1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/t_lock.h> 30 #include <sys/param.h> 31 #include <sys/sysmacros.h> 32 #include <sys/tuneable.h> 33 #include <sys/systm.h> 34 #include <sys/vm.h> 35 #include <sys/kmem.h> 36 #include <sys/vmem.h> 37 #include <sys/mman.h> 38 #include <sys/cmn_err.h> 39 #include <sys/debug.h> 40 #include <sys/dumphdr.h> 41 #include <sys/bootconf.h> 42 #include <sys/lgrp.h> 43 #include <vm/seg_kmem.h> 44 #include <vm/hat.h> 45 #include <vm/page.h> 46 #include <vm/vm_dep.h> 47 #include <vm/faultcode.h> 48 #include <sys/promif.h> 49 #include <vm/seg_kp.h> 50 #include <sys/bitmap.h> 51 #include <sys/mem_cage.h> 52 53 /* 54 * seg_kmem is the primary kernel memory segment driver. It 55 * maps the kernel heap [kernelheap, ekernelheap), module text, 56 * and all memory which was allocated before the VM was initialized 57 * into kas. 58 * 59 * Pages which belong to seg_kmem are hashed into &kvp vnode at 60 * an offset equal to (u_offset_t)virt_addr, and have p_lckcnt >= 1. 61 * They must never be paged out since segkmem_fault() is a no-op to 62 * prevent recursive faults. 63 * 64 * Currently, seg_kmem pages are sharelocked (p_sharelock == 1) on 65 * __x86 and are unlocked (p_sharelock == 0) on __sparc. Once __x86 66 * supports relocation the #ifdef kludges can be removed. 67 * 68 * seg_kmem pages may be subject to relocation by page_relocate(), 69 * provided that the HAT supports it; if this is so, segkmem_reloc 70 * will be set to a nonzero value. All boot time allocated memory as 71 * well as static memory is considered off limits to relocation. 72 * Pages are "relocatable" if p_state does not have P_NORELOC set, so 73 * we request P_NORELOC pages for memory that isn't safe to relocate. 74 * 75 * The kernel heap is logically divided up into four pieces: 76 * 77 * heap32_arena is for allocations that require 32-bit absolute 78 * virtual addresses (e.g. code that uses 32-bit pointers/offsets). 79 * 80 * heap_core is for allocations that require 2GB *relative* 81 * offsets; in other words all memory from heap_core is within 82 * 2GB of all other memory from the same arena. This is a requirement 83 * of the addressing modes of some processors in supervisor code. 84 * 85 * heap_arena is the general heap arena. 86 * 87 * static_arena is the static memory arena. Allocations from it 88 * are not subject to relocation so it is safe to use the memory 89 * physical address as well as the virtual address (e.g. the VA to 90 * PA translations are static). Caches may import from static_arena; 91 * all other static memory allocations should use static_alloc_arena. 92 * 93 * On some platforms which have limited virtual address space, seg_kmem 94 * may share [kernelheap, ekernelheap) with seg_kp; if this is so, 95 * segkp_bitmap is non-NULL, and each bit represents a page of virtual 96 * address space which is actually seg_kp mapped. 97 */ 98 99 extern ulong_t *segkp_bitmap; /* Is set if segkp is from the kernel heap */ 100 101 char *kernelheap; /* start of primary kernel heap */ 102 char *ekernelheap; /* end of primary kernel heap */ 103 struct seg kvseg; /* primary kernel heap segment */ 104 struct seg kvseg_core; /* "core" kernel heap segment */ 105 struct seg kzioseg; /* Segment for zio mappings */ 106 vmem_t *heap_arena; /* primary kernel heap arena */ 107 vmem_t *heap_core_arena; /* core kernel heap arena */ 108 char *heap_core_base; /* start of core kernel heap arena */ 109 char *heap_lp_base; /* start of kernel large page heap arena */ 110 char *heap_lp_end; /* end of kernel large page heap arena */ 111 vmem_t *hat_memload_arena; /* HAT translation data */ 112 struct seg kvseg32; /* 32-bit kernel heap segment */ 113 vmem_t *heap32_arena; /* 32-bit kernel heap arena */ 114 vmem_t *heaptext_arena; /* heaptext arena */ 115 struct as kas; /* kernel address space */ 116 struct vnode kvp; /* vnode for all segkmem pages */ 117 struct vnode zvp; /* vnode for zfs pages */ 118 int segkmem_reloc; /* enable/disable relocatable segkmem pages */ 119 vmem_t *static_arena; /* arena for caches to import static memory */ 120 vmem_t *static_alloc_arena; /* arena for allocating static memory */ 121 vmem_t *zio_arena = NULL; /* arena for allocating zio memory */ 122 vmem_t *zio_alloc_arena = NULL; /* arena for allocating zio memory */ 123 124 /* 125 * seg_kmem driver can map part of the kernel heap with large pages. 126 * Currently this functionality is implemented for sparc platforms only. 127 * 128 * The large page size "segkmem_lpsize" for kernel heap is selected in the 129 * platform specific code. It can also be modified via /etc/system file. 130 * Setting segkmem_lpsize to PAGESIZE in /etc/system disables usage of large 131 * pages for kernel heap. "segkmem_lpshift" is adjusted appropriately to 132 * match segkmem_lpsize. 133 * 134 * At boot time we carve from kernel heap arena a range of virtual addresses 135 * that will be used for large page mappings. This range [heap_lp_base, 136 * heap_lp_end) is set up as a separate vmem arena - "heap_lp_arena". We also 137 * create "kmem_lp_arena" that caches memory already backed up by large 138 * pages. kmem_lp_arena imports virtual segments from heap_lp_arena. 139 */ 140 141 size_t segkmem_lpsize; 142 static uint_t segkmem_lpshift = PAGESHIFT; 143 int segkmem_lpszc = 0; 144 145 size_t segkmem_kmemlp_quantum = 0x400000; /* 4MB */ 146 size_t segkmem_heaplp_quantum; 147 vmem_t *heap_lp_arena; 148 static vmem_t *kmem_lp_arena; 149 static vmem_t *segkmem_ppa_arena; 150 static segkmem_lpcb_t segkmem_lpcb; 151 152 /* 153 * We use "segkmem_kmemlp_max" to limit the total amount of physical memory 154 * consumed by the large page heap. By default this parameter is set to 1/8 of 155 * physmem but can be adjusted through /etc/system either directly or 156 * indirectly by setting "segkmem_kmemlp_pcnt" to the percent of physmem 157 * we allow for large page heap. 158 */ 159 size_t segkmem_kmemlp_max; 160 static uint_t segkmem_kmemlp_pcnt; 161 162 /* 163 * Getting large pages for kernel heap could be problematic due to 164 * physical memory fragmentation. That's why we allow to preallocate 165 * "segkmem_kmemlp_min" bytes at boot time. 166 */ 167 static size_t segkmem_kmemlp_min; 168 169 /* 170 * Throttling is used to avoid expensive tries to allocate large pages 171 * for kernel heap when a lot of succesive attempts to do so fail. 172 */ 173 static ulong_t segkmem_lpthrottle_max = 0x400000; 174 static ulong_t segkmem_lpthrottle_start = 0x40; 175 static ulong_t segkmem_use_lpthrottle = 1; 176 177 /* 178 * Freed pages accumulate on a garbage list until segkmem is ready, 179 * at which point we call segkmem_gc() to free it all. 180 */ 181 typedef struct segkmem_gc_list { 182 struct segkmem_gc_list *gc_next; 183 vmem_t *gc_arena; 184 size_t gc_size; 185 } segkmem_gc_list_t; 186 187 static segkmem_gc_list_t *segkmem_gc_list; 188 189 /* 190 * Allocations from the hat_memload arena add VM_MEMLOAD to their 191 * vmflags so that segkmem_xalloc() can inform the hat layer that it needs 192 * to take steps to prevent infinite recursion. HAT allocations also 193 * must be non-relocatable to prevent recursive page faults. 194 */ 195 static void * 196 hat_memload_alloc(vmem_t *vmp, size_t size, int flags) 197 { 198 flags |= (VM_MEMLOAD | VM_NORELOC); 199 return (segkmem_alloc(vmp, size, flags)); 200 } 201 202 /* 203 * Allocations from static_arena arena (or any other arena that uses 204 * segkmem_alloc_permanent()) require non-relocatable (permanently 205 * wired) memory pages, since these pages are referenced by physical 206 * as well as virtual address. 207 */ 208 void * 209 segkmem_alloc_permanent(vmem_t *vmp, size_t size, int flags) 210 { 211 return (segkmem_alloc(vmp, size, flags | VM_NORELOC)); 212 } 213 214 /* 215 * Initialize kernel heap boundaries. 216 */ 217 void 218 kernelheap_init( 219 void *heap_start, 220 void *heap_end, 221 char *first_avail, 222 void *core_start, 223 void *core_end) 224 { 225 uintptr_t textbase; 226 size_t core_size; 227 size_t heap_size; 228 vmem_t *heaptext_parent; 229 size_t heap_lp_size = 0; 230 #ifdef __sparc 231 size_t kmem64_sz = kmem64_aligned_end - kmem64_base; 232 #endif /* __sparc */ 233 234 kernelheap = heap_start; 235 ekernelheap = heap_end; 236 237 #ifdef __sparc 238 heap_lp_size = (((uintptr_t)heap_end - (uintptr_t)heap_start) / 4); 239 /* 240 * Bias heap_lp start address by kmem64_sz to reduce collisions 241 * in 4M kernel TSB between kmem64 area and heap_lp 242 */ 243 kmem64_sz = P2ROUNDUP(kmem64_sz, MMU_PAGESIZE256M); 244 if (kmem64_sz <= heap_lp_size / 2) 245 heap_lp_size -= kmem64_sz; 246 heap_lp_base = ekernelheap - heap_lp_size; 247 heap_lp_end = heap_lp_base + heap_lp_size; 248 #endif /* __sparc */ 249 250 /* 251 * If this platform has a 'core' heap area, then the space for 252 * overflow module text should be carved out of the end of that 253 * heap. Otherwise, it gets carved out of the general purpose 254 * heap. 255 */ 256 core_size = (uintptr_t)core_end - (uintptr_t)core_start; 257 if (core_size > 0) { 258 ASSERT(core_size >= HEAPTEXT_SIZE); 259 textbase = (uintptr_t)core_end - HEAPTEXT_SIZE; 260 core_size -= HEAPTEXT_SIZE; 261 } 262 #ifndef __sparc 263 else { 264 ekernelheap -= HEAPTEXT_SIZE; 265 textbase = (uintptr_t)ekernelheap; 266 } 267 #endif 268 269 heap_size = (uintptr_t)ekernelheap - (uintptr_t)kernelheap; 270 heap_arena = vmem_init("heap", kernelheap, heap_size, PAGESIZE, 271 segkmem_alloc, segkmem_free); 272 273 if (core_size > 0) { 274 heap_core_arena = vmem_create("heap_core", core_start, 275 core_size, PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 276 heap_core_base = core_start; 277 } else { 278 heap_core_arena = heap_arena; 279 heap_core_base = kernelheap; 280 } 281 282 /* 283 * reserve space for the large page heap. If large pages for kernel 284 * heap is enabled large page heap arean will be created later in the 285 * boot sequence in segkmem_heap_lp_init(). Otherwise the allocated 286 * range will be returned back to the heap_arena. 287 */ 288 if (heap_lp_size) { 289 (void) vmem_xalloc(heap_arena, heap_lp_size, PAGESIZE, 0, 0, 290 heap_lp_base, heap_lp_end, 291 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 292 } 293 294 /* 295 * Remove the already-spoken-for memory range [kernelheap, first_avail). 296 */ 297 (void) vmem_xalloc(heap_arena, first_avail - kernelheap, PAGESIZE, 298 0, 0, kernelheap, first_avail, VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 299 300 #ifdef __sparc 301 heap32_arena = vmem_create("heap32", (void *)SYSBASE32, 302 SYSLIMIT32 - SYSBASE32 - HEAPTEXT_SIZE, PAGESIZE, NULL, 303 NULL, NULL, 0, VM_SLEEP); 304 305 textbase = SYSLIMIT32 - HEAPTEXT_SIZE; 306 heaptext_parent = NULL; 307 #else /* __sparc */ 308 heap32_arena = heap_core_arena; 309 heaptext_parent = heap_core_arena; 310 #endif /* __sparc */ 311 312 heaptext_arena = vmem_create("heaptext", (void *)textbase, 313 HEAPTEXT_SIZE, PAGESIZE, NULL, NULL, heaptext_parent, 0, VM_SLEEP); 314 315 /* 316 * Create a set of arenas for memory with static translations 317 * (e.g. VA -> PA translations cannot change). Since using 318 * kernel pages by physical address implies it isn't safe to 319 * walk across page boundaries, the static_arena quantum must 320 * be PAGESIZE. Any kmem caches that require static memory 321 * should source from static_arena, while direct allocations 322 * should only use static_alloc_arena. 323 */ 324 static_arena = vmem_create("static", NULL, 0, PAGESIZE, 325 segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP); 326 static_alloc_arena = vmem_create("static_alloc", NULL, 0, 327 sizeof (uint64_t), vmem_alloc, vmem_free, static_arena, 328 0, VM_SLEEP); 329 330 /* 331 * Create an arena for translation data (ptes, hmes, or hblks). 332 * We need an arena for this because hat_memload() is essential 333 * to vmem_populate() (see comments in common/os/vmem.c). 334 * 335 * Note: any kmem cache that allocates from hat_memload_arena 336 * must be created as a KMC_NOHASH cache (i.e. no external slab 337 * and bufctl structures to allocate) so that slab creation doesn't 338 * require anything more than a single vmem_alloc(). 339 */ 340 hat_memload_arena = vmem_create("hat_memload", NULL, 0, PAGESIZE, 341 hat_memload_alloc, segkmem_free, heap_arena, 0, 342 VM_SLEEP | VMC_POPULATOR); 343 } 344 345 void 346 boot_mapin(caddr_t addr, size_t size) 347 { 348 caddr_t eaddr; 349 page_t *pp; 350 pfn_t pfnum; 351 352 if (page_resv(btop(size), KM_NOSLEEP) == 0) 353 panic("boot_mapin: page_resv failed"); 354 355 for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) { 356 pfnum = va_to_pfn(addr); 357 if (pfnum == PFN_INVALID) 358 continue; 359 if ((pp = page_numtopp_nolock(pfnum)) == NULL) 360 panic("boot_mapin(): No pp for pfnum = %lx", pfnum); 361 362 /* 363 * must break up any large pages that may have constituent 364 * pages being utilized for BOP_ALLOC()'s before calling 365 * page_numtopp().The locking code (ie. page_reclaim()) 366 * can't handle them 367 */ 368 if (pp->p_szc != 0) 369 page_boot_demote(pp); 370 371 pp = page_numtopp(pfnum, SE_EXCL); 372 if (pp == NULL || PP_ISFREE(pp)) 373 panic("boot_alloc: pp is NULL or free"); 374 375 /* 376 * If the cage is on but doesn't yet contain this page, 377 * mark it as non-relocatable. 378 */ 379 if (kcage_on && !PP_ISNORELOC(pp)) { 380 PP_SETNORELOC(pp); 381 PLCNT_XFER_NORELOC(pp); 382 } 383 384 (void) page_hashin(pp, &kvp, (u_offset_t)(uintptr_t)addr, NULL); 385 pp->p_lckcnt = 1; 386 #if defined(__x86) 387 page_downgrade(pp); 388 #else 389 page_unlock(pp); 390 #endif 391 } 392 } 393 394 /* 395 * Get pages from boot and hash them into the kernel's vp. 396 * Used after page structs have been allocated, but before segkmem is ready. 397 */ 398 void * 399 boot_alloc(void *inaddr, size_t size, uint_t align) 400 { 401 caddr_t addr = inaddr; 402 403 if (bootops == NULL) 404 prom_panic("boot_alloc: attempt to allocate memory after " 405 "BOP_GONE"); 406 407 size = ptob(btopr(size)); 408 if (BOP_ALLOC(bootops, addr, size, align) != addr) 409 panic("boot_alloc: BOP_ALLOC failed"); 410 boot_mapin((caddr_t)addr, size); 411 return (addr); 412 } 413 414 static void 415 segkmem_badop() 416 { 417 panic("segkmem_badop"); 418 } 419 420 #define SEGKMEM_BADOP(t) (t(*)())segkmem_badop 421 422 /*ARGSUSED*/ 423 static faultcode_t 424 segkmem_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t size, 425 enum fault_type type, enum seg_rw rw) 426 { 427 pgcnt_t npages; 428 spgcnt_t pg; 429 page_t *pp; 430 struct vnode *vp = seg->s_data; 431 432 ASSERT(RW_READ_HELD(&seg->s_as->a_lock)); 433 434 if (seg->s_as != &kas || size > seg->s_size || 435 addr < seg->s_base || addr + size > seg->s_base + seg->s_size) 436 panic("segkmem_fault: bad args"); 437 438 /* 439 * If it is one of segkp pages, call segkp_fault. 440 */ 441 if (segkp_bitmap && seg == &kvseg && 442 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 443 return (SEGOP_FAULT(hat, segkp, addr, size, type, rw)); 444 445 if (rw != S_READ && rw != S_WRITE && rw != S_OTHER) 446 return (FC_NOSUPPORT); 447 448 npages = btopr(size); 449 450 switch (type) { 451 case F_SOFTLOCK: /* lock down already-loaded translations */ 452 for (pg = 0; pg < npages; pg++) { 453 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, 454 SE_SHARED); 455 if (pp == NULL) { 456 /* 457 * Hmm, no page. Does a kernel mapping 458 * exist for it? 459 */ 460 if (!hat_probe(kas.a_hat, addr)) { 461 addr -= PAGESIZE; 462 while (--pg >= 0) { 463 pp = page_find(vp, (u_offset_t) 464 (uintptr_t)addr); 465 if (pp) 466 page_unlock(pp); 467 addr -= PAGESIZE; 468 } 469 return (FC_NOMAP); 470 } 471 } 472 addr += PAGESIZE; 473 } 474 if (rw == S_OTHER) 475 hat_reserve(seg->s_as, addr, size); 476 return (0); 477 case F_SOFTUNLOCK: 478 while (npages--) { 479 pp = page_find(vp, (u_offset_t)(uintptr_t)addr); 480 if (pp) 481 page_unlock(pp); 482 addr += PAGESIZE; 483 } 484 return (0); 485 default: 486 return (FC_NOSUPPORT); 487 } 488 /*NOTREACHED*/ 489 } 490 491 static int 492 segkmem_setprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot) 493 { 494 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 495 496 if (seg->s_as != &kas || size > seg->s_size || 497 addr < seg->s_base || addr + size > seg->s_base + seg->s_size) 498 panic("segkmem_setprot: bad args"); 499 500 /* 501 * If it is one of segkp pages, call segkp. 502 */ 503 if (segkp_bitmap && seg == &kvseg && 504 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 505 return (SEGOP_SETPROT(segkp, addr, size, prot)); 506 507 if (prot == 0) 508 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD); 509 else 510 hat_chgprot(kas.a_hat, addr, size, prot); 511 return (0); 512 } 513 514 /* 515 * This is a dummy segkmem function overloaded to call segkp 516 * when segkp is under the heap. 517 */ 518 /* ARGSUSED */ 519 static int 520 segkmem_checkprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot) 521 { 522 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 523 524 if (seg->s_as != &kas) 525 segkmem_badop(); 526 527 /* 528 * If it is one of segkp pages, call into segkp. 529 */ 530 if (segkp_bitmap && seg == &kvseg && 531 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 532 return (SEGOP_CHECKPROT(segkp, addr, size, prot)); 533 534 segkmem_badop(); 535 return (0); 536 } 537 538 /* 539 * This is a dummy segkmem function overloaded to call segkp 540 * when segkp is under the heap. 541 */ 542 /* ARGSUSED */ 543 static int 544 segkmem_kluster(struct seg *seg, caddr_t addr, ssize_t delta) 545 { 546 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 547 548 if (seg->s_as != &kas) 549 segkmem_badop(); 550 551 /* 552 * If it is one of segkp pages, call into segkp. 553 */ 554 if (segkp_bitmap && seg == &kvseg && 555 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 556 return (SEGOP_KLUSTER(segkp, addr, delta)); 557 558 segkmem_badop(); 559 return (0); 560 } 561 562 static void 563 segkmem_xdump_range(void *arg, void *start, size_t size) 564 { 565 struct as *as = arg; 566 caddr_t addr = start; 567 caddr_t addr_end = addr + size; 568 569 while (addr < addr_end) { 570 pfn_t pfn = hat_getpfnum(kas.a_hat, addr); 571 if (pfn != PFN_INVALID && pfn <= physmax && pf_is_memory(pfn)) 572 dump_addpage(as, addr, pfn); 573 addr += PAGESIZE; 574 dump_timeleft = dump_timeout; 575 } 576 } 577 578 static void 579 segkmem_dump_range(void *arg, void *start, size_t size) 580 { 581 caddr_t addr = start; 582 caddr_t addr_end = addr + size; 583 584 /* 585 * If we are about to start dumping the range of addresses we 586 * carved out of the kernel heap for the large page heap walk 587 * heap_lp_arena to find what segments are actually populated 588 */ 589 if (SEGKMEM_USE_LARGEPAGES && 590 addr == heap_lp_base && addr_end == heap_lp_end && 591 vmem_size(heap_lp_arena, VMEM_ALLOC) < size) { 592 vmem_walk(heap_lp_arena, VMEM_ALLOC | VMEM_REENTRANT, 593 segkmem_xdump_range, arg); 594 } else { 595 segkmem_xdump_range(arg, start, size); 596 } 597 } 598 599 static void 600 segkmem_dump(struct seg *seg) 601 { 602 /* 603 * The kernel's heap_arena (represented by kvseg) is a very large 604 * VA space, most of which is typically unused. To speed up dumping 605 * we use vmem_walk() to quickly find the pieces of heap_arena that 606 * are actually in use. We do the same for heap32_arena and 607 * heap_core. 608 * 609 * We specify VMEM_REENTRANT to vmem_walk() because dump_addpage() 610 * may ultimately need to allocate memory. Reentrant walks are 611 * necessarily imperfect snapshots. The kernel heap continues 612 * to change during a live crash dump, for example. For a normal 613 * crash dump, however, we know that there won't be any other threads 614 * messing with the heap. Therefore, at worst, we may fail to dump 615 * the pages that get allocated by the act of dumping; but we will 616 * always dump every page that was allocated when the walk began. 617 * 618 * The other segkmem segments are dense (fully populated), so there's 619 * no need to use this technique when dumping them. 620 * 621 * Note: when adding special dump handling for any new sparsely- 622 * populated segments, be sure to add similar handling to the ::kgrep 623 * code in mdb. 624 */ 625 if (seg == &kvseg) { 626 vmem_walk(heap_arena, VMEM_ALLOC | VMEM_REENTRANT, 627 segkmem_dump_range, seg->s_as); 628 #ifndef __sparc 629 vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT, 630 segkmem_dump_range, seg->s_as); 631 #endif 632 } else if (seg == &kvseg_core) { 633 vmem_walk(heap_core_arena, VMEM_ALLOC | VMEM_REENTRANT, 634 segkmem_dump_range, seg->s_as); 635 } else if (seg == &kvseg32) { 636 vmem_walk(heap32_arena, VMEM_ALLOC | VMEM_REENTRANT, 637 segkmem_dump_range, seg->s_as); 638 vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT, 639 segkmem_dump_range, seg->s_as); 640 } else if (seg == &kzioseg) { 641 /* 642 * We don't want to dump pages attached to kzioseg since they 643 * contain file data from ZFS. If this page's segment is 644 * kzioseg return instead of writing it to the dump device. 645 */ 646 return; 647 } else { 648 segkmem_dump_range(seg->s_as, seg->s_base, seg->s_size); 649 } 650 } 651 652 /* 653 * lock/unlock kmem pages over a given range [addr, addr+len). 654 * Returns a shadow list of pages in ppp. If there are holes 655 * in the range (e.g. some of the kernel mappings do not have 656 * underlying page_ts) returns ENOTSUP so that as_pagelock() 657 * will handle the range via as_fault(F_SOFTLOCK). 658 */ 659 /*ARGSUSED*/ 660 static int 661 segkmem_pagelock(struct seg *seg, caddr_t addr, size_t len, 662 page_t ***ppp, enum lock_type type, enum seg_rw rw) 663 { 664 page_t **pplist, *pp; 665 pgcnt_t npages; 666 spgcnt_t pg; 667 size_t nb; 668 struct vnode *vp = seg->s_data; 669 670 ASSERT(ppp != NULL); 671 672 /* 673 * If it is one of segkp pages, call into segkp. 674 */ 675 if (segkp_bitmap && seg == &kvseg && 676 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 677 return (SEGOP_PAGELOCK(segkp, addr, len, ppp, type, rw)); 678 679 npages = btopr(len); 680 nb = sizeof (page_t *) * npages; 681 682 if (type == L_PAGEUNLOCK) { 683 pplist = *ppp; 684 ASSERT(pplist != NULL); 685 686 for (pg = 0; pg < npages; pg++) { 687 pp = pplist[pg]; 688 page_unlock(pp); 689 } 690 kmem_free(pplist, nb); 691 return (0); 692 } 693 694 ASSERT(type == L_PAGELOCK); 695 696 pplist = kmem_alloc(nb, KM_NOSLEEP); 697 if (pplist == NULL) { 698 *ppp = NULL; 699 return (ENOTSUP); /* take the slow path */ 700 } 701 702 for (pg = 0; pg < npages; pg++) { 703 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, SE_SHARED); 704 if (pp == NULL) { 705 while (--pg >= 0) 706 page_unlock(pplist[pg]); 707 kmem_free(pplist, nb); 708 *ppp = NULL; 709 return (ENOTSUP); 710 } 711 pplist[pg] = pp; 712 addr += PAGESIZE; 713 } 714 715 *ppp = pplist; 716 return (0); 717 } 718 719 /* 720 * This is a dummy segkmem function overloaded to call segkp 721 * when segkp is under the heap. 722 */ 723 /* ARGSUSED */ 724 static int 725 segkmem_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp) 726 { 727 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 728 729 if (seg->s_as != &kas) 730 segkmem_badop(); 731 732 /* 733 * If it is one of segkp pages, call into segkp. 734 */ 735 if (segkp_bitmap && seg == &kvseg && 736 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 737 return (SEGOP_GETMEMID(segkp, addr, memidp)); 738 739 segkmem_badop(); 740 return (0); 741 } 742 743 /*ARGSUSED*/ 744 static lgrp_mem_policy_info_t * 745 segkmem_getpolicy(struct seg *seg, caddr_t addr) 746 { 747 return (NULL); 748 } 749 750 /*ARGSUSED*/ 751 static int 752 segkmem_capable(struct seg *seg, segcapability_t capability) 753 { 754 if (capability == S_CAPABILITY_NOMINFLT) 755 return (1); 756 return (0); 757 } 758 759 static struct seg_ops segkmem_ops = { 760 SEGKMEM_BADOP(int), /* dup */ 761 SEGKMEM_BADOP(int), /* unmap */ 762 SEGKMEM_BADOP(void), /* free */ 763 segkmem_fault, 764 SEGKMEM_BADOP(faultcode_t), /* faulta */ 765 segkmem_setprot, 766 segkmem_checkprot, 767 segkmem_kluster, 768 SEGKMEM_BADOP(size_t), /* swapout */ 769 SEGKMEM_BADOP(int), /* sync */ 770 SEGKMEM_BADOP(size_t), /* incore */ 771 SEGKMEM_BADOP(int), /* lockop */ 772 SEGKMEM_BADOP(int), /* getprot */ 773 SEGKMEM_BADOP(u_offset_t), /* getoffset */ 774 SEGKMEM_BADOP(int), /* gettype */ 775 SEGKMEM_BADOP(int), /* getvp */ 776 SEGKMEM_BADOP(int), /* advise */ 777 segkmem_dump, 778 segkmem_pagelock, 779 SEGKMEM_BADOP(int), /* setpgsz */ 780 segkmem_getmemid, 781 segkmem_getpolicy, /* getpolicy */ 782 segkmem_capable, /* capable */ 783 }; 784 785 int 786 segkmem_zio_create(struct seg *seg) 787 { 788 ASSERT(seg->s_as == &kas && RW_WRITE_HELD(&kas.a_lock)); 789 seg->s_ops = &segkmem_ops; 790 seg->s_data = &zvp; 791 kas.a_size += seg->s_size; 792 return (0); 793 } 794 795 int 796 segkmem_create(struct seg *seg) 797 { 798 ASSERT(seg->s_as == &kas && RW_WRITE_HELD(&kas.a_lock)); 799 seg->s_ops = &segkmem_ops; 800 seg->s_data = &kvp; 801 kas.a_size += seg->s_size; 802 return (0); 803 } 804 805 /*ARGSUSED*/ 806 page_t * 807 segkmem_page_create(void *addr, size_t size, int vmflag, void *arg) 808 { 809 struct seg kseg; 810 int pgflags; 811 struct vnode *vp = arg; 812 813 if (vp == NULL) 814 vp = &kvp; 815 816 kseg.s_as = &kas; 817 pgflags = PG_EXCL; 818 819 if (segkmem_reloc == 0 || (vmflag & VM_NORELOC)) 820 pgflags |= PG_NORELOC; 821 if ((vmflag & VM_NOSLEEP) == 0) 822 pgflags |= PG_WAIT; 823 if (vmflag & VM_PANIC) 824 pgflags |= PG_PANIC; 825 if (vmflag & VM_PUSHPAGE) 826 pgflags |= PG_PUSHPAGE; 827 828 return (page_create_va(vp, (u_offset_t)(uintptr_t)addr, size, 829 pgflags, &kseg, addr)); 830 } 831 832 /* 833 * Allocate pages to back the virtual address range [addr, addr + size). 834 * If addr is NULL, allocate the virtual address space as well. 835 */ 836 void * 837 segkmem_xalloc(vmem_t *vmp, void *inaddr, size_t size, int vmflag, uint_t attr, 838 page_t *(*page_create_func)(void *, size_t, int, void *), void *pcarg) 839 { 840 page_t *ppl; 841 caddr_t addr = inaddr; 842 pgcnt_t npages = btopr(size); 843 int allocflag; 844 845 if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL) 846 return (NULL); 847 848 ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0); 849 850 if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) { 851 if (inaddr == NULL) 852 vmem_free(vmp, addr, size); 853 return (NULL); 854 } 855 856 ppl = page_create_func(addr, size, vmflag, pcarg); 857 if (ppl == NULL) { 858 if (inaddr == NULL) 859 vmem_free(vmp, addr, size); 860 page_unresv(npages); 861 return (NULL); 862 } 863 864 /* 865 * Under certain conditions, we need to let the HAT layer know 866 * that it cannot safely allocate memory. Allocations from 867 * the hat_memload vmem arena always need this, to prevent 868 * infinite recursion. 869 * 870 * In addition, the x86 hat cannot safely do memory 871 * allocations while in vmem_populate(), because there 872 * is no simple bound on its usage. 873 */ 874 if (vmflag & VM_MEMLOAD) 875 allocflag = HAT_NO_KALLOC; 876 #if defined(__x86) 877 else if (vmem_is_populator()) 878 allocflag = HAT_NO_KALLOC; 879 #endif 880 else 881 allocflag = 0; 882 883 while (ppl != NULL) { 884 page_t *pp = ppl; 885 page_sub(&ppl, pp); 886 ASSERT(page_iolock_assert(pp)); 887 ASSERT(PAGE_EXCL(pp)); 888 page_io_unlock(pp); 889 hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset, pp, 890 (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr, 891 HAT_LOAD_LOCK | allocflag); 892 pp->p_lckcnt = 1; 893 #if defined(__x86) 894 page_downgrade(pp); 895 #else 896 if (vmflag & SEGKMEM_SHARELOCKED) 897 page_downgrade(pp); 898 else 899 page_unlock(pp); 900 #endif 901 } 902 903 return (addr); 904 } 905 906 static void * 907 segkmem_alloc_vn(vmem_t *vmp, size_t size, int vmflag, struct vnode *vp) 908 { 909 void *addr; 910 segkmem_gc_list_t *gcp, **prev_gcpp; 911 912 ASSERT(vp != NULL); 913 914 if (kvseg.s_base == NULL) { 915 #ifndef __sparc 916 if (bootops->bsys_alloc == NULL) 917 halt("Memory allocation between bop_alloc() and " 918 "kmem_alloc().\n"); 919 #endif 920 921 /* 922 * There's not a lot of memory to go around during boot, 923 * so recycle it if we can. 924 */ 925 for (prev_gcpp = &segkmem_gc_list; (gcp = *prev_gcpp) != NULL; 926 prev_gcpp = &gcp->gc_next) { 927 if (gcp->gc_arena == vmp && gcp->gc_size == size) { 928 *prev_gcpp = gcp->gc_next; 929 return (gcp); 930 } 931 } 932 933 addr = vmem_alloc(vmp, size, vmflag | VM_PANIC); 934 if (boot_alloc(addr, size, BO_NO_ALIGN) != addr) 935 panic("segkmem_alloc: boot_alloc failed"); 936 return (addr); 937 } 938 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 939 segkmem_page_create, vp)); 940 } 941 942 void * 943 segkmem_alloc(vmem_t *vmp, size_t size, int vmflag) 944 { 945 return (segkmem_alloc_vn(vmp, size, vmflag, &kvp)); 946 } 947 948 void * 949 segkmem_zio_alloc(vmem_t *vmp, size_t size, int vmflag) 950 { 951 return (segkmem_alloc_vn(vmp, size, vmflag, &zvp)); 952 } 953 954 /* 955 * Any changes to this routine must also be carried over to 956 * devmap_free_pages() in the seg_dev driver. This is because 957 * we currently don't have a special kernel segment for non-paged 958 * kernel memory that is exported by drivers to user space. 959 */ 960 static void 961 segkmem_free_vn(vmem_t *vmp, void *inaddr, size_t size, struct vnode *vp, 962 void (*func)(page_t *)) 963 { 964 page_t *pp; 965 caddr_t addr = inaddr; 966 caddr_t eaddr; 967 pgcnt_t npages = btopr(size); 968 969 ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0); 970 ASSERT(vp != NULL); 971 972 if (kvseg.s_base == NULL) { 973 segkmem_gc_list_t *gc = inaddr; 974 gc->gc_arena = vmp; 975 gc->gc_size = size; 976 gc->gc_next = segkmem_gc_list; 977 segkmem_gc_list = gc; 978 return; 979 } 980 981 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK); 982 983 for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) { 984 #if defined(__x86) 985 pp = page_find(vp, (u_offset_t)(uintptr_t)addr); 986 if (pp == NULL) 987 panic("segkmem_free: page not found"); 988 if (!page_tryupgrade(pp)) { 989 /* 990 * Some other thread has a sharelock. Wait for 991 * it to drop the lock so we can free this page. 992 */ 993 page_unlock(pp); 994 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, 995 SE_EXCL); 996 } 997 #else 998 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, SE_EXCL); 999 #endif 1000 if (pp == NULL) 1001 panic("segkmem_free: page not found"); 1002 /* Clear p_lckcnt so page_destroy() doesn't update availrmem */ 1003 pp->p_lckcnt = 0; 1004 if (func) 1005 func(pp); 1006 else 1007 page_destroy(pp, 0); 1008 } 1009 if (func == NULL) 1010 page_unresv(npages); 1011 1012 if (vmp != NULL) 1013 vmem_free(vmp, inaddr, size); 1014 1015 } 1016 1017 void 1018 segkmem_xfree(vmem_t *vmp, void *inaddr, size_t size, void (*func)(page_t *)) 1019 { 1020 segkmem_free_vn(vmp, inaddr, size, &kvp, func); 1021 } 1022 1023 void 1024 segkmem_free(vmem_t *vmp, void *inaddr, size_t size) 1025 { 1026 segkmem_free_vn(vmp, inaddr, size, &kvp, NULL); 1027 } 1028 1029 void 1030 segkmem_zio_free(vmem_t *vmp, void *inaddr, size_t size) 1031 { 1032 segkmem_free_vn(vmp, inaddr, size, &zvp, NULL); 1033 } 1034 1035 void 1036 segkmem_gc(void) 1037 { 1038 ASSERT(kvseg.s_base != NULL); 1039 while (segkmem_gc_list != NULL) { 1040 segkmem_gc_list_t *gc = segkmem_gc_list; 1041 segkmem_gc_list = gc->gc_next; 1042 segkmem_free(gc->gc_arena, gc, gc->gc_size); 1043 } 1044 } 1045 1046 /* 1047 * Legacy entry points from here to end of file. 1048 */ 1049 void 1050 segkmem_mapin(struct seg *seg, void *addr, size_t size, uint_t vprot, 1051 pfn_t pfn, uint_t flags) 1052 { 1053 hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1054 hat_devload(seg->s_as->a_hat, addr, size, pfn, vprot, 1055 flags | HAT_LOAD_LOCK); 1056 } 1057 1058 void 1059 segkmem_mapout(struct seg *seg, void *addr, size_t size) 1060 { 1061 hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1062 } 1063 1064 void * 1065 kmem_getpages(pgcnt_t npages, int kmflag) 1066 { 1067 return (kmem_alloc(ptob(npages), kmflag)); 1068 } 1069 1070 void 1071 kmem_freepages(void *addr, pgcnt_t npages) 1072 { 1073 kmem_free(addr, ptob(npages)); 1074 } 1075 1076 /* 1077 * segkmem_page_create_large() allocates a large page to be used for the kmem 1078 * caches. If kpr is enabled we ask for a relocatable page unless requested 1079 * otherwise. If kpr is disabled we have to ask for a non-reloc page 1080 */ 1081 static page_t * 1082 segkmem_page_create_large(void *addr, size_t size, int vmflag, void *arg) 1083 { 1084 int pgflags; 1085 1086 pgflags = PG_EXCL; 1087 1088 if (segkmem_reloc == 0 || (vmflag & VM_NORELOC)) 1089 pgflags |= PG_NORELOC; 1090 if (!(vmflag & VM_NOSLEEP)) 1091 pgflags |= PG_WAIT; 1092 if (vmflag & VM_PUSHPAGE) 1093 pgflags |= PG_PUSHPAGE; 1094 1095 return (page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size, 1096 pgflags, &kvseg, addr, arg)); 1097 } 1098 1099 /* 1100 * Allocate a large page to back the virtual address range 1101 * [addr, addr + size). If addr is NULL, allocate the virtual address 1102 * space as well. 1103 */ 1104 static void * 1105 segkmem_xalloc_lp(vmem_t *vmp, void *inaddr, size_t size, int vmflag, 1106 uint_t attr, page_t *(*page_create_func)(void *, size_t, int, void *), 1107 void *pcarg) 1108 { 1109 caddr_t addr = inaddr, pa; 1110 size_t lpsize = segkmem_lpsize; 1111 pgcnt_t npages = btopr(size); 1112 pgcnt_t nbpages = btop(lpsize); 1113 pgcnt_t nlpages = size >> segkmem_lpshift; 1114 size_t ppasize = nbpages * sizeof (page_t *); 1115 page_t *pp, *rootpp, **ppa, *pplist = NULL; 1116 int i; 1117 1118 vmflag |= VM_NOSLEEP; 1119 1120 if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) { 1121 return (NULL); 1122 } 1123 1124 /* 1125 * allocate an array we need for hat_memload_array. 1126 * we use a separate arena to avoid recursion. 1127 * we will not need this array when hat_memload_array learns pp++ 1128 */ 1129 if ((ppa = vmem_alloc(segkmem_ppa_arena, ppasize, vmflag)) == NULL) { 1130 goto fail_array_alloc; 1131 } 1132 1133 if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL) 1134 goto fail_vmem_alloc; 1135 1136 ASSERT(((uintptr_t)addr & (lpsize - 1)) == 0); 1137 1138 /* create all the pages */ 1139 for (pa = addr, i = 0; i < nlpages; i++, pa += lpsize) { 1140 if ((pp = page_create_func(pa, lpsize, vmflag, pcarg)) == NULL) 1141 goto fail_page_create; 1142 page_list_concat(&pplist, &pp); 1143 } 1144 1145 /* at this point we have all the resource to complete the request */ 1146 while ((rootpp = pplist) != NULL) { 1147 for (i = 0; i < nbpages; i++) { 1148 ASSERT(pplist != NULL); 1149 pp = pplist; 1150 page_sub(&pplist, pp); 1151 ASSERT(page_iolock_assert(pp)); 1152 page_io_unlock(pp); 1153 ppa[i] = pp; 1154 } 1155 /* 1156 * Load the locked entry. It's OK to preload the entry into the 1157 * TSB since we now support large mappings in the kernel TSB. 1158 */ 1159 hat_memload_array(kas.a_hat, 1160 (caddr_t)(uintptr_t)rootpp->p_offset, lpsize, 1161 ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr, 1162 HAT_LOAD_LOCK); 1163 1164 for (--i; i >= 0; --i) { 1165 ppa[i]->p_lckcnt = 1; 1166 page_unlock(ppa[i]); 1167 } 1168 } 1169 1170 vmem_free(segkmem_ppa_arena, ppa, ppasize); 1171 return (addr); 1172 1173 fail_page_create: 1174 while ((rootpp = pplist) != NULL) { 1175 for (i = 0, pp = pplist; i < nbpages; i++, pp = pplist) { 1176 ASSERT(pp != NULL); 1177 page_sub(&pplist, pp); 1178 ASSERT(page_iolock_assert(pp)); 1179 page_io_unlock(pp); 1180 } 1181 page_destroy_pages(rootpp); 1182 } 1183 1184 if (inaddr == NULL) 1185 vmem_free(vmp, addr, size); 1186 1187 fail_vmem_alloc: 1188 vmem_free(segkmem_ppa_arena, ppa, ppasize); 1189 1190 fail_array_alloc: 1191 page_unresv(npages); 1192 1193 return (NULL); 1194 } 1195 1196 static void 1197 segkmem_free_one_lp(caddr_t addr, size_t size) 1198 { 1199 page_t *pp, *rootpp = NULL; 1200 pgcnt_t pgs_left = btopr(size); 1201 1202 ASSERT(size == segkmem_lpsize); 1203 1204 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1205 1206 for (; pgs_left > 0; addr += PAGESIZE, pgs_left--) { 1207 pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL); 1208 if (pp == NULL) 1209 panic("segkmem_free_one_lp: page not found"); 1210 ASSERT(PAGE_EXCL(pp)); 1211 pp->p_lckcnt = 0; 1212 if (rootpp == NULL) 1213 rootpp = pp; 1214 } 1215 ASSERT(rootpp != NULL); 1216 page_destroy_pages(rootpp); 1217 1218 /* page_unresv() is done by the caller */ 1219 } 1220 1221 /* 1222 * This function is called to import new spans into the vmem arenas like 1223 * kmem_default_arena and kmem_oversize_arena. It first tries to import 1224 * spans from large page arena - kmem_lp_arena. In order to do this it might 1225 * have to "upgrade the requested size" to kmem_lp_arena quantum. If 1226 * it was not able to satisfy the upgraded request it then calls regular 1227 * segkmem_alloc() that satisfies the request by importing from "*vmp" arena 1228 */ 1229 /*ARGSUSED*/ 1230 void * 1231 segkmem_alloc_lp(vmem_t *vmp, size_t *sizep, size_t align, int vmflag) 1232 { 1233 size_t size; 1234 kthread_t *t = curthread; 1235 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1236 1237 ASSERT(sizep != NULL); 1238 1239 size = *sizep; 1240 1241 if (lpcb->lp_uselp && !(t->t_flag & T_PANIC) && 1242 !(vmflag & SEGKMEM_SHARELOCKED)) { 1243 1244 size_t kmemlp_qnt = segkmem_kmemlp_quantum; 1245 size_t asize = P2ROUNDUP(size, kmemlp_qnt); 1246 void *addr = NULL; 1247 ulong_t *lpthrtp = &lpcb->lp_throttle; 1248 ulong_t lpthrt = *lpthrtp; 1249 int dowakeup = 0; 1250 int doalloc = 1; 1251 1252 ASSERT(kmem_lp_arena != NULL); 1253 ASSERT(asize >= size); 1254 1255 if (lpthrt != 0) { 1256 /* try to update the throttle value */ 1257 lpthrt = atomic_add_long_nv(lpthrtp, 1); 1258 if (lpthrt >= segkmem_lpthrottle_max) { 1259 lpthrt = atomic_cas_ulong(lpthrtp, lpthrt, 1260 segkmem_lpthrottle_max / 4); 1261 } 1262 1263 /* 1264 * when we get above throttle start do an exponential 1265 * backoff at trying large pages and reaping 1266 */ 1267 if (lpthrt > segkmem_lpthrottle_start && 1268 (lpthrt & (lpthrt - 1))) { 1269 lpcb->allocs_throttled++; 1270 lpthrt--; 1271 if ((lpthrt & (lpthrt - 1)) == 0) 1272 kmem_reap(); 1273 return (segkmem_alloc(vmp, size, vmflag)); 1274 } 1275 } 1276 1277 if (!(vmflag & VM_NOSLEEP) && 1278 segkmem_heaplp_quantum >= (8 * kmemlp_qnt) && 1279 vmem_size(kmem_lp_arena, VMEM_FREE) <= kmemlp_qnt && 1280 asize < (segkmem_heaplp_quantum - kmemlp_qnt)) { 1281 1282 /* 1283 * we are low on free memory in kmem_lp_arena 1284 * we let only one guy to allocate heap_lp 1285 * quantum size chunk that everybody is going to 1286 * share 1287 */ 1288 mutex_enter(&lpcb->lp_lock); 1289 1290 if (lpcb->lp_wait) { 1291 1292 /* we are not the first one - wait */ 1293 cv_wait(&lpcb->lp_cv, &lpcb->lp_lock); 1294 if (vmem_size(kmem_lp_arena, VMEM_FREE) < 1295 kmemlp_qnt) { 1296 doalloc = 0; 1297 } 1298 } else if (vmem_size(kmem_lp_arena, VMEM_FREE) <= 1299 kmemlp_qnt) { 1300 1301 /* 1302 * we are the first one, make sure we import 1303 * a large page 1304 */ 1305 if (asize == kmemlp_qnt) 1306 asize += kmemlp_qnt; 1307 dowakeup = 1; 1308 lpcb->lp_wait = 1; 1309 } 1310 1311 mutex_exit(&lpcb->lp_lock); 1312 } 1313 1314 /* 1315 * VM_ABORT flag prevents sleeps in vmem_xalloc when 1316 * large pages are not available. In that case this allocation 1317 * attempt will fail and we will retry allocation with small 1318 * pages. We also do not want to panic if this allocation fails 1319 * because we are going to retry. 1320 */ 1321 if (doalloc) { 1322 addr = vmem_alloc(kmem_lp_arena, asize, 1323 (vmflag | VM_ABORT) & ~VM_PANIC); 1324 1325 if (dowakeup) { 1326 mutex_enter(&lpcb->lp_lock); 1327 ASSERT(lpcb->lp_wait != 0); 1328 lpcb->lp_wait = 0; 1329 cv_broadcast(&lpcb->lp_cv); 1330 mutex_exit(&lpcb->lp_lock); 1331 } 1332 } 1333 1334 if (addr != NULL) { 1335 *sizep = asize; 1336 *lpthrtp = 0; 1337 return (addr); 1338 } 1339 1340 if (vmflag & VM_NOSLEEP) 1341 lpcb->nosleep_allocs_failed++; 1342 else 1343 lpcb->sleep_allocs_failed++; 1344 lpcb->alloc_bytes_failed += size; 1345 1346 /* if large page throttling is not started yet do it */ 1347 if (segkmem_use_lpthrottle && lpthrt == 0) { 1348 lpthrt = atomic_cas_ulong(lpthrtp, lpthrt, 1); 1349 } 1350 } 1351 return (segkmem_alloc(vmp, size, vmflag)); 1352 } 1353 1354 void 1355 segkmem_free_lp(vmem_t *vmp, void *inaddr, size_t size) 1356 { 1357 if (kmem_lp_arena == NULL || !IS_KMEM_VA_LARGEPAGE((caddr_t)inaddr)) { 1358 segkmem_free(vmp, inaddr, size); 1359 } else { 1360 vmem_free(kmem_lp_arena, inaddr, size); 1361 } 1362 } 1363 1364 /* 1365 * segkmem_alloc_lpi() imports virtual memory from large page heap arena 1366 * into kmem_lp arena. In the process it maps the imported segment with 1367 * large pages 1368 */ 1369 static void * 1370 segkmem_alloc_lpi(vmem_t *vmp, size_t size, int vmflag) 1371 { 1372 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1373 void *addr; 1374 1375 ASSERT(size != 0); 1376 ASSERT(vmp == heap_lp_arena); 1377 1378 /* do not allow large page heap grow beyound limits */ 1379 if (vmem_size(vmp, VMEM_ALLOC) >= segkmem_kmemlp_max) { 1380 lpcb->allocs_limited++; 1381 return (NULL); 1382 } 1383 1384 addr = segkmem_xalloc_lp(vmp, NULL, size, vmflag, 0, 1385 segkmem_page_create_large, NULL); 1386 return (addr); 1387 } 1388 1389 /* 1390 * segkmem_free_lpi() returns virtual memory back into large page heap arena 1391 * from kmem_lp arena. Beore doing this it unmaps the segment and frees 1392 * large pages used to map it. 1393 */ 1394 static void 1395 segkmem_free_lpi(vmem_t *vmp, void *inaddr, size_t size) 1396 { 1397 pgcnt_t nlpages = size >> segkmem_lpshift; 1398 size_t lpsize = segkmem_lpsize; 1399 caddr_t addr = inaddr; 1400 pgcnt_t npages = btopr(size); 1401 int i; 1402 1403 ASSERT(vmp == heap_lp_arena); 1404 ASSERT(IS_KMEM_VA_LARGEPAGE(addr)); 1405 ASSERT(((uintptr_t)inaddr & (lpsize - 1)) == 0); 1406 1407 for (i = 0; i < nlpages; i++) { 1408 segkmem_free_one_lp(addr, lpsize); 1409 addr += lpsize; 1410 } 1411 1412 page_unresv(npages); 1413 1414 vmem_free(vmp, inaddr, size); 1415 } 1416 1417 /* 1418 * This function is called at system boot time by kmem_init right after 1419 * /etc/system file has been read. It checks based on hardware configuration 1420 * and /etc/system settings if system is going to use large pages. The 1421 * initialiazation necessary to actually start using large pages 1422 * happens later in the process after segkmem_heap_lp_init() is called. 1423 */ 1424 int 1425 segkmem_lpsetup() 1426 { 1427 int use_large_pages = 0; 1428 1429 #ifdef __sparc 1430 1431 size_t memtotal = physmem * PAGESIZE; 1432 1433 if (heap_lp_base == NULL) { 1434 segkmem_lpsize = PAGESIZE; 1435 return (0); 1436 } 1437 1438 /* get a platform dependent value of large page size for kernel heap */ 1439 segkmem_lpsize = get_segkmem_lpsize(segkmem_lpsize); 1440 1441 if (segkmem_lpsize <= PAGESIZE) { 1442 /* 1443 * put virtual space reserved for the large page kernel 1444 * back to the regular heap 1445 */ 1446 vmem_xfree(heap_arena, heap_lp_base, 1447 heap_lp_end - heap_lp_base); 1448 heap_lp_base = NULL; 1449 heap_lp_end = NULL; 1450 segkmem_lpsize = PAGESIZE; 1451 return (0); 1452 } 1453 1454 /* set heap_lp quantum if necessary */ 1455 if (segkmem_heaplp_quantum == 0 || 1456 (segkmem_heaplp_quantum & (segkmem_heaplp_quantum - 1)) || 1457 P2PHASE(segkmem_heaplp_quantum, segkmem_lpsize)) { 1458 segkmem_heaplp_quantum = segkmem_lpsize; 1459 } 1460 1461 /* set kmem_lp quantum if necessary */ 1462 if (segkmem_kmemlp_quantum == 0 || 1463 (segkmem_kmemlp_quantum & (segkmem_kmemlp_quantum - 1)) || 1464 segkmem_kmemlp_quantum > segkmem_heaplp_quantum) { 1465 segkmem_kmemlp_quantum = segkmem_heaplp_quantum; 1466 } 1467 1468 /* set total amount of memory allowed for large page kernel heap */ 1469 if (segkmem_kmemlp_max == 0) { 1470 if (segkmem_kmemlp_pcnt == 0 || segkmem_kmemlp_pcnt > 100) 1471 segkmem_kmemlp_pcnt = 12; 1472 segkmem_kmemlp_max = (memtotal * segkmem_kmemlp_pcnt) / 100; 1473 } 1474 segkmem_kmemlp_max = P2ROUNDUP(segkmem_kmemlp_max, 1475 segkmem_heaplp_quantum); 1476 1477 /* fix lp kmem preallocation request if necesssary */ 1478 if (segkmem_kmemlp_min) { 1479 segkmem_kmemlp_min = P2ROUNDUP(segkmem_kmemlp_min, 1480 segkmem_heaplp_quantum); 1481 if (segkmem_kmemlp_min > segkmem_kmemlp_max) 1482 segkmem_kmemlp_min = segkmem_kmemlp_max; 1483 } 1484 1485 use_large_pages = 1; 1486 segkmem_lpszc = page_szc(segkmem_lpsize); 1487 segkmem_lpshift = page_get_shift(segkmem_lpszc); 1488 1489 #endif 1490 return (use_large_pages); 1491 } 1492 1493 void 1494 segkmem_zio_init(void *zio_mem_base, size_t zio_mem_size) 1495 { 1496 ASSERT(zio_mem_base != NULL); 1497 ASSERT(zio_mem_size != 0); 1498 1499 zio_arena = vmem_create("zio", zio_mem_base, zio_mem_size, PAGESIZE, 1500 NULL, NULL, NULL, 0, VM_SLEEP); 1501 1502 zio_alloc_arena = vmem_create("zio_buf", NULL, 0, PAGESIZE, 1503 segkmem_zio_alloc, segkmem_zio_free, zio_arena, 0, VM_SLEEP); 1504 1505 ASSERT(zio_arena != NULL); 1506 ASSERT(zio_alloc_arena != NULL); 1507 } 1508 1509 #ifdef __sparc 1510 1511 1512 static void * 1513 segkmem_alloc_ppa(vmem_t *vmp, size_t size, int vmflag) 1514 { 1515 size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *); 1516 void *addr; 1517 1518 if (ppaquantum <= PAGESIZE) 1519 return (segkmem_alloc(vmp, size, vmflag)); 1520 1521 ASSERT((size & (ppaquantum - 1)) == 0); 1522 1523 addr = vmem_xalloc(vmp, size, ppaquantum, 0, 0, NULL, NULL, vmflag); 1524 if (addr != NULL && segkmem_xalloc(vmp, addr, size, vmflag, 0, 1525 segkmem_page_create, NULL) == NULL) { 1526 vmem_xfree(vmp, addr, size); 1527 addr = NULL; 1528 } 1529 1530 return (addr); 1531 } 1532 1533 static void 1534 segkmem_free_ppa(vmem_t *vmp, void *addr, size_t size) 1535 { 1536 size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *); 1537 1538 ASSERT(addr != NULL); 1539 1540 if (ppaquantum <= PAGESIZE) { 1541 segkmem_free(vmp, addr, size); 1542 } else { 1543 segkmem_free(NULL, addr, size); 1544 vmem_xfree(vmp, addr, size); 1545 } 1546 } 1547 1548 void 1549 segkmem_heap_lp_init() 1550 { 1551 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1552 size_t heap_lp_size = heap_lp_end - heap_lp_base; 1553 size_t lpsize = segkmem_lpsize; 1554 size_t ppaquantum; 1555 void *addr; 1556 1557 if (segkmem_lpsize <= PAGESIZE) { 1558 ASSERT(heap_lp_base == NULL); 1559 ASSERT(heap_lp_end == NULL); 1560 return; 1561 } 1562 1563 ASSERT(segkmem_heaplp_quantum >= lpsize); 1564 ASSERT((segkmem_heaplp_quantum & (lpsize - 1)) == 0); 1565 ASSERT(lpcb->lp_uselp == 0); 1566 ASSERT(heap_lp_base != NULL); 1567 ASSERT(heap_lp_end != NULL); 1568 ASSERT(heap_lp_base < heap_lp_end); 1569 ASSERT(heap_lp_arena == NULL); 1570 ASSERT(((uintptr_t)heap_lp_base & (lpsize - 1)) == 0); 1571 ASSERT(((uintptr_t)heap_lp_end & (lpsize - 1)) == 0); 1572 1573 /* create large page heap arena */ 1574 heap_lp_arena = vmem_create("heap_lp", heap_lp_base, heap_lp_size, 1575 segkmem_heaplp_quantum, NULL, NULL, NULL, 0, VM_SLEEP); 1576 1577 ASSERT(heap_lp_arena != NULL); 1578 1579 /* This arena caches memory already mapped by large pages */ 1580 kmem_lp_arena = vmem_create("kmem_lp", NULL, 0, segkmem_kmemlp_quantum, 1581 segkmem_alloc_lpi, segkmem_free_lpi, heap_lp_arena, 0, VM_SLEEP); 1582 1583 ASSERT(kmem_lp_arena != NULL); 1584 1585 mutex_init(&lpcb->lp_lock, NULL, MUTEX_DEFAULT, NULL); 1586 cv_init(&lpcb->lp_cv, NULL, CV_DEFAULT, NULL); 1587 1588 /* 1589 * this arena is used for the array of page_t pointers necessary 1590 * to call hat_mem_load_array 1591 */ 1592 ppaquantum = btopr(lpsize) * sizeof (page_t *); 1593 segkmem_ppa_arena = vmem_create("segkmem_ppa", NULL, 0, ppaquantum, 1594 segkmem_alloc_ppa, segkmem_free_ppa, heap_arena, ppaquantum, 1595 VM_SLEEP); 1596 1597 ASSERT(segkmem_ppa_arena != NULL); 1598 1599 /* prealloacate some memory for the lp kernel heap */ 1600 if (segkmem_kmemlp_min) { 1601 1602 ASSERT(P2PHASE(segkmem_kmemlp_min, 1603 segkmem_heaplp_quantum) == 0); 1604 1605 if ((addr = segkmem_alloc_lpi(heap_lp_arena, 1606 segkmem_kmemlp_min, VM_SLEEP)) != NULL) { 1607 1608 addr = vmem_add(kmem_lp_arena, addr, 1609 segkmem_kmemlp_min, VM_SLEEP); 1610 ASSERT(addr != NULL); 1611 } 1612 } 1613 1614 lpcb->lp_uselp = 1; 1615 } 1616 1617 #endif 1618