xref: /titanic_50/usr/src/uts/common/sys/kstat.h (revision f6db9f272f0061301cfaa1c0001b7d636eae31f4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #ifndef	_SYS_KSTAT_H
28 #define	_SYS_KSTAT_H
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 /*
33  * Definition of general kernel statistics structures and /dev/kstat ioctls
34  */
35 
36 #include <sys/types.h>
37 #include <sys/time.h>
38 
39 #ifdef	__cplusplus
40 extern "C" {
41 #endif
42 
43 typedef int	kid_t;		/* unique kstat id */
44 
45 /*
46  * Kernel statistics driver (/dev/kstat) ioctls
47  */
48 
49 #define	KSTAT_IOC_BASE		('K' << 8)
50 
51 #define	KSTAT_IOC_CHAIN_ID	KSTAT_IOC_BASE | 0x01
52 #define	KSTAT_IOC_READ		KSTAT_IOC_BASE | 0x02
53 #define	KSTAT_IOC_WRITE		KSTAT_IOC_BASE | 0x03
54 
55 /*
56  * /dev/kstat ioctl usage (kd denotes /dev/kstat descriptor):
57  *
58  *	kcid = ioctl(kd, KSTAT_IOC_CHAIN_ID, NULL);
59  *	kcid = ioctl(kd, KSTAT_IOC_READ, kstat_t *);
60  *	kcid = ioctl(kd, KSTAT_IOC_WRITE, kstat_t *);
61  */
62 
63 #define	KSTAT_STRLEN	31	/* 30 chars + NULL; must be 16 * n - 1 */
64 
65 /*
66  * The generic kstat header
67  */
68 
69 typedef struct kstat {
70 	/*
71 	 * Fields relevant to both kernel and user
72 	 */
73 	hrtime_t	ks_crtime;	/* creation time (from gethrtime()) */
74 	struct kstat	*ks_next;	/* kstat chain linkage */
75 	kid_t		ks_kid;		/* unique kstat ID */
76 	char		ks_module[KSTAT_STRLEN]; /* provider module name */
77 	uchar_t		ks_resv;	/* reserved, currently just padding */
78 	int		ks_instance;	/* provider module's instance */
79 	char		ks_name[KSTAT_STRLEN]; /* kstat name */
80 	uchar_t		ks_type;	/* kstat data type */
81 	char		ks_class[KSTAT_STRLEN]; /* kstat class */
82 	uchar_t		ks_flags;	/* kstat flags */
83 	void		*ks_data;	/* kstat type-specific data */
84 	uint_t		ks_ndata;	/* # of type-specific data records */
85 	size_t		ks_data_size;	/* total size of kstat data section */
86 	hrtime_t	ks_snaptime;	/* time of last data shapshot */
87 	/*
88 	 * Fields relevant to kernel only
89 	 */
90 	int		(*ks_update)(struct kstat *, int); /* dynamic update */
91 	void		*ks_private;	/* arbitrary provider-private data */
92 	int		(*ks_snapshot)(struct kstat *, void *, int);
93 	void		*ks_lock;	/* protects this kstat's data */
94 } kstat_t;
95 
96 #ifdef _SYSCALL32
97 
98 typedef int32_t kid32_t;
99 
100 typedef struct kstat32 {
101 	/*
102 	 * Fields relevant to both kernel and user
103 	 */
104 	hrtime_t	ks_crtime;
105 	caddr32_t	ks_next;		/* struct kstat pointer */
106 	kid32_t		ks_kid;
107 	char		ks_module[KSTAT_STRLEN];
108 	uint8_t		ks_resv;
109 	int32_t		ks_instance;
110 	char		ks_name[KSTAT_STRLEN];
111 	uint8_t		ks_type;
112 	char		ks_class[KSTAT_STRLEN];
113 	uint8_t		ks_flags;
114 	caddr32_t	ks_data;		/* type-specific data */
115 	uint32_t	ks_ndata;
116 	size32_t	ks_data_size;
117 	hrtime_t	ks_snaptime;
118 	/*
119 	 * Fields relevant to kernel only (only needed here for padding)
120 	 */
121 	int32_t		_ks_update;
122 	caddr32_t	_ks_private;
123 	int32_t		_ks_snapshot;
124 	caddr32_t	_ks_lock;
125 } kstat32_t;
126 
127 #endif	/* _SYSCALL32 */
128 
129 /*
130  * kstat structure and locking strategy
131  *
132  * Each kstat consists of a header section (a kstat_t) and a data section.
133  * The system maintains a set of kstats, protected by kstat_chain_lock.
134  * kstat_chain_lock protects all additions to/deletions from this set,
135  * as well as all changes to kstat headers.  kstat data sections are
136  * *optionally* protected by the per-kstat ks_lock.  If ks_lock is non-NULL,
137  * kstat clients (e.g. /dev/kstat) will acquire this lock for all of their
138  * operations on that kstat.  It is up to the kstat provider to decide whether
139  * guaranteeing consistent data to kstat clients is sufficiently important
140  * to justify the locking cost.  Note, however, that most statistic updates
141  * already occur under one of the provider's mutexes, so if the provider sets
142  * ks_lock to point to that mutex, then kstat data locking is free.
143  *
144  * NOTE: variable-size kstats MUST employ kstat data locking, to prevent
145  * data-size races with kstat clients.
146  *
147  * NOTE: ks_lock is really of type (kmutex_t *); it is declared as (void *)
148  * in the kstat header so that users don't have to be exposed to all of the
149  * kernel's lock-related data structures.
150  */
151 
152 #if	defined(_KERNEL)
153 
154 #define	KSTAT_ENTER(k)	\
155 	{ kmutex_t *lp = (k)->ks_lock; if (lp) mutex_enter(lp); }
156 
157 #define	KSTAT_EXIT(k)	\
158 	{ kmutex_t *lp = (k)->ks_lock; if (lp) mutex_exit(lp); }
159 
160 #define	KSTAT_UPDATE(k, rw)		(*(k)->ks_update)((k), (rw))
161 
162 #define	KSTAT_SNAPSHOT(k, buf, rw)	(*(k)->ks_snapshot)((k), (buf), (rw))
163 
164 #endif	/* defined(_KERNEL) */
165 
166 /*
167  * kstat time
168  *
169  * All times associated with kstats (e.g. creation time, snapshot time,
170  * kstat_timer_t and kstat_io_t timestamps, etc.) are 64-bit nanosecond values,
171  * as returned by gethrtime().  The accuracy of these timestamps is machine
172  * dependent, but the precision (units) is the same across all platforms.
173  */
174 
175 /*
176  * kstat identity (KID)
177  *
178  * Each kstat is assigned a unique KID (kstat ID) when it is added to the
179  * global kstat chain.  The KID is used as a cookie by /dev/kstat to
180  * request information about the corresponding kstat.  There is also
181  * an identity associated with the entire kstat chain, kstat_chain_id,
182  * which is bumped each time a kstat is added or deleted.  /dev/kstat uses
183  * the chain ID to detect changes in the kstat chain (e.g., a new disk
184  * coming online) between ioctl()s.
185  */
186 
187 /*
188  * kstat module, kstat instance
189  *
190  * ks_module and ks_instance contain the name and instance of the module
191  * that created the kstat.  In cases where there can only be one instance,
192  * ks_instance is 0.  The kernel proper (/kernel/unix) uses "unix" as its
193  * module name.
194  */
195 
196 /*
197  * kstat name
198  *
199  * ks_name gives a meaningful name to a kstat.  The full kstat namespace
200  * is module.instance.name, so the name only need be unique within a
201  * module.  kstat_create() will fail if you try to create a kstat with
202  * an already-used (ks_module, ks_instance, ks_name) triplet.  Spaces are
203  * allowed in kstat names, but strongly discouraged, since they hinder
204  * awk-style processing at user level.
205  */
206 
207 /*
208  * kstat type
209  *
210  * The kstat mechanism provides several flavors of kstat data, defined
211  * below.  The "raw" kstat type is just treated as an array of bytes; you
212  * can use this to export any kind of data you want.
213  *
214  * Some kstat types allow multiple data structures per kstat, e.g.
215  * KSTAT_TYPE_NAMED; others do not.  This is part of the spec for each
216  * kstat data type.
217  *
218  * User-level tools should *not* rely on the #define KSTAT_NUM_TYPES.  To
219  * get this information, read out the standard system kstat "kstat_types".
220  */
221 
222 #define	KSTAT_TYPE_RAW		0	/* can be anything */
223 					/* ks_ndata >= 1 */
224 #define	KSTAT_TYPE_NAMED	1	/* name/value pair */
225 					/* ks_ndata >= 1 */
226 #define	KSTAT_TYPE_INTR		2	/* interrupt statistics */
227 					/* ks_ndata == 1 */
228 #define	KSTAT_TYPE_IO		3	/* I/O statistics */
229 					/* ks_ndata == 1 */
230 #define	KSTAT_TYPE_TIMER	4	/* event timer */
231 					/* ks_ndata >= 1 */
232 
233 #define	KSTAT_NUM_TYPES		5
234 
235 /*
236  * kstat class
237  *
238  * Each kstat can be characterized as belonging to some broad class
239  * of statistics, e.g. disk, tape, net, vm, streams, etc.  This field
240  * can be used as a filter to extract related kstats.  The following
241  * values are currently in use: disk, tape, net, controller, vm, kvm,
242  * hat, streams, kstat, and misc.  (The kstat class encompasses things
243  * like kstat_types.)
244  */
245 
246 /*
247  * kstat flags
248  *
249  * Any of the following flags may be passed to kstat_create().  They are
250  * all zero by default.
251  *
252  *	KSTAT_FLAG_VIRTUAL:
253  *
254  *		Tells kstat_create() not to allocate memory for the
255  *		kstat data section; instead, you will set the ks_data
256  *		field to point to the data you wish to export.  This
257  *		provides a convenient way to export existing data
258  *		structures.
259  *
260  *	KSTAT_FLAG_VAR_SIZE:
261  *
262  *		The size of the kstat you are creating will vary over time.
263  *		For example, you may want to use the kstat mechanism to
264  *		export a linked list.  NOTE: The kstat framework does not
265  *		manage the data section, so all variable-size kstats must be
266  *		virtual kstats.  Moreover, variable-size kstats MUST employ
267  *		kstat data locking to prevent data-size races with kstat
268  *		clients.  See the section on "kstat snapshot" for details.
269  *
270  *	KSTAT_FLAG_WRITABLE:
271  *
272  *		Makes the kstat's data section writable by root.
273  *		The ks_snapshot routine (see below) does not need to check for
274  *		this; permission checking is handled in the kstat driver.
275  *
276  *	KSTAT_FLAG_PERSISTENT:
277  *
278  *		Indicates that this kstat is to be persistent over time.
279  *		For persistent kstats, kstat_delete() simply marks the
280  *		kstat as dormant; a subsequent kstat_create() reactivates
281  *		the kstat.  This feature is provided so that statistics
282  *		are not lost across driver close/open (e.g., raw disk I/O
283  *		on a disk with no mounted partitions.)
284  *		NOTE: Persistent kstats cannot be virtual, since ks_data
285  *		points to garbage as soon as the driver goes away.
286  *
287  * The following flags are maintained by the kstat framework:
288  *
289  *	KSTAT_FLAG_DORMANT:
290  *
291  *		For persistent kstats, indicates that the kstat is in the
292  *		dormant state (e.g., the corresponding device is closed).
293  *
294  *	KSTAT_FLAG_INVALID:
295  *
296  *		This flag is set when a kstat is in a transitional state,
297  *		e.g. between kstat_create() and kstat_install().
298  *		kstat clients must not attempt to access the kstat's data
299  *		if this flag is set.
300  */
301 
302 #define	KSTAT_FLAG_VIRTUAL		0x01
303 #define	KSTAT_FLAG_VAR_SIZE		0x02
304 #define	KSTAT_FLAG_WRITABLE		0x04
305 #define	KSTAT_FLAG_PERSISTENT		0x08
306 #define	KSTAT_FLAG_DORMANT		0x10
307 #define	KSTAT_FLAG_INVALID		0x20
308 
309 /*
310  * Dynamic update support
311  *
312  * The kstat mechanism allows for an optional ks_update function to update
313  * kstat data.  This is useful for drivers where the underlying device
314  * keeps cheap hardware stats, but extraction is expensive.  Instead of
315  * constantly keeping the kstat data section up to date, you can supply a
316  * ks_update function which updates the kstat's data section on demand.
317  * To take advantage of this feature, simply set the ks_update field before
318  * calling kstat_install().
319  *
320  * The ks_update function, if supplied, must have the following structure:
321  *
322  *	int
323  *	foo_kstat_update(kstat_t *ksp, int rw)
324  *	{
325  *		if (rw == KSTAT_WRITE) {
326  *			... update the native stats from ksp->ks_data;
327  *				return EACCES if you don't support this
328  *		} else {
329  *			... update ksp->ks_data from the native stats
330  *		}
331  *	}
332  *
333  * The ks_update return codes are: 0 for success, EACCES if you don't allow
334  * KSTAT_WRITE, and EIO for any other type of error.
335  *
336  * In general, the ks_update function may need to refer to provider-private
337  * data; for example, it may need a pointer to the provider's raw statistics.
338  * The ks_private field is available for this purpose.  Its use is entirely
339  * at the provider's discretion.
340  *
341  * All variable-size kstats MUST supply a ks_update routine, which computes
342  * and sets ks_data_size (and ks_ndata if that is meaningful), since these
343  * are needed to perform kstat snapshots (see below).
344  *
345  * No kstat locking should be done inside the ks_update routine.  The caller
346  * will already be holding the kstat's ks_lock (to ensure consistent data).
347  */
348 
349 #define	KSTAT_READ	0
350 #define	KSTAT_WRITE	1
351 
352 /*
353  * Kstat snapshot
354  *
355  * In order to get a consistent view of a kstat's data, clients must obey
356  * the kstat's locking strategy.  However, these clients may need to perform
357  * operations on the data which could cause a fault (e.g. copyout()), or
358  * operations which are simply expensive.  Doing so could cause deadlock
359  * (e.g. if you're holding a disk's kstat lock which is ultimately required
360  * to resolve a copyout() fault), performance degradation (since the providers'
361  * activity is serialized at the kstat lock), device timing problems, etc.
362  *
363  * To avoid these problems, kstat data is provided via snapshots.  Taking
364  * a snapshot is a simple process: allocate a wired-down kernel buffer,
365  * acquire the kstat's data lock, copy the data into the buffer ("take the
366  * snapshot"), and release the lock.  This ensures that the kstat's data lock
367  * will be held as briefly as possible, and that no faults will occur while
368  * the lock is held.
369  *
370  * Normally, the snapshot is taken by default_kstat_snapshot(), which
371  * timestamps the data (sets ks_snaptime), copies it, and does a little
372  * massaging to deal with incomplete transactions on i/o kstats.  However,
373  * this routine only works for kstats with contiguous data (the typical case).
374  * If you create a kstat whose data is, say, a linked list, you must provide
375  * your own ks_snapshot routine.  The routine you supply must have the
376  * following prototype (replace "foo" with something appropriate):
377  *
378  *	int foo_kstat_snapshot(kstat_t *ksp, void *buf, int rw);
379  *
380  * The minimal snapshot routine -- one which copies contiguous data that
381  * doesn't need any massaging -- would be this:
382  *
383  *	ksp->ks_snaptime = gethrtime();
384  *	if (rw == KSTAT_WRITE)
385  *		bcopy(buf, ksp->ks_data, ksp->ks_data_size);
386  *	else
387  *		bcopy(ksp->ks_data, buf, ksp->ks_data_size);
388  *	return (0);
389  *
390  * A more illuminating example is taking a snapshot of a linked list:
391  *
392  *	ksp->ks_snaptime = gethrtime();
393  *	if (rw == KSTAT_WRITE)
394  *		return (EACCES);		... See below ...
395  *	for (foo = first_foo; foo; foo = foo->next) {
396  *		bcopy((char *) foo, (char *) buf, sizeof (struct foo));
397  *		buf = ((struct foo *) buf) + 1;
398  *	}
399  *	return (0);
400  *
401  * In the example above, we have decided that we don't want to allow
402  * KSTAT_WRITE access, so we return EACCES if this is attempted.
403  *
404  * The key points are:
405  *
406  *	(1) ks_snaptime must be set (via gethrtime()) to timestamp the data.
407  *	(2) Data gets copied from the kstat to the buffer on KSTAT_READ,
408  *		and from the buffer to the kstat on KSTAT_WRITE.
409  *	(3) ks_snapshot return values are: 0 for success, EACCES if you
410  *		don't allow KSTAT_WRITE, and EIO for any other type of error.
411  *
412  * Named kstats (see section on "Named statistics" below) containing long
413  * strings (KSTAT_DATA_STRING) need special handling.  The kstat driver
414  * assumes that all strings are copied into the buffer after the array of
415  * named kstats, and the pointers (KSTAT_NAMED_STR_PTR()) are updated to point
416  * into the copy within the buffer. The default snapshot routine does this,
417  * but overriding routines should contain at least the following:
418  *
419  * if (rw == KSTAT_READ) {
420  * 	kstat_named_t *knp = buf;
421  * 	char *end = knp + ksp->ks_ndata;
422  * 	uint_t i;
423  *
424  * 	... Do the regular copy ...
425  * 	bcopy(ksp->ks_data, buf, sizeof (kstat_named_t) * ksp->ks_ndata);
426  *
427  * 	for (i = 0; i < ksp->ks_ndata; i++, knp++) {
428  *		if (knp[i].data_type == KSTAT_DATA_STRING &&
429  *		    KSTAT_NAMED_STR_PTR(knp) != NULL) {
430  *			bcopy(KSTAT_NAMED_STR_PTR(knp), end,
431  *			    KSTAT_NAMED_STR_BUFLEN(knp));
432  *			KSTAT_NAMED_STR_PTR(knp) = end;
433  *			end += KSTAT_NAMED_STR_BUFLEN(knp);
434  *		}
435  *	}
436  */
437 
438 /*
439  * Named statistics.
440  *
441  * List of arbitrary name=value statistics.
442  */
443 
444 typedef struct kstat_named {
445 	char	name[KSTAT_STRLEN];	/* name of counter */
446 	uchar_t	data_type;		/* data type */
447 	union {
448 		char		c[16];	/* enough for 128-bit ints */
449 		int32_t		i32;
450 		uint32_t	ui32;
451 		struct {
452 			union {
453 				char 		*ptr;	/* NULL-term string */
454 #if defined(_KERNEL) && defined(_MULTI_DATAMODEL)
455 				caddr32_t	ptr32;
456 #endif
457 				char 		__pad[8]; /* 64-bit padding */
458 			} addr;
459 			uint32_t	len;	/* # bytes for strlen + '\0' */
460 		} str;
461 /*
462  * The int64_t and uint64_t types are not valid for a maximally conformant
463  * 32-bit compilation environment (cc -Xc) using compilers prior to the
464  * introduction of C99 conforming compiler (reference ISO/IEC 9899:1990).
465  * In these cases, the visibility of i64 and ui64 is only permitted for
466  * 64-bit compilation environments or 32-bit non-maximally conformant
467  * C89 or C90 ANSI C compilation environments (cc -Xt and cc -Xa). In the
468  * C99 ANSI C compilation environment, the long long type is supported.
469  * The _INT64_TYPE is defined by the implementation (see sys/int_types.h).
470  */
471 #if defined(_INT64_TYPE)
472 		int64_t		i64;
473 		uint64_t	ui64;
474 #endif
475 		long		l;
476 		ulong_t		ul;
477 
478 		/* These structure members are obsolete */
479 
480 		longlong_t	ll;
481 		u_longlong_t	ull;
482 		float		f;
483 		double		d;
484 	} value;			/* value of counter */
485 } kstat_named_t;
486 
487 #define	KSTAT_DATA_CHAR		0
488 #define	KSTAT_DATA_INT32	1
489 #define	KSTAT_DATA_UINT32	2
490 #define	KSTAT_DATA_INT64	3
491 #define	KSTAT_DATA_UINT64	4
492 
493 #if !defined(_LP64)
494 #define	KSTAT_DATA_LONG		KSTAT_DATA_INT32
495 #define	KSTAT_DATA_ULONG	KSTAT_DATA_UINT32
496 #else
497 #if !defined(_KERNEL)
498 #define	KSTAT_DATA_LONG		KSTAT_DATA_INT64
499 #define	KSTAT_DATA_ULONG	KSTAT_DATA_UINT64
500 #else
501 #define	KSTAT_DATA_LONG		7	/* only visible to the kernel */
502 #define	KSTAT_DATA_ULONG	8	/* only visible to the kernel */
503 #endif	/* !_KERNEL */
504 #endif	/* !_LP64 */
505 
506 /*
507  * Statistics exporting named kstats with long strings (KSTAT_DATA_STRING)
508  * may not make the assumption that ks_data_size is equal to (ks_ndata * sizeof
509  * (kstat_named_t)).  ks_data_size in these cases is equal to the sum of the
510  * amount of space required to store the strings (ie, the sum of
511  * KSTAT_NAMED_STR_BUFLEN() for all KSTAT_DATA_STRING statistics) plus the
512  * space required to store the kstat_named_t's.
513  *
514  * The default update routine will update ks_data_size automatically for
515  * variable-length kstats containing long strings (using the default update
516  * routine only makes sense if the string is the only thing that is changing
517  * in size, and ks_ndata is constant).  Fixed-length kstats containing long
518  * strings must explicitly change ks_data_size (after creation but before
519  * initialization) to reflect the correct amount of space required for the
520  * long strings and the kstat_named_t's.
521  */
522 #define	KSTAT_DATA_STRING	9
523 
524 /* These types are obsolete */
525 
526 #define	KSTAT_DATA_LONGLONG	KSTAT_DATA_INT64
527 #define	KSTAT_DATA_ULONGLONG	KSTAT_DATA_UINT64
528 #define	KSTAT_DATA_FLOAT	5
529 #define	KSTAT_DATA_DOUBLE	6
530 
531 #define	KSTAT_NAMED_PTR(kptr)	((kstat_named_t *)(kptr)->ks_data)
532 
533 /*
534  * Retrieve the pointer of the string contained in the given named kstat.
535  */
536 #define	KSTAT_NAMED_STR_PTR(knptr) ((knptr)->value.str.addr.ptr)
537 
538 /*
539  * Retrieve the length of the buffer required to store the string in the given
540  * named kstat.
541  */
542 #define	KSTAT_NAMED_STR_BUFLEN(knptr) ((knptr)->value.str.len)
543 
544 /*
545  * Interrupt statistics.
546  *
547  * An interrupt is a hard interrupt (sourced from the hardware device
548  * itself), a soft interrupt (induced by the system via the use of
549  * some system interrupt source), a watchdog interrupt (induced by
550  * a periodic timer call), spurious (an interrupt entry point was
551  * entered but there was no interrupt condition to service),
552  * or multiple service (an interrupt condition was detected and
553  * serviced just prior to returning from any of the other types).
554  *
555  * Measurement of the spurious class of interrupts is useful for
556  * autovectored devices in order to pinpoint any interrupt latency
557  * problems in a particular system configuration.
558  *
559  * Devices that have more than one interrupt of the same
560  * type should use multiple structures.
561  */
562 
563 #define	KSTAT_INTR_HARD			0
564 #define	KSTAT_INTR_SOFT			1
565 #define	KSTAT_INTR_WATCHDOG		2
566 #define	KSTAT_INTR_SPURIOUS		3
567 #define	KSTAT_INTR_MULTSVC		4
568 
569 #define	KSTAT_NUM_INTRS			5
570 
571 typedef struct kstat_intr {
572 	uint_t	intrs[KSTAT_NUM_INTRS];	/* interrupt counters */
573 } kstat_intr_t;
574 
575 #define	KSTAT_INTR_PTR(kptr)	((kstat_intr_t *)(kptr)->ks_data)
576 
577 /*
578  * I/O statistics.
579  */
580 
581 typedef struct kstat_io {
582 
583 	/*
584 	 * Basic counters.
585 	 *
586 	 * The counters should be updated at the end of service
587 	 * (e.g., just prior to calling biodone()).
588 	 */
589 
590 	u_longlong_t	nread;		/* number of bytes read */
591 	u_longlong_t	nwritten;	/* number of bytes written */
592 	uint_t		reads;		/* number of read operations */
593 	uint_t		writes;		/* number of write operations */
594 
595 	/*
596 	 * Accumulated time and queue length statistics.
597 	 *
598 	 * Accumulated time statistics are kept as a running sum
599 	 * of "active" time.  Queue length statistics are kept as a
600 	 * running sum of the product of queue length and elapsed time
601 	 * at that length -- i.e., a Riemann sum for queue length
602 	 * integrated against time.  (You can also think of the active time
603 	 * as a Riemann sum, for the boolean function (queue_length > 0)
604 	 * integrated against time, or you can think of it as the
605 	 * Lebesgue measure of the set on which queue_length > 0.)
606 	 *
607 	 *		^
608 	 *		|			_________
609 	 *		8			| i4	|
610 	 *		|			|	|
611 	 *	Queue	6			|	|
612 	 *	Length	|	_________	|	|
613 	 *		4	| i2	|_______|	|
614 	 *		|	|	    i3		|
615 	 *		2_______|			|
616 	 *		|    i1				|
617 	 *		|_______________________________|
618 	 *		Time->	t1	t2	t3	t4
619 	 *
620 	 * At each change of state (entry or exit from the queue),
621 	 * we add the elapsed time (since the previous state change)
622 	 * to the active time if the queue length was non-zero during
623 	 * that interval; and we add the product of the elapsed time
624 	 * times the queue length to the running length*time sum.
625 	 *
626 	 * This method is generalizable to measuring residency
627 	 * in any defined system: instead of queue lengths, think
628 	 * of "outstanding RPC calls to server X".
629 	 *
630 	 * A large number of I/O subsystems have at least two basic
631 	 * "lists" of transactions they manage: one for transactions
632 	 * that have been accepted for processing but for which processing
633 	 * has yet to begin, and one for transactions which are actively
634 	 * being processed (but not done). For this reason, two cumulative
635 	 * time statistics are defined here: wait (pre-service) time,
636 	 * and run (service) time.
637 	 *
638 	 * All times are 64-bit nanoseconds (hrtime_t), as returned by
639 	 * gethrtime().
640 	 *
641 	 * The units of cumulative busy time are accumulated nanoseconds.
642 	 * The units of cumulative length*time products are elapsed time
643 	 * times queue length.
644 	 *
645 	 * Updates to the fields below are performed implicitly by calls to
646 	 * these five functions:
647 	 *
648 	 *	kstat_waitq_enter()
649 	 *	kstat_waitq_exit()
650 	 *	kstat_runq_enter()
651 	 *	kstat_runq_exit()
652 	 *
653 	 *	kstat_waitq_to_runq()		(see below)
654 	 *	kstat_runq_back_to_waitq()	(see below)
655 	 *
656 	 * Since kstat_waitq_exit() is typically followed immediately
657 	 * by kstat_runq_enter(), there is a single kstat_waitq_to_runq()
658 	 * function which performs both operations.  This is a performance
659 	 * win since only one timestamp is required.
660 	 *
661 	 * In some instances, it may be necessary to move a request from
662 	 * the run queue back to the wait queue, e.g. for write throttling.
663 	 * For these situations, call kstat_runq_back_to_waitq().
664 	 *
665 	 * These fields should never be updated by any other means.
666 	 */
667 
668 	hrtime_t wtime;		/* cumulative wait (pre-service) time */
669 	hrtime_t wlentime;	/* cumulative wait length*time product */
670 	hrtime_t wlastupdate;	/* last time wait queue changed */
671 	hrtime_t rtime;		/* cumulative run (service) time */
672 	hrtime_t rlentime;	/* cumulative run length*time product */
673 	hrtime_t rlastupdate;	/* last time run queue changed */
674 
675 	uint_t	wcnt;		/* count of elements in wait state */
676 	uint_t	rcnt;		/* count of elements in run state */
677 
678 } kstat_io_t;
679 
680 #define	KSTAT_IO_PTR(kptr)	((kstat_io_t *)(kptr)->ks_data)
681 
682 /*
683  * Event timer statistics - cumulative elapsed time and number of events.
684  *
685  * Updates to these fields are performed implicitly by calls to
686  * kstat_timer_start() and kstat_timer_stop().
687  */
688 
689 typedef struct kstat_timer {
690 	char		name[KSTAT_STRLEN];	/* event name */
691 	uchar_t		resv;			/* reserved */
692 	u_longlong_t	num_events;		/* number of events */
693 	hrtime_t	elapsed_time;		/* cumulative elapsed time */
694 	hrtime_t	min_time;		/* shortest event duration */
695 	hrtime_t	max_time;		/* longest event duration */
696 	hrtime_t	start_time;		/* previous event start time */
697 	hrtime_t	stop_time;		/* previous event stop time */
698 } kstat_timer_t;
699 
700 #define	KSTAT_TIMER_PTR(kptr)	((kstat_timer_t *)(kptr)->ks_data)
701 
702 #if	defined(_KERNEL)
703 
704 #include <sys/t_lock.h>
705 
706 extern kid_t	kstat_chain_id;		/* bumped at each state change */
707 extern void	kstat_init(void);	/* initialize kstat framework */
708 
709 /*
710  * Adding and deleting kstats.
711  *
712  * The typical sequence to add a kstat is:
713  *
714  *	ksp = kstat_create(module, instance, name, class, type, ndata, flags);
715  *	if (ksp) {
716  *		... provider initialization, if necessary
717  *		kstat_install(ksp);
718  *	}
719  *
720  * There are three logically distinct steps here:
721  *
722  * Step 1: System Initialization (kstat_create)
723  *
724  * kstat_create() performs system initialization.  kstat_create()
725  * allocates memory for the entire kstat (header plus data), initializes
726  * all header fields, initializes the data section to all zeroes, assigns
727  * a unique KID, and puts the kstat onto the system's kstat chain.
728  * The returned kstat is marked invalid (KSTAT_FLAG_INVALID is set),
729  * because the provider (caller) has not yet had a chance to initialize
730  * the data section.
731  *
732  * By default, kstats are exported to all zones on the system.  A kstat may be
733  * created via kstat_create_zone() to specify a zone to which the statistics
734  * should be exported.  kstat_zone_add() may be used to specify additional
735  * zones to which the statistics are to be exported.
736  *
737  * Step 2: Provider Initialization
738  *
739  * The provider performs any necessary initialization of the data section,
740  * e.g. setting the name fields in a KSTAT_TYPE_NAMED.  Virtual kstats set
741  * the ks_data field at this time.  The provider may also set the ks_update,
742  * ks_snapshot, ks_private, and ks_lock fields if necessary.
743  *
744  * Step 3: Installation (kstat_install)
745  *
746  * Once the kstat is completely initialized, kstat_install() clears the
747  * INVALID flag, thus making the kstat accessible to the outside world.
748  * kstat_install() also clears the DORMANT flag for persistent kstats.
749  *
750  * Removing a kstat from the system
751  *
752  * kstat_delete(ksp) removes ksp from the kstat chain and frees all
753  * associated system resources.  NOTE: When you call kstat_delete(),
754  * you must NOT be holding that kstat's ks_lock.  Otherwise, you may
755  * deadlock with a kstat reader.
756  *
757  * Persistent kstats
758  *
759  * From the provider's point of view, persistence is transparent.  The only
760  * difference between ephemeral (normal) kstats and persistent kstats
761  * is that you pass KSTAT_FLAG_PERSISTENT to kstat_create().  Magically,
762  * this has the effect of making your data visible even when you're
763  * not home.  Persistence is important to tools like iostat, which want
764  * to get a meaningful picture of disk activity.  Without persistence,
765  * raw disk i/o statistics could never accumulate: they would come and
766  * go with each open/close of the raw device.
767  *
768  * The magic of persistence works by slightly altering the behavior of
769  * kstat_create() and kstat_delete().  The first call to kstat_create()
770  * creates a new kstat, as usual.  However, kstat_delete() does not
771  * actually delete the kstat: it performs one final update of the data
772  * (i.e., calls the ks_update routine), marks the kstat as dormant, and
773  * sets the ks_lock, ks_update, ks_private, and ks_snapshot fields back
774  * to their default values (since they might otherwise point to garbage,
775  * e.g. if the provider is going away).  kstat clients can still access
776  * the dormant kstat just like a live kstat; they just continue to see
777  * the final data values as long as the kstat remains dormant.
778  * All subsequent kstat_create() calls simply find the already-existing,
779  * dormant kstat and return a pointer to it, without altering any fields.
780  * The provider then performs its usual initialization sequence, and
781  * calls kstat_install().  kstat_install() uses the old data values to
782  * initialize the native data (i.e., ks_update is called with KSTAT_WRITE),
783  * thus making it seem like you were never gone.
784  */
785 
786 extern kstat_t *kstat_create(char *, int, char *, char *, uchar_t,
787     uint_t, uchar_t);
788 extern kstat_t *kstat_create_zone(char *, int, char *, char *, uchar_t,
789     uint_t, uchar_t, zoneid_t);
790 extern void kstat_install(kstat_t *);
791 extern void kstat_delete(kstat_t *);
792 extern void kstat_named_setstr(kstat_named_t *knp, const char *src);
793 extern void kstat_set_string(char *, char *);
794 extern void kstat_delete_byname(char *, int, char *);
795 extern void kstat_delete_byname_zone(char *, int, char *, zoneid_t);
796 extern void kstat_named_init(kstat_named_t *, char *, uchar_t);
797 extern void kstat_timer_init(kstat_timer_t *, char *);
798 extern void kstat_waitq_enter(kstat_io_t *);
799 extern void kstat_waitq_exit(kstat_io_t *);
800 extern void kstat_runq_enter(kstat_io_t *);
801 extern void kstat_runq_exit(kstat_io_t *);
802 extern void kstat_waitq_to_runq(kstat_io_t *);
803 extern void kstat_runq_back_to_waitq(kstat_io_t *);
804 extern void kstat_timer_start(kstat_timer_t *);
805 extern void kstat_timer_stop(kstat_timer_t *);
806 
807 extern void kstat_zone_add(kstat_t *, zoneid_t);
808 extern void kstat_zone_remove(kstat_t *, zoneid_t);
809 extern int kstat_zone_find(kstat_t *, zoneid_t);
810 
811 extern kstat_t *kstat_hold_bykid(kid_t kid, zoneid_t);
812 extern kstat_t *kstat_hold_byname(char *, int, char *, zoneid_t);
813 extern void kstat_rele(kstat_t *);
814 
815 #endif	/* defined(_KERNEL) */
816 
817 #ifdef	__cplusplus
818 }
819 #endif
820 
821 #endif	/* _SYS_KSTAT_H */
822