xref: /titanic_50/usr/src/uts/common/vm/seg_kmem.c (revision b9ccdc5a0f0a722ae408b257a831b90011369316)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/t_lock.h>
30 #include <sys/param.h>
31 #include <sys/sysmacros.h>
32 #include <sys/tuneable.h>
33 #include <sys/systm.h>
34 #include <sys/vm.h>
35 #include <sys/kmem.h>
36 #include <sys/vmem.h>
37 #include <sys/mman.h>
38 #include <sys/cmn_err.h>
39 #include <sys/debug.h>
40 #include <sys/dumphdr.h>
41 #include <sys/bootconf.h>
42 #include <sys/lgrp.h>
43 #include <vm/seg_kmem.h>
44 #include <vm/hat.h>
45 #include <vm/page.h>
46 #include <vm/vm_dep.h>
47 #include <vm/faultcode.h>
48 #include <sys/promif.h>
49 #include <vm/seg_kp.h>
50 #include <sys/bitmap.h>
51 #include <sys/mem_cage.h>
52 
53 /*
54  * seg_kmem is the primary kernel memory segment driver.  It
55  * maps the kernel heap [kernelheap, ekernelheap), module text,
56  * and all memory which was allocated before the VM was initialized
57  * into kas.
58  *
59  * Pages which belong to seg_kmem are hashed into &kvp vnode at
60  * an offset equal to (u_offset_t)virt_addr, and have p_lckcnt >= 1.
61  * They must never be paged out since segkmem_fault() is a no-op to
62  * prevent recursive faults.
63  *
64  * Currently, seg_kmem pages are sharelocked (p_sharelock == 1) on
65  * __x86 and are unlocked (p_sharelock == 0) on __sparc.  Once __x86
66  * supports relocation the #ifdef kludges can be removed.
67  *
68  * seg_kmem pages may be subject to relocation by page_relocate(),
69  * provided that the HAT supports it; if this is so, segkmem_reloc
70  * will be set to a nonzero value. All boot time allocated memory as
71  * well as static memory is considered off limits to relocation.
72  * Pages are "relocatable" if p_state does not have P_NORELOC set, so
73  * we request P_NORELOC pages for memory that isn't safe to relocate.
74  *
75  * The kernel heap is logically divided up into four pieces:
76  *
77  *   heap32_arena is for allocations that require 32-bit absolute
78  *   virtual addresses (e.g. code that uses 32-bit pointers/offsets).
79  *
80  *   heap_core is for allocations that require 2GB *relative*
81  *   offsets; in other words all memory from heap_core is within
82  *   2GB of all other memory from the same arena. This is a requirement
83  *   of the addressing modes of some processors in supervisor code.
84  *
85  *   heap_arena is the general heap arena.
86  *
87  *   static_arena is the static memory arena.  Allocations from it
88  *   are not subject to relocation so it is safe to use the memory
89  *   physical address as well as the virtual address (e.g. the VA to
90  *   PA translations are static).  Caches may import from static_arena;
91  *   all other static memory allocations should use static_alloc_arena.
92  *
93  * On some platforms which have limited virtual address space, seg_kmem
94  * may share [kernelheap, ekernelheap) with seg_kp; if this is so,
95  * segkp_bitmap is non-NULL, and each bit represents a page of virtual
96  * address space which is actually seg_kp mapped.
97  */
98 
99 extern ulong_t *segkp_bitmap;   /* Is set if segkp is from the kernel heap */
100 
101 char *kernelheap;		/* start of primary kernel heap */
102 char *ekernelheap;		/* end of primary kernel heap */
103 struct seg kvseg;		/* primary kernel heap segment */
104 struct seg kvseg_core;		/* "core" kernel heap segment */
105 struct seg kzioseg;		/* Segment for zio mappings */
106 vmem_t *heap_arena;		/* primary kernel heap arena */
107 vmem_t *heap_core_arena;	/* core kernel heap arena */
108 char *heap_core_base;		/* start of core kernel heap arena */
109 char *heap_lp_base;		/* start of kernel large page heap arena */
110 char *heap_lp_end;		/* end of kernel large page heap arena */
111 vmem_t *hat_memload_arena;	/* HAT translation data */
112 struct seg kvseg32;		/* 32-bit kernel heap segment */
113 vmem_t *heap32_arena;		/* 32-bit kernel heap arena */
114 vmem_t *heaptext_arena;		/* heaptext arena */
115 struct as kas;			/* kernel address space */
116 struct vnode kvp;		/* vnode for all segkmem pages */
117 struct vnode zvp;		/* vnode for zfs pages */
118 int segkmem_reloc;		/* enable/disable relocatable segkmem pages */
119 vmem_t *static_arena;		/* arena for caches to import static memory */
120 vmem_t *static_alloc_arena;	/* arena for allocating static memory */
121 vmem_t *zio_arena = NULL;	/* arena for allocating zio memory */
122 vmem_t *zio_alloc_arena = NULL;	/* arena for allocating zio memory */
123 
124 /*
125  * seg_kmem driver can map part of the kernel heap with large pages.
126  * Currently this functionality is implemented for sparc platforms only.
127  *
128  * The large page size "segkmem_lpsize" for kernel heap is selected in the
129  * platform specific code. It can also be modified via /etc/system file.
130  * Setting segkmem_lpsize to PAGESIZE in /etc/system disables usage of large
131  * pages for kernel heap. "segkmem_lpshift" is adjusted appropriately to
132  * match segkmem_lpsize.
133  *
134  * At boot time we carve from kernel heap arena a range of virtual addresses
135  * that will be used for large page mappings. This range [heap_lp_base,
136  * heap_lp_end) is set up as a separate vmem arena - "heap_lp_arena". We also
137  * create "kmem_lp_arena" that caches memory already backed up by large
138  * pages. kmem_lp_arena imports virtual segments from heap_lp_arena.
139  */
140 
141 size_t	segkmem_lpsize;
142 static  uint_t	segkmem_lpshift = PAGESHIFT;
143 int	segkmem_lpszc = 0;
144 
145 size_t  segkmem_kmemlp_quantum = 0x400000;	/* 4MB */
146 size_t  segkmem_heaplp_quantum;
147 vmem_t *heap_lp_arena;
148 static  vmem_t *kmem_lp_arena;
149 static  vmem_t *segkmem_ppa_arena;
150 static	segkmem_lpcb_t segkmem_lpcb;
151 
152 /*
153  * We use "segkmem_kmemlp_max" to limit the total amount of physical memory
154  * consumed by the large page heap. By default this parameter is set to 1/8 of
155  * physmem but can be adjusted through /etc/system either directly or
156  * indirectly by setting "segkmem_kmemlp_pcnt" to the percent of physmem
157  * we allow for large page heap.
158  */
159 size_t  segkmem_kmemlp_max;
160 static  uint_t  segkmem_kmemlp_pcnt;
161 
162 /*
163  * Getting large pages for kernel heap could be problematic due to
164  * physical memory fragmentation. That's why we allow to preallocate
165  * "segkmem_kmemlp_min" bytes at boot time.
166  */
167 static  size_t	segkmem_kmemlp_min;
168 
169 /*
170  * Throttling is used to avoid expensive tries to allocate large pages
171  * for kernel heap when a lot of succesive attempts to do so fail.
172  */
173 static  ulong_t segkmem_lpthrottle_max = 0x400000;
174 static  ulong_t segkmem_lpthrottle_start = 0x40;
175 static  ulong_t segkmem_use_lpthrottle = 1;
176 
177 /*
178  * Freed pages accumulate on a garbage list until segkmem is ready,
179  * at which point we call segkmem_gc() to free it all.
180  */
181 typedef struct segkmem_gc_list {
182 	struct segkmem_gc_list	*gc_next;
183 	vmem_t			*gc_arena;
184 	size_t			gc_size;
185 } segkmem_gc_list_t;
186 
187 static segkmem_gc_list_t *segkmem_gc_list;
188 
189 /*
190  * Allocations from the hat_memload arena add VM_MEMLOAD to their
191  * vmflags so that segkmem_xalloc() can inform the hat layer that it needs
192  * to take steps to prevent infinite recursion.  HAT allocations also
193  * must be non-relocatable to prevent recursive page faults.
194  */
195 static void *
196 hat_memload_alloc(vmem_t *vmp, size_t size, int flags)
197 {
198 	flags |= (VM_MEMLOAD | VM_NORELOC);
199 	return (segkmem_alloc(vmp, size, flags));
200 }
201 
202 /*
203  * Allocations from static_arena arena (or any other arena that uses
204  * segkmem_alloc_permanent()) require non-relocatable (permanently
205  * wired) memory pages, since these pages are referenced by physical
206  * as well as virtual address.
207  */
208 void *
209 segkmem_alloc_permanent(vmem_t *vmp, size_t size, int flags)
210 {
211 	return (segkmem_alloc(vmp, size, flags | VM_NORELOC));
212 }
213 
214 /*
215  * Initialize kernel heap boundaries.
216  */
217 void
218 kernelheap_init(
219 	void *heap_start,
220 	void *heap_end,
221 	char *first_avail,
222 	void *core_start,
223 	void *core_end)
224 {
225 	uintptr_t textbase;
226 	size_t core_size;
227 	size_t heap_size;
228 	vmem_t *heaptext_parent;
229 	size_t	heap_lp_size = 0;
230 #ifdef __sparc
231 	size_t kmem64_sz = kmem64_aligned_end - kmem64_base;
232 #endif	/* __sparc */
233 
234 	kernelheap = heap_start;
235 	ekernelheap = heap_end;
236 
237 #ifdef __sparc
238 	heap_lp_size = (((uintptr_t)heap_end - (uintptr_t)heap_start) / 4);
239 	/*
240 	 * Bias heap_lp start address by kmem64_sz to reduce collisions
241 	 * in 4M kernel TSB between kmem64 area and heap_lp
242 	 */
243 	kmem64_sz = P2ROUNDUP(kmem64_sz, MMU_PAGESIZE256M);
244 	if (kmem64_sz <= heap_lp_size / 2)
245 		heap_lp_size -= kmem64_sz;
246 	heap_lp_base = ekernelheap - heap_lp_size;
247 	heap_lp_end = heap_lp_base + heap_lp_size;
248 #endif	/* __sparc */
249 
250 	/*
251 	 * If this platform has a 'core' heap area, then the space for
252 	 * overflow module text should be carved out of the end of that
253 	 * heap.  Otherwise, it gets carved out of the general purpose
254 	 * heap.
255 	 */
256 	core_size = (uintptr_t)core_end - (uintptr_t)core_start;
257 	if (core_size > 0) {
258 		ASSERT(core_size >= HEAPTEXT_SIZE);
259 		textbase = (uintptr_t)core_end - HEAPTEXT_SIZE;
260 		core_size -= HEAPTEXT_SIZE;
261 	}
262 #ifndef __sparc
263 	else {
264 		ekernelheap -= HEAPTEXT_SIZE;
265 		textbase = (uintptr_t)ekernelheap;
266 	}
267 #endif
268 
269 	heap_size = (uintptr_t)ekernelheap - (uintptr_t)kernelheap;
270 	heap_arena = vmem_init("heap", kernelheap, heap_size, PAGESIZE,
271 	    segkmem_alloc, segkmem_free);
272 
273 	if (core_size > 0) {
274 		heap_core_arena = vmem_create("heap_core", core_start,
275 		    core_size, PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP);
276 		heap_core_base = core_start;
277 	} else {
278 		heap_core_arena = heap_arena;
279 		heap_core_base = kernelheap;
280 	}
281 
282 	/*
283 	 * reserve space for the large page heap. If large pages for kernel
284 	 * heap is enabled large page heap arean will be created later in the
285 	 * boot sequence in segkmem_heap_lp_init(). Otherwise the allocated
286 	 * range will be returned back to the heap_arena.
287 	 */
288 	if (heap_lp_size) {
289 		(void) vmem_xalloc(heap_arena, heap_lp_size, PAGESIZE, 0, 0,
290 		    heap_lp_base, heap_lp_end,
291 		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
292 	}
293 
294 	/*
295 	 * Remove the already-spoken-for memory range [kernelheap, first_avail).
296 	 */
297 	(void) vmem_xalloc(heap_arena, first_avail - kernelheap, PAGESIZE,
298 	    0, 0, kernelheap, first_avail, VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
299 
300 #ifdef __sparc
301 	heap32_arena = vmem_create("heap32", (void *)SYSBASE32,
302 	    SYSLIMIT32 - SYSBASE32 - HEAPTEXT_SIZE, PAGESIZE, NULL,
303 	    NULL, NULL, 0, VM_SLEEP);
304 
305 	textbase = SYSLIMIT32 - HEAPTEXT_SIZE;
306 	heaptext_parent = NULL;
307 #else	/* __sparc */
308 	heap32_arena = heap_core_arena;
309 	heaptext_parent = heap_core_arena;
310 #endif	/* __sparc */
311 
312 	heaptext_arena = vmem_create("heaptext", (void *)textbase,
313 	    HEAPTEXT_SIZE, PAGESIZE, NULL, NULL, heaptext_parent, 0, VM_SLEEP);
314 
315 	/*
316 	 * Create a set of arenas for memory with static translations
317 	 * (e.g. VA -> PA translations cannot change).  Since using
318 	 * kernel pages by physical address implies it isn't safe to
319 	 * walk across page boundaries, the static_arena quantum must
320 	 * be PAGESIZE.  Any kmem caches that require static memory
321 	 * should source from static_arena, while direct allocations
322 	 * should only use static_alloc_arena.
323 	 */
324 	static_arena = vmem_create("static", NULL, 0, PAGESIZE,
325 	    segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP);
326 	static_alloc_arena = vmem_create("static_alloc", NULL, 0,
327 	    sizeof (uint64_t), vmem_alloc, vmem_free, static_arena,
328 	    0, VM_SLEEP);
329 
330 	/*
331 	 * Create an arena for translation data (ptes, hmes, or hblks).
332 	 * We need an arena for this because hat_memload() is essential
333 	 * to vmem_populate() (see comments in common/os/vmem.c).
334 	 *
335 	 * Note: any kmem cache that allocates from hat_memload_arena
336 	 * must be created as a KMC_NOHASH cache (i.e. no external slab
337 	 * and bufctl structures to allocate) so that slab creation doesn't
338 	 * require anything more than a single vmem_alloc().
339 	 */
340 	hat_memload_arena = vmem_create("hat_memload", NULL, 0, PAGESIZE,
341 	    hat_memload_alloc, segkmem_free, heap_arena, 0,
342 	    VM_SLEEP | VMC_POPULATOR);
343 }
344 
345 void
346 boot_mapin(caddr_t addr, size_t size)
347 {
348 	caddr_t	 eaddr;
349 	page_t	*pp;
350 	pfn_t	 pfnum;
351 
352 	if (page_resv(btop(size), KM_NOSLEEP) == 0)
353 		panic("boot_mapin: page_resv failed");
354 
355 	for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) {
356 		pfnum = va_to_pfn(addr);
357 		if (pfnum == PFN_INVALID)
358 			continue;
359 		if ((pp = page_numtopp_nolock(pfnum)) == NULL)
360 			panic("boot_mapin(): No pp for pfnum = %lx", pfnum);
361 
362 		/*
363 		 * must break up any large pages that may have constituent
364 		 * pages being utilized for BOP_ALLOC()'s before calling
365 		 * page_numtopp().The locking code (ie. page_reclaim())
366 		 * can't handle them
367 		 */
368 		if (pp->p_szc != 0)
369 			page_boot_demote(pp);
370 
371 		pp = page_numtopp(pfnum, SE_EXCL);
372 		if (pp == NULL || PP_ISFREE(pp))
373 			panic("boot_alloc: pp is NULL or free");
374 
375 		/*
376 		 * If the cage is on but doesn't yet contain this page,
377 		 * mark it as non-relocatable.
378 		 */
379 		if (kcage_on && !PP_ISNORELOC(pp)) {
380 			PP_SETNORELOC(pp);
381 			PLCNT_XFER_NORELOC(pp);
382 		}
383 
384 		(void) page_hashin(pp, &kvp, (u_offset_t)(uintptr_t)addr, NULL);
385 		pp->p_lckcnt = 1;
386 #if defined(__x86)
387 		page_downgrade(pp);
388 #else
389 		page_unlock(pp);
390 #endif
391 	}
392 }
393 
394 /*
395  * Get pages from boot and hash them into the kernel's vp.
396  * Used after page structs have been allocated, but before segkmem is ready.
397  */
398 void *
399 boot_alloc(void *inaddr, size_t size, uint_t align)
400 {
401 	caddr_t addr = inaddr;
402 
403 	if (bootops == NULL)
404 		prom_panic("boot_alloc: attempt to allocate memory after "
405 		    "BOP_GONE");
406 
407 	size = ptob(btopr(size));
408 #ifdef __sparc
409 	if (bop_alloc_chunk(addr, size, align) != (caddr_t)addr)
410 		panic("boot_alloc: bop_alloc_chunk failed");
411 #else
412 	if (BOP_ALLOC(bootops, addr, size, align) != addr)
413 		panic("boot_alloc: BOP_ALLOC failed");
414 #endif
415 	boot_mapin((caddr_t)addr, size);
416 	return (addr);
417 }
418 
419 static void
420 segkmem_badop()
421 {
422 	panic("segkmem_badop");
423 }
424 
425 #define	SEGKMEM_BADOP(t)	(t(*)())segkmem_badop
426 
427 /*ARGSUSED*/
428 static faultcode_t
429 segkmem_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t size,
430 	enum fault_type type, enum seg_rw rw)
431 {
432 	pgcnt_t npages;
433 	spgcnt_t pg;
434 	page_t *pp;
435 	struct vnode *vp = seg->s_data;
436 
437 	ASSERT(RW_READ_HELD(&seg->s_as->a_lock));
438 
439 	if (seg->s_as != &kas || size > seg->s_size ||
440 	    addr < seg->s_base || addr + size > seg->s_base + seg->s_size)
441 		panic("segkmem_fault: bad args");
442 
443 	/*
444 	 * If it is one of segkp pages, call segkp_fault.
445 	 */
446 	if (segkp_bitmap && seg == &kvseg &&
447 	    BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base))))
448 		return (SEGOP_FAULT(hat, segkp, addr, size, type, rw));
449 
450 	if (rw != S_READ && rw != S_WRITE && rw != S_OTHER)
451 		return (FC_NOSUPPORT);
452 
453 	npages = btopr(size);
454 
455 	switch (type) {
456 	case F_SOFTLOCK:	/* lock down already-loaded translations */
457 		for (pg = 0; pg < npages; pg++) {
458 			pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr,
459 			    SE_SHARED);
460 			if (pp == NULL) {
461 				/*
462 				 * Hmm, no page. Does a kernel mapping
463 				 * exist for it?
464 				 */
465 				if (!hat_probe(kas.a_hat, addr)) {
466 					addr -= PAGESIZE;
467 					while (--pg >= 0) {
468 						pp = page_find(vp, (u_offset_t)
469 						    (uintptr_t)addr);
470 						if (pp)
471 							page_unlock(pp);
472 						addr -= PAGESIZE;
473 					}
474 					return (FC_NOMAP);
475 				}
476 			}
477 			addr += PAGESIZE;
478 		}
479 		if (rw == S_OTHER)
480 			hat_reserve(seg->s_as, addr, size);
481 		return (0);
482 	case F_SOFTUNLOCK:
483 		while (npages--) {
484 			pp = page_find(vp, (u_offset_t)(uintptr_t)addr);
485 			if (pp)
486 				page_unlock(pp);
487 			addr += PAGESIZE;
488 		}
489 		return (0);
490 	default:
491 		return (FC_NOSUPPORT);
492 	}
493 	/*NOTREACHED*/
494 }
495 
496 static int
497 segkmem_setprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot)
498 {
499 	ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock));
500 
501 	if (seg->s_as != &kas || size > seg->s_size ||
502 	    addr < seg->s_base || addr + size > seg->s_base + seg->s_size)
503 		panic("segkmem_setprot: bad args");
504 
505 	/*
506 	 * If it is one of segkp pages, call segkp.
507 	 */
508 	if (segkp_bitmap && seg == &kvseg &&
509 	    BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base))))
510 		return (SEGOP_SETPROT(segkp, addr, size, prot));
511 
512 	if (prot == 0)
513 		hat_unload(kas.a_hat, addr, size, HAT_UNLOAD);
514 	else
515 		hat_chgprot(kas.a_hat, addr, size, prot);
516 	return (0);
517 }
518 
519 /*
520  * This is a dummy segkmem function overloaded to call segkp
521  * when segkp is under the heap.
522  */
523 /* ARGSUSED */
524 static int
525 segkmem_checkprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot)
526 {
527 	ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock));
528 
529 	if (seg->s_as != &kas)
530 		segkmem_badop();
531 
532 	/*
533 	 * If it is one of segkp pages, call into segkp.
534 	 */
535 	if (segkp_bitmap && seg == &kvseg &&
536 	    BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base))))
537 		return (SEGOP_CHECKPROT(segkp, addr, size, prot));
538 
539 	segkmem_badop();
540 	return (0);
541 }
542 
543 /*
544  * This is a dummy segkmem function overloaded to call segkp
545  * when segkp is under the heap.
546  */
547 /* ARGSUSED */
548 static int
549 segkmem_kluster(struct seg *seg, caddr_t addr, ssize_t delta)
550 {
551 	ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock));
552 
553 	if (seg->s_as != &kas)
554 		segkmem_badop();
555 
556 	/*
557 	 * If it is one of segkp pages, call into segkp.
558 	 */
559 	if (segkp_bitmap && seg == &kvseg &&
560 	    BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base))))
561 		return (SEGOP_KLUSTER(segkp, addr, delta));
562 
563 	segkmem_badop();
564 	return (0);
565 }
566 
567 static void
568 segkmem_xdump_range(void *arg, void *start, size_t size)
569 {
570 	struct as *as = arg;
571 	caddr_t addr = start;
572 	caddr_t addr_end = addr + size;
573 
574 	while (addr < addr_end) {
575 		pfn_t pfn = hat_getpfnum(kas.a_hat, addr);
576 		if (pfn != PFN_INVALID && pfn <= physmax && pf_is_memory(pfn))
577 			dump_addpage(as, addr, pfn);
578 		addr += PAGESIZE;
579 		dump_timeleft = dump_timeout;
580 	}
581 }
582 
583 static void
584 segkmem_dump_range(void *arg, void *start, size_t size)
585 {
586 	caddr_t addr = start;
587 	caddr_t addr_end = addr + size;
588 
589 	/*
590 	 * If we are about to start dumping the range of addresses we
591 	 * carved out of the kernel heap for the large page heap walk
592 	 * heap_lp_arena to find what segments are actually populated
593 	 */
594 	if (SEGKMEM_USE_LARGEPAGES &&
595 	    addr == heap_lp_base && addr_end == heap_lp_end &&
596 	    vmem_size(heap_lp_arena, VMEM_ALLOC) < size) {
597 		vmem_walk(heap_lp_arena, VMEM_ALLOC | VMEM_REENTRANT,
598 		    segkmem_xdump_range, arg);
599 	} else {
600 		segkmem_xdump_range(arg, start, size);
601 	}
602 }
603 
604 static void
605 segkmem_dump(struct seg *seg)
606 {
607 	/*
608 	 * The kernel's heap_arena (represented by kvseg) is a very large
609 	 * VA space, most of which is typically unused.  To speed up dumping
610 	 * we use vmem_walk() to quickly find the pieces of heap_arena that
611 	 * are actually in use.  We do the same for heap32_arena and
612 	 * heap_core.
613 	 *
614 	 * We specify VMEM_REENTRANT to vmem_walk() because dump_addpage()
615 	 * may ultimately need to allocate memory.  Reentrant walks are
616 	 * necessarily imperfect snapshots.  The kernel heap continues
617 	 * to change during a live crash dump, for example.  For a normal
618 	 * crash dump, however, we know that there won't be any other threads
619 	 * messing with the heap.  Therefore, at worst, we may fail to dump
620 	 * the pages that get allocated by the act of dumping; but we will
621 	 * always dump every page that was allocated when the walk began.
622 	 *
623 	 * The other segkmem segments are dense (fully populated), so there's
624 	 * no need to use this technique when dumping them.
625 	 *
626 	 * Note: when adding special dump handling for any new sparsely-
627 	 * populated segments, be sure to add similar handling to the ::kgrep
628 	 * code in mdb.
629 	 */
630 	if (seg == &kvseg) {
631 		vmem_walk(heap_arena, VMEM_ALLOC | VMEM_REENTRANT,
632 		    segkmem_dump_range, seg->s_as);
633 #ifndef __sparc
634 		vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT,
635 		    segkmem_dump_range, seg->s_as);
636 #endif
637 	} else if (seg == &kvseg_core) {
638 		vmem_walk(heap_core_arena, VMEM_ALLOC | VMEM_REENTRANT,
639 		    segkmem_dump_range, seg->s_as);
640 	} else if (seg == &kvseg32) {
641 		vmem_walk(heap32_arena, VMEM_ALLOC | VMEM_REENTRANT,
642 		    segkmem_dump_range, seg->s_as);
643 		vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT,
644 		    segkmem_dump_range, seg->s_as);
645 	} else if (seg == &kzioseg) {
646 		/*
647 		 * We don't want to dump pages attached to kzioseg since they
648 		 * contain file data from ZFS.  If this page's segment is
649 		 * kzioseg return instead of writing it to the dump device.
650 		 */
651 		return;
652 	} else {
653 		segkmem_dump_range(seg->s_as, seg->s_base, seg->s_size);
654 	}
655 }
656 
657 /*
658  * lock/unlock kmem pages over a given range [addr, addr+len).
659  * Returns a shadow list of pages in ppp. If there are holes
660  * in the range (e.g. some of the kernel mappings do not have
661  * underlying page_ts) returns ENOTSUP so that as_pagelock()
662  * will handle the range via as_fault(F_SOFTLOCK).
663  */
664 /*ARGSUSED*/
665 static int
666 segkmem_pagelock(struct seg *seg, caddr_t addr, size_t len,
667 	page_t ***ppp, enum lock_type type, enum seg_rw rw)
668 {
669 	page_t **pplist, *pp;
670 	pgcnt_t npages;
671 	spgcnt_t pg;
672 	size_t nb;
673 	struct vnode *vp = seg->s_data;
674 
675 	ASSERT(ppp != NULL);
676 
677 	/*
678 	 * If it is one of segkp pages, call into segkp.
679 	 */
680 	if (segkp_bitmap && seg == &kvseg &&
681 	    BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base))))
682 		return (SEGOP_PAGELOCK(segkp, addr, len, ppp, type, rw));
683 
684 	npages = btopr(len);
685 	nb = sizeof (page_t *) * npages;
686 
687 	if (type == L_PAGEUNLOCK) {
688 		pplist = *ppp;
689 		ASSERT(pplist != NULL);
690 
691 		for (pg = 0; pg < npages; pg++) {
692 			pp = pplist[pg];
693 			page_unlock(pp);
694 		}
695 		kmem_free(pplist, nb);
696 		return (0);
697 	}
698 
699 	ASSERT(type == L_PAGELOCK);
700 
701 	pplist = kmem_alloc(nb, KM_NOSLEEP);
702 	if (pplist == NULL) {
703 		*ppp = NULL;
704 		return (ENOTSUP);	/* take the slow path */
705 	}
706 
707 	for (pg = 0; pg < npages; pg++) {
708 		pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, SE_SHARED);
709 		if (pp == NULL) {
710 			while (--pg >= 0)
711 				page_unlock(pplist[pg]);
712 			kmem_free(pplist, nb);
713 			*ppp = NULL;
714 			return (ENOTSUP);
715 		}
716 		pplist[pg] = pp;
717 		addr += PAGESIZE;
718 	}
719 
720 	*ppp = pplist;
721 	return (0);
722 }
723 
724 /*
725  * This is a dummy segkmem function overloaded to call segkp
726  * when segkp is under the heap.
727  */
728 /* ARGSUSED */
729 static int
730 segkmem_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
731 {
732 	ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock));
733 
734 	if (seg->s_as != &kas)
735 		segkmem_badop();
736 
737 	/*
738 	 * If it is one of segkp pages, call into segkp.
739 	 */
740 	if (segkp_bitmap && seg == &kvseg &&
741 	    BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base))))
742 		return (SEGOP_GETMEMID(segkp, addr, memidp));
743 
744 	segkmem_badop();
745 	return (0);
746 }
747 
748 /*ARGSUSED*/
749 static lgrp_mem_policy_info_t *
750 segkmem_getpolicy(struct seg *seg, caddr_t addr)
751 {
752 	return (NULL);
753 }
754 
755 /*ARGSUSED*/
756 static int
757 segkmem_capable(struct seg *seg, segcapability_t capability)
758 {
759 	if (capability == S_CAPABILITY_NOMINFLT)
760 		return (1);
761 	return (0);
762 }
763 
764 static struct seg_ops segkmem_ops = {
765 	SEGKMEM_BADOP(int),		/* dup */
766 	SEGKMEM_BADOP(int),		/* unmap */
767 	SEGKMEM_BADOP(void),		/* free */
768 	segkmem_fault,
769 	SEGKMEM_BADOP(faultcode_t),	/* faulta */
770 	segkmem_setprot,
771 	segkmem_checkprot,
772 	segkmem_kluster,
773 	SEGKMEM_BADOP(size_t),		/* swapout */
774 	SEGKMEM_BADOP(int),		/* sync */
775 	SEGKMEM_BADOP(size_t),		/* incore */
776 	SEGKMEM_BADOP(int),		/* lockop */
777 	SEGKMEM_BADOP(int),		/* getprot */
778 	SEGKMEM_BADOP(u_offset_t),	/* getoffset */
779 	SEGKMEM_BADOP(int),		/* gettype */
780 	SEGKMEM_BADOP(int),		/* getvp */
781 	SEGKMEM_BADOP(int),		/* advise */
782 	segkmem_dump,
783 	segkmem_pagelock,
784 	SEGKMEM_BADOP(int),		/* setpgsz */
785 	segkmem_getmemid,
786 	segkmem_getpolicy,		/* getpolicy */
787 	segkmem_capable,		/* capable */
788 };
789 
790 int
791 segkmem_zio_create(struct seg *seg)
792 {
793 	ASSERT(seg->s_as == &kas && RW_WRITE_HELD(&kas.a_lock));
794 	seg->s_ops = &segkmem_ops;
795 	seg->s_data = &zvp;
796 	kas.a_size += seg->s_size;
797 	return (0);
798 }
799 
800 int
801 segkmem_create(struct seg *seg)
802 {
803 	ASSERT(seg->s_as == &kas && RW_WRITE_HELD(&kas.a_lock));
804 	seg->s_ops = &segkmem_ops;
805 	seg->s_data = &kvp;
806 	kas.a_size += seg->s_size;
807 	return (0);
808 }
809 
810 /*ARGSUSED*/
811 page_t *
812 segkmem_page_create(void *addr, size_t size, int vmflag, void *arg)
813 {
814 	struct seg kseg;
815 	int pgflags;
816 	struct vnode *vp = arg;
817 
818 	if (vp == NULL)
819 		vp = &kvp;
820 
821 	kseg.s_as = &kas;
822 	pgflags = PG_EXCL;
823 
824 	if (segkmem_reloc == 0 || (vmflag & VM_NORELOC))
825 		pgflags |= PG_NORELOC;
826 	if ((vmflag & VM_NOSLEEP) == 0)
827 		pgflags |= PG_WAIT;
828 	if (vmflag & VM_PANIC)
829 		pgflags |= PG_PANIC;
830 	if (vmflag & VM_PUSHPAGE)
831 		pgflags |= PG_PUSHPAGE;
832 
833 	return (page_create_va(vp, (u_offset_t)(uintptr_t)addr, size,
834 	    pgflags, &kseg, addr));
835 }
836 
837 /*
838  * Allocate pages to back the virtual address range [addr, addr + size).
839  * If addr is NULL, allocate the virtual address space as well.
840  */
841 void *
842 segkmem_xalloc(vmem_t *vmp, void *inaddr, size_t size, int vmflag, uint_t attr,
843 	page_t *(*page_create_func)(void *, size_t, int, void *), void *pcarg)
844 {
845 	page_t *ppl;
846 	caddr_t addr = inaddr;
847 	pgcnt_t npages = btopr(size);
848 	int allocflag;
849 
850 	if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL)
851 		return (NULL);
852 
853 	ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0);
854 
855 	if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) {
856 		if (inaddr == NULL)
857 			vmem_free(vmp, addr, size);
858 		return (NULL);
859 	}
860 
861 	ppl = page_create_func(addr, size, vmflag, pcarg);
862 	if (ppl == NULL) {
863 		if (inaddr == NULL)
864 			vmem_free(vmp, addr, size);
865 		page_unresv(npages);
866 		return (NULL);
867 	}
868 
869 	/*
870 	 * Under certain conditions, we need to let the HAT layer know
871 	 * that it cannot safely allocate memory.  Allocations from
872 	 * the hat_memload vmem arena always need this, to prevent
873 	 * infinite recursion.
874 	 *
875 	 * In addition, the x86 hat cannot safely do memory
876 	 * allocations while in vmem_populate(), because there
877 	 * is no simple bound on its usage.
878 	 */
879 	if (vmflag & VM_MEMLOAD)
880 		allocflag = HAT_NO_KALLOC;
881 #if defined(__x86)
882 	else if (vmem_is_populator())
883 		allocflag = HAT_NO_KALLOC;
884 #endif
885 	else
886 		allocflag = 0;
887 
888 	while (ppl != NULL) {
889 		page_t *pp = ppl;
890 		page_sub(&ppl, pp);
891 		ASSERT(page_iolock_assert(pp));
892 		ASSERT(PAGE_EXCL(pp));
893 		page_io_unlock(pp);
894 		hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset, pp,
895 		    (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr,
896 		    HAT_LOAD_LOCK | allocflag);
897 		pp->p_lckcnt = 1;
898 #if defined(__x86)
899 		page_downgrade(pp);
900 #else
901 		if (vmflag & SEGKMEM_SHARELOCKED)
902 			page_downgrade(pp);
903 		else
904 			page_unlock(pp);
905 #endif
906 	}
907 
908 	return (addr);
909 }
910 
911 static void *
912 segkmem_alloc_vn(vmem_t *vmp, size_t size, int vmflag, struct vnode *vp)
913 {
914 	void *addr;
915 	segkmem_gc_list_t *gcp, **prev_gcpp;
916 
917 	ASSERT(vp != NULL);
918 
919 	if (kvseg.s_base == NULL) {
920 #ifndef __sparc
921 		if (bootops->bsys_alloc == NULL)
922 			halt("Memory allocation between bop_alloc() and "
923 			    "kmem_alloc().\n");
924 #endif
925 
926 		/*
927 		 * There's not a lot of memory to go around during boot,
928 		 * so recycle it if we can.
929 		 */
930 		for (prev_gcpp = &segkmem_gc_list; (gcp = *prev_gcpp) != NULL;
931 		    prev_gcpp = &gcp->gc_next) {
932 			if (gcp->gc_arena == vmp && gcp->gc_size == size) {
933 				*prev_gcpp = gcp->gc_next;
934 				return (gcp);
935 			}
936 		}
937 
938 		addr = vmem_alloc(vmp, size, vmflag | VM_PANIC);
939 		if (boot_alloc(addr, size, BO_NO_ALIGN) != addr)
940 			panic("segkmem_alloc: boot_alloc failed");
941 		return (addr);
942 	}
943 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
944 	    segkmem_page_create, vp));
945 }
946 
947 void *
948 segkmem_alloc(vmem_t *vmp, size_t size, int vmflag)
949 {
950 	return (segkmem_alloc_vn(vmp, size, vmflag, &kvp));
951 }
952 
953 void *
954 segkmem_zio_alloc(vmem_t *vmp, size_t size, int vmflag)
955 {
956 	return (segkmem_alloc_vn(vmp, size, vmflag, &zvp));
957 }
958 
959 /*
960  * Any changes to this routine must also be carried over to
961  * devmap_free_pages() in the seg_dev driver. This is because
962  * we currently don't have a special kernel segment for non-paged
963  * kernel memory that is exported by drivers to user space.
964  */
965 static void
966 segkmem_free_vn(vmem_t *vmp, void *inaddr, size_t size, struct vnode *vp,
967     void (*func)(page_t *))
968 {
969 	page_t *pp;
970 	caddr_t addr = inaddr;
971 	caddr_t eaddr;
972 	pgcnt_t npages = btopr(size);
973 
974 	ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0);
975 	ASSERT(vp != NULL);
976 
977 	if (kvseg.s_base == NULL) {
978 		segkmem_gc_list_t *gc = inaddr;
979 		gc->gc_arena = vmp;
980 		gc->gc_size = size;
981 		gc->gc_next = segkmem_gc_list;
982 		segkmem_gc_list = gc;
983 		return;
984 	}
985 
986 	hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK);
987 
988 	for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) {
989 #if defined(__x86)
990 		pp = page_find(vp, (u_offset_t)(uintptr_t)addr);
991 		if (pp == NULL)
992 			panic("segkmem_free: page not found");
993 		if (!page_tryupgrade(pp)) {
994 			/*
995 			 * Some other thread has a sharelock. Wait for
996 			 * it to drop the lock so we can free this page.
997 			 */
998 			page_unlock(pp);
999 			pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr,
1000 			    SE_EXCL);
1001 		}
1002 #else
1003 		pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, SE_EXCL);
1004 #endif
1005 		if (pp == NULL)
1006 			panic("segkmem_free: page not found");
1007 		/* Clear p_lckcnt so page_destroy() doesn't update availrmem */
1008 		pp->p_lckcnt = 0;
1009 		if (func)
1010 			func(pp);
1011 		else
1012 			page_destroy(pp, 0);
1013 	}
1014 	if (func == NULL)
1015 		page_unresv(npages);
1016 
1017 	if (vmp != NULL)
1018 		vmem_free(vmp, inaddr, size);
1019 
1020 }
1021 
1022 void
1023 segkmem_xfree(vmem_t *vmp, void *inaddr, size_t size, void (*func)(page_t *))
1024 {
1025 	segkmem_free_vn(vmp, inaddr, size, &kvp, func);
1026 }
1027 
1028 void
1029 segkmem_free(vmem_t *vmp, void *inaddr, size_t size)
1030 {
1031 	segkmem_free_vn(vmp, inaddr, size, &kvp, NULL);
1032 }
1033 
1034 void
1035 segkmem_zio_free(vmem_t *vmp, void *inaddr, size_t size)
1036 {
1037 	segkmem_free_vn(vmp, inaddr, size, &zvp, NULL);
1038 }
1039 
1040 void
1041 segkmem_gc(void)
1042 {
1043 	ASSERT(kvseg.s_base != NULL);
1044 	while (segkmem_gc_list != NULL) {
1045 		segkmem_gc_list_t *gc = segkmem_gc_list;
1046 		segkmem_gc_list = gc->gc_next;
1047 		segkmem_free(gc->gc_arena, gc, gc->gc_size);
1048 	}
1049 }
1050 
1051 /*
1052  * Legacy entry points from here to end of file.
1053  */
1054 void
1055 segkmem_mapin(struct seg *seg, void *addr, size_t size, uint_t vprot,
1056     pfn_t pfn, uint_t flags)
1057 {
1058 	hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK);
1059 	hat_devload(seg->s_as->a_hat, addr, size, pfn, vprot,
1060 	    flags | HAT_LOAD_LOCK);
1061 }
1062 
1063 void
1064 segkmem_mapout(struct seg *seg, void *addr, size_t size)
1065 {
1066 	hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK);
1067 }
1068 
1069 void *
1070 kmem_getpages(pgcnt_t npages, int kmflag)
1071 {
1072 	return (kmem_alloc(ptob(npages), kmflag));
1073 }
1074 
1075 void
1076 kmem_freepages(void *addr, pgcnt_t npages)
1077 {
1078 	kmem_free(addr, ptob(npages));
1079 }
1080 
1081 /*
1082  * segkmem_page_create_large() allocates a large page to be used for the kmem
1083  * caches. If kpr is enabled we ask for a relocatable page unless requested
1084  * otherwise. If kpr is disabled we have to ask for a non-reloc page
1085  */
1086 static page_t *
1087 segkmem_page_create_large(void *addr, size_t size, int vmflag, void *arg)
1088 {
1089 	int pgflags;
1090 
1091 	pgflags = PG_EXCL;
1092 
1093 	if (segkmem_reloc == 0 || (vmflag & VM_NORELOC))
1094 		pgflags |= PG_NORELOC;
1095 	if (!(vmflag & VM_NOSLEEP))
1096 		pgflags |= PG_WAIT;
1097 	if (vmflag & VM_PUSHPAGE)
1098 		pgflags |= PG_PUSHPAGE;
1099 
1100 	return (page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size,
1101 	    pgflags, &kvseg, addr, arg));
1102 }
1103 
1104 /*
1105  * Allocate a large page to back the virtual address range
1106  * [addr, addr + size).  If addr is NULL, allocate the virtual address
1107  * space as well.
1108  */
1109 static void *
1110 segkmem_xalloc_lp(vmem_t *vmp, void *inaddr, size_t size, int vmflag,
1111     uint_t attr, page_t *(*page_create_func)(void *, size_t, int, void *),
1112     void *pcarg)
1113 {
1114 	caddr_t addr = inaddr, pa;
1115 	size_t  lpsize = segkmem_lpsize;
1116 	pgcnt_t npages = btopr(size);
1117 	pgcnt_t nbpages = btop(lpsize);
1118 	pgcnt_t nlpages = size >> segkmem_lpshift;
1119 	size_t  ppasize = nbpages * sizeof (page_t *);
1120 	page_t *pp, *rootpp, **ppa, *pplist = NULL;
1121 	int i;
1122 
1123 	vmflag |= VM_NOSLEEP;
1124 
1125 	if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) {
1126 		return (NULL);
1127 	}
1128 
1129 	/*
1130 	 * allocate an array we need for hat_memload_array.
1131 	 * we use a separate arena to avoid recursion.
1132 	 * we will not need this array when hat_memload_array learns pp++
1133 	 */
1134 	if ((ppa = vmem_alloc(segkmem_ppa_arena, ppasize, vmflag)) == NULL) {
1135 		goto fail_array_alloc;
1136 	}
1137 
1138 	if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL)
1139 		goto fail_vmem_alloc;
1140 
1141 	ASSERT(((uintptr_t)addr & (lpsize - 1)) == 0);
1142 
1143 	/* create all the pages */
1144 	for (pa = addr, i = 0; i < nlpages; i++, pa += lpsize) {
1145 		if ((pp = page_create_func(pa, lpsize, vmflag, pcarg)) == NULL)
1146 			goto fail_page_create;
1147 		page_list_concat(&pplist, &pp);
1148 	}
1149 
1150 	/* at this point we have all the resource to complete the request */
1151 	while ((rootpp = pplist) != NULL) {
1152 		for (i = 0; i < nbpages; i++) {
1153 			ASSERT(pplist != NULL);
1154 			pp = pplist;
1155 			page_sub(&pplist, pp);
1156 			ASSERT(page_iolock_assert(pp));
1157 			page_io_unlock(pp);
1158 			ppa[i] = pp;
1159 		}
1160 		/*
1161 		 * Load the locked entry. It's OK to preload the entry into the
1162 		 * TSB since we now support large mappings in the kernel TSB.
1163 		 */
1164 		hat_memload_array(kas.a_hat,
1165 		    (caddr_t)(uintptr_t)rootpp->p_offset, lpsize,
1166 		    ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr,
1167 		    HAT_LOAD_LOCK);
1168 
1169 		for (--i; i >= 0; --i) {
1170 			ppa[i]->p_lckcnt = 1;
1171 			page_unlock(ppa[i]);
1172 		}
1173 	}
1174 
1175 	vmem_free(segkmem_ppa_arena, ppa, ppasize);
1176 	return (addr);
1177 
1178 fail_page_create:
1179 	while ((rootpp = pplist) != NULL) {
1180 		for (i = 0, pp = pplist; i < nbpages; i++, pp = pplist) {
1181 			ASSERT(pp != NULL);
1182 			page_sub(&pplist, pp);
1183 			ASSERT(page_iolock_assert(pp));
1184 			page_io_unlock(pp);
1185 		}
1186 		page_destroy_pages(rootpp);
1187 	}
1188 
1189 	if (inaddr == NULL)
1190 		vmem_free(vmp, addr, size);
1191 
1192 fail_vmem_alloc:
1193 	vmem_free(segkmem_ppa_arena, ppa, ppasize);
1194 
1195 fail_array_alloc:
1196 	page_unresv(npages);
1197 
1198 	return (NULL);
1199 }
1200 
1201 static void
1202 segkmem_free_one_lp(caddr_t addr, size_t size)
1203 {
1204 	page_t		*pp, *rootpp = NULL;
1205 	pgcnt_t 	pgs_left = btopr(size);
1206 
1207 	ASSERT(size == segkmem_lpsize);
1208 
1209 	hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK);
1210 
1211 	for (; pgs_left > 0; addr += PAGESIZE, pgs_left--) {
1212 		pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL);
1213 		if (pp == NULL)
1214 			panic("segkmem_free_one_lp: page not found");
1215 		ASSERT(PAGE_EXCL(pp));
1216 		pp->p_lckcnt = 0;
1217 		if (rootpp == NULL)
1218 			rootpp = pp;
1219 	}
1220 	ASSERT(rootpp != NULL);
1221 	page_destroy_pages(rootpp);
1222 
1223 	/* page_unresv() is done by the caller */
1224 }
1225 
1226 /*
1227  * This function is called to import new spans into the vmem arenas like
1228  * kmem_default_arena and kmem_oversize_arena. It first tries to import
1229  * spans from large page arena - kmem_lp_arena. In order to do this it might
1230  * have to "upgrade the requested size" to kmem_lp_arena quantum. If
1231  * it was not able to satisfy the upgraded request it then calls regular
1232  * segkmem_alloc() that satisfies the request by importing from "*vmp" arena
1233  */
1234 /*ARGSUSED*/
1235 void *
1236 segkmem_alloc_lp(vmem_t *vmp, size_t *sizep, size_t align, int vmflag)
1237 {
1238 	size_t size;
1239 	kthread_t *t = curthread;
1240 	segkmem_lpcb_t *lpcb = &segkmem_lpcb;
1241 
1242 	ASSERT(sizep != NULL);
1243 
1244 	size = *sizep;
1245 
1246 	if (lpcb->lp_uselp && !(t->t_flag & T_PANIC) &&
1247 	    !(vmflag & SEGKMEM_SHARELOCKED)) {
1248 
1249 		size_t kmemlp_qnt = segkmem_kmemlp_quantum;
1250 		size_t asize = P2ROUNDUP(size, kmemlp_qnt);
1251 		void  *addr = NULL;
1252 		ulong_t *lpthrtp = &lpcb->lp_throttle;
1253 		ulong_t lpthrt = *lpthrtp;
1254 		int	dowakeup = 0;
1255 		int	doalloc = 1;
1256 
1257 		ASSERT(kmem_lp_arena != NULL);
1258 		ASSERT(asize >= size);
1259 
1260 		if (lpthrt != 0) {
1261 			/* try to update the throttle value */
1262 			lpthrt = atomic_add_long_nv(lpthrtp, 1);
1263 			if (lpthrt >= segkmem_lpthrottle_max) {
1264 				lpthrt = atomic_cas_ulong(lpthrtp, lpthrt,
1265 				    segkmem_lpthrottle_max / 4);
1266 			}
1267 
1268 			/*
1269 			 * when we get above throttle start do an exponential
1270 			 * backoff at trying large pages and reaping
1271 			 */
1272 			if (lpthrt > segkmem_lpthrottle_start &&
1273 			    (lpthrt & (lpthrt - 1))) {
1274 				lpcb->allocs_throttled++;
1275 				lpthrt--;
1276 				if ((lpthrt & (lpthrt - 1)) == 0)
1277 					kmem_reap();
1278 				return (segkmem_alloc(vmp, size, vmflag));
1279 			}
1280 		}
1281 
1282 		if (!(vmflag & VM_NOSLEEP) &&
1283 		    segkmem_heaplp_quantum >= (8 * kmemlp_qnt) &&
1284 		    vmem_size(kmem_lp_arena, VMEM_FREE) <= kmemlp_qnt &&
1285 		    asize < (segkmem_heaplp_quantum - kmemlp_qnt)) {
1286 
1287 			/*
1288 			 * we are low on free memory in kmem_lp_arena
1289 			 * we let only one guy to allocate heap_lp
1290 			 * quantum size chunk that everybody is going to
1291 			 * share
1292 			 */
1293 			mutex_enter(&lpcb->lp_lock);
1294 
1295 			if (lpcb->lp_wait) {
1296 
1297 				/* we are not the first one - wait */
1298 				cv_wait(&lpcb->lp_cv, &lpcb->lp_lock);
1299 				if (vmem_size(kmem_lp_arena, VMEM_FREE) <
1300 				    kmemlp_qnt)  {
1301 					doalloc = 0;
1302 				}
1303 			} else if (vmem_size(kmem_lp_arena, VMEM_FREE) <=
1304 			    kmemlp_qnt) {
1305 
1306 				/*
1307 				 * we are the first one, make sure we import
1308 				 * a large page
1309 				 */
1310 				if (asize == kmemlp_qnt)
1311 					asize += kmemlp_qnt;
1312 				dowakeup = 1;
1313 				lpcb->lp_wait = 1;
1314 			}
1315 
1316 			mutex_exit(&lpcb->lp_lock);
1317 		}
1318 
1319 		/*
1320 		 * VM_ABORT flag prevents sleeps in vmem_xalloc when
1321 		 * large pages are not available. In that case this allocation
1322 		 * attempt will fail and we will retry allocation with small
1323 		 * pages. We also do not want to panic if this allocation fails
1324 		 * because we are going to retry.
1325 		 */
1326 		if (doalloc) {
1327 			addr = vmem_alloc(kmem_lp_arena, asize,
1328 			    (vmflag | VM_ABORT) & ~VM_PANIC);
1329 
1330 			if (dowakeup) {
1331 				mutex_enter(&lpcb->lp_lock);
1332 				ASSERT(lpcb->lp_wait != 0);
1333 				lpcb->lp_wait = 0;
1334 				cv_broadcast(&lpcb->lp_cv);
1335 				mutex_exit(&lpcb->lp_lock);
1336 			}
1337 		}
1338 
1339 		if (addr != NULL) {
1340 			*sizep = asize;
1341 			*lpthrtp = 0;
1342 			return (addr);
1343 		}
1344 
1345 		if (vmflag & VM_NOSLEEP)
1346 			lpcb->nosleep_allocs_failed++;
1347 		else
1348 			lpcb->sleep_allocs_failed++;
1349 		lpcb->alloc_bytes_failed += size;
1350 
1351 		/* if large page throttling is not started yet do it */
1352 		if (segkmem_use_lpthrottle && lpthrt == 0) {
1353 			lpthrt = atomic_cas_ulong(lpthrtp, lpthrt, 1);
1354 		}
1355 	}
1356 	return (segkmem_alloc(vmp, size, vmflag));
1357 }
1358 
1359 void
1360 segkmem_free_lp(vmem_t *vmp, void *inaddr, size_t size)
1361 {
1362 	if (kmem_lp_arena == NULL || !IS_KMEM_VA_LARGEPAGE((caddr_t)inaddr)) {
1363 		segkmem_free(vmp, inaddr, size);
1364 	} else {
1365 		vmem_free(kmem_lp_arena, inaddr, size);
1366 	}
1367 }
1368 
1369 /*
1370  * segkmem_alloc_lpi() imports virtual memory from large page heap arena
1371  * into kmem_lp arena. In the process it maps the imported segment with
1372  * large pages
1373  */
1374 static void *
1375 segkmem_alloc_lpi(vmem_t *vmp, size_t size, int vmflag)
1376 {
1377 	segkmem_lpcb_t *lpcb = &segkmem_lpcb;
1378 	void  *addr;
1379 
1380 	ASSERT(size != 0);
1381 	ASSERT(vmp == heap_lp_arena);
1382 
1383 	/* do not allow large page heap grow beyound limits */
1384 	if (vmem_size(vmp, VMEM_ALLOC) >= segkmem_kmemlp_max) {
1385 		lpcb->allocs_limited++;
1386 		return (NULL);
1387 	}
1388 
1389 	addr = segkmem_xalloc_lp(vmp, NULL, size, vmflag, 0,
1390 	    segkmem_page_create_large, NULL);
1391 	return (addr);
1392 }
1393 
1394 /*
1395  * segkmem_free_lpi() returns virtual memory back into large page heap arena
1396  * from kmem_lp arena. Beore doing this it unmaps the segment and frees
1397  * large pages used to map it.
1398  */
1399 static void
1400 segkmem_free_lpi(vmem_t *vmp, void *inaddr, size_t size)
1401 {
1402 	pgcnt_t		nlpages = size >> segkmem_lpshift;
1403 	size_t		lpsize = segkmem_lpsize;
1404 	caddr_t		addr = inaddr;
1405 	pgcnt_t 	npages = btopr(size);
1406 	int		i;
1407 
1408 	ASSERT(vmp == heap_lp_arena);
1409 	ASSERT(IS_KMEM_VA_LARGEPAGE(addr));
1410 	ASSERT(((uintptr_t)inaddr & (lpsize - 1)) == 0);
1411 
1412 	for (i = 0; i < nlpages; i++) {
1413 		segkmem_free_one_lp(addr, lpsize);
1414 		addr += lpsize;
1415 	}
1416 
1417 	page_unresv(npages);
1418 
1419 	vmem_free(vmp, inaddr, size);
1420 }
1421 
1422 /*
1423  * This function is called at system boot time by kmem_init right after
1424  * /etc/system file has been read. It checks based on hardware configuration
1425  * and /etc/system settings if system is going to use large pages. The
1426  * initialiazation necessary to actually start using large pages
1427  * happens later in the process after segkmem_heap_lp_init() is called.
1428  */
1429 int
1430 segkmem_lpsetup()
1431 {
1432 	int use_large_pages = 0;
1433 
1434 #ifdef __sparc
1435 
1436 	size_t memtotal = physmem * PAGESIZE;
1437 
1438 	if (heap_lp_base == NULL) {
1439 		segkmem_lpsize = PAGESIZE;
1440 		return (0);
1441 	}
1442 
1443 	/* get a platform dependent value of large page size for kernel heap */
1444 	segkmem_lpsize = get_segkmem_lpsize(segkmem_lpsize);
1445 
1446 	if (segkmem_lpsize <= PAGESIZE) {
1447 		/*
1448 		 * put virtual space reserved for the large page kernel
1449 		 * back to the regular heap
1450 		 */
1451 		vmem_xfree(heap_arena, heap_lp_base,
1452 		    heap_lp_end - heap_lp_base);
1453 		heap_lp_base = NULL;
1454 		heap_lp_end = NULL;
1455 		segkmem_lpsize = PAGESIZE;
1456 		return (0);
1457 	}
1458 
1459 	/* set heap_lp quantum if necessary */
1460 	if (segkmem_heaplp_quantum == 0 ||
1461 	    (segkmem_heaplp_quantum & (segkmem_heaplp_quantum - 1)) ||
1462 	    P2PHASE(segkmem_heaplp_quantum, segkmem_lpsize)) {
1463 		segkmem_heaplp_quantum = segkmem_lpsize;
1464 	}
1465 
1466 	/* set kmem_lp quantum if necessary */
1467 	if (segkmem_kmemlp_quantum == 0 ||
1468 	    (segkmem_kmemlp_quantum & (segkmem_kmemlp_quantum - 1)) ||
1469 	    segkmem_kmemlp_quantum > segkmem_heaplp_quantum) {
1470 		segkmem_kmemlp_quantum = segkmem_heaplp_quantum;
1471 	}
1472 
1473 	/* set total amount of memory allowed for large page kernel heap */
1474 	if (segkmem_kmemlp_max == 0) {
1475 		if (segkmem_kmemlp_pcnt == 0 || segkmem_kmemlp_pcnt > 100)
1476 			segkmem_kmemlp_pcnt = 12;
1477 		segkmem_kmemlp_max = (memtotal * segkmem_kmemlp_pcnt) / 100;
1478 	}
1479 	segkmem_kmemlp_max = P2ROUNDUP(segkmem_kmemlp_max,
1480 	    segkmem_heaplp_quantum);
1481 
1482 	/* fix lp kmem preallocation request if necesssary */
1483 	if (segkmem_kmemlp_min) {
1484 		segkmem_kmemlp_min = P2ROUNDUP(segkmem_kmemlp_min,
1485 		    segkmem_heaplp_quantum);
1486 		if (segkmem_kmemlp_min > segkmem_kmemlp_max)
1487 			segkmem_kmemlp_min = segkmem_kmemlp_max;
1488 	}
1489 
1490 	use_large_pages = 1;
1491 	segkmem_lpszc = page_szc(segkmem_lpsize);
1492 	segkmem_lpshift = page_get_shift(segkmem_lpszc);
1493 
1494 #endif
1495 	return (use_large_pages);
1496 }
1497 
1498 void
1499 segkmem_zio_init(void *zio_mem_base, size_t zio_mem_size)
1500 {
1501 	ASSERT(zio_mem_base != NULL);
1502 	ASSERT(zio_mem_size != 0);
1503 
1504 	zio_arena = vmem_create("zio", zio_mem_base, zio_mem_size, PAGESIZE,
1505 	    NULL, NULL, NULL, 0, VM_SLEEP);
1506 
1507 	zio_alloc_arena = vmem_create("zio_buf", NULL, 0, PAGESIZE,
1508 	    segkmem_zio_alloc, segkmem_zio_free, zio_arena, 0, VM_SLEEP);
1509 
1510 	ASSERT(zio_arena != NULL);
1511 	ASSERT(zio_alloc_arena != NULL);
1512 }
1513 
1514 #ifdef __sparc
1515 
1516 
1517 static void *
1518 segkmem_alloc_ppa(vmem_t *vmp, size_t size, int vmflag)
1519 {
1520 	size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *);
1521 	void   *addr;
1522 
1523 	if (ppaquantum <= PAGESIZE)
1524 		return (segkmem_alloc(vmp, size, vmflag));
1525 
1526 	ASSERT((size & (ppaquantum - 1)) == 0);
1527 
1528 	addr = vmem_xalloc(vmp, size, ppaquantum, 0, 0, NULL, NULL, vmflag);
1529 	if (addr != NULL && segkmem_xalloc(vmp, addr, size, vmflag, 0,
1530 	    segkmem_page_create, NULL) == NULL) {
1531 		vmem_xfree(vmp, addr, size);
1532 		addr = NULL;
1533 	}
1534 
1535 	return (addr);
1536 }
1537 
1538 static void
1539 segkmem_free_ppa(vmem_t *vmp, void *addr, size_t size)
1540 {
1541 	size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *);
1542 
1543 	ASSERT(addr != NULL);
1544 
1545 	if (ppaquantum <= PAGESIZE) {
1546 		segkmem_free(vmp, addr, size);
1547 	} else {
1548 		segkmem_free(NULL, addr, size);
1549 		vmem_xfree(vmp, addr, size);
1550 	}
1551 }
1552 
1553 void
1554 segkmem_heap_lp_init()
1555 {
1556 	segkmem_lpcb_t *lpcb = &segkmem_lpcb;
1557 	size_t heap_lp_size = heap_lp_end - heap_lp_base;
1558 	size_t lpsize = segkmem_lpsize;
1559 	size_t ppaquantum;
1560 	void   *addr;
1561 
1562 	if (segkmem_lpsize <= PAGESIZE) {
1563 		ASSERT(heap_lp_base == NULL);
1564 		ASSERT(heap_lp_end == NULL);
1565 		return;
1566 	}
1567 
1568 	ASSERT(segkmem_heaplp_quantum >= lpsize);
1569 	ASSERT((segkmem_heaplp_quantum & (lpsize - 1)) == 0);
1570 	ASSERT(lpcb->lp_uselp == 0);
1571 	ASSERT(heap_lp_base != NULL);
1572 	ASSERT(heap_lp_end != NULL);
1573 	ASSERT(heap_lp_base < heap_lp_end);
1574 	ASSERT(heap_lp_arena == NULL);
1575 	ASSERT(((uintptr_t)heap_lp_base & (lpsize - 1)) == 0);
1576 	ASSERT(((uintptr_t)heap_lp_end & (lpsize - 1)) == 0);
1577 
1578 	/* create large page heap arena */
1579 	heap_lp_arena = vmem_create("heap_lp", heap_lp_base, heap_lp_size,
1580 	    segkmem_heaplp_quantum, NULL, NULL, NULL, 0, VM_SLEEP);
1581 
1582 	ASSERT(heap_lp_arena != NULL);
1583 
1584 	/* This arena caches memory already mapped by large pages */
1585 	kmem_lp_arena = vmem_create("kmem_lp", NULL, 0, segkmem_kmemlp_quantum,
1586 	    segkmem_alloc_lpi, segkmem_free_lpi, heap_lp_arena, 0, VM_SLEEP);
1587 
1588 	ASSERT(kmem_lp_arena != NULL);
1589 
1590 	mutex_init(&lpcb->lp_lock, NULL, MUTEX_DEFAULT, NULL);
1591 	cv_init(&lpcb->lp_cv, NULL, CV_DEFAULT, NULL);
1592 
1593 	/*
1594 	 * this arena is used for the array of page_t pointers necessary
1595 	 * to call hat_mem_load_array
1596 	 */
1597 	ppaquantum = btopr(lpsize) * sizeof (page_t *);
1598 	segkmem_ppa_arena = vmem_create("segkmem_ppa", NULL, 0, ppaquantum,
1599 	    segkmem_alloc_ppa, segkmem_free_ppa, heap_arena, ppaquantum,
1600 	    VM_SLEEP);
1601 
1602 	ASSERT(segkmem_ppa_arena != NULL);
1603 
1604 	/* prealloacate some memory for the lp kernel heap */
1605 	if (segkmem_kmemlp_min) {
1606 
1607 		ASSERT(P2PHASE(segkmem_kmemlp_min,
1608 		    segkmem_heaplp_quantum) == 0);
1609 
1610 		if ((addr = segkmem_alloc_lpi(heap_lp_arena,
1611 		    segkmem_kmemlp_min, VM_SLEEP)) != NULL) {
1612 
1613 			addr = vmem_add(kmem_lp_arena, addr,
1614 			    segkmem_kmemlp_min, VM_SLEEP);
1615 			ASSERT(addr != NULL);
1616 		}
1617 	}
1618 
1619 	lpcb->lp_uselp = 1;
1620 }
1621 
1622 #endif
1623