xref: /titanic_50/usr/src/uts/common/sys/ddi_impldefs.h (revision 2ef9abdc6ea9bad985430325b12b90938a8cd18f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #ifndef _SYS_DDI_IMPLDEFS_H
27 #define	_SYS_DDI_IMPLDEFS_H
28 
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/t_lock.h>
32 #include <sys/ddipropdefs.h>
33 #include <sys/devops.h>
34 #include <sys/autoconf.h>
35 #include <sys/mutex.h>
36 #include <vm/page.h>
37 #include <sys/dacf_impl.h>
38 #include <sys/ndifm.h>
39 #include <sys/epm.h>
40 #include <sys/ddidmareq.h>
41 #include <sys/ddi_intr.h>
42 #include <sys/ddi_isa.h>
43 
44 #ifdef	__cplusplus
45 extern "C" {
46 #endif
47 
48 /*
49  * The device id implementation has been switched to be based on properties.
50  * For compatibility with di_devid libdevinfo interface the following
51  * must be defined:
52  */
53 #define	DEVID_COMPATIBILITY	((ddi_devid_t)-1)
54 
55 /*
56  * Definitions for node class.
57  * DDI_NC_PROM: a node with a nodeid that may be used in a promif call.
58  * DDI_NC_PSEUDO: a software created node with a software assigned nodeid.
59  */
60 typedef enum {
61 	DDI_NC_PROM = 0,
62 	DDI_NC_PSEUDO
63 } ddi_node_class_t;
64 
65 /*
66  * Definitions for generic callback mechanism.
67  */
68 typedef enum {
69 	DDI_CB_INTR_ADD,
70 	DDI_CB_INTR_REMOVE
71 } ddi_cb_action_t;
72 
73 typedef enum {
74 	DDI_CB_FLAG_INTR = 0x1
75 } ddi_cb_flags_t;
76 
77 #define	DDI_CB_FLAG_VALID(f)	((f) & DDI_CB_FLAG_INTR)
78 
79 typedef int	(*ddi_cb_func_t)(dev_info_t *dip, ddi_cb_action_t action,
80 		    void *cbarg, void *arg1, void *arg2);
81 
82 typedef struct ddi_cb {
83 	uint64_t	cb_flags;
84 	dev_info_t	*cb_dip;
85 	ddi_cb_func_t	cb_func;
86 	void		*cb_arg1;
87 	void		*cb_arg2;
88 } ddi_cb_t;
89 
90 /*
91  * dev_info:	The main device information structure this is intended to be
92  *		opaque to drivers and drivers should use ddi functions to
93  *		access *all* driver accessible fields.
94  *
95  * devi_parent_data includes property lists (interrupts, registers, etc.)
96  * devi_driver_data includes whatever the driver wants to place there.
97  */
98 struct devinfo_audit;
99 
100 typedef struct devi_port {
101 	union {
102 		struct {
103 			uint32_t type;
104 			uint32_t pad;
105 		} port;
106 		uint64_t type64;
107 	} info;
108 	void	 *priv_p;
109 } devi_port_t;
110 
111 typedef struct devi_bus_priv {
112 	devi_port_t port_up;
113 	devi_port_t port_down;
114 } devi_bus_priv_t;
115 
116 struct iommulib_unit;
117 typedef struct iommulib_unit *iommulib_handle_t;
118 typedef uint8_t	ndi_flavor_t;
119 
120 struct dev_info  {
121 
122 	struct dev_info *devi_parent;	/* my parent node in tree	*/
123 	struct dev_info *devi_child;	/* my child list head		*/
124 	struct dev_info *devi_sibling;	/* next element on my level	*/
125 
126 	char	*devi_binding_name;	/* name used to bind driver:	*/
127 					/* shared storage, points to	*/
128 					/* devi_node_name, devi_compat_names */
129 					/* or devi_rebinding_name	*/
130 
131 	char	*devi_addr;		/* address part of name		*/
132 
133 	int	devi_nodeid;		/* device nodeid		*/
134 	int	devi_instance;		/* device instance number	*/
135 
136 	struct dev_ops *devi_ops;	/* driver operations		*/
137 
138 	void	*devi_parent_data;	/* parent private data		*/
139 	void	*devi_driver_data;	/* driver private data		*/
140 
141 	ddi_prop_t *devi_drv_prop_ptr;	/* head of driver prop list */
142 	ddi_prop_t *devi_sys_prop_ptr;	/* head of system prop list */
143 
144 	struct ddi_minor_data *devi_minor;	/* head of minor list */
145 	struct dev_info *devi_next;	/* Next instance of this device */
146 	kmutex_t devi_lock;		/* Protects per-devinfo data */
147 
148 	/* logical parents for busop primitives	 */
149 
150 	struct dev_info *devi_bus_map_fault;	/* bus_map_fault parent	 */
151 	struct dev_info *devi_bus_dma_map;	/* bus_dma_map parent	 */
152 	struct dev_info *devi_bus_dma_allochdl; /* bus_dma_newhdl parent */
153 	struct dev_info *devi_bus_dma_freehdl;  /* bus_dma_freehdl parent */
154 	struct dev_info *devi_bus_dma_bindhdl;  /* bus_dma_bindhdl parent */
155 	struct dev_info *devi_bus_dma_unbindhdl; /* bus_dma_unbindhdl parent */
156 	struct dev_info *devi_bus_dma_flush;    /* bus_dma_flush parent	 */
157 	struct dev_info *devi_bus_dma_win;	/* bus_dma_win parent	 */
158 	struct dev_info *devi_bus_dma_ctl;	/* bus_dma_ctl parent	 */
159 	struct dev_info	*devi_bus_ctl;		/* bus_ctl parent	 */
160 
161 	ddi_prop_t *devi_hw_prop_ptr;		/* head of hw prop list */
162 
163 	char	*devi_node_name;		/* The 'name' of the node */
164 	char	*devi_compat_names;		/* A list of driver names */
165 	size_t	devi_compat_length;		/* Size of compat_names */
166 
167 	int (*devi_bus_dma_bindfunc)(dev_info_t *, dev_info_t *,
168 	    ddi_dma_handle_t, struct ddi_dma_req *, ddi_dma_cookie_t *,
169 	    uint_t *);
170 	int (*devi_bus_dma_unbindfunc)(dev_info_t *, dev_info_t *,
171 	    ddi_dma_handle_t);
172 
173 	char		*devi_devid_str;	/* registered device id */
174 
175 	/*
176 	 * power management entries
177 	 * components exist even if the device is not currently power managed
178 	 */
179 	struct pm_info *devi_pm_info;		/* 0 => dev not power managed */
180 	uint_t		devi_pm_flags;		/* pm flags */
181 	int		devi_pm_num_components;	/* number of components */
182 	size_t		devi_pm_comp_size;	/* size of devi_components */
183 	struct pm_component *devi_pm_components; /* array of pm components */
184 	struct dev_info *devi_pm_ppm;		/* ppm attached to this one */
185 	void		*devi_pm_ppm_private;	/* for use by ppm driver */
186 	int		devi_pm_dev_thresh;	/* "device" threshold */
187 	uint_t		devi_pm_kidsupcnt;	/* # of kids powered up */
188 	struct pm_scan	*devi_pm_scan;		/* pm scan info */
189 	uint_t		devi_pm_noinvolpm;	/* # of descendents no-invol */
190 	uint_t		devi_pm_volpmd;		/* # of voluntarily pm'ed */
191 	kmutex_t	devi_pm_lock;		/* pm lock for state */
192 	kmutex_t	devi_pm_busy_lock;	/* for component busy count */
193 
194 	uint_t		devi_state;		/* device/bus state flags */
195 						/* see below for definitions */
196 	kcondvar_t	devi_cv;		/* cv */
197 	int		devi_ref;		/* reference count */
198 
199 	dacf_rsrvlist_t *devi_dacf_tasks;	/* dacf reservation queue */
200 
201 	ddi_node_class_t devi_node_class;	/* Node class */
202 	int		devi_node_attributes;	/* Node attributes: See below */
203 
204 	char		*devi_device_class;
205 
206 	/*
207 	 * New mpxio kernel hooks entries
208 	 */
209 	int		devi_mdi_component;	/* mpxio component type */
210 	void		*devi_mdi_client;	/* mpxio client information */
211 	void		*devi_mdi_xhci;		/* vhci/phci info */
212 
213 	ddi_prop_list_t	*devi_global_prop_list;	/* driver global properties */
214 	major_t		devi_major;		/* driver major number */
215 	ddi_node_state_t devi_node_state;	/* state of node */
216 	uint_t		devi_flags;		/* configuration flags */
217 	int		devi_circular;		/* for recursive operations */
218 	void		*devi_busy_thread;	/* thread operating on node */
219 	void		*devi_taskq;		/* hotplug taskq */
220 
221 	/* device driver statistical and audit info */
222 	struct devinfo_audit *devi_audit;		/* last state change */
223 
224 	/*
225 	 * FMA support for resource caches and error handlers
226 	 */
227 	struct i_ddi_fmhdl	*devi_fmhdl;
228 
229 	uint_t		devi_cpr_flags;
230 
231 	/* For interrupt support */
232 	devinfo_intr_t		*devi_intr_p;
233 
234 	void		*devi_nex_pm;		/* nexus PM private */
235 
236 	char		*devi_addr_buf;		/* buffer for devi_addr */
237 
238 	char		*devi_rebinding_name;	/* binding_name of rebind */
239 
240 	/* For device contracts that have this dip's minor node as resource */
241 	kmutex_t	devi_ct_lock;		/* contract lock */
242 	kcondvar_t	devi_ct_cv;		/* contract cv */
243 	int		devi_ct_count;		/* # of outstanding responses */
244 	int		devi_ct_neg;		/* neg. occurred on dip */
245 	list_t		devi_ct;
246 
247 	/* owned by bus framework */
248 	devi_bus_priv_t	devi_bus;		/* bus private data */
249 
250 	/* Declarations of the pure dynamic properties to snapshot */
251 	struct i_ddi_prop_dyn	*devi_prop_dyn_driver;	/* prop_op */
252 	struct i_ddi_prop_dyn	*devi_prop_dyn_parent;	/* bus_prop_op */
253 
254 	/* For intel iommu support */
255 	void		*devi_iommu_private;
256 
257 	/* IOMMU handle */
258 	iommulib_handle_t	devi_iommulib_handle;
259 
260 	/* Generic callback mechanism */
261 	ddi_cb_t	*devi_cb_p;
262 
263 	/* ndi 'flavors' */
264 	ndi_flavor_t	devi_flavor;		/* flavor assigned by parent */
265 	ndi_flavor_t	devi_flavorv_n;		/* number of child-flavors */
266 	void		**devi_flavorv;		/* child-flavor specific data */
267 };
268 
269 #define	DEVI(dev_info_type)	((struct dev_info *)(dev_info_type))
270 
271 /*
272  * NB: The 'name' field, for compatibility with old code (both existing
273  * device drivers and userland code), is now defined as the name used
274  * to bind the node to a device driver, and not the device node name.
275  * If the device node name does not define a binding to a device driver,
276  * and the framework uses a different algorithm to create the binding to
277  * the driver, the node name and binding name will be different.
278  *
279  * Note that this implies that the node name plus instance number does
280  * NOT create a unique driver id; only the binding name plus instance
281  * number creates a unique driver id.
282  *
283  * New code should not use 'devi_name'; use 'devi_binding_name' or
284  * 'devi_node_name' and/or the routines that access those fields.
285  */
286 
287 #define	devi_name devi_binding_name
288 
289 /*
290  * DDI_CF1, DDI_CF2 and DDI_DRV_UNLOADED are obsolete. They are kept
291  * around to allow legacy drivers to to compile.
292  */
293 #define	DDI_CF1(devi)		(DEVI(devi)->devi_addr != NULL)
294 #define	DDI_CF2(devi)		(DEVI(devi)->devi_ops != NULL)
295 #define	DDI_DRV_UNLOADED(devi)	(DEVI(devi)->devi_ops == &mod_nodev_ops)
296 
297 /*
298  * The device state flags (devi_state) contains information regarding
299  * the state of the device (Online/Offline/Down).  For bus nexus
300  * devices, the device state also contains state information regarding
301  * the state of the bus represented by this nexus node.
302  *
303  * Device state information is stored in bits [0-7], bus state in bits
304  * [8-15].
305  *
306  * NOTE: all devi_state updates should be protected by devi_lock.
307  */
308 #define	DEVI_DEVICE_OFFLINE	0x00000001
309 #define	DEVI_DEVICE_DOWN	0x00000002
310 #define	DEVI_DEVICE_DEGRADED	0x00000004
311 #define	DEVI_DEVICE_REMOVED	0x00000008 /* hardware removed */
312 
313 #define	DEVI_BUS_QUIESCED	0x00000100
314 #define	DEVI_BUS_DOWN		0x00000200
315 #define	DEVI_NDI_CONFIG		0x00000400 /* perform config when attaching */
316 
317 #define	DEVI_S_ATTACHING	0x00010000
318 #define	DEVI_S_DETACHING	0x00020000
319 #define	DEVI_S_ONLINING		0x00040000
320 #define	DEVI_S_OFFLINING	0x00080000
321 
322 #define	DEVI_S_INVOKING_DACF	0x00100000 /* busy invoking a dacf task */
323 
324 #define	DEVI_S_UNBOUND		0x00200000
325 #define	DEVI_S_REPORT		0x08000000 /* report status change */
326 
327 #define	DEVI_S_EVADD		0x10000000 /* state of devfs event */
328 #define	DEVI_S_EVREMOVE		0x20000000 /* state of devfs event */
329 #define	DEVI_S_NEED_RESET	0x40000000 /* devo_reset should be called */
330 
331 /*
332  * Device state macros.
333  * o All SET/CLR/DONE users must protect context with devi_lock.
334  * o DEVI_SET_DEVICE_ONLINE users must do his own DEVI_SET_REPORT.
335  * o DEVI_SET_DEVICE_{DOWN|DEGRADED|UP} should only be used when !OFFLINE.
336  * o DEVI_SET_DEVICE_UP clears DOWN and DEGRADED.
337  */
338 #define	DEVI_IS_DEVICE_OFFLINE(dip)					\
339 	((DEVI(dip)->devi_state & DEVI_DEVICE_OFFLINE) == DEVI_DEVICE_OFFLINE)
340 
341 #define	DEVI_SET_DEVICE_ONLINE(dip)	{				\
342 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
343 	if (DEVI(dip)->devi_state & DEVI_DEVICE_DEGRADED) {		\
344 		mutex_exit(&DEVI(dip)->devi_lock);			\
345 		e_ddi_undegrade_finalize(dip);				\
346 		mutex_enter(&DEVI(dip)->devi_lock);			\
347 	}								\
348 	/* setting ONLINE clears DOWN, DEGRADED, OFFLINE */		\
349 	DEVI(dip)->devi_state &= ~(DEVI_DEVICE_DOWN |			\
350 	    DEVI_DEVICE_DEGRADED | DEVI_DEVICE_OFFLINE);		\
351 	}
352 
353 #define	DEVI_SET_DEVICE_OFFLINE(dip)	{				\
354 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
355 	DEVI(dip)->devi_state |= (DEVI_DEVICE_OFFLINE | DEVI_S_REPORT);	\
356 	}
357 
358 #define	DEVI_IS_DEVICE_DOWN(dip)					\
359 	((DEVI(dip)->devi_state & DEVI_DEVICE_DOWN) == DEVI_DEVICE_DOWN)
360 
361 #define	DEVI_SET_DEVICE_DOWN(dip)	{				\
362 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
363 	ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip));				\
364 	DEVI(dip)->devi_state |= (DEVI_DEVICE_DOWN | DEVI_S_REPORT);	\
365 	}
366 
367 #define	DEVI_IS_DEVICE_DEGRADED(dip)					\
368 	((DEVI(dip)->devi_state &					\
369 	    (DEVI_DEVICE_DEGRADED|DEVI_DEVICE_DOWN)) == DEVI_DEVICE_DEGRADED)
370 
371 #define	DEVI_SET_DEVICE_DEGRADED(dip)	{				\
372 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
373 	ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip));				\
374 	mutex_exit(&DEVI(dip)->devi_lock);				\
375 	e_ddi_degrade_finalize(dip);					\
376 	mutex_enter(&DEVI(dip)->devi_lock);				\
377 	DEVI(dip)->devi_state |= (DEVI_DEVICE_DEGRADED | DEVI_S_REPORT); \
378 	}
379 
380 #define	DEVI_SET_DEVICE_UP(dip)		{				\
381 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
382 	ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip));				\
383 	if (DEVI(dip)->devi_state & DEVI_DEVICE_DEGRADED) {		\
384 		mutex_exit(&DEVI(dip)->devi_lock);			\
385 		e_ddi_undegrade_finalize(dip);				\
386 		mutex_enter(&DEVI(dip)->devi_lock);			\
387 	}								\
388 	DEVI(dip)->devi_state &= ~(DEVI_DEVICE_DEGRADED | DEVI_DEVICE_DOWN); \
389 	DEVI(dip)->devi_state |= DEVI_S_REPORT;				\
390 	}
391 
392 /* Device removal and insertion */
393 #define	DEVI_IS_DEVICE_REMOVED(dip)					\
394 	((DEVI(dip)->devi_state & DEVI_DEVICE_REMOVED) == DEVI_DEVICE_REMOVED)
395 
396 #define	DEVI_SET_DEVICE_REMOVED(dip)	{				\
397 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
398 	DEVI(dip)->devi_state |= DEVI_DEVICE_REMOVED;			\
399 	}
400 
401 #define	DEVI_SET_DEVICE_REINSERTED(dip)	{				\
402 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
403 	DEVI(dip)->devi_state &= ~DEVI_DEVICE_REMOVED;			\
404 	}
405 
406 /* Bus state change macros */
407 #define	DEVI_IS_BUS_QUIESCED(dip)					\
408 	((DEVI(dip)->devi_state & DEVI_BUS_QUIESCED) == DEVI_BUS_QUIESCED)
409 
410 #define	DEVI_SET_BUS_ACTIVE(dip)	{				\
411 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
412 	DEVI(dip)->devi_state &= ~DEVI_BUS_QUIESCED;			\
413 	DEVI(dip)->devi_state |= DEVI_S_REPORT;				\
414 	}
415 
416 #define	DEVI_SET_BUS_QUIESCE(dip)	{				\
417 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
418 	DEVI(dip)->devi_state |= (DEVI_BUS_QUIESCED | DEVI_S_REPORT);	\
419 	}
420 
421 #define	DEVI_IS_BUS_DOWN(dip)						\
422 	((DEVI(dip)->devi_state & DEVI_BUS_DOWN) == DEVI_BUS_DOWN)
423 
424 #define	DEVI_SET_BUS_UP(dip)		{				\
425 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
426 	DEVI(dip)->devi_state &= ~DEVI_BUS_DOWN;			\
427 	DEVI(dip)->devi_state |= DEVI_S_REPORT;				\
428 	}
429 
430 #define	DEVI_SET_BUS_DOWN(dip)		{				\
431 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
432 	DEVI(dip)->devi_state |= (DEVI_BUS_DOWN | DEVI_S_REPORT);	\
433 	}
434 
435 /* Status change report needed */
436 #define	DEVI_NEED_REPORT(dip)						\
437 	((DEVI(dip)->devi_state & DEVI_S_REPORT) == DEVI_S_REPORT)
438 
439 #define	DEVI_SET_REPORT(dip)		{				\
440 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
441 	DEVI(dip)->devi_state |= DEVI_S_REPORT;				\
442 	}
443 
444 #define	DEVI_REPORT_DONE(dip)		{				\
445 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
446 	DEVI(dip)->devi_state &= ~DEVI_S_REPORT;			\
447 	}
448 
449 /* Do an NDI_CONFIG for its children */
450 #define	DEVI_NEED_NDI_CONFIG(dip)					\
451 	((DEVI(dip)->devi_state & DEVI_NDI_CONFIG) == DEVI_NDI_CONFIG)
452 
453 #define	DEVI_SET_NDI_CONFIG(dip)	{				\
454 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
455 	DEVI(dip)->devi_state |= DEVI_NDI_CONFIG;			\
456 	}
457 
458 #define	DEVI_CLR_NDI_CONFIG(dip)	{				\
459 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
460 	DEVI(dip)->devi_state &= ~DEVI_NDI_CONFIG;			\
461 	}
462 
463 /* Attaching or detaching state */
464 #define	DEVI_IS_ATTACHING(dip)						\
465 	((DEVI(dip)->devi_state & DEVI_S_ATTACHING) == DEVI_S_ATTACHING)
466 
467 #define	DEVI_SET_ATTACHING(dip)		{				\
468 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
469 	DEVI(dip)->devi_state |= DEVI_S_ATTACHING;			\
470 	}
471 
472 #define	DEVI_CLR_ATTACHING(dip)		{				\
473 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
474 	DEVI(dip)->devi_state &= ~DEVI_S_ATTACHING;			\
475 	}
476 
477 #define	DEVI_IS_DETACHING(dip)						\
478 	((DEVI(dip)->devi_state & DEVI_S_DETACHING) == DEVI_S_DETACHING)
479 
480 #define	DEVI_SET_DETACHING(dip)		{				\
481 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
482 	DEVI(dip)->devi_state |= DEVI_S_DETACHING;			\
483 	}
484 
485 #define	DEVI_CLR_DETACHING(dip)		{				\
486 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
487 	DEVI(dip)->devi_state &= ~DEVI_S_DETACHING;			\
488 	}
489 
490 /* Onlining or offlining state */
491 #define	DEVI_IS_ONLINING(dip)						\
492 	((DEVI(dip)->devi_state & DEVI_S_ONLINING) == DEVI_S_ONLINING)
493 
494 #define	DEVI_SET_ONLINING(dip)		{				\
495 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
496 	DEVI(dip)->devi_state |= DEVI_S_ONLINING;			\
497 	}
498 
499 #define	DEVI_CLR_ONLINING(dip)		{				\
500 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
501 	DEVI(dip)->devi_state &= ~DEVI_S_ONLINING;			\
502 	}
503 
504 #define	DEVI_IS_OFFLINING(dip)						\
505 	((DEVI(dip)->devi_state & DEVI_S_OFFLINING) == DEVI_S_OFFLINING)
506 
507 #define	DEVI_SET_OFFLINING(dip)		{				\
508 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
509 	DEVI(dip)->devi_state |= DEVI_S_OFFLINING;			\
510 	}
511 
512 #define	DEVI_CLR_OFFLINING(dip)		{				\
513 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
514 	DEVI(dip)->devi_state &= ~DEVI_S_OFFLINING;			\
515 	}
516 
517 #define	DEVI_IS_IN_RECONFIG(dip)					\
518 	(DEVI(dip)->devi_state & (DEVI_S_OFFLINING | DEVI_S_ONLINING))
519 
520 /* Busy invoking a dacf task against this node */
521 #define	DEVI_IS_INVOKING_DACF(dip)					\
522 	((DEVI(dip)->devi_state & DEVI_S_INVOKING_DACF) == DEVI_S_INVOKING_DACF)
523 
524 #define	DEVI_SET_INVOKING_DACF(dip)	{				\
525 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
526 	DEVI(dip)->devi_state |= DEVI_S_INVOKING_DACF;			\
527 	}
528 
529 #define	DEVI_CLR_INVOKING_DACF(dip)	{				\
530 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
531 	DEVI(dip)->devi_state &= ~DEVI_S_INVOKING_DACF;			\
532 	}
533 
534 /* Events for add/remove */
535 #define	DEVI_EVADD(dip)							\
536 	((DEVI(dip)->devi_state & DEVI_S_EVADD) == DEVI_S_EVADD)
537 
538 #define	DEVI_SET_EVADD(dip)		{				\
539 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
540 	DEVI(dip)->devi_state &= ~DEVI_S_EVREMOVE;			\
541 	DEVI(dip)->devi_state |= DEVI_S_EVADD;				\
542 	}
543 
544 #define	DEVI_EVREMOVE(dip)						\
545 	((DEVI(dip)->devi_state & DEVI_S_EVREMOVE) == DEVI_S_EVREMOVE)
546 
547 #define	DEVI_SET_EVREMOVE(dip)		{				\
548 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
549 	DEVI(dip)->devi_state &= ~DEVI_S_EVADD;				\
550 	DEVI(dip)->devi_state |= DEVI_S_EVREMOVE;			\
551 	}
552 
553 #define	DEVI_SET_EVUNINIT(dip)		{				\
554 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
555 	DEVI(dip)->devi_state &= ~(DEVI_S_EVADD | DEVI_S_EVREMOVE);	\
556 	}
557 
558 /* Need to call the devo_reset entry point for this device at shutdown */
559 #define	DEVI_NEED_RESET(dip)						\
560 	((DEVI(dip)->devi_state & DEVI_S_NEED_RESET) == DEVI_S_NEED_RESET)
561 
562 #define	DEVI_SET_NEED_RESET(dip)	{				\
563 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
564 	DEVI(dip)->devi_state |= DEVI_S_NEED_RESET;			\
565 	}
566 
567 #define	DEVI_CLR_NEED_RESET(dip)	{				\
568 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
569 	DEVI(dip)->devi_state &= ~DEVI_S_NEED_RESET;			\
570 	}
571 
572 /*
573  * devi_flags bits
574  *
575  * NOTE: all devi_state updates should be protected by devi_lock.
576  */
577 #define	DEVI_BUSY		0x00000001 /* busy configuring children */
578 #define	DEVI_MADE_CHILDREN	0x00000002 /* children made from specs */
579 #define	DEVI_ATTACHED_CHILDREN	0x00000004 /* attached all existing children */
580 #define	DEVI_BRANCH_HELD	0x00000008 /* branch rooted at this dip held */
581 #define	DEVI_NO_BIND		0x00000010 /* prevent driver binding */
582 #define	DEVI_REGISTERED_DEVID	0x00000020 /* device registered a devid */
583 #define	DEVI_PHCI_SIGNALS_VHCI	0x00000040 /* pHCI ndi_devi_exit signals vHCI */
584 #define	DEVI_REBIND		0x00000080 /* post initchild driver rebind */
585 #define	DEVI_RETIRED		0x00000100 /* device is retired */
586 #define	DEVI_RETIRING		0x00000200 /* being evaluated for retire */
587 #define	DEVI_R_CONSTRAINT	0x00000400 /* constraints have been applied  */
588 #define	DEVI_R_BLOCKED		0x00000800 /* constraints block retire  */
589 #define	DEVI_CT_NOP		0x00001000 /*  NOP contract event occurred */
590 
591 #define	DEVI_BUSY_CHANGING(dip)	(DEVI(dip)->devi_flags & DEVI_BUSY)
592 #define	DEVI_BUSY_OWNED(dip)	(DEVI_BUSY_CHANGING(dip) &&	\
593 	((DEVI(dip))->devi_busy_thread == curthread))
594 
595 char	*i_ddi_devi_class(dev_info_t *);
596 int	i_ddi_set_devi_class(dev_info_t *, char *, int);
597 
598 /*
599  * This structure represents one piece of bus space occupied by a given
600  * device. It is used in an array for devices with multiple address windows.
601  */
602 struct regspec {
603 	uint_t regspec_bustype;		/* cookie for bus type it's on */
604 	uint_t regspec_addr;		/* address of reg relative to bus */
605 	uint_t regspec_size;		/* size of this register set */
606 };
607 
608 /*
609  * This structure represents one piece of nexus bus space.
610  * It is used in an array for nexi with multiple bus spaces
611  * to define the childs offsets in the parents bus space.
612  */
613 struct rangespec {
614 	uint_t rng_cbustype;		/* Child's address, hi order */
615 	uint_t rng_coffset;		/* Child's address, lo order */
616 	uint_t rng_bustype;		/* Parent's address, hi order */
617 	uint_t rng_offset;		/* Parent's address, lo order */
618 	uint_t rng_size;		/* size of space for this entry */
619 };
620 
621 #ifdef _KERNEL
622 
623 typedef enum {
624 	DDI_PRE = 0,
625 	DDI_POST = 1
626 } ddi_pre_post_t;
627 
628 /*
629  * This structure represents notification of a child attach event
630  * These could both be the same if attach/detach commands were in the
631  * same name space.
632  * Note that the target dip is passed as an arg already.
633  */
634 struct attachspec {
635 	ddi_attach_cmd_t cmd;	/* type of event */
636 	ddi_pre_post_t	when;	/* one of DDI_PRE or DDI_POST */
637 	dev_info_t	*pdip;	/* parent of attaching node */
638 	int		result;	/* result of attach op (post command only) */
639 };
640 
641 /*
642  * This structure represents notification of a child detach event
643  * Note that the target dip is passed as an arg already.
644  */
645 struct detachspec {
646 	ddi_detach_cmd_t cmd;	/* type of event */
647 	ddi_pre_post_t	when;	/* one of DDI_PRE or DDI_POST */
648 	dev_info_t	*pdip;	/* parent of detaching node */
649 	int		result;	/* result of detach op (post command only) */
650 };
651 
652 #endif /* _KERNEL */
653 
654 typedef enum {
655 	DDM_MINOR = 0,
656 	DDM_ALIAS,
657 	DDM_DEFAULT,
658 	DDM_INTERNAL_PATH
659 } ddi_minor_type;
660 
661 /* implementation flags for driver specified device access control */
662 #define	DM_NO_FSPERM	0x1
663 
664 struct devplcy;
665 
666 struct ddi_minor {
667 	char		*name;		/* name of node */
668 	dev_t		dev;		/* device number */
669 	int		spec_type;	/* block or char */
670 	int		flags;		/* access flags */
671 	char		*node_type;	/* block, byte, serial, network */
672 	struct devplcy	*node_priv;	/* privilege for this minor */
673 	mode_t		priv_mode;	/* default apparent privilege mode */
674 };
675 
676 /*
677  * devi_node_attributes contains node attributes private to the
678  * ddi implementation. As a consumer, do not use these bit definitions
679  * directly, use the ndi functions that check for the existence of the
680  * specific node attributes.
681  *
682  * DDI_PERSISTENT indicates a 'persistent' node; one that is not
683  * automatically freed by the framework if the driver is unloaded
684  * or the driver fails to attach to this node.
685  *
686  * DDI_AUTO_ASSIGNED_NODEID indicates that the nodeid was auto-assigned
687  * by the framework and should be auto-freed if the node is removed.
688  *
689  * DDI_VHCI_NODE indicates that the node type is VHCI. This flag
690  * must be set by ndi_devi_config_vhci() routine only.
691  */
692 #define	DDI_PERSISTENT			0x01
693 #define	DDI_AUTO_ASSIGNED_NODEID	0x02
694 #define	DDI_VHCI_NODE			0x04
695 
696 #define	DEVI_VHCI_NODE(dip)						\
697 	(DEVI(dip)->devi_node_attributes & DDI_VHCI_NODE)
698 
699 /*
700  * The ddi_minor_data structure gets filled in by ddi_create_minor_node.
701  * It then gets attached to the devinfo node as a property.
702  */
703 struct ddi_minor_data {
704 	struct ddi_minor_data *next;	/* next one in the chain */
705 	dev_info_t	*dip;		/* pointer to devinfo node */
706 	ddi_minor_type	type;		/* Following data type */
707 	struct ddi_minor d_minor;	/* Actual minor node data */
708 };
709 
710 #define	ddm_name	d_minor.name
711 #define	ddm_dev		d_minor.dev
712 #define	ddm_flags	d_minor.flags
713 #define	ddm_spec_type	d_minor.spec_type
714 #define	ddm_node_type	d_minor.node_type
715 #define	ddm_node_priv	d_minor.node_priv
716 #define	ddm_priv_mode	d_minor.priv_mode
717 
718 /*
719  * parent private data structure contains register, interrupt, property
720  * and range information.
721  */
722 struct ddi_parent_private_data {
723 	int par_nreg;			/* number of regs */
724 	struct regspec *par_reg;	/* array of regs */
725 	int par_nintr;			/* number of interrupts */
726 	struct intrspec *par_intr;	/* array of possible interrupts */
727 	int par_nrng;			/* number of ranges */
728 	struct rangespec *par_rng;	/* array of ranges */
729 };
730 #define	DEVI_PD(d)	\
731 	((struct ddi_parent_private_data *)DEVI((d))->devi_parent_data)
732 
733 #define	sparc_pd_getnreg(dev)		(DEVI_PD(dev)->par_nreg)
734 #define	sparc_pd_getnintr(dev)		(DEVI_PD(dev)->par_nintr)
735 #define	sparc_pd_getnrng(dev)		(DEVI_PD(dev)->par_nrng)
736 #define	sparc_pd_getreg(dev, n)		(&DEVI_PD(dev)->par_reg[(n)])
737 #define	sparc_pd_getintr(dev, n)	(&DEVI_PD(dev)->par_intr[(n)])
738 #define	sparc_pd_getrng(dev, n)		(&DEVI_PD(dev)->par_rng[(n)])
739 
740 /*
741  * This data structure is entirely private to the soft state allocator.
742  */
743 struct i_ddi_soft_state {
744 	void		**array;	/* the array of pointers */
745 	kmutex_t	lock;	/* serialize access to this struct */
746 	size_t		size;	/* how many bytes per state struct */
747 	size_t		n_items;	/* how many structs herein */
748 	struct i_ddi_soft_state *next;	/* 'dirty' elements */
749 };
750 
751 /*
752  * Solaris DDI DMA implementation structure and function definitions.
753  *
754  * Note: no callers of DDI functions must depend upon data structures
755  * declared below. They are not guaranteed to remain constant.
756  */
757 
758 /*
759  * Implementation DMA mapping structure.
760  *
761  * The publicly visible ddi_dma_req structure is filled
762  * in by a caller that wishes to map a memory object
763  * for DMA. Internal to this implementation of the public
764  * DDI DMA functions this request structure is put together
765  * with bus nexus specific functions that have additional
766  * information and constraints as to how to go about doing
767  * the requested mapping function
768  *
769  * In this implementation, some of the information from the
770  * original requester is retained throughout the lifetime
771  * of the I/O mapping being active.
772  */
773 
774 /*
775  * This is the implementation specific description
776  * of how we've mapped an object for DMA.
777  */
778 #if defined(__sparc)
779 typedef struct ddi_dma_impl {
780 	/*
781 	 * DMA mapping information
782 	 */
783 	ulong_t	dmai_mapping;	/* mapping cookie */
784 
785 	/*
786 	 * Size of the current mapping, in bytes.
787 	 *
788 	 * Note that this is distinct from the size of the object being mapped
789 	 * for DVMA. We might have only a portion of the object mapped at any
790 	 * given point in time.
791 	 */
792 	uint_t	dmai_size;
793 
794 	/*
795 	 * Offset, in bytes, into object that is currently mapped.
796 	 */
797 	off_t	dmai_offset;
798 
799 	/*
800 	 * Information gathered from the original DMA mapping
801 	 * request and saved for the lifetime of the mapping.
802 	 */
803 	uint_t		dmai_minxfer;
804 	uint_t		dmai_burstsizes;
805 	uint_t		dmai_ndvmapages;
806 	uint_t		dmai_pool;	/* cached DVMA space */
807 	uint_t		dmai_rflags;	/* requester's flags + ours */
808 	uint_t		dmai_inuse;	/* active handle? */
809 	uint_t		dmai_nwin;
810 	uint_t		dmai_winsize;
811 	caddr_t		dmai_nexus_private;
812 	void		*dmai_iopte;
813 	uint_t		*dmai_sbi;
814 	void		*dmai_minfo;	/* random mapping information */
815 	dev_info_t	*dmai_rdip;	/* original requester's dev_info_t */
816 	ddi_dma_obj_t	dmai_object;	/* requester's object */
817 	ddi_dma_attr_t	dmai_attr;	/* DMA attributes */
818 	ddi_dma_cookie_t *dmai_cookie;	/* pointer to first DMA cookie */
819 
820 	int		(*dmai_fault_check)(struct ddi_dma_impl *handle);
821 	void		(*dmai_fault_notify)(struct ddi_dma_impl *handle);
822 	int		dmai_fault;
823 	ndi_err_t	dmai_error;
824 
825 } ddi_dma_impl_t;
826 
827 #elif defined(__x86)
828 
829 /*
830  * ddi_dma_impl portion that genunix (sunddi.c) depends on. x86 rootnex
831  * implementation specific state is in dmai_private.
832  */
833 typedef struct ddi_dma_impl {
834 	ddi_dma_cookie_t *dmai_cookie; /* array of DMA cookies */
835 	void		*dmai_private;
836 
837 	/*
838 	 * Information gathered from the original dma mapping
839 	 * request and saved for the lifetime of the mapping.
840 	 */
841 	uint_t		dmai_minxfer;
842 	uint_t		dmai_burstsizes;
843 	uint_t		dmai_rflags;	/* requester's flags + ours */
844 	int		dmai_nwin;
845 	dev_info_t	*dmai_rdip;	/* original requester's dev_info_t */
846 
847 	ddi_dma_attr_t	dmai_attr;	/* DMA attributes */
848 
849 	int		(*dmai_fault_check)(struct ddi_dma_impl *handle);
850 	void		(*dmai_fault_notify)(struct ddi_dma_impl *handle);
851 	int		dmai_fault;
852 	ndi_err_t	dmai_error;
853 } ddi_dma_impl_t;
854 
855 #else
856 #error "struct ddi_dma_impl not defined for this architecture"
857 #endif  /* defined(__sparc) */
858 
859 /*
860  * For now DMA segments share state with the DMA handle
861  */
862 typedef ddi_dma_impl_t ddi_dma_seg_impl_t;
863 
864 /*
865  * These flags use reserved bits from the dma request flags.
866  *
867  * A note about the DMP_NOSYNC flags: the root nexus will
868  * set these as it sees best. If an intermediate nexus
869  * actually needs these operations, then during the unwind
870  * from the call to ddi_dma_bind, the nexus driver *must*
871  * clear the appropriate flag(s). This is because, as an
872  * optimization, ddi_dma_sync(9F) looks at these flags before
873  * deciding to spend the time going back up the tree.
874  */
875 
876 #define	_DMCM1	DDI_DMA_RDWR|DDI_DMA_REDZONE|DDI_DMA_PARTIAL
877 #define	_DMCM2	DDI_DMA_CONSISTENT|DMP_VMEREQ
878 #define	DMP_DDIFLAGS	(_DMCM1|_DMCM2)
879 #define	DMP_SHADOW	0x20
880 #define	DMP_LKIOPB	0x40
881 #define	DMP_LKSYSV	0x80
882 #define	DMP_IOCACHE	0x100
883 #define	DMP_USEHAT	0x200
884 #define	DMP_PHYSADDR	0x400
885 #define	DMP_INVALID	0x800
886 #define	DMP_NOLIMIT	0x1000
887 #define	DMP_VMEREQ	0x10000000
888 #define	DMP_BYPASSNEXUS	0x20000000
889 #define	DMP_NODEVSYNC	0x40000000
890 #define	DMP_NOCPUSYNC	0x80000000
891 #define	DMP_NOSYNC	(DMP_NODEVSYNC|DMP_NOCPUSYNC)
892 
893 /*
894  * In order to complete a device to device mapping that
895  * has percolated as high as an IU nexus (gone that high
896  * because the DMA request is a VADDR type), we define
897  * structure to use with the DDI_CTLOPS_DMAPMAPC request
898  * that re-traverses the request tree to finish the
899  * DMA 'mapping' for a device.
900  */
901 struct dma_phys_mapc {
902 	struct ddi_dma_req *dma_req;	/* original request */
903 	ddi_dma_impl_t *mp;		/* current handle, or none */
904 	int nptes;			/* number of ptes */
905 	void *ptes;			/* ptes already read */
906 };
907 
908 #define	MAXCALLBACK		20
909 
910 /*
911  * Callback definitions
912  */
913 struct ddi_callback {
914 	struct ddi_callback	*c_nfree;
915 	struct ddi_callback	*c_nlist;
916 	int			(*c_call)();
917 	int			c_count;
918 	caddr_t			c_arg;
919 	size_t			c_size;
920 };
921 
922 /*
923  * Pure dynamic property declaration. A pure dynamic property is a property
924  * for which a driver's prop_op(9E) implementation will return a value on
925  * demand, but the property name does not exist on a property list (global,
926  * driver, system, or hardware) - the person asking for the value must know
927  * the name and type information.
928  *
929  * For a pure dynamic property to show up in a di_init() devinfo shapshot, the
930  * devinfo driver must know name and type. The i_ddi_prop_dyn_t mechanism
931  * allows a driver to define an array of the name/type information of its
932  * dynamic properties. When a driver declares its dynamic properties in a
933  * i_ddi_prop_dyn_t array, and registers that array using
934  * i_ddi_prop_dyn_driver_set() the devinfo driver has sufficient information
935  * to represent the properties in a snapshot - calling the driver's
936  * prop_op(9E) to obtain values.
937  *
938  * The last element of a i_ddi_prop_dyn_t is detected via a NULL dp_name value.
939  *
940  * A pure dynamic property name associated with a minor_node/dev_t should be
941  * defined with a dp_spec_type of S_IFCHR or S_IFBLK, as appropriate.  The
942  * driver's prop_op(9E) entry point will be called for all
943  * ddi_create_minor_node(9F) nodes of the specified spec_type. For a driver
944  * where not all minor_node/dev_t combinations support the same named
945  * properties, it is the responsibility of the prop_op(9E) implementation to
946  * sort out what combinations are appropriate.
947  *
948  * A pure dynamic property of a devinfo node should be defined with a
949  * dp_spec_type of 0.
950  *
951  * NB: Public DDI property interfaces no longer support pure dynamic
952  * properties, but they are still still used.  A prime example is the cmlb
953  * implementation of size(9P) properties. Using pure dynamic properties
954  * reduces the space required to maintain per-partition information. Since
955  * there are no public interfaces to create pure dynamic properties,
956  * the i_ddi_prop_dyn_t mechanism should remain private.
957  */
958 typedef struct i_ddi_prop_dyn {
959 	char	*dp_name;		/* name of dynamic property */
960 	int	dp_type;		/* DDI_PROP_TYPE_ of property */
961 	int	dp_spec_type;		/* 0, S_IFCHR, S_IFBLK */
962 } i_ddi_prop_dyn_t;
963 void			i_ddi_prop_dyn_driver_set(dev_info_t *,
964 			    i_ddi_prop_dyn_t *);
965 i_ddi_prop_dyn_t	*i_ddi_prop_dyn_driver_get(dev_info_t *);
966 void			i_ddi_prop_dyn_parent_set(dev_info_t *,
967 			    i_ddi_prop_dyn_t *);
968 i_ddi_prop_dyn_t	*i_ddi_prop_dyn_parent_get(dev_info_t *);
969 void			i_ddi_prop_dyn_cache_invalidate(dev_info_t *,
970 			    i_ddi_prop_dyn_t *);
971 
972 /*
973  * Device id - Internal definition.
974  */
975 #define	DEVID_MAGIC_MSB		0x69
976 #define	DEVID_MAGIC_LSB		0x64
977 #define	DEVID_REV_MSB		0x00
978 #define	DEVID_REV_LSB		0x01
979 #define	DEVID_HINT_SIZE		4
980 
981 typedef struct impl_devid {
982 	uchar_t	did_magic_hi;			/* device id magic # (msb) */
983 	uchar_t	did_magic_lo;			/* device id magic # (lsb) */
984 	uchar_t	did_rev_hi;			/* device id revision # (msb) */
985 	uchar_t	did_rev_lo;			/* device id revision # (lsb) */
986 	uchar_t	did_type_hi;			/* device id type (msb) */
987 	uchar_t	did_type_lo;			/* device id type (lsb) */
988 	uchar_t	did_len_hi;			/* length of devid data (msb) */
989 	uchar_t	did_len_lo;			/* length of devid data (lsb) */
990 	char	did_driver[DEVID_HINT_SIZE];	/* driver name - HINT */
991 	char	did_id[1];			/* start of device id data */
992 } impl_devid_t;
993 
994 #define	DEVID_GETTYPE(devid)		((ushort_t) \
995 					    (((devid)->did_type_hi << NBBY) + \
996 					    (devid)->did_type_lo))
997 
998 #define	DEVID_FORMTYPE(devid, type)	(devid)->did_type_hi = hibyte((type)); \
999 					(devid)->did_type_lo = lobyte((type));
1000 
1001 #define	DEVID_GETLEN(devid)		((ushort_t) \
1002 					    (((devid)->did_len_hi << NBBY) + \
1003 					    (devid)->did_len_lo))
1004 
1005 #define	DEVID_FORMLEN(devid, len)	(devid)->did_len_hi = hibyte((len)); \
1006 					(devid)->did_len_lo = lobyte((len));
1007 
1008 /*
1009  * Per PSARC/1995/352, a binary devid contains fields for <magic number>,
1010  * <revision>, <driver_hint>, <type>, <id_length>, and the <id> itself.
1011  * This proposal would encode the binary devid into a string consisting
1012  * of "<magic><revision>,<driver_hint>@<type><id>" as indicated below
1013  * (<id_length> is rederived from the length of the string
1014  * representation of the <id>):
1015  *
1016  *	<magic>		->"id"
1017  *
1018  *	<rev>		->"%d"	// "0" -> type of DEVID_NONE  "id0"
1019  *				// NOTE: PSARC/1995/352 <revision> is "1".
1020  *				// NOTE: support limited to 10 revisions
1021  *				//	in current implementation
1022  *
1023  *	<driver_hint>	->"%s"	// "sd"/"ssd"
1024  *				// NOTE: driver names limited to 4
1025  *				//	characters for <revision> "1"
1026  *
1027  *	<type>		->'w' |	// DEVID_SCSI3_WWN	<hex_id>
1028  *			'W' |	// DEVID_SCSI3_WWN	<ascii_id>
1029  *			't' |	// DEVID_SCSI3_VPD_T10	<hex_id>
1030  *			'T' |	// DEVID_SCSI3_VPD_T10	<ascii_id>
1031  *			'x' |	// DEVID_SCSI3_VPD_EUI	<hex_id>
1032  *			'X' |	// DEVID_SCSI3_VPD_EUI	<ascii_id>
1033  *			'n' |	// DEVID_SCSI3_VPD_NAA	<hex_id>
1034  *			'N' |	// DEVID_SCSI3_VPD_NAA	<ascii_id>
1035  *			's' |	// DEVID_SCSI_SERIAL	<hex_id>
1036  *			'S' |	// DEVID_SCSI_SERIAL	<ascii_id>
1037  *			'f' |	// DEVID_FAB		<hex_id>
1038  *			'F' |	// DEVID_FAB		<ascii_id>
1039  *			'e' |	// DEVID_ENCAP		<hex_id>
1040  *			'E' |	// DEVID_ENCAP		<ascii_id>
1041  *			'a' |	// DEVID_ATA_SERIAL	<hex_id>
1042  *			'A' |	// DEVID_ATA_SERIAL	<ascii_id>
1043  *			'u' |	// unknown		<hex_id>
1044  *			'U'	// unknown		<ascii_id>
1045  *              		// NOTE: lower case -> <hex_id>
1046  *				//       upper case -> <ascii_id>
1047  *				// NOTE: this covers all types currently
1048  *				//	defined for <revision> 1.
1049  *				// NOTE: a <type> can be added
1050  *				//	without changing the <revision>.
1051  *
1052  *	<id>		-> <ascii_id> |	// <type> is upper case
1053  *			<hex_id>	// <type> is lower case
1054  *
1055  *	<ascii_id>	// only if all bytes of binary <id> field
1056  *			// are in the set:
1057  *			//	[A-Z][a-z][0-9]+-.= and space and 0x00
1058  *			// the encoded form is:
1059  *			//	[A-Z][a-z][0-9]+-.= and _     and ~
1060  *			//          NOTE: ' ' <=> '_', 0x00 <=> '~'
1061  *			// these sets are chosen to avoid shell
1062  *			// and conflicts with DDI node names.
1063  *
1064  *	<hex_id>	// if not <ascii_id>; each byte of binary
1065  *			// <id> maps a to 2 digit ascii hex
1066  *			// representation in the string.
1067  *
1068  * This encoding provides a meaningful correlation between the /devices
1069  * path and the devid string where possible.
1070  *
1071  *   Fibre:
1072  *	sbus@6,0/SUNW,socal@d,10000/sf@1,0/ssd@w21000020370bb488,0:c,raw
1073  *      id1,ssd@w20000020370bb488:c,raw
1074  *
1075  *   Copper:
1076  *	sbus@7,0/SUNW,fas@3,8800000/sd@a,0:c
1077  *      id1,sd@SIBM_____1XY210__________:c
1078  */
1079 /* determine if a byte of an id meets ASCII representation requirements */
1080 #define	DEVID_IDBYTE_ISASCII(b)		(				\
1081 	(((b) >= 'a') && ((b) <= 'z')) ||				\
1082 	(((b) >= 'A') && ((b) <= 'Z')) ||				\
1083 	(((b) >= '0') && ((b) <= '9')) ||				\
1084 	(b == '+') || (b == '-') || (b == '.') || (b == '=') ||		\
1085 	(b == ' ') || (b == 0x00))
1086 
1087 /* set type to lower case to indicate that the did_id field is ascii */
1088 #define	DEVID_TYPE_SETASCII(c)	(c - 0x20)	/* 'a' -> 'A' */
1089 
1090 /* determine from type if did_id field is binary or ascii */
1091 #define	DEVID_TYPE_ISASCII(c)	(((c) >= 'A') && ((c) <= 'Z'))
1092 
1093 /* convert type field from binary to ascii */
1094 #define	DEVID_TYPE_BINTOASCII(b)	(				\
1095 	((b) == DEVID_SCSI3_WWN)	? 'w' :				\
1096 	((b) == DEVID_SCSI3_VPD_T10)	? 't' :				\
1097 	((b) == DEVID_SCSI3_VPD_EUI)	? 'x' :				\
1098 	((b) == DEVID_SCSI3_VPD_NAA)	? 'n' :				\
1099 	((b) == DEVID_SCSI_SERIAL)	? 's' :				\
1100 	((b) == DEVID_FAB)		? 'f' :				\
1101 	((b) == DEVID_ENCAP)		? 'e' :				\
1102 	((b) == DEVID_ATA_SERIAL)	? 'a' :				\
1103 	'u')						/* unknown */
1104 
1105 /* convert type field from ascii to binary */
1106 #define	DEVID_TYPE_ASCIITOBIN(c)	(				\
1107 	(((c) == 'w') || ((c) == 'W'))	? DEVID_SCSI3_WWN :		\
1108 	(((c) == 't') || ((c) == 'T'))	? DEVID_SCSI3_VPD_T10 :		\
1109 	(((c) == 'x') || ((c) == 'X'))	? DEVID_SCSI3_VPD_EUI :		\
1110 	(((c) == 'n') || ((c) == 'N'))	? DEVID_SCSI3_VPD_NAA :		\
1111 	(((c) == 's') || ((c) == 'S'))	? DEVID_SCSI_SERIAL :		\
1112 	(((c) == 'f') || ((c) == 'F'))	? DEVID_FAB :			\
1113 	(((c) == 'e') || ((c) == 'E'))	? DEVID_ENCAP :			\
1114 	(((c) == 'a') || ((c) == 'A'))	? DEVID_ATA_SERIAL :		\
1115 	DEVID_MAXTYPE +1)				/* unknown */
1116 
1117 /* determine if the type should be forced to hex encoding (non-ascii) */
1118 #define	DEVID_TYPE_BIN_FORCEHEX(b) (	\
1119 	((b) == DEVID_SCSI3_WWN) ||	\
1120 	((b) == DEVID_SCSI3_VPD_EUI) ||	\
1121 	((b) == DEVID_SCSI3_VPD_NAA) ||	\
1122 	((b) == DEVID_FAB))
1123 
1124 /* determine if the type is from a scsi3 vpd */
1125 #define	IS_DEVID_SCSI3_VPD_TYPE(b) (	\
1126 	((b) == DEVID_SCSI3_VPD_T10) ||	\
1127 	((b) == DEVID_SCSI3_VPD_EUI) ||	\
1128 	((b) == DEVID_SCSI3_VPD_NAA))
1129 
1130 /* convert rev field from binary to ascii (only supports 10 revs) */
1131 #define	DEVID_REV_BINTOASCII(b) (b + '0')
1132 
1133 /* convert rev field from ascii to binary (only supports 10 revs) */
1134 #define	DEVID_REV_ASCIITOBIN(c) (c - '0')
1135 
1136 /* name of devid property */
1137 #define	DEVID_PROP_NAME	"devid"
1138 
1139 /*
1140  * prop_name used by pci_{save,restore}_config_regs()
1141  */
1142 #define	SAVED_CONFIG_REGS "pci-config-regs"
1143 #define	SAVED_CONFIG_REGS_MASK "pcie-config-regs-mask"
1144 #define	SAVED_CONFIG_REGS_CAPINFO "pci-cap-info"
1145 
1146 typedef struct pci_config_header_state {
1147 	uint16_t	chs_command;
1148 	uint8_t		chs_cache_line_size;
1149 	uint8_t		chs_latency_timer;
1150 	uint8_t		chs_header_type;
1151 	uint8_t		chs_sec_latency_timer;
1152 	uint8_t		chs_bridge_control;
1153 	uint32_t	chs_base0;
1154 	uint32_t	chs_base1;
1155 	uint32_t	chs_base2;
1156 	uint32_t	chs_base3;
1157 	uint32_t	chs_base4;
1158 	uint32_t	chs_base5;
1159 } pci_config_header_state_t;
1160 
1161 #ifdef _KERNEL
1162 
1163 typedef struct pci_cap_save_desc {
1164 	uint16_t	cap_offset;
1165 	uint16_t	cap_id;
1166 	uint32_t	cap_nregs;
1167 } pci_cap_save_desc_t;
1168 
1169 typedef struct pci_cap_entry {
1170 	uint16_t		cap_id;
1171 	uint32_t		cap_ndwords;
1172 	uint32_t (*cap_save_func)(ddi_acc_handle_t confhdl, uint16_t cap_ptr,
1173 	    uint32_t *regbuf, uint32_t ndwords);
1174 } pci_cap_entry_t;
1175 
1176 #endif /* _KERNEL */
1177 
1178 #ifdef	__cplusplus
1179 }
1180 #endif
1181 
1182 #endif	/* _SYS_DDI_IMPLDEFS_H */
1183