xref: /titanic_50/usr/src/uts/common/vm/page.h (revision adecd3c68045d04dc367d30faf2eb5cac1f45d5a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 #ifndef	_VM_PAGE_H
40 #define	_VM_PAGE_H
41 
42 #pragma ident	"%Z%%M%	%I%	%E% SMI"
43 
44 #include <vm/seg.h>
45 
46 #ifdef	__cplusplus
47 extern "C" {
48 #endif
49 
50 #if defined(_KERNEL) || defined(_KMEMUSER)
51 
52 /*
53  * Shared/Exclusive lock.
54  */
55 
56 /*
57  * Types of page locking supported by page_lock & friends.
58  */
59 typedef enum {
60 	SE_SHARED,
61 	SE_EXCL			/* exclusive lock (value == -1) */
62 } se_t;
63 
64 /*
65  * For requesting that page_lock reclaim the page from the free list.
66  */
67 typedef enum {
68 	P_RECLAIM,		/* reclaim page from free list */
69 	P_NO_RECLAIM		/* DON`T reclaim the page	*/
70 } reclaim_t;
71 
72 /*
73  * Callers of page_try_reclaim_lock and page_lock_es can use this flag
74  * to get SE_EXCL access before reader/writers are given access.
75  */
76 #define	SE_EXCL_WANTED	0x02
77 
78 /*
79  * All page_*lock() requests will be denied unless this flag is set in
80  * the 'es' parameter.
81  */
82 #define	SE_RETIRED	0x04
83 
84 #endif	/* _KERNEL | _KMEMUSER */
85 
86 typedef int	selock_t;
87 
88 /*
89  * Define VM_STATS to turn on all sorts of statistic gathering about
90  * the VM layer.  By default, it is only turned on when DEBUG is
91  * also defined.
92  */
93 #ifdef DEBUG
94 #define	VM_STATS
95 #endif	/* DEBUG */
96 
97 #ifdef VM_STATS
98 #define	VM_STAT_ADD(stat)			(stat)++
99 #define	VM_STAT_COND_ADD(cond, stat)		((void) (!(cond) || (stat)++))
100 #else
101 #define	VM_STAT_ADD(stat)
102 #define	VM_STAT_COND_ADD(cond, stat)
103 #endif	/* VM_STATS */
104 
105 #ifdef _KERNEL
106 
107 /*
108  * Macros to acquire and release the page logical lock.
109  */
110 #define	page_struct_lock(pp)	mutex_enter(&page_llock)
111 #define	page_struct_unlock(pp)	mutex_exit(&page_llock)
112 
113 #endif	/* _KERNEL */
114 
115 #include <sys/t_lock.h>
116 
117 struct as;
118 
119 /*
120  * Each physical page has a page structure, which is used to maintain
121  * these pages as a cache.  A page can be found via a hashed lookup
122  * based on the [vp, offset].  If a page has an [vp, offset] identity,
123  * then it is entered on a doubly linked circular list off the
124  * vnode using the vpnext/vpprev pointers.   If the p_free bit
125  * is on, then the page is also on a doubly linked circular free
126  * list using next/prev pointers.  If the "p_selock" and "p_iolock"
127  * are held, then the page is currently being read in (exclusive p_selock)
128  * or written back (shared p_selock).  In this case, the next/prev pointers
129  * are used to link the pages together for a consecutive i/o request.  If
130  * the page is being brought in from its backing store, then other processes
131  * will wait for the i/o to complete before attaching to the page since it
132  * will have an "exclusive" lock.
133  *
134  * Each page structure has the locks described below along with
135  * the fields they protect:
136  *
137  *	p_selock	This is a per-page shared/exclusive lock that is
138  *			used to implement the logical shared/exclusive
139  *			lock for each page.  The "shared" lock is normally
140  *			used in most cases while the "exclusive" lock is
141  *			required to destroy or retain exclusive access to
142  *			a page (e.g., while reading in pages).  The appropriate
143  *			lock is always held whenever there is any reference
144  *			to a page structure (e.g., during i/o).
145  *			(Note that with the addition of the "writer-lock-wanted"
146  *			semantics (via SE_EWANTED), threads must not acquire
147  *			multiple reader locks or else a deadly embrace will
148  *			occur in the following situation: thread 1 obtains a
149  *			reader lock; next thread 2 fails to get a writer lock
150  *			but specified SE_EWANTED so it will wait by either
151  *			blocking (when using page_lock_es) or spinning while
152  *			retrying (when using page_try_reclaim_lock) until the
153  *			reader lock is released; then thread 1 attempts to
154  *			get another reader lock but is denied due to
155  *			SE_EWANTED being set, and now both threads are in a
156  *			deadly embrace.)
157  *
158  *				p_hash
159  *				p_vnode
160  *				p_offset
161  *
162  *				p_free
163  *				p_age
164  *
165  *	p_iolock	This is a binary semaphore lock that provides
166  *			exclusive access to the i/o list links in each
167  *			page structure.  It is always held while the page
168  *			is on an i/o list (i.e., involved in i/o).  That is,
169  *			even though a page may be only `shared' locked
170  *			while it is doing a write, the following fields may
171  *			change anyway.  Normally, the page must be
172  *			`exclusively' locked to change anything in it.
173  *
174  *				p_next
175  *				p_prev
176  *
177  * The following fields are protected by the global page_llock:
178  *
179  *				p_lckcnt
180  *				p_cowcnt
181  *
182  * The following lists are protected by the global page_freelock:
183  *
184  *				page_cachelist
185  *				page_freelist
186  *
187  * The following, for our purposes, are protected by
188  * the global freemem_lock:
189  *
190  *				freemem
191  *				freemem_wait
192  *				freemem_cv
193  *
194  * The following fields are protected by hat layer lock(s).  When a page
195  * structure is not mapped and is not associated with a vnode (after a call
196  * to page_hashout() for example) the p_nrm field may be modified with out
197  * holding the hat layer lock:
198  *
199  *				p_nrm
200  *				p_mapping
201  *				p_share
202  *
203  * The following field is file system dependent.  How it is used and
204  * the locking strategies applied are up to the individual file system
205  * implementation.
206  *
207  *				p_fsdata
208  *
209  * The page structure is used to represent and control the system's
210  * physical pages.  There is one instance of the structure for each
211  * page that is not permenately allocated.  For example, the pages that
212  * hold the page structures are permanently held by the kernel
213  * and hence do not need page structures to track them.  The array
214  * of page structures is allocated early on in the kernel's life and
215  * is based on the amount of available physical memory.
216  *
217  * Each page structure may simultaneously appear on several linked lists.
218  * The lists are:  hash list, free or in i/o list, and a vnode's page list.
219  * Each type of list is protected by a different group of mutexes as described
220  * below:
221  *
222  * The hash list is used to quickly find a page when the page's vnode and
223  * offset within the vnode are known.  Each page that is hashed is
224  * connected via the `p_hash' field.  The anchor for each hash is in the
225  * array `page_hash'.  An array of mutexes, `ph_mutex', protects the
226  * lists anchored by page_hash[].  To either search or modify a given hash
227  * list, the appropriate mutex in the ph_mutex array must be held.
228  *
229  * The free list contains pages that are `free to be given away'.  For
230  * efficiency reasons, pages on this list are placed in two catagories:
231  * pages that are still associated with a vnode, and pages that are not
232  * associated with a vnode.  Free pages always have their `p_free' bit set,
233  * free pages that are still associated with a vnode also have their
234  * `p_age' bit set.  Pages on the free list are connected via their
235  * `p_next' and `p_prev' fields.  When a page is involved in some sort
236  * of i/o, it is not free and these fields may be used to link associated
237  * pages together.  At the moment, the free list is protected by a
238  * single mutex `page_freelock'.  The list of free pages still associated
239  * with a vnode is anchored by `page_cachelist' while other free pages
240  * are anchored in architecture dependent ways (to handle page coloring etc.).
241  *
242  * Pages associated with a given vnode appear on a list anchored in the
243  * vnode by the `v_pages' field.  They are linked together with
244  * `p_vpnext' and `p_vpprev'.  The field `p_offset' contains a page's
245  * offset within the vnode.  The pages on this list are not kept in
246  * offset order.  These lists, in a manner similar to the hash lists,
247  * are protected by an array of mutexes called `vph_hash'.  Before
248  * searching or modifying this chain the appropriate mutex in the
249  * vph_hash[] array must be held.
250  *
251  * Again, each of the lists that a page can appear on is protected by a
252  * mutex.  Before reading or writing any of the fields comprising the
253  * list, the appropriate lock must be held.  These list locks should only
254  * be held for very short intervals.
255  *
256  * In addition to the list locks, each page structure contains a
257  * shared/exclusive lock that protects various fields within it.
258  * To modify one of these fields, the `p_selock' must be exclusively held.
259  * To read a field with a degree of certainty, the lock must be at least
260  * held shared.
261  *
262  * Removing a page structure from one of the lists requires holding
263  * the appropriate list lock and the page's p_selock.  A page may be
264  * prevented from changing identity, being freed, or otherwise modified
265  * by acquiring p_selock shared.
266  *
267  * To avoid deadlocks, a strict locking protocol must be followed.  Basically
268  * there are two cases:  In the first case, the page structure in question
269  * is known ahead of time (e.g., when the page is to be added or removed
270  * from a list).  In the second case, the page structure is not known and
271  * must be found by searching one of the lists.
272  *
273  * When adding or removing a known page to one of the lists, first the
274  * page must be exclusively locked (since at least one of its fields
275  * will be modified), second the lock protecting the list must be acquired,
276  * third the page inserted or deleted, and finally the list lock dropped.
277  *
278  * The more interesting case occures when the particular page structure
279  * is not known ahead of time.  For example, when a call is made to
280  * page_lookup(), it is not known if a page with the desired (vnode and
281  * offset pair) identity exists.  So the appropriate mutex in ph_mutex is
282  * acquired, the hash list searched, and if the desired page is found
283  * an attempt is made to lock it.  The attempt to acquire p_selock must
284  * not block while the hash list lock is held.  A deadlock could occure
285  * if some other process was trying to remove the page from the list.
286  * The removing process (following the above protocol) would have exclusively
287  * locked the page, and be spinning waiting to acquire the lock protecting
288  * the hash list.  Since the searching process holds the hash list lock
289  * and is waiting to acquire the page lock, a deadlock occurs.
290  *
291  * The proper scheme to follow is: first, lock the appropriate list,
292  * search the list, and if the desired page is found either use
293  * page_trylock() (which will not block) or pass the address of the
294  * list lock to page_lock().  If page_lock() can not acquire the page's
295  * lock, it will drop the list lock before going to sleep.  page_lock()
296  * returns a value to indicate if the list lock was dropped allowing the
297  * calling program to react appropriately (i.e., retry the operation).
298  *
299  * If the list lock was dropped before the attempt at locking the page
300  * was made, checks would have to be made to ensure that the page had
301  * not changed identity before its lock was obtained.  This is because
302  * the interval between dropping the list lock and acquiring the page
303  * lock is indeterminate.
304  *
305  * In addition, when both a hash list lock (ph_mutex[]) and a vnode list
306  * lock (vph_mutex[]) are needed, the hash list lock must be acquired first.
307  * The routine page_hashin() is a good example of this sequence.
308  * This sequence is ASSERTed by checking that the vph_mutex[] is not held
309  * just before each acquisition of one of the mutexs in ph_mutex[].
310  *
311  * So, as a quick summary:
312  *
313  * 	pse_mutex[]'s protect the p_selock and p_cv fields.
314  *
315  * 	p_selock protects the p_free, p_age, p_vnode, p_offset and p_hash,
316  *
317  * 	ph_mutex[]'s protect the page_hash[] array and its chains.
318  *
319  * 	vph_mutex[]'s protect the v_pages field and the vp page chains.
320  *
321  *	First lock the page, then the hash chain, then the vnode chain.  When
322  *	this is not possible `trylocks' must be used.  Sleeping while holding
323  *	any of these mutexes (p_selock is not a mutex) is not allowed.
324  *
325  *
326  *	field		reading		writing		    ordering
327  *	======================================================================
328  *	p_vnode		p_selock(E,S)	p_selock(E)
329  *	p_offset
330  *	p_free
331  *	p_age
332  *	=====================================================================
333  *	p_hash		p_selock(E,S)	p_selock(E) &&	    p_selock, ph_mutex
334  *					ph_mutex[]
335  *	=====================================================================
336  *	p_vpnext	p_selock(E,S)	p_selock(E) &&	    p_selock, vph_mutex
337  *	p_vpprev			vph_mutex[]
338  *	=====================================================================
339  *	When the p_free bit is set:
340  *
341  *	p_next		p_selock(E,S)	p_selock(E) &&	    p_selock,
342  *	p_prev				page_freelock	    page_freelock
343  *
344  *	When the p_free bit is not set:
345  *
346  *	p_next		p_selock(E,S)	p_selock(E) &&	    p_selock, p_iolock
347  *	p_prev				p_iolock
348  *	=====================================================================
349  *	p_selock	pse_mutex[]	pse_mutex[]	    can`t acquire any
350  *	p_cv						    other mutexes or
351  *							    sleep while holding
352  *							    this lock.
353  *	=====================================================================
354  *	p_lckcnt	p_selock(E,S)	p_selock(E) &&
355  *	p_cowcnt			page_llock
356  *	=====================================================================
357  *	p_nrm		hat layer lock	hat layer lock
358  *	p_mapping
359  *	p_pagenum
360  *	=====================================================================
361  *
362  *	where:
363  *		E----> exclusive version of p_selock.
364  *		S----> shared version of p_selock.
365  *
366  *
367  *	Global data structures and variable:
368  *
369  *	field		reading		writing		    ordering
370  *	=====================================================================
371  *	page_hash[]	ph_mutex[]	ph_mutex[]	    can hold this lock
372  *							    before acquiring
373  *							    a vph_mutex or
374  *							    pse_mutex.
375  *	=====================================================================
376  *	vp->v_pages	vph_mutex[]	vph_mutex[]	    can only acquire
377  *							    a pse_mutex while
378  *							    holding this lock.
379  *	=====================================================================
380  *	page_cachelist	page_freelock	page_freelock	    can't acquire any
381  *	page_freelist	page_freelock	page_freelock
382  *	=====================================================================
383  *	freemem		freemem_lock	freemem_lock	    can't acquire any
384  *	freemem_wait					    other mutexes while
385  *	freemem_cv					    holding this mutex.
386  *	=====================================================================
387  *
388  * Page relocation, PG_NORELOC and P_NORELOC.
389  *
390  * Pages may be relocated using the page_relocate() interface. Relocation
391  * involves moving the contents and identity of a page to another, free page.
392  * To relocate a page, the SE_EXCL lock must be obtained. The way to prevent
393  * a page from being relocated is to hold the SE_SHARED lock (the SE_EXCL
394  * lock must not be held indefinitely). If the page is going to be held
395  * SE_SHARED indefinitely, then the PG_NORELOC hint should be passed
396  * to page_create_va so that pages that are prevented from being relocated
397  * can be managed differently by the platform specific layer.
398  *
399  * Pages locked in memory using page_pp_lock (p_lckcnt/p_cowcnt != 0)
400  * are guaranteed to be held in memory, but can still be relocated
401  * providing the SE_EXCL lock can be obtained.
402  *
403  * The P_NORELOC bit in the page_t.p_state field is provided for use by
404  * the platform specific code in managing pages when the PG_NORELOC
405  * hint is used.
406  *
407  * Memory delete and page locking.
408  *
409  * The set of all usable pages is managed using the global page list as
410  * implemented by the memseg structure defined below. When memory is added
411  * or deleted this list changes. Additions to this list guarantee that the
412  * list is never corrupt.  In order to avoid the necessity of an additional
413  * lock to protect against failed accesses to the memseg being deleted and,
414  * more importantly, the page_ts, the memseg structure is never freed and the
415  * page_t virtual address space is remapped to a page (or pages) of
416  * zeros.  If a page_t is manipulated while it is p_selock'd, or if it is
417  * locked indirectly via a hash or freelist lock, it is not possible for
418  * memory delete to collect the page and so that part of the page list is
419  * prevented from being deleted. If the page is referenced outside of one
420  * of these locks, it is possible for the page_t being referenced to be
421  * deleted.  Examples of this are page_t pointers returned by
422  * page_numtopp_nolock, page_first and page_next.  Providing the page_t
423  * is re-checked after taking the p_selock (for p_vnode != NULL), the
424  * remapping to the zero pages will be detected.
425  *
426  *
427  * Page size (p_szc field) and page locking.
428  *
429  * p_szc field of free pages is changed by free list manager under freelist
430  * locks and is of no concern to the rest of VM subsystem.
431  *
432  * p_szc changes of allocated anonymous (swapfs) can only be done only after
433  * exclusively locking all constituent pages and calling hat_pageunload() on
434  * each of them. To prevent p_szc changes of non free anonymous (swapfs) large
435  * pages it's enough to either lock SHARED any of constituent pages or prevent
436  * hat_pageunload() by holding hat level lock that protects mapping lists (this
437  * method is for hat code only)
438  *
439  * To increase (promote) p_szc of allocated non anonymous file system pages
440  * one has to first lock exclusively all involved constituent pages and call
441  * hat_pageunload() on each of them. To prevent p_szc promote it's enough to
442  * either lock SHARED any of constituent pages that will be needed to make a
443  * large page or prevent hat_pageunload() by holding hat level lock that
444  * protects mapping lists (this method is for hat code only).
445  *
446  * To decrease (demote) p_szc of an allocated non anonymous file system large
447  * page one can either use the same method as used for changeing p_szc of
448  * anonymous large pages or if it's not possible to lock all constituent pages
449  * exclusively a different method can be used. In the second method one only
450  * has to exclusively lock one of constituent pages but then one has to
451  * acquire further locks by calling page_szc_lock() and
452  * hat_page_demote(). hat_page_demote() acquires hat level locks and then
453  * demotes the page. This mechanism relies on the fact that any code that
454  * needs to prevent p_szc of a file system large page from changeing either
455  * locks all constituent large pages at least SHARED or locks some pages at
456  * least SHARED and calls page_szc_lock() or uses hat level page locks.
457  * Demotion using this method is implemented by page_demote_vp_pages().
458  * Please see comments in front of page_demote_vp_pages(), hat_page_demote()
459  * and page_szc_lock() for more details.
460  *
461  * Lock order: p_selock, page_szc_lock, ph_mutex/vph_mutex/freelist,
462  * hat level locks.
463  */
464 
465 typedef struct page {
466 	u_offset_t	p_offset;	/* offset into vnode for this page */
467 	struct vnode	*p_vnode;	/* vnode that this page is named by */
468 	selock_t	p_selock;	/* shared/exclusive lock on the page */
469 #if defined(_LP64)
470 	uint_t		p_vpmref;	/* vpm ref - index of the vpmap_t */
471 #endif
472 	struct page	*p_hash;	/* hash by [vnode, offset] */
473 	struct page	*p_vpnext;	/* next page in vnode list */
474 	struct page	*p_vpprev;	/* prev page in vnode list */
475 	struct page	*p_next;	/* next page in free/intrans lists */
476 	struct page	*p_prev;	/* prev page in free/intrans lists */
477 	ushort_t	p_lckcnt;	/* number of locks on page data */
478 	ushort_t	p_cowcnt;	/* number of copy on write lock */
479 	kcondvar_t	p_cv;		/* page struct's condition var */
480 	kcondvar_t	p_io_cv;	/* for iolock */
481 	uchar_t		p_iolock_state;	/* replaces p_iolock */
482 	volatile uchar_t p_szc;		/* page size code */
483 	uchar_t		p_fsdata;	/* file system dependent byte */
484 	uchar_t		p_state;	/* p_free, p_noreloc */
485 	uchar_t		p_nrm;		/* non-cache, ref, mod readonly bits */
486 #if defined(__sparc)
487 	uchar_t		p_vcolor;	/* virtual color */
488 #else
489 	uchar_t		p_embed;	/* x86 - changes p_mapping & p_index */
490 #endif
491 	uchar_t		p_index;	/* MPSS mapping info. Not used on x86 */
492 	uchar_t		p_toxic;	/* page has an unrecoverable error */
493 	void		*p_mapping;	/* hat specific translation info */
494 	pfn_t		p_pagenum;	/* physical page number */
495 
496 	uint_t		p_share;	/* number of translations */
497 #if defined(_LP64)
498 	uint_t		p_sharepad;	/* pad for growing p_share */
499 #endif
500 	uint_t		p_slckcnt;	/* number of softlocks */
501 #if defined(__sparc)
502 	uint_t		p_kpmref;	/* number of kpm mapping sharers */
503 	struct kpme	*p_kpmelist;	/* kpm specific mapping info */
504 #else
505 	/* index of entry in p_map when p_embed is set */
506 	uint_t		p_mlentry;
507 #endif
508 #if defined(_LP64)
509 	kmutex_t	p_ilock;	/* protects p_vpmref */
510 #else
511 	uint64_t	p_msresv_2;	/* page allocation debugging */
512 #endif
513 } page_t;
514 
515 
516 typedef	page_t	devpage_t;
517 #define	devpage	page
518 
519 #define	PAGE_LOCK_MAXIMUM \
520 	((1 << (sizeof (((page_t *)0)->p_lckcnt) * NBBY)) - 1)
521 
522 #define	PAGE_SLOCK_MAXIMUM UINT_MAX
523 
524 /*
525  * Page hash table is a power-of-two in size, externally chained
526  * through the hash field.  PAGE_HASHAVELEN is the average length
527  * desired for this chain, from which the size of the page_hash
528  * table is derived at boot time and stored in the kernel variable
529  * page_hashsz.  In the hash function it is given by PAGE_HASHSZ.
530  *
531  * PAGE_HASH_FUNC returns an index into the page_hash[] array.  This
532  * index is also used to derive the mutex that protects the chain.
533  *
534  * In constructing the hash function, first we dispose of unimportant bits
535  * (page offset from "off" and the low 3 bits of "vp" which are zero for
536  * struct alignment). Then shift and sum the remaining bits a couple times
537  * in order to get as many source bits from the two source values into the
538  * resulting hashed value.  Note that this will perform quickly, since the
539  * shifting/summing are fast register to register operations with no additional
540  * memory references).
541  */
542 #if NCPU < 4
543 #define	PH_TABLE_SIZE	16
544 #define	VP_SHIFT	7
545 #else
546 #define	PH_TABLE_SIZE	128
547 #define	VP_SHIFT	9
548 #endif
549 
550 /*
551  * The amount to use for the successive shifts in the hash function below.
552  * The actual value is LOG2(PH_TABLE_SIZE), so that as many bits as
553  * possible will filter thru PAGE_HASH_FUNC() and PAGE_HASH_MUTEX().
554  */
555 #define	PH_SHIFT_SIZE   (7)
556 
557 #define	PAGE_HASHSZ	page_hashsz
558 #define	PAGE_HASHAVELEN		4
559 #define	PAGE_HASH_FUNC(vp, off) \
560 	((((uintptr_t)(off) >> PAGESHIFT) + \
561 		((uintptr_t)(off) >> (PAGESHIFT + PH_SHIFT_SIZE)) + \
562 		((uintptr_t)(vp) >> 3) + \
563 		((uintptr_t)(vp) >> (3 + PH_SHIFT_SIZE)) + \
564 		((uintptr_t)(vp) >> (3 + 2 * PH_SHIFT_SIZE))) & \
565 		(PAGE_HASHSZ - 1))
566 #ifdef _KERNEL
567 
568 /*
569  * The page hash value is re-hashed to an index for the ph_mutex array.
570  *
571  * For 64 bit kernels, the mutex array is padded out to prevent false
572  * sharing of cache sub-blocks (64 bytes) of adjacent mutexes.
573  *
574  * For 32 bit kernels, we don't want to waste kernel address space with
575  * padding, so instead we rely on the hash function to introduce skew of
576  * adjacent vnode/offset indexes (the left shift part of the hash function).
577  * Since sizeof (kmutex_t) is 8, we shift an additional 3 to skew to a different
578  * 64 byte sub-block.
579  */
580 typedef struct pad_mutex {
581 	kmutex_t	pad_mutex;
582 #ifdef _LP64
583 	char		pad_pad[64 - sizeof (kmutex_t)];
584 #endif
585 } pad_mutex_t;
586 extern pad_mutex_t ph_mutex[];
587 
588 #define	PAGE_HASH_MUTEX(x) \
589 	&(ph_mutex[((x) + ((x) >> VP_SHIFT) + ((x) << 3)) & \
590 		(PH_TABLE_SIZE - 1)].pad_mutex)
591 
592 /*
593  * Flags used while creating pages.
594  */
595 #define	PG_EXCL		0x0001
596 #define	PG_WAIT		0x0002
597 #define	PG_PHYSCONTIG	0x0004		/* NOT SUPPORTED */
598 #define	PG_MATCH_COLOR	0x0008		/* SUPPORTED by free list routines */
599 #define	PG_NORELOC	0x0010		/* Non-relocatable alloc hint. */
600 					/* Page must be PP_ISNORELOC */
601 #define	PG_PANIC	0x0020		/* system will panic if alloc fails */
602 #define	PG_PUSHPAGE	0x0040		/* alloc may use reserve */
603 
604 /*
605  * When p_selock has the SE_EWANTED bit set, threads waiting for SE_EXCL
606  * access are given priority over all other waiting threads.
607  */
608 #define	SE_EWANTED	0x40000000
609 #define	PAGE_LOCKED(pp)		(((pp)->p_selock & ~SE_EWANTED) != 0)
610 #define	PAGE_SHARED(pp)		(((pp)->p_selock & ~SE_EWANTED) > 0)
611 #define	PAGE_EXCL(pp)		((pp)->p_selock < 0)
612 #define	PAGE_LOCKED_SE(pp, se)	\
613 	((se) == SE_EXCL ? PAGE_EXCL(pp) : PAGE_SHARED(pp))
614 
615 extern	long page_hashsz;
616 extern	page_t **page_hash;
617 
618 extern	kmutex_t page_llock;		/* page logical lock mutex */
619 extern	kmutex_t freemem_lock;		/* freemem lock */
620 
621 extern	pgcnt_t	total_pages;		/* total pages in the system */
622 
623 /*
624  * Variables controlling locking of physical memory.
625  */
626 extern	pgcnt_t	pages_pp_maximum;	/* tuning: lock + claim <= max */
627 extern	void init_pages_pp_maximum(void);
628 
629 struct lgrp;
630 
631 /* page_list_{add,sub} flags */
632 
633 /* which list */
634 #define	PG_FREE_LIST	0x0001
635 #define	PG_CACHE_LIST	0x0002
636 
637 /* where on list */
638 #define	PG_LIST_TAIL	0x0010
639 #define	PG_LIST_HEAD	0x0020
640 
641 /* called from */
642 #define	PG_LIST_ISINIT	0x1000
643 
644 /*
645  * Page frame operations.
646  */
647 page_t	*page_lookup(struct vnode *, u_offset_t, se_t);
648 page_t	*page_lookup_create(struct vnode *, u_offset_t, se_t, page_t *,
649 	spgcnt_t *, int);
650 page_t	*page_lookup_nowait(struct vnode *, u_offset_t, se_t);
651 page_t	*page_find(struct vnode *, u_offset_t);
652 page_t	*page_exists(struct vnode *, u_offset_t);
653 int	page_exists_physcontig(vnode_t *, u_offset_t, uint_t, page_t *[]);
654 int	page_exists_forreal(struct vnode *, u_offset_t, uint_t *);
655 void	page_needfree(spgcnt_t);
656 page_t	*page_create(struct vnode *, u_offset_t, size_t, uint_t);
657 int	page_alloc_pages(struct vnode *, struct seg *, caddr_t, page_t **,
658 	page_t **, uint_t, int);
659 page_t  *page_create_va_large(vnode_t *vp, u_offset_t off, size_t bytes,
660 	uint_t flags, struct seg *seg, caddr_t vaddr, void *arg);
661 page_t	*page_create_va(struct vnode *, u_offset_t, size_t, uint_t,
662 	struct seg *, caddr_t);
663 int	page_create_wait(size_t npages, uint_t flags);
664 void    page_create_putback(ssize_t npages);
665 void	page_free(page_t *, int);
666 void	page_free_at_startup(page_t *);
667 void	page_free_pages(page_t *);
668 void	free_vp_pages(struct vnode *, u_offset_t, size_t);
669 int	page_reclaim(page_t *, kmutex_t *);
670 void	page_destroy(page_t *, int);
671 void	page_destroy_pages(page_t *);
672 void	page_destroy_free(page_t *);
673 void	page_rename(page_t *, struct vnode *, u_offset_t);
674 int	page_hashin(page_t *, struct vnode *, u_offset_t, kmutex_t *);
675 void	page_hashout(page_t *, kmutex_t *);
676 int	page_num_hashin(pfn_t, struct vnode *, u_offset_t);
677 void	page_add(page_t **, page_t *);
678 void	page_add_common(page_t **, page_t *);
679 void	page_sub(page_t **, page_t *);
680 void	page_sub_common(page_t **, page_t *);
681 page_t	*page_get_freelist(struct vnode *, u_offset_t, struct seg *,
682 		caddr_t, size_t, uint_t, struct lgrp *);
683 
684 page_t	*page_get_cachelist(struct vnode *, u_offset_t, struct seg *,
685 		caddr_t, uint_t, struct lgrp *);
686 void	page_list_add(page_t *, int);
687 void	page_boot_demote(page_t *);
688 void	page_promote_size(page_t *, uint_t);
689 void	page_list_add_pages(page_t *, int);
690 void	page_list_sub(page_t *, int);
691 void	page_list_sub_pages(page_t *, uint_t);
692 void	page_list_xfer(page_t *, int, int);
693 void	page_list_break(page_t **, page_t **, size_t);
694 void	page_list_concat(page_t **, page_t **);
695 void	page_vpadd(page_t **, page_t *);
696 void	page_vpsub(page_t **, page_t *);
697 int	page_lock(page_t *, se_t, kmutex_t *, reclaim_t);
698 int	page_lock_es(page_t *, se_t, kmutex_t *, reclaim_t, int);
699 void page_lock_clr_exclwanted(page_t *);
700 int	page_trylock(page_t *, se_t);
701 int	page_try_reclaim_lock(page_t *, se_t, int);
702 int	page_tryupgrade(page_t *);
703 void	page_downgrade(page_t *);
704 void	page_unlock(page_t *);
705 void	page_unlock_noretire(page_t *);
706 void	page_lock_delete(page_t *);
707 int	page_pp_lock(page_t *, int, int);
708 void	page_pp_unlock(page_t *, int, int);
709 int	page_resv(pgcnt_t, uint_t);
710 void	page_unresv(pgcnt_t);
711 void	page_pp_useclaim(page_t *, page_t *, uint_t);
712 int	page_addclaim(page_t *);
713 int	page_subclaim(page_t *);
714 int	page_addclaim_pages(page_t **);
715 int	page_subclaim_pages(page_t **);
716 pfn_t	page_pptonum(page_t *);
717 page_t	*page_numtopp(pfn_t, se_t);
718 page_t	*page_numtopp_noreclaim(pfn_t, se_t);
719 page_t	*page_numtopp_nolock(pfn_t);
720 page_t	*page_numtopp_nowait(pfn_t, se_t);
721 page_t  *page_first();
722 page_t  *page_next(page_t *);
723 page_t  *page_list_next(page_t *);
724 page_t	*page_nextn(page_t *, ulong_t);
725 page_t	*page_next_scan_init(void **);
726 page_t	*page_next_scan_large(page_t *, ulong_t *, void **);
727 void    prefetch_page_r(void *);
728 void	ppcopy(page_t *, page_t *);
729 void	page_relocate_hash(page_t *, page_t *);
730 void	pagezero(page_t *, uint_t, uint_t);
731 void	pagescrub(page_t *, uint_t, uint_t);
732 void	page_io_lock(page_t *);
733 void	page_io_unlock(page_t *);
734 int	page_io_trylock(page_t *);
735 int	page_iolock_assert(page_t *);
736 void	page_iolock_init(page_t *);
737 void	page_io_wait(page_t *);
738 int	page_io_locked(page_t *);
739 pgcnt_t	page_busy(int);
740 void	page_lock_init(void);
741 ulong_t	page_share_cnt(page_t *);
742 int	page_isshared(page_t *);
743 int	page_isfree(page_t *);
744 int	page_isref(page_t *);
745 int	page_ismod(page_t *);
746 int	page_release(page_t *, int);
747 void	page_retire_init(void);
748 int	page_retire(uint64_t, uchar_t);
749 int	page_retire_check(uint64_t, uint64_t *);
750 int	page_unretire(uint64_t);
751 int	page_unretire_pp(page_t *, int);
752 void	page_tryretire(page_t *);
753 void	page_retire_hunt(void (*)(page_t *));
754 void	page_retire_mdboot_cb(page_t *);
755 void	page_clrtoxic(page_t *, uchar_t);
756 void	page_settoxic(page_t *, uchar_t);
757 
758 int	page_mem_avail(pgcnt_t);
759 int	page_reclaim_mem(pgcnt_t, pgcnt_t, int);
760 
761 void page_set_props(page_t *, uint_t);
762 void page_clr_all_props(page_t *);
763 int page_clear_lck_cow(page_t *, int);
764 
765 kmutex_t	*page_vnode_mutex(struct vnode *);
766 kmutex_t	*page_se_mutex(struct page *);
767 kmutex_t	*page_szc_lock(struct page *);
768 int		page_szc_lock_assert(struct page *pp);
769 
770 /*
771  * Page relocation interfaces. page_relocate() is generic.
772  * page_get_replacement_page() is provided by the PSM.
773  * page_free_replacement_page() is generic.
774  */
775 int group_page_trylock(page_t *, se_t);
776 void group_page_unlock(page_t *);
777 int page_relocate(page_t **, page_t **, int, int, spgcnt_t *, struct lgrp *);
778 int do_page_relocate(page_t **, page_t **, int, spgcnt_t *, struct lgrp *);
779 page_t *page_get_replacement_page(page_t *, struct lgrp *, uint_t);
780 void page_free_replacement_page(page_t *);
781 int page_relocate_cage(page_t **, page_t **);
782 
783 int page_try_demote_pages(page_t *);
784 int page_try_demote_free_pages(page_t *);
785 void page_demote_free_pages(page_t *);
786 
787 struct anon_map;
788 
789 void page_mark_migrate(struct seg *, caddr_t, size_t, struct anon_map *,
790     ulong_t, vnode_t *, u_offset_t, int);
791 void page_migrate(struct seg *, caddr_t, page_t **, pgcnt_t);
792 
793 /*
794  * Tell the PIM we are adding physical memory
795  */
796 void add_physmem(page_t *, size_t, pfn_t);
797 void add_physmem_cb(page_t *, pfn_t);	/* callback for page_t part */
798 
799 /*
800  * hw_page_array[] is configured with hardware supported page sizes by
801  * platform specific code.
802  */
803 typedef struct {
804 	size_t	hp_size;
805 	uint_t	hp_shift;
806 	uint_t  hp_colors;
807 	pgcnt_t	hp_pgcnt;	/* base pagesize cnt */
808 } hw_pagesize_t;
809 
810 extern hw_pagesize_t	hw_page_array[];
811 extern uint_t		page_coloring_shift;
812 extern uint_t		page_colors_mask;
813 extern int		cpu_page_colors;
814 extern uint_t		colorequiv;
815 extern uchar_t		colorequivszc[];
816 
817 uint_t	page_num_pagesizes(void);
818 uint_t	page_num_user_pagesizes(void);
819 size_t	page_get_pagesize(uint_t);
820 size_t	page_get_user_pagesize(uint_t n);
821 pgcnt_t	page_get_pagecnt(uint_t);
822 uint_t	page_get_shift(uint_t);
823 int	page_szc(size_t);
824 int	page_szc_user_filtered(size_t);
825 
826 /* page_get_replacement page flags */
827 #define	PGR_SAMESZC	0x1	/* only look for page size same as orig */
828 #define	PGR_NORELOC	0x2	/* allocate a P_NORELOC page */
829 
830 /*
831  * macros for "masked arithmetic"
832  * The purpose is to step through all combinations of a set of bits while
833  * keeping some other bits fixed. Fixed bits need not be contiguous. The
834  * variable bits need not be contiguous either, or even right aligned. The
835  * trick is to set all fixed bits to 1, then increment, then restore the
836  * fixed bits. If incrementing causes a carry from a low bit position, the
837  * carry propagates thru the fixed bits, because they are temporarily set to 1.
838  *	v is the value
839  *	i is the increment
840  *	eq_mask defines the fixed bits
841  *	mask limits the size of the result
842  */
843 #define	ADD_MASKED(v, i, eq_mask, mask) \
844 	(((((v) | (eq_mask)) + (i)) & (mask) & ~(eq_mask)) | ((v) & (eq_mask)))
845 
846 /*
847  * convenience macro which increments by 1
848  */
849 #define	INC_MASKED(v, eq_mask, mask) ADD_MASKED(v, 1, eq_mask, mask)
850 
851 #endif	/* _KERNEL */
852 
853 /*
854  * Constants used for the p_iolock_state
855  */
856 #define	PAGE_IO_INUSE	0x1
857 #define	PAGE_IO_WANTED	0x2
858 
859 /*
860  * Constants used for page_release status
861  */
862 #define	PGREL_NOTREL    0x1
863 #define	PGREL_CLEAN	0x2
864 #define	PGREL_MOD	0x3
865 
866 /*
867  * The p_state field holds what used to be the p_age and p_free
868  * bits.  These fields are protected by p_selock (see above).
869  */
870 #define	P_FREE		0x80		/* Page on free list */
871 #define	P_NORELOC	0x40		/* Page is non-relocatable */
872 #define	P_MIGRATE	0x20		/* Migrate page on next touch */
873 #define	P_SWAP		0x10		/* belongs to vnode that is V_ISSWAP */
874 
875 #define	PP_ISFREE(pp)		((pp)->p_state & P_FREE)
876 #define	PP_ISAGED(pp)		(((pp)->p_state & P_FREE) && \
877 					((pp)->p_vnode == NULL))
878 #define	PP_ISNORELOC(pp)	((pp)->p_state & P_NORELOC)
879 #define	PP_ISKVP(pp)		((pp)->p_vnode == &kvp)
880 #define	PP_ISNORELOCKERNEL(pp)	(PP_ISNORELOC(pp) && PP_ISKVP(pp))
881 #define	PP_ISMIGRATE(pp)	((pp)->p_state & P_MIGRATE)
882 #define	PP_ISSWAP(pp)		((pp)->p_state & P_SWAP)
883 
884 #define	PP_SETFREE(pp)		((pp)->p_state = ((pp)->p_state & ~P_MIGRATE) \
885 				| P_FREE)
886 #define	PP_SETAGED(pp)		ASSERT(PP_ISAGED(pp))
887 #define	PP_SETNORELOC(pp)	((pp)->p_state |= P_NORELOC)
888 #define	PP_SETMIGRATE(pp)	((pp)->p_state |= P_MIGRATE)
889 #define	PP_SETSWAP(pp)		((pp)->p_state |= P_SWAP)
890 
891 #define	PP_CLRFREE(pp)		((pp)->p_state &= ~P_FREE)
892 #define	PP_CLRAGED(pp)		ASSERT(!PP_ISAGED(pp))
893 #define	PP_CLRNORELOC(pp)	((pp)->p_state &= ~P_NORELOC)
894 #define	PP_CLRMIGRATE(pp)	((pp)->p_state &= ~P_MIGRATE)
895 #define	PP_CLRSWAP(pp)		((pp)->p_state &= ~P_SWAP)
896 
897 /*
898  * Flags for page_t p_toxic, for tracking memory hardware errors.
899  *
900  * These flags are OR'ed into p_toxic with page_settoxic() to track which
901  * error(s) have occurred on a given page. The flags are cleared with
902  * page_clrtoxic(). Both page_settoxic() and page_cleartoxic use atomic
903  * primitives to manipulate the p_toxic field so no other locking is needed.
904  *
905  * When an error occurs on a page, p_toxic is set to record the error. The
906  * error could be a memory error or something else (i.e. a datapath). The Page
907  * Retire mechanism does not try to determine the exact cause of the error;
908  * Page Retire rightly leaves that sort of determination to FMA's Diagnostic
909  * Engine (DE).
910  *
911  * Note that, while p_toxic bits can be set without holding any locks, they
912  * should only be cleared while holding the page exclusively locked.
913  *
914  * Pages with PR_UE or PR_FMA flags are retired unconditionally, while pages
915  * with PR_MCE are retired if the system has not retired too many of them.
916  *
917  * A page must be exclusively locked to be retired. Pages can be retired if
918  * they are mapped, modified, or both, as long as they are not marked PR_UE,
919  * since pages with uncorrectable errors cannot be relocated in memory.
920  * Once a page has been successfully retired it is zeroed, attached to the
921  * retired_pages vnode and, finally, PR_RETIRED is set in p_toxic. The other
922  * p_toxic bits are NOT cleared. Pages are not left locked after retiring them
923  * to avoid special case code throughout the kernel; rather, page_*lock() will
924  * fail to lock the page, unless SE_RETIRED is passed as an argument.
925  *
926  * While we have your attention, go take a look at the comments at the
927  * beginning of page_retire.c too.
928  */
929 #define	PR_OK		0x00	/* no problem */
930 #define	PR_MCE		0x01	/* page has seen two or more CEs */
931 #define	PR_UE		0x02	/* page has an unhandled UE */
932 #define	PR_UE_SCRUBBED	0x04	/* page has seen a UE but was cleaned */
933 #define	PR_FMA		0x08	/* A DE wants this page retired */
934 #define	PR_RESV		0x10	/* Reserved for future use */
935 #define	PR_BUSY		0x20	/* Page retire is in progress */
936 #define	PR_MSG		0x40	/* message(s) already printed for this page */
937 #define	PR_RETIRED	0x80	/* This page has been retired */
938 
939 #define	PR_REASONS	(PR_UE | PR_MCE | PR_FMA)
940 #define	PR_TOXIC	(PR_UE)
941 #define	PR_ERRMASK	(PR_UE | PR_UE_SCRUBBED | PR_MCE | PR_FMA)
942 #define	PR_ALLFLAGS	(0xFF)
943 
944 #define	PP_RETIRED(pp)	((pp)->p_toxic & PR_RETIRED)
945 #define	PP_TOXIC(pp)	((pp)->p_toxic & PR_TOXIC)
946 #define	PP_PR_REQ(pp)	(((pp)->p_toxic & PR_REASONS) && !PP_RETIRED(pp))
947 #define	PP_PR_NOSHARE(pp)						\
948 	((((pp)->p_toxic & (PR_RETIRED | PR_FMA | PR_UE)) == PR_FMA) &&	\
949 	!PP_ISKVP(pp))
950 
951 /*
952  * kpm large page description.
953  * The virtual address range of segkpm is divided into chunks of
954  * kpm_pgsz. Each chunk is controlled by a kpm_page_t. The ushort
955  * is sufficient for 2^^15 * PAGESIZE, so e.g. the maximum kpm_pgsz
956  * for 8K is 256M and 2G for 64K pages. It it kept as small as
957  * possible to save physical memory space.
958  *
959  * There are 2 segkpm mapping windows within in the virtual address
960  * space when we have to prevent VAC alias conflicts. The so called
961  * Alias window (mappings are always by PAGESIZE) is controlled by
962  * kp_refcnta. The regular window is controlled by kp_refcnt for the
963  * normal operation, which is to use the largest available pagesize.
964  * When VAC alias conflicts are present within a chunk in the regular
965  * window the large page mapping is broken up into smaller PAGESIZE
966  * mappings. kp_refcntc is used to control the pages that are invoked
967  * in the conflict and kp_refcnts holds the active mappings done
968  * with the small page size. In non vac conflict mode kp_refcntc is
969  * also used as "go" indication (-1) for the trap level tsbmiss
970  * handler.
971  */
972 typedef struct kpm_page {
973 	short kp_refcnt;	/* pages mapped large */
974 	short kp_refcnta;	/* pages mapped in Alias window */
975 	short kp_refcntc;	/* TL-tsbmiss flag; #vac alias conflict pages */
976 	short kp_refcnts;	/* vac alias: pages mapped small */
977 } kpm_page_t;
978 
979 /*
980  * Note: khl_lock offset changes must be reflected in sfmmu_asm.s
981  */
982 typedef struct kpm_hlk {
983 	kmutex_t khl_mutex;	/* kpm_page mutex */
984 	uint_t   khl_lock;	/* trap level tsbmiss handling */
985 } kpm_hlk_t;
986 
987 /*
988  * kpm small page description.
989  * When kpm_pgsz is equal to PAGESIZE a smaller representation is used
990  * to save memory space. Alias range mappings and regular segkpm
991  * mappings are done in units of PAGESIZE and can share the mapping
992  * information and the mappings are always distinguishable by their
993  * virtual address. Other information neeeded for VAC conflict prevention
994  * is already available on a per page basis. There are basically 3 states
995  * a kpm_spage can have: not mapped (0), mapped in Alias range or virtually
996  * uncached (1) and mapped in the regular segkpm window (-1). The -1 value
997  * is also used as "go" indication for the segkpm trap level tsbmiss
998  * handler for small pages (value is kept the same as it is used for large
999  * mappings).
1000  */
1001 typedef struct kpm_spage {
1002 	char	kp_mapped;	/* page mapped small */
1003 } kpm_spage_t;
1004 
1005 /*
1006  * Note: kshl_lock offset changes must be reflected in sfmmu_asm.s
1007  */
1008 typedef struct kpm_shlk {
1009 	uint_t   kshl_lock;	/* trap level tsbmiss handling */
1010 } kpm_shlk_t;
1011 
1012 /*
1013  * Each segment of physical memory is described by a memseg struct.
1014  * Within a segment, memory is considered contiguous. The members
1015  * can be categorized as follows:
1016  * . Platform independent:
1017  *         pages, epages, pages_base, pages_end, next, lnext.
1018  * . 64bit only but platform independent:
1019  *         kpm_pbase, kpm_nkpmpgs, kpm_pages, kpm_spages.
1020  * . Really platform or mmu specific:
1021  *         pagespa, epagespa, nextpa, kpm_pagespa.
1022  * . Mixed:
1023  *         msegflags.
1024  */
1025 struct memseg {
1026 	page_t *pages, *epages;		/* [from, to] in page array */
1027 	pfn_t pages_base, pages_end;	/* [from, to] in page numbers */
1028 	struct memseg *next;		/* next segment in list */
1029 #if defined(__sparc)
1030 	struct memseg *lnext;		/* next segment in deleted list */
1031 	uint64_t pagespa, epagespa;	/* [from, to] page array physical */
1032 	uint64_t nextpa;		/* physical next pointer */
1033 	pfn_t	kpm_pbase;		/* start of kpm range */
1034 	pgcnt_t kpm_nkpmpgs;		/* # of kpm_pgsz pages */
1035 	union _mseg_un {
1036 		kpm_page_t  *kpm_lpgs;	/* ptr to kpm_page array */
1037 		kpm_spage_t *kpm_spgs;	/* ptr to kpm_spage array */
1038 	} mseg_un;
1039 	uint64_t kpm_pagespa;		/* physical ptr to kpm (s)pages array */
1040 	uint_t msegflags;		/* memseg flags */
1041 #endif /* __sparc */
1042 };
1043 
1044 /* memseg union aliases */
1045 #define	kpm_pages	mseg_un.kpm_lpgs
1046 #define	kpm_spages	mseg_un.kpm_spgs
1047 
1048 /* msegflags */
1049 #define	MEMSEG_DYNAMIC		0x1	/* DR: memory was added dynamically */
1050 
1051 /* memseg support macros */
1052 #define	MSEG_NPAGES(SEG)	((SEG)->pages_end - (SEG)->pages_base)
1053 
1054 /* memseg hash */
1055 #define	MEM_HASH_SHIFT		0x9
1056 #define	N_MEM_SLOTS		0x200		/* must be a power of 2 */
1057 #define	MEMSEG_PFN_HASH(pfn)	(((pfn)/mhash_per_slot) & (N_MEM_SLOTS - 1))
1058 
1059 /* memseg  externals */
1060 extern struct memseg *memsegs;		/* list of memory segments */
1061 extern ulong_t mhash_per_slot;
1062 extern uint64_t memsegspa;		/* memsegs as physical address */
1063 
1064 void build_pfn_hash();
1065 extern struct memseg *page_numtomemseg_nolock(pfn_t pfnum);
1066 
1067 #ifdef	__cplusplus
1068 }
1069 #endif
1070 
1071 #endif	/* _VM_PAGE_H */
1072