xref: /titanic_50/usr/src/uts/common/syscall/lwp_sobj.c (revision 37714ae43602c675f9dc59b070bfdf9fa702872c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved	*/
29 
30 #include <sys/param.h>
31 #include <sys/types.h>
32 #include <sys/sysmacros.h>
33 #include <sys/systm.h>
34 #include <sys/cred.h>
35 #include <sys/user.h>
36 #include <sys/errno.h>
37 #include <sys/file.h>
38 #include <sys/proc.h>
39 #include <sys/prsystm.h>
40 #include <sys/kmem.h>
41 #include <sys/sobject.h>
42 #include <sys/fault.h>
43 #include <sys/procfs.h>
44 #include <sys/watchpoint.h>
45 #include <sys/time.h>
46 #include <sys/cmn_err.h>
47 #include <sys/machlock.h>
48 #include <sys/debug.h>
49 #include <sys/synch.h>
50 #include <sys/synch32.h>
51 #include <sys/mman.h>
52 #include <sys/class.h>
53 #include <sys/schedctl.h>
54 #include <sys/sleepq.h>
55 #include <sys/policy.h>
56 #include <sys/tnf_probe.h>
57 #include <sys/lwpchan_impl.h>
58 #include <sys/turnstile.h>
59 #include <sys/atomic.h>
60 #include <sys/lwp_timer_impl.h>
61 #include <sys/lwp_upimutex_impl.h>
62 #include <vm/as.h>
63 #include <sys/sdt.h>
64 
65 static kthread_t *lwpsobj_owner(caddr_t);
66 static void lwp_unsleep(kthread_t *t);
67 static void lwp_change_pri(kthread_t *t, pri_t pri, pri_t *t_prip);
68 static void lwp_mutex_cleanup(lwpchan_entry_t *ent, uint16_t lockflg);
69 static void lwp_mutex_unregister(void *uaddr);
70 
71 extern int lwp_cond_signal(lwp_cond_t *cv);
72 
73 /*
74  * Maximum number of user prio inheritance locks that can be held by a thread.
75  * Used to limit kmem for each thread. This is a per-thread limit that
76  * can be administered on a system wide basis (using /etc/system).
77  *
78  * Also, when a limit, say maxlwps is added for numbers of lwps within a
79  * process, the per-thread limit automatically becomes a process-wide limit
80  * of maximum number of held upi locks within a process:
81  *      maxheldupimx = maxnestupimx * maxlwps;
82  */
83 static uint32_t maxnestupimx = 2000;
84 
85 /*
86  * The sobj_ops vector exports a set of functions needed when a thread
87  * is asleep on a synchronization object of this type.
88  */
89 static sobj_ops_t lwp_sobj_ops = {
90 	SOBJ_USER, lwpsobj_owner, lwp_unsleep, lwp_change_pri
91 };
92 
93 static kthread_t *lwpsobj_pi_owner(upimutex_t *up);
94 
95 static sobj_ops_t lwp_sobj_pi_ops = {
96 	SOBJ_USER_PI, lwpsobj_pi_owner, turnstile_unsleep,
97 	turnstile_change_pri
98 };
99 
100 static sleepq_head_t	lwpsleepq[NSLEEPQ];
101 upib_t			upimutextab[UPIMUTEX_TABSIZE];
102 
103 #define	LWPCHAN_LOCK_SHIFT	10	/* 1024 locks for each pool */
104 #define	LWPCHAN_LOCK_SIZE	(1 << LWPCHAN_LOCK_SHIFT)
105 
106 /*
107  * We know that both lc_wchan and lc_wchan0 are addresses that most
108  * likely are 8-byte aligned, so we shift off the low-order 3 bits.
109  * 'pool' is either 0 or 1.
110  */
111 #define	LWPCHAN_LOCK_HASH(X, pool) \
112 	(((((X) >> 3) ^ ((X) >> (LWPCHAN_LOCK_SHIFT + 3))) & \
113 	(LWPCHAN_LOCK_SIZE - 1)) + ((pool)? LWPCHAN_LOCK_SIZE : 0))
114 
115 static kmutex_t		lwpchanlock[2 * LWPCHAN_LOCK_SIZE];
116 
117 /*
118  * Is this a POSIX threads user-level lock requiring priority inheritance?
119  */
120 #define	UPIMUTEX(type)	((type) & LOCK_PRIO_INHERIT)
121 
122 static sleepq_head_t *
123 lwpsqhash(lwpchan_t *lwpchan)
124 {
125 	uint_t x = (uintptr_t)lwpchan->lc_wchan ^ (uintptr_t)lwpchan->lc_wchan0;
126 	return (&lwpsleepq[SQHASHINDEX(x)]);
127 }
128 
129 /*
130  * Lock an lwpchan.
131  * Keep this in sync with lwpchan_unlock(), below.
132  */
133 static void
134 lwpchan_lock(lwpchan_t *lwpchan, int pool)
135 {
136 	uint_t x = (uintptr_t)lwpchan->lc_wchan ^ (uintptr_t)lwpchan->lc_wchan0;
137 	mutex_enter(&lwpchanlock[LWPCHAN_LOCK_HASH(x, pool)]);
138 }
139 
140 /*
141  * Unlock an lwpchan.
142  * Keep this in sync with lwpchan_lock(), above.
143  */
144 static void
145 lwpchan_unlock(lwpchan_t *lwpchan, int pool)
146 {
147 	uint_t x = (uintptr_t)lwpchan->lc_wchan ^ (uintptr_t)lwpchan->lc_wchan0;
148 	mutex_exit(&lwpchanlock[LWPCHAN_LOCK_HASH(x, pool)]);
149 }
150 
151 /*
152  * Delete mappings from the lwpchan cache for pages that are being
153  * unmapped by as_unmap().  Given a range of addresses, "start" to "end",
154  * all mappings within the range are deleted from the lwpchan cache.
155  */
156 void
157 lwpchan_delete_mapping(proc_t *p, caddr_t start, caddr_t end)
158 {
159 	lwpchan_data_t *lcp;
160 	lwpchan_hashbucket_t *hashbucket;
161 	lwpchan_hashbucket_t *endbucket;
162 	lwpchan_entry_t *ent;
163 	lwpchan_entry_t **prev;
164 	caddr_t addr;
165 
166 	mutex_enter(&p->p_lcp_lock);
167 	lcp = p->p_lcp;
168 	hashbucket = lcp->lwpchan_cache;
169 	endbucket = hashbucket + lcp->lwpchan_size;
170 	for (; hashbucket < endbucket; hashbucket++) {
171 		if (hashbucket->lwpchan_chain == NULL)
172 			continue;
173 		mutex_enter(&hashbucket->lwpchan_lock);
174 		prev = &hashbucket->lwpchan_chain;
175 		/* check entire chain */
176 		while ((ent = *prev) != NULL) {
177 			addr = ent->lwpchan_addr;
178 			if (start <= addr && addr < end) {
179 				*prev = ent->lwpchan_next;
180 				/*
181 				 * We do this only for the obsolete type
182 				 * USYNC_PROCESS_ROBUST.  Otherwise robust
183 				 * locks do not draw ELOCKUNMAPPED or
184 				 * EOWNERDEAD due to being unmapped.
185 				 */
186 				if (ent->lwpchan_pool == LWPCHAN_MPPOOL &&
187 				    (ent->lwpchan_type & USYNC_PROCESS_ROBUST))
188 					lwp_mutex_cleanup(ent, LOCK_UNMAPPED);
189 				/*
190 				 * If there is a user-level robust lock
191 				 * registration, mark it as invalid.
192 				 */
193 				if ((addr = ent->lwpchan_uaddr) != NULL)
194 					lwp_mutex_unregister(addr);
195 				kmem_free(ent, sizeof (*ent));
196 				atomic_add_32(&lcp->lwpchan_entries, -1);
197 			} else {
198 				prev = &ent->lwpchan_next;
199 			}
200 		}
201 		mutex_exit(&hashbucket->lwpchan_lock);
202 	}
203 	mutex_exit(&p->p_lcp_lock);
204 }
205 
206 /*
207  * Given an lwpchan cache pointer and a process virtual address,
208  * return a pointer to the corresponding lwpchan hash bucket.
209  */
210 static lwpchan_hashbucket_t *
211 lwpchan_bucket(lwpchan_data_t *lcp, uintptr_t addr)
212 {
213 	uint_t i;
214 
215 	/*
216 	 * All user-level sync object addresses are 8-byte aligned.
217 	 * Ignore the lowest 3 bits of the address and use the
218 	 * higher-order 2*lwpchan_bits bits for the hash index.
219 	 */
220 	addr >>= 3;
221 	i = (addr ^ (addr >> lcp->lwpchan_bits)) & lcp->lwpchan_mask;
222 	return (lcp->lwpchan_cache + i);
223 }
224 
225 /*
226  * (Re)allocate the per-process lwpchan cache.
227  */
228 static void
229 lwpchan_alloc_cache(proc_t *p, uint_t bits)
230 {
231 	lwpchan_data_t *lcp;
232 	lwpchan_data_t *old_lcp;
233 	lwpchan_hashbucket_t *hashbucket;
234 	lwpchan_hashbucket_t *endbucket;
235 	lwpchan_hashbucket_t *newbucket;
236 	lwpchan_entry_t *ent;
237 	lwpchan_entry_t *next;
238 	uint_t count;
239 
240 	ASSERT(bits >= LWPCHAN_INITIAL_BITS && bits <= LWPCHAN_MAX_BITS);
241 
242 	lcp = kmem_alloc(sizeof (lwpchan_data_t), KM_SLEEP);
243 	lcp->lwpchan_bits = bits;
244 	lcp->lwpchan_size = 1 << lcp->lwpchan_bits;
245 	lcp->lwpchan_mask = lcp->lwpchan_size - 1;
246 	lcp->lwpchan_entries = 0;
247 	lcp->lwpchan_cache = kmem_zalloc(lcp->lwpchan_size *
248 	    sizeof (lwpchan_hashbucket_t), KM_SLEEP);
249 	lcp->lwpchan_next_data = NULL;
250 
251 	mutex_enter(&p->p_lcp_lock);
252 	if ((old_lcp = p->p_lcp) != NULL) {
253 		if (old_lcp->lwpchan_bits >= bits) {
254 			/* someone beat us to it */
255 			mutex_exit(&p->p_lcp_lock);
256 			kmem_free(lcp->lwpchan_cache, lcp->lwpchan_size *
257 			    sizeof (lwpchan_hashbucket_t));
258 			kmem_free(lcp, sizeof (lwpchan_data_t));
259 			return;
260 		}
261 		/*
262 		 * Acquire all of the old hash table locks.
263 		 */
264 		hashbucket = old_lcp->lwpchan_cache;
265 		endbucket = hashbucket + old_lcp->lwpchan_size;
266 		for (; hashbucket < endbucket; hashbucket++)
267 			mutex_enter(&hashbucket->lwpchan_lock);
268 		/*
269 		 * Move all of the old hash table entries to the
270 		 * new hash table.  The new hash table has not yet
271 		 * been installed so we don't need any of its locks.
272 		 */
273 		count = 0;
274 		hashbucket = old_lcp->lwpchan_cache;
275 		for (; hashbucket < endbucket; hashbucket++) {
276 			ent = hashbucket->lwpchan_chain;
277 			while (ent != NULL) {
278 				next = ent->lwpchan_next;
279 				newbucket = lwpchan_bucket(lcp,
280 				    (uintptr_t)ent->lwpchan_addr);
281 				ent->lwpchan_next = newbucket->lwpchan_chain;
282 				newbucket->lwpchan_chain = ent;
283 				ent = next;
284 				count++;
285 			}
286 			hashbucket->lwpchan_chain = NULL;
287 		}
288 		lcp->lwpchan_entries = count;
289 	}
290 
291 	/*
292 	 * Retire the old hash table.  We can't actually kmem_free() it
293 	 * now because someone may still have a pointer to it.  Instead,
294 	 * we link it onto the new hash table's list of retired hash tables.
295 	 * The new hash table is double the size of the previous one, so
296 	 * the total size of all retired hash tables is less than the size
297 	 * of the new one.  exit() and exec() free the retired hash tables
298 	 * (see lwpchan_destroy_cache(), below).
299 	 */
300 	lcp->lwpchan_next_data = old_lcp;
301 
302 	/*
303 	 * As soon as we store the new lcp, future locking operations will
304 	 * use it.  Therefore, we must ensure that all the state we've just
305 	 * established reaches global visibility before the new lcp does.
306 	 */
307 	membar_producer();
308 	p->p_lcp = lcp;
309 
310 	if (old_lcp != NULL) {
311 		/*
312 		 * Release all of the old hash table locks.
313 		 */
314 		hashbucket = old_lcp->lwpchan_cache;
315 		for (; hashbucket < endbucket; hashbucket++)
316 			mutex_exit(&hashbucket->lwpchan_lock);
317 	}
318 	mutex_exit(&p->p_lcp_lock);
319 }
320 
321 /*
322  * Deallocate the lwpchan cache, and any dynamically allocated mappings.
323  * Called when the process exits or execs.  All lwps except one have
324  * exited so we need no locks here.
325  */
326 void
327 lwpchan_destroy_cache(int exec)
328 {
329 	proc_t *p = curproc;
330 	lwpchan_hashbucket_t *hashbucket;
331 	lwpchan_hashbucket_t *endbucket;
332 	lwpchan_data_t *lcp;
333 	lwpchan_entry_t *ent;
334 	lwpchan_entry_t *next;
335 	uint16_t lockflg;
336 
337 	lcp = p->p_lcp;
338 	p->p_lcp = NULL;
339 
340 	lockflg = exec? LOCK_UNMAPPED : LOCK_OWNERDEAD;
341 	hashbucket = lcp->lwpchan_cache;
342 	endbucket = hashbucket + lcp->lwpchan_size;
343 	for (; hashbucket < endbucket; hashbucket++) {
344 		ent = hashbucket->lwpchan_chain;
345 		hashbucket->lwpchan_chain = NULL;
346 		while (ent != NULL) {
347 			next = ent->lwpchan_next;
348 			if (ent->lwpchan_pool == LWPCHAN_MPPOOL &&
349 			    (ent->lwpchan_type & (USYNC_PROCESS | LOCK_ROBUST))
350 			    == (USYNC_PROCESS | LOCK_ROBUST))
351 				lwp_mutex_cleanup(ent, lockflg);
352 			kmem_free(ent, sizeof (*ent));
353 			ent = next;
354 		}
355 	}
356 
357 	while (lcp != NULL) {
358 		lwpchan_data_t *next_lcp = lcp->lwpchan_next_data;
359 		kmem_free(lcp->lwpchan_cache, lcp->lwpchan_size *
360 		    sizeof (lwpchan_hashbucket_t));
361 		kmem_free(lcp, sizeof (lwpchan_data_t));
362 		lcp = next_lcp;
363 	}
364 }
365 
366 /*
367  * Return zero when there is an entry in the lwpchan cache for the
368  * given process virtual address and non-zero when there is not.
369  * The returned non-zero value is the current length of the
370  * hash chain plus one.  The caller holds the hash bucket lock.
371  */
372 static uint_t
373 lwpchan_cache_mapping(caddr_t addr, int type, int pool, lwpchan_t *lwpchan,
374 	lwpchan_hashbucket_t *hashbucket)
375 {
376 	lwpchan_entry_t *ent;
377 	uint_t count = 1;
378 
379 	for (ent = hashbucket->lwpchan_chain; ent; ent = ent->lwpchan_next) {
380 		if (ent->lwpchan_addr == addr) {
381 			if (ent->lwpchan_type != type ||
382 			    ent->lwpchan_pool != pool) {
383 				/*
384 				 * This shouldn't happen, but might if the
385 				 * process reuses its memory for different
386 				 * types of sync objects.  We test first
387 				 * to avoid grabbing the memory cache line.
388 				 */
389 				ent->lwpchan_type = (uint16_t)type;
390 				ent->lwpchan_pool = (uint16_t)pool;
391 			}
392 			*lwpchan = ent->lwpchan_lwpchan;
393 			return (0);
394 		}
395 		count++;
396 	}
397 	return (count);
398 }
399 
400 /*
401  * Return the cached lwpchan mapping if cached, otherwise insert
402  * a virtual address to lwpchan mapping into the cache.
403  */
404 static int
405 lwpchan_get_mapping(struct as *as, caddr_t addr, caddr_t uaddr,
406 	int type, lwpchan_t *lwpchan, int pool)
407 {
408 	proc_t *p = curproc;
409 	lwpchan_data_t *lcp;
410 	lwpchan_hashbucket_t *hashbucket;
411 	lwpchan_entry_t *ent;
412 	memid_t	memid;
413 	uint_t count;
414 	uint_t bits;
415 
416 top:
417 	/* initialize the lwpchan cache, if necesary */
418 	if ((lcp = p->p_lcp) == NULL) {
419 		lwpchan_alloc_cache(p, LWPCHAN_INITIAL_BITS);
420 		goto top;
421 	}
422 	hashbucket = lwpchan_bucket(lcp, (uintptr_t)addr);
423 	mutex_enter(&hashbucket->lwpchan_lock);
424 	if (lcp != p->p_lcp) {
425 		/* someone resized the lwpchan cache; start over */
426 		mutex_exit(&hashbucket->lwpchan_lock);
427 		goto top;
428 	}
429 	if (lwpchan_cache_mapping(addr, type, pool, lwpchan, hashbucket) == 0) {
430 		/* it's in the cache */
431 		mutex_exit(&hashbucket->lwpchan_lock);
432 		return (1);
433 	}
434 	mutex_exit(&hashbucket->lwpchan_lock);
435 	if (as_getmemid(as, addr, &memid) != 0)
436 		return (0);
437 	lwpchan->lc_wchan0 = (caddr_t)(uintptr_t)memid.val[0];
438 	lwpchan->lc_wchan = (caddr_t)(uintptr_t)memid.val[1];
439 	ent = kmem_alloc(sizeof (lwpchan_entry_t), KM_SLEEP);
440 	mutex_enter(&hashbucket->lwpchan_lock);
441 	if (lcp != p->p_lcp) {
442 		/* someone resized the lwpchan cache; start over */
443 		mutex_exit(&hashbucket->lwpchan_lock);
444 		kmem_free(ent, sizeof (*ent));
445 		goto top;
446 	}
447 	count = lwpchan_cache_mapping(addr, type, pool, lwpchan, hashbucket);
448 	if (count == 0) {
449 		/* someone else added this entry to the cache */
450 		mutex_exit(&hashbucket->lwpchan_lock);
451 		kmem_free(ent, sizeof (*ent));
452 		return (1);
453 	}
454 	if (count > lcp->lwpchan_bits + 2 && /* larger table, longer chains */
455 	    (bits = lcp->lwpchan_bits) < LWPCHAN_MAX_BITS) {
456 		/* hash chain too long; reallocate the hash table */
457 		mutex_exit(&hashbucket->lwpchan_lock);
458 		kmem_free(ent, sizeof (*ent));
459 		lwpchan_alloc_cache(p, bits + 1);
460 		goto top;
461 	}
462 	ent->lwpchan_addr = addr;
463 	ent->lwpchan_uaddr = uaddr;
464 	ent->lwpchan_type = (uint16_t)type;
465 	ent->lwpchan_pool = (uint16_t)pool;
466 	ent->lwpchan_lwpchan = *lwpchan;
467 	ent->lwpchan_next = hashbucket->lwpchan_chain;
468 	hashbucket->lwpchan_chain = ent;
469 	atomic_add_32(&lcp->lwpchan_entries, 1);
470 	mutex_exit(&hashbucket->lwpchan_lock);
471 	return (1);
472 }
473 
474 /*
475  * Return a unique pair of identifiers that corresponds to a
476  * synchronization object's virtual address.  Process-shared
477  * sync objects usually get vnode/offset from as_getmemid().
478  */
479 static int
480 get_lwpchan(struct as *as, caddr_t addr, int type, lwpchan_t *lwpchan, int pool)
481 {
482 	/*
483 	 * If the lwp synch object is defined to be process-private,
484 	 * we just make the first field of the lwpchan be 'as' and
485 	 * the second field be the synch object's virtual address.
486 	 * (segvn_getmemid() does the same for MAP_PRIVATE mappings.)
487 	 * The lwpchan cache is used only for process-shared objects.
488 	 */
489 	if (!(type & USYNC_PROCESS)) {
490 		lwpchan->lc_wchan0 = (caddr_t)as;
491 		lwpchan->lc_wchan = addr;
492 		return (1);
493 	}
494 
495 	return (lwpchan_get_mapping(as, addr, NULL, type, lwpchan, pool));
496 }
497 
498 static void
499 lwp_block(lwpchan_t *lwpchan)
500 {
501 	kthread_t *t = curthread;
502 	klwp_t *lwp = ttolwp(t);
503 	sleepq_head_t *sqh;
504 
505 	thread_lock(t);
506 	t->t_flag |= T_WAKEABLE;
507 	t->t_lwpchan = *lwpchan;
508 	t->t_sobj_ops = &lwp_sobj_ops;
509 	t->t_release = 0;
510 	sqh = lwpsqhash(lwpchan);
511 	disp_lock_enter_high(&sqh->sq_lock);
512 	CL_SLEEP(t);
513 	DTRACE_SCHED(sleep);
514 	THREAD_SLEEP(t, &sqh->sq_lock);
515 	sleepq_insert(&sqh->sq_queue, t);
516 	thread_unlock(t);
517 	lwp->lwp_asleep = 1;
518 	lwp->lwp_sysabort = 0;
519 	lwp->lwp_ru.nvcsw++;
520 	(void) new_mstate(curthread, LMS_SLEEP);
521 }
522 
523 static kthread_t *
524 lwpsobj_pi_owner(upimutex_t *up)
525 {
526 	return (up->upi_owner);
527 }
528 
529 static struct upimutex *
530 upi_get(upib_t *upibp, lwpchan_t *lcp)
531 {
532 	struct upimutex *upip;
533 
534 	for (upip = upibp->upib_first; upip != NULL;
535 	    upip = upip->upi_nextchain) {
536 		if (upip->upi_lwpchan.lc_wchan0 == lcp->lc_wchan0 &&
537 		    upip->upi_lwpchan.lc_wchan == lcp->lc_wchan)
538 			break;
539 	}
540 	return (upip);
541 }
542 
543 static void
544 upi_chain_add(upib_t *upibp, struct upimutex *upimutex)
545 {
546 	ASSERT(MUTEX_HELD(&upibp->upib_lock));
547 
548 	/*
549 	 * Insert upimutex at front of list. Maybe a bit unfair
550 	 * but assume that not many lwpchans hash to the same
551 	 * upimutextab bucket, i.e. the list of upimutexes from
552 	 * upib_first is not too long.
553 	 */
554 	upimutex->upi_nextchain = upibp->upib_first;
555 	upibp->upib_first = upimutex;
556 }
557 
558 static void
559 upi_chain_del(upib_t *upibp, struct upimutex *upimutex)
560 {
561 	struct upimutex **prev;
562 
563 	ASSERT(MUTEX_HELD(&upibp->upib_lock));
564 
565 	prev = &upibp->upib_first;
566 	while (*prev != upimutex) {
567 		prev = &(*prev)->upi_nextchain;
568 	}
569 	*prev = upimutex->upi_nextchain;
570 	upimutex->upi_nextchain = NULL;
571 }
572 
573 /*
574  * Add upimutex to chain of upimutexes held by curthread.
575  * Returns number of upimutexes held by curthread.
576  */
577 static uint32_t
578 upi_mylist_add(struct upimutex *upimutex)
579 {
580 	kthread_t *t = curthread;
581 
582 	/*
583 	 * Insert upimutex at front of list of upimutexes owned by t. This
584 	 * would match typical LIFO order in which nested locks are acquired
585 	 * and released.
586 	 */
587 	upimutex->upi_nextowned = t->t_upimutex;
588 	t->t_upimutex = upimutex;
589 	t->t_nupinest++;
590 	ASSERT(t->t_nupinest > 0);
591 	return (t->t_nupinest);
592 }
593 
594 /*
595  * Delete upimutex from list of upimutexes owned by curthread.
596  */
597 static void
598 upi_mylist_del(struct upimutex *upimutex)
599 {
600 	kthread_t *t = curthread;
601 	struct upimutex **prev;
602 
603 	/*
604 	 * Since the order in which nested locks are acquired and released,
605 	 * is typically LIFO, and typical nesting levels are not too deep, the
606 	 * following should not be expensive in the general case.
607 	 */
608 	prev = &t->t_upimutex;
609 	while (*prev != upimutex) {
610 		prev = &(*prev)->upi_nextowned;
611 	}
612 	*prev = upimutex->upi_nextowned;
613 	upimutex->upi_nextowned = NULL;
614 	ASSERT(t->t_nupinest > 0);
615 	t->t_nupinest--;
616 }
617 
618 /*
619  * Returns true if upimutex is owned. Should be called only when upim points
620  * to kmem which cannot disappear from underneath.
621  */
622 static int
623 upi_owned(upimutex_t *upim)
624 {
625 	return (upim->upi_owner == curthread);
626 }
627 
628 /*
629  * Returns pointer to kernel object (upimutex_t *) if lp is owned.
630  */
631 static struct upimutex *
632 lwp_upimutex_owned(lwp_mutex_t *lp, uint8_t type)
633 {
634 	lwpchan_t lwpchan;
635 	upib_t *upibp;
636 	struct upimutex *upimutex;
637 
638 	if (!get_lwpchan(curproc->p_as, (caddr_t)lp, type,
639 	    &lwpchan, LWPCHAN_MPPOOL))
640 		return (NULL);
641 
642 	upibp = &UPI_CHAIN(lwpchan);
643 	mutex_enter(&upibp->upib_lock);
644 	upimutex = upi_get(upibp, &lwpchan);
645 	if (upimutex == NULL || upimutex->upi_owner != curthread) {
646 		mutex_exit(&upibp->upib_lock);
647 		return (NULL);
648 	}
649 	mutex_exit(&upibp->upib_lock);
650 	return (upimutex);
651 }
652 
653 /*
654  * Unlocks upimutex, waking up waiters if any. upimutex kmem is freed if
655  * no lock hand-off occurrs.
656  */
657 static void
658 upimutex_unlock(struct upimutex *upimutex, uint16_t flag)
659 {
660 	turnstile_t *ts;
661 	upib_t *upibp;
662 	kthread_t *newowner;
663 
664 	upi_mylist_del(upimutex);
665 	upibp = upimutex->upi_upibp;
666 	mutex_enter(&upibp->upib_lock);
667 	if (upimutex->upi_waiter != 0) { /* if waiters */
668 		ts = turnstile_lookup(upimutex);
669 		if (ts != NULL && !(flag & LOCK_NOTRECOVERABLE)) {
670 			/* hand-off lock to highest prio waiter */
671 			newowner = ts->ts_sleepq[TS_WRITER_Q].sq_first;
672 			upimutex->upi_owner = newowner;
673 			if (ts->ts_waiters == 1)
674 				upimutex->upi_waiter = 0;
675 			turnstile_wakeup(ts, TS_WRITER_Q, 1, newowner);
676 			mutex_exit(&upibp->upib_lock);
677 			return;
678 		} else if (ts != NULL) {
679 			/* LOCK_NOTRECOVERABLE: wakeup all */
680 			turnstile_wakeup(ts, TS_WRITER_Q, ts->ts_waiters, NULL);
681 		} else {
682 			/*
683 			 * Misleading w bit. Waiters might have been
684 			 * interrupted. No need to clear the w bit (upimutex
685 			 * will soon be freed). Re-calculate PI from existing
686 			 * waiters.
687 			 */
688 			turnstile_exit(upimutex);
689 			turnstile_pi_recalc();
690 		}
691 	}
692 	/*
693 	 * no waiters, or LOCK_NOTRECOVERABLE.
694 	 * remove from the bucket chain of upi mutexes.
695 	 * de-allocate kernel memory (upimutex).
696 	 */
697 	upi_chain_del(upimutex->upi_upibp, upimutex);
698 	mutex_exit(&upibp->upib_lock);
699 	kmem_free(upimutex, sizeof (upimutex_t));
700 }
701 
702 static int
703 lwp_upimutex_lock(lwp_mutex_t *lp, uint8_t type, int try, lwp_timer_t *lwptp)
704 {
705 	label_t ljb;
706 	int error = 0;
707 	lwpchan_t lwpchan;
708 	uint16_t flag;
709 	upib_t *upibp;
710 	volatile struct upimutex *upimutex = NULL;
711 	turnstile_t *ts;
712 	uint32_t nupinest;
713 	volatile int upilocked = 0;
714 
715 	if (on_fault(&ljb)) {
716 		if (upilocked)
717 			upimutex_unlock((upimutex_t *)upimutex, 0);
718 		error = EFAULT;
719 		goto out;
720 	}
721 	if (!get_lwpchan(curproc->p_as, (caddr_t)lp, type,
722 	    &lwpchan, LWPCHAN_MPPOOL)) {
723 		error = EFAULT;
724 		goto out;
725 	}
726 	upibp = &UPI_CHAIN(lwpchan);
727 retry:
728 	mutex_enter(&upibp->upib_lock);
729 	upimutex = upi_get(upibp, &lwpchan);
730 	if (upimutex == NULL)  {
731 		/* lock available since lwpchan has no upimutex */
732 		upimutex = kmem_zalloc(sizeof (upimutex_t), KM_SLEEP);
733 		upi_chain_add(upibp, (upimutex_t *)upimutex);
734 		upimutex->upi_owner = curthread; /* grab lock */
735 		upimutex->upi_upibp = upibp;
736 		upimutex->upi_vaddr = lp;
737 		upimutex->upi_lwpchan = lwpchan;
738 		mutex_exit(&upibp->upib_lock);
739 		nupinest = upi_mylist_add((upimutex_t *)upimutex);
740 		upilocked = 1;
741 		fuword16_noerr(&lp->mutex_flag, &flag);
742 		if (nupinest > maxnestupimx &&
743 		    secpolicy_resource(CRED()) != 0) {
744 			upimutex_unlock((upimutex_t *)upimutex, flag);
745 			error = ENOMEM;
746 			goto out;
747 		}
748 		if (flag & LOCK_NOTRECOVERABLE) {
749 			/*
750 			 * Since the setting of LOCK_NOTRECOVERABLE
751 			 * was done under the high-level upi mutex,
752 			 * in lwp_upimutex_unlock(), this flag needs to
753 			 * be checked while holding the upi mutex.
754 			 * If set, this thread should return without
755 			 * the lock held, and with the right error code.
756 			 */
757 			upimutex_unlock((upimutex_t *)upimutex, flag);
758 			upilocked = 0;
759 			error = ENOTRECOVERABLE;
760 		} else if (flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED)) {
761 			if (flag & LOCK_OWNERDEAD)
762 				error = EOWNERDEAD;
763 			else if (type & USYNC_PROCESS_ROBUST)
764 				error = ELOCKUNMAPPED;
765 			else
766 				error = EOWNERDEAD;
767 		}
768 		goto out;
769 	}
770 	/*
771 	 * If a upimutex object exists, it must have an owner.
772 	 * This is due to lock hand-off, and release of upimutex when no
773 	 * waiters are present at unlock time,
774 	 */
775 	ASSERT(upimutex->upi_owner != NULL);
776 	if (upimutex->upi_owner == curthread) {
777 		/*
778 		 * The user wrapper can check if the mutex type is
779 		 * ERRORCHECK: if not, it should stall at user-level.
780 		 * If so, it should return the error code.
781 		 */
782 		mutex_exit(&upibp->upib_lock);
783 		error = EDEADLK;
784 		goto out;
785 	}
786 	if (try == UPIMUTEX_TRY) {
787 		mutex_exit(&upibp->upib_lock);
788 		error = EBUSY;
789 		goto out;
790 	}
791 	/*
792 	 * Block for the lock.
793 	 */
794 	if ((error = lwptp->lwpt_time_error) != 0) {
795 		/*
796 		 * The SUSV3 Posix spec is very clear that we
797 		 * should get no error from validating the
798 		 * timer until we would actually sleep.
799 		 */
800 		mutex_exit(&upibp->upib_lock);
801 		goto out;
802 	}
803 	if (lwptp->lwpt_tsp != NULL) {
804 		/*
805 		 * Unlike the protocol for other lwp timedwait operations,
806 		 * we must drop t_delay_lock before going to sleep in
807 		 * turnstile_block() for a upi mutex.
808 		 * See the comments below and in turnstile.c
809 		 */
810 		mutex_enter(&curthread->t_delay_lock);
811 		(void) lwp_timer_enqueue(lwptp);
812 		mutex_exit(&curthread->t_delay_lock);
813 	}
814 	/*
815 	 * Now, set the waiter bit and block for the lock in turnstile_block().
816 	 * No need to preserve the previous wbit since a lock try is not
817 	 * attempted after setting the wait bit. Wait bit is set under
818 	 * the upib_lock, which is not released until the turnstile lock
819 	 * is acquired. Say, the upimutex is L:
820 	 *
821 	 * 1. upib_lock is held so the waiter does not have to retry L after
822 	 *    setting the wait bit: since the owner has to grab the upib_lock
823 	 *    to unlock L, it will certainly see the wait bit set.
824 	 * 2. upib_lock is not released until the turnstile lock is acquired.
825 	 *    This is the key to preventing a missed wake-up. Otherwise, the
826 	 *    owner could acquire the upib_lock, and the tc_lock, to call
827 	 *    turnstile_wakeup(). All this, before the waiter gets tc_lock
828 	 *    to sleep in turnstile_block(). turnstile_wakeup() will then not
829 	 *    find this waiter, resulting in the missed wakeup.
830 	 * 3. The upib_lock, being a kernel mutex, cannot be released while
831 	 *    holding the tc_lock (since mutex_exit() could need to acquire
832 	 *    the same tc_lock)...and so is held when calling turnstile_block().
833 	 *    The address of upib_lock is passed to turnstile_block() which
834 	 *    releases it after releasing all turnstile locks, and before going
835 	 *    to sleep in swtch().
836 	 * 4. The waiter value cannot be a count of waiters, because a waiter
837 	 *    can be interrupted. The interrupt occurs under the tc_lock, at
838 	 *    which point, the upib_lock cannot be locked, to decrement waiter
839 	 *    count. So, just treat the waiter state as a bit, not a count.
840 	 */
841 	ts = turnstile_lookup((upimutex_t *)upimutex);
842 	upimutex->upi_waiter = 1;
843 	error = turnstile_block(ts, TS_WRITER_Q, (upimutex_t *)upimutex,
844 	    &lwp_sobj_pi_ops, &upibp->upib_lock, lwptp);
845 	/*
846 	 * Hand-off implies that we wakeup holding the lock, except when:
847 	 *	- deadlock is detected
848 	 *	- lock is not recoverable
849 	 *	- we got an interrupt or timeout
850 	 * If we wake up due to an interrupt or timeout, we may
851 	 * or may not be holding the lock due to mutex hand-off.
852 	 * Use lwp_upimutex_owned() to check if we do hold the lock.
853 	 */
854 	if (error != 0) {
855 		if ((error == EINTR || error == ETIME) &&
856 		    (upimutex = lwp_upimutex_owned(lp, type))) {
857 			/*
858 			 * Unlock and return - the re-startable syscall will
859 			 * try the lock again if we got EINTR.
860 			 */
861 			(void) upi_mylist_add((upimutex_t *)upimutex);
862 			upimutex_unlock((upimutex_t *)upimutex, 0);
863 		}
864 		/*
865 		 * The only other possible error is EDEADLK.  If so, upimutex
866 		 * is valid, since its owner is deadlocked with curthread.
867 		 */
868 		ASSERT(error == EINTR || error == ETIME ||
869 		    (error == EDEADLK && !upi_owned((upimutex_t *)upimutex)));
870 		ASSERT(!lwp_upimutex_owned(lp, type));
871 		goto out;
872 	}
873 	if (lwp_upimutex_owned(lp, type)) {
874 		ASSERT(lwp_upimutex_owned(lp, type) == upimutex);
875 		nupinest = upi_mylist_add((upimutex_t *)upimutex);
876 		upilocked = 1;
877 	}
878 	/*
879 	 * Now, need to read the user-level lp->mutex_flag to do the following:
880 	 *
881 	 * - if lock is held, check if EOWNERDEAD or ELOCKUNMAPPED
882 	 *   should be returned.
883 	 * - if lock isn't held, check if ENOTRECOVERABLE should
884 	 *   be returned.
885 	 *
886 	 * Now, either lp->mutex_flag is readable or it's not. If not
887 	 * readable, the on_fault path will cause a return with EFAULT
888 	 * as it should.  If it is readable, the state of the flag
889 	 * encodes the robustness state of the lock:
890 	 *
891 	 * If the upimutex is locked here, the flag's LOCK_OWNERDEAD
892 	 * or LOCK_UNMAPPED setting will influence the return code
893 	 * appropriately.  If the upimutex is not locked here, this
894 	 * could be due to a spurious wake-up or a NOTRECOVERABLE
895 	 * event.  The flag's setting can be used to distinguish
896 	 * between these two events.
897 	 */
898 	fuword16_noerr(&lp->mutex_flag, &flag);
899 	if (upilocked) {
900 		/*
901 		 * If the thread wakes up from turnstile_block with the lock
902 		 * held, the flag could not be set to LOCK_NOTRECOVERABLE,
903 		 * since it would not have been handed-off the lock.
904 		 * So, no need to check for this case.
905 		 */
906 		if (nupinest > maxnestupimx &&
907 		    secpolicy_resource(CRED()) != 0) {
908 			upimutex_unlock((upimutex_t *)upimutex, flag);
909 			upilocked = 0;
910 			error = ENOMEM;
911 		} else if (flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED)) {
912 			if (flag & LOCK_OWNERDEAD)
913 				error = EOWNERDEAD;
914 			else if (type & USYNC_PROCESS_ROBUST)
915 				error = ELOCKUNMAPPED;
916 			else
917 				error = EOWNERDEAD;
918 		}
919 	} else {
920 		/*
921 		 * Wake-up without the upimutex held. Either this is a
922 		 * spurious wake-up (due to signals, forkall(), whatever), or
923 		 * it is a LOCK_NOTRECOVERABLE robustness event. The setting
924 		 * of the mutex flag can be used to distinguish between the
925 		 * two events.
926 		 */
927 		if (flag & LOCK_NOTRECOVERABLE) {
928 			error = ENOTRECOVERABLE;
929 		} else {
930 			/*
931 			 * Here, the flag could be set to LOCK_OWNERDEAD or
932 			 * not. In both cases, this is a spurious wakeup,
933 			 * since the upi lock is not held, but the thread
934 			 * has returned from turnstile_block().
935 			 *
936 			 * The user flag could be LOCK_OWNERDEAD if, at the
937 			 * same time as curthread having been woken up
938 			 * spuriously, the owner (say Tdead) has died, marked
939 			 * the mutex flag accordingly, and handed off the lock
940 			 * to some other waiter (say Tnew). curthread just
941 			 * happened to read the flag while Tnew has yet to deal
942 			 * with the owner-dead event.
943 			 *
944 			 * In this event, curthread should retry the lock.
945 			 * If Tnew is able to cleanup the lock, curthread
946 			 * will eventually get the lock with a zero error code,
947 			 * If Tnew is unable to cleanup, its eventual call to
948 			 * unlock the lock will result in the mutex flag being
949 			 * set to LOCK_NOTRECOVERABLE, and the wake-up of
950 			 * all waiters, including curthread, which will then
951 			 * eventually return ENOTRECOVERABLE due to the above
952 			 * check.
953 			 *
954 			 * Of course, if the user-flag is not set with
955 			 * LOCK_OWNERDEAD, retrying is the thing to do, since
956 			 * this is definitely a spurious wakeup.
957 			 */
958 			goto retry;
959 		}
960 	}
961 
962 out:
963 	no_fault();
964 	return (error);
965 }
966 
967 
968 static int
969 lwp_upimutex_unlock(lwp_mutex_t *lp, uint8_t type)
970 {
971 	label_t ljb;
972 	int error = 0;
973 	lwpchan_t lwpchan;
974 	uint16_t flag;
975 	upib_t *upibp;
976 	volatile struct upimutex *upimutex = NULL;
977 	volatile int upilocked = 0;
978 
979 	if (on_fault(&ljb)) {
980 		if (upilocked)
981 			upimutex_unlock((upimutex_t *)upimutex, 0);
982 		error = EFAULT;
983 		goto out;
984 	}
985 	if (!get_lwpchan(curproc->p_as, (caddr_t)lp, type,
986 	    &lwpchan, LWPCHAN_MPPOOL)) {
987 		error = EFAULT;
988 		goto out;
989 	}
990 	upibp = &UPI_CHAIN(lwpchan);
991 	mutex_enter(&upibp->upib_lock);
992 	upimutex = upi_get(upibp, &lwpchan);
993 	/*
994 	 * If the lock is not held, or the owner is not curthread, return
995 	 * error. The user-level wrapper can return this error or stall,
996 	 * depending on whether mutex is of ERRORCHECK type or not.
997 	 */
998 	if (upimutex == NULL || upimutex->upi_owner != curthread) {
999 		mutex_exit(&upibp->upib_lock);
1000 		error = EPERM;
1001 		goto out;
1002 	}
1003 	mutex_exit(&upibp->upib_lock); /* release for user memory access */
1004 	upilocked = 1;
1005 	fuword16_noerr(&lp->mutex_flag, &flag);
1006 	if (flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED)) {
1007 		/*
1008 		 * transition mutex to the LOCK_NOTRECOVERABLE state.
1009 		 */
1010 		flag &= ~(LOCK_OWNERDEAD | LOCK_UNMAPPED);
1011 		flag |= LOCK_NOTRECOVERABLE;
1012 		suword16_noerr(&lp->mutex_flag, flag);
1013 	}
1014 	if (type & USYNC_PROCESS)
1015 		suword32_noerr(&lp->mutex_ownerpid, 0);
1016 	upimutex_unlock((upimutex_t *)upimutex, flag);
1017 	upilocked = 0;
1018 out:
1019 	no_fault();
1020 	return (error);
1021 }
1022 
1023 /*
1024  * Clear the contents of a user-level mutex; return the flags.
1025  * Used only by upi_dead() and lwp_mutex_cleanup(), below.
1026  */
1027 static uint16_t
1028 lwp_clear_mutex(lwp_mutex_t *lp, uint16_t lockflg)
1029 {
1030 	uint16_t flag;
1031 
1032 	fuword16_noerr(&lp->mutex_flag, &flag);
1033 	if ((flag &
1034 	    (LOCK_OWNERDEAD | LOCK_UNMAPPED | LOCK_NOTRECOVERABLE)) == 0) {
1035 		flag |= lockflg;
1036 		suword16_noerr(&lp->mutex_flag, flag);
1037 	}
1038 	suword32_noerr((uint32_t *)&lp->mutex_owner, 0);
1039 	suword32_noerr((uint32_t *)&lp->mutex_owner + 1, 0);
1040 	suword32_noerr(&lp->mutex_ownerpid, 0);
1041 	suword8_noerr(&lp->mutex_rcount, 0);
1042 
1043 	return (flag);
1044 }
1045 
1046 /*
1047  * Mark user mutex state, corresponding to kernel upimutex,
1048  * as LOCK_UNMAPPED or LOCK_OWNERDEAD, as appropriate
1049  */
1050 static int
1051 upi_dead(upimutex_t *upip, uint16_t lockflg)
1052 {
1053 	label_t ljb;
1054 	int error = 0;
1055 	lwp_mutex_t *lp;
1056 
1057 	if (on_fault(&ljb)) {
1058 		error = EFAULT;
1059 		goto out;
1060 	}
1061 
1062 	lp = upip->upi_vaddr;
1063 	(void) lwp_clear_mutex(lp, lockflg);
1064 	suword8_noerr(&lp->mutex_lockw, 0);
1065 out:
1066 	no_fault();
1067 	return (error);
1068 }
1069 
1070 /*
1071  * Unlock all upimutexes held by curthread, since curthread is dying.
1072  * For each upimutex, attempt to mark its corresponding user mutex object as
1073  * dead.
1074  */
1075 void
1076 upimutex_cleanup()
1077 {
1078 	kthread_t *t = curthread;
1079 	uint16_t lockflg = (ttoproc(t)->p_proc_flag & P_PR_EXEC)?
1080 	    LOCK_UNMAPPED : LOCK_OWNERDEAD;
1081 	struct upimutex *upip;
1082 
1083 	while ((upip = t->t_upimutex) != NULL) {
1084 		if (upi_dead(upip, lockflg) != 0) {
1085 			/*
1086 			 * If the user object associated with this upimutex is
1087 			 * unmapped, unlock upimutex with the
1088 			 * LOCK_NOTRECOVERABLE flag, so that all waiters are
1089 			 * woken up. Since user object is unmapped, it could
1090 			 * not be marked as dead or notrecoverable.
1091 			 * The waiters will now all wake up and return
1092 			 * ENOTRECOVERABLE, since they would find that the lock
1093 			 * has not been handed-off to them.
1094 			 * See lwp_upimutex_lock().
1095 			 */
1096 			upimutex_unlock(upip, LOCK_NOTRECOVERABLE);
1097 		} else {
1098 			/*
1099 			 * The user object has been updated as dead.
1100 			 * Unlock the upimutex: if no waiters, upip kmem will
1101 			 * be freed. If there is a waiter, the lock will be
1102 			 * handed off. If exit() is in progress, each existing
1103 			 * waiter will successively get the lock, as owners
1104 			 * die, and each new owner will call this routine as
1105 			 * it dies. The last owner will free kmem, since
1106 			 * it will find the upimutex has no waiters. So,
1107 			 * eventually, the kmem is guaranteed to be freed.
1108 			 */
1109 			upimutex_unlock(upip, 0);
1110 		}
1111 		/*
1112 		 * Note that the call to upimutex_unlock() above will delete
1113 		 * upimutex from the t_upimutexes chain. And so the
1114 		 * while loop will eventually terminate.
1115 		 */
1116 	}
1117 }
1118 
1119 static int iswanted();
1120 int
1121 lwp_mutex_timedlock(lwp_mutex_t *lp, timespec_t *tsp)
1122 {
1123 	kthread_t *t = curthread;
1124 	klwp_t *lwp = ttolwp(t);
1125 	proc_t *p = ttoproc(t);
1126 	lwp_timer_t lwpt;
1127 	caddr_t timedwait;
1128 	int error = 0;
1129 	int time_error;
1130 	clock_t tim = -1;
1131 	uchar_t waiters;
1132 	volatile int locked = 0;
1133 	volatile int watched = 0;
1134 	label_t ljb;
1135 	volatile uint8_t type = 0;
1136 	lwpchan_t lwpchan;
1137 	sleepq_head_t *sqh;
1138 	uint16_t flag;
1139 	int imm_timeout = 0;
1140 
1141 	if ((caddr_t)lp >= p->p_as->a_userlimit)
1142 		return (set_errno(EFAULT));
1143 
1144 	/*
1145 	 * Put the lwp in an orderly state for debugging,
1146 	 * in case we are stopped while sleeping, below.
1147 	 */
1148 	prstop(PR_REQUESTED, 0);
1149 
1150 	timedwait = (caddr_t)tsp;
1151 	if ((time_error = lwp_timer_copyin(&lwpt, tsp)) == 0 &&
1152 	    lwpt.lwpt_imm_timeout) {
1153 		imm_timeout = 1;
1154 		timedwait = NULL;
1155 	}
1156 
1157 	/*
1158 	 * Although LMS_USER_LOCK implies "asleep waiting for user-mode lock",
1159 	 * this micro state is really a run state. If the thread indeed blocks,
1160 	 * this state becomes valid. If not, the state is converted back to
1161 	 * LMS_SYSTEM. So, it is OK to set the mstate here, instead of just
1162 	 * when blocking.
1163 	 */
1164 	(void) new_mstate(t, LMS_USER_LOCK);
1165 	if (on_fault(&ljb)) {
1166 		if (locked)
1167 			lwpchan_unlock(&lwpchan, LWPCHAN_MPPOOL);
1168 		error = EFAULT;
1169 		goto out;
1170 	}
1171 	/*
1172 	 * Force Copy-on-write if necessary and ensure that the
1173 	 * synchronization object resides in read/write memory.
1174 	 * Cause an EFAULT return now if this is not so.
1175 	 */
1176 	fuword8_noerr(&lp->mutex_type, (uint8_t *)&type);
1177 	suword8_noerr(&lp->mutex_type, type);
1178 	if (UPIMUTEX(type)) {
1179 		no_fault();
1180 		error = lwp_upimutex_lock(lp, type, UPIMUTEX_BLOCK, &lwpt);
1181 		if ((type & USYNC_PROCESS) &&
1182 		    (error == 0 ||
1183 		    error == EOWNERDEAD || error == ELOCKUNMAPPED))
1184 			(void) suword32(&lp->mutex_ownerpid, p->p_pid);
1185 		if (tsp && !time_error)	/* copyout the residual time left */
1186 			error = lwp_timer_copyout(&lwpt, error);
1187 		if (error)
1188 			return (set_errno(error));
1189 		return (0);
1190 	}
1191 	if (!get_lwpchan(curproc->p_as, (caddr_t)lp, type,
1192 	    &lwpchan, LWPCHAN_MPPOOL)) {
1193 		error = EFAULT;
1194 		goto out;
1195 	}
1196 	lwpchan_lock(&lwpchan, LWPCHAN_MPPOOL);
1197 	locked = 1;
1198 	if (type & LOCK_ROBUST) {
1199 		fuword16_noerr(&lp->mutex_flag, &flag);
1200 		if (flag & LOCK_NOTRECOVERABLE) {
1201 			lwpchan_unlock(&lwpchan, LWPCHAN_MPPOOL);
1202 			error = ENOTRECOVERABLE;
1203 			goto out;
1204 		}
1205 	}
1206 	fuword8_noerr(&lp->mutex_waiters, &waiters);
1207 	suword8_noerr(&lp->mutex_waiters, 1);
1208 
1209 	/*
1210 	 * If watchpoints are set, they need to be restored, since
1211 	 * atomic accesses of memory such as the call to ulock_try()
1212 	 * below cannot be watched.
1213 	 */
1214 
1215 	watched = watch_disable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
1216 
1217 	while (!ulock_try(&lp->mutex_lockw)) {
1218 		if (time_error) {
1219 			/*
1220 			 * The SUSV3 Posix spec is very clear that we
1221 			 * should get no error from validating the
1222 			 * timer until we would actually sleep.
1223 			 */
1224 			error = time_error;
1225 			break;
1226 		}
1227 
1228 		if (watched) {
1229 			watch_enable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
1230 			watched = 0;
1231 		}
1232 
1233 		if (timedwait) {
1234 			/*
1235 			 * If we successfully queue the timeout,
1236 			 * then don't drop t_delay_lock until
1237 			 * we are on the sleep queue (below).
1238 			 */
1239 			mutex_enter(&t->t_delay_lock);
1240 			if (lwp_timer_enqueue(&lwpt) != 0) {
1241 				mutex_exit(&t->t_delay_lock);
1242 				imm_timeout = 1;
1243 				timedwait = NULL;
1244 			}
1245 		}
1246 		lwp_block(&lwpchan);
1247 		/*
1248 		 * Nothing should happen to cause the lwp to go to
1249 		 * sleep again until after it returns from swtch().
1250 		 */
1251 		if (timedwait)
1252 			mutex_exit(&t->t_delay_lock);
1253 		locked = 0;
1254 		lwpchan_unlock(&lwpchan, LWPCHAN_MPPOOL);
1255 		if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || imm_timeout)
1256 			setrun(t);
1257 		swtch();
1258 		t->t_flag &= ~T_WAKEABLE;
1259 		if (timedwait)
1260 			tim = lwp_timer_dequeue(&lwpt);
1261 		setallwatch();
1262 		if (ISSIG(t, FORREAL) || lwp->lwp_sysabort || MUSTRETURN(p, t))
1263 			error = EINTR;
1264 		else if (imm_timeout || (timedwait && tim == -1))
1265 			error = ETIME;
1266 		if (error) {
1267 			lwp->lwp_asleep = 0;
1268 			lwp->lwp_sysabort = 0;
1269 			watched = watch_disable_addr((caddr_t)lp, sizeof (*lp),
1270 			    S_WRITE);
1271 
1272 			/*
1273 			 * Need to re-compute waiters bit. The waiters field in
1274 			 * the lock is not reliable. Either of two things could
1275 			 * have occurred: no lwp may have called lwp_release()
1276 			 * for me but I have woken up due to a signal or
1277 			 * timeout.  In this case, the waiter bit is incorrect
1278 			 * since it is still set to 1, set above.
1279 			 * OR an lwp_release() did occur for some other lwp on
1280 			 * the same lwpchan. In this case, the waiter bit is
1281 			 * correct.  But which event occurred, one can't tell.
1282 			 * So, recompute.
1283 			 */
1284 			lwpchan_lock(&lwpchan, LWPCHAN_MPPOOL);
1285 			locked = 1;
1286 			sqh = lwpsqhash(&lwpchan);
1287 			disp_lock_enter(&sqh->sq_lock);
1288 			waiters = iswanted(sqh->sq_queue.sq_first, &lwpchan);
1289 			disp_lock_exit(&sqh->sq_lock);
1290 			break;
1291 		}
1292 		lwp->lwp_asleep = 0;
1293 		watched = watch_disable_addr((caddr_t)lp, sizeof (*lp),
1294 		    S_WRITE);
1295 		lwpchan_lock(&lwpchan, LWPCHAN_MPPOOL);
1296 		locked = 1;
1297 		fuword8_noerr(&lp->mutex_waiters, &waiters);
1298 		suword8_noerr(&lp->mutex_waiters, 1);
1299 		if (type & LOCK_ROBUST) {
1300 			fuword16_noerr(&lp->mutex_flag, &flag);
1301 			if (flag & LOCK_NOTRECOVERABLE) {
1302 				error = ENOTRECOVERABLE;
1303 				break;
1304 			}
1305 		}
1306 	}
1307 
1308 	if (t->t_mstate == LMS_USER_LOCK)
1309 		(void) new_mstate(t, LMS_SYSTEM);
1310 
1311 	if (error == 0) {
1312 		if (type & USYNC_PROCESS)
1313 			suword32_noerr(&lp->mutex_ownerpid, p->p_pid);
1314 		if (type & LOCK_ROBUST) {
1315 			fuword16_noerr(&lp->mutex_flag, &flag);
1316 			if (flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED)) {
1317 				if (flag & LOCK_OWNERDEAD)
1318 					error = EOWNERDEAD;
1319 				else if (type & USYNC_PROCESS_ROBUST)
1320 					error = ELOCKUNMAPPED;
1321 				else
1322 					error = EOWNERDEAD;
1323 			}
1324 		}
1325 	}
1326 	suword8_noerr(&lp->mutex_waiters, waiters);
1327 	locked = 0;
1328 	lwpchan_unlock(&lwpchan, LWPCHAN_MPPOOL);
1329 out:
1330 	no_fault();
1331 	if (watched)
1332 		watch_enable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
1333 	if (tsp && !time_error)		/* copyout the residual time left */
1334 		error = lwp_timer_copyout(&lwpt, error);
1335 	if (error)
1336 		return (set_errno(error));
1337 	return (0);
1338 }
1339 
1340 /*
1341  * Obsolete lwp_mutex_lock() interface, no longer called from libc.
1342  * libc now calls lwp_mutex_timedlock(lp, NULL).
1343  * This system call trap continues to exist solely for the benefit
1344  * of old statically-linked binaries from Solaris 9 and before.
1345  * It should be removed from the system when we no longer care
1346  * about such applications.
1347  */
1348 int
1349 lwp_mutex_lock(lwp_mutex_t *lp)
1350 {
1351 	return (lwp_mutex_timedlock(lp, NULL));
1352 }
1353 
1354 static int
1355 iswanted(kthread_t *t, lwpchan_t *lwpchan)
1356 {
1357 	/*
1358 	 * The caller holds the dispatcher lock on the sleep queue.
1359 	 */
1360 	while (t != NULL) {
1361 		if (t->t_lwpchan.lc_wchan0 == lwpchan->lc_wchan0 &&
1362 		    t->t_lwpchan.lc_wchan == lwpchan->lc_wchan)
1363 			return (1);
1364 		t = t->t_link;
1365 	}
1366 	return (0);
1367 }
1368 
1369 /*
1370  * Return the highest priority thread sleeping on this lwpchan.
1371  */
1372 static kthread_t *
1373 lwp_queue_waiter(lwpchan_t *lwpchan)
1374 {
1375 	sleepq_head_t *sqh;
1376 	kthread_t *tp;
1377 
1378 	sqh = lwpsqhash(lwpchan);
1379 	disp_lock_enter(&sqh->sq_lock);		/* lock the sleep queue */
1380 	for (tp = sqh->sq_queue.sq_first; tp != NULL; tp = tp->t_link) {
1381 		if (tp->t_lwpchan.lc_wchan0 == lwpchan->lc_wchan0 &&
1382 		    tp->t_lwpchan.lc_wchan == lwpchan->lc_wchan)
1383 			break;
1384 	}
1385 	disp_lock_exit(&sqh->sq_lock);
1386 	return (tp);
1387 }
1388 
1389 static int
1390 lwp_release(lwpchan_t *lwpchan, uchar_t *waiters, int sync_type)
1391 {
1392 	sleepq_head_t *sqh;
1393 	kthread_t *tp;
1394 	kthread_t **tpp;
1395 
1396 	sqh = lwpsqhash(lwpchan);
1397 	disp_lock_enter(&sqh->sq_lock);		/* lock the sleep queue */
1398 	tpp = &sqh->sq_queue.sq_first;
1399 	while ((tp = *tpp) != NULL) {
1400 		if (tp->t_lwpchan.lc_wchan0 == lwpchan->lc_wchan0 &&
1401 		    tp->t_lwpchan.lc_wchan == lwpchan->lc_wchan) {
1402 			/*
1403 			 * The following is typically false. It could be true
1404 			 * only if lwp_release() is called from
1405 			 * lwp_mutex_wakeup() after reading the waiters field
1406 			 * from memory in which the lwp lock used to be, but has
1407 			 * since been re-used to hold a lwp cv or lwp semaphore.
1408 			 * The thread "tp" found to match the lwp lock's wchan
1409 			 * is actually sleeping for the cv or semaphore which
1410 			 * now has the same wchan. In this case, lwp_release()
1411 			 * should return failure.
1412 			 */
1413 			if (sync_type != (tp->t_flag & T_WAITCVSEM)) {
1414 				ASSERT(sync_type == 0);
1415 				/*
1416 				 * assert that this can happen only for mutexes
1417 				 * i.e. sync_type == 0, for correctly written
1418 				 * user programs.
1419 				 */
1420 				disp_lock_exit(&sqh->sq_lock);
1421 				return (0);
1422 			}
1423 			*waiters = iswanted(tp->t_link, lwpchan);
1424 			sleepq_unlink(tpp, tp);
1425 			DTRACE_SCHED1(wakeup, kthread_t *, tp);
1426 			tp->t_wchan0 = NULL;
1427 			tp->t_wchan = NULL;
1428 			tp->t_sobj_ops = NULL;
1429 			tp->t_release = 1;
1430 			THREAD_TRANSITION(tp);	/* drops sleepq lock */
1431 			CL_WAKEUP(tp);
1432 			thread_unlock(tp);	/* drop run queue lock */
1433 			return (1);
1434 		}
1435 		tpp = &tp->t_link;
1436 	}
1437 	*waiters = 0;
1438 	disp_lock_exit(&sqh->sq_lock);
1439 	return (0);
1440 }
1441 
1442 static void
1443 lwp_release_all(lwpchan_t *lwpchan)
1444 {
1445 	sleepq_head_t	*sqh;
1446 	kthread_t *tp;
1447 	kthread_t **tpp;
1448 
1449 	sqh = lwpsqhash(lwpchan);
1450 	disp_lock_enter(&sqh->sq_lock);		/* lock sleep q queue */
1451 	tpp = &sqh->sq_queue.sq_first;
1452 	while ((tp = *tpp) != NULL) {
1453 		if (tp->t_lwpchan.lc_wchan0 == lwpchan->lc_wchan0 &&
1454 		    tp->t_lwpchan.lc_wchan == lwpchan->lc_wchan) {
1455 			sleepq_unlink(tpp, tp);
1456 			DTRACE_SCHED1(wakeup, kthread_t *, tp);
1457 			tp->t_wchan0 = NULL;
1458 			tp->t_wchan = NULL;
1459 			tp->t_sobj_ops = NULL;
1460 			CL_WAKEUP(tp);
1461 			thread_unlock_high(tp);	/* release run queue lock */
1462 		} else {
1463 			tpp = &tp->t_link;
1464 		}
1465 	}
1466 	disp_lock_exit(&sqh->sq_lock);		/* drop sleep q lock */
1467 }
1468 
1469 /*
1470  * unblock a lwp that is trying to acquire this mutex. the blocked
1471  * lwp resumes and retries to acquire the lock.
1472  */
1473 int
1474 lwp_mutex_wakeup(lwp_mutex_t *lp, int release_all)
1475 {
1476 	proc_t *p = ttoproc(curthread);
1477 	lwpchan_t lwpchan;
1478 	uchar_t waiters;
1479 	volatile int locked = 0;
1480 	volatile int watched = 0;
1481 	volatile uint8_t type = 0;
1482 	label_t ljb;
1483 	int error = 0;
1484 
1485 	if ((caddr_t)lp >= p->p_as->a_userlimit)
1486 		return (set_errno(EFAULT));
1487 
1488 	watched = watch_disable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
1489 
1490 	if (on_fault(&ljb)) {
1491 		if (locked)
1492 			lwpchan_unlock(&lwpchan, LWPCHAN_MPPOOL);
1493 		error = EFAULT;
1494 		goto out;
1495 	}
1496 	/*
1497 	 * Force Copy-on-write if necessary and ensure that the
1498 	 * synchronization object resides in read/write memory.
1499 	 * Cause an EFAULT return now if this is not so.
1500 	 */
1501 	fuword8_noerr(&lp->mutex_type, (uint8_t *)&type);
1502 	suword8_noerr(&lp->mutex_type, type);
1503 	if (!get_lwpchan(curproc->p_as, (caddr_t)lp, type,
1504 	    &lwpchan, LWPCHAN_MPPOOL)) {
1505 		error = EFAULT;
1506 		goto out;
1507 	}
1508 	lwpchan_lock(&lwpchan, LWPCHAN_MPPOOL);
1509 	locked = 1;
1510 	/*
1511 	 * Always wake up an lwp (if any) waiting on lwpchan. The woken lwp will
1512 	 * re-try the lock in lwp_mutex_timedlock(). The call to lwp_release()
1513 	 * may fail.  If it fails, do not write into the waiter bit.
1514 	 * The call to lwp_release() might fail due to one of three reasons:
1515 	 *
1516 	 * 	1. due to the thread which set the waiter bit not actually
1517 	 *	   sleeping since it got the lock on the re-try. The waiter
1518 	 *	   bit will then be correctly updated by that thread. This
1519 	 *	   window may be closed by reading the wait bit again here
1520 	 *	   and not calling lwp_release() at all if it is zero.
1521 	 *	2. the thread which set the waiter bit and went to sleep
1522 	 *	   was woken up by a signal. This time, the waiter recomputes
1523 	 *	   the wait bit in the return with EINTR code.
1524 	 *	3. the waiter bit read by lwp_mutex_wakeup() was in
1525 	 *	   memory that has been re-used after the lock was dropped.
1526 	 *	   In this case, writing into the waiter bit would cause data
1527 	 *	   corruption.
1528 	 */
1529 	if (release_all)
1530 		lwp_release_all(&lwpchan);
1531 	else if (lwp_release(&lwpchan, &waiters, 0))
1532 		suword8_noerr(&lp->mutex_waiters, waiters);
1533 	lwpchan_unlock(&lwpchan, LWPCHAN_MPPOOL);
1534 out:
1535 	no_fault();
1536 	if (watched)
1537 		watch_enable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
1538 	if (error)
1539 		return (set_errno(error));
1540 	return (0);
1541 }
1542 
1543 /*
1544  * lwp_cond_wait() has four arguments, a pointer to a condition variable,
1545  * a pointer to a mutex, a pointer to a timespec for a timed wait and
1546  * a flag telling the kernel whether or not to honor the kernel/user
1547  * schedctl parking protocol (see schedctl_is_park() in schedctl.c).
1548  * The kernel puts the lwp to sleep on a unique pair of caddr_t's called an
1549  * lwpchan, returned by get_lwpchan().  If the timespec pointer is non-NULL,
1550  * it is used an an in/out parameter.  On entry, it contains the relative
1551  * time until timeout.  On exit, we copyout the residual time left to it.
1552  */
1553 int
1554 lwp_cond_wait(lwp_cond_t *cv, lwp_mutex_t *mp, timespec_t *tsp, int check_park)
1555 {
1556 	kthread_t *t = curthread;
1557 	klwp_t *lwp = ttolwp(t);
1558 	proc_t *p = ttoproc(t);
1559 	lwp_timer_t lwpt;
1560 	lwpchan_t cv_lwpchan;
1561 	lwpchan_t m_lwpchan;
1562 	caddr_t timedwait;
1563 	volatile uint16_t type = 0;
1564 	volatile uint8_t mtype = 0;
1565 	uchar_t waiters;
1566 	volatile int error;
1567 	clock_t tim = -1;
1568 	volatile int locked = 0;
1569 	volatile int m_locked = 0;
1570 	volatile int cvwatched = 0;
1571 	volatile int mpwatched = 0;
1572 	label_t ljb;
1573 	volatile int no_lwpchan = 1;
1574 	int imm_timeout = 0;
1575 	int imm_unpark = 0;
1576 
1577 	if ((caddr_t)cv >= p->p_as->a_userlimit ||
1578 	    (caddr_t)mp >= p->p_as->a_userlimit)
1579 		return (set_errno(EFAULT));
1580 
1581 	/*
1582 	 * Put the lwp in an orderly state for debugging,
1583 	 * in case we are stopped while sleeping, below.
1584 	 */
1585 	prstop(PR_REQUESTED, 0);
1586 
1587 	timedwait = (caddr_t)tsp;
1588 	if ((error = lwp_timer_copyin(&lwpt, tsp)) != 0)
1589 		return (set_errno(error));
1590 	if (lwpt.lwpt_imm_timeout) {
1591 		imm_timeout = 1;
1592 		timedwait = NULL;
1593 	}
1594 
1595 	(void) new_mstate(t, LMS_USER_LOCK);
1596 
1597 	if (on_fault(&ljb)) {
1598 		if (no_lwpchan) {
1599 			error = EFAULT;
1600 			goto out;
1601 		}
1602 		if (m_locked) {
1603 			m_locked = 0;
1604 			lwpchan_unlock(&m_lwpchan, LWPCHAN_MPPOOL);
1605 		}
1606 		if (locked) {
1607 			locked = 0;
1608 			lwpchan_unlock(&cv_lwpchan, LWPCHAN_CVPOOL);
1609 		}
1610 		/*
1611 		 * set up another on_fault() for a possible fault
1612 		 * on the user lock accessed at "efault"
1613 		 */
1614 		if (on_fault(&ljb)) {
1615 			if (m_locked) {
1616 				m_locked = 0;
1617 				lwpchan_unlock(&m_lwpchan, LWPCHAN_MPPOOL);
1618 			}
1619 			goto out;
1620 		}
1621 		error = EFAULT;
1622 		goto efault;
1623 	}
1624 
1625 	/*
1626 	 * Force Copy-on-write if necessary and ensure that the
1627 	 * synchronization object resides in read/write memory.
1628 	 * Cause an EFAULT return now if this is not so.
1629 	 */
1630 	fuword8_noerr(&mp->mutex_type, (uint8_t *)&mtype);
1631 	suword8_noerr(&mp->mutex_type, mtype);
1632 	if (UPIMUTEX(mtype) == 0) {
1633 		/* convert user level mutex, "mp", to a unique lwpchan */
1634 		/* check if mtype is ok to use below, instead of type from cv */
1635 		if (!get_lwpchan(p->p_as, (caddr_t)mp, mtype,
1636 		    &m_lwpchan, LWPCHAN_MPPOOL)) {
1637 			error = EFAULT;
1638 			goto out;
1639 		}
1640 	}
1641 	fuword16_noerr(&cv->cond_type, (uint16_t *)&type);
1642 	suword16_noerr(&cv->cond_type, type);
1643 	/* convert user level condition variable, "cv", to a unique lwpchan */
1644 	if (!get_lwpchan(p->p_as, (caddr_t)cv, type,
1645 	    &cv_lwpchan, LWPCHAN_CVPOOL)) {
1646 		error = EFAULT;
1647 		goto out;
1648 	}
1649 	no_lwpchan = 0;
1650 	cvwatched = watch_disable_addr((caddr_t)cv, sizeof (*cv), S_WRITE);
1651 	if (UPIMUTEX(mtype) == 0)
1652 		mpwatched = watch_disable_addr((caddr_t)mp, sizeof (*mp),
1653 		    S_WRITE);
1654 
1655 	/*
1656 	 * lwpchan_lock ensures that the calling lwp is put to sleep atomically
1657 	 * with respect to a possible wakeup which is a result of either
1658 	 * an lwp_cond_signal() or an lwp_cond_broadcast().
1659 	 *
1660 	 * What's misleading, is that the lwp is put to sleep after the
1661 	 * condition variable's mutex is released.  This is OK as long as
1662 	 * the release operation is also done while holding lwpchan_lock.
1663 	 * The lwp is then put to sleep when the possibility of pagefaulting
1664 	 * or sleeping is completely eliminated.
1665 	 */
1666 	lwpchan_lock(&cv_lwpchan, LWPCHAN_CVPOOL);
1667 	locked = 1;
1668 	if (UPIMUTEX(mtype) == 0) {
1669 		lwpchan_lock(&m_lwpchan, LWPCHAN_MPPOOL);
1670 		m_locked = 1;
1671 		suword8_noerr(&cv->cond_waiters_kernel, 1);
1672 		/*
1673 		 * unlock the condition variable's mutex. (pagefaults are
1674 		 * possible here.)
1675 		 */
1676 		if (mtype & USYNC_PROCESS)
1677 			suword32_noerr(&mp->mutex_ownerpid, 0);
1678 		ulock_clear(&mp->mutex_lockw);
1679 		fuword8_noerr(&mp->mutex_waiters, &waiters);
1680 		if (waiters != 0) {
1681 			/*
1682 			 * Given the locking of lwpchan_lock around the release
1683 			 * of the mutex and checking for waiters, the following
1684 			 * call to lwp_release() can fail ONLY if the lock
1685 			 * acquirer is interrupted after setting the waiter bit,
1686 			 * calling lwp_block() and releasing lwpchan_lock.
1687 			 * In this case, it could get pulled off the lwp sleep
1688 			 * q (via setrun()) before the following call to
1689 			 * lwp_release() occurs. In this case, the lock
1690 			 * requestor will update the waiter bit correctly by
1691 			 * re-evaluating it.
1692 			 */
1693 			if (lwp_release(&m_lwpchan, &waiters, 0))
1694 				suword8_noerr(&mp->mutex_waiters, waiters);
1695 		}
1696 		m_locked = 0;
1697 		lwpchan_unlock(&m_lwpchan, LWPCHAN_MPPOOL);
1698 	} else {
1699 		suword8_noerr(&cv->cond_waiters_kernel, 1);
1700 		error = lwp_upimutex_unlock(mp, mtype);
1701 		if (error) {	/* if the upimutex unlock failed */
1702 			locked = 0;
1703 			lwpchan_unlock(&cv_lwpchan, LWPCHAN_CVPOOL);
1704 			goto out;
1705 		}
1706 	}
1707 	no_fault();
1708 
1709 	if (mpwatched) {
1710 		watch_enable_addr((caddr_t)mp, sizeof (*mp), S_WRITE);
1711 		mpwatched = 0;
1712 	}
1713 	if (cvwatched) {
1714 		watch_enable_addr((caddr_t)cv, sizeof (*cv), S_WRITE);
1715 		cvwatched = 0;
1716 	}
1717 
1718 	if (check_park && (!schedctl_is_park() || t->t_unpark)) {
1719 		/*
1720 		 * We received a signal at user-level before calling here
1721 		 * or another thread wants us to return immediately
1722 		 * with EINTR.  See lwp_unpark().
1723 		 */
1724 		imm_unpark = 1;
1725 		t->t_unpark = 0;
1726 		timedwait = NULL;
1727 	} else if (timedwait) {
1728 		/*
1729 		 * If we successfully queue the timeout,
1730 		 * then don't drop t_delay_lock until
1731 		 * we are on the sleep queue (below).
1732 		 */
1733 		mutex_enter(&t->t_delay_lock);
1734 		if (lwp_timer_enqueue(&lwpt) != 0) {
1735 			mutex_exit(&t->t_delay_lock);
1736 			imm_timeout = 1;
1737 			timedwait = NULL;
1738 		}
1739 	}
1740 	t->t_flag |= T_WAITCVSEM;
1741 	lwp_block(&cv_lwpchan);
1742 	/*
1743 	 * Nothing should happen to cause the lwp to go to sleep
1744 	 * until after it returns from swtch().
1745 	 */
1746 	if (timedwait)
1747 		mutex_exit(&t->t_delay_lock);
1748 	locked = 0;
1749 	lwpchan_unlock(&cv_lwpchan, LWPCHAN_CVPOOL);
1750 	if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) ||
1751 	    (imm_timeout | imm_unpark))
1752 		setrun(t);
1753 	swtch();
1754 	t->t_flag &= ~(T_WAITCVSEM | T_WAKEABLE);
1755 	if (timedwait)
1756 		tim = lwp_timer_dequeue(&lwpt);
1757 	if (ISSIG(t, FORREAL) || lwp->lwp_sysabort ||
1758 	    MUSTRETURN(p, t) || imm_unpark)
1759 		error = EINTR;
1760 	else if (imm_timeout || (timedwait && tim == -1))
1761 		error = ETIME;
1762 	lwp->lwp_asleep = 0;
1763 	lwp->lwp_sysabort = 0;
1764 	setallwatch();
1765 
1766 	if (t->t_mstate == LMS_USER_LOCK)
1767 		(void) new_mstate(t, LMS_SYSTEM);
1768 
1769 	if (tsp && check_park)		/* copyout the residual time left */
1770 		error = lwp_timer_copyout(&lwpt, error);
1771 
1772 	/* the mutex is reacquired by the caller on return to user level */
1773 	if (error) {
1774 		/*
1775 		 * If we were concurrently lwp_cond_signal()d and we
1776 		 * received a UNIX signal or got a timeout, then perform
1777 		 * another lwp_cond_signal() to avoid consuming the wakeup.
1778 		 */
1779 		if (t->t_release)
1780 			(void) lwp_cond_signal(cv);
1781 		return (set_errno(error));
1782 	}
1783 	return (0);
1784 
1785 efault:
1786 	/*
1787 	 * make sure that the user level lock is dropped before
1788 	 * returning to caller, since the caller always re-acquires it.
1789 	 */
1790 	if (UPIMUTEX(mtype) == 0) {
1791 		lwpchan_lock(&m_lwpchan, LWPCHAN_MPPOOL);
1792 		m_locked = 1;
1793 		if (mtype & USYNC_PROCESS)
1794 			suword32_noerr(&mp->mutex_ownerpid, 0);
1795 		ulock_clear(&mp->mutex_lockw);
1796 		fuword8_noerr(&mp->mutex_waiters, &waiters);
1797 		if (waiters != 0) {
1798 			/*
1799 			 * See comment above on lock clearing and lwp_release()
1800 			 * success/failure.
1801 			 */
1802 			if (lwp_release(&m_lwpchan, &waiters, 0))
1803 				suword8_noerr(&mp->mutex_waiters, waiters);
1804 		}
1805 		m_locked = 0;
1806 		lwpchan_unlock(&m_lwpchan, LWPCHAN_MPPOOL);
1807 	} else {
1808 		(void) lwp_upimutex_unlock(mp, mtype);
1809 	}
1810 out:
1811 	no_fault();
1812 	if (mpwatched)
1813 		watch_enable_addr((caddr_t)mp, sizeof (*mp), S_WRITE);
1814 	if (cvwatched)
1815 		watch_enable_addr((caddr_t)cv, sizeof (*cv), S_WRITE);
1816 	if (t->t_mstate == LMS_USER_LOCK)
1817 		(void) new_mstate(t, LMS_SYSTEM);
1818 	return (set_errno(error));
1819 }
1820 
1821 /*
1822  * wakeup one lwp that's blocked on this condition variable.
1823  */
1824 int
1825 lwp_cond_signal(lwp_cond_t *cv)
1826 {
1827 	proc_t *p = ttoproc(curthread);
1828 	lwpchan_t lwpchan;
1829 	uchar_t waiters;
1830 	volatile uint16_t type = 0;
1831 	volatile int locked = 0;
1832 	volatile int watched = 0;
1833 	label_t ljb;
1834 	int error = 0;
1835 
1836 	if ((caddr_t)cv >= p->p_as->a_userlimit)
1837 		return (set_errno(EFAULT));
1838 
1839 	watched = watch_disable_addr((caddr_t)cv, sizeof (*cv), S_WRITE);
1840 
1841 	if (on_fault(&ljb)) {
1842 		if (locked)
1843 			lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
1844 		error = EFAULT;
1845 		goto out;
1846 	}
1847 	/*
1848 	 * Force Copy-on-write if necessary and ensure that the
1849 	 * synchronization object resides in read/write memory.
1850 	 * Cause an EFAULT return now if this is not so.
1851 	 */
1852 	fuword16_noerr(&cv->cond_type, (uint16_t *)&type);
1853 	suword16_noerr(&cv->cond_type, type);
1854 	if (!get_lwpchan(curproc->p_as, (caddr_t)cv, type,
1855 	    &lwpchan, LWPCHAN_CVPOOL)) {
1856 		error = EFAULT;
1857 		goto out;
1858 	}
1859 	lwpchan_lock(&lwpchan, LWPCHAN_CVPOOL);
1860 	locked = 1;
1861 	fuword8_noerr(&cv->cond_waiters_kernel, &waiters);
1862 	if (waiters != 0) {
1863 		/*
1864 		 * The following call to lwp_release() might fail but it is
1865 		 * OK to write into the waiters bit below, since the memory
1866 		 * could not have been re-used or unmapped (for correctly
1867 		 * written user programs) as in the case of lwp_mutex_wakeup().
1868 		 * For an incorrect program, we should not care about data
1869 		 * corruption since this is just one instance of other places
1870 		 * where corruption can occur for such a program. Of course
1871 		 * if the memory is unmapped, normal fault recovery occurs.
1872 		 */
1873 		(void) lwp_release(&lwpchan, &waiters, T_WAITCVSEM);
1874 		suword8_noerr(&cv->cond_waiters_kernel, waiters);
1875 	}
1876 	lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
1877 out:
1878 	no_fault();
1879 	if (watched)
1880 		watch_enable_addr((caddr_t)cv, sizeof (*cv), S_WRITE);
1881 	if (error)
1882 		return (set_errno(error));
1883 	return (0);
1884 }
1885 
1886 /*
1887  * wakeup every lwp that's blocked on this condition variable.
1888  */
1889 int
1890 lwp_cond_broadcast(lwp_cond_t *cv)
1891 {
1892 	proc_t *p = ttoproc(curthread);
1893 	lwpchan_t lwpchan;
1894 	volatile uint16_t type = 0;
1895 	volatile int locked = 0;
1896 	volatile int watched = 0;
1897 	label_t ljb;
1898 	uchar_t waiters;
1899 	int error = 0;
1900 
1901 	if ((caddr_t)cv >= p->p_as->a_userlimit)
1902 		return (set_errno(EFAULT));
1903 
1904 	watched = watch_disable_addr((caddr_t)cv, sizeof (*cv), S_WRITE);
1905 
1906 	if (on_fault(&ljb)) {
1907 		if (locked)
1908 			lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
1909 		error = EFAULT;
1910 		goto out;
1911 	}
1912 	/*
1913 	 * Force Copy-on-write if necessary and ensure that the
1914 	 * synchronization object resides in read/write memory.
1915 	 * Cause an EFAULT return now if this is not so.
1916 	 */
1917 	fuword16_noerr(&cv->cond_type, (uint16_t *)&type);
1918 	suword16_noerr(&cv->cond_type, type);
1919 	if (!get_lwpchan(curproc->p_as, (caddr_t)cv, type,
1920 	    &lwpchan, LWPCHAN_CVPOOL)) {
1921 		error = EFAULT;
1922 		goto out;
1923 	}
1924 	lwpchan_lock(&lwpchan, LWPCHAN_CVPOOL);
1925 	locked = 1;
1926 	fuword8_noerr(&cv->cond_waiters_kernel, &waiters);
1927 	if (waiters != 0) {
1928 		lwp_release_all(&lwpchan);
1929 		suword8_noerr(&cv->cond_waiters_kernel, 0);
1930 	}
1931 	lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
1932 out:
1933 	no_fault();
1934 	if (watched)
1935 		watch_enable_addr((caddr_t)cv, sizeof (*cv), S_WRITE);
1936 	if (error)
1937 		return (set_errno(error));
1938 	return (0);
1939 }
1940 
1941 int
1942 lwp_sema_trywait(lwp_sema_t *sp)
1943 {
1944 	kthread_t *t = curthread;
1945 	proc_t *p = ttoproc(t);
1946 	label_t ljb;
1947 	volatile int locked = 0;
1948 	volatile int watched = 0;
1949 	volatile uint16_t type = 0;
1950 	int count;
1951 	lwpchan_t lwpchan;
1952 	uchar_t waiters;
1953 	int error = 0;
1954 
1955 	if ((caddr_t)sp >= p->p_as->a_userlimit)
1956 		return (set_errno(EFAULT));
1957 
1958 	watched = watch_disable_addr((caddr_t)sp, sizeof (*sp), S_WRITE);
1959 
1960 	if (on_fault(&ljb)) {
1961 		if (locked)
1962 			lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
1963 		error = EFAULT;
1964 		goto out;
1965 	}
1966 	/*
1967 	 * Force Copy-on-write if necessary and ensure that the
1968 	 * synchronization object resides in read/write memory.
1969 	 * Cause an EFAULT return now if this is not so.
1970 	 */
1971 	fuword16_noerr((void *)&sp->sema_type, (uint16_t *)&type);
1972 	suword16_noerr((void *)&sp->sema_type, type);
1973 	if (!get_lwpchan(p->p_as, (caddr_t)sp, type,
1974 	    &lwpchan, LWPCHAN_CVPOOL)) {
1975 		error = EFAULT;
1976 		goto out;
1977 	}
1978 	lwpchan_lock(&lwpchan, LWPCHAN_CVPOOL);
1979 	locked = 1;
1980 	fuword32_noerr((void *)&sp->sema_count, (uint32_t *)&count);
1981 	if (count == 0)
1982 		error = EBUSY;
1983 	else
1984 		suword32_noerr((void *)&sp->sema_count, --count);
1985 	if (count != 0) {
1986 		fuword8_noerr(&sp->sema_waiters, &waiters);
1987 		if (waiters != 0) {
1988 			(void) lwp_release(&lwpchan, &waiters, T_WAITCVSEM);
1989 			suword8_noerr(&sp->sema_waiters, waiters);
1990 		}
1991 	}
1992 	lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
1993 out:
1994 	no_fault();
1995 	if (watched)
1996 		watch_enable_addr((caddr_t)sp, sizeof (*sp), S_WRITE);
1997 	if (error)
1998 		return (set_errno(error));
1999 	return (0);
2000 }
2001 
2002 /*
2003  * See lwp_cond_wait(), above, for an explanation of the 'check_park' argument.
2004  */
2005 int
2006 lwp_sema_timedwait(lwp_sema_t *sp, timespec_t *tsp, int check_park)
2007 {
2008 	kthread_t *t = curthread;
2009 	klwp_t *lwp = ttolwp(t);
2010 	proc_t *p = ttoproc(t);
2011 	lwp_timer_t lwpt;
2012 	caddr_t timedwait;
2013 	clock_t tim = -1;
2014 	label_t ljb;
2015 	volatile int locked = 0;
2016 	volatile int watched = 0;
2017 	volatile uint16_t type = 0;
2018 	int count;
2019 	lwpchan_t lwpchan;
2020 	uchar_t waiters;
2021 	int error = 0;
2022 	int time_error;
2023 	int imm_timeout = 0;
2024 	int imm_unpark = 0;
2025 
2026 	if ((caddr_t)sp >= p->p_as->a_userlimit)
2027 		return (set_errno(EFAULT));
2028 
2029 	/*
2030 	 * Put the lwp in an orderly state for debugging,
2031 	 * in case we are stopped while sleeping, below.
2032 	 */
2033 	prstop(PR_REQUESTED, 0);
2034 
2035 	timedwait = (caddr_t)tsp;
2036 	if ((time_error = lwp_timer_copyin(&lwpt, tsp)) == 0 &&
2037 	    lwpt.lwpt_imm_timeout) {
2038 		imm_timeout = 1;
2039 		timedwait = NULL;
2040 	}
2041 
2042 	watched = watch_disable_addr((caddr_t)sp, sizeof (*sp), S_WRITE);
2043 
2044 	if (on_fault(&ljb)) {
2045 		if (locked)
2046 			lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
2047 		error = EFAULT;
2048 		goto out;
2049 	}
2050 	/*
2051 	 * Force Copy-on-write if necessary and ensure that the
2052 	 * synchronization object resides in read/write memory.
2053 	 * Cause an EFAULT return now if this is not so.
2054 	 */
2055 	fuword16_noerr((void *)&sp->sema_type, (uint16_t *)&type);
2056 	suword16_noerr((void *)&sp->sema_type, type);
2057 	if (!get_lwpchan(p->p_as, (caddr_t)sp, type,
2058 	    &lwpchan, LWPCHAN_CVPOOL)) {
2059 		error = EFAULT;
2060 		goto out;
2061 	}
2062 	lwpchan_lock(&lwpchan, LWPCHAN_CVPOOL);
2063 	locked = 1;
2064 	fuword32_noerr((void *)&sp->sema_count, (uint32_t *)&count);
2065 	while (error == 0 && count == 0) {
2066 		if (time_error) {
2067 			/*
2068 			 * The SUSV3 Posix spec is very clear that we
2069 			 * should get no error from validating the
2070 			 * timer until we would actually sleep.
2071 			 */
2072 			error = time_error;
2073 			break;
2074 		}
2075 		suword8_noerr(&sp->sema_waiters, 1);
2076 		if (watched)
2077 			watch_enable_addr((caddr_t)sp, sizeof (*sp), S_WRITE);
2078 		if (check_park && (!schedctl_is_park() || t->t_unpark)) {
2079 			/*
2080 			 * We received a signal at user-level before calling
2081 			 * here or another thread wants us to return
2082 			 * immediately with EINTR.  See lwp_unpark().
2083 			 */
2084 			imm_unpark = 1;
2085 			t->t_unpark = 0;
2086 			timedwait = NULL;
2087 		} else if (timedwait) {
2088 			/*
2089 			 * If we successfully queue the timeout,
2090 			 * then don't drop t_delay_lock until
2091 			 * we are on the sleep queue (below).
2092 			 */
2093 			mutex_enter(&t->t_delay_lock);
2094 			if (lwp_timer_enqueue(&lwpt) != 0) {
2095 				mutex_exit(&t->t_delay_lock);
2096 				imm_timeout = 1;
2097 				timedwait = NULL;
2098 			}
2099 		}
2100 		t->t_flag |= T_WAITCVSEM;
2101 		lwp_block(&lwpchan);
2102 		/*
2103 		 * Nothing should happen to cause the lwp to sleep
2104 		 * again until after it returns from swtch().
2105 		 */
2106 		if (timedwait)
2107 			mutex_exit(&t->t_delay_lock);
2108 		locked = 0;
2109 		lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
2110 		if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) ||
2111 		    (imm_timeout | imm_unpark))
2112 			setrun(t);
2113 		swtch();
2114 		t->t_flag &= ~(T_WAITCVSEM | T_WAKEABLE);
2115 		if (timedwait)
2116 			tim = lwp_timer_dequeue(&lwpt);
2117 		setallwatch();
2118 		if (ISSIG(t, FORREAL) || lwp->lwp_sysabort ||
2119 		    MUSTRETURN(p, t) || imm_unpark)
2120 			error = EINTR;
2121 		else if (imm_timeout || (timedwait && tim == -1))
2122 			error = ETIME;
2123 		lwp->lwp_asleep = 0;
2124 		lwp->lwp_sysabort = 0;
2125 		watched = watch_disable_addr((caddr_t)sp,
2126 		    sizeof (*sp), S_WRITE);
2127 		lwpchan_lock(&lwpchan, LWPCHAN_CVPOOL);
2128 		locked = 1;
2129 		fuword32_noerr((void *)&sp->sema_count, (uint32_t *)&count);
2130 	}
2131 	if (error == 0)
2132 		suword32_noerr((void *)&sp->sema_count, --count);
2133 	if (count != 0) {
2134 		(void) lwp_release(&lwpchan, &waiters, T_WAITCVSEM);
2135 		suword8_noerr(&sp->sema_waiters, waiters);
2136 	}
2137 	lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
2138 out:
2139 	no_fault();
2140 	if (watched)
2141 		watch_enable_addr((caddr_t)sp, sizeof (*sp), S_WRITE);
2142 	if (tsp && check_park && !time_error)
2143 		error = lwp_timer_copyout(&lwpt, error);
2144 	if (error)
2145 		return (set_errno(error));
2146 	return (0);
2147 }
2148 
2149 /*
2150  * Obsolete lwp_sema_wait() interface, no longer called from libc.
2151  * libc now calls lwp_sema_timedwait().
2152  * This system call trap exists solely for the benefit of old
2153  * statically linked applications from Solaris 9 and before.
2154  * It should be removed when we no longer care about such applications.
2155  */
2156 int
2157 lwp_sema_wait(lwp_sema_t *sp)
2158 {
2159 	return (lwp_sema_timedwait(sp, NULL, 0));
2160 }
2161 
2162 int
2163 lwp_sema_post(lwp_sema_t *sp)
2164 {
2165 	proc_t *p = ttoproc(curthread);
2166 	label_t ljb;
2167 	volatile int locked = 0;
2168 	volatile int watched = 0;
2169 	volatile uint16_t type = 0;
2170 	int count;
2171 	lwpchan_t lwpchan;
2172 	uchar_t waiters;
2173 	int error = 0;
2174 
2175 	if ((caddr_t)sp >= p->p_as->a_userlimit)
2176 		return (set_errno(EFAULT));
2177 
2178 	watched = watch_disable_addr((caddr_t)sp, sizeof (*sp), S_WRITE);
2179 
2180 	if (on_fault(&ljb)) {
2181 		if (locked)
2182 			lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
2183 		error = EFAULT;
2184 		goto out;
2185 	}
2186 	/*
2187 	 * Force Copy-on-write if necessary and ensure that the
2188 	 * synchronization object resides in read/write memory.
2189 	 * Cause an EFAULT return now if this is not so.
2190 	 */
2191 	fuword16_noerr(&sp->sema_type, (uint16_t *)&type);
2192 	suword16_noerr(&sp->sema_type, type);
2193 	if (!get_lwpchan(curproc->p_as, (caddr_t)sp, type,
2194 	    &lwpchan, LWPCHAN_CVPOOL)) {
2195 		error = EFAULT;
2196 		goto out;
2197 	}
2198 	lwpchan_lock(&lwpchan, LWPCHAN_CVPOOL);
2199 	locked = 1;
2200 	fuword32_noerr(&sp->sema_count, (uint32_t *)&count);
2201 	if (count == _SEM_VALUE_MAX)
2202 		error = EOVERFLOW;
2203 	else
2204 		suword32_noerr(&sp->sema_count, ++count);
2205 	if (count == 1) {
2206 		fuword8_noerr(&sp->sema_waiters, &waiters);
2207 		if (waiters) {
2208 			(void) lwp_release(&lwpchan, &waiters, T_WAITCVSEM);
2209 			suword8_noerr(&sp->sema_waiters, waiters);
2210 		}
2211 	}
2212 	lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
2213 out:
2214 	no_fault();
2215 	if (watched)
2216 		watch_enable_addr((caddr_t)sp, sizeof (*sp), S_WRITE);
2217 	if (error)
2218 		return (set_errno(error));
2219 	return (0);
2220 }
2221 
2222 #define	TRW_WANT_WRITE		0x1
2223 #define	TRW_LOCK_GRANTED	0x2
2224 
2225 #define	READ_LOCK		0
2226 #define	WRITE_LOCK		1
2227 #define	TRY_FLAG		0x10
2228 #define	READ_LOCK_TRY		(READ_LOCK | TRY_FLAG)
2229 #define	WRITE_LOCK_TRY		(WRITE_LOCK | TRY_FLAG)
2230 
2231 /*
2232  * Release one writer or one or more readers. Compute the rwstate word to
2233  * reflect the new state of the queue. For a safe hand-off we copy the new
2234  * rwstate value back to userland before we wake any of the new lock holders.
2235  *
2236  * Note that sleepq_insert() implements a prioritized FIFO (with writers
2237  * being given precedence over readers of the same priority).
2238  *
2239  * If the first thread is a reader we scan the queue releasing all readers
2240  * until we hit a writer or the end of the queue. If the first thread is a
2241  * writer we still need to check for another writer.
2242  */
2243 void
2244 lwp_rwlock_release(lwpchan_t *lwpchan, lwp_rwlock_t *rw)
2245 {
2246 	sleepq_head_t *sqh;
2247 	kthread_t *tp;
2248 	kthread_t **tpp;
2249 	kthread_t *tpnext;
2250 	kthread_t *wakelist = NULL;
2251 	uint32_t rwstate = 0;
2252 	int wcount = 0;
2253 	int rcount = 0;
2254 
2255 	sqh = lwpsqhash(lwpchan);
2256 	disp_lock_enter(&sqh->sq_lock);
2257 	tpp = &sqh->sq_queue.sq_first;
2258 	while ((tp = *tpp) != NULL) {
2259 		if (tp->t_lwpchan.lc_wchan0 == lwpchan->lc_wchan0 &&
2260 		    tp->t_lwpchan.lc_wchan == lwpchan->lc_wchan) {
2261 			if (tp->t_writer & TRW_WANT_WRITE) {
2262 				if ((wcount++ == 0) && (rcount == 0)) {
2263 					rwstate |= URW_WRITE_LOCKED;
2264 
2265 					/* Just one writer to wake. */
2266 					sleepq_unlink(tpp, tp);
2267 					wakelist = tp;
2268 
2269 					/* tpp already set for next thread. */
2270 					continue;
2271 				} else {
2272 					rwstate |= URW_HAS_WAITERS;
2273 					/* We need look no further. */
2274 					break;
2275 				}
2276 			} else {
2277 				rcount++;
2278 				if (wcount == 0) {
2279 					rwstate++;
2280 
2281 					/* Add reader to wake list. */
2282 					sleepq_unlink(tpp, tp);
2283 					tp->t_link = wakelist;
2284 					wakelist = tp;
2285 
2286 					/* tpp already set for next thread. */
2287 					continue;
2288 				} else {
2289 					rwstate |= URW_HAS_WAITERS;
2290 					/* We need look no further. */
2291 					break;
2292 				}
2293 			}
2294 		}
2295 		tpp = &tp->t_link;
2296 	}
2297 
2298 	/* Copy the new rwstate back to userland. */
2299 	suword32_noerr(&rw->rwlock_readers, rwstate);
2300 
2301 	/* Wake the new lock holder(s) up. */
2302 	tp = wakelist;
2303 	while (tp != NULL) {
2304 		DTRACE_SCHED1(wakeup, kthread_t *, tp);
2305 		tp->t_wchan0 = NULL;
2306 		tp->t_wchan = NULL;
2307 		tp->t_sobj_ops = NULL;
2308 		tp->t_writer |= TRW_LOCK_GRANTED;
2309 		tpnext = tp->t_link;
2310 		tp->t_link = NULL;
2311 		CL_WAKEUP(tp);
2312 		thread_unlock_high(tp);
2313 		tp = tpnext;
2314 	}
2315 
2316 	disp_lock_exit(&sqh->sq_lock);
2317 }
2318 
2319 /*
2320  * We enter here holding the user-level mutex, which we must release before
2321  * returning or blocking. Based on lwp_cond_wait().
2322  */
2323 static int
2324 lwp_rwlock_lock(lwp_rwlock_t *rw, timespec_t *tsp, int rd_wr)
2325 {
2326 	lwp_mutex_t *mp = NULL;
2327 	kthread_t *t = curthread;
2328 	kthread_t *tp;
2329 	klwp_t *lwp = ttolwp(t);
2330 	proc_t *p = ttoproc(t);
2331 	lwp_timer_t lwpt;
2332 	lwpchan_t lwpchan;
2333 	lwpchan_t mlwpchan;
2334 	caddr_t timedwait;
2335 	volatile uint16_t type = 0;
2336 	volatile uint8_t mtype = 0;
2337 	uchar_t mwaiters;
2338 	volatile int error = 0;
2339 	int time_error;
2340 	clock_t tim = -1;
2341 	volatile int locked = 0;
2342 	volatile int mlocked = 0;
2343 	volatile int watched = 0;
2344 	volatile int mwatched = 0;
2345 	label_t ljb;
2346 	volatile int no_lwpchan = 1;
2347 	int imm_timeout = 0;
2348 	int try_flag;
2349 	uint32_t rwstate;
2350 	int acquired = 0;
2351 
2352 	/* We only check rw because the mutex is included in it. */
2353 	if ((caddr_t)rw >= p->p_as->a_userlimit)
2354 		return (set_errno(EFAULT));
2355 
2356 	/*
2357 	 * Put the lwp in an orderly state for debugging,
2358 	 * in case we are stopped while sleeping, below.
2359 	 */
2360 	prstop(PR_REQUESTED, 0);
2361 
2362 	/* We must only report this error if we are about to sleep (later). */
2363 	timedwait = (caddr_t)tsp;
2364 	if ((time_error = lwp_timer_copyin(&lwpt, tsp)) == 0 &&
2365 	    lwpt.lwpt_imm_timeout) {
2366 		imm_timeout = 1;
2367 		timedwait = NULL;
2368 	}
2369 
2370 	(void) new_mstate(t, LMS_USER_LOCK);
2371 
2372 	if (on_fault(&ljb)) {
2373 		if (no_lwpchan) {
2374 			error = EFAULT;
2375 			goto out_nodrop;
2376 		}
2377 		if (mlocked) {
2378 			mlocked = 0;
2379 			lwpchan_unlock(&mlwpchan, LWPCHAN_MPPOOL);
2380 		}
2381 		if (locked) {
2382 			locked = 0;
2383 			lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
2384 		}
2385 		/*
2386 		 * Set up another on_fault() for a possible fault
2387 		 * on the user lock accessed at "out_drop".
2388 		 */
2389 		if (on_fault(&ljb)) {
2390 			if (mlocked) {
2391 				mlocked = 0;
2392 				lwpchan_unlock(&mlwpchan, LWPCHAN_MPPOOL);
2393 			}
2394 			error = EFAULT;
2395 			goto out_nodrop;
2396 		}
2397 		error = EFAULT;
2398 		goto out_nodrop;
2399 	}
2400 
2401 	/* Process rd_wr (including sanity check). */
2402 	try_flag = (rd_wr & TRY_FLAG);
2403 	rd_wr &= ~TRY_FLAG;
2404 	if ((rd_wr != READ_LOCK) && (rd_wr != WRITE_LOCK)) {
2405 		error = EINVAL;
2406 		goto out_nodrop;
2407 	}
2408 
2409 	/*
2410 	 * Force Copy-on-write if necessary and ensure that the
2411 	 * synchronization object resides in read/write memory.
2412 	 * Cause an EFAULT return now if this is not so.
2413 	 */
2414 	mp = &rw->mutex;
2415 	fuword8_noerr(&mp->mutex_type, (uint8_t *)&mtype);
2416 	fuword16_noerr(&rw->rwlock_type, (uint16_t *)&type);
2417 	suword8_noerr(&mp->mutex_type, mtype);
2418 	suword16_noerr(&rw->rwlock_type, type);
2419 
2420 	/* We can only continue for simple USYNC_PROCESS locks. */
2421 	if ((mtype != USYNC_PROCESS) || (type != USYNC_PROCESS)) {
2422 		error = EINVAL;
2423 		goto out_nodrop;
2424 	}
2425 
2426 	/* Convert user level mutex, "mp", to a unique lwpchan. */
2427 	if (!get_lwpchan(p->p_as, (caddr_t)mp, mtype,
2428 	    &mlwpchan, LWPCHAN_MPPOOL)) {
2429 		error = EFAULT;
2430 		goto out_nodrop;
2431 	}
2432 
2433 	/* Convert user level rwlock, "rw", to a unique lwpchan. */
2434 	if (!get_lwpchan(p->p_as, (caddr_t)rw, type,
2435 	    &lwpchan, LWPCHAN_CVPOOL)) {
2436 		error = EFAULT;
2437 		goto out_nodrop;
2438 	}
2439 
2440 	no_lwpchan = 0;
2441 	watched = watch_disable_addr((caddr_t)rw, sizeof (*rw), S_WRITE);
2442 	mwatched = watch_disable_addr((caddr_t)mp, sizeof (*mp), S_WRITE);
2443 
2444 	/*
2445 	 * lwpchan_lock() ensures that the calling LWP is put to sleep
2446 	 * atomically with respect to a possible wakeup which is a result
2447 	 * of lwp_rwlock_unlock().
2448 	 *
2449 	 * What's misleading is that the LWP is put to sleep after the
2450 	 * rwlock's mutex is released. This is OK as long as the release
2451 	 * operation is also done while holding mlwpchan. The LWP is then
2452 	 * put to sleep when the possibility of pagefaulting or sleeping
2453 	 * has been completely eliminated.
2454 	 */
2455 	lwpchan_lock(&lwpchan, LWPCHAN_CVPOOL);
2456 	locked = 1;
2457 	lwpchan_lock(&mlwpchan, LWPCHAN_MPPOOL);
2458 	mlocked = 1;
2459 
2460 	/*
2461 	 * Fetch the current rwlock state.
2462 	 *
2463 	 * The possibility of spurious wake-ups or killed waiters means
2464 	 * rwstate's URW_HAS_WAITERS bit may indicate false positives.
2465 	 * We only fix these if they are important to us.
2466 	 *
2467 	 * Although various error states can be observed here (e.g. the lock
2468 	 * is not held, but there are waiters) we assume these are applicaton
2469 	 * errors and so we take no corrective action.
2470 	 */
2471 	fuword32_noerr(&rw->rwlock_readers, &rwstate);
2472 	/*
2473 	 * We cannot legitimately get here from user-level
2474 	 * without URW_HAS_WAITERS being set.
2475 	 * Set it now to guard against user-level error.
2476 	 */
2477 	rwstate |= URW_HAS_WAITERS;
2478 
2479 	/*
2480 	 * We can try only if the lock isn't held by a writer.
2481 	 */
2482 	if (!(rwstate & URW_WRITE_LOCKED)) {
2483 		tp = lwp_queue_waiter(&lwpchan);
2484 		if (tp == NULL) {
2485 			/*
2486 			 * Hmmm, rwstate indicates waiters but there are
2487 			 * none queued. This could just be the result of a
2488 			 * spurious wakeup, so let's ignore it.
2489 			 *
2490 			 * We now have a chance to acquire the lock
2491 			 * uncontended, but this is the last chance for
2492 			 * a writer to acquire the lock without blocking.
2493 			 */
2494 			if (rd_wr == READ_LOCK) {
2495 				rwstate++;
2496 				acquired = 1;
2497 			} else if ((rwstate & URW_READERS_MASK) == 0) {
2498 				rwstate |= URW_WRITE_LOCKED;
2499 				acquired = 1;
2500 			}
2501 		} else if (rd_wr == READ_LOCK) {
2502 			/*
2503 			 * This is the last chance for a reader to acquire
2504 			 * the lock now, but it can only do so if there is
2505 			 * no writer of equal or greater priority at the
2506 			 * head of the queue .
2507 			 *
2508 			 * It is also just possible that there is a reader
2509 			 * at the head of the queue. This may be the result
2510 			 * of a spurious wakeup or an application failure.
2511 			 * In this case we only acquire the lock if we have
2512 			 * equal or greater priority. It is not our job to
2513 			 * release spurious waiters.
2514 			 */
2515 			pri_t our_pri = DISP_PRIO(t);
2516 			pri_t his_pri = DISP_PRIO(tp);
2517 
2518 			if ((our_pri > his_pri) || ((our_pri == his_pri) &&
2519 			    !(tp->t_writer & TRW_WANT_WRITE))) {
2520 				rwstate++;
2521 				acquired = 1;
2522 			}
2523 		}
2524 	}
2525 
2526 	if (acquired || try_flag || time_error) {
2527 		/*
2528 		 * We're not going to block this time.
2529 		 */
2530 		suword32_noerr(&rw->rwlock_readers, rwstate);
2531 		lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
2532 		locked = 0;
2533 
2534 		if (acquired) {
2535 			/*
2536 			 * Got the lock!
2537 			 */
2538 			error = 0;
2539 
2540 		} else if (try_flag) {
2541 			/*
2542 			 * We didn't get the lock and we're about to block.
2543 			 * If we're doing a trylock, return EBUSY instead.
2544 			 */
2545 			error = EBUSY;
2546 
2547 		} else if (time_error) {
2548 			/*
2549 			 * The SUSV3 POSIX spec is very clear that we should
2550 			 * get no error from validating the timer (above)
2551 			 * until we would actually sleep.
2552 			 */
2553 			error = time_error;
2554 		}
2555 
2556 		goto out_drop;
2557 	}
2558 
2559 	/*
2560 	 * We're about to block, so indicate what kind of waiter we are.
2561 	 */
2562 	t->t_writer = 0;
2563 	if (rd_wr == WRITE_LOCK)
2564 		t->t_writer = TRW_WANT_WRITE;
2565 	suword32_noerr(&rw->rwlock_readers, rwstate);
2566 
2567 	/*
2568 	 * Unlock the rwlock's mutex (pagefaults are possible here).
2569 	 */
2570 	suword32_noerr((uint32_t *)&mp->mutex_owner, 0);
2571 	suword32_noerr((uint32_t *)&mp->mutex_owner + 1, 0);
2572 	suword32_noerr(&mp->mutex_ownerpid, 0);
2573 	ulock_clear(&mp->mutex_lockw);
2574 	fuword8_noerr(&mp->mutex_waiters, &mwaiters);
2575 	if (mwaiters != 0) {
2576 		/*
2577 		 * Given the locking of mlwpchan around the release of
2578 		 * the mutex and checking for waiters, the following
2579 		 * call to lwp_release() can fail ONLY if the lock
2580 		 * acquirer is interrupted after setting the waiter bit,
2581 		 * calling lwp_block() and releasing mlwpchan.
2582 		 * In this case, it could get pulled off the LWP sleep
2583 		 * queue (via setrun()) before the following call to
2584 		 * lwp_release() occurs, and the lock requestor will
2585 		 * update the waiter bit correctly by re-evaluating it.
2586 		 */
2587 		if (lwp_release(&mlwpchan, &mwaiters, 0))
2588 			suword8_noerr(&mp->mutex_waiters, mwaiters);
2589 	}
2590 	lwpchan_unlock(&mlwpchan, LWPCHAN_MPPOOL);
2591 	mlocked = 0;
2592 	no_fault();
2593 
2594 	if (mwatched) {
2595 		watch_enable_addr((caddr_t)mp, sizeof (*mp), S_WRITE);
2596 		mwatched = 0;
2597 	}
2598 	if (watched) {
2599 		watch_enable_addr((caddr_t)rw, sizeof (*rw), S_WRITE);
2600 		watched = 0;
2601 	}
2602 
2603 	if (timedwait) {
2604 		/*
2605 		 * If we successfully queue the timeout,
2606 		 * then don't drop t_delay_lock until
2607 		 * we are on the sleep queue (below).
2608 		 */
2609 		mutex_enter(&t->t_delay_lock);
2610 		if (lwp_timer_enqueue(&lwpt) != 0) {
2611 			mutex_exit(&t->t_delay_lock);
2612 			imm_timeout = 1;
2613 			timedwait = NULL;
2614 		}
2615 	}
2616 	t->t_flag |= T_WAITCVSEM;
2617 	lwp_block(&lwpchan);
2618 
2619 	/*
2620 	 * Nothing should happen to cause the LWp to go to sleep until after
2621 	 * it returns from swtch().
2622 	 */
2623 	if (timedwait)
2624 		mutex_exit(&t->t_delay_lock);
2625 	locked = 0;
2626 	lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
2627 	if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || imm_timeout)
2628 		setrun(t);
2629 	swtch();
2630 
2631 	/*
2632 	 * We're back, but we need to work out why. Were we interrupted? Did
2633 	 * we timeout? Were we granted the lock?
2634 	 */
2635 	error = EAGAIN;
2636 	acquired = (t->t_writer & TRW_LOCK_GRANTED);
2637 	t->t_writer = 0;
2638 	t->t_flag &= ~(T_WAITCVSEM | T_WAKEABLE);
2639 	if (timedwait)
2640 		tim = lwp_timer_dequeue(&lwpt);
2641 	if (ISSIG(t, FORREAL) || lwp->lwp_sysabort || MUSTRETURN(p, t))
2642 		error = EINTR;
2643 	else if (imm_timeout || (timedwait && tim == -1))
2644 		error = ETIME;
2645 	lwp->lwp_asleep = 0;
2646 	lwp->lwp_sysabort = 0;
2647 	setallwatch();
2648 
2649 	/*
2650 	 * If we were granted the lock we don't care about EINTR or ETIME.
2651 	 */
2652 	if (acquired)
2653 		error = 0;
2654 
2655 	if (t->t_mstate == LMS_USER_LOCK)
2656 		(void) new_mstate(t, LMS_SYSTEM);
2657 
2658 	if (error)
2659 		return (set_errno(error));
2660 	return (0);
2661 
2662 out_drop:
2663 	/*
2664 	 * Make sure that the user level lock is dropped before returning
2665 	 * to the caller.
2666 	 */
2667 	if (!mlocked) {
2668 		lwpchan_lock(&mlwpchan, LWPCHAN_MPPOOL);
2669 		mlocked = 1;
2670 	}
2671 	suword32_noerr((uint32_t *)&mp->mutex_owner, 0);
2672 	suword32_noerr((uint32_t *)&mp->mutex_owner + 1, 0);
2673 	suword32_noerr(&mp->mutex_ownerpid, 0);
2674 	ulock_clear(&mp->mutex_lockw);
2675 	fuword8_noerr(&mp->mutex_waiters, &mwaiters);
2676 	if (mwaiters != 0) {
2677 		/*
2678 		 * See comment above on lock clearing and lwp_release()
2679 		 * success/failure.
2680 		 */
2681 		if (lwp_release(&mlwpchan, &mwaiters, 0))
2682 			suword8_noerr(&mp->mutex_waiters, mwaiters);
2683 	}
2684 	lwpchan_unlock(&mlwpchan, LWPCHAN_MPPOOL);
2685 	mlocked = 0;
2686 
2687 out_nodrop:
2688 	no_fault();
2689 	if (mwatched)
2690 		watch_enable_addr((caddr_t)mp, sizeof (*mp), S_WRITE);
2691 	if (watched)
2692 		watch_enable_addr((caddr_t)rw, sizeof (*rw), S_WRITE);
2693 	if (t->t_mstate == LMS_USER_LOCK)
2694 		(void) new_mstate(t, LMS_SYSTEM);
2695 	if (error)
2696 		return (set_errno(error));
2697 	return (0);
2698 }
2699 
2700 /*
2701  * We enter here holding the user-level mutex but, unlike lwp_rwlock_lock(),
2702  * we never drop the lock.
2703  */
2704 static int
2705 lwp_rwlock_unlock(lwp_rwlock_t *rw)
2706 {
2707 	kthread_t *t = curthread;
2708 	proc_t *p = ttoproc(t);
2709 	lwpchan_t lwpchan;
2710 	volatile uint16_t type = 0;
2711 	volatile int error = 0;
2712 	volatile int locked = 0;
2713 	volatile int watched = 0;
2714 	label_t ljb;
2715 	volatile int no_lwpchan = 1;
2716 	uint32_t rwstate;
2717 
2718 	/* We only check rw because the mutex is included in it. */
2719 	if ((caddr_t)rw >= p->p_as->a_userlimit)
2720 		return (set_errno(EFAULT));
2721 
2722 	if (on_fault(&ljb)) {
2723 		if (no_lwpchan) {
2724 			error = EFAULT;
2725 			goto out_nodrop;
2726 		}
2727 		if (locked) {
2728 			locked = 0;
2729 			lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
2730 		}
2731 		error = EFAULT;
2732 		goto out_nodrop;
2733 	}
2734 
2735 	/*
2736 	 * Force Copy-on-write if necessary and ensure that the
2737 	 * synchronization object resides in read/write memory.
2738 	 * Cause an EFAULT return now if this is not so.
2739 	 */
2740 	fuword16_noerr(&rw->rwlock_type, (uint16_t *)&type);
2741 	suword16_noerr(&rw->rwlock_type, type);
2742 
2743 	/* We can only continue for simple USYNC_PROCESS locks. */
2744 	if (type != USYNC_PROCESS) {
2745 		error = EINVAL;
2746 		goto out_nodrop;
2747 	}
2748 
2749 	/* Convert user level rwlock, "rw", to a unique lwpchan. */
2750 	if (!get_lwpchan(p->p_as, (caddr_t)rw, type,
2751 	    &lwpchan, LWPCHAN_CVPOOL)) {
2752 		error = EFAULT;
2753 		goto out_nodrop;
2754 	}
2755 
2756 	no_lwpchan = 0;
2757 	watched = watch_disable_addr((caddr_t)rw, sizeof (*rw), S_WRITE);
2758 
2759 	lwpchan_lock(&lwpchan, LWPCHAN_CVPOOL);
2760 	locked = 1;
2761 
2762 	/*
2763 	 * We can resolve multiple readers (except the last reader) here.
2764 	 * For the last reader or a writer we need lwp_rwlock_release(),
2765 	 * to which we also delegate the task of copying the new rwstate
2766 	 * back to userland (see the comment there).
2767 	 */
2768 	fuword32_noerr(&rw->rwlock_readers, &rwstate);
2769 	if (rwstate & URW_WRITE_LOCKED)
2770 		lwp_rwlock_release(&lwpchan, rw);
2771 	else if ((rwstate & URW_READERS_MASK) > 0) {
2772 		rwstate--;
2773 		if ((rwstate & URW_READERS_MASK) == 0)
2774 			lwp_rwlock_release(&lwpchan, rw);
2775 		else
2776 			suword32_noerr(&rw->rwlock_readers, rwstate);
2777 	}
2778 
2779 	lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
2780 	locked = 0;
2781 	error = 0;
2782 
2783 out_nodrop:
2784 	no_fault();
2785 	if (watched)
2786 		watch_enable_addr((caddr_t)rw, sizeof (*rw), S_WRITE);
2787 	if (error)
2788 		return (set_errno(error));
2789 	return (0);
2790 }
2791 
2792 int
2793 lwp_rwlock_sys(int subcode, lwp_rwlock_t *rwlp, timespec_t *tsp)
2794 {
2795 	switch (subcode) {
2796 	case 0:
2797 		return (lwp_rwlock_lock(rwlp, tsp, READ_LOCK));
2798 	case 1:
2799 		return (lwp_rwlock_lock(rwlp, tsp, WRITE_LOCK));
2800 	case 2:
2801 		return (lwp_rwlock_lock(rwlp, NULL, READ_LOCK_TRY));
2802 	case 3:
2803 		return (lwp_rwlock_lock(rwlp, NULL, WRITE_LOCK_TRY));
2804 	case 4:
2805 		return (lwp_rwlock_unlock(rwlp));
2806 	}
2807 	return (set_errno(EINVAL));
2808 }
2809 
2810 /*
2811  * Return the owner of the user-level s-object.
2812  * Since we can't really do this, return NULL.
2813  */
2814 /* ARGSUSED */
2815 static kthread_t *
2816 lwpsobj_owner(caddr_t sobj)
2817 {
2818 	return ((kthread_t *)NULL);
2819 }
2820 
2821 /*
2822  * Wake up a thread asleep on a user-level synchronization
2823  * object.
2824  */
2825 static void
2826 lwp_unsleep(kthread_t *t)
2827 {
2828 	ASSERT(THREAD_LOCK_HELD(t));
2829 	if (t->t_wchan0 != NULL) {
2830 		sleepq_head_t *sqh;
2831 		sleepq_t *sqp = t->t_sleepq;
2832 
2833 		if (sqp != NULL) {
2834 			sqh = lwpsqhash(&t->t_lwpchan);
2835 			ASSERT(&sqh->sq_queue == sqp);
2836 			sleepq_unsleep(t);
2837 			disp_lock_exit_high(&sqh->sq_lock);
2838 			CL_SETRUN(t);
2839 			return;
2840 		}
2841 	}
2842 	panic("lwp_unsleep: thread %p not on sleepq", (void *)t);
2843 }
2844 
2845 /*
2846  * Change the priority of a thread asleep on a user-level
2847  * synchronization object. To maintain proper priority order,
2848  * we:
2849  *	o dequeue the thread.
2850  *	o change its priority.
2851  *	o re-enqueue the thread.
2852  * Assumption: the thread is locked on entry.
2853  */
2854 static void
2855 lwp_change_pri(kthread_t *t, pri_t pri, pri_t *t_prip)
2856 {
2857 	ASSERT(THREAD_LOCK_HELD(t));
2858 	if (t->t_wchan0 != NULL) {
2859 		sleepq_t   *sqp = t->t_sleepq;
2860 
2861 		sleepq_dequeue(t);
2862 		*t_prip = pri;
2863 		sleepq_insert(sqp, t);
2864 	} else
2865 		panic("lwp_change_pri: %p not on a sleep queue", (void *)t);
2866 }
2867 
2868 /*
2869  * Clean up a left-over process-shared robust mutex
2870  */
2871 static void
2872 lwp_mutex_cleanup(lwpchan_entry_t *ent, uint16_t lockflg)
2873 {
2874 	uint16_t flag;
2875 	uchar_t waiters;
2876 	label_t ljb;
2877 	pid_t owner_pid;
2878 	lwp_mutex_t *lp;
2879 	volatile int locked = 0;
2880 	volatile int watched = 0;
2881 	volatile struct upimutex *upimutex = NULL;
2882 	volatile int upilocked = 0;
2883 
2884 	if ((ent->lwpchan_type & (USYNC_PROCESS | LOCK_ROBUST))
2885 	    != (USYNC_PROCESS | LOCK_ROBUST))
2886 		return;
2887 
2888 	lp = (lwp_mutex_t *)ent->lwpchan_addr;
2889 	watched = watch_disable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
2890 	if (on_fault(&ljb)) {
2891 		if (locked)
2892 			lwpchan_unlock(&ent->lwpchan_lwpchan, LWPCHAN_MPPOOL);
2893 		if (upilocked)
2894 			upimutex_unlock((upimutex_t *)upimutex, 0);
2895 		goto out;
2896 	}
2897 
2898 	fuword32_noerr(&lp->mutex_ownerpid, (uint32_t *)&owner_pid);
2899 
2900 	if (UPIMUTEX(ent->lwpchan_type)) {
2901 		lwpchan_t lwpchan = ent->lwpchan_lwpchan;
2902 		upib_t *upibp = &UPI_CHAIN(lwpchan);
2903 
2904 		if (owner_pid != curproc->p_pid)
2905 			goto out;
2906 		mutex_enter(&upibp->upib_lock);
2907 		upimutex = upi_get(upibp, &lwpchan);
2908 		if (upimutex == NULL || upimutex->upi_owner != curthread) {
2909 			mutex_exit(&upibp->upib_lock);
2910 			goto out;
2911 		}
2912 		mutex_exit(&upibp->upib_lock);
2913 		upilocked = 1;
2914 		flag = lwp_clear_mutex(lp, lockflg);
2915 		suword8_noerr(&lp->mutex_lockw, 0);
2916 		upimutex_unlock((upimutex_t *)upimutex, flag);
2917 	} else {
2918 		lwpchan_lock(&ent->lwpchan_lwpchan, LWPCHAN_MPPOOL);
2919 		locked = 1;
2920 		/*
2921 		 * Clear the spinners count because one of our
2922 		 * threads could have been spinning for this lock
2923 		 * at user level when the process was suddenly killed.
2924 		 * There is no harm in this since user-level libc code
2925 		 * will adapt to the sudden change in the spinner count.
2926 		 */
2927 		suword8_noerr(&lp->mutex_spinners, 0);
2928 		if (owner_pid != curproc->p_pid) {
2929 			/*
2930 			 * We are not the owner.  There may or may not be one.
2931 			 * If there are waiters, we wake up one or all of them.
2932 			 * It doesn't hurt to wake them up in error since
2933 			 * they will just retry the lock and go to sleep
2934 			 * again if necessary.
2935 			 */
2936 			fuword8_noerr(&lp->mutex_waiters, &waiters);
2937 			if (waiters != 0) {	/* there are waiters */
2938 				fuword16_noerr(&lp->mutex_flag, &flag);
2939 				if (flag & LOCK_NOTRECOVERABLE) {
2940 					lwp_release_all(&ent->lwpchan_lwpchan);
2941 					suword8_noerr(&lp->mutex_waiters, 0);
2942 				} else if (lwp_release(&ent->lwpchan_lwpchan,
2943 				    &waiters, 0)) {
2944 					suword8_noerr(&lp->mutex_waiters,
2945 					    waiters);
2946 				}
2947 			}
2948 		} else {
2949 			/*
2950 			 * We are the owner.  Release it.
2951 			 */
2952 			(void) lwp_clear_mutex(lp, lockflg);
2953 			ulock_clear(&lp->mutex_lockw);
2954 			fuword8_noerr(&lp->mutex_waiters, &waiters);
2955 			if (waiters &&
2956 			    lwp_release(&ent->lwpchan_lwpchan, &waiters, 0))
2957 				suword8_noerr(&lp->mutex_waiters, waiters);
2958 		}
2959 		lwpchan_unlock(&ent->lwpchan_lwpchan, LWPCHAN_MPPOOL);
2960 	}
2961 out:
2962 	no_fault();
2963 	if (watched)
2964 		watch_enable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
2965 }
2966 
2967 /*
2968  * Register a process-shared robust mutex in the lwpchan cache.
2969  */
2970 int
2971 lwp_mutex_register(lwp_mutex_t *lp, caddr_t uaddr)
2972 {
2973 	int error = 0;
2974 	volatile int watched;
2975 	label_t ljb;
2976 	uint8_t type;
2977 	lwpchan_t lwpchan;
2978 
2979 	if ((caddr_t)lp >= (caddr_t)USERLIMIT)
2980 		return (set_errno(EFAULT));
2981 
2982 	watched = watch_disable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
2983 
2984 	if (on_fault(&ljb)) {
2985 		error = EFAULT;
2986 	} else {
2987 		/*
2988 		 * Force Copy-on-write if necessary and ensure that the
2989 		 * synchronization object resides in read/write memory.
2990 		 * Cause an EFAULT return now if this is not so.
2991 		 */
2992 		fuword8_noerr(&lp->mutex_type, &type);
2993 		suword8_noerr(&lp->mutex_type, type);
2994 		if ((type & (USYNC_PROCESS|LOCK_ROBUST))
2995 		    != (USYNC_PROCESS|LOCK_ROBUST)) {
2996 			error = EINVAL;
2997 		} else if (!lwpchan_get_mapping(curproc->p_as, (caddr_t)lp,
2998 		    uaddr, type, &lwpchan, LWPCHAN_MPPOOL)) {
2999 			error = EFAULT;
3000 		}
3001 	}
3002 	no_fault();
3003 	if (watched)
3004 		watch_enable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
3005 	if (error)
3006 		return (set_errno(error));
3007 	return (0);
3008 }
3009 
3010 /*
3011  * There is a user-level robust lock registration in libc.
3012  * Mark it as invalid by storing -1 into the location of the pointer.
3013  */
3014 static void
3015 lwp_mutex_unregister(void *uaddr)
3016 {
3017 	if (get_udatamodel() == DATAMODEL_NATIVE) {
3018 		(void) sulword(uaddr, (ulong_t)-1);
3019 #ifdef _SYSCALL32_IMPL
3020 	} else {
3021 		(void) suword32(uaddr, (uint32_t)-1);
3022 #endif
3023 	}
3024 }
3025 
3026 int
3027 lwp_mutex_trylock(lwp_mutex_t *lp)
3028 {
3029 	kthread_t *t = curthread;
3030 	proc_t *p = ttoproc(t);
3031 	int error = 0;
3032 	volatile int locked = 0;
3033 	volatile int watched = 0;
3034 	label_t ljb;
3035 	volatile uint8_t type = 0;
3036 	uint16_t flag;
3037 	lwpchan_t lwpchan;
3038 
3039 	if ((caddr_t)lp >= p->p_as->a_userlimit)
3040 		return (set_errno(EFAULT));
3041 
3042 	(void) new_mstate(t, LMS_USER_LOCK);
3043 
3044 	if (on_fault(&ljb)) {
3045 		if (locked)
3046 			lwpchan_unlock(&lwpchan, LWPCHAN_MPPOOL);
3047 		error = EFAULT;
3048 		goto out;
3049 	}
3050 	/*
3051 	 * Force Copy-on-write if necessary and ensure that the
3052 	 * synchronization object resides in read/write memory.
3053 	 * Cause an EFAULT return now if this is not so.
3054 	 */
3055 	fuword8_noerr(&lp->mutex_type, (uint8_t *)&type);
3056 	suword8_noerr(&lp->mutex_type, type);
3057 	if (UPIMUTEX(type)) {
3058 		no_fault();
3059 		error = lwp_upimutex_lock(lp, type, UPIMUTEX_TRY, NULL);
3060 		if ((type & USYNC_PROCESS) &&
3061 		    (error == 0 ||
3062 		    error == EOWNERDEAD || error == ELOCKUNMAPPED))
3063 			(void) suword32(&lp->mutex_ownerpid, p->p_pid);
3064 		if (error)
3065 			return (set_errno(error));
3066 		return (0);
3067 	}
3068 	if (!get_lwpchan(curproc->p_as, (caddr_t)lp, type,
3069 	    &lwpchan, LWPCHAN_MPPOOL)) {
3070 		error = EFAULT;
3071 		goto out;
3072 	}
3073 	lwpchan_lock(&lwpchan, LWPCHAN_MPPOOL);
3074 	locked = 1;
3075 	if (type & LOCK_ROBUST) {
3076 		fuword16_noerr(&lp->mutex_flag, &flag);
3077 		if (flag & LOCK_NOTRECOVERABLE) {
3078 			lwpchan_unlock(&lwpchan, LWPCHAN_MPPOOL);
3079 			error =  ENOTRECOVERABLE;
3080 			goto out;
3081 		}
3082 	}
3083 
3084 	watched = watch_disable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
3085 
3086 	if (!ulock_try(&lp->mutex_lockw))
3087 		error = EBUSY;
3088 	else {
3089 		if (type & USYNC_PROCESS)
3090 			suword32_noerr(&lp->mutex_ownerpid, p->p_pid);
3091 		if (type & LOCK_ROBUST) {
3092 			fuword16_noerr(&lp->mutex_flag, &flag);
3093 			if (flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED)) {
3094 				if (flag & LOCK_OWNERDEAD)
3095 					error = EOWNERDEAD;
3096 				else if (type & USYNC_PROCESS_ROBUST)
3097 					error = ELOCKUNMAPPED;
3098 				else
3099 					error = EOWNERDEAD;
3100 			}
3101 		}
3102 	}
3103 	locked = 0;
3104 	lwpchan_unlock(&lwpchan, LWPCHAN_MPPOOL);
3105 out:
3106 
3107 	if (t->t_mstate == LMS_USER_LOCK)
3108 		(void) new_mstate(t, LMS_SYSTEM);
3109 
3110 	no_fault();
3111 	if (watched)
3112 		watch_enable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
3113 	if (error)
3114 		return (set_errno(error));
3115 	return (0);
3116 }
3117 
3118 /*
3119  * unlock the mutex and unblock lwps that is trying to acquire this mutex.
3120  * the blocked lwp resumes and retries to acquire the lock.
3121  */
3122 int
3123 lwp_mutex_unlock(lwp_mutex_t *lp)
3124 {
3125 	proc_t *p = ttoproc(curthread);
3126 	lwpchan_t lwpchan;
3127 	uchar_t waiters;
3128 	volatile int locked = 0;
3129 	volatile int watched = 0;
3130 	volatile uint8_t type = 0;
3131 	label_t ljb;
3132 	uint16_t flag;
3133 	int error = 0;
3134 
3135 	if ((caddr_t)lp >= p->p_as->a_userlimit)
3136 		return (set_errno(EFAULT));
3137 
3138 	if (on_fault(&ljb)) {
3139 		if (locked)
3140 			lwpchan_unlock(&lwpchan, LWPCHAN_MPPOOL);
3141 		error = EFAULT;
3142 		goto out;
3143 	}
3144 
3145 	/*
3146 	 * Force Copy-on-write if necessary and ensure that the
3147 	 * synchronization object resides in read/write memory.
3148 	 * Cause an EFAULT return now if this is not so.
3149 	 */
3150 	fuword8_noerr(&lp->mutex_type, (uint8_t *)&type);
3151 	suword8_noerr(&lp->mutex_type, type);
3152 
3153 	if (UPIMUTEX(type)) {
3154 		no_fault();
3155 		error = lwp_upimutex_unlock(lp, type);
3156 		if (error)
3157 			return (set_errno(error));
3158 		return (0);
3159 	}
3160 
3161 	watched = watch_disable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
3162 
3163 	if (!get_lwpchan(curproc->p_as, (caddr_t)lp, type,
3164 	    &lwpchan, LWPCHAN_MPPOOL)) {
3165 		error = EFAULT;
3166 		goto out;
3167 	}
3168 	lwpchan_lock(&lwpchan, LWPCHAN_MPPOOL);
3169 	locked = 1;
3170 	if (type & LOCK_ROBUST) {
3171 		fuword16_noerr(&lp->mutex_flag, &flag);
3172 		if (flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED)) {
3173 			flag &= ~(LOCK_OWNERDEAD | LOCK_UNMAPPED);
3174 			flag |= LOCK_NOTRECOVERABLE;
3175 			suword16_noerr(&lp->mutex_flag, flag);
3176 		}
3177 	}
3178 	if (type & USYNC_PROCESS)
3179 		suword32_noerr(&lp->mutex_ownerpid, 0);
3180 	ulock_clear(&lp->mutex_lockw);
3181 	/*
3182 	 * Always wake up an lwp (if any) waiting on lwpchan. The woken lwp will
3183 	 * re-try the lock in lwp_mutex_timedlock(). The call to lwp_release()
3184 	 * may fail.  If it fails, do not write into the waiter bit.
3185 	 * The call to lwp_release() might fail due to one of three reasons:
3186 	 *
3187 	 * 	1. due to the thread which set the waiter bit not actually
3188 	 *	   sleeping since it got the lock on the re-try. The waiter
3189 	 *	   bit will then be correctly updated by that thread. This
3190 	 *	   window may be closed by reading the wait bit again here
3191 	 *	   and not calling lwp_release() at all if it is zero.
3192 	 *	2. the thread which set the waiter bit and went to sleep
3193 	 *	   was woken up by a signal. This time, the waiter recomputes
3194 	 *	   the wait bit in the return with EINTR code.
3195 	 *	3. the waiter bit read by lwp_mutex_wakeup() was in
3196 	 *	   memory that has been re-used after the lock was dropped.
3197 	 *	   In this case, writing into the waiter bit would cause data
3198 	 *	   corruption.
3199 	 */
3200 	fuword8_noerr(&lp->mutex_waiters, &waiters);
3201 	if (waiters) {
3202 		if ((type & LOCK_ROBUST) &&
3203 		    (flag & LOCK_NOTRECOVERABLE)) {
3204 			lwp_release_all(&lwpchan);
3205 			suword8_noerr(&lp->mutex_waiters, 0);
3206 		} else if (lwp_release(&lwpchan, &waiters, 0)) {
3207 			suword8_noerr(&lp->mutex_waiters, waiters);
3208 		}
3209 	}
3210 
3211 	lwpchan_unlock(&lwpchan, LWPCHAN_MPPOOL);
3212 out:
3213 	no_fault();
3214 	if (watched)
3215 		watch_enable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
3216 	if (error)
3217 		return (set_errno(error));
3218 	return (0);
3219 }
3220