1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #ifndef _SYS_DDI_IMPLDEFS_H 27 #define _SYS_DDI_IMPLDEFS_H 28 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/t_lock.h> 32 #include <sys/ddipropdefs.h> 33 #include <sys/devops.h> 34 #include <sys/autoconf.h> 35 #include <sys/mutex.h> 36 #include <vm/page.h> 37 #include <sys/dacf_impl.h> 38 #include <sys/ndifm.h> 39 #include <sys/epm.h> 40 #include <sys/ddidmareq.h> 41 #include <sys/ddi_intr.h> 42 #include <sys/ddi_isa.h> 43 44 #ifdef __cplusplus 45 extern "C" { 46 #endif 47 48 /* 49 * The device id implementation has been switched to be based on properties. 50 * For compatibility with di_devid libdevinfo interface the following 51 * must be defined: 52 */ 53 #define DEVID_COMPATIBILITY ((ddi_devid_t)-1) 54 55 /* 56 * Definitions for node class. 57 * DDI_NC_PROM: a node with a nodeid that may be used in a promif call. 58 * DDI_NC_PSEUDO: a software created node with a software assigned nodeid. 59 */ 60 typedef enum { 61 DDI_NC_PROM = 0, 62 DDI_NC_PSEUDO 63 } ddi_node_class_t; 64 65 /* 66 * dev_info: The main device information structure this is intended to be 67 * opaque to drivers and drivers should use ddi functions to 68 * access *all* driver accessible fields. 69 * 70 * devi_parent_data includes property lists (interrupts, registers, etc.) 71 * devi_driver_data includes whatever the driver wants to place there. 72 */ 73 struct devinfo_audit; 74 75 typedef struct devi_port { 76 union { 77 struct { 78 uint32_t type; 79 uint32_t pad; 80 } port; 81 uint64_t type64; 82 } info; 83 void *priv_p; 84 } devi_port_t; 85 86 typedef struct devi_bus_priv { 87 devi_port_t port_up; 88 devi_port_t port_down; 89 } devi_bus_priv_t; 90 91 struct dev_info { 92 93 struct dev_info *devi_parent; /* my parent node in tree */ 94 struct dev_info *devi_child; /* my child list head */ 95 struct dev_info *devi_sibling; /* next element on my level */ 96 97 char *devi_binding_name; /* name used to bind driver: */ 98 /* shared storage, points to */ 99 /* devi_node_name, devi_compat_names */ 100 /* or devi_rebinding_name */ 101 102 char *devi_addr; /* address part of name */ 103 104 int devi_nodeid; /* device nodeid */ 105 int devi_instance; /* device instance number */ 106 107 struct dev_ops *devi_ops; /* driver operations */ 108 109 void *devi_parent_data; /* parent private data */ 110 void *devi_driver_data; /* driver private data */ 111 112 ddi_prop_t *devi_drv_prop_ptr; /* head of driver prop list */ 113 ddi_prop_t *devi_sys_prop_ptr; /* head of system prop list */ 114 115 struct ddi_minor_data *devi_minor; /* head of minor list */ 116 struct dev_info *devi_next; /* Next instance of this device */ 117 kmutex_t devi_lock; /* Protects per-devinfo data */ 118 119 /* logical parents for busop primitives */ 120 121 struct dev_info *devi_bus_map_fault; /* bus_map_fault parent */ 122 struct dev_info *devi_bus_dma_map; /* bus_dma_map parent */ 123 struct dev_info *devi_bus_dma_allochdl; /* bus_dma_newhdl parent */ 124 struct dev_info *devi_bus_dma_freehdl; /* bus_dma_freehdl parent */ 125 struct dev_info *devi_bus_dma_bindhdl; /* bus_dma_bindhdl parent */ 126 struct dev_info *devi_bus_dma_unbindhdl; /* bus_dma_unbindhdl parent */ 127 struct dev_info *devi_bus_dma_flush; /* bus_dma_flush parent */ 128 struct dev_info *devi_bus_dma_win; /* bus_dma_win parent */ 129 struct dev_info *devi_bus_dma_ctl; /* bus_dma_ctl parent */ 130 struct dev_info *devi_bus_ctl; /* bus_ctl parent */ 131 132 ddi_prop_t *devi_hw_prop_ptr; /* head of hw prop list */ 133 134 char *devi_node_name; /* The 'name' of the node */ 135 char *devi_compat_names; /* A list of driver names */ 136 size_t devi_compat_length; /* Size of compat_names */ 137 138 int (*devi_bus_dma_bindfunc)(dev_info_t *, dev_info_t *, 139 ddi_dma_handle_t, struct ddi_dma_req *, ddi_dma_cookie_t *, 140 uint_t *); 141 int (*devi_bus_dma_unbindfunc)(dev_info_t *, dev_info_t *, 142 ddi_dma_handle_t); 143 144 char *devi_devid_str; /* registered device id */ 145 146 /* 147 * power management entries 148 * components exist even if the device is not currently power managed 149 */ 150 struct pm_info *devi_pm_info; /* 0 => dev not power managed */ 151 uint_t devi_pm_flags; /* pm flags */ 152 int devi_pm_num_components; /* number of components */ 153 size_t devi_pm_comp_size; /* size of devi_components */ 154 struct pm_component *devi_pm_components; /* array of pm components */ 155 struct dev_info *devi_pm_ppm; /* ppm attached to this one */ 156 void *devi_pm_ppm_private; /* for use by ppm driver */ 157 int devi_pm_dev_thresh; /* "device" threshold */ 158 uint_t devi_pm_kidsupcnt; /* # of kids powered up */ 159 struct pm_scan *devi_pm_scan; /* pm scan info */ 160 uint_t devi_pm_noinvolpm; /* # of descendents no-invol */ 161 uint_t devi_pm_volpmd; /* # of voluntarily pm'ed */ 162 kmutex_t devi_pm_lock; /* pm lock for state */ 163 kmutex_t devi_pm_busy_lock; /* for component busy count */ 164 165 uint_t devi_state; /* device/bus state flags */ 166 /* see below for definitions */ 167 kcondvar_t devi_cv; /* cv */ 168 int devi_ref; /* reference count */ 169 170 dacf_rsrvlist_t *devi_dacf_tasks; /* dacf reservation queue */ 171 172 ddi_node_class_t devi_node_class; /* Node class */ 173 int devi_node_attributes; /* Node attributes: See below */ 174 175 char *devi_device_class; 176 177 /* 178 * New mpxio kernel hooks entries 179 */ 180 int devi_mdi_component; /* mpxio component type */ 181 void *devi_mdi_client; /* mpxio client information */ 182 void *devi_mdi_xhci; /* vhci/phci info */ 183 184 ddi_prop_list_t *devi_global_prop_list; /* driver global properties */ 185 major_t devi_major; /* driver major number */ 186 ddi_node_state_t devi_node_state; /* state of node */ 187 uint_t devi_flags; /* configuration flags */ 188 int devi_circular; /* for recursive operations */ 189 void *devi_busy_thread; /* thread operating on node */ 190 void *devi_taskq; /* hotplug taskq */ 191 192 /* device driver statistical and audit info */ 193 struct devinfo_audit *devi_audit; /* last state change */ 194 195 /* 196 * FMA support for resource caches and error handlers 197 */ 198 struct i_ddi_fmhdl *devi_fmhdl; 199 200 uint_t devi_cpr_flags; 201 202 /* For interrupt support */ 203 devinfo_intr_t *devi_intr_p; 204 205 void *devi_nex_pm; /* nexus PM private */ 206 207 char *devi_addr_buf; /* buffer for devi_addr */ 208 209 char *devi_rebinding_name; /* binding_name of rebind */ 210 211 /* For device contracts that have this dip's minor node as resource */ 212 kmutex_t devi_ct_lock; /* contract lock */ 213 kcondvar_t devi_ct_cv; /* contract cv */ 214 int devi_ct_count; /* # of outstanding responses */ 215 int devi_ct_neg; /* neg. occurred on dip */ 216 list_t devi_ct; 217 218 /* owned by bus framework */ 219 devi_bus_priv_t devi_bus; /* bus private data */ 220 221 /* Declarations of the pure dynamic properties to snapshot */ 222 struct i_ddi_prop_dyn *devi_prop_dyn_driver; /* prop_op */ 223 struct i_ddi_prop_dyn *devi_prop_dyn_parent; /* bus_prop_op */ 224 225 /* For intel iommu support */ 226 void *devi_iommu_private; 227 }; 228 229 #define DEVI(dev_info_type) ((struct dev_info *)(dev_info_type)) 230 231 /* 232 * NB: The 'name' field, for compatibility with old code (both existing 233 * device drivers and userland code), is now defined as the name used 234 * to bind the node to a device driver, and not the device node name. 235 * If the device node name does not define a binding to a device driver, 236 * and the framework uses a different algorithm to create the binding to 237 * the driver, the node name and binding name will be different. 238 * 239 * Note that this implies that the node name plus instance number does 240 * NOT create a unique driver id; only the binding name plus instance 241 * number creates a unique driver id. 242 * 243 * New code should not use 'devi_name'; use 'devi_binding_name' or 244 * 'devi_node_name' and/or the routines that access those fields. 245 */ 246 247 #define devi_name devi_binding_name 248 249 /* 250 * DDI_CF1, DDI_CF2 and DDI_DRV_UNLOADED are obsolete. They are kept 251 * around to allow legacy drivers to to compile. 252 */ 253 #define DDI_CF1(devi) (DEVI(devi)->devi_addr != NULL) 254 #define DDI_CF2(devi) (DEVI(devi)->devi_ops != NULL) 255 #define DDI_DRV_UNLOADED(devi) (DEVI(devi)->devi_ops == &mod_nodev_ops) 256 257 /* 258 * The device state flags (devi_state) contains information regarding 259 * the state of the device (Online/Offline/Down). For bus nexus 260 * devices, the device state also contains state information regarding 261 * the state of the bus represented by this nexus node. 262 * 263 * Device state information is stored in bits [0-7], bus state in bits 264 * [8-15]. 265 * 266 * NOTE: all devi_state updates should be protected by devi_lock. 267 */ 268 #define DEVI_DEVICE_OFFLINE 0x00000001 269 #define DEVI_DEVICE_DOWN 0x00000002 270 #define DEVI_DEVICE_DEGRADED 0x00000004 271 #define DEVI_DEVICE_REMOVED 0x00000008 /* hardware removed */ 272 273 #define DEVI_BUS_QUIESCED 0x00000100 274 #define DEVI_BUS_DOWN 0x00000200 275 #define DEVI_NDI_CONFIG 0x00000400 /* perform config when attaching */ 276 277 #define DEVI_S_ATTACHING 0x00010000 278 #define DEVI_S_DETACHING 0x00020000 279 #define DEVI_S_ONLINING 0x00040000 280 #define DEVI_S_OFFLINING 0x00080000 281 282 #define DEVI_S_INVOKING_DACF 0x00100000 /* busy invoking a dacf task */ 283 284 #define DEVI_S_UNBOUND 0x00200000 285 #define DEVI_S_REPORT 0x08000000 /* report status change */ 286 287 #define DEVI_S_EVADD 0x10000000 /* state of devfs event */ 288 #define DEVI_S_EVREMOVE 0x20000000 /* state of devfs event */ 289 #define DEVI_S_NEED_RESET 0x40000000 /* devo_reset should be called */ 290 291 /* 292 * Device state macros. 293 * o All SET/CLR/DONE users must protect context with devi_lock. 294 * o DEVI_SET_DEVICE_ONLINE users must do his own DEVI_SET_REPORT. 295 * o DEVI_SET_DEVICE_{DOWN|DEGRADED|UP} should only be used when !OFFLINE. 296 * o DEVI_SET_DEVICE_UP clears DOWN and DEGRADED. 297 */ 298 #define DEVI_IS_DEVICE_OFFLINE(dip) \ 299 ((DEVI(dip)->devi_state & DEVI_DEVICE_OFFLINE) == DEVI_DEVICE_OFFLINE) 300 301 #define DEVI_SET_DEVICE_ONLINE(dip) { \ 302 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 303 if (DEVI(dip)->devi_state & DEVI_DEVICE_DEGRADED) { \ 304 mutex_exit(&DEVI(dip)->devi_lock); \ 305 e_ddi_undegrade_finalize(dip); \ 306 mutex_enter(&DEVI(dip)->devi_lock); \ 307 } \ 308 /* setting ONLINE clears DOWN, DEGRADED, OFFLINE */ \ 309 DEVI(dip)->devi_state &= ~(DEVI_DEVICE_DOWN | \ 310 DEVI_DEVICE_DEGRADED | DEVI_DEVICE_OFFLINE); \ 311 } 312 313 #define DEVI_SET_DEVICE_OFFLINE(dip) { \ 314 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 315 DEVI(dip)->devi_state |= (DEVI_DEVICE_OFFLINE | DEVI_S_REPORT); \ 316 } 317 318 #define DEVI_IS_DEVICE_DOWN(dip) \ 319 ((DEVI(dip)->devi_state & DEVI_DEVICE_DOWN) == DEVI_DEVICE_DOWN) 320 321 #define DEVI_SET_DEVICE_DOWN(dip) { \ 322 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 323 ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip)); \ 324 DEVI(dip)->devi_state |= (DEVI_DEVICE_DOWN | DEVI_S_REPORT); \ 325 } 326 327 #define DEVI_IS_DEVICE_DEGRADED(dip) \ 328 ((DEVI(dip)->devi_state & \ 329 (DEVI_DEVICE_DEGRADED|DEVI_DEVICE_DOWN)) == DEVI_DEVICE_DEGRADED) 330 331 #define DEVI_SET_DEVICE_DEGRADED(dip) { \ 332 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 333 ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip)); \ 334 mutex_exit(&DEVI(dip)->devi_lock); \ 335 e_ddi_degrade_finalize(dip); \ 336 mutex_enter(&DEVI(dip)->devi_lock); \ 337 DEVI(dip)->devi_state |= (DEVI_DEVICE_DEGRADED | DEVI_S_REPORT); \ 338 } 339 340 #define DEVI_SET_DEVICE_UP(dip) { \ 341 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 342 ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip)); \ 343 if (DEVI(dip)->devi_state & DEVI_DEVICE_DEGRADED) { \ 344 mutex_exit(&DEVI(dip)->devi_lock); \ 345 e_ddi_undegrade_finalize(dip); \ 346 mutex_enter(&DEVI(dip)->devi_lock); \ 347 } \ 348 DEVI(dip)->devi_state &= ~(DEVI_DEVICE_DEGRADED | DEVI_DEVICE_DOWN); \ 349 DEVI(dip)->devi_state |= DEVI_S_REPORT; \ 350 } 351 352 /* Device removal and insertion */ 353 #define DEVI_IS_DEVICE_REMOVED(dip) \ 354 ((DEVI(dip)->devi_state & DEVI_DEVICE_REMOVED) == DEVI_DEVICE_REMOVED) 355 356 #define DEVI_SET_DEVICE_REMOVED(dip) { \ 357 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 358 DEVI(dip)->devi_state |= DEVI_DEVICE_REMOVED; \ 359 } 360 361 #define DEVI_SET_DEVICE_REINSERTED(dip) { \ 362 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 363 DEVI(dip)->devi_state &= ~DEVI_DEVICE_REMOVED; \ 364 } 365 366 /* Bus state change macros */ 367 #define DEVI_IS_BUS_QUIESCED(dip) \ 368 ((DEVI(dip)->devi_state & DEVI_BUS_QUIESCED) == DEVI_BUS_QUIESCED) 369 370 #define DEVI_SET_BUS_ACTIVE(dip) { \ 371 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 372 DEVI(dip)->devi_state &= ~DEVI_BUS_QUIESCED; \ 373 DEVI(dip)->devi_state |= DEVI_S_REPORT; \ 374 } 375 376 #define DEVI_SET_BUS_QUIESCE(dip) { \ 377 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 378 DEVI(dip)->devi_state |= (DEVI_BUS_QUIESCED | DEVI_S_REPORT); \ 379 } 380 381 #define DEVI_IS_BUS_DOWN(dip) \ 382 ((DEVI(dip)->devi_state & DEVI_BUS_DOWN) == DEVI_BUS_DOWN) 383 384 #define DEVI_SET_BUS_UP(dip) { \ 385 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 386 DEVI(dip)->devi_state &= ~DEVI_BUS_DOWN; \ 387 DEVI(dip)->devi_state |= DEVI_S_REPORT; \ 388 } 389 390 #define DEVI_SET_BUS_DOWN(dip) { \ 391 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 392 DEVI(dip)->devi_state |= (DEVI_BUS_DOWN | DEVI_S_REPORT); \ 393 } 394 395 /* Status change report needed */ 396 #define DEVI_NEED_REPORT(dip) \ 397 ((DEVI(dip)->devi_state & DEVI_S_REPORT) == DEVI_S_REPORT) 398 399 #define DEVI_SET_REPORT(dip) { \ 400 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 401 DEVI(dip)->devi_state |= DEVI_S_REPORT; \ 402 } 403 404 #define DEVI_REPORT_DONE(dip) { \ 405 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 406 DEVI(dip)->devi_state &= ~DEVI_S_REPORT; \ 407 } 408 409 /* Do an NDI_CONFIG for its children */ 410 #define DEVI_NEED_NDI_CONFIG(dip) \ 411 ((DEVI(dip)->devi_state & DEVI_NDI_CONFIG) == DEVI_NDI_CONFIG) 412 413 #define DEVI_SET_NDI_CONFIG(dip) { \ 414 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 415 DEVI(dip)->devi_state |= DEVI_NDI_CONFIG; \ 416 } 417 418 #define DEVI_CLR_NDI_CONFIG(dip) { \ 419 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 420 DEVI(dip)->devi_state &= ~DEVI_NDI_CONFIG; \ 421 } 422 423 /* Attaching or detaching state */ 424 #define DEVI_IS_ATTACHING(dip) \ 425 ((DEVI(dip)->devi_state & DEVI_S_ATTACHING) == DEVI_S_ATTACHING) 426 427 #define DEVI_SET_ATTACHING(dip) { \ 428 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 429 DEVI(dip)->devi_state |= DEVI_S_ATTACHING; \ 430 } 431 432 #define DEVI_CLR_ATTACHING(dip) { \ 433 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 434 DEVI(dip)->devi_state &= ~DEVI_S_ATTACHING; \ 435 } 436 437 #define DEVI_IS_DETACHING(dip) \ 438 ((DEVI(dip)->devi_state & DEVI_S_DETACHING) == DEVI_S_DETACHING) 439 440 #define DEVI_SET_DETACHING(dip) { \ 441 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 442 DEVI(dip)->devi_state |= DEVI_S_DETACHING; \ 443 } 444 445 #define DEVI_CLR_DETACHING(dip) { \ 446 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 447 DEVI(dip)->devi_state &= ~DEVI_S_DETACHING; \ 448 } 449 450 /* Onlining or offlining state */ 451 #define DEVI_IS_ONLINING(dip) \ 452 ((DEVI(dip)->devi_state & DEVI_S_ONLINING) == DEVI_S_ONLINING) 453 454 #define DEVI_SET_ONLINING(dip) { \ 455 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 456 DEVI(dip)->devi_state |= DEVI_S_ONLINING; \ 457 } 458 459 #define DEVI_CLR_ONLINING(dip) { \ 460 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 461 DEVI(dip)->devi_state &= ~DEVI_S_ONLINING; \ 462 } 463 464 #define DEVI_IS_OFFLINING(dip) \ 465 ((DEVI(dip)->devi_state & DEVI_S_OFFLINING) == DEVI_S_OFFLINING) 466 467 #define DEVI_SET_OFFLINING(dip) { \ 468 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 469 DEVI(dip)->devi_state |= DEVI_S_OFFLINING; \ 470 } 471 472 #define DEVI_CLR_OFFLINING(dip) { \ 473 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 474 DEVI(dip)->devi_state &= ~DEVI_S_OFFLINING; \ 475 } 476 477 #define DEVI_IS_IN_RECONFIG(dip) \ 478 (DEVI(dip)->devi_state & (DEVI_S_OFFLINING | DEVI_S_ONLINING)) 479 480 /* Busy invoking a dacf task against this node */ 481 #define DEVI_IS_INVOKING_DACF(dip) \ 482 ((DEVI(dip)->devi_state & DEVI_S_INVOKING_DACF) == DEVI_S_INVOKING_DACF) 483 484 #define DEVI_SET_INVOKING_DACF(dip) { \ 485 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 486 DEVI(dip)->devi_state |= DEVI_S_INVOKING_DACF; \ 487 } 488 489 #define DEVI_CLR_INVOKING_DACF(dip) { \ 490 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 491 DEVI(dip)->devi_state &= ~DEVI_S_INVOKING_DACF; \ 492 } 493 494 /* Events for add/remove */ 495 #define DEVI_EVADD(dip) \ 496 ((DEVI(dip)->devi_state & DEVI_S_EVADD) == DEVI_S_EVADD) 497 498 #define DEVI_SET_EVADD(dip) { \ 499 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 500 DEVI(dip)->devi_state &= ~DEVI_S_EVREMOVE; \ 501 DEVI(dip)->devi_state |= DEVI_S_EVADD; \ 502 } 503 504 #define DEVI_EVREMOVE(dip) \ 505 ((DEVI(dip)->devi_state & DEVI_S_EVREMOVE) == DEVI_S_EVREMOVE) 506 507 #define DEVI_SET_EVREMOVE(dip) { \ 508 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 509 DEVI(dip)->devi_state &= ~DEVI_S_EVADD; \ 510 DEVI(dip)->devi_state |= DEVI_S_EVREMOVE; \ 511 } 512 513 #define DEVI_SET_EVUNINIT(dip) { \ 514 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 515 DEVI(dip)->devi_state &= ~(DEVI_S_EVADD | DEVI_S_EVREMOVE); \ 516 } 517 518 /* Need to call the devo_reset entry point for this device at shutdown */ 519 #define DEVI_NEED_RESET(dip) \ 520 ((DEVI(dip)->devi_state & DEVI_S_NEED_RESET) == DEVI_S_NEED_RESET) 521 522 #define DEVI_SET_NEED_RESET(dip) { \ 523 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 524 DEVI(dip)->devi_state |= DEVI_S_NEED_RESET; \ 525 } 526 527 #define DEVI_CLR_NEED_RESET(dip) { \ 528 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 529 DEVI(dip)->devi_state &= ~DEVI_S_NEED_RESET; \ 530 } 531 532 /* 533 * devi_flags bits 534 * 535 * NOTE: all devi_state updates should be protected by devi_lock. 536 */ 537 #define DEVI_BUSY 0x00000001 /* busy configuring children */ 538 #define DEVI_MADE_CHILDREN 0x00000002 /* children made from specs */ 539 #define DEVI_ATTACHED_CHILDREN 0x00000004 /* attached all existing children */ 540 #define DEVI_BRANCH_HELD 0x00000008 /* branch rooted at this dip held */ 541 #define DEVI_NO_BIND 0x00000010 /* prevent driver binding */ 542 #define DEVI_REGISTERED_DEVID 0x00000020 /* device registered a devid */ 543 #define DEVI_PHCI_SIGNALS_VHCI 0x00000040 /* pHCI ndi_devi_exit signals vHCI */ 544 #define DEVI_REBIND 0x00000080 /* post initchild driver rebind */ 545 #define DEVI_RETIRED 0x00000100 /* device is retired */ 546 #define DEVI_RETIRING 0x00000200 /* being evaluated for retire */ 547 #define DEVI_R_CONSTRAINT 0x00000400 /* constraints have been applied */ 548 #define DEVI_R_BLOCKED 0x00000800 /* constraints block retire */ 549 #define DEVI_CT_NOP 0x00001000 /* NOP contract event occurred */ 550 551 #define DEVI_BUSY_CHANGING(dip) (DEVI(dip)->devi_flags & DEVI_BUSY) 552 #define DEVI_BUSY_OWNED(dip) (DEVI_BUSY_CHANGING(dip) && \ 553 ((DEVI(dip))->devi_busy_thread == curthread)) 554 555 char *i_ddi_devi_class(dev_info_t *); 556 int i_ddi_set_devi_class(dev_info_t *, char *, int); 557 558 /* 559 * This structure represents one piece of bus space occupied by a given 560 * device. It is used in an array for devices with multiple address windows. 561 */ 562 struct regspec { 563 uint_t regspec_bustype; /* cookie for bus type it's on */ 564 uint_t regspec_addr; /* address of reg relative to bus */ 565 uint_t regspec_size; /* size of this register set */ 566 }; 567 568 /* 569 * This structure represents one piece of nexus bus space. 570 * It is used in an array for nexi with multiple bus spaces 571 * to define the childs offsets in the parents bus space. 572 */ 573 struct rangespec { 574 uint_t rng_cbustype; /* Child's address, hi order */ 575 uint_t rng_coffset; /* Child's address, lo order */ 576 uint_t rng_bustype; /* Parent's address, hi order */ 577 uint_t rng_offset; /* Parent's address, lo order */ 578 uint_t rng_size; /* size of space for this entry */ 579 }; 580 581 #ifdef _KERNEL 582 583 typedef enum { 584 DDI_PRE = 0, 585 DDI_POST = 1 586 } ddi_pre_post_t; 587 588 /* 589 * This structure represents notification of a child attach event 590 * These could both be the same if attach/detach commands were in the 591 * same name space. 592 * Note that the target dip is passed as an arg already. 593 */ 594 struct attachspec { 595 ddi_attach_cmd_t cmd; /* type of event */ 596 ddi_pre_post_t when; /* one of DDI_PRE or DDI_POST */ 597 dev_info_t *pdip; /* parent of attaching node */ 598 int result; /* result of attach op (post command only) */ 599 }; 600 601 /* 602 * This structure represents notification of a child detach event 603 * Note that the target dip is passed as an arg already. 604 */ 605 struct detachspec { 606 ddi_detach_cmd_t cmd; /* type of event */ 607 ddi_pre_post_t when; /* one of DDI_PRE or DDI_POST */ 608 dev_info_t *pdip; /* parent of detaching node */ 609 int result; /* result of detach op (post command only) */ 610 }; 611 612 #endif /* _KERNEL */ 613 614 typedef enum { 615 DDM_MINOR = 0, 616 DDM_ALIAS, 617 DDM_DEFAULT, 618 DDM_INTERNAL_PATH 619 } ddi_minor_type; 620 621 /* implementation flags for driver specified device access control */ 622 #define DM_NO_FSPERM 0x1 623 624 struct devplcy; 625 626 struct ddi_minor { 627 char *name; /* name of node */ 628 dev_t dev; /* device number */ 629 int spec_type; /* block or char */ 630 int flags; /* access flags */ 631 char *node_type; /* block, byte, serial, network */ 632 struct devplcy *node_priv; /* privilege for this minor */ 633 mode_t priv_mode; /* default apparent privilege mode */ 634 }; 635 636 /* 637 * devi_node_attributes contains node attributes private to the 638 * ddi implementation. As a consumer, do not use these bit definitions 639 * directly, use the ndi functions that check for the existence of the 640 * specific node attributes. 641 * 642 * DDI_PERSISTENT indicates a 'persistent' node; one that is not 643 * automatically freed by the framework if the driver is unloaded 644 * or the driver fails to attach to this node. 645 * 646 * DDI_AUTO_ASSIGNED_NODEID indicates that the nodeid was auto-assigned 647 * by the framework and should be auto-freed if the node is removed. 648 * 649 * DDI_VHCI_NODE indicates that the node type is VHCI. This flag 650 * must be set by ndi_devi_config_vhci() routine only. 651 */ 652 #define DDI_PERSISTENT 0x01 653 #define DDI_AUTO_ASSIGNED_NODEID 0x02 654 #define DDI_VHCI_NODE 0x04 655 656 #define DEVI_VHCI_NODE(dip) \ 657 (DEVI(dip)->devi_node_attributes & DDI_VHCI_NODE) 658 659 /* 660 * The ddi_minor_data structure gets filled in by ddi_create_minor_node. 661 * It then gets attached to the devinfo node as a property. 662 */ 663 struct ddi_minor_data { 664 struct ddi_minor_data *next; /* next one in the chain */ 665 dev_info_t *dip; /* pointer to devinfo node */ 666 ddi_minor_type type; /* Following data type */ 667 struct ddi_minor d_minor; /* Actual minor node data */ 668 }; 669 670 #define ddm_name d_minor.name 671 #define ddm_dev d_minor.dev 672 #define ddm_flags d_minor.flags 673 #define ddm_spec_type d_minor.spec_type 674 #define ddm_node_type d_minor.node_type 675 #define ddm_node_priv d_minor.node_priv 676 #define ddm_priv_mode d_minor.priv_mode 677 678 /* 679 * parent private data structure contains register, interrupt, property 680 * and range information. 681 */ 682 struct ddi_parent_private_data { 683 int par_nreg; /* number of regs */ 684 struct regspec *par_reg; /* array of regs */ 685 int par_nintr; /* number of interrupts */ 686 struct intrspec *par_intr; /* array of possible interrupts */ 687 int par_nrng; /* number of ranges */ 688 struct rangespec *par_rng; /* array of ranges */ 689 }; 690 #define DEVI_PD(d) \ 691 ((struct ddi_parent_private_data *)DEVI((d))->devi_parent_data) 692 693 #define sparc_pd_getnreg(dev) (DEVI_PD(dev)->par_nreg) 694 #define sparc_pd_getnintr(dev) (DEVI_PD(dev)->par_nintr) 695 #define sparc_pd_getnrng(dev) (DEVI_PD(dev)->par_nrng) 696 #define sparc_pd_getreg(dev, n) (&DEVI_PD(dev)->par_reg[(n)]) 697 #define sparc_pd_getintr(dev, n) (&DEVI_PD(dev)->par_intr[(n)]) 698 #define sparc_pd_getrng(dev, n) (&DEVI_PD(dev)->par_rng[(n)]) 699 700 /* 701 * This data structure is entirely private to the soft state allocator. 702 */ 703 struct i_ddi_soft_state { 704 void **array; /* the array of pointers */ 705 kmutex_t lock; /* serialize access to this struct */ 706 size_t size; /* how many bytes per state struct */ 707 size_t n_items; /* how many structs herein */ 708 struct i_ddi_soft_state *next; /* 'dirty' elements */ 709 }; 710 711 /* 712 * Solaris DDI DMA implementation structure and function definitions. 713 * 714 * Note: no callers of DDI functions must depend upon data structures 715 * declared below. They are not guaranteed to remain constant. 716 */ 717 718 /* 719 * Implementation DMA mapping structure. 720 * 721 * The publicly visible ddi_dma_req structure is filled 722 * in by a caller that wishes to map a memory object 723 * for DMA. Internal to this implementation of the public 724 * DDI DMA functions this request structure is put together 725 * with bus nexus specific functions that have additional 726 * information and constraints as to how to go about doing 727 * the requested mapping function 728 * 729 * In this implementation, some of the information from the 730 * original requester is retained throughout the lifetime 731 * of the I/O mapping being active. 732 */ 733 734 /* 735 * This is the implementation specific description 736 * of how we've mapped an object for DMA. 737 */ 738 #if defined(__sparc) 739 typedef struct ddi_dma_impl { 740 /* 741 * DMA mapping information 742 */ 743 ulong_t dmai_mapping; /* mapping cookie */ 744 745 /* 746 * Size of the current mapping, in bytes. 747 * 748 * Note that this is distinct from the size of the object being mapped 749 * for DVMA. We might have only a portion of the object mapped at any 750 * given point in time. 751 */ 752 uint_t dmai_size; 753 754 /* 755 * Offset, in bytes, into object that is currently mapped. 756 */ 757 off_t dmai_offset; 758 759 /* 760 * Information gathered from the original DMA mapping 761 * request and saved for the lifetime of the mapping. 762 */ 763 uint_t dmai_minxfer; 764 uint_t dmai_burstsizes; 765 uint_t dmai_ndvmapages; 766 uint_t dmai_pool; /* cached DVMA space */ 767 uint_t dmai_rflags; /* requester's flags + ours */ 768 uint_t dmai_inuse; /* active handle? */ 769 uint_t dmai_nwin; 770 uint_t dmai_winsize; 771 caddr_t dmai_nexus_private; 772 void *dmai_iopte; 773 uint_t *dmai_sbi; 774 void *dmai_minfo; /* random mapping information */ 775 dev_info_t *dmai_rdip; /* original requester's dev_info_t */ 776 ddi_dma_obj_t dmai_object; /* requester's object */ 777 ddi_dma_attr_t dmai_attr; /* DMA attributes */ 778 ddi_dma_cookie_t *dmai_cookie; /* pointer to first DMA cookie */ 779 780 int (*dmai_fault_check)(struct ddi_dma_impl *handle); 781 void (*dmai_fault_notify)(struct ddi_dma_impl *handle); 782 int dmai_fault; 783 ndi_err_t dmai_error; 784 785 } ddi_dma_impl_t; 786 787 #elif defined(__x86) 788 789 /* 790 * ddi_dma_impl portion that genunix (sunddi.c) depends on. x86 rootnex 791 * implementation specific state is in dmai_private. 792 */ 793 typedef struct ddi_dma_impl { 794 ddi_dma_cookie_t *dmai_cookie; /* array of DMA cookies */ 795 void *dmai_private; 796 797 /* 798 * Information gathered from the original dma mapping 799 * request and saved for the lifetime of the mapping. 800 */ 801 uint_t dmai_minxfer; 802 uint_t dmai_burstsizes; 803 uint_t dmai_rflags; /* requester's flags + ours */ 804 int dmai_nwin; 805 dev_info_t *dmai_rdip; /* original requester's dev_info_t */ 806 807 ddi_dma_attr_t dmai_attr; /* DMA attributes */ 808 809 int (*dmai_fault_check)(struct ddi_dma_impl *handle); 810 void (*dmai_fault_notify)(struct ddi_dma_impl *handle); 811 int dmai_fault; 812 ndi_err_t dmai_error; 813 } ddi_dma_impl_t; 814 815 #else 816 #error "struct ddi_dma_impl not defined for this architecture" 817 #endif /* defined(__sparc) */ 818 819 /* 820 * For now DMA segments share state with the DMA handle 821 */ 822 typedef ddi_dma_impl_t ddi_dma_seg_impl_t; 823 824 /* 825 * These flags use reserved bits from the dma request flags. 826 * 827 * A note about the DMP_NOSYNC flags: the root nexus will 828 * set these as it sees best. If an intermediate nexus 829 * actually needs these operations, then during the unwind 830 * from the call to ddi_dma_bind, the nexus driver *must* 831 * clear the appropriate flag(s). This is because, as an 832 * optimization, ddi_dma_sync(9F) looks at these flags before 833 * deciding to spend the time going back up the tree. 834 */ 835 836 #define _DMCM1 DDI_DMA_RDWR|DDI_DMA_REDZONE|DDI_DMA_PARTIAL 837 #define _DMCM2 DDI_DMA_CONSISTENT|DMP_VMEREQ 838 #define DMP_DDIFLAGS (_DMCM1|_DMCM2) 839 #define DMP_SHADOW 0x20 840 #define DMP_LKIOPB 0x40 841 #define DMP_LKSYSV 0x80 842 #define DMP_IOCACHE 0x100 843 #define DMP_USEHAT 0x200 844 #define DMP_PHYSADDR 0x400 845 #define DMP_INVALID 0x800 846 #define DMP_NOLIMIT 0x1000 847 #define DMP_VMEREQ 0x10000000 848 #define DMP_BYPASSNEXUS 0x20000000 849 #define DMP_NODEVSYNC 0x40000000 850 #define DMP_NOCPUSYNC 0x80000000 851 #define DMP_NOSYNC (DMP_NODEVSYNC|DMP_NOCPUSYNC) 852 853 /* 854 * In order to complete a device to device mapping that 855 * has percolated as high as an IU nexus (gone that high 856 * because the DMA request is a VADDR type), we define 857 * structure to use with the DDI_CTLOPS_DMAPMAPC request 858 * that re-traverses the request tree to finish the 859 * DMA 'mapping' for a device. 860 */ 861 struct dma_phys_mapc { 862 struct ddi_dma_req *dma_req; /* original request */ 863 ddi_dma_impl_t *mp; /* current handle, or none */ 864 int nptes; /* number of ptes */ 865 void *ptes; /* ptes already read */ 866 }; 867 868 #define MAXCALLBACK 20 869 870 /* 871 * Callback definitions 872 */ 873 struct ddi_callback { 874 struct ddi_callback *c_nfree; 875 struct ddi_callback *c_nlist; 876 int (*c_call)(); 877 int c_count; 878 caddr_t c_arg; 879 size_t c_size; 880 }; 881 882 /* 883 * Pure dynamic property declaration. A pure dynamic property is a property 884 * for which a driver's prop_op(9E) implementation will return a value on 885 * demand, but the property name does not exist on a property list (global, 886 * driver, system, or hardware) - the person asking for the value must know 887 * the name and type information. 888 * 889 * For a pure dynamic property to show up in a di_init() devinfo shapshot, the 890 * devinfo driver must know name and type. The i_ddi_prop_dyn_t mechanism 891 * allows a driver to define an array of the name/type information of its 892 * dynamic properties. When a driver declares its dynamic properties in a 893 * i_ddi_prop_dyn_t array, and registers that array using 894 * i_ddi_prop_dyn_driver_set() the devinfo driver has sufficient information 895 * to represent the properties in a snapshot - calling the driver's 896 * prop_op(9E) to obtain values. 897 * 898 * The last element of a i_ddi_prop_dyn_t is detected via a NULL dp_name value. 899 * 900 * A pure dynamic property name associated with a minor_node/dev_t should be 901 * defined with a dp_spec_type of S_IFCHR or S_IFBLK, as appropriate. The 902 * driver's prop_op(9E) entry point will be called for all 903 * ddi_create_minor_node(9F) nodes of the specified spec_type. For a driver 904 * where not all minor_node/dev_t combinations support the same named 905 * properties, it is the responsibility of the prop_op(9E) implementation to 906 * sort out what combinations are appropriate. 907 * 908 * A pure dynamic property of a devinfo node should be defined with a 909 * dp_spec_type of 0. 910 * 911 * NB: Public DDI property interfaces no longer support pure dynamic 912 * properties, but they are still still used. A prime example is the cmlb 913 * implementation of size(9P) properties. Using pure dynamic properties 914 * reduces the space required to maintain per-partition information. Since 915 * there are no public interfaces to create pure dynamic properties, 916 * the i_ddi_prop_dyn_t mechanism should remain private. 917 */ 918 typedef struct i_ddi_prop_dyn { 919 char *dp_name; /* name of dynamic property */ 920 int dp_type; /* DDI_PROP_TYPE_ of property */ 921 int dp_spec_type; /* 0, S_IFCHR, S_IFBLK */ 922 } i_ddi_prop_dyn_t; 923 void i_ddi_prop_dyn_driver_set(dev_info_t *, 924 i_ddi_prop_dyn_t *); 925 i_ddi_prop_dyn_t *i_ddi_prop_dyn_driver_get(dev_info_t *); 926 void i_ddi_prop_dyn_parent_set(dev_info_t *, 927 i_ddi_prop_dyn_t *); 928 i_ddi_prop_dyn_t *i_ddi_prop_dyn_parent_get(dev_info_t *); 929 void i_ddi_prop_dyn_cache_invalidate(dev_info_t *, 930 i_ddi_prop_dyn_t *); 931 932 /* 933 * Device id - Internal definition. 934 */ 935 #define DEVID_MAGIC_MSB 0x69 936 #define DEVID_MAGIC_LSB 0x64 937 #define DEVID_REV_MSB 0x00 938 #define DEVID_REV_LSB 0x01 939 #define DEVID_HINT_SIZE 4 940 941 typedef struct impl_devid { 942 uchar_t did_magic_hi; /* device id magic # (msb) */ 943 uchar_t did_magic_lo; /* device id magic # (lsb) */ 944 uchar_t did_rev_hi; /* device id revision # (msb) */ 945 uchar_t did_rev_lo; /* device id revision # (lsb) */ 946 uchar_t did_type_hi; /* device id type (msb) */ 947 uchar_t did_type_lo; /* device id type (lsb) */ 948 uchar_t did_len_hi; /* length of devid data (msb) */ 949 uchar_t did_len_lo; /* length of devid data (lsb) */ 950 char did_driver[DEVID_HINT_SIZE]; /* driver name - HINT */ 951 char did_id[1]; /* start of device id data */ 952 } impl_devid_t; 953 954 #define DEVID_GETTYPE(devid) ((ushort_t) \ 955 (((devid)->did_type_hi << NBBY) + \ 956 (devid)->did_type_lo)) 957 958 #define DEVID_FORMTYPE(devid, type) (devid)->did_type_hi = hibyte((type)); \ 959 (devid)->did_type_lo = lobyte((type)); 960 961 #define DEVID_GETLEN(devid) ((ushort_t) \ 962 (((devid)->did_len_hi << NBBY) + \ 963 (devid)->did_len_lo)) 964 965 #define DEVID_FORMLEN(devid, len) (devid)->did_len_hi = hibyte((len)); \ 966 (devid)->did_len_lo = lobyte((len)); 967 968 /* 969 * Per PSARC/1995/352, a binary devid contains fields for <magic number>, 970 * <revision>, <driver_hint>, <type>, <id_length>, and the <id> itself. 971 * This proposal would encode the binary devid into a string consisting 972 * of "<magic><revision>,<driver_hint>@<type><id>" as indicated below 973 * (<id_length> is rederived from the length of the string 974 * representation of the <id>): 975 * 976 * <magic> ->"id" 977 * 978 * <rev> ->"%d" // "0" -> type of DEVID_NONE "id0" 979 * // NOTE: PSARC/1995/352 <revision> is "1". 980 * // NOTE: support limited to 10 revisions 981 * // in current implementation 982 * 983 * <driver_hint> ->"%s" // "sd"/"ssd" 984 * // NOTE: driver names limited to 4 985 * // characters for <revision> "1" 986 * 987 * <type> ->'w' | // DEVID_SCSI3_WWN <hex_id> 988 * 'W' | // DEVID_SCSI3_WWN <ascii_id> 989 * 't' | // DEVID_SCSI3_VPD_T10 <hex_id> 990 * 'T' | // DEVID_SCSI3_VPD_T10 <ascii_id> 991 * 'x' | // DEVID_SCSI3_VPD_EUI <hex_id> 992 * 'X' | // DEVID_SCSI3_VPD_EUI <ascii_id> 993 * 'n' | // DEVID_SCSI3_VPD_NAA <hex_id> 994 * 'N' | // DEVID_SCSI3_VPD_NAA <ascii_id> 995 * 's' | // DEVID_SCSI_SERIAL <hex_id> 996 * 'S' | // DEVID_SCSI_SERIAL <ascii_id> 997 * 'f' | // DEVID_FAB <hex_id> 998 * 'F' | // DEVID_FAB <ascii_id> 999 * 'e' | // DEVID_ENCAP <hex_id> 1000 * 'E' | // DEVID_ENCAP <ascii_id> 1001 * 'a' | // DEVID_ATA_SERIAL <hex_id> 1002 * 'A' | // DEVID_ATA_SERIAL <ascii_id> 1003 * 'u' | // unknown <hex_id> 1004 * 'U' // unknown <ascii_id> 1005 * // NOTE: lower case -> <hex_id> 1006 * // upper case -> <ascii_id> 1007 * // NOTE: this covers all types currently 1008 * // defined for <revision> 1. 1009 * // NOTE: a <type> can be added 1010 * // without changing the <revision>. 1011 * 1012 * <id> -> <ascii_id> | // <type> is upper case 1013 * <hex_id> // <type> is lower case 1014 * 1015 * <ascii_id> // only if all bytes of binary <id> field 1016 * // are in the set: 1017 * // [A-Z][a-z][0-9]+-.= and space and 0x00 1018 * // the encoded form is: 1019 * // [A-Z][a-z][0-9]+-.= and _ and ~ 1020 * // NOTE: ' ' <=> '_', 0x00 <=> '~' 1021 * // these sets are chosen to avoid shell 1022 * // and conflicts with DDI node names. 1023 * 1024 * <hex_id> // if not <ascii_id>; each byte of binary 1025 * // <id> maps a to 2 digit ascii hex 1026 * // representation in the string. 1027 * 1028 * This encoding provides a meaningful correlation between the /devices 1029 * path and the devid string where possible. 1030 * 1031 * Fibre: 1032 * sbus@6,0/SUNW,socal@d,10000/sf@1,0/ssd@w21000020370bb488,0:c,raw 1033 * id1,ssd@w20000020370bb488:c,raw 1034 * 1035 * Copper: 1036 * sbus@7,0/SUNW,fas@3,8800000/sd@a,0:c 1037 * id1,sd@SIBM_____1XY210__________:c 1038 */ 1039 /* determine if a byte of an id meets ASCII representation requirements */ 1040 #define DEVID_IDBYTE_ISASCII(b) ( \ 1041 (((b) >= 'a') && ((b) <= 'z')) || \ 1042 (((b) >= 'A') && ((b) <= 'Z')) || \ 1043 (((b) >= '0') && ((b) <= '9')) || \ 1044 (b == '+') || (b == '-') || (b == '.') || (b == '=') || \ 1045 (b == ' ') || (b == 0x00)) 1046 1047 /* set type to lower case to indicate that the did_id field is ascii */ 1048 #define DEVID_TYPE_SETASCII(c) (c - 0x20) /* 'a' -> 'A' */ 1049 1050 /* determine from type if did_id field is binary or ascii */ 1051 #define DEVID_TYPE_ISASCII(c) (((c) >= 'A') && ((c) <= 'Z')) 1052 1053 /* convert type field from binary to ascii */ 1054 #define DEVID_TYPE_BINTOASCII(b) ( \ 1055 ((b) == DEVID_SCSI3_WWN) ? 'w' : \ 1056 ((b) == DEVID_SCSI3_VPD_T10) ? 't' : \ 1057 ((b) == DEVID_SCSI3_VPD_EUI) ? 'x' : \ 1058 ((b) == DEVID_SCSI3_VPD_NAA) ? 'n' : \ 1059 ((b) == DEVID_SCSI_SERIAL) ? 's' : \ 1060 ((b) == DEVID_FAB) ? 'f' : \ 1061 ((b) == DEVID_ENCAP) ? 'e' : \ 1062 ((b) == DEVID_ATA_SERIAL) ? 'a' : \ 1063 'u') /* unknown */ 1064 1065 /* convert type field from ascii to binary */ 1066 #define DEVID_TYPE_ASCIITOBIN(c) ( \ 1067 (((c) == 'w') || ((c) == 'W')) ? DEVID_SCSI3_WWN : \ 1068 (((c) == 't') || ((c) == 'T')) ? DEVID_SCSI3_VPD_T10 : \ 1069 (((c) == 'x') || ((c) == 'X')) ? DEVID_SCSI3_VPD_EUI : \ 1070 (((c) == 'n') || ((c) == 'N')) ? DEVID_SCSI3_VPD_NAA : \ 1071 (((c) == 's') || ((c) == 'S')) ? DEVID_SCSI_SERIAL : \ 1072 (((c) == 'f') || ((c) == 'F')) ? DEVID_FAB : \ 1073 (((c) == 'e') || ((c) == 'E')) ? DEVID_ENCAP : \ 1074 (((c) == 'a') || ((c) == 'A')) ? DEVID_ATA_SERIAL : \ 1075 DEVID_MAXTYPE +1) /* unknown */ 1076 1077 /* determine if the type should be forced to hex encoding (non-ascii) */ 1078 #define DEVID_TYPE_BIN_FORCEHEX(b) ( \ 1079 ((b) == DEVID_SCSI3_WWN) || \ 1080 ((b) == DEVID_SCSI3_VPD_EUI) || \ 1081 ((b) == DEVID_SCSI3_VPD_NAA) || \ 1082 ((b) == DEVID_FAB)) 1083 1084 /* determine if the type is from a scsi3 vpd */ 1085 #define IS_DEVID_SCSI3_VPD_TYPE(b) ( \ 1086 ((b) == DEVID_SCSI3_VPD_T10) || \ 1087 ((b) == DEVID_SCSI3_VPD_EUI) || \ 1088 ((b) == DEVID_SCSI3_VPD_NAA)) 1089 1090 /* convert rev field from binary to ascii (only supports 10 revs) */ 1091 #define DEVID_REV_BINTOASCII(b) (b + '0') 1092 1093 /* convert rev field from ascii to binary (only supports 10 revs) */ 1094 #define DEVID_REV_ASCIITOBIN(c) (c - '0') 1095 1096 /* name of devid property */ 1097 #define DEVID_PROP_NAME "devid" 1098 1099 /* 1100 * prop_name used by pci_{save,restore}_config_regs() 1101 */ 1102 #define SAVED_CONFIG_REGS "pci-config-regs" 1103 #define SAVED_CONFIG_REGS_MASK "pcie-config-regs-mask" 1104 #define SAVED_CONFIG_REGS_CAPINFO "pci-cap-info" 1105 1106 typedef struct pci_config_header_state { 1107 uint16_t chs_command; 1108 uint8_t chs_cache_line_size; 1109 uint8_t chs_latency_timer; 1110 uint8_t chs_header_type; 1111 uint8_t chs_sec_latency_timer; 1112 uint8_t chs_bridge_control; 1113 uint32_t chs_base0; 1114 uint32_t chs_base1; 1115 uint32_t chs_base2; 1116 uint32_t chs_base3; 1117 uint32_t chs_base4; 1118 uint32_t chs_base5; 1119 } pci_config_header_state_t; 1120 1121 #ifdef _KERNEL 1122 1123 typedef struct pci_cap_save_desc { 1124 uint16_t cap_offset; 1125 uint16_t cap_id; 1126 uint32_t cap_nregs; 1127 } pci_cap_save_desc_t; 1128 1129 typedef struct pci_cap_entry { 1130 uint16_t cap_id; 1131 uint32_t cap_ndwords; 1132 uint32_t (*cap_save_func)(ddi_acc_handle_t confhdl, uint16_t cap_ptr, 1133 uint32_t *regbuf, uint32_t ndwords); 1134 } pci_cap_entry_t; 1135 1136 #endif /* _KERNEL */ 1137 1138 #ifdef __cplusplus 1139 } 1140 #endif 1141 1142 #endif /* _SYS_DDI_IMPLDEFS_H */ 1143