xref: /titanic_50/usr/src/uts/common/sys/dtrace.h (revision abe85dc5696f519c0c45fb0dded9fdb0df03376f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Copyright (c) 2011, Joyent, Inc. All rights reserved.
29  * Copyright (c) 2012 by Delphix. All rights reserved.
30  */
31 
32 #ifndef _SYS_DTRACE_H
33 #define	_SYS_DTRACE_H
34 
35 #ifdef	__cplusplus
36 extern "C" {
37 #endif
38 
39 /*
40  * DTrace Dynamic Tracing Software: Kernel Interfaces
41  *
42  * Note: The contents of this file are private to the implementation of the
43  * Solaris system and DTrace subsystem and are subject to change at any time
44  * without notice.  Applications and drivers using these interfaces will fail
45  * to run on future releases.  These interfaces should not be used for any
46  * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
47  * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
48  */
49 
50 #ifndef _ASM
51 
52 #include <sys/types.h>
53 #include <sys/modctl.h>
54 #include <sys/processor.h>
55 #include <sys/systm.h>
56 #include <sys/ctf_api.h>
57 #include <sys/cyclic.h>
58 #include <sys/int_limits.h>
59 
60 /*
61  * DTrace Universal Constants and Typedefs
62  */
63 #define	DTRACE_CPUALL		-1	/* all CPUs */
64 #define	DTRACE_IDNONE		0	/* invalid probe identifier */
65 #define	DTRACE_EPIDNONE		0	/* invalid enabled probe identifier */
66 #define	DTRACE_AGGIDNONE	0	/* invalid aggregation identifier */
67 #define	DTRACE_AGGVARIDNONE	0	/* invalid aggregation variable ID */
68 #define	DTRACE_CACHEIDNONE	0	/* invalid predicate cache */
69 #define	DTRACE_PROVNONE		0	/* invalid provider identifier */
70 #define	DTRACE_METAPROVNONE	0	/* invalid meta-provider identifier */
71 #define	DTRACE_ARGNONE		-1	/* invalid argument index */
72 
73 #define	DTRACE_PROVNAMELEN	64
74 #define	DTRACE_MODNAMELEN	64
75 #define	DTRACE_FUNCNAMELEN	128
76 #define	DTRACE_NAMELEN		64
77 #define	DTRACE_FULLNAMELEN	(DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
78 				DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
79 #define	DTRACE_ARGTYPELEN	128
80 
81 typedef uint32_t dtrace_id_t;		/* probe identifier */
82 typedef uint32_t dtrace_epid_t;		/* enabled probe identifier */
83 typedef uint32_t dtrace_aggid_t;	/* aggregation identifier */
84 typedef int64_t dtrace_aggvarid_t;	/* aggregation variable identifier */
85 typedef uint16_t dtrace_actkind_t;	/* action kind */
86 typedef int64_t dtrace_optval_t;	/* option value */
87 typedef uint32_t dtrace_cacheid_t;	/* predicate cache identifier */
88 
89 typedef enum dtrace_probespec {
90 	DTRACE_PROBESPEC_NONE = -1,
91 	DTRACE_PROBESPEC_PROVIDER = 0,
92 	DTRACE_PROBESPEC_MOD,
93 	DTRACE_PROBESPEC_FUNC,
94 	DTRACE_PROBESPEC_NAME
95 } dtrace_probespec_t;
96 
97 /*
98  * DTrace Intermediate Format (DIF)
99  *
100  * The following definitions describe the DTrace Intermediate Format (DIF), a
101  * a RISC-like instruction set and program encoding used to represent
102  * predicates and actions that can be bound to DTrace probes.  The constants
103  * below defining the number of available registers are suggested minimums; the
104  * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
105  * registers provided by the current DTrace implementation.
106  */
107 #define	DIF_VERSION_1	1		/* DIF version 1: Solaris 10 Beta */
108 #define	DIF_VERSION_2	2		/* DIF version 2: Solaris 10 FCS */
109 #define	DIF_VERSION	DIF_VERSION_2	/* latest DIF instruction set version */
110 #define	DIF_DIR_NREGS	8		/* number of DIF integer registers */
111 #define	DIF_DTR_NREGS	8		/* number of DIF tuple registers */
112 
113 #define	DIF_OP_OR	1		/* or	r1, r2, rd */
114 #define	DIF_OP_XOR	2		/* xor	r1, r2, rd */
115 #define	DIF_OP_AND	3		/* and	r1, r2, rd */
116 #define	DIF_OP_SLL	4		/* sll	r1, r2, rd */
117 #define	DIF_OP_SRL	5		/* srl	r1, r2, rd */
118 #define	DIF_OP_SUB	6		/* sub	r1, r2, rd */
119 #define	DIF_OP_ADD	7		/* add	r1, r2, rd */
120 #define	DIF_OP_MUL	8		/* mul	r1, r2, rd */
121 #define	DIF_OP_SDIV	9		/* sdiv	r1, r2, rd */
122 #define	DIF_OP_UDIV	10		/* udiv r1, r2, rd */
123 #define	DIF_OP_SREM	11		/* srem r1, r2, rd */
124 #define	DIF_OP_UREM	12		/* urem r1, r2, rd */
125 #define	DIF_OP_NOT	13		/* not	r1, rd */
126 #define	DIF_OP_MOV	14		/* mov	r1, rd */
127 #define	DIF_OP_CMP	15		/* cmp	r1, r2 */
128 #define	DIF_OP_TST	16		/* tst  r1 */
129 #define	DIF_OP_BA	17		/* ba	label */
130 #define	DIF_OP_BE	18		/* be	label */
131 #define	DIF_OP_BNE	19		/* bne	label */
132 #define	DIF_OP_BG	20		/* bg	label */
133 #define	DIF_OP_BGU	21		/* bgu	label */
134 #define	DIF_OP_BGE	22		/* bge	label */
135 #define	DIF_OP_BGEU	23		/* bgeu	label */
136 #define	DIF_OP_BL	24		/* bl	label */
137 #define	DIF_OP_BLU	25		/* blu	label */
138 #define	DIF_OP_BLE	26		/* ble	label */
139 #define	DIF_OP_BLEU	27		/* bleu	label */
140 #define	DIF_OP_LDSB	28		/* ldsb	[r1], rd */
141 #define	DIF_OP_LDSH	29		/* ldsh	[r1], rd */
142 #define	DIF_OP_LDSW	30		/* ldsw [r1], rd */
143 #define	DIF_OP_LDUB	31		/* ldub	[r1], rd */
144 #define	DIF_OP_LDUH	32		/* lduh	[r1], rd */
145 #define	DIF_OP_LDUW	33		/* lduw	[r1], rd */
146 #define	DIF_OP_LDX	34		/* ldx	[r1], rd */
147 #define	DIF_OP_RET	35		/* ret	rd */
148 #define	DIF_OP_NOP	36		/* nop */
149 #define	DIF_OP_SETX	37		/* setx	intindex, rd */
150 #define	DIF_OP_SETS	38		/* sets strindex, rd */
151 #define	DIF_OP_SCMP	39		/* scmp	r1, r2 */
152 #define	DIF_OP_LDGA	40		/* ldga	var, ri, rd */
153 #define	DIF_OP_LDGS	41		/* ldgs var, rd */
154 #define	DIF_OP_STGS	42		/* stgs var, rs */
155 #define	DIF_OP_LDTA	43		/* ldta var, ri, rd */
156 #define	DIF_OP_LDTS	44		/* ldts var, rd */
157 #define	DIF_OP_STTS	45		/* stts var, rs */
158 #define	DIF_OP_SRA	46		/* sra	r1, r2, rd */
159 #define	DIF_OP_CALL	47		/* call	subr, rd */
160 #define	DIF_OP_PUSHTR	48		/* pushtr type, rs, rr */
161 #define	DIF_OP_PUSHTV	49		/* pushtv type, rs, rv */
162 #define	DIF_OP_POPTS	50		/* popts */
163 #define	DIF_OP_FLUSHTS	51		/* flushts */
164 #define	DIF_OP_LDGAA	52		/* ldgaa var, rd */
165 #define	DIF_OP_LDTAA	53		/* ldtaa var, rd */
166 #define	DIF_OP_STGAA	54		/* stgaa var, rs */
167 #define	DIF_OP_STTAA	55		/* sttaa var, rs */
168 #define	DIF_OP_LDLS	56		/* ldls	var, rd */
169 #define	DIF_OP_STLS	57		/* stls	var, rs */
170 #define	DIF_OP_ALLOCS	58		/* allocs r1, rd */
171 #define	DIF_OP_COPYS	59		/* copys  r1, r2, rd */
172 #define	DIF_OP_STB	60		/* stb	r1, [rd] */
173 #define	DIF_OP_STH	61		/* sth	r1, [rd] */
174 #define	DIF_OP_STW	62		/* stw	r1, [rd] */
175 #define	DIF_OP_STX	63		/* stx	r1, [rd] */
176 #define	DIF_OP_ULDSB	64		/* uldsb [r1], rd */
177 #define	DIF_OP_ULDSH	65		/* uldsh [r1], rd */
178 #define	DIF_OP_ULDSW	66		/* uldsw [r1], rd */
179 #define	DIF_OP_ULDUB	67		/* uldub [r1], rd */
180 #define	DIF_OP_ULDUH	68		/* ulduh [r1], rd */
181 #define	DIF_OP_ULDUW	69		/* ulduw [r1], rd */
182 #define	DIF_OP_ULDX	70		/* uldx  [r1], rd */
183 #define	DIF_OP_RLDSB	71		/* rldsb [r1], rd */
184 #define	DIF_OP_RLDSH	72		/* rldsh [r1], rd */
185 #define	DIF_OP_RLDSW	73		/* rldsw [r1], rd */
186 #define	DIF_OP_RLDUB	74		/* rldub [r1], rd */
187 #define	DIF_OP_RLDUH	75		/* rlduh [r1], rd */
188 #define	DIF_OP_RLDUW	76		/* rlduw [r1], rd */
189 #define	DIF_OP_RLDX	77		/* rldx  [r1], rd */
190 #define	DIF_OP_XLATE	78		/* xlate xlrindex, rd */
191 #define	DIF_OP_XLARG	79		/* xlarg xlrindex, rd */
192 
193 #define	DIF_INTOFF_MAX		0xffff	/* highest integer table offset */
194 #define	DIF_STROFF_MAX		0xffff	/* highest string table offset */
195 #define	DIF_REGISTER_MAX	0xff	/* highest register number */
196 #define	DIF_VARIABLE_MAX	0xffff	/* highest variable identifier */
197 #define	DIF_SUBROUTINE_MAX	0xffff	/* highest subroutine code */
198 
199 #define	DIF_VAR_ARRAY_MIN	0x0000	/* lowest numbered array variable */
200 #define	DIF_VAR_ARRAY_UBASE	0x0080	/* lowest user-defined array */
201 #define	DIF_VAR_ARRAY_MAX	0x00ff	/* highest numbered array variable */
202 
203 #define	DIF_VAR_OTHER_MIN	0x0100	/* lowest numbered scalar or assc */
204 #define	DIF_VAR_OTHER_UBASE	0x0500	/* lowest user-defined scalar or assc */
205 #define	DIF_VAR_OTHER_MAX	0xffff	/* highest numbered scalar or assc */
206 
207 #define	DIF_VAR_ARGS		0x0000	/* arguments array */
208 #define	DIF_VAR_REGS		0x0001	/* registers array */
209 #define	DIF_VAR_UREGS		0x0002	/* user registers array */
210 #define	DIF_VAR_VMREGS		0x0003	/* virtual machine registers array */
211 #define	DIF_VAR_CURTHREAD	0x0100	/* thread pointer */
212 #define	DIF_VAR_TIMESTAMP	0x0101	/* timestamp */
213 #define	DIF_VAR_VTIMESTAMP	0x0102	/* virtual timestamp */
214 #define	DIF_VAR_IPL		0x0103	/* interrupt priority level */
215 #define	DIF_VAR_EPID		0x0104	/* enabled probe ID */
216 #define	DIF_VAR_ID		0x0105	/* probe ID */
217 #define	DIF_VAR_ARG0		0x0106	/* first argument */
218 #define	DIF_VAR_ARG1		0x0107	/* second argument */
219 #define	DIF_VAR_ARG2		0x0108	/* third argument */
220 #define	DIF_VAR_ARG3		0x0109	/* fourth argument */
221 #define	DIF_VAR_ARG4		0x010a	/* fifth argument */
222 #define	DIF_VAR_ARG5		0x010b	/* sixth argument */
223 #define	DIF_VAR_ARG6		0x010c	/* seventh argument */
224 #define	DIF_VAR_ARG7		0x010d	/* eighth argument */
225 #define	DIF_VAR_ARG8		0x010e	/* ninth argument */
226 #define	DIF_VAR_ARG9		0x010f	/* tenth argument */
227 #define	DIF_VAR_STACKDEPTH	0x0110	/* stack depth */
228 #define	DIF_VAR_CALLER		0x0111	/* caller */
229 #define	DIF_VAR_PROBEPROV	0x0112	/* probe provider */
230 #define	DIF_VAR_PROBEMOD	0x0113	/* probe module */
231 #define	DIF_VAR_PROBEFUNC	0x0114	/* probe function */
232 #define	DIF_VAR_PROBENAME	0x0115	/* probe name */
233 #define	DIF_VAR_PID		0x0116	/* process ID */
234 #define	DIF_VAR_TID		0x0117	/* (per-process) thread ID */
235 #define	DIF_VAR_EXECNAME	0x0118	/* name of executable */
236 #define	DIF_VAR_ZONENAME	0x0119	/* zone name associated with process */
237 #define	DIF_VAR_WALLTIMESTAMP	0x011a	/* wall-clock timestamp */
238 #define	DIF_VAR_USTACKDEPTH	0x011b	/* user-land stack depth */
239 #define	DIF_VAR_UCALLER		0x011c	/* user-level caller */
240 #define	DIF_VAR_PPID		0x011d	/* parent process ID */
241 #define	DIF_VAR_UID		0x011e	/* process user ID */
242 #define	DIF_VAR_GID		0x011f	/* process group ID */
243 #define	DIF_VAR_ERRNO		0x0120	/* thread errno */
244 
245 #define	DIF_SUBR_RAND			0
246 #define	DIF_SUBR_MUTEX_OWNED		1
247 #define	DIF_SUBR_MUTEX_OWNER		2
248 #define	DIF_SUBR_MUTEX_TYPE_ADAPTIVE	3
249 #define	DIF_SUBR_MUTEX_TYPE_SPIN	4
250 #define	DIF_SUBR_RW_READ_HELD		5
251 #define	DIF_SUBR_RW_WRITE_HELD		6
252 #define	DIF_SUBR_RW_ISWRITER		7
253 #define	DIF_SUBR_COPYIN			8
254 #define	DIF_SUBR_COPYINSTR		9
255 #define	DIF_SUBR_SPECULATION		10
256 #define	DIF_SUBR_PROGENYOF		11
257 #define	DIF_SUBR_STRLEN			12
258 #define	DIF_SUBR_COPYOUT		13
259 #define	DIF_SUBR_COPYOUTSTR		14
260 #define	DIF_SUBR_ALLOCA			15
261 #define	DIF_SUBR_BCOPY			16
262 #define	DIF_SUBR_COPYINTO		17
263 #define	DIF_SUBR_MSGDSIZE		18
264 #define	DIF_SUBR_MSGSIZE		19
265 #define	DIF_SUBR_GETMAJOR		20
266 #define	DIF_SUBR_GETMINOR		21
267 #define	DIF_SUBR_DDI_PATHNAME		22
268 #define	DIF_SUBR_STRJOIN		23
269 #define	DIF_SUBR_LLTOSTR		24
270 #define	DIF_SUBR_BASENAME		25
271 #define	DIF_SUBR_DIRNAME		26
272 #define	DIF_SUBR_CLEANPATH		27
273 #define	DIF_SUBR_STRCHR			28
274 #define	DIF_SUBR_STRRCHR		29
275 #define	DIF_SUBR_STRSTR			30
276 #define	DIF_SUBR_STRTOK			31
277 #define	DIF_SUBR_SUBSTR			32
278 #define	DIF_SUBR_INDEX			33
279 #define	DIF_SUBR_RINDEX			34
280 #define	DIF_SUBR_HTONS			35
281 #define	DIF_SUBR_HTONL			36
282 #define	DIF_SUBR_HTONLL			37
283 #define	DIF_SUBR_NTOHS			38
284 #define	DIF_SUBR_NTOHL			39
285 #define	DIF_SUBR_NTOHLL			40
286 #define	DIF_SUBR_INET_NTOP		41
287 #define	DIF_SUBR_INET_NTOA		42
288 #define	DIF_SUBR_INET_NTOA6		43
289 #define	DIF_SUBR_TOUPPER		44
290 #define	DIF_SUBR_TOLOWER		45
291 
292 #define	DIF_SUBR_MAX			45	/* max subroutine value */
293 
294 typedef uint32_t dif_instr_t;
295 
296 #define	DIF_INSTR_OP(i)			(((i) >> 24) & 0xff)
297 #define	DIF_INSTR_R1(i)			(((i) >> 16) & 0xff)
298 #define	DIF_INSTR_R2(i)			(((i) >>  8) & 0xff)
299 #define	DIF_INSTR_RD(i)			((i) & 0xff)
300 #define	DIF_INSTR_RS(i)			((i) & 0xff)
301 #define	DIF_INSTR_LABEL(i)		((i) & 0xffffff)
302 #define	DIF_INSTR_VAR(i)		(((i) >>  8) & 0xffff)
303 #define	DIF_INSTR_INTEGER(i)		(((i) >>  8) & 0xffff)
304 #define	DIF_INSTR_STRING(i)		(((i) >>  8) & 0xffff)
305 #define	DIF_INSTR_SUBR(i)		(((i) >>  8) & 0xffff)
306 #define	DIF_INSTR_TYPE(i)		(((i) >> 16) & 0xff)
307 #define	DIF_INSTR_XLREF(i)		(((i) >>  8) & 0xffff)
308 
309 #define	DIF_INSTR_FMT(op, r1, r2, d) \
310 	(((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))
311 
312 #define	DIF_INSTR_NOT(r1, d)		(DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
313 #define	DIF_INSTR_MOV(r1, d)		(DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
314 #define	DIF_INSTR_CMP(op, r1, r2)	(DIF_INSTR_FMT(op, r1, r2, 0))
315 #define	DIF_INSTR_TST(r1)		(DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
316 #define	DIF_INSTR_BRANCH(op, label)	(((op) << 24) | (label))
317 #define	DIF_INSTR_LOAD(op, r1, d)	(DIF_INSTR_FMT(op, r1, 0, d))
318 #define	DIF_INSTR_STORE(op, r1, d)	(DIF_INSTR_FMT(op, r1, 0, d))
319 #define	DIF_INSTR_SETX(i, d)		((DIF_OP_SETX << 24) | ((i) << 8) | (d))
320 #define	DIF_INSTR_SETS(s, d)		((DIF_OP_SETS << 24) | ((s) << 8) | (d))
321 #define	DIF_INSTR_RET(d)		(DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
322 #define	DIF_INSTR_NOP			(DIF_OP_NOP << 24)
323 #define	DIF_INSTR_LDA(op, v, r, d)	(DIF_INSTR_FMT(op, v, r, d))
324 #define	DIF_INSTR_LDV(op, v, d)		(((op) << 24) | ((v) << 8) | (d))
325 #define	DIF_INSTR_STV(op, v, rs)	(((op) << 24) | ((v) << 8) | (rs))
326 #define	DIF_INSTR_CALL(s, d)		((DIF_OP_CALL << 24) | ((s) << 8) | (d))
327 #define	DIF_INSTR_PUSHTS(op, t, r2, rs)	(DIF_INSTR_FMT(op, t, r2, rs))
328 #define	DIF_INSTR_POPTS			(DIF_OP_POPTS << 24)
329 #define	DIF_INSTR_FLUSHTS		(DIF_OP_FLUSHTS << 24)
330 #define	DIF_INSTR_ALLOCS(r1, d)		(DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
331 #define	DIF_INSTR_COPYS(r1, r2, d)	(DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
332 #define	DIF_INSTR_XLATE(op, r, d)	(((op) << 24) | ((r) << 8) | (d))
333 
334 #define	DIF_REG_R0	0		/* %r0 is always set to zero */
335 
336 /*
337  * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
338  * of variables, function and associative array arguments, and the return type
339  * for each DIF object (shown below).  It contains a description of the type,
340  * its size in bytes, and a module identifier.
341  */
342 typedef struct dtrace_diftype {
343 	uint8_t dtdt_kind;		/* type kind (see below) */
344 	uint8_t dtdt_ckind;		/* type kind in CTF */
345 	uint8_t dtdt_flags;		/* type flags (see below) */
346 	uint8_t dtdt_pad;		/* reserved for future use */
347 	uint32_t dtdt_size;		/* type size in bytes (unless string) */
348 } dtrace_diftype_t;
349 
350 #define	DIF_TYPE_CTF		0	/* type is a CTF type */
351 #define	DIF_TYPE_STRING		1	/* type is a D string */
352 
353 #define	DIF_TF_BYREF		0x1	/* type is passed by reference */
354 
355 /*
356  * A DTrace Intermediate Format variable record is used to describe each of the
357  * variables referenced by a given DIF object.  It contains an integer variable
358  * identifier along with variable scope and properties, as shown below.  The
359  * size of this structure must be sizeof (int) aligned.
360  */
361 typedef struct dtrace_difv {
362 	uint32_t dtdv_name;		/* variable name index in dtdo_strtab */
363 	uint32_t dtdv_id;		/* variable reference identifier */
364 	uint8_t dtdv_kind;		/* variable kind (see below) */
365 	uint8_t dtdv_scope;		/* variable scope (see below) */
366 	uint16_t dtdv_flags;		/* variable flags (see below) */
367 	dtrace_diftype_t dtdv_type;	/* variable type (see above) */
368 } dtrace_difv_t;
369 
370 #define	DIFV_KIND_ARRAY		0	/* variable is an array of quantities */
371 #define	DIFV_KIND_SCALAR	1	/* variable is a scalar quantity */
372 
373 #define	DIFV_SCOPE_GLOBAL	0	/* variable has global scope */
374 #define	DIFV_SCOPE_THREAD	1	/* variable has thread scope */
375 #define	DIFV_SCOPE_LOCAL	2	/* variable has local scope */
376 
377 #define	DIFV_F_REF		0x1	/* variable is referenced by DIFO */
378 #define	DIFV_F_MOD		0x2	/* variable is written by DIFO */
379 
380 /*
381  * DTrace Actions
382  *
383  * The upper byte determines the class of the action; the low bytes determines
384  * the specific action within that class.  The classes of actions are as
385  * follows:
386  *
387  *   [ no class ]                  <= May record process- or kernel-related data
388  *   DTRACEACT_PROC                <= Only records process-related data
389  *   DTRACEACT_PROC_DESTRUCTIVE    <= Potentially destructive to processes
390  *   DTRACEACT_KERNEL              <= Only records kernel-related data
391  *   DTRACEACT_KERNEL_DESTRUCTIVE  <= Potentially destructive to the kernel
392  *   DTRACEACT_SPECULATIVE         <= Speculation-related action
393  *   DTRACEACT_AGGREGATION         <= Aggregating action
394  */
395 #define	DTRACEACT_NONE			0	/* no action */
396 #define	DTRACEACT_DIFEXPR		1	/* action is DIF expression */
397 #define	DTRACEACT_EXIT			2	/* exit() action */
398 #define	DTRACEACT_PRINTF		3	/* printf() action */
399 #define	DTRACEACT_PRINTA		4	/* printa() action */
400 #define	DTRACEACT_LIBACT		5	/* library-controlled action */
401 #define	DTRACEACT_TRACEMEM		6	/* tracemem() action */
402 #define	DTRACEACT_TRACEMEM_DYNSIZE	7	/* dynamic tracemem() size */
403 
404 #define	DTRACEACT_PROC			0x0100
405 #define	DTRACEACT_USTACK		(DTRACEACT_PROC + 1)
406 #define	DTRACEACT_JSTACK		(DTRACEACT_PROC + 2)
407 #define	DTRACEACT_USYM			(DTRACEACT_PROC + 3)
408 #define	DTRACEACT_UMOD			(DTRACEACT_PROC + 4)
409 #define	DTRACEACT_UADDR			(DTRACEACT_PROC + 5)
410 
411 #define	DTRACEACT_PROC_DESTRUCTIVE	0x0200
412 #define	DTRACEACT_STOP			(DTRACEACT_PROC_DESTRUCTIVE + 1)
413 #define	DTRACEACT_RAISE			(DTRACEACT_PROC_DESTRUCTIVE + 2)
414 #define	DTRACEACT_SYSTEM		(DTRACEACT_PROC_DESTRUCTIVE + 3)
415 #define	DTRACEACT_FREOPEN		(DTRACEACT_PROC_DESTRUCTIVE + 4)
416 
417 #define	DTRACEACT_PROC_CONTROL		0x0300
418 
419 #define	DTRACEACT_KERNEL		0x0400
420 #define	DTRACEACT_STACK			(DTRACEACT_KERNEL + 1)
421 #define	DTRACEACT_SYM			(DTRACEACT_KERNEL + 2)
422 #define	DTRACEACT_MOD			(DTRACEACT_KERNEL + 3)
423 
424 #define	DTRACEACT_KERNEL_DESTRUCTIVE	0x0500
425 #define	DTRACEACT_BREAKPOINT		(DTRACEACT_KERNEL_DESTRUCTIVE + 1)
426 #define	DTRACEACT_PANIC			(DTRACEACT_KERNEL_DESTRUCTIVE + 2)
427 #define	DTRACEACT_CHILL			(DTRACEACT_KERNEL_DESTRUCTIVE + 3)
428 
429 #define	DTRACEACT_SPECULATIVE		0x0600
430 #define	DTRACEACT_SPECULATE		(DTRACEACT_SPECULATIVE + 1)
431 #define	DTRACEACT_COMMIT		(DTRACEACT_SPECULATIVE + 2)
432 #define	DTRACEACT_DISCARD		(DTRACEACT_SPECULATIVE + 3)
433 
434 #define	DTRACEACT_CLASS(x)		((x) & 0xff00)
435 
436 #define	DTRACEACT_ISDESTRUCTIVE(x)	\
437 	(DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \
438 	DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE)
439 
440 #define	DTRACEACT_ISSPECULATIVE(x)	\
441 	(DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE)
442 
443 #define	DTRACEACT_ISPRINTFLIKE(x)	\
444 	((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
445 	(x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN)
446 
447 /*
448  * DTrace Aggregating Actions
449  *
450  * These are functions f(x) for which the following is true:
451  *
452  *    f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n)
453  *
454  * where x_n is a set of arbitrary data.  Aggregating actions are in their own
455  * DTrace action class, DTTRACEACT_AGGREGATION.  The macros provided here allow
456  * for easier processing of the aggregation argument and data payload for a few
457  * aggregating actions (notably:  quantize(), lquantize(), and ustack()).
458  */
459 #define	DTRACEACT_AGGREGATION		0x0700
460 #define	DTRACEAGG_COUNT			(DTRACEACT_AGGREGATION + 1)
461 #define	DTRACEAGG_MIN			(DTRACEACT_AGGREGATION + 2)
462 #define	DTRACEAGG_MAX			(DTRACEACT_AGGREGATION + 3)
463 #define	DTRACEAGG_AVG			(DTRACEACT_AGGREGATION + 4)
464 #define	DTRACEAGG_SUM			(DTRACEACT_AGGREGATION + 5)
465 #define	DTRACEAGG_STDDEV		(DTRACEACT_AGGREGATION + 6)
466 #define	DTRACEAGG_QUANTIZE		(DTRACEACT_AGGREGATION + 7)
467 #define	DTRACEAGG_LQUANTIZE		(DTRACEACT_AGGREGATION + 8)
468 #define	DTRACEAGG_LLQUANTIZE		(DTRACEACT_AGGREGATION + 9)
469 
470 #define	DTRACEACT_ISAGG(x)		\
471 	(DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION)
472 
473 #define	DTRACE_QUANTIZE_NBUCKETS	\
474 	(((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
475 
476 #define	DTRACE_QUANTIZE_ZEROBUCKET	((sizeof (uint64_t) * NBBY) - 1)
477 
478 #define	DTRACE_QUANTIZE_BUCKETVAL(buck)					\
479 	(int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ?			\
480 	-(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) :		\
481 	(buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 :			\
482 	1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1))
483 
484 #define	DTRACE_LQUANTIZE_STEPSHIFT		48
485 #define	DTRACE_LQUANTIZE_STEPMASK		((uint64_t)UINT16_MAX << 48)
486 #define	DTRACE_LQUANTIZE_LEVELSHIFT		32
487 #define	DTRACE_LQUANTIZE_LEVELMASK		((uint64_t)UINT16_MAX << 32)
488 #define	DTRACE_LQUANTIZE_BASESHIFT		0
489 #define	DTRACE_LQUANTIZE_BASEMASK		UINT32_MAX
490 
491 #define	DTRACE_LQUANTIZE_STEP(x)		\
492 	(uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \
493 	DTRACE_LQUANTIZE_STEPSHIFT)
494 
495 #define	DTRACE_LQUANTIZE_LEVELS(x)		\
496 	(uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \
497 	DTRACE_LQUANTIZE_LEVELSHIFT)
498 
499 #define	DTRACE_LQUANTIZE_BASE(x)		\
500 	(int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \
501 	DTRACE_LQUANTIZE_BASESHIFT)
502 
503 #define	DTRACE_LLQUANTIZE_FACTORSHIFT		48
504 #define	DTRACE_LLQUANTIZE_FACTORMASK		((uint64_t)UINT16_MAX << 48)
505 #define	DTRACE_LLQUANTIZE_LOWSHIFT		32
506 #define	DTRACE_LLQUANTIZE_LOWMASK		((uint64_t)UINT16_MAX << 32)
507 #define	DTRACE_LLQUANTIZE_HIGHSHIFT		16
508 #define	DTRACE_LLQUANTIZE_HIGHMASK		((uint64_t)UINT16_MAX << 16)
509 #define	DTRACE_LLQUANTIZE_NSTEPSHIFT		0
510 #define	DTRACE_LLQUANTIZE_NSTEPMASK		UINT16_MAX
511 
512 #define	DTRACE_LLQUANTIZE_FACTOR(x)		\
513 	(uint16_t)(((x) & DTRACE_LLQUANTIZE_FACTORMASK) >> \
514 	DTRACE_LLQUANTIZE_FACTORSHIFT)
515 
516 #define	DTRACE_LLQUANTIZE_LOW(x)		\
517 	(uint16_t)(((x) & DTRACE_LLQUANTIZE_LOWMASK) >> \
518 	DTRACE_LLQUANTIZE_LOWSHIFT)
519 
520 #define	DTRACE_LLQUANTIZE_HIGH(x)		\
521 	(uint16_t)(((x) & DTRACE_LLQUANTIZE_HIGHMASK) >> \
522 	DTRACE_LLQUANTIZE_HIGHSHIFT)
523 
524 #define	DTRACE_LLQUANTIZE_NSTEP(x)		\
525 	(uint16_t)(((x) & DTRACE_LLQUANTIZE_NSTEPMASK) >> \
526 	DTRACE_LLQUANTIZE_NSTEPSHIFT)
527 
528 #define	DTRACE_USTACK_NFRAMES(x)	(uint32_t)((x) & UINT32_MAX)
529 #define	DTRACE_USTACK_STRSIZE(x)	(uint32_t)((x) >> 32)
530 #define	DTRACE_USTACK_ARG(x, y)		\
531 	((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX))
532 
533 #ifndef _LP64
534 #ifndef _LITTLE_ENDIAN
535 #define	DTRACE_PTR(type, name)	uint32_t name##pad; type *name
536 #else
537 #define	DTRACE_PTR(type, name)	type *name; uint32_t name##pad
538 #endif
539 #else
540 #define	DTRACE_PTR(type, name)	type *name
541 #endif
542 
543 /*
544  * DTrace Object Format (DOF)
545  *
546  * DTrace programs can be persistently encoded in the DOF format so that they
547  * may be embedded in other programs (for example, in an ELF file) or in the
548  * dtrace driver configuration file for use in anonymous tracing.  The DOF
549  * format is versioned and extensible so that it can be revised and so that
550  * internal data structures can be modified or extended compatibly.  All DOF
551  * structures use fixed-size types, so the 32-bit and 64-bit representations
552  * are identical and consumers can use either data model transparently.
553  *
554  * The file layout is structured as follows:
555  *
556  * +---------------+-------------------+----- ... ----+---- ... ------+
557  * |   dof_hdr_t   |  dof_sec_t[ ... ] |   loadable   | non-loadable  |
558  * | (file header) | (section headers) | section data | section data  |
559  * +---------------+-------------------+----- ... ----+---- ... ------+
560  * |<------------ dof_hdr.dofh_loadsz --------------->|               |
561  * |<------------ dof_hdr.dofh_filesz ------------------------------->|
562  *
563  * The file header stores meta-data including a magic number, data model for
564  * the instrumentation, data encoding, and properties of the DIF code within.
565  * The header describes its own size and the size of the section headers.  By
566  * convention, an array of section headers follows the file header, and then
567  * the data for all loadable sections and unloadable sections.  This permits
568  * consumer code to easily download the headers and all loadable data into the
569  * DTrace driver in one contiguous chunk, omitting other extraneous sections.
570  *
571  * The section headers describe the size, offset, alignment, and section type
572  * for each section.  Sections are described using a set of #defines that tell
573  * the consumer what kind of data is expected.  Sections can contain links to
574  * other sections by storing a dof_secidx_t, an index into the section header
575  * array, inside of the section data structures.  The section header includes
576  * an entry size so that sections with data arrays can grow their structures.
577  *
578  * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which
579  * are represented themselves as a collection of related DOF sections.  This
580  * permits us to change the set of sections associated with a DIFO over time,
581  * and also permits us to encode DIFOs that contain different sets of sections.
582  * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a
583  * section of type DOF_SECT_DIFOHDR.  This section's data is then an array of
584  * dof_secidx_t's which in turn denote the sections associated with this DIFO.
585  *
586  * This loose coupling of the file structure (header and sections) to the
587  * structure of the DTrace program itself (ECB descriptions, action
588  * descriptions, and DIFOs) permits activities such as relocation processing
589  * to occur in a single pass without having to understand D program structure.
590  *
591  * Finally, strings are always stored in ELF-style string tables along with a
592  * string table section index and string table offset.  Therefore strings in
593  * DOF are always arbitrary-length and not bound to the current implementation.
594  */
595 
596 #define	DOF_ID_SIZE	16	/* total size of dofh_ident[] in bytes */
597 
598 typedef struct dof_hdr {
599 	uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */
600 	uint32_t dofh_flags;		/* file attribute flags (if any) */
601 	uint32_t dofh_hdrsize;		/* size of file header in bytes */
602 	uint32_t dofh_secsize;		/* size of section header in bytes */
603 	uint32_t dofh_secnum;		/* number of section headers */
604 	uint64_t dofh_secoff;		/* file offset of section headers */
605 	uint64_t dofh_loadsz;		/* file size of loadable portion */
606 	uint64_t dofh_filesz;		/* file size of entire DOF file */
607 	uint64_t dofh_pad;		/* reserved for future use */
608 } dof_hdr_t;
609 
610 #define	DOF_ID_MAG0	0	/* first byte of magic number */
611 #define	DOF_ID_MAG1	1	/* second byte of magic number */
612 #define	DOF_ID_MAG2	2	/* third byte of magic number */
613 #define	DOF_ID_MAG3	3	/* fourth byte of magic number */
614 #define	DOF_ID_MODEL	4	/* DOF data model (see below) */
615 #define	DOF_ID_ENCODING	5	/* DOF data encoding (see below) */
616 #define	DOF_ID_VERSION	6	/* DOF file format major version (see below) */
617 #define	DOF_ID_DIFVERS	7	/* DIF instruction set version */
618 #define	DOF_ID_DIFIREG	8	/* DIF integer registers used by compiler */
619 #define	DOF_ID_DIFTREG	9	/* DIF tuple registers used by compiler */
620 #define	DOF_ID_PAD	10	/* start of padding bytes (all zeroes) */
621 
622 #define	DOF_MAG_MAG0	0x7F	/* DOF_ID_MAG[0-3] */
623 #define	DOF_MAG_MAG1	'D'
624 #define	DOF_MAG_MAG2	'O'
625 #define	DOF_MAG_MAG3	'F'
626 
627 #define	DOF_MAG_STRING	"\177DOF"
628 #define	DOF_MAG_STRLEN	4
629 
630 #define	DOF_MODEL_NONE	0	/* DOF_ID_MODEL */
631 #define	DOF_MODEL_ILP32	1
632 #define	DOF_MODEL_LP64	2
633 
634 #ifdef _LP64
635 #define	DOF_MODEL_NATIVE	DOF_MODEL_LP64
636 #else
637 #define	DOF_MODEL_NATIVE	DOF_MODEL_ILP32
638 #endif
639 
640 #define	DOF_ENCODE_NONE	0	/* DOF_ID_ENCODING */
641 #define	DOF_ENCODE_LSB	1
642 #define	DOF_ENCODE_MSB	2
643 
644 #ifdef _BIG_ENDIAN
645 #define	DOF_ENCODE_NATIVE	DOF_ENCODE_MSB
646 #else
647 #define	DOF_ENCODE_NATIVE	DOF_ENCODE_LSB
648 #endif
649 
650 #define	DOF_VERSION_1	1	/* DOF version 1: Solaris 10 FCS */
651 #define	DOF_VERSION_2	2	/* DOF version 2: Solaris Express 6/06 */
652 #define	DOF_VERSION	DOF_VERSION_2	/* Latest DOF version */
653 
654 #define	DOF_FL_VALID	0	/* mask of all valid dofh_flags bits */
655 
656 typedef uint32_t dof_secidx_t;	/* section header table index type */
657 typedef uint32_t dof_stridx_t;	/* string table index type */
658 
659 #define	DOF_SECIDX_NONE	(-1U)	/* null value for section indices */
660 #define	DOF_STRIDX_NONE	(-1U)	/* null value for string indices */
661 
662 typedef struct dof_sec {
663 	uint32_t dofs_type;	/* section type (see below) */
664 	uint32_t dofs_align;	/* section data memory alignment */
665 	uint32_t dofs_flags;	/* section flags (if any) */
666 	uint32_t dofs_entsize;	/* size of section entry (if table) */
667 	uint64_t dofs_offset;	/* offset of section data within file */
668 	uint64_t dofs_size;	/* size of section data in bytes */
669 } dof_sec_t;
670 
671 #define	DOF_SECT_NONE		0	/* null section */
672 #define	DOF_SECT_COMMENTS	1	/* compiler comments */
673 #define	DOF_SECT_SOURCE		2	/* D program source code */
674 #define	DOF_SECT_ECBDESC	3	/* dof_ecbdesc_t */
675 #define	DOF_SECT_PROBEDESC	4	/* dof_probedesc_t */
676 #define	DOF_SECT_ACTDESC	5	/* dof_actdesc_t array */
677 #define	DOF_SECT_DIFOHDR	6	/* dof_difohdr_t (variable length) */
678 #define	DOF_SECT_DIF		7	/* uint32_t array of byte code */
679 #define	DOF_SECT_STRTAB		8	/* string table */
680 #define	DOF_SECT_VARTAB		9	/* dtrace_difv_t array */
681 #define	DOF_SECT_RELTAB		10	/* dof_relodesc_t array */
682 #define	DOF_SECT_TYPTAB		11	/* dtrace_diftype_t array */
683 #define	DOF_SECT_URELHDR	12	/* dof_relohdr_t (user relocations) */
684 #define	DOF_SECT_KRELHDR	13	/* dof_relohdr_t (kernel relocations) */
685 #define	DOF_SECT_OPTDESC	14	/* dof_optdesc_t array */
686 #define	DOF_SECT_PROVIDER	15	/* dof_provider_t */
687 #define	DOF_SECT_PROBES		16	/* dof_probe_t array */
688 #define	DOF_SECT_PRARGS		17	/* uint8_t array (probe arg mappings) */
689 #define	DOF_SECT_PROFFS		18	/* uint32_t array (probe arg offsets) */
690 #define	DOF_SECT_INTTAB		19	/* uint64_t array */
691 #define	DOF_SECT_UTSNAME	20	/* struct utsname */
692 #define	DOF_SECT_XLTAB		21	/* dof_xlref_t array */
693 #define	DOF_SECT_XLMEMBERS	22	/* dof_xlmember_t array */
694 #define	DOF_SECT_XLIMPORT	23	/* dof_xlator_t */
695 #define	DOF_SECT_XLEXPORT	24	/* dof_xlator_t */
696 #define	DOF_SECT_PREXPORT	25	/* dof_secidx_t array (exported objs) */
697 #define	DOF_SECT_PRENOFFS	26	/* uint32_t array (enabled offsets) */
698 
699 #define	DOF_SECF_LOAD		1	/* section should be loaded */
700 
701 #define	DOF_SEC_ISLOADABLE(x)						\
702 	(((x) == DOF_SECT_ECBDESC) || ((x) == DOF_SECT_PROBEDESC) ||	\
703 	((x) == DOF_SECT_ACTDESC) || ((x) == DOF_SECT_DIFOHDR) ||	\
704 	((x) == DOF_SECT_DIF) || ((x) == DOF_SECT_STRTAB) ||		\
705 	((x) == DOF_SECT_VARTAB) || ((x) == DOF_SECT_RELTAB) ||		\
706 	((x) == DOF_SECT_TYPTAB) || ((x) == DOF_SECT_URELHDR) ||	\
707 	((x) == DOF_SECT_KRELHDR) || ((x) == DOF_SECT_OPTDESC) ||	\
708 	((x) == DOF_SECT_PROVIDER) || ((x) == DOF_SECT_PROBES) ||	\
709 	((x) == DOF_SECT_PRARGS) || ((x) == DOF_SECT_PROFFS) ||		\
710 	((x) == DOF_SECT_INTTAB) || ((x) == DOF_SECT_XLTAB) ||		\
711 	((x) == DOF_SECT_XLMEMBERS) || ((x) == DOF_SECT_XLIMPORT) ||	\
712 	((x) == DOF_SECT_XLIMPORT) || ((x) == DOF_SECT_XLEXPORT) ||	\
713 	((x) == DOF_SECT_PREXPORT) || ((x) == DOF_SECT_PRENOFFS))
714 
715 typedef struct dof_ecbdesc {
716 	dof_secidx_t dofe_probes;	/* link to DOF_SECT_PROBEDESC */
717 	dof_secidx_t dofe_pred;		/* link to DOF_SECT_DIFOHDR */
718 	dof_secidx_t dofe_actions;	/* link to DOF_SECT_ACTDESC */
719 	uint32_t dofe_pad;		/* reserved for future use */
720 	uint64_t dofe_uarg;		/* user-supplied library argument */
721 } dof_ecbdesc_t;
722 
723 typedef struct dof_probedesc {
724 	dof_secidx_t dofp_strtab;	/* link to DOF_SECT_STRTAB section */
725 	dof_stridx_t dofp_provider;	/* provider string */
726 	dof_stridx_t dofp_mod;		/* module string */
727 	dof_stridx_t dofp_func;		/* function string */
728 	dof_stridx_t dofp_name;		/* name string */
729 	uint32_t dofp_id;		/* probe identifier (or zero) */
730 } dof_probedesc_t;
731 
732 typedef struct dof_actdesc {
733 	dof_secidx_t dofa_difo;		/* link to DOF_SECT_DIFOHDR */
734 	dof_secidx_t dofa_strtab;	/* link to DOF_SECT_STRTAB section */
735 	uint32_t dofa_kind;		/* action kind (DTRACEACT_* constant) */
736 	uint32_t dofa_ntuple;		/* number of subsequent tuple actions */
737 	uint64_t dofa_arg;		/* kind-specific argument */
738 	uint64_t dofa_uarg;		/* user-supplied argument */
739 } dof_actdesc_t;
740 
741 typedef struct dof_difohdr {
742 	dtrace_diftype_t dofd_rtype;	/* return type for this fragment */
743 	dof_secidx_t dofd_links[1];	/* variable length array of indices */
744 } dof_difohdr_t;
745 
746 typedef struct dof_relohdr {
747 	dof_secidx_t dofr_strtab;	/* link to DOF_SECT_STRTAB for names */
748 	dof_secidx_t dofr_relsec;	/* link to DOF_SECT_RELTAB for relos */
749 	dof_secidx_t dofr_tgtsec;	/* link to section we are relocating */
750 } dof_relohdr_t;
751 
752 typedef struct dof_relodesc {
753 	dof_stridx_t dofr_name;		/* string name of relocation symbol */
754 	uint32_t dofr_type;		/* relo type (DOF_RELO_* constant) */
755 	uint64_t dofr_offset;		/* byte offset for relocation */
756 	uint64_t dofr_data;		/* additional type-specific data */
757 } dof_relodesc_t;
758 
759 #define	DOF_RELO_NONE	0		/* empty relocation entry */
760 #define	DOF_RELO_SETX	1		/* relocate setx value */
761 
762 typedef struct dof_optdesc {
763 	uint32_t dofo_option;		/* option identifier */
764 	dof_secidx_t dofo_strtab;	/* string table, if string option */
765 	uint64_t dofo_value;		/* option value or string index */
766 } dof_optdesc_t;
767 
768 typedef uint32_t dof_attr_t;		/* encoded stability attributes */
769 
770 #define	DOF_ATTR(n, d, c)	(((n) << 24) | ((d) << 16) | ((c) << 8))
771 #define	DOF_ATTR_NAME(a)	(((a) >> 24) & 0xff)
772 #define	DOF_ATTR_DATA(a)	(((a) >> 16) & 0xff)
773 #define	DOF_ATTR_CLASS(a)	(((a) >>  8) & 0xff)
774 
775 typedef struct dof_provider {
776 	dof_secidx_t dofpv_strtab;	/* link to DOF_SECT_STRTAB section */
777 	dof_secidx_t dofpv_probes;	/* link to DOF_SECT_PROBES section */
778 	dof_secidx_t dofpv_prargs;	/* link to DOF_SECT_PRARGS section */
779 	dof_secidx_t dofpv_proffs;	/* link to DOF_SECT_PROFFS section */
780 	dof_stridx_t dofpv_name;	/* provider name string */
781 	dof_attr_t dofpv_provattr;	/* provider attributes */
782 	dof_attr_t dofpv_modattr;	/* module attributes */
783 	dof_attr_t dofpv_funcattr;	/* function attributes */
784 	dof_attr_t dofpv_nameattr;	/* name attributes */
785 	dof_attr_t dofpv_argsattr;	/* args attributes */
786 	dof_secidx_t dofpv_prenoffs;	/* link to DOF_SECT_PRENOFFS section */
787 } dof_provider_t;
788 
789 typedef struct dof_probe {
790 	uint64_t dofpr_addr;		/* probe base address or offset */
791 	dof_stridx_t dofpr_func;	/* probe function string */
792 	dof_stridx_t dofpr_name;	/* probe name string */
793 	dof_stridx_t dofpr_nargv;	/* native argument type strings */
794 	dof_stridx_t dofpr_xargv;	/* translated argument type strings */
795 	uint32_t dofpr_argidx;		/* index of first argument mapping */
796 	uint32_t dofpr_offidx;		/* index of first offset entry */
797 	uint8_t dofpr_nargc;		/* native argument count */
798 	uint8_t dofpr_xargc;		/* translated argument count */
799 	uint16_t dofpr_noffs;		/* number of offset entries for probe */
800 	uint32_t dofpr_enoffidx;	/* index of first is-enabled offset */
801 	uint16_t dofpr_nenoffs;		/* number of is-enabled offsets */
802 	uint16_t dofpr_pad1;		/* reserved for future use */
803 	uint32_t dofpr_pad2;		/* reserved for future use */
804 } dof_probe_t;
805 
806 typedef struct dof_xlator {
807 	dof_secidx_t dofxl_members;	/* link to DOF_SECT_XLMEMBERS section */
808 	dof_secidx_t dofxl_strtab;	/* link to DOF_SECT_STRTAB section */
809 	dof_stridx_t dofxl_argv;	/* input parameter type strings */
810 	uint32_t dofxl_argc;		/* input parameter list length */
811 	dof_stridx_t dofxl_type;	/* output type string name */
812 	dof_attr_t dofxl_attr;		/* output stability attributes */
813 } dof_xlator_t;
814 
815 typedef struct dof_xlmember {
816 	dof_secidx_t dofxm_difo;	/* member link to DOF_SECT_DIFOHDR */
817 	dof_stridx_t dofxm_name;	/* member name */
818 	dtrace_diftype_t dofxm_type;	/* member type */
819 } dof_xlmember_t;
820 
821 typedef struct dof_xlref {
822 	dof_secidx_t dofxr_xlator;	/* link to DOF_SECT_XLATORS section */
823 	uint32_t dofxr_member;		/* index of referenced dof_xlmember */
824 	uint32_t dofxr_argn;		/* index of argument for DIF_OP_XLARG */
825 } dof_xlref_t;
826 
827 /*
828  * DTrace Intermediate Format Object (DIFO)
829  *
830  * A DIFO is used to store the compiled DIF for a D expression, its return
831  * type, and its string and variable tables.  The string table is a single
832  * buffer of character data into which sets instructions and variable
833  * references can reference strings using a byte offset.  The variable table
834  * is an array of dtrace_difv_t structures that describe the name and type of
835  * each variable and the id used in the DIF code.  This structure is described
836  * above in the DIF section of this header file.  The DIFO is used at both
837  * user-level (in the library) and in the kernel, but the structure is never
838  * passed between the two: the DOF structures form the only interface.  As a
839  * result, the definition can change depending on the presence of _KERNEL.
840  */
841 typedef struct dtrace_difo {
842 	dif_instr_t *dtdo_buf;		/* instruction buffer */
843 	uint64_t *dtdo_inttab;		/* integer table (optional) */
844 	char *dtdo_strtab;		/* string table (optional) */
845 	dtrace_difv_t *dtdo_vartab;	/* variable table (optional) */
846 	uint_t dtdo_len;		/* length of instruction buffer */
847 	uint_t dtdo_intlen;		/* length of integer table */
848 	uint_t dtdo_strlen;		/* length of string table */
849 	uint_t dtdo_varlen;		/* length of variable table */
850 	dtrace_diftype_t dtdo_rtype;	/* return type */
851 	uint_t dtdo_refcnt;		/* owner reference count */
852 	uint_t dtdo_destructive;	/* invokes destructive subroutines */
853 #ifndef _KERNEL
854 	dof_relodesc_t *dtdo_kreltab;	/* kernel relocations */
855 	dof_relodesc_t *dtdo_ureltab;	/* user relocations */
856 	struct dt_node **dtdo_xlmtab;	/* translator references */
857 	uint_t dtdo_krelen;		/* length of krelo table */
858 	uint_t dtdo_urelen;		/* length of urelo table */
859 	uint_t dtdo_xlmlen;		/* length of translator table */
860 #endif
861 } dtrace_difo_t;
862 
863 /*
864  * DTrace Enabling Description Structures
865  *
866  * When DTrace is tracking the description of a DTrace enabling entity (probe,
867  * predicate, action, ECB, record, etc.), it does so in a description
868  * structure.  These structures all end in "desc", and are used at both
869  * user-level and in the kernel -- but (with the exception of
870  * dtrace_probedesc_t) they are never passed between them.  Typically,
871  * user-level will use the description structures when assembling an enabling.
872  * It will then distill those description structures into a DOF object (see
873  * above), and send it into the kernel.  The kernel will again use the
874  * description structures to create a description of the enabling as it reads
875  * the DOF.  When the description is complete, the enabling will be actually
876  * created -- turning it into the structures that represent the enabling
877  * instead of merely describing it.  Not surprisingly, the description
878  * structures bear a strong resemblance to the DOF structures that act as their
879  * conduit.
880  */
881 struct dtrace_predicate;
882 
883 typedef struct dtrace_probedesc {
884 	dtrace_id_t dtpd_id;			/* probe identifier */
885 	char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */
886 	char dtpd_mod[DTRACE_MODNAMELEN];	/* probe module name */
887 	char dtpd_func[DTRACE_FUNCNAMELEN];	/* probe function name */
888 	char dtpd_name[DTRACE_NAMELEN];		/* probe name */
889 } dtrace_probedesc_t;
890 
891 typedef struct dtrace_repldesc {
892 	dtrace_probedesc_t dtrpd_match;		/* probe descr. to match */
893 	dtrace_probedesc_t dtrpd_create;	/* probe descr. to create */
894 } dtrace_repldesc_t;
895 
896 typedef struct dtrace_preddesc {
897 	dtrace_difo_t *dtpdd_difo;		/* pointer to DIF object */
898 	struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */
899 } dtrace_preddesc_t;
900 
901 typedef struct dtrace_actdesc {
902 	dtrace_difo_t *dtad_difo;		/* pointer to DIF object */
903 	struct dtrace_actdesc *dtad_next;	/* next action */
904 	dtrace_actkind_t dtad_kind;		/* kind of action */
905 	uint32_t dtad_ntuple;			/* number in tuple */
906 	uint64_t dtad_arg;			/* action argument */
907 	uint64_t dtad_uarg;			/* user argument */
908 	int dtad_refcnt;			/* reference count */
909 } dtrace_actdesc_t;
910 
911 typedef struct dtrace_ecbdesc {
912 	dtrace_actdesc_t *dted_action;		/* action description(s) */
913 	dtrace_preddesc_t dted_pred;		/* predicate description */
914 	dtrace_probedesc_t dted_probe;		/* probe description */
915 	uint64_t dted_uarg;			/* library argument */
916 	int dted_refcnt;			/* reference count */
917 } dtrace_ecbdesc_t;
918 
919 /*
920  * DTrace Metadata Description Structures
921  *
922  * DTrace separates the trace data stream from the metadata stream.  The only
923  * metadata tokens placed in the data stream are the dtrace_rechdr_t (EPID +
924  * timestamp) or (in the case of aggregations) aggregation identifiers.  To
925  * determine the structure of the data, DTrace consumers pass the token to the
926  * kernel, and receive in return a corresponding description of the enabled
927  * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
928  * dtrace_aggdesc structure).  Both of these structures are expressed in terms
929  * of record descriptions (via the dtrace_recdesc structure) that describe the
930  * exact structure of the data.  Some record descriptions may also contain a
931  * format identifier; this additional bit of metadata can be retrieved from the
932  * kernel, for which a format description is returned via the dtrace_fmtdesc
933  * structure.  Note that all four of these structures must be bitness-neutral
934  * to allow for a 32-bit DTrace consumer on a 64-bit kernel.
935  */
936 typedef struct dtrace_recdesc {
937 	dtrace_actkind_t dtrd_action;		/* kind of action */
938 	uint32_t dtrd_size;			/* size of record */
939 	uint32_t dtrd_offset;			/* offset in ECB's data */
940 	uint16_t dtrd_alignment;		/* required alignment */
941 	uint16_t dtrd_format;			/* format, if any */
942 	uint64_t dtrd_arg;			/* action argument */
943 	uint64_t dtrd_uarg;			/* user argument */
944 } dtrace_recdesc_t;
945 
946 typedef struct dtrace_eprobedesc {
947 	dtrace_epid_t dtepd_epid;		/* enabled probe ID */
948 	dtrace_id_t dtepd_probeid;		/* probe ID */
949 	uint64_t dtepd_uarg;			/* library argument */
950 	uint32_t dtepd_size;			/* total size */
951 	int dtepd_nrecs;			/* number of records */
952 	dtrace_recdesc_t dtepd_rec[1];		/* records themselves */
953 } dtrace_eprobedesc_t;
954 
955 typedef struct dtrace_aggdesc {
956 	DTRACE_PTR(char, dtagd_name);		/* not filled in by kernel */
957 	dtrace_aggvarid_t dtagd_varid;		/* not filled in by kernel */
958 	int dtagd_flags;			/* not filled in by kernel */
959 	dtrace_aggid_t dtagd_id;		/* aggregation ID */
960 	dtrace_epid_t dtagd_epid;		/* enabled probe ID */
961 	uint32_t dtagd_size;			/* size in bytes */
962 	int dtagd_nrecs;			/* number of records */
963 	uint32_t dtagd_pad;			/* explicit padding */
964 	dtrace_recdesc_t dtagd_rec[1];		/* record descriptions */
965 } dtrace_aggdesc_t;
966 
967 typedef struct dtrace_fmtdesc {
968 	DTRACE_PTR(char, dtfd_string);		/* format string */
969 	int dtfd_length;			/* length of format string */
970 	uint16_t dtfd_format;			/* format identifier */
971 } dtrace_fmtdesc_t;
972 
973 #define	DTRACE_SIZEOF_EPROBEDESC(desc)				\
974 	(sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ?	\
975 	(((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
976 
977 #define	DTRACE_SIZEOF_AGGDESC(desc)				\
978 	(sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ?	\
979 	(((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
980 
981 /*
982  * DTrace Option Interface
983  *
984  * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections
985  * in a DOF image.  The dof_optdesc structure contains an option identifier and
986  * an option value.  The valid option identifiers are found below; the mapping
987  * between option identifiers and option identifying strings is maintained at
988  * user-level.  Note that the value of DTRACEOPT_UNSET is such that all of the
989  * following are potentially valid option values:  all positive integers, zero
990  * and negative one.  Some options (notably "bufpolicy" and "bufresize") take
991  * predefined tokens as their values; these are defined with
992  * DTRACEOPT_{option}_{token}.
993  */
994 #define	DTRACEOPT_BUFSIZE	0	/* buffer size */
995 #define	DTRACEOPT_BUFPOLICY	1	/* buffer policy */
996 #define	DTRACEOPT_DYNVARSIZE	2	/* dynamic variable size */
997 #define	DTRACEOPT_AGGSIZE	3	/* aggregation size */
998 #define	DTRACEOPT_SPECSIZE	4	/* speculation size */
999 #define	DTRACEOPT_NSPEC		5	/* number of speculations */
1000 #define	DTRACEOPT_STRSIZE	6	/* string size */
1001 #define	DTRACEOPT_CLEANRATE	7	/* dynvar cleaning rate */
1002 #define	DTRACEOPT_CPU		8	/* CPU to trace */
1003 #define	DTRACEOPT_BUFRESIZE	9	/* buffer resizing policy */
1004 #define	DTRACEOPT_GRABANON	10	/* grab anonymous state, if any */
1005 #define	DTRACEOPT_FLOWINDENT	11	/* indent function entry/return */
1006 #define	DTRACEOPT_QUIET		12	/* only output explicitly traced data */
1007 #define	DTRACEOPT_STACKFRAMES	13	/* number of stack frames */
1008 #define	DTRACEOPT_USTACKFRAMES	14	/* number of user stack frames */
1009 #define	DTRACEOPT_AGGRATE	15	/* aggregation snapshot rate */
1010 #define	DTRACEOPT_SWITCHRATE	16	/* buffer switching rate */
1011 #define	DTRACEOPT_STATUSRATE	17	/* status rate */
1012 #define	DTRACEOPT_DESTRUCTIVE	18	/* destructive actions allowed */
1013 #define	DTRACEOPT_STACKINDENT	19	/* output indent for stack traces */
1014 #define	DTRACEOPT_RAWBYTES	20	/* always print bytes in raw form */
1015 #define	DTRACEOPT_JSTACKFRAMES	21	/* number of jstack() frames */
1016 #define	DTRACEOPT_JSTACKSTRSIZE	22	/* size of jstack() string table */
1017 #define	DTRACEOPT_AGGSORTKEY	23	/* sort aggregations by key */
1018 #define	DTRACEOPT_AGGSORTREV	24	/* reverse-sort aggregations */
1019 #define	DTRACEOPT_AGGSORTPOS	25	/* agg. position to sort on */
1020 #define	DTRACEOPT_AGGSORTKEYPOS	26	/* agg. key position to sort on */
1021 #define	DTRACEOPT_TEMPORAL	27	/* temporally ordered output */
1022 #define	DTRACEOPT_MAX		28	/* number of options */
1023 
1024 #define	DTRACEOPT_UNSET		(dtrace_optval_t)-2	/* unset option */
1025 
1026 #define	DTRACEOPT_BUFPOLICY_RING	0	/* ring buffer */
1027 #define	DTRACEOPT_BUFPOLICY_FILL	1	/* fill buffer, then stop */
1028 #define	DTRACEOPT_BUFPOLICY_SWITCH	2	/* switch buffers */
1029 
1030 #define	DTRACEOPT_BUFRESIZE_AUTO	0	/* automatic resizing */
1031 #define	DTRACEOPT_BUFRESIZE_MANUAL	1	/* manual resizing */
1032 
1033 /*
1034  * DTrace Buffer Interface
1035  *
1036  * In order to get a snapshot of the principal or aggregation buffer,
1037  * user-level passes a buffer description to the kernel with the dtrace_bufdesc
1038  * structure.  This describes which CPU user-level is interested in, and
1039  * where user-level wishes the kernel to snapshot the buffer to (the
1040  * dtbd_data field).  The kernel uses the same structure to pass back some
1041  * information regarding the buffer:  the size of data actually copied out, the
1042  * number of drops, the number of errors, the offset of the oldest record,
1043  * and the time of the snapshot.
1044  *
1045  * If the buffer policy is a "switch" policy, taking a snapshot of the
1046  * principal buffer has the additional effect of switching the active and
1047  * inactive buffers.  Taking a snapshot of the aggregation buffer _always_ has
1048  * the additional effect of switching the active and inactive buffers.
1049  */
1050 typedef struct dtrace_bufdesc {
1051 	uint64_t dtbd_size;			/* size of buffer */
1052 	uint32_t dtbd_cpu;			/* CPU or DTRACE_CPUALL */
1053 	uint32_t dtbd_errors;			/* number of errors */
1054 	uint64_t dtbd_drops;			/* number of drops */
1055 	DTRACE_PTR(char, dtbd_data);		/* data */
1056 	uint64_t dtbd_oldest;			/* offset of oldest record */
1057 	uint64_t dtbd_timestamp;		/* hrtime of snapshot */
1058 } dtrace_bufdesc_t;
1059 
1060 /*
1061  * Each record in the buffer (dtbd_data) begins with a header that includes
1062  * the epid and a timestamp.  The timestamp is split into two 4-byte parts
1063  * so that we do not require 8-byte alignment.
1064  */
1065 typedef struct dtrace_rechdr {
1066 	dtrace_epid_t dtrh_epid;		/* enabled probe id */
1067 	uint32_t dtrh_timestamp_hi;		/* high bits of hrtime_t */
1068 	uint32_t dtrh_timestamp_lo;		/* low bits of hrtime_t */
1069 } dtrace_rechdr_t;
1070 
1071 #define	DTRACE_RECORD_LOAD_TIMESTAMP(dtrh)			\
1072 	((dtrh)->dtrh_timestamp_lo +				\
1073 	((uint64_t)(dtrh)->dtrh_timestamp_hi << 32))
1074 
1075 #define	DTRACE_RECORD_STORE_TIMESTAMP(dtrh, hrtime) {		\
1076 	(dtrh)->dtrh_timestamp_lo = (uint32_t)hrtime;		\
1077 	(dtrh)->dtrh_timestamp_hi = hrtime >> 32;		\
1078 }
1079 
1080 /*
1081  * DTrace Status
1082  *
1083  * The status of DTrace is relayed via the dtrace_status structure.  This
1084  * structure contains members to count drops other than the capacity drops
1085  * available via the buffer interface (see above).  This consists of dynamic
1086  * drops (including capacity dynamic drops, rinsing drops and dirty drops), and
1087  * speculative drops (including capacity speculative drops, drops due to busy
1088  * speculative buffers and drops due to unavailable speculative buffers).
1089  * Additionally, the status structure contains a field to indicate the number
1090  * of "fill"-policy buffers have been filled and a boolean field to indicate
1091  * that exit() has been called.  If the dtst_exiting field is non-zero, no
1092  * further data will be generated until tracing is stopped (at which time any
1093  * enablings of the END action will be processed); if user-level sees that
1094  * this field is non-zero, tracing should be stopped as soon as possible.
1095  */
1096 typedef struct dtrace_status {
1097 	uint64_t dtst_dyndrops;			/* dynamic drops */
1098 	uint64_t dtst_dyndrops_rinsing;		/* dyn drops due to rinsing */
1099 	uint64_t dtst_dyndrops_dirty;		/* dyn drops due to dirty */
1100 	uint64_t dtst_specdrops;		/* speculative drops */
1101 	uint64_t dtst_specdrops_busy;		/* spec drops due to busy */
1102 	uint64_t dtst_specdrops_unavail;	/* spec drops due to unavail */
1103 	uint64_t dtst_errors;			/* total errors */
1104 	uint64_t dtst_filled;			/* number of filled bufs */
1105 	uint64_t dtst_stkstroverflows;		/* stack string tab overflows */
1106 	uint64_t dtst_dblerrors;		/* errors in ERROR probes */
1107 	char dtst_killed;			/* non-zero if killed */
1108 	char dtst_exiting;			/* non-zero if exit() called */
1109 	char dtst_pad[6];			/* pad out to 64-bit align */
1110 } dtrace_status_t;
1111 
1112 /*
1113  * DTrace Configuration
1114  *
1115  * User-level may need to understand some elements of the kernel DTrace
1116  * configuration in order to generate correct DIF.  This information is
1117  * conveyed via the dtrace_conf structure.
1118  */
1119 typedef struct dtrace_conf {
1120 	uint_t dtc_difversion;			/* supported DIF version */
1121 	uint_t dtc_difintregs;			/* # of DIF integer registers */
1122 	uint_t dtc_diftupregs;			/* # of DIF tuple registers */
1123 	uint_t dtc_ctfmodel;			/* CTF data model */
1124 	uint_t dtc_pad[8];			/* reserved for future use */
1125 } dtrace_conf_t;
1126 
1127 /*
1128  * DTrace Faults
1129  *
1130  * The constants below DTRACEFLT_LIBRARY indicate probe processing faults;
1131  * constants at or above DTRACEFLT_LIBRARY indicate faults in probe
1132  * postprocessing at user-level.  Probe processing faults induce an ERROR
1133  * probe and are replicated in unistd.d to allow users' ERROR probes to decode
1134  * the error condition using thse symbolic labels.
1135  */
1136 #define	DTRACEFLT_UNKNOWN		0	/* Unknown fault */
1137 #define	DTRACEFLT_BADADDR		1	/* Bad address */
1138 #define	DTRACEFLT_BADALIGN		2	/* Bad alignment */
1139 #define	DTRACEFLT_ILLOP			3	/* Illegal operation */
1140 #define	DTRACEFLT_DIVZERO		4	/* Divide-by-zero */
1141 #define	DTRACEFLT_NOSCRATCH		5	/* Out of scratch space */
1142 #define	DTRACEFLT_KPRIV			6	/* Illegal kernel access */
1143 #define	DTRACEFLT_UPRIV			7	/* Illegal user access */
1144 #define	DTRACEFLT_TUPOFLOW		8	/* Tuple stack overflow */
1145 #define	DTRACEFLT_BADSTACK		9	/* Bad stack */
1146 
1147 #define	DTRACEFLT_LIBRARY		1000	/* Library-level fault */
1148 
1149 /*
1150  * DTrace Argument Types
1151  *
1152  * Because it would waste both space and time, argument types do not reside
1153  * with the probe.  In order to determine argument types for args[X]
1154  * variables, the D compiler queries for argument types on a probe-by-probe
1155  * basis.  (This optimizes for the common case that arguments are either not
1156  * used or used in an untyped fashion.)  Typed arguments are specified with a
1157  * string of the type name in the dtragd_native member of the argument
1158  * description structure.  Typed arguments may be further translated to types
1159  * of greater stability; the provider indicates such a translated argument by
1160  * filling in the dtargd_xlate member with the string of the translated type.
1161  * Finally, the provider may indicate which argument value a given argument
1162  * maps to by setting the dtargd_mapping member -- allowing a single argument
1163  * to map to multiple args[X] variables.
1164  */
1165 typedef struct dtrace_argdesc {
1166 	dtrace_id_t dtargd_id;			/* probe identifier */
1167 	int dtargd_ndx;				/* arg number (-1 iff none) */
1168 	int dtargd_mapping;			/* value mapping */
1169 	char dtargd_native[DTRACE_ARGTYPELEN];	/* native type name */
1170 	char dtargd_xlate[DTRACE_ARGTYPELEN];	/* translated type name */
1171 } dtrace_argdesc_t;
1172 
1173 /*
1174  * DTrace Stability Attributes
1175  *
1176  * Each DTrace provider advertises the name and data stability of each of its
1177  * probe description components, as well as its architectural dependencies.
1178  * The D compiler can query the provider attributes (dtrace_pattr_t below) in
1179  * order to compute the properties of an input program and report them.
1180  */
1181 typedef uint8_t dtrace_stability_t;	/* stability code (see attributes(5)) */
1182 typedef uint8_t dtrace_class_t;		/* architectural dependency class */
1183 
1184 #define	DTRACE_STABILITY_INTERNAL	0	/* private to DTrace itself */
1185 #define	DTRACE_STABILITY_PRIVATE	1	/* private to Sun (see docs) */
1186 #define	DTRACE_STABILITY_OBSOLETE	2	/* scheduled for removal */
1187 #define	DTRACE_STABILITY_EXTERNAL	3	/* not controlled by Sun */
1188 #define	DTRACE_STABILITY_UNSTABLE	4	/* new or rapidly changing */
1189 #define	DTRACE_STABILITY_EVOLVING	5	/* less rapidly changing */
1190 #define	DTRACE_STABILITY_STABLE		6	/* mature interface from Sun */
1191 #define	DTRACE_STABILITY_STANDARD	7	/* industry standard */
1192 #define	DTRACE_STABILITY_MAX		7	/* maximum valid stability */
1193 
1194 #define	DTRACE_CLASS_UNKNOWN	0	/* unknown architectural dependency */
1195 #define	DTRACE_CLASS_CPU	1	/* CPU-module-specific */
1196 #define	DTRACE_CLASS_PLATFORM	2	/* platform-specific (uname -i) */
1197 #define	DTRACE_CLASS_GROUP	3	/* hardware-group-specific (uname -m) */
1198 #define	DTRACE_CLASS_ISA	4	/* ISA-specific (uname -p) */
1199 #define	DTRACE_CLASS_COMMON	5	/* common to all systems */
1200 #define	DTRACE_CLASS_MAX	5	/* maximum valid class */
1201 
1202 #define	DTRACE_PRIV_NONE	0x0000
1203 #define	DTRACE_PRIV_KERNEL	0x0001
1204 #define	DTRACE_PRIV_USER	0x0002
1205 #define	DTRACE_PRIV_PROC	0x0004
1206 #define	DTRACE_PRIV_OWNER	0x0008
1207 #define	DTRACE_PRIV_ZONEOWNER	0x0010
1208 
1209 #define	DTRACE_PRIV_ALL	\
1210 	(DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \
1211 	DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER)
1212 
1213 typedef struct dtrace_ppriv {
1214 	uint32_t dtpp_flags;			/* privilege flags */
1215 	uid_t dtpp_uid;				/* user ID */
1216 	zoneid_t dtpp_zoneid;			/* zone ID */
1217 } dtrace_ppriv_t;
1218 
1219 typedef struct dtrace_attribute {
1220 	dtrace_stability_t dtat_name;		/* entity name stability */
1221 	dtrace_stability_t dtat_data;		/* entity data stability */
1222 	dtrace_class_t dtat_class;		/* entity data dependency */
1223 } dtrace_attribute_t;
1224 
1225 typedef struct dtrace_pattr {
1226 	dtrace_attribute_t dtpa_provider;	/* provider attributes */
1227 	dtrace_attribute_t dtpa_mod;		/* module attributes */
1228 	dtrace_attribute_t dtpa_func;		/* function attributes */
1229 	dtrace_attribute_t dtpa_name;		/* name attributes */
1230 	dtrace_attribute_t dtpa_args;		/* args[] attributes */
1231 } dtrace_pattr_t;
1232 
1233 typedef struct dtrace_providerdesc {
1234 	char dtvd_name[DTRACE_PROVNAMELEN];	/* provider name */
1235 	dtrace_pattr_t dtvd_attr;		/* stability attributes */
1236 	dtrace_ppriv_t dtvd_priv;		/* privileges required */
1237 } dtrace_providerdesc_t;
1238 
1239 /*
1240  * DTrace Pseudodevice Interface
1241  *
1242  * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace
1243  * pseudodevice driver.  These ioctls comprise the user-kernel interface to
1244  * DTrace.
1245  */
1246 #define	DTRACEIOC		(('d' << 24) | ('t' << 16) | ('r' << 8))
1247 #define	DTRACEIOC_PROVIDER	(DTRACEIOC | 1)		/* provider query */
1248 #define	DTRACEIOC_PROBES	(DTRACEIOC | 2)		/* probe query */
1249 #define	DTRACEIOC_BUFSNAP	(DTRACEIOC | 4)		/* snapshot buffer */
1250 #define	DTRACEIOC_PROBEMATCH	(DTRACEIOC | 5)		/* match probes */
1251 #define	DTRACEIOC_ENABLE	(DTRACEIOC | 6)		/* enable probes */
1252 #define	DTRACEIOC_AGGSNAP	(DTRACEIOC | 7)		/* snapshot agg. */
1253 #define	DTRACEIOC_EPROBE	(DTRACEIOC | 8)		/* get eprobe desc. */
1254 #define	DTRACEIOC_PROBEARG	(DTRACEIOC | 9)		/* get probe arg */
1255 #define	DTRACEIOC_CONF		(DTRACEIOC | 10)	/* get config. */
1256 #define	DTRACEIOC_STATUS	(DTRACEIOC | 11)	/* get status */
1257 #define	DTRACEIOC_GO		(DTRACEIOC | 12)	/* start tracing */
1258 #define	DTRACEIOC_STOP		(DTRACEIOC | 13)	/* stop tracing */
1259 #define	DTRACEIOC_AGGDESC	(DTRACEIOC | 15)	/* get agg. desc. */
1260 #define	DTRACEIOC_FORMAT	(DTRACEIOC | 16)	/* get format str */
1261 #define	DTRACEIOC_DOFGET	(DTRACEIOC | 17)	/* get DOF */
1262 #define	DTRACEIOC_REPLICATE	(DTRACEIOC | 18)	/* replicate enab */
1263 
1264 /*
1265  * DTrace Helpers
1266  *
1267  * In general, DTrace establishes probes in processes and takes actions on
1268  * processes without knowing their specific user-level structures.  Instead of
1269  * existing in the framework, process-specific knowledge is contained by the
1270  * enabling D program -- which can apply process-specific knowledge by making
1271  * appropriate use of DTrace primitives like copyin() and copyinstr() to
1272  * operate on user-level data.  However, there may exist some specific probes
1273  * of particular semantic relevance that the application developer may wish to
1274  * explicitly export.  For example, an application may wish to export a probe
1275  * at the point that it begins and ends certain well-defined transactions.  In
1276  * addition to providing probes, programs may wish to offer assistance for
1277  * certain actions.  For example, in highly dynamic environments (e.g., Java),
1278  * it may be difficult to obtain a stack trace in terms of meaningful symbol
1279  * names (the translation from instruction addresses to corresponding symbol
1280  * names may only be possible in situ); these environments may wish to define
1281  * a series of actions to be applied in situ to obtain a meaningful stack
1282  * trace.
1283  *
1284  * These two mechanisms -- user-level statically defined tracing and assisting
1285  * DTrace actions -- are provided via DTrace _helpers_.  Helpers are specified
1286  * via DOF, but unlike enabling DOF, helper DOF may contain definitions of
1287  * providers, probes and their arguments.  If a helper wishes to provide
1288  * action assistance, probe descriptions and corresponding DIF actions may be
1289  * specified in the helper DOF.  For such helper actions, however, the probe
1290  * description describes the specific helper:  all DTrace helpers have the
1291  * provider name "dtrace" and the module name "helper", and the name of the
1292  * helper is contained in the function name (for example, the ustack() helper
1293  * is named "ustack").  Any helper-specific name may be contained in the name
1294  * (for example, if a helper were to have a constructor, it might be named
1295  * "dtrace:helper:<helper>:init").  Helper actions are only called when the
1296  * action that they are helping is taken.  Helper actions may only return DIF
1297  * expressions, and may only call the following subroutines:
1298  *
1299  *    alloca()      <= Allocates memory out of the consumer's scratch space
1300  *    bcopy()       <= Copies memory to scratch space
1301  *    copyin()      <= Copies memory from user-level into consumer's scratch
1302  *    copyinto()    <= Copies memory into a specific location in scratch
1303  *    copyinstr()   <= Copies a string into a specific location in scratch
1304  *
1305  * Helper actions may only access the following built-in variables:
1306  *
1307  *    curthread     <= Current kthread_t pointer
1308  *    tid           <= Current thread identifier
1309  *    pid           <= Current process identifier
1310  *    ppid          <= Parent process identifier
1311  *    uid           <= Current user ID
1312  *    gid           <= Current group ID
1313  *    execname      <= Current executable name
1314  *    zonename      <= Current zone name
1315  *
1316  * Helper actions may not manipulate or allocate dynamic variables, but they
1317  * may have clause-local and statically-allocated global variables.  The
1318  * helper action variable state is specific to the helper action -- variables
1319  * used by the helper action may not be accessed outside of the helper
1320  * action, and the helper action may not access variables that like outside
1321  * of it.  Helper actions may not load from kernel memory at-large; they are
1322  * restricting to loading current user state (via copyin() and variants) and
1323  * scratch space.  As with probe enablings, helper actions are executed in
1324  * program order.  The result of the helper action is the result of the last
1325  * executing helper expression.
1326  *
1327  * Helpers -- composed of either providers/probes or probes/actions (or both)
1328  * -- are added by opening the "helper" minor node, and issuing an ioctl(2)
1329  * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This
1330  * encapsulates the name and base address of the user-level library or
1331  * executable publishing the helpers and probes as well as the DOF that
1332  * contains the definitions of those helpers and probes.
1333  *
1334  * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy
1335  * helpers and should no longer be used.  No other ioctls are valid on the
1336  * helper minor node.
1337  */
1338 #define	DTRACEHIOC		(('d' << 24) | ('t' << 16) | ('h' << 8))
1339 #define	DTRACEHIOC_ADD		(DTRACEHIOC | 1)	/* add helper */
1340 #define	DTRACEHIOC_REMOVE	(DTRACEHIOC | 2)	/* remove helper */
1341 #define	DTRACEHIOC_ADDDOF	(DTRACEHIOC | 3)	/* add helper DOF */
1342 
1343 typedef struct dof_helper {
1344 	char dofhp_mod[DTRACE_MODNAMELEN];	/* executable or library name */
1345 	uint64_t dofhp_addr;			/* base address of object */
1346 	uint64_t dofhp_dof;			/* address of helper DOF */
1347 } dof_helper_t;
1348 
1349 #define	DTRACEMNR_DTRACE	"dtrace"	/* node for DTrace ops */
1350 #define	DTRACEMNR_HELPER	"helper"	/* node for helpers */
1351 #define	DTRACEMNRN_DTRACE	0		/* minor for DTrace ops */
1352 #define	DTRACEMNRN_HELPER	1		/* minor for helpers */
1353 #define	DTRACEMNRN_CLONE	2		/* first clone minor */
1354 
1355 #ifdef _KERNEL
1356 
1357 /*
1358  * DTrace Provider API
1359  *
1360  * The following functions are implemented by the DTrace framework and are
1361  * used to implement separate in-kernel DTrace providers.  Common functions
1362  * are provided in uts/common/os/dtrace.c.  ISA-dependent subroutines are
1363  * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
1364  *
1365  * The provider API has two halves:  the API that the providers consume from
1366  * DTrace, and the API that providers make available to DTrace.
1367  *
1368  * 1 Framework-to-Provider API
1369  *
1370  * 1.1  Overview
1371  *
1372  * The Framework-to-Provider API is represented by the dtrace_pops structure
1373  * that the provider passes to the framework when registering itself.  This
1374  * structure consists of the following members:
1375  *
1376  *   dtps_provide()          <-- Provide all probes, all modules
1377  *   dtps_provide_module()   <-- Provide all probes in specified module
1378  *   dtps_enable()           <-- Enable specified probe
1379  *   dtps_disable()          <-- Disable specified probe
1380  *   dtps_suspend()          <-- Suspend specified probe
1381  *   dtps_resume()           <-- Resume specified probe
1382  *   dtps_getargdesc()       <-- Get the argument description for args[X]
1383  *   dtps_getargval()        <-- Get the value for an argX or args[X] variable
1384  *   dtps_mode()             <-- Return the mode of the fired probe
1385  *   dtps_destroy()          <-- Destroy all state associated with this probe
1386  *
1387  * 1.2  void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
1388  *
1389  * 1.2.1  Overview
1390  *
1391  *   Called to indicate that the provider should provide all probes.  If the
1392  *   specified description is non-NULL, dtps_provide() is being called because
1393  *   no probe matched a specified probe -- if the provider has the ability to
1394  *   create custom probes, it may wish to create a probe that matches the
1395  *   specified description.
1396  *
1397  * 1.2.2  Arguments and notes
1398  *
1399  *   The first argument is the cookie as passed to dtrace_register().  The
1400  *   second argument is a pointer to a probe description that the provider may
1401  *   wish to consider when creating custom probes.  The provider is expected to
1402  *   call back into the DTrace framework via dtrace_probe_create() to create
1403  *   any necessary probes.  dtps_provide() may be called even if the provider
1404  *   has made available all probes; the provider should check the return value
1405  *   of dtrace_probe_create() to handle this case.  Note that the provider need
1406  *   not implement both dtps_provide() and dtps_provide_module(); see
1407  *   "Arguments and Notes" for dtrace_register(), below.
1408  *
1409  * 1.2.3  Return value
1410  *
1411  *   None.
1412  *
1413  * 1.2.4  Caller's context
1414  *
1415  *   dtps_provide() is typically called from open() or ioctl() context, but may
1416  *   be called from other contexts as well.  The DTrace framework is locked in
1417  *   such a way that providers may not register or unregister.  This means that
1418  *   the provider may not call any DTrace API that affects its registration with
1419  *   the framework, including dtrace_register(), dtrace_unregister(),
1420  *   dtrace_invalidate(), and dtrace_condense().  However, the context is such
1421  *   that the provider may (and indeed, is expected to) call probe-related
1422  *   DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
1423  *   and dtrace_probe_arg().
1424  *
1425  * 1.3  void dtps_provide_module(void *arg, struct modctl *mp)
1426  *
1427  * 1.3.1  Overview
1428  *
1429  *   Called to indicate that the provider should provide all probes in the
1430  *   specified module.
1431  *
1432  * 1.3.2  Arguments and notes
1433  *
1434  *   The first argument is the cookie as passed to dtrace_register().  The
1435  *   second argument is a pointer to a modctl structure that indicates the
1436  *   module for which probes should be created.
1437  *
1438  * 1.3.3  Return value
1439  *
1440  *   None.
1441  *
1442  * 1.3.4  Caller's context
1443  *
1444  *   dtps_provide_module() may be called from open() or ioctl() context, but
1445  *   may also be called from a module loading context.  mod_lock is held, and
1446  *   the DTrace framework is locked in such a way that providers may not
1447  *   register or unregister.  This means that the provider may not call any
1448  *   DTrace API that affects its registration with the framework, including
1449  *   dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1450  *   dtrace_condense().  However, the context is such that the provider may (and
1451  *   indeed, is expected to) call probe-related DTrace routines, including
1452  *   dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg().  Note
1453  *   that the provider need not implement both dtps_provide() and
1454  *   dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
1455  *   below.
1456  *
1457  * 1.4  int dtps_enable(void *arg, dtrace_id_t id, void *parg)
1458  *
1459  * 1.4.1  Overview
1460  *
1461  *   Called to enable the specified probe.
1462  *
1463  * 1.4.2  Arguments and notes
1464  *
1465  *   The first argument is the cookie as passed to dtrace_register().  The
1466  *   second argument is the identifier of the probe to be enabled.  The third
1467  *   argument is the probe argument as passed to dtrace_probe_create().
1468  *   dtps_enable() will be called when a probe transitions from not being
1469  *   enabled at all to having one or more ECB.  The number of ECBs associated
1470  *   with the probe may change without subsequent calls into the provider.
1471  *   When the number of ECBs drops to zero, the provider will be explicitly
1472  *   told to disable the probe via dtps_disable().  dtrace_probe() should never
1473  *   be called for a probe identifier that hasn't been explicitly enabled via
1474  *   dtps_enable().
1475  *
1476  * 1.4.3  Return value
1477  *
1478  *   On success, dtps_enable() should return 0. On failure, -1 should be
1479  *   returned.
1480  *
1481  * 1.4.4  Caller's context
1482  *
1483  *   The DTrace framework is locked in such a way that it may not be called
1484  *   back into at all.  cpu_lock is held.  mod_lock is not held and may not
1485  *   be acquired.
1486  *
1487  * 1.5  void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1488  *
1489  * 1.5.1  Overview
1490  *
1491  *   Called to disable the specified probe.
1492  *
1493  * 1.5.2  Arguments and notes
1494  *
1495  *   The first argument is the cookie as passed to dtrace_register().  The
1496  *   second argument is the identifier of the probe to be disabled.  The third
1497  *   argument is the probe argument as passed to dtrace_probe_create().
1498  *   dtps_disable() will be called when a probe transitions from being enabled
1499  *   to having zero ECBs.  dtrace_probe() should never be called for a probe
1500  *   identifier that has been explicitly enabled via dtps_disable().
1501  *
1502  * 1.5.3  Return value
1503  *
1504  *   None.
1505  *
1506  * 1.5.4  Caller's context
1507  *
1508  *   The DTrace framework is locked in such a way that it may not be called
1509  *   back into at all.  cpu_lock is held.  mod_lock is not held and may not
1510  *   be acquired.
1511  *
1512  * 1.6  void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
1513  *
1514  * 1.6.1  Overview
1515  *
1516  *   Called to suspend the specified enabled probe.  This entry point is for
1517  *   providers that may need to suspend some or all of their probes when CPUs
1518  *   are being powered on or when the boot monitor is being entered for a
1519  *   prolonged period of time.
1520  *
1521  * 1.6.2  Arguments and notes
1522  *
1523  *   The first argument is the cookie as passed to dtrace_register().  The
1524  *   second argument is the identifier of the probe to be suspended.  The
1525  *   third argument is the probe argument as passed to dtrace_probe_create().
1526  *   dtps_suspend will only be called on an enabled probe.  Providers that
1527  *   provide a dtps_suspend entry point will want to take roughly the action
1528  *   that it takes for dtps_disable.
1529  *
1530  * 1.6.3  Return value
1531  *
1532  *   None.
1533  *
1534  * 1.6.4  Caller's context
1535  *
1536  *   Interrupts are disabled.  The DTrace framework is in a state such that the
1537  *   specified probe cannot be disabled or destroyed for the duration of
1538  *   dtps_suspend().  As interrupts are disabled, the provider is afforded
1539  *   little latitude; the provider is expected to do no more than a store to
1540  *   memory.
1541  *
1542  * 1.7  void dtps_resume(void *arg, dtrace_id_t id, void *parg)
1543  *
1544  * 1.7.1  Overview
1545  *
1546  *   Called to resume the specified enabled probe.  This entry point is for
1547  *   providers that may need to resume some or all of their probes after the
1548  *   completion of an event that induced a call to dtps_suspend().
1549  *
1550  * 1.7.2  Arguments and notes
1551  *
1552  *   The first argument is the cookie as passed to dtrace_register().  The
1553  *   second argument is the identifier of the probe to be resumed.  The
1554  *   third argument is the probe argument as passed to dtrace_probe_create().
1555  *   dtps_resume will only be called on an enabled probe.  Providers that
1556  *   provide a dtps_resume entry point will want to take roughly the action
1557  *   that it takes for dtps_enable.
1558  *
1559  * 1.7.3  Return value
1560  *
1561  *   None.
1562  *
1563  * 1.7.4  Caller's context
1564  *
1565  *   Interrupts are disabled.  The DTrace framework is in a state such that the
1566  *   specified probe cannot be disabled or destroyed for the duration of
1567  *   dtps_resume().  As interrupts are disabled, the provider is afforded
1568  *   little latitude; the provider is expected to do no more than a store to
1569  *   memory.
1570  *
1571  * 1.8  void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
1572  *           dtrace_argdesc_t *desc)
1573  *
1574  * 1.8.1  Overview
1575  *
1576  *   Called to retrieve the argument description for an args[X] variable.
1577  *
1578  * 1.8.2  Arguments and notes
1579  *
1580  *   The first argument is the cookie as passed to dtrace_register(). The
1581  *   second argument is the identifier of the current probe. The third
1582  *   argument is the probe argument as passed to dtrace_probe_create(). The
1583  *   fourth argument is a pointer to the argument description.  This
1584  *   description is both an input and output parameter:  it contains the
1585  *   index of the desired argument in the dtargd_ndx field, and expects
1586  *   the other fields to be filled in upon return.  If there is no argument
1587  *   corresponding to the specified index, the dtargd_ndx field should be set
1588  *   to DTRACE_ARGNONE.
1589  *
1590  * 1.8.3  Return value
1591  *
1592  *   None.  The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
1593  *   members of the dtrace_argdesc_t structure are all output values.
1594  *
1595  * 1.8.4  Caller's context
1596  *
1597  *   dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
1598  *   the DTrace framework is locked in such a way that providers may not
1599  *   register or unregister.  This means that the provider may not call any
1600  *   DTrace API that affects its registration with the framework, including
1601  *   dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1602  *   dtrace_condense().
1603  *
1604  * 1.9  uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
1605  *               int argno, int aframes)
1606  *
1607  * 1.9.1  Overview
1608  *
1609  *   Called to retrieve a value for an argX or args[X] variable.
1610  *
1611  * 1.9.2  Arguments and notes
1612  *
1613  *   The first argument is the cookie as passed to dtrace_register(). The
1614  *   second argument is the identifier of the current probe. The third
1615  *   argument is the probe argument as passed to dtrace_probe_create(). The
1616  *   fourth argument is the number of the argument (the X in the example in
1617  *   1.9.1). The fifth argument is the number of stack frames that were used
1618  *   to get from the actual place in the code that fired the probe to
1619  *   dtrace_probe() itself, the so-called artificial frames. This argument may
1620  *   be used to descend an appropriate number of frames to find the correct
1621  *   values. If this entry point is left NULL, the dtrace_getarg() built-in
1622  *   function is used.
1623  *
1624  * 1.9.3  Return value
1625  *
1626  *   The value of the argument.
1627  *
1628  * 1.9.4  Caller's context
1629  *
1630  *   This is called from within dtrace_probe() meaning that interrupts
1631  *   are disabled. No locks should be taken within this entry point.
1632  *
1633  * 1.10  int dtps_mode(void *arg, dtrace_id_t id, void *parg)
1634  *
1635  * 1.10.1  Overview
1636  *
1637  *   Called to determine the mode of a fired probe.
1638  *
1639  * 1.10.2  Arguments and notes
1640  *
1641  *   The first argument is the cookie as passed to dtrace_register(). The
1642  *   second argument is the identifier of the current probe.  The third
1643  *   argument is the probe argument as passed to dtrace_probe_create().  This
1644  *   entry point must not be left NULL for providers whose probes allow for
1645  *   mixed mode tracing, that is to say those unanchored probes that can fire
1646  *   during kernel- or user-mode execution.
1647  *
1648  * 1.10.3  Return value
1649  *
1650  *   A bitwise OR that encapsulates both the mode (either DTRACE_MODE_KERNEL
1651  *   or DTRACE_MODE_USER) and the policy when the privilege of the enabling
1652  *   is insufficient for that mode (either DTRACE_MODE_NOPRIV_DROP or
1653  *   DTRACE_MODE_NOPRIV_RESTRICT).  If the policy is DTRACE_MODE_NOPRIV_DROP,
1654  *   insufficient privilege will result in the probe firing being silently
1655  *   ignored for the enabling; if the policy is DTRACE_NODE_NOPRIV_RESTRICT,
1656  *   insufficient privilege will not prevent probe processing for the
1657  *   enabling, but restrictions will be in place that induce a UPRIV fault
1658  *   upon attempt to examine probe arguments or current process state.
1659  *
1660  * 1.10.4  Caller's context
1661  *
1662  *   This is called from within dtrace_probe() meaning that interrupts
1663  *   are disabled. No locks should be taken within this entry point.
1664  *
1665  * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
1666  *
1667  * 1.11.1 Overview
1668  *
1669  *   Called to destroy the specified probe.
1670  *
1671  * 1.11.2 Arguments and notes
1672  *
1673  *   The first argument is the cookie as passed to dtrace_register().  The
1674  *   second argument is the identifier of the probe to be destroyed.  The third
1675  *   argument is the probe argument as passed to dtrace_probe_create().  The
1676  *   provider should free all state associated with the probe.  The framework
1677  *   guarantees that dtps_destroy() is only called for probes that have either
1678  *   been disabled via dtps_disable() or were never enabled via dtps_enable().
1679  *   Once dtps_disable() has been called for a probe, no further call will be
1680  *   made specifying the probe.
1681  *
1682  * 1.11.3 Return value
1683  *
1684  *   None.
1685  *
1686  * 1.11.4 Caller's context
1687  *
1688  *   The DTrace framework is locked in such a way that it may not be called
1689  *   back into at all.  mod_lock is held.  cpu_lock is not held, and may not be
1690  *   acquired.
1691  *
1692  *
1693  * 2 Provider-to-Framework API
1694  *
1695  * 2.1  Overview
1696  *
1697  * The Provider-to-Framework API provides the mechanism for the provider to
1698  * register itself with the DTrace framework, to create probes, to lookup
1699  * probes and (most importantly) to fire probes.  The Provider-to-Framework
1700  * consists of:
1701  *
1702  *   dtrace_register()       <-- Register a provider with the DTrace framework
1703  *   dtrace_unregister()     <-- Remove a provider's DTrace registration
1704  *   dtrace_invalidate()     <-- Invalidate the specified provider
1705  *   dtrace_condense()       <-- Remove a provider's unenabled probes
1706  *   dtrace_attached()       <-- Indicates whether or not DTrace has attached
1707  *   dtrace_probe_create()   <-- Create a DTrace probe
1708  *   dtrace_probe_lookup()   <-- Lookup a DTrace probe based on its name
1709  *   dtrace_probe_arg()      <-- Return the probe argument for a specific probe
1710  *   dtrace_probe()          <-- Fire the specified probe
1711  *
1712  * 2.2  int dtrace_register(const char *name, const dtrace_pattr_t *pap,
1713  *          uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1714  *          dtrace_provider_id_t *idp)
1715  *
1716  * 2.2.1  Overview
1717  *
1718  *   dtrace_register() registers the calling provider with the DTrace
1719  *   framework.  It should generally be called by DTrace providers in their
1720  *   attach(9E) entry point.
1721  *
1722  * 2.2.2  Arguments and Notes
1723  *
1724  *   The first argument is the name of the provider.  The second argument is a
1725  *   pointer to the stability attributes for the provider.  The third argument
1726  *   is the privilege flags for the provider, and must be some combination of:
1727  *
1728  *     DTRACE_PRIV_NONE     <= All users may enable probes from this provider
1729  *
1730  *     DTRACE_PRIV_PROC     <= Any user with privilege of PRIV_DTRACE_PROC may
1731  *                             enable probes from this provider
1732  *
1733  *     DTRACE_PRIV_USER     <= Any user with privilege of PRIV_DTRACE_USER may
1734  *                             enable probes from this provider
1735  *
1736  *     DTRACE_PRIV_KERNEL   <= Any user with privilege of PRIV_DTRACE_KERNEL
1737  *                             may enable probes from this provider
1738  *
1739  *     DTRACE_PRIV_OWNER    <= This flag places an additional constraint on
1740  *                             the privilege requirements above. These probes
1741  *                             require either (a) a user ID matching the user
1742  *                             ID of the cred passed in the fourth argument
1743  *                             or (b) the PRIV_PROC_OWNER privilege.
1744  *
1745  *     DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
1746  *                             the privilege requirements above. These probes
1747  *                             require either (a) a zone ID matching the zone
1748  *                             ID of the cred passed in the fourth argument
1749  *                             or (b) the PRIV_PROC_ZONE privilege.
1750  *
1751  *   Note that these flags designate the _visibility_ of the probes, not
1752  *   the conditions under which they may or may not fire.
1753  *
1754  *   The fourth argument is the credential that is associated with the
1755  *   provider.  This argument should be NULL if the privilege flags don't
1756  *   include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER.  If non-NULL, the
1757  *   framework stashes the uid and zoneid represented by this credential
1758  *   for use at probe-time, in implicit predicates.  These limit visibility
1759  *   of the probes to users and/or zones which have sufficient privilege to
1760  *   access them.
1761  *
1762  *   The fifth argument is a DTrace provider operations vector, which provides
1763  *   the implementation for the Framework-to-Provider API.  (See Section 1,
1764  *   above.)  This must be non-NULL, and each member must be non-NULL.  The
1765  *   exceptions to this are (1) the dtps_provide() and dtps_provide_module()
1766  *   members (if the provider so desires, _one_ of these members may be left
1767  *   NULL -- denoting that the provider only implements the other) and (2)
1768  *   the dtps_suspend() and dtps_resume() members, which must either both be
1769  *   NULL or both be non-NULL.
1770  *
1771  *   The sixth argument is a cookie to be specified as the first argument for
1772  *   each function in the Framework-to-Provider API.  This argument may have
1773  *   any value.
1774  *
1775  *   The final argument is a pointer to dtrace_provider_id_t.  If
1776  *   dtrace_register() successfully completes, the provider identifier will be
1777  *   stored in the memory pointed to be this argument.  This argument must be
1778  *   non-NULL.
1779  *
1780  * 2.2.3  Return value
1781  *
1782  *   On success, dtrace_register() returns 0 and stores the new provider's
1783  *   identifier into the memory pointed to by the idp argument.  On failure,
1784  *   dtrace_register() returns an errno:
1785  *
1786  *     EINVAL   The arguments passed to dtrace_register() were somehow invalid.
1787  *              This may because a parameter that must be non-NULL was NULL,
1788  *              because the name was invalid (either empty or an illegal
1789  *              provider name) or because the attributes were invalid.
1790  *
1791  *   No other failure code is returned.
1792  *
1793  * 2.2.4  Caller's context
1794  *
1795  *   dtrace_register() may induce calls to dtrace_provide(); the provider must
1796  *   hold no locks across dtrace_register() that may also be acquired by
1797  *   dtrace_provide().  cpu_lock and mod_lock must not be held.
1798  *
1799  * 2.3  int dtrace_unregister(dtrace_provider_t id)
1800  *
1801  * 2.3.1  Overview
1802  *
1803  *   Unregisters the specified provider from the DTrace framework.  It should
1804  *   generally be called by DTrace providers in their detach(9E) entry point.
1805  *
1806  * 2.3.2  Arguments and Notes
1807  *
1808  *   The only argument is the provider identifier, as returned from a
1809  *   successful call to dtrace_register().  As a result of calling
1810  *   dtrace_unregister(), the DTrace framework will call back into the provider
1811  *   via the dtps_destroy() entry point.  Once dtrace_unregister() successfully
1812  *   completes, however, the DTrace framework will no longer make calls through
1813  *   the Framework-to-Provider API.
1814  *
1815  * 2.3.3  Return value
1816  *
1817  *   On success, dtrace_unregister returns 0.  On failure, dtrace_unregister()
1818  *   returns an errno:
1819  *
1820  *     EBUSY    There are currently processes that have the DTrace pseudodevice
1821  *              open, or there exists an anonymous enabling that hasn't yet
1822  *              been claimed.
1823  *
1824  *   No other failure code is returned.
1825  *
1826  * 2.3.4  Caller's context
1827  *
1828  *   Because a call to dtrace_unregister() may induce calls through the
1829  *   Framework-to-Provider API, the caller may not hold any lock across
1830  *   dtrace_register() that is also acquired in any of the Framework-to-
1831  *   Provider API functions.  Additionally, mod_lock may not be held.
1832  *
1833  * 2.4  void dtrace_invalidate(dtrace_provider_id_t id)
1834  *
1835  * 2.4.1  Overview
1836  *
1837  *   Invalidates the specified provider.  All subsequent probe lookups for the
1838  *   specified provider will fail, but its probes will not be removed.
1839  *
1840  * 2.4.2  Arguments and note
1841  *
1842  *   The only argument is the provider identifier, as returned from a
1843  *   successful call to dtrace_register().  In general, a provider's probes
1844  *   always remain valid; dtrace_invalidate() is a mechanism for invalidating
1845  *   an entire provider, regardless of whether or not probes are enabled or
1846  *   not.  Note that dtrace_invalidate() will _not_ prevent already enabled
1847  *   probes from firing -- it will merely prevent any new enablings of the
1848  *   provider's probes.
1849  *
1850  * 2.5 int dtrace_condense(dtrace_provider_id_t id)
1851  *
1852  * 2.5.1  Overview
1853  *
1854  *   Removes all the unenabled probes for the given provider. This function is
1855  *   not unlike dtrace_unregister(), except that it doesn't remove the
1856  *   provider just as many of its associated probes as it can.
1857  *
1858  * 2.5.2  Arguments and Notes
1859  *
1860  *   As with dtrace_unregister(), the sole argument is the provider identifier
1861  *   as returned from a successful call to dtrace_register().  As a result of
1862  *   calling dtrace_condense(), the DTrace framework will call back into the
1863  *   given provider's dtps_destroy() entry point for each of the provider's
1864  *   unenabled probes.
1865  *
1866  * 2.5.3  Return value
1867  *
1868  *   Currently, dtrace_condense() always returns 0.  However, consumers of this
1869  *   function should check the return value as appropriate; its behavior may
1870  *   change in the future.
1871  *
1872  * 2.5.4  Caller's context
1873  *
1874  *   As with dtrace_unregister(), the caller may not hold any lock across
1875  *   dtrace_condense() that is also acquired in the provider's entry points.
1876  *   Also, mod_lock may not be held.
1877  *
1878  * 2.6 int dtrace_attached()
1879  *
1880  * 2.6.1  Overview
1881  *
1882  *   Indicates whether or not DTrace has attached.
1883  *
1884  * 2.6.2  Arguments and Notes
1885  *
1886  *   For most providers, DTrace makes initial contact beyond registration.
1887  *   That is, once a provider has registered with DTrace, it waits to hear
1888  *   from DTrace to create probes.  However, some providers may wish to
1889  *   proactively create probes without first being told by DTrace to do so.
1890  *   If providers wish to do this, they must first call dtrace_attached() to
1891  *   determine if DTrace itself has attached.  If dtrace_attached() returns 0,
1892  *   the provider must not make any other Provider-to-Framework API call.
1893  *
1894  * 2.6.3  Return value
1895  *
1896  *   dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
1897  *
1898  * 2.7  int dtrace_probe_create(dtrace_provider_t id, const char *mod,
1899  *	    const char *func, const char *name, int aframes, void *arg)
1900  *
1901  * 2.7.1  Overview
1902  *
1903  *   Creates a probe with specified module name, function name, and name.
1904  *
1905  * 2.7.2  Arguments and Notes
1906  *
1907  *   The first argument is the provider identifier, as returned from a
1908  *   successful call to dtrace_register().  The second, third, and fourth
1909  *   arguments are the module name, function name, and probe name,
1910  *   respectively.  Of these, module name and function name may both be NULL
1911  *   (in which case the probe is considered to be unanchored), or they may both
1912  *   be non-NULL.  The name must be non-NULL, and must point to a non-empty
1913  *   string.
1914  *
1915  *   The fifth argument is the number of artificial stack frames that will be
1916  *   found on the stack when dtrace_probe() is called for the new probe.  These
1917  *   artificial frames will be automatically be pruned should the stack() or
1918  *   stackdepth() functions be called as part of one of the probe's ECBs.  If
1919  *   the parameter doesn't add an artificial frame, this parameter should be
1920  *   zero.
1921  *
1922  *   The final argument is a probe argument that will be passed back to the
1923  *   provider when a probe-specific operation is called.  (e.g., via
1924  *   dtps_enable(), dtps_disable(), etc.)
1925  *
1926  *   Note that it is up to the provider to be sure that the probe that it
1927  *   creates does not already exist -- if the provider is unsure of the probe's
1928  *   existence, it should assure its absence with dtrace_probe_lookup() before
1929  *   calling dtrace_probe_create().
1930  *
1931  * 2.7.3  Return value
1932  *
1933  *   dtrace_probe_create() always succeeds, and always returns the identifier
1934  *   of the newly-created probe.
1935  *
1936  * 2.7.4  Caller's context
1937  *
1938  *   While dtrace_probe_create() is generally expected to be called from
1939  *   dtps_provide() and/or dtps_provide_module(), it may be called from other
1940  *   non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
1941  *
1942  * 2.8  dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
1943  *	    const char *func, const char *name)
1944  *
1945  * 2.8.1  Overview
1946  *
1947  *   Looks up a probe based on provdider and one or more of module name,
1948  *   function name and probe name.
1949  *
1950  * 2.8.2  Arguments and Notes
1951  *
1952  *   The first argument is the provider identifier, as returned from a
1953  *   successful call to dtrace_register().  The second, third, and fourth
1954  *   arguments are the module name, function name, and probe name,
1955  *   respectively.  Any of these may be NULL; dtrace_probe_lookup() will return
1956  *   the identifier of the first probe that is provided by the specified
1957  *   provider and matches all of the non-NULL matching criteria.
1958  *   dtrace_probe_lookup() is generally used by a provider to be check the
1959  *   existence of a probe before creating it with dtrace_probe_create().
1960  *
1961  * 2.8.3  Return value
1962  *
1963  *   If the probe exists, returns its identifier.  If the probe does not exist,
1964  *   return DTRACE_IDNONE.
1965  *
1966  * 2.8.4  Caller's context
1967  *
1968  *   While dtrace_probe_lookup() is generally expected to be called from
1969  *   dtps_provide() and/or dtps_provide_module(), it may also be called from
1970  *   other non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
1971  *
1972  * 2.9  void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
1973  *
1974  * 2.9.1  Overview
1975  *
1976  *   Returns the probe argument associated with the specified probe.
1977  *
1978  * 2.9.2  Arguments and Notes
1979  *
1980  *   The first argument is the provider identifier, as returned from a
1981  *   successful call to dtrace_register().  The second argument is a probe
1982  *   identifier, as returned from dtrace_probe_lookup() or
1983  *   dtrace_probe_create().  This is useful if a probe has multiple
1984  *   provider-specific components to it:  the provider can create the probe
1985  *   once with provider-specific state, and then add to the state by looking
1986  *   up the probe based on probe identifier.
1987  *
1988  * 2.9.3  Return value
1989  *
1990  *   Returns the argument associated with the specified probe.  If the
1991  *   specified probe does not exist, or if the specified probe is not provided
1992  *   by the specified provider, NULL is returned.
1993  *
1994  * 2.9.4  Caller's context
1995  *
1996  *   While dtrace_probe_arg() is generally expected to be called from
1997  *   dtps_provide() and/or dtps_provide_module(), it may also be called from
1998  *   other non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
1999  *
2000  * 2.10  void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
2001  *		uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
2002  *
2003  * 2.10.1  Overview
2004  *
2005  *   The epicenter of DTrace:  fires the specified probes with the specified
2006  *   arguments.
2007  *
2008  * 2.10.2  Arguments and Notes
2009  *
2010  *   The first argument is a probe identifier as returned by
2011  *   dtrace_probe_create() or dtrace_probe_lookup().  The second through sixth
2012  *   arguments are the values to which the D variables "arg0" through "arg4"
2013  *   will be mapped.
2014  *
2015  *   dtrace_probe() should be called whenever the specified probe has fired --
2016  *   however the provider defines it.
2017  *
2018  * 2.10.3  Return value
2019  *
2020  *   None.
2021  *
2022  * 2.10.4  Caller's context
2023  *
2024  *   dtrace_probe() may be called in virtually any context:  kernel, user,
2025  *   interrupt, high-level interrupt, with arbitrary adaptive locks held, with
2026  *   dispatcher locks held, with interrupts disabled, etc.  The only latitude
2027  *   that must be afforded to DTrace is the ability to make calls within
2028  *   itself (and to its in-kernel subroutines) and the ability to access
2029  *   arbitrary (but mapped) memory.  On some platforms, this constrains
2030  *   context.  For example, on UltraSPARC, dtrace_probe() cannot be called
2031  *   from any context in which TL is greater than zero.  dtrace_probe() may
2032  *   also not be called from any routine which may be called by dtrace_probe()
2033  *   -- which includes functions in the DTrace framework and some in-kernel
2034  *   DTrace subroutines.  All such functions "dtrace_"; providers that
2035  *   instrument the kernel arbitrarily should be sure to not instrument these
2036  *   routines.
2037  */
2038 typedef struct dtrace_pops {
2039 	void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec);
2040 	void (*dtps_provide_module)(void *arg, struct modctl *mp);
2041 	int (*dtps_enable)(void *arg, dtrace_id_t id, void *parg);
2042 	void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg);
2043 	void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg);
2044 	void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg);
2045 	void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg,
2046 	    dtrace_argdesc_t *desc);
2047 	uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg,
2048 	    int argno, int aframes);
2049 	int (*dtps_mode)(void *arg, dtrace_id_t id, void *parg);
2050 	void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
2051 } dtrace_pops_t;
2052 
2053 #define	DTRACE_MODE_KERNEL			0x01
2054 #define	DTRACE_MODE_USER			0x02
2055 #define	DTRACE_MODE_NOPRIV_DROP			0x10
2056 #define	DTRACE_MODE_NOPRIV_RESTRICT		0x20
2057 
2058 typedef uintptr_t	dtrace_provider_id_t;
2059 
2060 extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t,
2061     cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);
2062 extern int dtrace_unregister(dtrace_provider_id_t);
2063 extern int dtrace_condense(dtrace_provider_id_t);
2064 extern void dtrace_invalidate(dtrace_provider_id_t);
2065 extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *,
2066     const char *, const char *);
2067 extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *,
2068     const char *, const char *, int, void *);
2069 extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t);
2070 extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1,
2071     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4);
2072 
2073 /*
2074  * DTrace Meta Provider API
2075  *
2076  * The following functions are implemented by the DTrace framework and are
2077  * used to implement meta providers. Meta providers plug into the DTrace
2078  * framework and are used to instantiate new providers on the fly. At
2079  * present, there is only one type of meta provider and only one meta
2080  * provider may be registered with the DTrace framework at a time. The
2081  * sole meta provider type provides user-land static tracing facilities
2082  * by taking meta probe descriptions and adding a corresponding provider
2083  * into the DTrace framework.
2084  *
2085  * 1 Framework-to-Provider
2086  *
2087  * 1.1 Overview
2088  *
2089  * The Framework-to-Provider API is represented by the dtrace_mops structure
2090  * that the meta provider passes to the framework when registering itself as
2091  * a meta provider. This structure consists of the following members:
2092  *
2093  *   dtms_create_probe()	<-- Add a new probe to a created provider
2094  *   dtms_provide_pid()		<-- Create a new provider for a given process
2095  *   dtms_remove_pid()		<-- Remove a previously created provider
2096  *
2097  * 1.2  void dtms_create_probe(void *arg, void *parg,
2098  *           dtrace_helper_probedesc_t *probedesc);
2099  *
2100  * 1.2.1  Overview
2101  *
2102  *   Called by the DTrace framework to create a new probe in a provider
2103  *   created by this meta provider.
2104  *
2105  * 1.2.2  Arguments and notes
2106  *
2107  *   The first argument is the cookie as passed to dtrace_meta_register().
2108  *   The second argument is the provider cookie for the associated provider;
2109  *   this is obtained from the return value of dtms_provide_pid(). The third
2110  *   argument is the helper probe description.
2111  *
2112  * 1.2.3  Return value
2113  *
2114  *   None
2115  *
2116  * 1.2.4  Caller's context
2117  *
2118  *   dtms_create_probe() is called from either ioctl() or module load context.
2119  *   The DTrace framework is locked in such a way that meta providers may not
2120  *   register or unregister. This means that the meta provider cannot call
2121  *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context is
2122  *   such that the provider may (and is expected to) call provider-related
2123  *   DTrace provider APIs including dtrace_probe_create().
2124  *
2125  * 1.3  void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov,
2126  *	      pid_t pid)
2127  *
2128  * 1.3.1  Overview
2129  *
2130  *   Called by the DTrace framework to instantiate a new provider given the
2131  *   description of the provider and probes in the mprov argument. The
2132  *   meta provider should call dtrace_register() to insert the new provider
2133  *   into the DTrace framework.
2134  *
2135  * 1.3.2  Arguments and notes
2136  *
2137  *   The first argument is the cookie as passed to dtrace_meta_register().
2138  *   The second argument is a pointer to a structure describing the new
2139  *   helper provider. The third argument is the process identifier for
2140  *   process associated with this new provider. Note that the name of the
2141  *   provider as passed to dtrace_register() should be the contatenation of
2142  *   the dtmpb_provname member of the mprov argument and the processs
2143  *   identifier as a string.
2144  *
2145  * 1.3.3  Return value
2146  *
2147  *   The cookie for the provider that the meta provider creates. This is
2148  *   the same value that it passed to dtrace_register().
2149  *
2150  * 1.3.4  Caller's context
2151  *
2152  *   dtms_provide_pid() is called from either ioctl() or module load context.
2153  *   The DTrace framework is locked in such a way that meta providers may not
2154  *   register or unregister. This means that the meta provider cannot call
2155  *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2156  *   is such that the provider may -- and is expected to --  call
2157  *   provider-related DTrace provider APIs including dtrace_register().
2158  *
2159  * 1.4  void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov,
2160  *	     pid_t pid)
2161  *
2162  * 1.4.1  Overview
2163  *
2164  *   Called by the DTrace framework to remove a provider that had previously
2165  *   been instantiated via the dtms_provide_pid() entry point. The meta
2166  *   provider need not remove the provider immediately, but this entry
2167  *   point indicates that the provider should be removed as soon as possible
2168  *   using the dtrace_unregister() API.
2169  *
2170  * 1.4.2  Arguments and notes
2171  *
2172  *   The first argument is the cookie as passed to dtrace_meta_register().
2173  *   The second argument is a pointer to a structure describing the helper
2174  *   provider. The third argument is the process identifier for process
2175  *   associated with this new provider.
2176  *
2177  * 1.4.3  Return value
2178  *
2179  *   None
2180  *
2181  * 1.4.4  Caller's context
2182  *
2183  *   dtms_remove_pid() is called from either ioctl() or exit() context.
2184  *   The DTrace framework is locked in such a way that meta providers may not
2185  *   register or unregister. This means that the meta provider cannot call
2186  *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2187  *   is such that the provider may -- and is expected to -- call
2188  *   provider-related DTrace provider APIs including dtrace_unregister().
2189  */
2190 typedef struct dtrace_helper_probedesc {
2191 	char *dthpb_mod;			/* probe module */
2192 	char *dthpb_func; 			/* probe function */
2193 	char *dthpb_name; 			/* probe name */
2194 	uint64_t dthpb_base;			/* base address */
2195 	uint32_t *dthpb_offs;			/* offsets array */
2196 	uint32_t *dthpb_enoffs;			/* is-enabled offsets array */
2197 	uint32_t dthpb_noffs;			/* offsets count */
2198 	uint32_t dthpb_nenoffs;			/* is-enabled offsets count */
2199 	uint8_t *dthpb_args;			/* argument mapping array */
2200 	uint8_t dthpb_xargc;			/* translated argument count */
2201 	uint8_t dthpb_nargc;			/* native argument count */
2202 	char *dthpb_xtypes;			/* translated types strings */
2203 	char *dthpb_ntypes;			/* native types strings */
2204 } dtrace_helper_probedesc_t;
2205 
2206 typedef struct dtrace_helper_provdesc {
2207 	char *dthpv_provname;			/* provider name */
2208 	dtrace_pattr_t dthpv_pattr;		/* stability attributes */
2209 } dtrace_helper_provdesc_t;
2210 
2211 typedef struct dtrace_mops {
2212 	void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *);
2213 	void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2214 	void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2215 } dtrace_mops_t;
2216 
2217 typedef uintptr_t	dtrace_meta_provider_id_t;
2218 
2219 extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *,
2220     dtrace_meta_provider_id_t *);
2221 extern int dtrace_meta_unregister(dtrace_meta_provider_id_t);
2222 
2223 /*
2224  * DTrace Kernel Hooks
2225  *
2226  * The following functions are implemented by the base kernel and form a set of
2227  * hooks used by the DTrace framework.  DTrace hooks are implemented in either
2228  * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
2229  * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
2230  */
2231 
2232 typedef enum dtrace_vtime_state {
2233 	DTRACE_VTIME_INACTIVE = 0,	/* No DTrace, no TNF */
2234 	DTRACE_VTIME_ACTIVE,		/* DTrace virtual time, no TNF */
2235 	DTRACE_VTIME_INACTIVE_TNF,	/* No DTrace, TNF active */
2236 	DTRACE_VTIME_ACTIVE_TNF		/* DTrace virtual time _and_ TNF */
2237 } dtrace_vtime_state_t;
2238 
2239 extern dtrace_vtime_state_t dtrace_vtime_active;
2240 extern void dtrace_vtime_switch(kthread_t *next);
2241 extern void dtrace_vtime_enable_tnf(void);
2242 extern void dtrace_vtime_disable_tnf(void);
2243 extern void dtrace_vtime_enable(void);
2244 extern void dtrace_vtime_disable(void);
2245 
2246 struct regs;
2247 
2248 extern int (*dtrace_pid_probe_ptr)(struct regs *);
2249 extern int (*dtrace_return_probe_ptr)(struct regs *);
2250 extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
2251 extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);
2252 extern void (*dtrace_fasttrap_exit_ptr)(proc_t *);
2253 extern void dtrace_fasttrap_fork(proc_t *, proc_t *);
2254 
2255 typedef uintptr_t dtrace_icookie_t;
2256 typedef void (*dtrace_xcall_t)(void *);
2257 
2258 extern dtrace_icookie_t dtrace_interrupt_disable(void);
2259 extern void dtrace_interrupt_enable(dtrace_icookie_t);
2260 
2261 extern void dtrace_membar_producer(void);
2262 extern void dtrace_membar_consumer(void);
2263 
2264 extern void (*dtrace_cpu_init)(processorid_t);
2265 extern void (*dtrace_modload)(struct modctl *);
2266 extern void (*dtrace_modunload)(struct modctl *);
2267 extern void (*dtrace_helpers_cleanup)();
2268 extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child);
2269 extern void (*dtrace_cpustart_init)();
2270 extern void (*dtrace_cpustart_fini)();
2271 
2272 extern void (*dtrace_debugger_init)();
2273 extern void (*dtrace_debugger_fini)();
2274 extern dtrace_cacheid_t dtrace_predcache_id;
2275 
2276 extern hrtime_t dtrace_gethrtime(void);
2277 extern void dtrace_sync(void);
2278 extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
2279 extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *);
2280 extern void dtrace_vpanic(const char *, __va_list);
2281 extern void dtrace_panic(const char *, ...);
2282 
2283 extern int dtrace_safe_defer_signal(void);
2284 extern void dtrace_safe_synchronous_signal(void);
2285 
2286 extern int dtrace_mach_aframes(void);
2287 
2288 #if defined(__i386) || defined(__amd64)
2289 extern int dtrace_instr_size(uchar_t *instr);
2290 extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
2291 extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2292 extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2293 extern void dtrace_invop_callsite(void);
2294 #endif
2295 
2296 #ifdef __sparc
2297 extern int dtrace_blksuword32(uintptr_t, uint32_t *, int);
2298 extern void dtrace_getfsr(uint64_t *);
2299 #endif
2300 
2301 #define	DTRACE_CPUFLAG_ISSET(flag) \
2302 	(cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag))
2303 
2304 #define	DTRACE_CPUFLAG_SET(flag) \
2305 	(cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag))
2306 
2307 #define	DTRACE_CPUFLAG_CLEAR(flag) \
2308 	(cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag))
2309 
2310 #endif /* _KERNEL */
2311 
2312 #endif	/* _ASM */
2313 
2314 #if defined(__i386) || defined(__amd64)
2315 
2316 #define	DTRACE_INVOP_PUSHL_EBP		1
2317 #define	DTRACE_INVOP_POPL_EBP		2
2318 #define	DTRACE_INVOP_LEAVE		3
2319 #define	DTRACE_INVOP_NOP		4
2320 #define	DTRACE_INVOP_RET		5
2321 
2322 #endif
2323 
2324 #ifdef	__cplusplus
2325 }
2326 #endif
2327 
2328 #endif	/* _SYS_DTRACE_H */
2329