1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #ifndef _SYS_DDI_IMPLDEFS_H 28 #define _SYS_DDI_IMPLDEFS_H 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/t_lock.h> 35 #include <sys/ddipropdefs.h> 36 #include <sys/devops.h> 37 #include <sys/autoconf.h> 38 #include <sys/mutex.h> 39 #include <vm/page.h> 40 #include <sys/dacf_impl.h> 41 #include <sys/ndifm.h> 42 #include <sys/epm.h> 43 #include <sys/ddidmareq.h> 44 #include <sys/ddi_intr.h> 45 #include <sys/ddi_isa.h> 46 47 #ifdef __cplusplus 48 extern "C" { 49 #endif 50 51 /* 52 * The device id implementation has been switched to be based on properties. 53 * For compatibility with di_devid libdevinfo interface the following 54 * must be defined: 55 */ 56 #define DEVID_COMPATIBILITY ((ddi_devid_t)-1) 57 58 /* 59 * Definitions for node class. 60 * DDI_NC_PROM: a node with a nodeid that may be used in a promif call. 61 * DDI_NC_PSEUDO: a software created node with a software assigned nodeid. 62 */ 63 typedef enum { 64 DDI_NC_PROM = 0, 65 DDI_NC_PSEUDO 66 } ddi_node_class_t; 67 68 /* 69 * dev_info: The main device information structure this is intended to be 70 * opaque to drivers and drivers should use ddi functions to 71 * access *all* driver accessible fields. 72 * 73 * devi_parent_data includes property lists (interrupts, registers, etc.) 74 * devi_driver_data includes whatever the driver wants to place there. 75 */ 76 struct devinfo_audit; 77 78 struct dev_info { 79 80 struct dev_info *devi_parent; /* my parent node in tree */ 81 struct dev_info *devi_child; /* my child list head */ 82 struct dev_info *devi_sibling; /* next element on my level */ 83 84 char *devi_binding_name; /* name used to bind driver */ 85 86 char *devi_addr; /* address part of name */ 87 88 int devi_nodeid; /* device nodeid */ 89 int devi_instance; /* device instance number */ 90 91 struct dev_ops *devi_ops; /* driver operations */ 92 93 void *devi_parent_data; /* parent private data */ 94 void *devi_driver_data; /* driver private data */ 95 96 ddi_prop_t *devi_drv_prop_ptr; /* head of driver prop list */ 97 ddi_prop_t *devi_sys_prop_ptr; /* head of system prop list */ 98 99 struct ddi_minor_data *devi_minor; /* head of minor list */ 100 struct dev_info *devi_next; /* Next instance of this device */ 101 kmutex_t devi_lock; /* Protects per-devinfo data */ 102 103 /* logical parents for busop primitives */ 104 105 struct dev_info *devi_bus_map_fault; /* bus_map_fault parent */ 106 struct dev_info *devi_bus_dma_map; /* bus_dma_map parent */ 107 struct dev_info *devi_bus_dma_allochdl; /* bus_dma_newhdl parent */ 108 struct dev_info *devi_bus_dma_freehdl; /* bus_dma_freehdl parent */ 109 struct dev_info *devi_bus_dma_bindhdl; /* bus_dma_bindhdl parent */ 110 struct dev_info *devi_bus_dma_unbindhdl; /* bus_dma_unbindhdl parent */ 111 struct dev_info *devi_bus_dma_flush; /* bus_dma_flush parent */ 112 struct dev_info *devi_bus_dma_win; /* bus_dma_win parent */ 113 struct dev_info *devi_bus_dma_ctl; /* bus_dma_ctl parent */ 114 struct dev_info *devi_bus_ctl; /* bus_ctl parent */ 115 116 ddi_prop_t *devi_hw_prop_ptr; /* head of hw prop list */ 117 118 char *devi_node_name; /* The 'name' of the node */ 119 char *devi_compat_names; /* A list of driver names */ 120 size_t devi_compat_length; /* Size of compat_names */ 121 122 int (*devi_bus_dma_bindfunc)(dev_info_t *, dev_info_t *, 123 ddi_dma_handle_t, struct ddi_dma_req *, ddi_dma_cookie_t *, 124 uint_t *); 125 int (*devi_bus_dma_unbindfunc)(dev_info_t *, dev_info_t *, 126 ddi_dma_handle_t); 127 128 #ifdef DEVID_COMPATIBILITY 129 ddi_devid_t devi_devid; /* registered device id */ 130 #endif /* DEVID_COMPATIBILITY */ 131 /* 132 * power management entries 133 * components exist even if the device is not currently power managed 134 */ 135 struct pm_info *devi_pm_info; /* 0 => dev not power managed */ 136 uint_t devi_pm_flags; /* pm flags */ 137 int devi_pm_num_components; /* number of components */ 138 size_t devi_pm_comp_size; /* size of devi_components */ 139 struct pm_component *devi_pm_components; /* array of pm components */ 140 struct dev_info *devi_pm_ppm; /* ppm attached to this one */ 141 void *devi_pm_ppm_private; /* for use by ppm driver */ 142 int devi_pm_dev_thresh; /* "device" threshold */ 143 uint_t devi_pm_kidsupcnt; /* # of kids powered up */ 144 struct pm_scan *devi_pm_scan; /* pm scan info */ 145 uint_t devi_pm_noinvolpm; /* # of descendents no-invol */ 146 uint_t devi_pm_volpmd; /* # of voluntarily pm'ed */ 147 kmutex_t devi_pm_lock; /* pm lock for state */ 148 kmutex_t devi_pm_busy_lock; /* for component busy count */ 149 150 uint_t devi_state; /* device/bus state flags */ 151 /* see below for definitions */ 152 kcondvar_t devi_cv; /* cv */ 153 int devi_ref; /* reference count */ 154 155 dacf_rsrvlist_t *devi_dacf_tasks; /* dacf reservation queue */ 156 157 ddi_node_class_t devi_node_class; /* Node class */ 158 int devi_node_attributes; /* Node attributes: See below */ 159 160 char *devi_device_class; 161 162 /* 163 * New mpxio kernel hooks entries 164 */ 165 int devi_mdi_component; /* mpxio component type */ 166 void *devi_mdi_client; /* mpxio client information */ 167 void *devi_mdi_xhci; /* vhci/phci info */ 168 169 ddi_prop_list_t *devi_global_prop_list; /* driver global properties */ 170 major_t devi_major; /* driver major number */ 171 ddi_node_state_t devi_node_state; /* state of node */ 172 uint_t devi_flags; /* configuration flags */ 173 int devi_circular; /* for recursive operations */ 174 void *devi_busy_thread; /* thread operating on node */ 175 void *devi_taskq; /* hotplug taskq */ 176 177 /* device driver statistical and audit info */ 178 struct devinfo_audit *devi_audit; /* last state change */ 179 180 /* 181 * FMA support for resource caches and error handlers 182 */ 183 struct i_ddi_fmhdl *devi_fmhdl; 184 185 uint_t devi_cpr_flags; 186 187 /* For interrupt support */ 188 devinfo_intr_t *devi_intr_p; 189 190 void *devi_nex_pm; /* nexus PM private */ 191 192 char *devi_addr_buf; /* buffer for devi_addr */ 193 }; 194 195 #define DEVI(dev_info_type) ((struct dev_info *)(dev_info_type)) 196 197 /* 198 * NB: The 'name' field, for compatibility with old code (both existing 199 * device drivers and userland code), is now defined as the name used 200 * to bind the node to a device driver, and not the device node name. 201 * If the device node name does not define a binding to a device driver, 202 * and the framework uses a different algorithm to create the binding to 203 * the driver, the node name and binding name will be different. 204 * 205 * Note that this implies that the node name plus instance number does 206 * NOT create a unique driver id; only the binding name plus instance 207 * number creates a unique driver id. 208 * 209 * New code should not use 'devi_name'; use 'devi_binding_name' or 210 * 'devi_node_name' and/or the routines that access those fields. 211 */ 212 213 #define devi_name devi_binding_name 214 215 /* 216 * DDI_CF1, DDI_CF2 and DDI_DRV_UNLOADED are obsolete. They are kept 217 * around to allow legacy drivers to to compile. 218 */ 219 #define DDI_CF1(devi) (DEVI(devi)->devi_addr != NULL) 220 #define DDI_CF2(devi) (DEVI(devi)->devi_ops != NULL) 221 #define DDI_DRV_UNLOADED(devi) (DEVI(devi)->devi_ops == &mod_nodev_ops) 222 223 /* 224 * The device state flags (devi_state) contains information regarding 225 * the state of the device (Online/Offline/Down). For bus nexus 226 * devices, the device state also contains state information regarding 227 * the state of the bus represented by this nexus node. 228 * 229 * Device state information is stored in bits [0-7], bus state in bits 230 * [8-15]. 231 * 232 * NOTE: all devi_state updates shoule be protected by devi_lock. 233 */ 234 #define DEVI_DEVICE_OFFLINE 0x00000001 235 #define DEVI_DEVICE_DOWN 0x00000002 236 #define DEVI_DEVICE_DEGRADED 0x00000004 237 #define DEVI_DEVICE_REMOVED 0x00000008 /* hardware removed */ 238 239 #define DEVI_BUS_QUIESCED 0x00000100 240 #define DEVI_BUS_DOWN 0x00000200 241 #define DEVI_NDI_CONFIG 0x00000400 /* perform config when attaching */ 242 243 #define DEVI_S_ATTACHING 0x00010000 244 #define DEVI_S_DETACHING 0x00020000 245 #define DEVI_S_ONLINING 0x00040000 246 #define DEVI_S_OFFLINING 0x00080000 247 248 #define DEVI_S_INVOKING_DACF 0x00100000 /* busy invoking a dacf task */ 249 250 #define DEVI_S_UNBOUND 0x00200000 251 #define DEVI_S_MD_UPDATE 0x00400000 252 #define DEVI_S_REPORT 0x08000000 /* report status change */ 253 254 #define DEVI_S_EVADD 0x10000000 /* state of devfs event */ 255 #define DEVI_S_EVREMOVE 0x20000000 /* state of devfs event */ 256 #define DEVI_S_NEED_RESET 0x40000000 /* devo_reset should be called */ 257 258 /* 259 * Device state macros. 260 * o All SET/CLR/DONE users must protect context with devi_lock. 261 * o DEVI_SET_DEVICE_ONLINE users must do his own DEVI_SET_REPORT. 262 * o DEVI_SET_DEVICE_{DOWN|DEGRADED|UP} should only be used when !OFFLINE. 263 * o DEVI_SET_DEVICE_UP clears DOWN and DEGRADED. 264 */ 265 #define DEVI_IS_DEVICE_OFFLINE(dip) \ 266 ((DEVI(dip)->devi_state & DEVI_DEVICE_OFFLINE) == DEVI_DEVICE_OFFLINE) 267 268 #define DEVI_SET_DEVICE_ONLINE(dip) { \ 269 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 270 /* setting ONLINE clears DOWN, DEGRADED, OFFLINE */ \ 271 DEVI(dip)->devi_state &= ~(DEVI_DEVICE_DOWN | \ 272 DEVI_DEVICE_DEGRADED | DEVI_DEVICE_OFFLINE); \ 273 } 274 275 #define DEVI_SET_DEVICE_OFFLINE(dip) { \ 276 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 277 DEVI(dip)->devi_state |= (DEVI_DEVICE_OFFLINE | DEVI_S_REPORT); \ 278 } 279 280 #define DEVI_IS_DEVICE_DOWN(dip) \ 281 ((DEVI(dip)->devi_state & DEVI_DEVICE_DOWN) == DEVI_DEVICE_DOWN) 282 283 #define DEVI_SET_DEVICE_DOWN(dip) { \ 284 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 285 ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip)); \ 286 DEVI(dip)->devi_state |= (DEVI_DEVICE_DOWN | DEVI_S_REPORT); \ 287 } 288 289 #define DEVI_IS_DEVICE_DEGRADED(dip) \ 290 ((DEVI(dip)->devi_state & \ 291 (DEVI_DEVICE_DEGRADED|DEVI_DEVICE_DOWN)) == DEVI_DEVICE_DEGRADED) 292 293 #define DEVI_SET_DEVICE_DEGRADED(dip) { \ 294 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 295 ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip)); \ 296 DEVI(dip)->devi_state |= (DEVI_DEVICE_DEGRADED | DEVI_S_REPORT); \ 297 } 298 299 #define DEVI_SET_DEVICE_UP(dip) { \ 300 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 301 ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip)); \ 302 DEVI(dip)->devi_state &= ~(DEVI_DEVICE_DEGRADED | DEVI_DEVICE_DOWN); \ 303 DEVI(dip)->devi_state |= DEVI_S_REPORT; \ 304 } 305 306 /* Device removal and insertion */ 307 #define DEVI_IS_DEVICE_REMOVED(dip) \ 308 ((DEVI(dip)->devi_state & DEVI_DEVICE_REMOVED) == DEVI_DEVICE_REMOVED) 309 310 #define DEVI_SET_DEVICE_REMOVED(dip) { \ 311 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 312 DEVI(dip)->devi_state |= DEVI_DEVICE_REMOVED; \ 313 } 314 315 #define DEVI_SET_DEVICE_REINSERTED(dip) { \ 316 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 317 DEVI(dip)->devi_state &= ~DEVI_DEVICE_REMOVED; \ 318 } 319 320 /* Bus state change macros */ 321 #define DEVI_IS_BUS_QUIESCED(dip) \ 322 ((DEVI(dip)->devi_state & DEVI_BUS_QUIESCED) == DEVI_BUS_QUIESCED) 323 324 #define DEVI_SET_BUS_ACTIVE(dip) { \ 325 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 326 DEVI(dip)->devi_state &= ~DEVI_BUS_QUIESCED; \ 327 DEVI(dip)->devi_state |= DEVI_S_REPORT; \ 328 } 329 330 #define DEVI_SET_BUS_QUIESCE(dip) { \ 331 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 332 DEVI(dip)->devi_state |= (DEVI_BUS_QUIESCED | DEVI_S_REPORT); \ 333 } 334 335 #define DEVI_IS_BUS_DOWN(dip) \ 336 ((DEVI(dip)->devi_state & DEVI_BUS_DOWN) == DEVI_BUS_DOWN) 337 338 #define DEVI_SET_BUS_UP(dip) { \ 339 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 340 DEVI(dip)->devi_state &= ~DEVI_BUS_DOWN; \ 341 DEVI(dip)->devi_state |= DEVI_S_REPORT; \ 342 } 343 344 #define DEVI_SET_BUS_DOWN(dip) { \ 345 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 346 DEVI(dip)->devi_state |= (DEVI_BUS_DOWN | DEVI_S_REPORT); \ 347 } 348 349 /* Status change report needed */ 350 #define DEVI_NEED_REPORT(dip) \ 351 ((DEVI(dip)->devi_state & DEVI_S_REPORT) == DEVI_S_REPORT) 352 353 #define DEVI_SET_REPORT(dip) { \ 354 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 355 DEVI(dip)->devi_state |= DEVI_S_REPORT; \ 356 } 357 358 #define DEVI_REPORT_DONE(dip) { \ 359 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 360 DEVI(dip)->devi_state &= ~DEVI_S_REPORT; \ 361 } 362 363 /* Do an NDI_CONFIG for its children */ 364 #define DEVI_NEED_NDI_CONFIG(dip) \ 365 ((DEVI(dip)->devi_state & DEVI_NDI_CONFIG) == DEVI_NDI_CONFIG) 366 367 #define DEVI_SET_NDI_CONFIG(dip) { \ 368 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 369 DEVI(dip)->devi_state |= DEVI_NDI_CONFIG; \ 370 } 371 372 #define DEVI_CLR_NDI_CONFIG(dip) { \ 373 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 374 DEVI(dip)->devi_state &= ~DEVI_NDI_CONFIG; \ 375 } 376 377 /* Attaching or detaching state */ 378 #define DEVI_IS_ATTACHING(dip) \ 379 ((DEVI(dip)->devi_state & DEVI_S_ATTACHING) == DEVI_S_ATTACHING) 380 381 #define DEVI_SET_ATTACHING(dip) { \ 382 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 383 DEVI(dip)->devi_state |= DEVI_S_ATTACHING; \ 384 } 385 386 #define DEVI_CLR_ATTACHING(dip) { \ 387 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 388 DEVI(dip)->devi_state &= ~DEVI_S_ATTACHING; \ 389 } 390 391 #define DEVI_IS_DETACHING(dip) \ 392 ((DEVI(dip)->devi_state & DEVI_S_DETACHING) == DEVI_S_DETACHING) 393 394 #define DEVI_SET_DETACHING(dip) { \ 395 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 396 DEVI(dip)->devi_state |= DEVI_S_DETACHING; \ 397 } 398 399 #define DEVI_CLR_DETACHING(dip) { \ 400 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 401 DEVI(dip)->devi_state &= ~DEVI_S_DETACHING; \ 402 } 403 404 /* Onlining or offlining state */ 405 #define DEVI_IS_ONLINING(dip) \ 406 ((DEVI(dip)->devi_state & DEVI_S_ONLINING) == DEVI_S_ONLINING) 407 408 #define DEVI_SET_ONLINING(dip) { \ 409 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 410 DEVI(dip)->devi_state |= DEVI_S_ONLINING; \ 411 } 412 413 #define DEVI_CLR_ONLINING(dip) { \ 414 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 415 DEVI(dip)->devi_state &= ~DEVI_S_ONLINING; \ 416 } 417 418 #define DEVI_IS_OFFLINING(dip) \ 419 ((DEVI(dip)->devi_state & DEVI_S_OFFLINING) == DEVI_S_OFFLINING) 420 421 #define DEVI_SET_OFFLINING(dip) { \ 422 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 423 DEVI(dip)->devi_state |= DEVI_S_OFFLINING; \ 424 } 425 426 #define DEVI_CLR_OFFLINING(dip) { \ 427 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 428 DEVI(dip)->devi_state &= ~DEVI_S_OFFLINING; \ 429 } 430 431 #define DEVI_IS_IN_RECONFIG(dip) \ 432 (DEVI(dip)->devi_state & (DEVI_S_OFFLINING | DEVI_S_ONLINING)) 433 434 /* Busy invoking a dacf task against this node */ 435 #define DEVI_IS_INVOKING_DACF(dip) \ 436 ((DEVI(dip)->devi_state & DEVI_S_INVOKING_DACF) == DEVI_S_INVOKING_DACF) 437 438 #define DEVI_SET_INVOKING_DACF(dip) { \ 439 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 440 DEVI(dip)->devi_state |= DEVI_S_INVOKING_DACF; \ 441 } 442 443 #define DEVI_CLR_INVOKING_DACF(dip) { \ 444 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 445 DEVI(dip)->devi_state &= ~DEVI_S_INVOKING_DACF; \ 446 } 447 448 /* Events for add/remove */ 449 #define DEVI_EVADD(dip) \ 450 ((DEVI(dip)->devi_state & DEVI_S_EVADD) == DEVI_S_EVADD) 451 452 #define DEVI_SET_EVADD(dip) { \ 453 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 454 DEVI(dip)->devi_state &= ~DEVI_S_EVREMOVE; \ 455 DEVI(dip)->devi_state |= DEVI_S_EVADD; \ 456 } 457 458 #define DEVI_EVREMOVE(dip) \ 459 ((DEVI(dip)->devi_state & DEVI_S_EVREMOVE) == DEVI_S_EVREMOVE) 460 461 #define DEVI_SET_EVREMOVE(dip) { \ 462 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 463 DEVI(dip)->devi_state &= ~DEVI_S_EVADD; \ 464 DEVI(dip)->devi_state |= DEVI_S_EVREMOVE; \ 465 } 466 467 #define DEVI_SET_EVUNINIT(dip) { \ 468 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 469 DEVI(dip)->devi_state &= ~(DEVI_S_EVADD | DEVI_S_EVREMOVE); \ 470 } 471 472 /* Need to call the devo_reset entry point for this device at shutdown */ 473 #define DEVI_NEED_RESET(dip) \ 474 ((DEVI(dip)->devi_state & DEVI_S_NEED_RESET) == DEVI_S_NEED_RESET) 475 476 #define DEVI_SET_NEED_RESET(dip) { \ 477 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 478 DEVI(dip)->devi_state |= DEVI_S_NEED_RESET; \ 479 } 480 481 #define DEVI_CLR_NEED_RESET(dip) { \ 482 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 483 DEVI(dip)->devi_state &= ~DEVI_S_NEED_RESET; \ 484 } 485 486 void i_devi_enter(dev_info_t *, uint_t s_mask, uint_t w_mask, int has_lock); 487 void i_devi_exit(dev_info_t *, uint_t c_mask, int has_lock); 488 489 /* 490 * devi_flags bits 491 * 492 * NOTE: all devi_state updates shoule be protected by devi_lock. 493 */ 494 #define DEVI_BUSY 0x00000001 /* busy configuring children */ 495 #define DEVI_MADE_CHILDREN 0x00000002 /* children made from specs */ 496 #define DEVI_ATTACHED_CHILDREN 0x00000004 /* attached all existing children */ 497 #define DEVI_BRANCH_HELD 0x00000008 /* branch rooted at this dip held */ 498 #define DEVI_NO_BIND 0x00000010 /* prevent driver binding */ 499 #define DEVI_REGISTERED_DEVID 0x00000020 /* device registered a devid */ 500 501 #define DEVI_BUSY_CHANGING(dip) (DEVI(dip)->devi_flags & DEVI_BUSY) 502 #define DEVI_BUSY_OWNED(dip) (DEVI_BUSY_CHANGING(dip) && \ 503 ((DEVI(dip))->devi_busy_thread == curthread)) 504 505 char *i_ddi_devi_class(dev_info_t *); 506 int i_ddi_set_devi_class(dev_info_t *, char *, int); 507 508 /* 509 * This structure represents one piece of bus space occupied by a given 510 * device. It is used in an array for devices with multiple address windows. 511 */ 512 struct regspec { 513 uint_t regspec_bustype; /* cookie for bus type it's on */ 514 uint_t regspec_addr; /* address of reg relative to bus */ 515 uint_t regspec_size; /* size of this register set */ 516 }; 517 518 /* 519 * This structure represents one piece of nexus bus space. 520 * It is used in an array for nexi with multiple bus spaces 521 * to define the childs offsets in the parents bus space. 522 */ 523 struct rangespec { 524 uint_t rng_cbustype; /* Child's address, hi order */ 525 uint_t rng_coffset; /* Child's address, lo order */ 526 uint_t rng_bustype; /* Parent's address, hi order */ 527 uint_t rng_offset; /* Parent's address, lo order */ 528 uint_t rng_size; /* size of space for this entry */ 529 }; 530 531 #ifdef _KERNEL 532 533 typedef enum { 534 DDI_PRE = 0, 535 DDI_POST = 1 536 } ddi_pre_post_t; 537 538 /* 539 * This structure represents notification of a child attach event 540 * These could both be the same if attach/detach commands were in the 541 * same name space. 542 * Note that the target dip is passed as an arg already. 543 */ 544 struct attachspec { 545 ddi_attach_cmd_t cmd; /* type of event */ 546 ddi_pre_post_t when; /* one of DDI_PRE or DDI_POST */ 547 dev_info_t *pdip; /* parent of attaching node */ 548 int result; /* result of attach op (post command only) */ 549 }; 550 551 /* 552 * This structure represents notification of a child detach event 553 * Note that the target dip is passed as an arg already. 554 */ 555 struct detachspec { 556 ddi_detach_cmd_t cmd; /* type of event */ 557 ddi_pre_post_t when; /* one of DDI_PRE or DDI_POST */ 558 dev_info_t *pdip; /* parent of detaching node */ 559 int result; /* result of detach op (post command only) */ 560 }; 561 562 #endif /* _KERNEL */ 563 564 typedef enum { 565 DDM_MINOR = 0, 566 DDM_ALIAS, 567 DDM_DEFAULT, 568 DDM_INTERNAL_PATH 569 } ddi_minor_type; 570 571 /* implementation flags for driver specified device access control */ 572 #define DM_NO_FSPERM 0x1 573 574 struct devplcy; 575 576 struct ddi_minor { 577 char *name; /* name of node */ 578 dev_t dev; /* device number */ 579 int spec_type; /* block or char */ 580 int flags; /* access flags */ 581 char *node_type; /* block, byte, serial, network */ 582 struct devplcy *node_priv; /* privilege for this minor */ 583 mode_t priv_mode; /* default apparent privilege mode */ 584 }; 585 586 /* 587 * devi_node_attributes contains node attributes private to the 588 * ddi implementation. As a consumer, do not use these bit definitions 589 * directly, use the ndi functions that check for the existence of the 590 * specific node attributes. 591 * 592 * DDI_PERSISTENT indicates a 'persistent' node; one that is not 593 * automatically freed by the framework if the driver is unloaded 594 * or the driver fails to attach to this node. 595 * 596 * DDI_AUTO_ASSIGNED_NODEID indicates that the nodeid was auto-assigned 597 * by the framework and should be auto-freed if the node is removed. 598 * 599 * DDI_VHCI_NODE indicates that the node type is VHCI. This flag 600 * must be set by ndi_devi_config_vhci() routine only. 601 */ 602 #define DDI_PERSISTENT 0x01 603 #define DDI_AUTO_ASSIGNED_NODEID 0x02 604 #define DDI_VHCI_NODE 0x04 605 606 #define DEVI_VHCI_NODE(dip) \ 607 (DEVI(dip)->devi_node_attributes & DDI_VHCI_NODE) 608 609 /* 610 * The ddi_minor_data structure gets filled in by ddi_create_minor_node. 611 * It then gets attached to the devinfo node as a property. 612 */ 613 struct ddi_minor_data { 614 struct ddi_minor_data *next; /* next one in the chain */ 615 dev_info_t *dip; /* pointer to devinfo node */ 616 ddi_minor_type type; /* Following data type */ 617 struct ddi_minor d_minor; /* Actual minor node data */ 618 }; 619 620 #define ddm_name d_minor.name 621 #define ddm_dev d_minor.dev 622 #define ddm_flags d_minor.flags 623 #define ddm_spec_type d_minor.spec_type 624 #define ddm_node_type d_minor.node_type 625 #define ddm_node_priv d_minor.node_priv 626 #define ddm_priv_mode d_minor.priv_mode 627 628 /* 629 * parent private data structure contains register, interrupt, property 630 * and range information. 631 */ 632 struct ddi_parent_private_data { 633 int par_nreg; /* number of regs */ 634 struct regspec *par_reg; /* array of regs */ 635 int par_nintr; /* number of interrupts */ 636 struct intrspec *par_intr; /* array of possible interrupts */ 637 int par_nrng; /* number of ranges */ 638 struct rangespec *par_rng; /* array of ranges */ 639 }; 640 #define DEVI_PD(d) \ 641 ((struct ddi_parent_private_data *)DEVI((d))->devi_parent_data) 642 643 #define sparc_pd_getnreg(dev) (DEVI_PD(dev)->par_nreg) 644 #define sparc_pd_getnintr(dev) (DEVI_PD(dev)->par_nintr) 645 #define sparc_pd_getnrng(dev) (DEVI_PD(dev)->par_nrng) 646 #define sparc_pd_getreg(dev, n) (&DEVI_PD(dev)->par_reg[(n)]) 647 #define sparc_pd_getintr(dev, n) (&DEVI_PD(dev)->par_intr[(n)]) 648 #define sparc_pd_getrng(dev, n) (&DEVI_PD(dev)->par_rng[(n)]) 649 650 /* 651 * This data structure is entirely private to the soft state allocator. 652 */ 653 struct i_ddi_soft_state { 654 void **array; /* the array of pointers */ 655 kmutex_t lock; /* serialize access to this struct */ 656 size_t size; /* how many bytes per state struct */ 657 size_t n_items; /* how many structs herein */ 658 struct i_ddi_soft_state *next; /* 'dirty' elements */ 659 }; 660 661 /* 662 * Solaris DDI DMA implementation structure and function definitions. 663 * 664 * Note: no callers of DDI functions must depend upon data structures 665 * declared below. They are not guaranteed to remain constant. 666 */ 667 668 /* 669 * Implementation DMA mapping structure. 670 * 671 * The publicly visible ddi_dma_req structure is filled 672 * in by a caller that wishes to map a memory object 673 * for DMA. Internal to this implementation of the public 674 * DDI DMA functions this request structure is put together 675 * with bus nexus specific functions that have additional 676 * information and constraints as to how to go about doing 677 * the requested mapping function 678 * 679 * In this implementation, some of the information from the 680 * original requester is retained throughout the lifetime 681 * of the I/O mapping being active. 682 */ 683 684 /* 685 * This is the implementation specific description 686 * of how we've mapped an object for DMA. 687 */ 688 #if defined(__sparc) 689 typedef struct ddi_dma_impl { 690 /* 691 * DMA mapping information 692 */ 693 ulong_t dmai_mapping; /* mapping cookie */ 694 695 /* 696 * Size of the current mapping, in bytes. 697 * 698 * Note that this is distinct from the size of the object being mapped 699 * for DVMA. We might have only a portion of the object mapped at any 700 * given point in time. 701 */ 702 uint_t dmai_size; 703 704 /* 705 * Offset, in bytes, into object that is currently mapped. 706 */ 707 off_t dmai_offset; 708 709 /* 710 * Information gathered from the original DMA mapping 711 * request and saved for the lifetime of the mapping. 712 */ 713 uint_t dmai_minxfer; 714 uint_t dmai_burstsizes; 715 uint_t dmai_ndvmapages; 716 uint_t dmai_pool; /* cached DVMA space */ 717 uint_t dmai_rflags; /* requester's flags + ours */ 718 uint_t dmai_inuse; /* active handle? */ 719 uint_t dmai_nwin; 720 uint_t dmai_winsize; 721 caddr_t dmai_nexus_private; 722 void *dmai_iopte; 723 uint_t *dmai_sbi; 724 void *dmai_minfo; /* random mapping information */ 725 dev_info_t *dmai_rdip; /* original requester's dev_info_t */ 726 ddi_dma_obj_t dmai_object; /* requester's object */ 727 ddi_dma_attr_t dmai_attr; /* DMA attributes */ 728 ddi_dma_cookie_t *dmai_cookie; /* pointer to first DMA cookie */ 729 730 int (*dmai_fault_check)(struct ddi_dma_impl *handle); 731 void (*dmai_fault_notify)(struct ddi_dma_impl *handle); 732 int dmai_fault; 733 ndi_err_t dmai_error; 734 735 } ddi_dma_impl_t; 736 737 #elif defined(__x86) 738 739 #define DMAMI_KVADR 0x05 740 #define DMAMI_UVADR 0x09 741 #define DMAMI_PAGES 0x0b 742 #define DMAI_SOMEMORE_COOKIES 4 743 744 typedef struct ddi_dma_impl { 745 746 ulong_t dmai_kmsize; 747 748 ddi_dma_cookie_t *dmai_additionalcookiep; 749 750 struct impl_dma_segment *dmai_hds; /* head of list of segments */ 751 752 struct impl_dma_segment *dmai_wins; /* ptr to first segment of */ 753 /* current window */ 754 755 caddr_t dmai_ibufp; /* intermediate buffer address */ 756 uint64_t dmai_segmentsize; 757 ulong_t dmai_ibfsz; /* intermediate buffer size */ 758 759 caddr_t dmai_kaddr; /* kernel addr for page mapping */ 760 761 /* 762 * Information gathered from the original dma mapping 763 * request and saved for the lifetime of the mapping. 764 */ 765 uint_t dmai_minxfer; 766 uint_t dmai_burstsizes; 767 uint_t dmai_rflags; /* requester's flags + ours */ 768 uint_t dmai_inuse; 769 int dmai_nwin; 770 void *dmai_segp; 771 void *dmai_minfo; /* random mapping information */ 772 dev_info_t *dmai_rdip; /* original requester's dev_info_t */ 773 ddi_dma_obj_t dmai_object; /* requester's object */ 774 775 /* 776 * mctl function addr for express processing 777 */ 778 int (*dmai_mctl)(dev_info_t *, dev_info_t *, 779 ddi_dma_handle_t, enum ddi_dma_ctlops, off_t *, size_t *, 780 caddr_t *, uint_t); 781 782 ddi_dma_attr_t dmai_attr; /* DMA attributes */ 783 ddi_dma_cookie_t *dmai_cookie; 784 785 int (*dmai_fault_check)(struct ddi_dma_impl *handle); 786 void (*dmai_fault_notify)(struct ddi_dma_impl *handle); 787 int dmai_fault; 788 ndi_err_t dmai_error; 789 790 } ddi_dma_impl_t; 791 792 #else 793 #error "struct ddi_dma_impl not defined for this architecture" 794 #endif /* defined(__sparc) */ 795 796 /* 797 * For now DMA segments share state with the DMA handle 798 */ 799 typedef ddi_dma_impl_t ddi_dma_seg_impl_t; 800 801 /* 802 * These flags use reserved bits from the dma request flags. 803 * 804 * A note about the DMP_NOSYNC flags: the root nexus will 805 * set these as it sees best. If an intermediate nexus 806 * actually needs these operations, then during the unwind 807 * from the call to ddi_dma_bind, the nexus driver *must* 808 * clear the appropriate flag(s). This is because, as an 809 * optimization, ddi_dma_sync(9F) looks at these flags before 810 * deciding to spend the time going back up the tree. 811 */ 812 813 #define _DMCM1 DDI_DMA_RDWR|DDI_DMA_REDZONE|DDI_DMA_PARTIAL 814 #define _DMCM2 DDI_DMA_CONSISTENT|DMP_VMEREQ 815 #define DMP_DDIFLAGS (_DMCM1|_DMCM2) 816 #define DMP_SHADOW 0x20 817 #define DMP_LKIOPB 0x40 818 #define DMP_LKSYSV 0x80 819 #define DMP_IOCACHE 0x100 820 #define DMP_USEHAT 0x200 821 #define DMP_PHYSADDR 0x400 822 #define DMP_INVALID 0x800 823 #define DMP_NOLIMIT 0x1000 824 #define DMP_VMEREQ 0x10000000 825 #define DMP_BYPASSNEXUS 0x20000000 826 #define DMP_NODEVSYNC 0x40000000 827 #define DMP_NOCPUSYNC 0x80000000 828 #define DMP_NOSYNC (DMP_NODEVSYNC|DMP_NOCPUSYNC) 829 830 /* 831 * In order to complete a device to device mapping that 832 * has percolated as high as an IU nexus (gone that high 833 * because the DMA request is a VADDR type), we define 834 * structure to use with the DDI_CTLOPS_DMAPMAPC request 835 * that re-traverses the request tree to finish the 836 * DMA 'mapping' for a device. 837 */ 838 struct dma_phys_mapc { 839 struct ddi_dma_req *dma_req; /* original request */ 840 ddi_dma_impl_t *mp; /* current handle, or none */ 841 int nptes; /* number of ptes */ 842 void *ptes; /* ptes already read */ 843 }; 844 845 /* 846 * Implementation DMA segment structure. 847 * 848 * This is a superset of the ddi_dma_cookie structure that describes 849 * one of the physical memory segments into which the memory object 850 * was broken up. 851 */ 852 #if defined(__x86) 853 typedef struct impl_dma_segment { 854 struct impl_dma_segment *dmais_link; /* to next segment */ 855 struct ddi_dma_impl *dmais_hndl; /* to dma handle */ 856 ddi_dma_cookie_t *dmais_cookie; 857 union { 858 struct impl_dma_segment *_dmais_nex; /* to 1st seg of */ 859 /* next window */ 860 struct impl_dma_segment *_dmais_cur; /* to 1st seg of */ 861 /* this window */ 862 } _win; 863 ulong_t dmais_ofst; /* 32-bit offset */ 864 union { 865 caddr_t _dmais_va; /* 32-bit virtual address */ 866 page_t *_dmais_pp; /* page pointer */ 867 } _vdmu; 868 union { 869 uint64_t _dmais_lpd; /* 64-bit physical address */ 870 uint32_t _dmais_pd; /* 32-bit physical address */ 871 ushort_t _dmais_pw[2]; /* 2x16-bit address */ 872 caddr_t _dmais_kva; /* pio kernel virtual address */ 873 } _pdmu; 874 ulong_t dmais_size; /* size of cookie in bytes */ 875 ushort_t dmais_flags; /* bus specific flag bits */ 876 ushort_t dmais_xxx; /* unused filler */ 877 } impl_dma_segment_t; 878 #endif /* __x86 */ 879 880 /* 881 * flags 882 */ 883 #define DMAIS_NEEDINTBUF 0x0100 884 #define DMAIS_COMPLEMENT 0x0200 885 #define DMAIS_NOMERGE DMAIS_NEEDINTBUF | DMAIS_COMPLEMENT 886 #define DMAIS_MAPPAGE 0x0400 887 #define DMAIS_PAGEPTR 0x0800 888 #define DMAIS_WINSTRT 0x1000 /* this segment is window start */ 889 #define DMAIS_WINUIB 0x2000 /* window uses intermediate buffers */ 890 #define DMAIS_WINEND 0x8000 /* this segment is window end */ 891 892 #define MAXCALLBACK 20 893 894 /* 895 * Callback definitions 896 */ 897 struct ddi_callback { 898 struct ddi_callback *c_nfree; 899 struct ddi_callback *c_nlist; 900 int (*c_call)(); 901 int c_count; 902 caddr_t c_arg; 903 size_t c_size; 904 }; 905 906 907 /* 908 * Device id - Internal definition. 909 */ 910 #define DEVID_MAGIC_MSB 0x69 911 #define DEVID_MAGIC_LSB 0x64 912 #define DEVID_REV_MSB 0x00 913 #define DEVID_REV_LSB 0x01 914 #define DEVID_HINT_SIZE 4 915 916 typedef struct impl_devid { 917 uchar_t did_magic_hi; /* device id magic # (msb) */ 918 uchar_t did_magic_lo; /* device id magic # (lsb) */ 919 uchar_t did_rev_hi; /* device id revision # (msb) */ 920 uchar_t did_rev_lo; /* device id revision # (lsb) */ 921 uchar_t did_type_hi; /* device id type (msb) */ 922 uchar_t did_type_lo; /* device id type (lsb) */ 923 uchar_t did_len_hi; /* length of devid data (msb) */ 924 uchar_t did_len_lo; /* length of devid data (lsb) */ 925 char did_driver[DEVID_HINT_SIZE]; /* driver name - HINT */ 926 char did_id[1]; /* start of device id data */ 927 } impl_devid_t; 928 929 #define DEVID_GETTYPE(devid) ((ushort_t) \ 930 (((devid)->did_type_hi << NBBY) + \ 931 (devid)->did_type_lo)) 932 933 #define DEVID_FORMTYPE(devid, type) (devid)->did_type_hi = hibyte((type)); \ 934 (devid)->did_type_lo = lobyte((type)); 935 936 #define DEVID_GETLEN(devid) ((ushort_t) \ 937 (((devid)->did_len_hi << NBBY) + \ 938 (devid)->did_len_lo)) 939 940 #define DEVID_FORMLEN(devid, len) (devid)->did_len_hi = hibyte((len)); \ 941 (devid)->did_len_lo = lobyte((len)); 942 943 /* 944 * Per PSARC/1995/352, a binary devid contains fields for <magic number>, 945 * <revision>, <driver_hint>, <type>, <id_length>, and the <id> itself. 946 * This proposal would encode the binary devid into a string consisting 947 * of "<magic><revision>,<driver_hint>@<type><id>" as indicated below 948 * (<id_length> is rederived from the length of the string 949 * representation of the <id>): 950 * 951 * <magic> ->"id" 952 * 953 * <rev> ->"%d" // "0" -> type of DEVID_NONE "id0" 954 * // NOTE: PSARC/1995/352 <revision> is "1". 955 * // NOTE: support limited to 10 revisions 956 * // in current implementation 957 * 958 * <driver_hint> ->"%s" // "sd"/"ssd" 959 * // NOTE: driver names limited to 4 960 * // characters for <revision> "1" 961 * 962 * <type> ->'w' | // DEVID_SCSI3_WWN <hex_id> 963 * 'W' | // DEVID_SCSI3_WWN <ascii_id> 964 * 't' | // DEVID_SCSI3_VPD_T10 <hex_id> 965 * 'T' | // DEVID_SCSI3_VPD_T10 <ascii_id> 966 * 'x' | // DEVID_SCSI3_VPD_EUI <hex_id> 967 * 'X' | // DEVID_SCSI3_VPD_EUI <ascii_id> 968 * 'n' | // DEVID_SCSI3_VPD_NAA <hex_id> 969 * 'N' | // DEVID_SCSI3_VPD_NAA <ascii_id> 970 * 's' | // DEVID_SCSI_SERIAL <hex_id> 971 * 'S' | // DEVID_SCSI_SERIAL <ascii_id> 972 * 'f' | // DEVID_FAB <hex_id> 973 * 'F' | // DEVID_FAB <ascii_id> 974 * 'e' | // DEVID_ENCAP <hex_id> 975 * 'E' | // DEVID_ENCAP <ascii_id> 976 * 'a' | // DEVID_ATA_SERIAL <hex_id> 977 * 'A' | // DEVID_ATA_SERIAL <ascii_id> 978 * 'u' | // unknown <hex_id> 979 * 'U' // unknown <ascii_id> 980 * // NOTE: lower case -> <hex_id> 981 * // upper case -> <ascii_id> 982 * // NOTE: this covers all types currently 983 * // defined for <revision> 1. 984 * // NOTE: a <type> can be added 985 * // without changing the <revision>. 986 * 987 * <id> -> <ascii_id> | // <type> is upper case 988 * <hex_id> // <type> is lower case 989 * 990 * <ascii_id> // only if all bytes of binary <id> field 991 * // are in the set: 992 * // [A-Z][a-z][0-9]+-.= and space and 0x00 993 * // the encoded form is: 994 * // [A-Z][a-z][0-9]+-.= and _ and ~ 995 * // NOTE: ' ' <=> '_', 0x00 <=> '~' 996 * // these sets are chosen to avoid shell 997 * // and conflicts with DDI node names. 998 * 999 * <hex_id> // if not <ascii_id>; each byte of binary 1000 * // <id> maps a to 2 digit ascii hex 1001 * // representation in the string. 1002 * 1003 * This encoding provides a meaningful correlation between the /devices 1004 * path and the devid string where possible. 1005 * 1006 * Fibre: 1007 * sbus@6,0/SUNW,socal@d,10000/sf@1,0/ssd@w21000020370bb488,0:c,raw 1008 * id1,ssd@w20000020370bb488:c,raw 1009 * 1010 * Copper: 1011 * sbus@7,0/SUNW,fas@3,8800000/sd@a,0:c 1012 * id1,sd@SIBM_____1XY210__________:c 1013 */ 1014 /* determine if a byte of an id meets ASCII representation requirements */ 1015 #define DEVID_IDBYTE_ISASCII(b) ( \ 1016 (((b) >= 'a') && ((b) <= 'z')) || \ 1017 (((b) >= 'A') && ((b) <= 'Z')) || \ 1018 (((b) >= '0') && ((b) <= '9')) || \ 1019 (b == '+') || (b == '-') || (b == '.') || (b == '=') || \ 1020 (b == ' ') || (b == 0x00)) 1021 1022 /* set type to lower case to indicate that the did_id field is ascii */ 1023 #define DEVID_TYPE_SETASCII(c) (c - 0x20) /* 'a' -> 'A' */ 1024 1025 /* determine from type if did_id field is binary or ascii */ 1026 #define DEVID_TYPE_ISASCII(c) (((c) >= 'A') && ((c) <= 'Z')) 1027 1028 /* convert type field from binary to ascii */ 1029 #define DEVID_TYPE_BINTOASCII(b) ( \ 1030 ((b) == DEVID_SCSI3_WWN) ? 'w' : \ 1031 ((b) == DEVID_SCSI3_VPD_T10) ? 't' : \ 1032 ((b) == DEVID_SCSI3_VPD_EUI) ? 'x' : \ 1033 ((b) == DEVID_SCSI3_VPD_NAA) ? 'n' : \ 1034 ((b) == DEVID_SCSI_SERIAL) ? 's' : \ 1035 ((b) == DEVID_FAB) ? 'f' : \ 1036 ((b) == DEVID_ENCAP) ? 'e' : \ 1037 ((b) == DEVID_ATA_SERIAL) ? 'a' : \ 1038 'u') /* unknown */ 1039 1040 /* convert type field from ascii to binary */ 1041 #define DEVID_TYPE_ASCIITOBIN(c) ( \ 1042 (((c) == 'w') || ((c) == 'W')) ? DEVID_SCSI3_WWN : \ 1043 (((c) == 't') || ((c) == 'T')) ? DEVID_SCSI3_VPD_T10 : \ 1044 (((c) == 'x') || ((c) == 'X')) ? DEVID_SCSI3_VPD_EUI : \ 1045 (((c) == 'n') || ((c) == 'N')) ? DEVID_SCSI3_VPD_NAA : \ 1046 (((c) == 's') || ((c) == 'S')) ? DEVID_SCSI_SERIAL : \ 1047 (((c) == 'f') || ((c) == 'F')) ? DEVID_FAB : \ 1048 (((c) == 'e') || ((c) == 'E')) ? DEVID_ENCAP : \ 1049 (((c) == 'a') || ((c) == 'A')) ? DEVID_ATA_SERIAL : \ 1050 DEVID_MAXTYPE +1) /* unknown */ 1051 1052 /* determine if the type should be forced to hex encoding (non-ascii) */ 1053 #define DEVID_TYPE_BIN_FORCEHEX(b) ( \ 1054 ((b) == DEVID_SCSI3_WWN) || \ 1055 ((b) == DEVID_SCSI3_VPD_EUI) || \ 1056 ((b) == DEVID_SCSI3_VPD_NAA) || \ 1057 ((b) == DEVID_FAB)) 1058 1059 /* determine if the type is from a scsi3 vpd */ 1060 #define IS_DEVID_SCSI3_VPD_TYPE(b) ( \ 1061 ((b) == DEVID_SCSI3_VPD_T10) || \ 1062 ((b) == DEVID_SCSI3_VPD_EUI) || \ 1063 ((b) == DEVID_SCSI3_VPD_NAA)) 1064 1065 /* convert rev field from binary to ascii (only supports 10 revs) */ 1066 #define DEVID_REV_BINTOASCII(b) (b + '0') 1067 1068 /* convert rev field from ascii to binary (only supports 10 revs) */ 1069 #define DEVID_REV_ASCIITOBIN(c) (c - '0') 1070 1071 /* name of devid property */ 1072 #define DEVID_PROP_NAME "devid" 1073 1074 /* 1075 * prop_name used by pci_{save,restore}_config_regs() 1076 */ 1077 #define SAVED_CONFIG_REGS "pci-config-regs" 1078 #define SAVED_CONFIG_REGS_MASK "pcie-config-regs-mask" 1079 #define SAVED_CONFIG_REGS_CAPINFO "pci-cap-info" 1080 1081 typedef struct pci_config_header_state { 1082 uint16_t chs_command; 1083 uint8_t chs_cache_line_size; 1084 uint8_t chs_latency_timer; 1085 uint8_t chs_header_type; 1086 uint8_t chs_sec_latency_timer; 1087 uint8_t chs_bridge_control; 1088 uint32_t chs_base0; 1089 uint32_t chs_base1; 1090 uint32_t chs_base2; 1091 uint32_t chs_base3; 1092 uint32_t chs_base4; 1093 uint32_t chs_base5; 1094 } pci_config_header_state_t; 1095 1096 #ifdef _KERNEL 1097 1098 typedef struct pci_cap_save_desc { 1099 uint16_t cap_offset; 1100 uint16_t cap_id; 1101 uint32_t cap_nregs; 1102 } pci_cap_save_desc_t; 1103 1104 typedef struct pci_cap_entry { 1105 uint16_t cap_id; 1106 uint32_t cap_ndwords; 1107 uint32_t (*cap_save_func)(ddi_acc_handle_t confhdl, uint16_t cap_ptr, 1108 uint32_t *regbuf, uint32_t ndwords); 1109 } pci_cap_entry_t; 1110 1111 #endif /* _KERNEL */ 1112 1113 #ifdef __cplusplus 1114 } 1115 #endif 1116 1117 #endif /* _SYS_DDI_IMPLDEFS_H */ 1118