
1261 			 * and rele queues and retry.
1262 			 */
1263 			sm->sm_allocq = releq;
1264 			sm->sm_releq = allocq;
1265 			mutex_exit(&allocq->smq_mtx);
1266 			mutex_exit(&releq->smq_mtx);
1267 			if (page_locked) {
1268 				delay(hz >> 2);
1269 				page_locked = 0;
1270 			}
1271 			goto retry_queue;
1272 		}
1273 	} else {
1274 		/*
1275 		 * Fastpath the case we get the smap mutex
1276 		 * on the first try.
1277 		 */
1278 		first = smp;
1279 next_smap:
1280 		smtx = SMAPMTX(smp);
1281 		if (!mutex_tryenter(smtx)) {
1282 			/*
1283 			 * Another thread is trying to reclaim this slot.
1284 			 * Skip to the next queue or smap.
1285 			 */
1286 			if ((smp = smp->sm_next) == first) {
1287 				goto skip_queue;
1288 			} else {
1289 				goto next_smap;
1290 			}
1291 		} else {
1292 			/*
1293 			 * if kpme exists, get shared lock on the page
1294 			 */
1295 			if (segmap_kpm && smp->sm_vp != NULL) {
1296 
1297 				kpme = GET_KPME(smp);
1298 				pp = kpme->kpe_page;
1299 
1300 				if (pp != NULL) {
1301 					if (!page_trylock(pp, SE_SHARED)) {
1302 						smp = smp->sm_next;
1303 						mutex_exit(smtx);
1304 						page_locked = 1;
1305 
1306 						pp = NULL;
1307 
1308 						if (smp == first) {
1309 							goto skip_queue;
1310 						} else {
1311 							goto next_smap;
1312 						}
1313 					} else {
1314 						if (kpme->kpe_page == NULL) {
1315 							page_unlock(pp);
1316 							pp = NULL;
1317 						}
1318 					}
1319 				}
1320 			}
1321 
1322 			/*
1323 			 * At this point, we've selected smp.  Remove smp
1324 			 * from its freelist.  If smp is the first one in
1325 			 * the freelist, update the head of the freelist.
1326 			 */
1327 			if (first == smp) {
1328 				ASSERT(first == allocq->smq_free);
1329 				allocq->smq_free = smp->sm_next;
1330 			}
1331 
1332 			/*
1333 			 * if the head of the freelist still points to smp,
1334 			 * then there are no more free smaps in that list.
1335 			 */
1336 			if (allocq->smq_free == smp)
1337 				/*
1338 				 * Took the last one
1339 				 */
1340 				allocq->smq_free = NULL;
1341 			else {
1342 				smp->sm_prev->sm_next = smp->sm_next;
1343 				smp->sm_next->sm_prev = smp->sm_prev;
1344 			}
1345 			mutex_exit(&allocq->smq_mtx);
1346 			smp->sm_prev = smp->sm_next = NULL;
1347 
1348 			/*
1349 			 * if pp != NULL, pp must have been locked;
1350 			 * grab_smp() unlocks pp.
1351 			 */
1352 			ASSERT((pp == NULL) || PAGE_LOCKED(pp));
1353 			grab_smp(smp, pp);
1354 			/* return smp locked. */
1355 			ASSERT(SMAPMTX(smp) == smtx);
1356 			ASSERT(MUTEX_HELD(smtx));
1357 			return (smp);
1358 		}
1359 	}
1360 }
1361 
1362 /*
1363  * Special public segmap operations
1364  */
1365 
1366 /*
1367  * Create pages (without using VOP_GETPAGE) and load up translations to them.
1368  * If softlock is TRUE, then set things up so that it looks like a call
1369  * to segmap_fault with F_SOFTLOCK.
1370  *
1371  * Returns 1, if a page is created by calling page_create_va(), or 0 otherwise.
1372  *
1373  * All fields in the generic segment (struct seg) are considered to be
1374  * read-only for "segmap" even though the kernel address space (kas) may
1375  * not be locked, hence no lock is needed to access them.
1376  */
1377 int
1378 segmap_pagecreate(struct seg *seg, caddr_t addr, size_t len, int softlock)
1379 {
1380 	struct segmap_data *smd = (struct segmap_data *)seg->s_data;
1381 	page_t *pp;
1382 	u_offset_t off;
1383 	struct smap *smp;
1384 	struct vnode *vp;
1385 	caddr_t eaddr;
1386 	int newpage = 0;
1387 	uint_t prot;
1388 	kmutex_t *smtx;
1389 	int hat_flag;
1390 
1391 	ASSERT(seg->s_as == &kas);
1392 
1393 	if (segmap_kpm && IS_KPM_ADDR(addr)) {
1394 		/*
1395 		 * Pages are successfully prefaulted and locked in
1396 		 * segmap_getmapflt and can't be unlocked until
1397 		 * segmap_release. The SM_KPM_NEWPAGE flag is set
1398 		 * in segmap_pagecreate_kpm when new pages are created.
1399 		 * and it is returned as "newpage" indication here.
1400 		 */
1401 		if ((smp = get_smap_kpm(addr, NULL)) == NULL) {
1402 			panic("segmap_pagecreate: smap not found "
1403 			    "for addr %p", (void *)addr);
1404 			/*NOTREACHED*/
1405 		}
1406 
1407 		smtx = SMAPMTX(smp);
1408 		newpage = smp->sm_flags & SM_KPM_NEWPAGE;
1409 		smp->sm_flags &= ~SM_KPM_NEWPAGE;
1410 		mutex_exit(smtx);
1411 
1412 		return (newpage);
1413 	}
1414 
1415 	smd_cpu[CPU->cpu_seqid].scpu.scpu_pagecreate++;
1416 
1417 	eaddr = addr + len;
1418 	addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1419 
1420 	smp = GET_SMAP(seg, addr);
1421 
1422 	/*
1423 	 * We don't grab smp mutex here since we assume the smp
1424 	 * has a refcnt set already which prevents the slot from
1425 	 * changing its id.
1426 	 */
1427 	ASSERT(smp->sm_refcnt > 0);
1428 
1429 	vp = smp->sm_vp;
1430 	off = smp->sm_off + ((u_offset_t)((uintptr_t)addr & MAXBOFFSET));
1431 	prot = smd->smd_prot;
1432 
1433 	for (; addr < eaddr; addr += PAGESIZE, off += PAGESIZE) {
1434 		hat_flag = HAT_LOAD;
1435 		pp = page_lookup(vp, off, SE_SHARED);
1436 		if (pp == NULL) {
1437 			ushort_t bitindex;
1438 
1439 			if ((pp = page_create_va(vp, off,
1440 			    PAGESIZE, PG_WAIT, seg, addr)) == NULL) {
1441 				panic("segmap_pagecreate: page_create failed");
1442 				/*NOTREACHED*/
1443 			}
1444 			newpage = 1;
1445 			page_io_unlock(pp);
1446 
1447 			/*
1448 			 * Since pages created here do not contain valid
1449 			 * data until the caller writes into them, the
1450 			 * "exclusive" lock will not be dropped to prevent
1451 			 * other users from accessing the page.  We also
1452 			 * have to lock the translation to prevent a fault
1453 			 * from occurring when the virtual address mapped by
1454 			 * this page is written into.  This is necessary to
1455 			 * avoid a deadlock since we haven't dropped the
1456 			 * "exclusive" lock.
1457 			 */
1458 			bitindex = (ushort_t)((off - smp->sm_off) >> PAGESHIFT);
1459 
1460 			/*
1461 			 * Large Files: The following assertion is to
1462 			 * verify the cast above.
1463 			 */
1464 			ASSERT((u_offset_t)(off - smp->sm_off) <= INT_MAX);
1465 			smtx = SMAPMTX(smp);
1466 			mutex_enter(smtx);
1467 			smp->sm_bitmap |= SMAP_BIT_MASK(bitindex);
1468 			mutex_exit(smtx);
1469 
1470 			hat_flag = HAT_LOAD_LOCK;
1471 		} else if (softlock) {
1472 			hat_flag = HAT_LOAD_LOCK;
1473 		}
1474 
1475 		if (IS_VMODSORT(pp->p_vnode) && (prot & PROT_WRITE))
1476 			hat_setmod(pp);
1477 
1478 		hat_memload(kas.a_hat, addr, pp, prot, hat_flag);
1479 
1480 		if (hat_flag != HAT_LOAD_LOCK)
1481 			page_unlock(pp);
1482 
1483 		TRACE_5(TR_FAC_VM, TR_SEGMAP_PAGECREATE,
1484 		    "segmap_pagecreate:seg %p addr %p pp %p vp %p offset %llx",
1485 		    seg, addr, pp, vp, off);
1486 	}
1487 
1488 	return (newpage);
1489 }
1490 
1491 void
1492 segmap_pageunlock(struct seg *seg, caddr_t addr, size_t len, enum seg_rw rw)
1493 {
1494 	struct smap	*smp;
1495 	ushort_t	bitmask;
1496 	page_t		*pp;
1497 	struct	vnode	*vp;
1498 	u_offset_t	off;
1499 	caddr_t		eaddr;
1500 	kmutex_t	*smtx;
1501 
1502 	ASSERT(seg->s_as == &kas);
1503 
1504 	eaddr = addr + len;
1505 	addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1506 
1507 	if (segmap_kpm && IS_KPM_ADDR(addr)) {
1508 		/*
1509 		 * Pages are successfully prefaulted and locked in
1510 		 * segmap_getmapflt and can't be unlocked until
1511 		 * segmap_release, so no pages or hat mappings have
1512 		 * to be unlocked at this point.
1513 		 */
1514 #ifdef DEBUG
1515 		if ((smp = get_smap_kpm(addr, NULL)) == NULL) {
1516 			panic("segmap_pageunlock: smap not found "
1517 			    "for addr %p", (void *)addr);
1518 			/*NOTREACHED*/
1519 		}
1520 
1521 		ASSERT(smp->sm_refcnt > 0);
1522 		mutex_exit(SMAPMTX(smp));
1523 #endif
1524 		return;
1525 	}
1526 
1527 	smp = GET_SMAP(seg, addr);
1528 	smtx = SMAPMTX(smp);
1529 
1530 	ASSERT(smp->sm_refcnt > 0);
1531 
1532 	vp = smp->sm_vp;
1533 	off = smp->sm_off + ((u_offset_t)((uintptr_t)addr & MAXBOFFSET));
1534 
1535 	for (; addr < eaddr; addr += PAGESIZE, off += PAGESIZE) {
1536 		bitmask = SMAP_BIT_MASK((int)(off - smp->sm_off) >> PAGESHIFT);
1537 
1538 		/*
1539 		 * Large Files: Following assertion is to verify
1540 		 * the correctness of the cast to (int) above.
1541 		 */
1542 		ASSERT((u_offset_t)(off - smp->sm_off) <= INT_MAX);
1543 
1544 		/*
1545 		 * If the bit corresponding to "off" is set,
1546 		 * clear this bit in the bitmap, unlock translations,
1547 		 * and release the "exclusive" lock on the page.
1548 		 */
1549 		if (smp->sm_bitmap & bitmask) {
1550 			mutex_enter(smtx);
1551 			smp->sm_bitmap &= ~bitmask;
1552 			mutex_exit(smtx);
1553 
1554 			hat_unlock(kas.a_hat, addr, PAGESIZE);
1555 
1556 			/*
1557 			 * Use page_find() instead of page_lookup() to
1558 			 * find the page since we know that it has
1559 			 * "exclusive" lock.
1560 			 */
1561 			pp = page_find(vp, off);
1562 			if (pp == NULL) {
1563 				panic("segmap_pageunlock: page not found");
1564 				/*NOTREACHED*/
1565 			}
1566 			if (rw == S_WRITE) {
1567 				hat_setrefmod(pp);
1568 			} else if (rw != S_OTHER) {
1569 				hat_setref(pp);
1570 			}
1571 
1572 			page_unlock(pp);
1573 		}
1574 	}
1575 }
1576 
1577 caddr_t
1578 segmap_getmap(struct seg *seg, struct vnode *vp, u_offset_t off)
1579 {
1580 	return (segmap_getmapflt(seg, vp, off, MAXBSIZE, 0, S_OTHER));
1581 }
1582 
1583 /*
1584  * This is the magic virtual address that offset 0 of an ELF
1585  * file gets mapped to in user space. This is used to pick
1586  * the vac color on the freelist.
1587  */
1588 #define	ELF_OFFZERO_VA	(0x10000)
1589 /*
1590  * segmap_getmap allocates a MAXBSIZE big slot to map the vnode vp
1591  * in the range <off, off + len). off doesn't need to be MAXBSIZE aligned.
1592  * The return address is  always MAXBSIZE aligned.
1593  *
1594  * If forcefault is nonzero and the MMU translations haven't yet been created,
1595  * segmap_getmap will call segmap_fault(..., F_INVAL, rw) to create them.
1596  */
1597 caddr_t
1598 segmap_getmapflt(
1599 	struct seg *seg,
1600 	struct vnode *vp,
1601 	u_offset_t off,
1602 	size_t len,
1603 	int forcefault,
1604 	enum seg_rw rw)
1605 {
1606 	struct smap *smp, *nsmp;
1607 	extern struct vnode *common_specvp();
1608 	caddr_t baseaddr;			/* MAXBSIZE aligned */
1609 	u_offset_t baseoff;
1610 	int newslot;
1611 	caddr_t vaddr;
1612 	int color, hashid;
1613 	kmutex_t *hashmtx, *smapmtx;
1614 	struct smfree *sm;
1615 	page_t	*pp;
1616 	struct kpme *kpme;
1617 	uint_t	prot;
1618 	caddr_t base;
1619 	page_t	*pl[MAXPPB + 1];
1620 	int	error;
1621 	int	is_kpm = 1;
1622 
1623 	ASSERT(seg->s_as == &kas);
1624 	ASSERT(seg == segkmap);
1625 
1626 	baseoff = off & (offset_t)MAXBMASK;
1627 	if (off + len > baseoff + MAXBSIZE) {
1628 		panic("segmap_getmap bad len");
1629 		/*NOTREACHED*/
1630 	}
1631 
1632 	/*
1633 	 * If this is a block device we have to be sure to use the
1634 	 * "common" block device vnode for the mapping.
1635 	 */
1636 	if (vp->v_type == VBLK)
1637 		vp = common_specvp(vp);
1638 
1639 	smd_cpu[CPU->cpu_seqid].scpu.scpu_getmap++;
1640 
1641 	if (segmap_kpm == 0 ||
1642 	    (forcefault == SM_PAGECREATE && rw != S_WRITE)) {
1643 		is_kpm = 0;
1644 	}
1645 
1646 	SMAP_HASHFUNC(vp, off, hashid);	/* macro assigns hashid */
1647 	hashmtx = SHASHMTX(hashid);
1648 
1649 retry_hash:
1650 	mutex_enter(hashmtx);
1651 	for (smp = smd_hash[hashid].sh_hash_list;
1652 	    smp != NULL; smp = smp->sm_hash)
1653 		if (smp->sm_vp == vp && smp->sm_off == baseoff)
1654 			break;
1655 	mutex_exit(hashmtx);
1656 
1657 vrfy_smp:
1658 	if (smp != NULL) {
1659 
1660 		ASSERT(vp->v_count != 0);
1661 
1662 		/*
1663 		 * Get smap lock and recheck its tag. The hash lock
1664 		 * is dropped since the hash is based on (vp, off)
1665 		 * and (vp, off) won't change when we have smap mtx.
1666 		 */
1667 		smapmtx = SMAPMTX(smp);
1668 		mutex_enter(smapmtx);
1669 		if (smp->sm_vp != vp || smp->sm_off != baseoff) {
1670 			mutex_exit(smapmtx);
1671 			goto retry_hash;
1672 		}
1673 
1674 		if (smp->sm_refcnt == 0) {
1675 
1676 			smd_cpu[CPU->cpu_seqid].scpu.scpu_get_reclaim++;
1677 
1678 			/*
1679 			 * Could still be on the free list. However, this
1680 			 * could also be an smp that is transitioning from
1681 			 * the free list when we have too much contention
1682 			 * for the smapmtx's. In this case, we have an
1683 			 * unlocked smp that is not on the free list any
1684 			 * longer, but still has a 0 refcnt.  The only way
1685 			 * to be sure is to check the freelist pointers.
1686 			 * Since we now have the smapmtx, we are guaranteed
1687 			 * that the (vp, off) won't change, so we are safe
1688 			 * to reclaim it.  get_free_smp() knows that this
1689 			 * can happen, and it will check the refcnt.
1690 			 */
1691 
1692 			if ((smp->sm_next != NULL)) {
1693 				struct sm_freeq *freeq;
1694 
1695 				ASSERT(smp->sm_prev != NULL);
1696 				sm = &smd_free[smp->sm_free_ndx];
1697 
1698 				if (smp->sm_flags & SM_QNDX_ZERO)
1699 					freeq = &sm->sm_freeq[0];
1700 				else
1701 					freeq = &sm->sm_freeq[1];
1702 
1703 				mutex_enter(&freeq->smq_mtx);
1704 				if (freeq->smq_free != smp) {
1705 					/*
1706 					 * fastpath normal case
1707 					 */
1708 					smp->sm_prev->sm_next = smp->sm_next;
1709 					smp->sm_next->sm_prev = smp->sm_prev;
1710 				} else if (smp == smp->sm_next) {
1711 					/*
1712 					 * Taking the last smap on freelist
1713 					 */
1714 					freeq->smq_free = NULL;
1715 				} else {
1716 					/*
1717 					 * Reclaiming 1st smap on list
1718 					 */
1719 					freeq->smq_free = smp->sm_next;
1720 					smp->sm_prev->sm_next = smp->sm_next;
1721 					smp->sm_next->sm_prev = smp->sm_prev;
1722 				}
1723 				mutex_exit(&freeq->smq_mtx);
1724 				smp->sm_prev = smp->sm_next = NULL;
1725 			} else {
1726 				ASSERT(smp->sm_prev == NULL);
1727 				segmapcnt.smp_stolen.value.ul++;
1728 			}
1729 
1730 		} else {
1731 			segmapcnt.smp_get_use.value.ul++;
1732 		}
1733 		smp->sm_refcnt++;		/* another user */
1734 
1735 		/*
1736 		 * We don't invoke segmap_fault via TLB miss, so we set ref
1737 		 * and mod bits in advance. For S_OTHER  we set them in
1738 		 * segmap_fault F_SOFTUNLOCK.
1739 		 */
1740 		if (is_kpm) {
1741 			if (rw == S_WRITE) {
1742 				smp->sm_flags |= SM_WRITE_DATA;
1743 			} else if (rw == S_READ) {
1744 				smp->sm_flags |= SM_READ_DATA;
1745 			}
1746 		}
1747 		mutex_exit(smapmtx);
1748 
1749 		newslot = 0;
1750 	} else {
1751 
1752 		uint32_t free_ndx, *free_ndxp;
1753 		union segmap_cpu *scpu;
1754 
1755 		/*
1756 		 * On a PAC machine or a machine with anti-alias
1757 		 * hardware, smd_colormsk will be zero.
1758 		 *
1759 		 * On a VAC machine- pick color by offset in the file
1760 		 * so we won't get VAC conflicts on elf files.
1761 		 * On data files, color does not matter but we
1762 		 * don't know what kind of file it is so we always
1763 		 * pick color by offset. This causes color
1764 		 * corresponding to file offset zero to be used more
1765 		 * heavily.
1766 		 */
1767 		color = (baseoff >> MAXBSHIFT) & smd_colormsk;
1768 		scpu = smd_cpu+CPU->cpu_seqid;
1769 		free_ndxp = &scpu->scpu.scpu_free_ndx[color];
1770 		free_ndx = (*free_ndxp += smd_ncolor) & smd_freemsk;
1771 #ifdef DEBUG
1772 		colors_used[free_ndx]++;
1773 #endif /* DEBUG */
1774 
1775 		/*
1776 		 * Get a locked smp slot from the free list.
1777 		 */
1778 		smp = get_free_smp(free_ndx);
1779 		smapmtx = SMAPMTX(smp);
1780 
1781 		ASSERT(smp->sm_vp == NULL);
1782 
1783 		if ((nsmp = segmap_hashin(smp, vp, baseoff, hashid)) != NULL) {
1784 			/*
1785 			 * Failed to hashin, there exists one now.
1786 			 * Return the smp we just allocated.
1787 			 */
1788 			segmap_smapadd(smp);
1789 			mutex_exit(smapmtx);
1790 
1791 			smp = nsmp;
1792 			goto vrfy_smp;
1793 		}
1794 		smp->sm_refcnt++;		/* another user */
1795 
1796 		/*
1797 		 * We don't invoke segmap_fault via TLB miss, so we set ref
1798 		 * and mod bits in advance. For S_OTHER  we set them in
1799 		 * segmap_fault F_SOFTUNLOCK.
1800 		 */
1801 		if (is_kpm) {
1802 			if (rw == S_WRITE) {
1803 				smp->sm_flags |= SM_WRITE_DATA;
1804 			} else if (rw == S_READ) {
1805 				smp->sm_flags |= SM_READ_DATA;
1806 			}
1807 		}
1808 		mutex_exit(smapmtx);
1809 
1810 		newslot = 1;
1811 	}
1812 
1813 	if (!is_kpm)
1814 		goto use_segmap_range;
1815 
1816 	/*
1817 	 * Use segkpm
1818 	 */
1819 	/* Lint directive required until 6746211 is fixed */
1820 	/*CONSTCOND*/
1821 	ASSERT(PAGESIZE == MAXBSIZE);
1822 
1823 	/*
1824 	 * remember the last smp faulted on this cpu.
1825 	 */
1826 	(smd_cpu+CPU->cpu_seqid)->scpu.scpu_last_smap = smp;
1827 
1828 	if (forcefault == SM_PAGECREATE) {
1829 		baseaddr = segmap_pagecreate_kpm(seg, vp, baseoff, smp, rw);
1830 		return (baseaddr);
1831 	}
1832 
1833 	if (newslot == 0 &&
1834 	    (pp = GET_KPME(smp)->kpe_page) != NULL) {
1835 
1836 		/* fastpath */
1837 		switch (rw) {
1838 		case S_READ:
1839 		case S_WRITE:
1840 			if (page_trylock(pp, SE_SHARED)) {
1841 				if (PP_ISFREE(pp) ||
1842 				    !(pp->p_vnode == vp &&
1843 				    pp->p_offset == baseoff)) {
1844 					page_unlock(pp);
1845 					pp = page_lookup(vp, baseoff,
1846 					    SE_SHARED);
1847 				}
1848 			} else {
1849 				pp = page_lookup(vp, baseoff, SE_SHARED);
1850 			}
1851 
1852 			if (pp == NULL) {
1853 				ASSERT(GET_KPME(smp)->kpe_page == NULL);
1854 				break;
1855 			}
1856 
1857 			if (rw == S_WRITE &&
1858 			    hat_page_getattr(pp, P_MOD | P_REF) !=
1859 			    (P_MOD | P_REF)) {
1860 				page_unlock(pp);
1861 				break;
1862 			}
1863 
1864 			/*
1865 			 * We have the p_selock as reader, grab_smp
1866 			 * can't hit us, we have bumped the smap
1867 			 * refcnt and hat_pageunload needs the
1868 			 * p_selock exclusive.
1869 			 */
1870 			kpme = GET_KPME(smp);
1871 			if (kpme->kpe_page == pp) {
1872 				baseaddr = hat_kpm_page2va(pp, 0);
1873 			} else if (kpme->kpe_page == NULL) {
1874 				baseaddr = hat_kpm_mapin(pp, kpme);
1875 			} else {
1876 				panic("segmap_getmapflt: stale "
1877 				    "kpme page, kpme %p", (void *)kpme);
1878 				/*NOTREACHED*/
1879 			}
1880 
1881 			/*
1882 			 * We don't invoke segmap_fault via TLB miss,
1883 			 * so we set ref and mod bits in advance.
1884 			 * For S_OTHER and we set them in segmap_fault
1885 			 * F_SOFTUNLOCK.
1886 			 */
1887 			if (rw == S_READ && !hat_isref(pp))
1888 				hat_setref(pp);
1889 
1890 			return (baseaddr);
1891 		default:
1892 			break;
1893 		}
1894 	}
1895 
1896 	base = segkpm_create_va(baseoff);
1897 	error = VOP_GETPAGE(vp, (offset_t)baseoff, len, &prot, pl, MAXBSIZE,
1898 	    seg, base, rw, CRED(), NULL);
1899 
1900 	pp = pl[0];
1901 	if (error || pp == NULL) {
1902 		/*
1903 		 * Use segmap address slot and let segmap_fault deal
1904 		 * with the error cases. There is no error return
1905 		 * possible here.
1906 		 */
1907 		goto use_segmap_range;
1908 	}
1909 
1910 	ASSERT(pl[1] == NULL);
1911 
1912 	/*
1913 	 * When prot is not returned w/ PROT_ALL the returned pages
1914 	 * are not backed by fs blocks. For most of the segmap users
1915 	 * this is no problem, they don't write to the pages in the
1916 	 * same request and therefore don't rely on a following
1917 	 * trap driven segmap_fault. With SM_LOCKPROTO users it
1918 	 * is more secure to use segkmap adresses to allow
1919 	 * protection segmap_fault's.
1920 	 */
1921 	if (prot != PROT_ALL && forcefault == SM_LOCKPROTO) {
1922 		/*
1923 		 * Use segmap address slot and let segmap_fault
1924 		 * do the error return.
1925 		 */
1926 		ASSERT(rw != S_WRITE);
1927 		ASSERT(PAGE_LOCKED(pp));
1928 		page_unlock(pp);
1929 		forcefault = 0;
1930 		goto use_segmap_range;
1931 	}
1932 
1933 	/*
1934 	 * We have the p_selock as reader, grab_smp can't hit us, we
1935 	 * have bumped the smap refcnt and hat_pageunload needs the
1936 	 * p_selock exclusive.
1937 	 */
1938 	kpme = GET_KPME(smp);
1939 	if (kpme->kpe_page == pp) {
1940 		baseaddr = hat_kpm_page2va(pp, 0);
1941 	} else if (kpme->kpe_page == NULL) {
1942 		baseaddr = hat_kpm_mapin(pp, kpme);
1943 	} else {
1944 		panic("segmap_getmapflt: stale kpme page after "
1945 		    "VOP_GETPAGE, kpme %p", (void *)kpme);
1946 		/*NOTREACHED*/
1947 	}
1948 
1949 	smd_cpu[CPU->cpu_seqid].scpu.scpu_fault++;
1950 
1951 	return (baseaddr);
1952 
1953 
1954 use_segmap_range:
1955 	baseaddr = seg->s_base + ((smp - smd_smap) * MAXBSIZE);
1956 	TRACE_4(TR_FAC_VM, TR_SEGMAP_GETMAP,
1957 	    "segmap_getmap:seg %p addr %p vp %p offset %llx",
1958 	    seg, baseaddr, vp, baseoff);
1959 
1960 	/*
1961 	 * Prefault the translations
1962 	 */
1963 	vaddr = baseaddr + (off - baseoff);
1964 	if (forcefault && (newslot || !hat_probe(kas.a_hat, vaddr))) {
1965 
1966 		caddr_t pgaddr = (caddr_t)((uintptr_t)vaddr &
1967 		    (uintptr_t)PAGEMASK);
1968 
1969 		(void) segmap_fault(kas.a_hat, seg, pgaddr,
1970 		    (vaddr + len - pgaddr + PAGESIZE - 1) & (uintptr_t)PAGEMASK,
1971 		    F_INVAL, rw);
1972 	}
1973 
1974 	return (baseaddr);
1975 }
1976 
1977 int
1978 segmap_release(struct seg *seg, caddr_t addr, uint_t flags)
1979 {
1980 	struct smap	*smp;
1981 	int 		error;
1982 	int		bflags = 0;
1983 	struct vnode	*vp;
1984 	u_offset_t	offset;
1985 	kmutex_t	*smtx;
1986 	int		is_kpm = 0;
1987 	page_t		*pp;
1988 
1989 	if (segmap_kpm && IS_KPM_ADDR(addr)) {
1990 
1991 		if (((uintptr_t)addr & MAXBOFFSET) != 0) {
1992 			panic("segmap_release: addr %p not "
1993 			    "MAXBSIZE aligned", (void *)addr);
1994 			/*NOTREACHED*/
1995 		}
1996 
1997 		if ((smp = get_smap_kpm(addr, &pp)) == NULL) {
1998 			panic("segmap_release: smap not found "
1999 			    "for addr %p", (void *)addr);
2000 			/*NOTREACHED*/
2001 		}
2002 
2003 		TRACE_3(TR_FAC_VM, TR_SEGMAP_RELMAP,
2004 		    "segmap_relmap:seg %p addr %p smp %p",
2005 		    seg, addr, smp);
2006 
2007 		smtx = SMAPMTX(smp);
2008 
2009 		/*
2010 		 * For compatibility reasons segmap_pagecreate_kpm sets this
2011 		 * flag to allow a following segmap_pagecreate to return
2012 		 * this as "newpage" flag. When segmap_pagecreate is not
2013 		 * called at all we clear it now.
2014 		 */
2015 		smp->sm_flags &= ~SM_KPM_NEWPAGE;
2016 		is_kpm = 1;
2017 		if (smp->sm_flags & SM_WRITE_DATA) {
2018 			hat_setrefmod(pp);
2019 		} else if (smp->sm_flags & SM_READ_DATA) {
2020 			hat_setref(pp);
2021 		}
2022 	} else {
2023 		if (addr < seg->s_base || addr >= seg->s_base + seg->s_size ||
2024 		    ((uintptr_t)addr & MAXBOFFSET) != 0) {
2025 			panic("segmap_release: bad addr %p", (void *)addr);
2026 			/*NOTREACHED*/
2027 		}
2028 		smp = GET_SMAP(seg, addr);
2029 
2030 		TRACE_3(TR_FAC_VM, TR_SEGMAP_RELMAP,
2031 		    "segmap_relmap:seg %p addr %p smp %p",
2032 		    seg, addr, smp);
2033 
2034 		smtx = SMAPMTX(smp);
2035 		mutex_enter(smtx);
2036 		smp->sm_flags |= SM_NOTKPM_RELEASED;
2037 	}
2038 
2039 	ASSERT(smp->sm_refcnt > 0);
2040 
2041 	/*
2042 	 * Need to call VOP_PUTPAGE() if any flags (except SM_DONTNEED)
2043 	 * are set.
2044 	 */
2045 	if ((flags & ~SM_DONTNEED) != 0) {
2046 		if (flags & SM_WRITE)
2047 			segmapcnt.smp_rel_write.value.ul++;
2048 		if (flags & SM_ASYNC) {
2049 			bflags |= B_ASYNC;
2050 			segmapcnt.smp_rel_async.value.ul++;
2051 		}
2052 		if (flags & SM_INVAL) {
2053 			bflags |= B_INVAL;
2054 			segmapcnt.smp_rel_abort.value.ul++;
2055 		}
2056 		if (flags & SM_DESTROY) {
2057 			bflags |= (B_INVAL|B_TRUNC);
2058 			segmapcnt.smp_rel_abort.value.ul++;
2059 		}
2060 		if (smp->sm_refcnt == 1) {
2061 			/*
2062 			 * We only bother doing the FREE and DONTNEED flags
2063 			 * if no one else is still referencing this mapping.
2064 			 */
2065 			if (flags & SM_FREE) {
2066 				bflags |= B_FREE;
2067 				segmapcnt.smp_rel_free.value.ul++;
2068 			}
2069 			if (flags & SM_DONTNEED) {
2070 				bflags |= B_DONTNEED;
2071 				segmapcnt.smp_rel_dontneed.value.ul++;
2072 			}
2073 		}
2074 	} else {
2075 		smd_cpu[CPU->cpu_seqid].scpu.scpu_release++;
2076 	}
2077 
2078 	vp = smp->sm_vp;
2079 	offset = smp->sm_off;
2080 
2081 	if (--smp->sm_refcnt == 0) {
2082 
2083 		smp->sm_flags &= ~(SM_WRITE_DATA | SM_READ_DATA);
2084 
2085 		if (flags & (SM_INVAL|SM_DESTROY)) {
2086 			segmap_hashout(smp);	/* remove map info */
2087 			if (is_kpm) {
2088 				hat_kpm_mapout(pp, GET_KPME(smp), addr);
2089 				if (smp->sm_flags & SM_NOTKPM_RELEASED) {
2090 					smp->sm_flags &= ~SM_NOTKPM_RELEASED;
2091 					hat_unload(kas.a_hat, addr, MAXBSIZE,
2092 					    HAT_UNLOAD);
2093 				}
2094 
2095 			} else {
2096 				if (segmap_kpm)
2097 					segkpm_mapout_validkpme(GET_KPME(smp));
2098 
2099 				smp->sm_flags &= ~SM_NOTKPM_RELEASED;
2100 				hat_unload(kas.a_hat, addr, MAXBSIZE,
2101 				    HAT_UNLOAD);
2102 			}
2103 		}
2104 		segmap_smapadd(smp);	/* add to free list */
2105 	}
2106 
2107 	mutex_exit(smtx);
2108 
2109 	if (is_kpm)
2110 		page_unlock(pp);
2111 	/*
2112 	 * Now invoke VOP_PUTPAGE() if any flags (except SM_DONTNEED)
2113 	 * are set.
2114 	 */
2115 	if ((flags & ~SM_DONTNEED) != 0) {
2116 		error = VOP_PUTPAGE(vp, offset, MAXBSIZE,
2117 		    bflags, CRED(), NULL);
2118 	} else {
2119 		error = 0;
2120 	}
2121 
2122 	return (error);
2123 }
2124 
2125 /*
2126  * Dump the pages belonging to this segmap segment.
2127  */
2128 static void
2129 segmap_dump(struct seg *seg)
2130 {
2131 	struct segmap_data *smd;
2132 	struct smap *smp, *smp_end;
2133 	page_t *pp;
2134 	pfn_t pfn;
2135 	u_offset_t off;
2136 	caddr_t addr;
2137 
2138 	smd = (struct segmap_data *)seg->s_data;
2139 	addr = seg->s_base;
2140 	for (smp = smd->smd_sm, smp_end = smp + smd->smd_npages;
2141 	    smp < smp_end; smp++) {
2142 
2143 		if (smp->sm_refcnt) {
2144 			for (off = 0; off < MAXBSIZE; off += PAGESIZE) {
2145 				int we_own_it = 0;
2146 
2147 				/*
2148 				 * If pp == NULL, the page either does
2149 				 * not exist or is exclusively locked.
2150 				 * So determine if it exists before
2151 				 * searching for it.
2152 				 */
2153 				if ((pp = page_lookup_nowait(smp->sm_vp,
2154 				    smp->sm_off + off, SE_SHARED)))
2155 					we_own_it = 1;
2156 				else
2157 					pp = page_exists(smp->sm_vp,
2158 					    smp->sm_off + off);
2159 
2160 				if (pp) {
2161 					pfn = page_pptonum(pp);
2162 					dump_addpage(seg->s_as,
2163 					    addr + off, pfn);
2164 					if (we_own_it)
2165 						page_unlock(pp);
2166 				}
2167 				dump_timeleft = dump_timeout;
2168 			}
2169 		}
2170 		addr += MAXBSIZE;
2171 	}
2172 }
2173 
2174 /*ARGSUSED*/
2175 static int
2176 segmap_pagelock(struct seg *seg, caddr_t addr, size_t len,
2177     struct page ***ppp, enum lock_type type, enum seg_rw rw)
2178 {
2179 	return (ENOTSUP);
2180 }
2181 
2182 static int
2183 segmap_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
2184 {
2185 	struct segmap_data *smd = (struct segmap_data *)seg->s_data;
2186 
2187 	memidp->val[0] = (uintptr_t)smd->smd_sm->sm_vp;
2188 	memidp->val[1] = smd->smd_sm->sm_off + (uintptr_t)(addr - seg->s_base);
2189 	return (0);
2190 }
2191 
2192 /*ARGSUSED*/
2193 static lgrp_mem_policy_info_t *
2194 segmap_getpolicy(struct seg *seg, caddr_t addr)
2195 {
2196 	return (NULL);
2197 }
2198 
2199 /*ARGSUSED*/
2200 static int
2201 segmap_capable(struct seg *seg, segcapability_t capability)
2202 {
2203 	return (0);
2204 }
2205 
2206 
2207 #ifdef	SEGKPM_SUPPORT
2208 
2209 /*
2210  * segkpm support routines
2211  */
2212 
2213 static caddr_t
2214 segmap_pagecreate_kpm(struct seg *seg, vnode_t *vp, u_offset_t off,
2215 	struct smap *smp, enum seg_rw rw)
2216 {
2217 	caddr_t	base;
2218 	page_t	*pp;
2219 	int	newpage = 0;
2220 	struct kpme	*kpme;
2221 
2222 	ASSERT(smp->sm_refcnt > 0);
2223 
2224 	if ((pp = page_lookup(vp, off, SE_SHARED)) == NULL) {
2225 		kmutex_t *smtx;
2226 
2227 		base = segkpm_create_va(off);
2228 
2229 		if ((pp = page_create_va(vp, off, PAGESIZE, PG_WAIT,
2230 		    seg, base)) == NULL) {
2231 			panic("segmap_pagecreate_kpm: "
2232 			    "page_create failed");
2233 			/*NOTREACHED*/
2234 		}
2235 
2236 		newpage = 1;
2237 		page_io_unlock(pp);
2238 		ASSERT((u_offset_t)(off - smp->sm_off) <= INT_MAX);
2239 
2240 		/*
2241 		 * Mark this here until the following segmap_pagecreate
2242 		 * or segmap_release.
2243 		 */
2244 		smtx = SMAPMTX(smp);
2245 		mutex_enter(smtx);
2246 		smp->sm_flags |= SM_KPM_NEWPAGE;
2247 		mutex_exit(smtx);
2248 	}
2249 
2250 	kpme = GET_KPME(smp);
2251 	if (!newpage && kpme->kpe_page == pp)
2252 		base = hat_kpm_page2va(pp, 0);
2253 	else
2254 		base = hat_kpm_mapin(pp, kpme);
2255 
2256 	/*
2257 	 * FS code may decide not to call segmap_pagecreate and we
2258 	 * don't invoke segmap_fault via TLB miss, so we have to set
2259 	 * ref and mod bits in advance.
2260 	 */
2261 	if (rw == S_WRITE) {
2262 		hat_setrefmod(pp);
2263 	} else {
2264 		ASSERT(rw == S_READ);
2265 		hat_setref(pp);
2266 	}
2267 
2268 	smd_cpu[CPU->cpu_seqid].scpu.scpu_pagecreate++;
2269 
2270 	return (base);
2271 }
2272 
2273 /*
2274  * Find the smap structure corresponding to the
2275  * KPM addr and return it locked.
2276  */
2277 struct smap *
2278 get_smap_kpm(caddr_t addr, page_t **ppp)
2279 {
2280 	struct smap	*smp;
2281 	struct vnode	*vp;
2282 	u_offset_t	offset;
2283 	caddr_t		baseaddr = (caddr_t)((uintptr_t)addr & MAXBMASK);
2284 	int		hashid;
2285 	kmutex_t	*hashmtx;
2286 	page_t		*pp;
2287 	union segmap_cpu *scpu;
2288 
2289 	pp = hat_kpm_vaddr2page(baseaddr);
2290 
2291 	ASSERT(pp && !PP_ISFREE(pp));
2292 	ASSERT(PAGE_LOCKED(pp));
2293 	ASSERT(((uintptr_t)pp->p_offset & MAXBOFFSET) == 0);
2294 
2295 	vp = pp->p_vnode;
2296 	offset = pp->p_offset;
2297 	ASSERT(vp != NULL);
2298 
2299 	/*
2300 	 * Assume the last smap used on this cpu is the one needed.
2301 	 */
2302 	scpu = smd_cpu+CPU->cpu_seqid;
2303 	smp = scpu->scpu.scpu_last_smap;
2304 	mutex_enter(&smp->sm_mtx);
2305 	if (smp->sm_vp == vp && smp->sm_off == offset) {
2306 		ASSERT(smp->sm_refcnt > 0);
2307 	} else {
2308 		/*
2309 		 * Assumption wrong, find the smap on the hash chain.
2310 		 */
2311 		mutex_exit(&smp->sm_mtx);
2312 		SMAP_HASHFUNC(vp, offset, hashid); /* macro assigns hashid */
2313 		hashmtx = SHASHMTX(hashid);
2314 
2315 		mutex_enter(hashmtx);
2316 		smp = smd_hash[hashid].sh_hash_list;
2317 		for (; smp != NULL; smp = smp->sm_hash) {
2318 			if (smp->sm_vp == vp && smp->sm_off == offset)
2319 				break;
2320 		}
2321 		mutex_exit(hashmtx);
2322 		if (smp) {
2323 			mutex_enter(&smp->sm_mtx);
2324 			ASSERT(smp->sm_vp == vp && smp->sm_off == offset);
2325 		}
2326 	}
2327 
2328 	if (ppp)
2329 		*ppp = smp ? pp : NULL;
2330 
2331 	return (smp);
2332 }
2333 
2334 #else	/* SEGKPM_SUPPORT */
2335 
2336 /* segkpm stubs */
2337 
2338 /*ARGSUSED*/
2339 static caddr_t
2340 segmap_pagecreate_kpm(struct seg *seg, vnode_t *vp, u_offset_t off,
2341 	struct smap *smp, enum seg_rw rw)
2342 {
2343 	return (NULL);
2344 }
2345 
2346 /*ARGSUSED*/
2347 struct smap *
2348 get_smap_kpm(caddr_t addr, page_t **ppp)
2349 {
2350 	return (NULL);
2351 }
2352 
2353 #endif	/* SEGKPM_SUPPORT */
2354