xref: /titanic_50/usr/src/uts/common/sys/ddi_impldefs.h (revision d0698e0d179f97729cacdbc2f13446a6b0a3f22a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 #ifndef _SYS_DDI_IMPLDEFS_H
26 #define	_SYS_DDI_IMPLDEFS_H
27 
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/t_lock.h>
31 #include <sys/ddipropdefs.h>
32 #include <sys/devops.h>
33 #include <sys/autoconf.h>
34 #include <sys/mutex.h>
35 #include <vm/page.h>
36 #include <sys/dacf_impl.h>
37 #include <sys/ndifm.h>
38 #include <sys/epm.h>
39 #include <sys/ddidmareq.h>
40 #include <sys/ddi_intr.h>
41 #include <sys/ddi_hp.h>
42 #include <sys/ddi_hp_impl.h>
43 #include <sys/ddi_isa.h>
44 #include <sys/id_space.h>
45 #include <sys/modhash.h>
46 #include <sys/bitset.h>
47 
48 #ifdef	__cplusplus
49 extern "C" {
50 #endif
51 
52 /*
53  * The device id implementation has been switched to be based on properties.
54  * For compatibility with di_devid libdevinfo interface the following
55  * must be defined:
56  */
57 #define	DEVID_COMPATIBILITY	((ddi_devid_t)-1)
58 
59 /*
60  * Definitions for node class.
61  * DDI_NC_PROM: a node with a nodeid that may be used in a promif call.
62  * DDI_NC_PSEUDO: a software created node with a software assigned nodeid.
63  */
64 typedef enum {
65 	DDI_NC_PROM = 0,
66 	DDI_NC_PSEUDO
67 } ddi_node_class_t;
68 
69 /*
70  * Definitions for generic callback mechanism.
71  */
72 typedef enum {
73 	DDI_CB_INTR_ADD,		/* More available interrupts */
74 	DDI_CB_INTR_REMOVE		/* Fewer available interrupts */
75 } ddi_cb_action_t;
76 
77 typedef enum {
78 	DDI_CB_FLAG_INTR = 0x1		/* Driver is IRM aware */
79 } ddi_cb_flags_t;
80 
81 #define	DDI_CB_FLAG_VALID(f)	((f) & DDI_CB_FLAG_INTR)
82 
83 typedef int	(*ddi_cb_func_t)(dev_info_t *dip, ddi_cb_action_t action,
84 		    void *cbarg, void *arg1, void *arg2);
85 
86 typedef struct ddi_cb {
87 	uint64_t	cb_flags;
88 	dev_info_t	*cb_dip;
89 	ddi_cb_func_t	cb_func;
90 	void		*cb_arg1;
91 	void		*cb_arg2;
92 } ddi_cb_t;
93 
94 /*
95  * dev_info:	The main device information structure this is intended to be
96  *		opaque to drivers and drivers should use ddi functions to
97  *		access *all* driver accessible fields.
98  *
99  * devi_parent_data includes property lists (interrupts, registers, etc.)
100  * devi_driver_data includes whatever the driver wants to place there.
101  */
102 struct devinfo_audit;
103 
104 typedef struct devi_port {
105 	union {
106 		struct {
107 			uint32_t type;
108 			uint32_t pad;
109 		} port;
110 		uint64_t type64;
111 	} info;
112 	void	*priv_p;
113 } devi_port_t;
114 
115 typedef struct devi_bus_priv {
116 	devi_port_t port_up;
117 	devi_port_t port_down;
118 } devi_bus_priv_t;
119 
120 #if defined(__x86)
121 struct iommulib_unit;
122 typedef struct iommulib_unit *iommulib_handle_t;
123 struct iommulib_nex;
124 typedef struct iommulib_nex *iommulib_nexhandle_t;
125 #endif
126 
127 typedef uint8_t	ndi_flavor_t;
128 struct ddi_hp_cn_handle;
129 
130 struct in_node;
131 
132 struct dev_info  {
133 
134 	struct dev_info *devi_parent;	/* my parent node in tree	*/
135 	struct dev_info *devi_child;	/* my child list head		*/
136 	struct dev_info *devi_sibling;	/* next element on my level	*/
137 
138 	char	*devi_binding_name;	/* name used to bind driver:	*/
139 					/* shared storage, points to	*/
140 					/* devi_node_name, devi_compat_names */
141 					/* or devi_rebinding_name	*/
142 
143 	char	*devi_addr;		/* address part of name		*/
144 
145 	int	devi_nodeid;		/* device nodeid		*/
146 	int	devi_instance;		/* device instance number	*/
147 
148 	struct dev_ops *devi_ops;	/* driver operations		*/
149 
150 	void	*devi_parent_data;	/* parent private data		*/
151 	void	*devi_driver_data;	/* driver private data		*/
152 
153 	ddi_prop_t *devi_drv_prop_ptr;	/* head of driver prop list */
154 	ddi_prop_t *devi_sys_prop_ptr;	/* head of system prop list */
155 
156 	struct ddi_minor_data *devi_minor;	/* head of minor list */
157 	struct dev_info *devi_next;	/* Next instance of this device */
158 	kmutex_t devi_lock;		/* Protects per-devinfo data */
159 
160 	/* logical parents for busop primitives */
161 
162 	struct dev_info *devi_bus_map_fault;	/* bus_map_fault parent	 */
163 	struct dev_info *devi_bus_dma_map;	/* bus_dma_map parent	 */
164 	struct dev_info *devi_bus_dma_allochdl; /* bus_dma_newhdl parent */
165 	struct dev_info *devi_bus_dma_freehdl;  /* bus_dma_freehdl parent */
166 	struct dev_info *devi_bus_dma_bindhdl;  /* bus_dma_bindhdl parent */
167 	struct dev_info *devi_bus_dma_unbindhdl; /* bus_dma_unbindhdl parent */
168 	struct dev_info *devi_bus_dma_flush;    /* bus_dma_flush parent	 */
169 	struct dev_info *devi_bus_dma_win;	/* bus_dma_win parent	 */
170 	struct dev_info *devi_bus_dma_ctl;	/* bus_dma_ctl parent	 */
171 	struct dev_info	*devi_bus_ctl;		/* bus_ctl parent	 */
172 
173 	ddi_prop_t *devi_hw_prop_ptr;		/* head of hw prop list */
174 
175 	char	*devi_node_name;		/* The 'name' of the node */
176 	char	*devi_compat_names;		/* A list of driver names */
177 	size_t	devi_compat_length;		/* Size of compat_names */
178 
179 	int (*devi_bus_dma_bindfunc)(dev_info_t *, dev_info_t *,
180 	    ddi_dma_handle_t, struct ddi_dma_req *, ddi_dma_cookie_t *,
181 	    uint_t *);
182 	int (*devi_bus_dma_unbindfunc)(dev_info_t *, dev_info_t *,
183 	    ddi_dma_handle_t);
184 
185 	char		*devi_devid_str;	/* registered device id */
186 
187 	/*
188 	 * power management entries
189 	 * components exist even if the device is not currently power managed
190 	 */
191 	struct pm_info *devi_pm_info;		/* 0 => dev not power managed */
192 	uint_t		devi_pm_flags;		/* pm flags */
193 	int		devi_pm_num_components;	/* number of components */
194 	size_t		devi_pm_comp_size;	/* size of devi_components */
195 	struct pm_component *devi_pm_components; /* array of pm components */
196 	struct dev_info *devi_pm_ppm;		/* ppm attached to this one */
197 	void		*devi_pm_ppm_private;	/* for use by ppm driver */
198 	int		devi_pm_dev_thresh;	/* "device" threshold */
199 	uint_t		devi_pm_kidsupcnt;	/* # of kids powered up */
200 	struct pm_scan	*devi_pm_scan;		/* pm scan info */
201 	uint_t		devi_pm_noinvolpm;	/* # of descendents no-invol */
202 	uint_t		devi_pm_volpmd;		/* # of voluntarily pm'ed */
203 	kmutex_t	devi_pm_lock;		/* pm lock for state */
204 	kmutex_t	devi_pm_busy_lock;	/* for component busy count */
205 
206 	uint_t		devi_state;		/* device/bus state flags */
207 						/* see below for definitions */
208 	kcondvar_t	devi_cv;		/* cv */
209 	int		devi_ref;		/* reference count */
210 
211 	dacf_rsrvlist_t *devi_dacf_tasks;	/* dacf reservation queue */
212 
213 	ddi_node_class_t devi_node_class;	/* Node class */
214 	int		devi_node_attributes;	/* Node attributes: See below */
215 
216 	char		*devi_device_class;
217 
218 	/*
219 	 * New mpxio kernel hooks entries
220 	 */
221 	int		devi_mdi_component;	/* mpxio component type */
222 	void		*devi_mdi_client;	/* mpxio client information */
223 	void		*devi_mdi_xhci;		/* vhci/phci info */
224 
225 	ddi_prop_list_t	*devi_global_prop_list;	/* driver global properties */
226 	major_t		devi_major;		/* driver major number */
227 	ddi_node_state_t devi_node_state;	/* state of node */
228 	uint_t		devi_flags;		/* configuration flags */
229 	int		devi_circular;		/* for recursive operations */
230 	void		*devi_busy_thread;	/* thread operating on node */
231 	void		*devi_taskq;		/* hotplug taskq */
232 
233 	/* device driver statistical and audit info */
234 	struct devinfo_audit *devi_audit;		/* last state change */
235 
236 	/*
237 	 * FMA support for resource caches and error handlers
238 	 */
239 	struct i_ddi_fmhdl	*devi_fmhdl;
240 
241 	uint_t		devi_cpr_flags;
242 
243 	/* Owned by DDI interrupt framework */
244 	devinfo_intr_t	*devi_intr_p;
245 
246 	void		*devi_nex_pm;		/* nexus PM private */
247 
248 	char		*devi_addr_buf;		/* buffer for devi_addr */
249 
250 	char		*devi_rebinding_name;	/* binding_name of rebind */
251 
252 	/* For device contracts that have this dip's minor node as resource */
253 	kmutex_t	devi_ct_lock;		/* contract lock */
254 	kcondvar_t	devi_ct_cv;		/* contract cv */
255 	int		devi_ct_count;		/* # of outstanding responses */
256 	int		devi_ct_neg;		/* neg. occurred on dip */
257 	list_t		devi_ct;
258 
259 	/* owned by bus framework */
260 	devi_bus_priv_t	devi_bus;		/* bus private data */
261 
262 	/* Declarations of the pure dynamic properties to snapshot */
263 	struct i_ddi_prop_dyn	*devi_prop_dyn_driver;	/* prop_op */
264 	struct i_ddi_prop_dyn	*devi_prop_dyn_parent;	/* bus_prop_op */
265 
266 #if defined(__x86)
267 	/* For x86 (Intel and AMD) IOMMU support */
268 	void		*devi_iommu;
269 	iommulib_handle_t	devi_iommulib_handle;
270 	iommulib_nexhandle_t	devi_iommulib_nex_handle;
271 #endif
272 
273 	/* Generic callback mechanism */
274 	ddi_cb_t	*devi_cb_p;
275 
276 	/* ndi 'flavors' */
277 	ndi_flavor_t	devi_flavor;		/* flavor assigned by parent */
278 	ndi_flavor_t	devi_flavorv_n;		/* number of child-flavors */
279 	void		**devi_flavorv;		/* child-flavor specific data */
280 
281 	/* Owned by hotplug framework */
282 	struct ddi_hp_cn_handle *devi_hp_hdlp;   /* hotplug handle list */
283 
284 	struct in_node  *devi_in_node; /* pointer to devinfo node's in_node_t */
285 
286 	/* detach event data */
287 	char	*devi_ev_path;
288 	int	devi_ev_instance;
289 };
290 
291 #define	DEVI(dev_info_type)	((struct dev_info *)(dev_info_type))
292 
293 /*
294  * NB: The 'name' field, for compatibility with old code (both existing
295  * device drivers and userland code), is now defined as the name used
296  * to bind the node to a device driver, and not the device node name.
297  * If the device node name does not define a binding to a device driver,
298  * and the framework uses a different algorithm to create the binding to
299  * the driver, the node name and binding name will be different.
300  *
301  * Note that this implies that the node name plus instance number does
302  * NOT create a unique driver id; only the binding name plus instance
303  * number creates a unique driver id.
304  *
305  * New code should not use 'devi_name'; use 'devi_binding_name' or
306  * 'devi_node_name' and/or the routines that access those fields.
307  */
308 
309 #define	devi_name devi_binding_name
310 
311 /*
312  * DDI_CF1, DDI_CF2 and DDI_DRV_UNLOADED are obsolete. They are kept
313  * around to allow legacy drivers to to compile.
314  */
315 #define	DDI_CF1(devi)		(DEVI(devi)->devi_addr != NULL)
316 #define	DDI_CF2(devi)		(DEVI(devi)->devi_ops != NULL)
317 #define	DDI_DRV_UNLOADED(devi)	(DEVI(devi)->devi_ops == &mod_nodev_ops)
318 
319 /*
320  * The device state flags (devi_state) contains information regarding
321  * the state of the device (Online/Offline/Down).  For bus nexus
322  * devices, the device state also contains state information regarding
323  * the state of the bus represented by this nexus node.
324  *
325  * Device state information is stored in bits [0-7], bus state in bits
326  * [8-15].
327  *
328  * NOTE: all devi_state updates should be protected by devi_lock.
329  */
330 #define	DEVI_DEVICE_OFFLINE	0x00000001
331 #define	DEVI_DEVICE_DOWN	0x00000002
332 #define	DEVI_DEVICE_DEGRADED	0x00000004
333 #define	DEVI_DEVICE_REMOVED	0x00000008 /* hardware removed */
334 
335 #define	DEVI_BUS_QUIESCED	0x00000100
336 #define	DEVI_BUS_DOWN		0x00000200
337 #define	DEVI_NDI_CONFIG		0x00000400 /* perform config when attaching */
338 
339 #define	DEVI_S_ATTACHING	0x00010000
340 #define	DEVI_S_DETACHING	0x00020000
341 #define	DEVI_S_ONLINING		0x00040000
342 #define	DEVI_S_OFFLINING	0x00080000
343 
344 #define	DEVI_S_INVOKING_DACF	0x00100000 /* busy invoking a dacf task */
345 
346 #define	DEVI_S_UNBOUND		0x00200000
347 #define	DEVI_S_REPORT		0x08000000 /* report status change */
348 
349 #define	DEVI_S_EVADD		0x10000000 /* state of devfs event */
350 #define	DEVI_S_EVREMOVE		0x20000000 /* state of devfs event */
351 #define	DEVI_S_NEED_RESET	0x40000000 /* devo_reset should be called */
352 
353 /*
354  * Device state macros.
355  * o All SET/CLR/DONE users must protect context with devi_lock.
356  * o DEVI_SET_DEVICE_ONLINE users must do his own DEVI_SET_REPORT.
357  * o DEVI_SET_DEVICE_{DOWN|DEGRADED|UP} should only be used when !OFFLINE.
358  * o DEVI_SET_DEVICE_UP clears DOWN and DEGRADED.
359  */
360 #define	DEVI_IS_DEVICE_OFFLINE(dip)					\
361 	((DEVI(dip)->devi_state & DEVI_DEVICE_OFFLINE) == DEVI_DEVICE_OFFLINE)
362 
363 #define	DEVI_SET_DEVICE_ONLINE(dip)	{				\
364 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
365 	if (DEVI(dip)->devi_state & DEVI_DEVICE_DEGRADED) {		\
366 		mutex_exit(&DEVI(dip)->devi_lock);			\
367 		e_ddi_undegrade_finalize(dip);				\
368 		mutex_enter(&DEVI(dip)->devi_lock);			\
369 	}								\
370 	/* setting ONLINE clears DOWN, DEGRADED, OFFLINE */		\
371 	DEVI(dip)->devi_state &= ~(DEVI_DEVICE_DOWN |			\
372 	    DEVI_DEVICE_DEGRADED | DEVI_DEVICE_OFFLINE);		\
373 	}
374 
375 #define	DEVI_SET_DEVICE_OFFLINE(dip)	{				\
376 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
377 	DEVI(dip)->devi_state |= (DEVI_DEVICE_OFFLINE | DEVI_S_REPORT);	\
378 	}
379 
380 #define	DEVI_IS_DEVICE_DOWN(dip)					\
381 	((DEVI(dip)->devi_state & DEVI_DEVICE_DOWN) == DEVI_DEVICE_DOWN)
382 
383 #define	DEVI_SET_DEVICE_DOWN(dip)	{				\
384 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
385 	ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip));				\
386 	DEVI(dip)->devi_state |= (DEVI_DEVICE_DOWN | DEVI_S_REPORT);	\
387 	}
388 
389 #define	DEVI_IS_DEVICE_DEGRADED(dip)					\
390 	((DEVI(dip)->devi_state &					\
391 	    (DEVI_DEVICE_DEGRADED|DEVI_DEVICE_DOWN)) == DEVI_DEVICE_DEGRADED)
392 
393 #define	DEVI_SET_DEVICE_DEGRADED(dip)	{				\
394 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
395 	ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip));				\
396 	mutex_exit(&DEVI(dip)->devi_lock);				\
397 	e_ddi_degrade_finalize(dip);					\
398 	mutex_enter(&DEVI(dip)->devi_lock);				\
399 	DEVI(dip)->devi_state |= (DEVI_DEVICE_DEGRADED | DEVI_S_REPORT); \
400 	}
401 
402 #define	DEVI_SET_DEVICE_UP(dip)		{				\
403 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
404 	ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip));				\
405 	if (DEVI(dip)->devi_state & DEVI_DEVICE_DEGRADED) {		\
406 		mutex_exit(&DEVI(dip)->devi_lock);			\
407 		e_ddi_undegrade_finalize(dip);				\
408 		mutex_enter(&DEVI(dip)->devi_lock);			\
409 	}								\
410 	DEVI(dip)->devi_state &= ~(DEVI_DEVICE_DEGRADED | DEVI_DEVICE_DOWN); \
411 	DEVI(dip)->devi_state |= DEVI_S_REPORT;				\
412 	}
413 
414 /* Device removal and insertion */
415 #define	DEVI_IS_DEVICE_REMOVED(dip)					\
416 	((DEVI(dip)->devi_state & DEVI_DEVICE_REMOVED) == DEVI_DEVICE_REMOVED)
417 
418 #define	DEVI_SET_DEVICE_REMOVED(dip)	{				\
419 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
420 	DEVI(dip)->devi_state |= DEVI_DEVICE_REMOVED | DEVI_S_REPORT;	\
421 	}
422 
423 #define	DEVI_SET_DEVICE_REINSERTED(dip)	{				\
424 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
425 	DEVI(dip)->devi_state &= ~DEVI_DEVICE_REMOVED;			\
426 	DEVI(dip)->devi_state |= DEVI_S_REPORT;				\
427 	}
428 
429 /* Bus state change macros */
430 #define	DEVI_IS_BUS_QUIESCED(dip)					\
431 	((DEVI(dip)->devi_state & DEVI_BUS_QUIESCED) == DEVI_BUS_QUIESCED)
432 
433 #define	DEVI_SET_BUS_ACTIVE(dip)	{				\
434 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
435 	DEVI(dip)->devi_state &= ~DEVI_BUS_QUIESCED;			\
436 	DEVI(dip)->devi_state |= DEVI_S_REPORT;				\
437 	}
438 
439 #define	DEVI_SET_BUS_QUIESCE(dip)	{				\
440 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
441 	DEVI(dip)->devi_state |= (DEVI_BUS_QUIESCED | DEVI_S_REPORT);	\
442 	}
443 
444 #define	DEVI_IS_BUS_DOWN(dip)						\
445 	((DEVI(dip)->devi_state & DEVI_BUS_DOWN) == DEVI_BUS_DOWN)
446 
447 #define	DEVI_SET_BUS_UP(dip)		{				\
448 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
449 	DEVI(dip)->devi_state &= ~DEVI_BUS_DOWN;			\
450 	DEVI(dip)->devi_state |= DEVI_S_REPORT;				\
451 	}
452 
453 #define	DEVI_SET_BUS_DOWN(dip)		{				\
454 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
455 	DEVI(dip)->devi_state |= (DEVI_BUS_DOWN | DEVI_S_REPORT);	\
456 	}
457 
458 /* Status change report needed */
459 #define	DEVI_NEED_REPORT(dip)						\
460 	((DEVI(dip)->devi_state & DEVI_S_REPORT) == DEVI_S_REPORT)
461 
462 #define	DEVI_SET_REPORT(dip)		{				\
463 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
464 	DEVI(dip)->devi_state |= DEVI_S_REPORT;				\
465 	}
466 
467 #define	DEVI_REPORT_DONE(dip)		{				\
468 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
469 	DEVI(dip)->devi_state &= ~DEVI_S_REPORT;			\
470 	}
471 
472 /* Do an NDI_CONFIG for its children */
473 #define	DEVI_NEED_NDI_CONFIG(dip)					\
474 	((DEVI(dip)->devi_state & DEVI_NDI_CONFIG) == DEVI_NDI_CONFIG)
475 
476 #define	DEVI_SET_NDI_CONFIG(dip)	{				\
477 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
478 	DEVI(dip)->devi_state |= DEVI_NDI_CONFIG;			\
479 	}
480 
481 #define	DEVI_CLR_NDI_CONFIG(dip)	{				\
482 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
483 	DEVI(dip)->devi_state &= ~DEVI_NDI_CONFIG;			\
484 	}
485 
486 /* Attaching or detaching state */
487 #define	DEVI_IS_ATTACHING(dip)						\
488 	((DEVI(dip)->devi_state & DEVI_S_ATTACHING) == DEVI_S_ATTACHING)
489 
490 #define	DEVI_SET_ATTACHING(dip)		{				\
491 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
492 	DEVI(dip)->devi_state |= DEVI_S_ATTACHING;			\
493 	}
494 
495 #define	DEVI_CLR_ATTACHING(dip)		{				\
496 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
497 	DEVI(dip)->devi_state &= ~DEVI_S_ATTACHING;			\
498 	}
499 
500 #define	DEVI_IS_DETACHING(dip)						\
501 	((DEVI(dip)->devi_state & DEVI_S_DETACHING) == DEVI_S_DETACHING)
502 
503 #define	DEVI_SET_DETACHING(dip)		{				\
504 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
505 	DEVI(dip)->devi_state |= DEVI_S_DETACHING;			\
506 	}
507 
508 #define	DEVI_CLR_DETACHING(dip)		{				\
509 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
510 	DEVI(dip)->devi_state &= ~DEVI_S_DETACHING;			\
511 	}
512 
513 /* Onlining or offlining state */
514 #define	DEVI_IS_ONLINING(dip)						\
515 	((DEVI(dip)->devi_state & DEVI_S_ONLINING) == DEVI_S_ONLINING)
516 
517 #define	DEVI_SET_ONLINING(dip)		{				\
518 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
519 	DEVI(dip)->devi_state |= DEVI_S_ONLINING;			\
520 	}
521 
522 #define	DEVI_CLR_ONLINING(dip)		{				\
523 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
524 	DEVI(dip)->devi_state &= ~DEVI_S_ONLINING;			\
525 	}
526 
527 #define	DEVI_IS_OFFLINING(dip)						\
528 	((DEVI(dip)->devi_state & DEVI_S_OFFLINING) == DEVI_S_OFFLINING)
529 
530 #define	DEVI_SET_OFFLINING(dip)		{				\
531 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
532 	DEVI(dip)->devi_state |= DEVI_S_OFFLINING;			\
533 	}
534 
535 #define	DEVI_CLR_OFFLINING(dip)		{				\
536 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
537 	DEVI(dip)->devi_state &= ~DEVI_S_OFFLINING;			\
538 	}
539 
540 #define	DEVI_IS_IN_RECONFIG(dip)					\
541 	(DEVI(dip)->devi_state & (DEVI_S_OFFLINING | DEVI_S_ONLINING))
542 
543 /* Busy invoking a dacf task against this node */
544 #define	DEVI_IS_INVOKING_DACF(dip)					\
545 	((DEVI(dip)->devi_state & DEVI_S_INVOKING_DACF) == DEVI_S_INVOKING_DACF)
546 
547 #define	DEVI_SET_INVOKING_DACF(dip)	{				\
548 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
549 	DEVI(dip)->devi_state |= DEVI_S_INVOKING_DACF;			\
550 	}
551 
552 #define	DEVI_CLR_INVOKING_DACF(dip)	{				\
553 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
554 	DEVI(dip)->devi_state &= ~DEVI_S_INVOKING_DACF;			\
555 	}
556 
557 /* Events for add/remove */
558 #define	DEVI_EVADD(dip)							\
559 	((DEVI(dip)->devi_state & DEVI_S_EVADD) == DEVI_S_EVADD)
560 
561 #define	DEVI_SET_EVADD(dip)		{				\
562 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
563 	DEVI(dip)->devi_state &= ~DEVI_S_EVREMOVE;			\
564 	DEVI(dip)->devi_state |= DEVI_S_EVADD;				\
565 	}
566 
567 #define	DEVI_EVREMOVE(dip)						\
568 	((DEVI(dip)->devi_state & DEVI_S_EVREMOVE) == DEVI_S_EVREMOVE)
569 
570 #define	DEVI_SET_EVREMOVE(dip)		{				\
571 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
572 	DEVI(dip)->devi_state &= ~DEVI_S_EVADD;				\
573 	DEVI(dip)->devi_state |= DEVI_S_EVREMOVE;			\
574 	}
575 
576 #define	DEVI_SET_EVUNINIT(dip)		{				\
577 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
578 	DEVI(dip)->devi_state &= ~(DEVI_S_EVADD | DEVI_S_EVREMOVE);	\
579 	}
580 
581 /* Need to call the devo_reset entry point for this device at shutdown */
582 #define	DEVI_NEED_RESET(dip)						\
583 	((DEVI(dip)->devi_state & DEVI_S_NEED_RESET) == DEVI_S_NEED_RESET)
584 
585 #define	DEVI_SET_NEED_RESET(dip)	{				\
586 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
587 	DEVI(dip)->devi_state |= DEVI_S_NEED_RESET;			\
588 	}
589 
590 #define	DEVI_CLR_NEED_RESET(dip)	{				\
591 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
592 	DEVI(dip)->devi_state &= ~DEVI_S_NEED_RESET;			\
593 	}
594 
595 /*
596  * devi_flags bits
597  *
598  * NOTE: all devi_state updates should be protected by devi_lock.
599  */
600 #define	DEVI_BUSY		0x00000001 /* busy configuring children */
601 #define	DEVI_MADE_CHILDREN	0x00000002 /* children made from specs */
602 #define	DEVI_ATTACHED_CHILDREN	0x00000004 /* attached all existing children */
603 #define	DEVI_BRANCH_HELD	0x00000008 /* branch rooted at this dip held */
604 #define	DEVI_NO_BIND		0x00000010 /* prevent driver binding */
605 #define	DEVI_CACHED_DEVID	0x00000020 /* devid cached in devid cache */
606 #define	DEVI_PHCI_SIGNALS_VHCI	0x00000040 /* pHCI ndi_devi_exit signals vHCI */
607 #define	DEVI_REBIND		0x00000080 /* post initchild driver rebind */
608 #define	DEVI_RETIRED		0x00000100 /* device is retired */
609 #define	DEVI_RETIRING		0x00000200 /* being evaluated for retire */
610 #define	DEVI_R_CONSTRAINT	0x00000400 /* constraints have been applied  */
611 #define	DEVI_R_BLOCKED		0x00000800 /* constraints block retire  */
612 #define	DEVI_CT_NOP		0x00001000 /* NOP contract event occurred */
613 #define	DEVI_PCI_DEVICE		0x00002000 /* dip is PCI */
614 
615 #define	DEVI_BUSY_CHANGING(dip)	(DEVI(dip)->devi_flags & DEVI_BUSY)
616 #define	DEVI_BUSY_OWNED(dip)	(DEVI_BUSY_CHANGING(dip) &&	\
617 	((DEVI(dip))->devi_busy_thread == curthread))
618 
619 #define	DEVI_IS_PCI(dip)	(DEVI(dip)->devi_flags & DEVI_PCI_DEVICE)
620 #define	DEVI_SET_PCI(dip)	(DEVI(dip)->devi_flags |= (DEVI_PCI_DEVICE))
621 
622 char	*i_ddi_devi_class(dev_info_t *);
623 int	i_ddi_set_devi_class(dev_info_t *, char *, int);
624 
625 /*
626  * This structure represents one piece of bus space occupied by a given
627  * device. It is used in an array for devices with multiple address windows.
628  */
629 struct regspec {
630 	uint_t regspec_bustype;		/* cookie for bus type it's on */
631 	uint_t regspec_addr;		/* address of reg relative to bus */
632 	uint_t regspec_size;		/* size of this register set */
633 };
634 
635 /*
636  * This structure represents one piece of nexus bus space.
637  * It is used in an array for nexi with multiple bus spaces
638  * to define the childs offsets in the parents bus space.
639  */
640 struct rangespec {
641 	uint_t rng_cbustype;		/* Child's address, hi order */
642 	uint_t rng_coffset;		/* Child's address, lo order */
643 	uint_t rng_bustype;		/* Parent's address, hi order */
644 	uint_t rng_offset;		/* Parent's address, lo order */
645 	uint_t rng_size;		/* size of space for this entry */
646 };
647 
648 #ifdef _KERNEL
649 
650 typedef enum {
651 	DDI_PRE = 0,
652 	DDI_POST = 1
653 } ddi_pre_post_t;
654 
655 /*
656  * This structure represents notification of a child attach event
657  * These could both be the same if attach/detach commands were in the
658  * same name space.
659  * Note that the target dip is passed as an arg already.
660  */
661 struct attachspec {
662 	ddi_attach_cmd_t cmd;	/* type of event */
663 	ddi_pre_post_t	when;	/* one of DDI_PRE or DDI_POST */
664 	dev_info_t	*pdip;	/* parent of attaching node */
665 	int		result;	/* result of attach op (post command only) */
666 };
667 
668 /*
669  * This structure represents notification of a child detach event
670  * Note that the target dip is passed as an arg already.
671  */
672 struct detachspec {
673 	ddi_detach_cmd_t cmd;	/* type of event */
674 	ddi_pre_post_t	when;	/* one of DDI_PRE or DDI_POST */
675 	dev_info_t	*pdip;	/* parent of detaching node */
676 	int		result;	/* result of detach op (post command only) */
677 };
678 
679 #endif /* _KERNEL */
680 
681 typedef enum {
682 	DDM_MINOR = 0,
683 	DDM_ALIAS,
684 	DDM_DEFAULT,
685 	DDM_INTERNAL_PATH
686 } ddi_minor_type;
687 
688 /* implementation flags for driver specified device access control */
689 #define	DM_NO_FSPERM	0x1
690 
691 struct devplcy;
692 
693 struct ddi_minor {
694 	char		*name;		/* name of node */
695 	dev_t		dev;		/* device number */
696 	int		spec_type;	/* block or char */
697 	int		flags;		/* access flags */
698 	char		*node_type;	/* block, byte, serial, network */
699 	struct devplcy	*node_priv;	/* privilege for this minor */
700 	mode_t		priv_mode;	/* default apparent privilege mode */
701 };
702 
703 /*
704  * devi_node_attributes contains node attributes private to the
705  * ddi implementation. As a consumer, do not use these bit definitions
706  * directly, use the ndi functions that check for the existence of the
707  * specific node attributes.
708  *
709  * DDI_PERSISTENT indicates a 'persistent' node; one that is not
710  * automatically freed by the framework if the driver is unloaded
711  * or the driver fails to attach to this node.
712  *
713  * DDI_AUTO_ASSIGNED_NODEID indicates that the nodeid was auto-assigned
714  * by the framework and should be auto-freed if the node is removed.
715  *
716  * DDI_VHCI_NODE indicates that the node type is VHCI. This flag
717  * must be set by ndi_devi_config_vhci() routine only.
718  *
719  * DDI_HIDDEN_NODE indicates that the node should not show up in snapshots
720  * or in /devices.
721  *
722  * DDI_HOTPLUG_NODE indicates that the node created by nexus hotplug.
723  */
724 #define	DDI_PERSISTENT			0x01
725 #define	DDI_AUTO_ASSIGNED_NODEID	0x02
726 #define	DDI_VHCI_NODE			0x04
727 #define	DDI_HIDDEN_NODE			0x08
728 #define	DDI_HOTPLUG_NODE		0x10
729 
730 #define	DEVI_VHCI_NODE(dip)						\
731 	(DEVI(dip)->devi_node_attributes & DDI_VHCI_NODE)
732 
733 /*
734  * The ddi_minor_data structure gets filled in by ddi_create_minor_node.
735  * It then gets attached to the devinfo node as a property.
736  */
737 struct ddi_minor_data {
738 	struct ddi_minor_data *next;	/* next one in the chain */
739 	dev_info_t	*dip;		/* pointer to devinfo node */
740 	ddi_minor_type	type;		/* Following data type */
741 	struct ddi_minor d_minor;	/* Actual minor node data */
742 };
743 
744 #define	ddm_name	d_minor.name
745 #define	ddm_dev		d_minor.dev
746 #define	ddm_flags	d_minor.flags
747 #define	ddm_spec_type	d_minor.spec_type
748 #define	ddm_node_type	d_minor.node_type
749 #define	ddm_node_priv	d_minor.node_priv
750 #define	ddm_priv_mode	d_minor.priv_mode
751 
752 /*
753  * parent private data structure contains register, interrupt, property
754  * and range information.
755  */
756 struct ddi_parent_private_data {
757 	int par_nreg;			/* number of regs */
758 	struct regspec *par_reg;	/* array of regs */
759 	int par_nintr;			/* number of interrupts */
760 	struct intrspec *par_intr;	/* array of possible interrupts */
761 	int par_nrng;			/* number of ranges */
762 	struct rangespec *par_rng;	/* array of ranges */
763 };
764 #define	DEVI_PD(d)	\
765 	((struct ddi_parent_private_data *)DEVI((d))->devi_parent_data)
766 
767 #define	sparc_pd_getnreg(dev)		(DEVI_PD(dev)->par_nreg)
768 #define	sparc_pd_getnintr(dev)		(DEVI_PD(dev)->par_nintr)
769 #define	sparc_pd_getnrng(dev)		(DEVI_PD(dev)->par_nrng)
770 #define	sparc_pd_getreg(dev, n)		(&DEVI_PD(dev)->par_reg[(n)])
771 #define	sparc_pd_getintr(dev, n)	(&DEVI_PD(dev)->par_intr[(n)])
772 #define	sparc_pd_getrng(dev, n)		(&DEVI_PD(dev)->par_rng[(n)])
773 
774 #ifdef _KERNEL
775 /*
776  * This data structure is private to the indexed soft state allocator.
777  */
778 typedef struct i_ddi_soft_state {
779 	void		**array;	/* the array of pointers */
780 	kmutex_t	lock;		/* serialize access to this struct */
781 	size_t		size;		/* how many bytes per state struct */
782 	size_t		n_items;	/* how many structs herein */
783 	struct i_ddi_soft_state *next;	/* 'dirty' elements */
784 } i_ddi_soft_state;
785 
786 /*
787  * This data structure is private to the stringhashed soft state allocator.
788  */
789 typedef struct i_ddi_soft_state_bystr {
790 	size_t		ss_size;	/* how many bytes per state struct */
791 	mod_hash_t	*ss_mod_hash;	/* hash implementation */
792 } i_ddi_soft_state_bystr;
793 
794 /*
795  * This data structure is private to the ddi_strid_* implementation
796  */
797 typedef struct i_ddi_strid {
798 	size_t		strid_chunksz;
799 	size_t		strid_spacesz;
800 	id_space_t	*strid_space;
801 	mod_hash_t	*strid_byid;
802 	mod_hash_t	*strid_bystr;
803 } i_ddi_strid;
804 #endif /* _KERNEL */
805 
806 /*
807  * Solaris DDI DMA implementation structure and function definitions.
808  *
809  * Note: no callers of DDI functions must depend upon data structures
810  * declared below. They are not guaranteed to remain constant.
811  */
812 
813 /*
814  * Implementation DMA mapping structure.
815  *
816  * The publicly visible ddi_dma_req structure is filled
817  * in by a caller that wishes to map a memory object
818  * for DMA. Internal to this implementation of the public
819  * DDI DMA functions this request structure is put together
820  * with bus nexus specific functions that have additional
821  * information and constraints as to how to go about doing
822  * the requested mapping function
823  *
824  * In this implementation, some of the information from the
825  * original requester is retained throughout the lifetime
826  * of the I/O mapping being active.
827  */
828 
829 /*
830  * This is the implementation specific description
831  * of how we've mapped an object for DMA.
832  */
833 #if defined(__sparc)
834 typedef struct ddi_dma_impl {
835 	/*
836 	 * DMA mapping information
837 	 */
838 	ulong_t	dmai_mapping;	/* mapping cookie */
839 
840 	/*
841 	 * Size of the current mapping, in bytes.
842 	 *
843 	 * Note that this is distinct from the size of the object being mapped
844 	 * for DVMA. We might have only a portion of the object mapped at any
845 	 * given point in time.
846 	 */
847 	uint_t	dmai_size;
848 
849 	/*
850 	 * Offset, in bytes, into object that is currently mapped.
851 	 */
852 	off_t	dmai_offset;
853 
854 	/*
855 	 * Information gathered from the original DMA mapping
856 	 * request and saved for the lifetime of the mapping.
857 	 */
858 	uint_t		dmai_minxfer;
859 	uint_t		dmai_burstsizes;
860 	uint_t		dmai_ndvmapages;
861 	uint_t		dmai_pool;	/* cached DVMA space */
862 	uint_t		dmai_rflags;	/* requester's flags + ours */
863 	uint_t		dmai_inuse;	/* active handle? */
864 	uint_t		dmai_nwin;
865 	uint_t		dmai_winsize;
866 	caddr_t		dmai_nexus_private;
867 	void		*dmai_iopte;
868 	uint_t		*dmai_sbi;
869 	void		*dmai_minfo;	/* random mapping information */
870 	dev_info_t	*dmai_rdip;	/* original requester's dev_info_t */
871 	ddi_dma_obj_t	dmai_object;	/* requester's object */
872 	ddi_dma_attr_t	dmai_attr;	/* DMA attributes */
873 	ddi_dma_cookie_t *dmai_cookie;	/* pointer to first DMA cookie */
874 
875 	int		(*dmai_fault_check)(struct ddi_dma_impl *handle);
876 	void		(*dmai_fault_notify)(struct ddi_dma_impl *handle);
877 	int		dmai_fault;
878 	ndi_err_t	dmai_error;
879 
880 } ddi_dma_impl_t;
881 
882 #elif defined(__x86)
883 
884 /*
885  * ddi_dma_impl portion that genunix (sunddi.c) depends on. x86 rootnex
886  * implementation specific state is in dmai_private.
887  */
888 typedef struct ddi_dma_impl {
889 	ddi_dma_cookie_t *dmai_cookie; /* array of DMA cookies */
890 	void		*dmai_private;
891 
892 	/*
893 	 * Information gathered from the original dma mapping
894 	 * request and saved for the lifetime of the mapping.
895 	 */
896 	uint_t		dmai_minxfer;
897 	uint_t		dmai_burstsizes;
898 	uint_t		dmai_rflags;	/* requester's flags + ours */
899 	int		dmai_nwin;
900 	dev_info_t	*dmai_rdip;	/* original requester's dev_info_t */
901 
902 	ddi_dma_attr_t	dmai_attr;	/* DMA attributes */
903 
904 	int		(*dmai_fault_check)(struct ddi_dma_impl *handle);
905 	void		(*dmai_fault_notify)(struct ddi_dma_impl *handle);
906 	int		dmai_fault;
907 	ndi_err_t	dmai_error;
908 } ddi_dma_impl_t;
909 
910 #else
911 #error "struct ddi_dma_impl not defined for this architecture"
912 #endif  /* defined(__sparc) */
913 
914 /*
915  * For now DMA segments share state with the DMA handle
916  */
917 typedef ddi_dma_impl_t ddi_dma_seg_impl_t;
918 
919 /*
920  * These flags use reserved bits from the dma request flags.
921  *
922  * A note about the DMP_NOSYNC flags: the root nexus will
923  * set these as it sees best. If an intermediate nexus
924  * actually needs these operations, then during the unwind
925  * from the call to ddi_dma_bind, the nexus driver *must*
926  * clear the appropriate flag(s). This is because, as an
927  * optimization, ddi_dma_sync(9F) looks at these flags before
928  * deciding to spend the time going back up the tree.
929  */
930 
931 #define	_DMCM1	DDI_DMA_RDWR|DDI_DMA_REDZONE|DDI_DMA_PARTIAL
932 #define	_DMCM2	DDI_DMA_CONSISTENT|DMP_VMEREQ
933 #define	DMP_DDIFLAGS	(_DMCM1|_DMCM2)
934 #define	DMP_SHADOW	0x20
935 #define	DMP_LKIOPB	0x40
936 #define	DMP_LKSYSV	0x80
937 #define	DMP_IOCACHE	0x100
938 #define	DMP_USEHAT	0x200
939 #define	DMP_PHYSADDR	0x400
940 #define	DMP_INVALID	0x800
941 #define	DMP_NOLIMIT	0x1000
942 #define	DMP_VMEREQ	0x10000000
943 #define	DMP_BYPASSNEXUS	0x20000000
944 #define	DMP_NODEVSYNC	0x40000000
945 #define	DMP_NOCPUSYNC	0x80000000
946 #define	DMP_NOSYNC	(DMP_NODEVSYNC|DMP_NOCPUSYNC)
947 
948 /*
949  * In order to complete a device to device mapping that
950  * has percolated as high as an IU nexus (gone that high
951  * because the DMA request is a VADDR type), we define
952  * structure to use with the DDI_CTLOPS_DMAPMAPC request
953  * that re-traverses the request tree to finish the
954  * DMA 'mapping' for a device.
955  */
956 struct dma_phys_mapc {
957 	struct ddi_dma_req *dma_req;	/* original request */
958 	ddi_dma_impl_t *mp;		/* current handle, or none */
959 	int nptes;			/* number of ptes */
960 	void *ptes;			/* ptes already read */
961 };
962 
963 #define	MAXCALLBACK		20
964 
965 /*
966  * Callback definitions
967  */
968 struct ddi_callback {
969 	struct ddi_callback	*c_nfree;
970 	struct ddi_callback	*c_nlist;
971 	int			(*c_call)();
972 	int			c_count;
973 	caddr_t			c_arg;
974 	size_t			c_size;
975 };
976 
977 /*
978  * Pure dynamic property declaration. A pure dynamic property is a property
979  * for which a driver's prop_op(9E) implementation will return a value on
980  * demand, but the property name does not exist on a property list (global,
981  * driver, system, or hardware) - the person asking for the value must know
982  * the name and type information.
983  *
984  * For a pure dynamic property to show up in a di_init() devinfo shapshot, the
985  * devinfo driver must know name and type. The i_ddi_prop_dyn_t mechanism
986  * allows a driver to define an array of the name/type information of its
987  * dynamic properties. When a driver declares its dynamic properties in a
988  * i_ddi_prop_dyn_t array, and registers that array using
989  * i_ddi_prop_dyn_driver_set() the devinfo driver has sufficient information
990  * to represent the properties in a snapshot - calling the driver's
991  * prop_op(9E) to obtain values.
992  *
993  * The last element of a i_ddi_prop_dyn_t is detected via a NULL dp_name value.
994  *
995  * A pure dynamic property name associated with a minor_node/dev_t should be
996  * defined with a dp_spec_type of S_IFCHR or S_IFBLK, as appropriate.  The
997  * driver's prop_op(9E) entry point will be called for all
998  * ddi_create_minor_node(9F) nodes of the specified spec_type. For a driver
999  * where not all minor_node/dev_t combinations support the same named
1000  * properties, it is the responsibility of the prop_op(9E) implementation to
1001  * sort out what combinations are appropriate.
1002  *
1003  * A pure dynamic property of a devinfo node should be defined with a
1004  * dp_spec_type of 0.
1005  *
1006  * NB: Public DDI property interfaces no longer support pure dynamic
1007  * properties, but they are still still used.  A prime example is the cmlb
1008  * implementation of size(9P) properties. Using pure dynamic properties
1009  * reduces the space required to maintain per-partition information. Since
1010  * there are no public interfaces to create pure dynamic properties,
1011  * the i_ddi_prop_dyn_t mechanism should remain private.
1012  */
1013 typedef struct i_ddi_prop_dyn {
1014 	char	*dp_name;		/* name of dynamic property */
1015 	int	dp_type;		/* DDI_PROP_TYPE_ of property */
1016 	int	dp_spec_type;		/* 0, S_IFCHR, S_IFBLK */
1017 } i_ddi_prop_dyn_t;
1018 void			i_ddi_prop_dyn_driver_set(dev_info_t *,
1019 			    i_ddi_prop_dyn_t *);
1020 i_ddi_prop_dyn_t	*i_ddi_prop_dyn_driver_get(dev_info_t *);
1021 void			i_ddi_prop_dyn_parent_set(dev_info_t *,
1022 			    i_ddi_prop_dyn_t *);
1023 i_ddi_prop_dyn_t	*i_ddi_prop_dyn_parent_get(dev_info_t *);
1024 void			i_ddi_prop_dyn_cache_invalidate(dev_info_t *,
1025 			    i_ddi_prop_dyn_t *);
1026 
1027 /*
1028  * Device id - Internal definition.
1029  */
1030 #define	DEVID_MAGIC_MSB		0x69
1031 #define	DEVID_MAGIC_LSB		0x64
1032 #define	DEVID_REV_MSB		0x00
1033 #define	DEVID_REV_LSB		0x01
1034 #define	DEVID_HINT_SIZE		4
1035 
1036 typedef struct impl_devid {
1037 	uchar_t	did_magic_hi;			/* device id magic # (msb) */
1038 	uchar_t	did_magic_lo;			/* device id magic # (lsb) */
1039 	uchar_t	did_rev_hi;			/* device id revision # (msb) */
1040 	uchar_t	did_rev_lo;			/* device id revision # (lsb) */
1041 	uchar_t	did_type_hi;			/* device id type (msb) */
1042 	uchar_t	did_type_lo;			/* device id type (lsb) */
1043 	uchar_t	did_len_hi;			/* length of devid data (msb) */
1044 	uchar_t	did_len_lo;			/* length of devid data (lsb) */
1045 	char	did_driver[DEVID_HINT_SIZE];	/* driver name - HINT */
1046 	char	did_id[1];			/* start of device id data */
1047 } impl_devid_t;
1048 
1049 #define	DEVID_GETTYPE(devid)		((ushort_t) \
1050 					    (((devid)->did_type_hi << NBBY) + \
1051 					    (devid)->did_type_lo))
1052 
1053 #define	DEVID_FORMTYPE(devid, type)	(devid)->did_type_hi = hibyte((type)); \
1054 					(devid)->did_type_lo = lobyte((type));
1055 
1056 #define	DEVID_GETLEN(devid)		((ushort_t) \
1057 					    (((devid)->did_len_hi << NBBY) + \
1058 					    (devid)->did_len_lo))
1059 
1060 #define	DEVID_FORMLEN(devid, len)	(devid)->did_len_hi = hibyte((len)); \
1061 					(devid)->did_len_lo = lobyte((len));
1062 
1063 /*
1064  * Per PSARC/1995/352, a binary devid contains fields for <magic number>,
1065  * <revision>, <driver_hint>, <type>, <id_length>, and the <id> itself.
1066  * This proposal would encode the binary devid into a string consisting
1067  * of "<magic><revision>,<driver_hint>@<type><id>" as indicated below
1068  * (<id_length> is rederived from the length of the string
1069  * representation of the <id>):
1070  *
1071  *	<magic>		->"id"
1072  *
1073  *	<rev>		->"%d"	// "0" -> type of DEVID_NONE  "id0"
1074  *				// NOTE: PSARC/1995/352 <revision> is "1".
1075  *				// NOTE: support limited to 10 revisions
1076  *				//	in current implementation
1077  *
1078  *	<driver_hint>	->"%s"	// "sd"/"ssd"
1079  *				// NOTE: driver names limited to 4
1080  *				//	characters for <revision> "1"
1081  *
1082  *	<type>		->'w' |	// DEVID_SCSI3_WWN	<hex_id>
1083  *			'W' |	// DEVID_SCSI3_WWN	<ascii_id>
1084  *			't' |	// DEVID_SCSI3_VPD_T10	<hex_id>
1085  *			'T' |	// DEVID_SCSI3_VPD_T10	<ascii_id>
1086  *			'x' |	// DEVID_SCSI3_VPD_EUI	<hex_id>
1087  *			'X' |	// DEVID_SCSI3_VPD_EUI	<ascii_id>
1088  *			'n' |	// DEVID_SCSI3_VPD_NAA	<hex_id>
1089  *			'N' |	// DEVID_SCSI3_VPD_NAA	<ascii_id>
1090  *			's' |	// DEVID_SCSI_SERIAL	<hex_id>
1091  *			'S' |	// DEVID_SCSI_SERIAL	<ascii_id>
1092  *			'f' |	// DEVID_FAB		<hex_id>
1093  *			'F' |	// DEVID_FAB		<ascii_id>
1094  *			'e' |	// DEVID_ENCAP		<hex_id>
1095  *			'E' |	// DEVID_ENCAP		<ascii_id>
1096  *			'a' |	// DEVID_ATA_SERIAL	<hex_id>
1097  *			'A' |	// DEVID_ATA_SERIAL	<ascii_id>
1098  *			'u' |	// unknown		<hex_id>
1099  *			'U'	// unknown		<ascii_id>
1100  *				// NOTE:lower case -> <hex_id>
1101  *				//	upper case -> <ascii_id>
1102  *				// NOTE:this covers all types currently
1103  *				//	defined for <revision> 1.
1104  *				// NOTE:a <type> can be added
1105  *				//	without changing the <revision>.
1106  *
1107  *	<id>		-> <ascii_id> |	// <type> is upper case
1108  *			<hex_id>	// <type> is lower case
1109  *
1110  *	<ascii_id>	// only if all bytes of binary <id> field
1111  *			// are in the set:
1112  *			//	[A-Z][a-z][0-9]+-.= and space and 0x00
1113  *			// the encoded form is:
1114  *			//	[A-Z][a-z][0-9]+-.= and _ and ~
1115  *			//	NOTE: ' ' <=> '_', 0x00 <=> '~'
1116  *			// these sets are chosen to avoid shell
1117  *			// and conflicts with DDI node names.
1118  *
1119  *	<hex_id>	// if not <ascii_id>; each byte of binary
1120  *			// <id> maps a to 2 digit ascii hex
1121  *			// representation in the string.
1122  *
1123  * This encoding provides a meaningful correlation between the /devices
1124  * path and the devid string where possible.
1125  *
1126  *   Fibre:
1127  *	sbus@6,0/SUNW,socal@d,10000/sf@1,0/ssd@w21000020370bb488,0:c,raw
1128  *	id1,ssd@w20000020370bb488:c,raw
1129  *
1130  *   Copper:
1131  *	sbus@7,0/SUNW,fas@3,8800000/sd@a,0:c
1132  *	id1,sd@SIBM_____1XY210__________:c
1133  */
1134 /* determine if a byte of an id meets ASCII representation requirements */
1135 #define	DEVID_IDBYTE_ISASCII(b)		(				\
1136 	(((b) >= 'a') && ((b) <= 'z')) ||				\
1137 	(((b) >= 'A') && ((b) <= 'Z')) ||				\
1138 	(((b) >= '0') && ((b) <= '9')) ||				\
1139 	(b == '+') || (b == '-') || (b == '.') || (b == '=') ||		\
1140 	(b == ' ') || (b == 0x00))
1141 
1142 /* set type to lower case to indicate that the did_id field is ascii */
1143 #define	DEVID_TYPE_SETASCII(c)	(c - 0x20)	/* 'a' -> 'A' */
1144 
1145 /* determine from type if did_id field is binary or ascii */
1146 #define	DEVID_TYPE_ISASCII(c)	(((c) >= 'A') && ((c) <= 'Z'))
1147 
1148 /* convert type field from binary to ascii */
1149 #define	DEVID_TYPE_BINTOASCII(b)	(				\
1150 	((b) == DEVID_SCSI3_WWN)	? 'w' :				\
1151 	((b) == DEVID_SCSI3_VPD_T10)	? 't' :				\
1152 	((b) == DEVID_SCSI3_VPD_EUI)	? 'x' :				\
1153 	((b) == DEVID_SCSI3_VPD_NAA)	? 'n' :				\
1154 	((b) == DEVID_SCSI_SERIAL)	? 's' :				\
1155 	((b) == DEVID_FAB)		? 'f' :				\
1156 	((b) == DEVID_ENCAP)		? 'e' :				\
1157 	((b) == DEVID_ATA_SERIAL)	? 'a' :				\
1158 	'u')						/* unknown */
1159 
1160 /* convert type field from ascii to binary */
1161 #define	DEVID_TYPE_ASCIITOBIN(c)	(				\
1162 	(((c) == 'w') || ((c) == 'W'))	? DEVID_SCSI3_WWN :		\
1163 	(((c) == 't') || ((c) == 'T'))	? DEVID_SCSI3_VPD_T10 :		\
1164 	(((c) == 'x') || ((c) == 'X'))	? DEVID_SCSI3_VPD_EUI :		\
1165 	(((c) == 'n') || ((c) == 'N'))	? DEVID_SCSI3_VPD_NAA :		\
1166 	(((c) == 's') || ((c) == 'S'))	? DEVID_SCSI_SERIAL :		\
1167 	(((c) == 'f') || ((c) == 'F'))	? DEVID_FAB :			\
1168 	(((c) == 'e') || ((c) == 'E'))	? DEVID_ENCAP :			\
1169 	(((c) == 'a') || ((c) == 'A'))	? DEVID_ATA_SERIAL :		\
1170 	DEVID_MAXTYPE +1)				/* unknown */
1171 
1172 /* determine if the type should be forced to hex encoding (non-ascii) */
1173 #define	DEVID_TYPE_BIN_FORCEHEX(b) (	\
1174 	((b) == DEVID_SCSI3_WWN) ||	\
1175 	((b) == DEVID_SCSI3_VPD_EUI) ||	\
1176 	((b) == DEVID_SCSI3_VPD_NAA) ||	\
1177 	((b) == DEVID_FAB))
1178 
1179 /* determine if the type is from a scsi3 vpd */
1180 #define	IS_DEVID_SCSI3_VPD_TYPE(b) (	\
1181 	((b) == DEVID_SCSI3_VPD_T10) ||	\
1182 	((b) == DEVID_SCSI3_VPD_EUI) ||	\
1183 	((b) == DEVID_SCSI3_VPD_NAA))
1184 
1185 /* convert rev field from binary to ascii (only supports 10 revs) */
1186 #define	DEVID_REV_BINTOASCII(b) (b + '0')
1187 
1188 /* convert rev field from ascii to binary (only supports 10 revs) */
1189 #define	DEVID_REV_ASCIITOBIN(c) (c - '0')
1190 
1191 /* name of devid property */
1192 #define	DEVID_PROP_NAME	"devid"
1193 
1194 /*
1195  * prop_name used by pci_{save,restore}_config_regs()
1196  */
1197 #define	SAVED_CONFIG_REGS "pci-config-regs"
1198 #define	SAVED_CONFIG_REGS_MASK "pcie-config-regs-mask"
1199 #define	SAVED_CONFIG_REGS_CAPINFO "pci-cap-info"
1200 
1201 typedef struct pci_config_header_state {
1202 	uint16_t	chs_command;
1203 	uint8_t		chs_cache_line_size;
1204 	uint8_t		chs_latency_timer;
1205 	uint8_t		chs_header_type;
1206 	uint8_t		chs_sec_latency_timer;
1207 	uint8_t		chs_bridge_control;
1208 	uint32_t	chs_base0;
1209 	uint32_t	chs_base1;
1210 	uint32_t	chs_base2;
1211 	uint32_t	chs_base3;
1212 	uint32_t	chs_base4;
1213 	uint32_t	chs_base5;
1214 } pci_config_header_state_t;
1215 
1216 #ifdef _KERNEL
1217 
1218 typedef struct pci_cap_save_desc {
1219 	uint16_t	cap_offset;
1220 	uint16_t	cap_id;
1221 	uint32_t	cap_nregs;
1222 } pci_cap_save_desc_t;
1223 
1224 typedef struct pci_cap_entry {
1225 	uint16_t		cap_id;
1226 	uint16_t		cap_reg;
1227 	uint16_t		cap_mask;
1228 	uint32_t		cap_ndwords;
1229 	uint32_t (*cap_save_func)(ddi_acc_handle_t confhdl, uint16_t cap_ptr,
1230 	    uint32_t *regbuf, uint32_t ndwords);
1231 } pci_cap_entry_t;
1232 
1233 #endif /* _KERNEL */
1234 
1235 #ifdef	__cplusplus
1236 }
1237 #endif
1238 
1239 #endif	/* _SYS_DDI_IMPLDEFS_H */
1240