xref: /titanic_50/usr/src/uts/common/sys/ddi_impldefs.h (revision 0a70879558a701a07771af87e7852a12f3bfd438)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2012 Garrett D'Amore <garrett@damore.org>.  All rights reserved.
24  */
25 
26 #ifndef _SYS_DDI_IMPLDEFS_H
27 #define	_SYS_DDI_IMPLDEFS_H
28 
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/t_lock.h>
32 #include <sys/ddipropdefs.h>
33 #include <sys/devops.h>
34 #include <sys/autoconf.h>
35 #include <sys/mutex.h>
36 #include <vm/page.h>
37 #include <sys/dacf_impl.h>
38 #include <sys/ndifm.h>
39 #include <sys/epm.h>
40 #include <sys/ddidmareq.h>
41 #include <sys/ddi_intr.h>
42 #include <sys/ddi_hp.h>
43 #include <sys/ddi_hp_impl.h>
44 #include <sys/ddi_isa.h>
45 #include <sys/id_space.h>
46 #include <sys/modhash.h>
47 #include <sys/bitset.h>
48 
49 #ifdef	__cplusplus
50 extern "C" {
51 #endif
52 
53 /*
54  * The device id implementation has been switched to be based on properties.
55  * For compatibility with di_devid libdevinfo interface the following
56  * must be defined:
57  */
58 #define	DEVID_COMPATIBILITY	((ddi_devid_t)-1)
59 
60 /*
61  * Definitions for node class.
62  * DDI_NC_PROM: a node with a nodeid that may be used in a promif call.
63  * DDI_NC_PSEUDO: a software created node with a software assigned nodeid.
64  */
65 typedef enum {
66 	DDI_NC_PROM = 0,
67 	DDI_NC_PSEUDO
68 } ddi_node_class_t;
69 
70 /*
71  * Definitions for generic callback mechanism.
72  */
73 typedef enum {
74 	DDI_CB_INTR_ADD,		/* More available interrupts */
75 	DDI_CB_INTR_REMOVE		/* Fewer available interrupts */
76 } ddi_cb_action_t;
77 
78 typedef enum {
79 	DDI_CB_FLAG_INTR = 0x1		/* Driver is IRM aware */
80 } ddi_cb_flags_t;
81 
82 #define	DDI_CB_FLAG_VALID(f)	((f) & DDI_CB_FLAG_INTR)
83 
84 typedef int	(*ddi_cb_func_t)(dev_info_t *dip, ddi_cb_action_t action,
85 		    void *cbarg, void *arg1, void *arg2);
86 
87 typedef struct ddi_cb {
88 	uint64_t	cb_flags;
89 	dev_info_t	*cb_dip;
90 	ddi_cb_func_t	cb_func;
91 	void		*cb_arg1;
92 	void		*cb_arg2;
93 } ddi_cb_t;
94 
95 /*
96  * dev_info:	The main device information structure this is intended to be
97  *		opaque to drivers and drivers should use ddi functions to
98  *		access *all* driver accessible fields.
99  *
100  * devi_parent_data includes property lists (interrupts, registers, etc.)
101  * devi_driver_data includes whatever the driver wants to place there.
102  */
103 struct devinfo_audit;
104 
105 typedef struct devi_port {
106 	union {
107 		struct {
108 			uint32_t type;
109 			uint32_t pad;
110 		} port;
111 		uint64_t type64;
112 	} info;
113 	void	*priv_p;
114 } devi_port_t;
115 
116 typedef struct devi_bus_priv {
117 	devi_port_t port_up;
118 	devi_port_t port_down;
119 } devi_bus_priv_t;
120 
121 #if defined(__x86)
122 struct iommulib_unit;
123 typedef struct iommulib_unit *iommulib_handle_t;
124 struct iommulib_nex;
125 typedef struct iommulib_nex *iommulib_nexhandle_t;
126 #endif
127 
128 typedef uint8_t	ndi_flavor_t;
129 struct ddi_hp_cn_handle;
130 
131 struct in_node;
132 
133 struct dev_info  {
134 
135 	struct dev_info *devi_parent;	/* my parent node in tree	*/
136 	struct dev_info *devi_child;	/* my child list head		*/
137 	struct dev_info *devi_sibling;	/* next element on my level	*/
138 
139 	char	*devi_binding_name;	/* name used to bind driver:	*/
140 					/* shared storage, points to	*/
141 					/* devi_node_name, devi_compat_names */
142 					/* or devi_rebinding_name	*/
143 
144 	char	*devi_addr;		/* address part of name		*/
145 
146 	int	devi_nodeid;		/* device nodeid		*/
147 	int	devi_instance;		/* device instance number	*/
148 
149 	struct dev_ops *devi_ops;	/* driver operations		*/
150 
151 	void	*devi_parent_data;	/* parent private data		*/
152 	void	*devi_driver_data;	/* driver private data		*/
153 
154 	ddi_prop_t *devi_drv_prop_ptr;	/* head of driver prop list */
155 	ddi_prop_t *devi_sys_prop_ptr;	/* head of system prop list */
156 
157 	struct ddi_minor_data *devi_minor;	/* head of minor list */
158 	struct dev_info *devi_next;	/* Next instance of this device */
159 	kmutex_t devi_lock;		/* Protects per-devinfo data */
160 
161 	/* logical parents for busop primitives */
162 
163 	struct dev_info *devi_bus_map_fault;	/* bus_map_fault parent	 */
164 	void		*devi_obsolete;		/* obsolete placeholder */
165 	struct dev_info *devi_bus_dma_allochdl; /* bus_dma_newhdl parent */
166 	struct dev_info *devi_bus_dma_freehdl;  /* bus_dma_freehdl parent */
167 	struct dev_info *devi_bus_dma_bindhdl;  /* bus_dma_bindhdl parent */
168 	struct dev_info *devi_bus_dma_unbindhdl; /* bus_dma_unbindhdl parent */
169 	struct dev_info *devi_bus_dma_flush;    /* bus_dma_flush parent	 */
170 	struct dev_info *devi_bus_dma_win;	/* bus_dma_win parent	 */
171 	struct dev_info *devi_bus_dma_ctl;	/* bus_dma_ctl parent	 */
172 	struct dev_info	*devi_bus_ctl;		/* bus_ctl parent	 */
173 
174 	ddi_prop_t *devi_hw_prop_ptr;		/* head of hw prop list */
175 
176 	char	*devi_node_name;		/* The 'name' of the node */
177 	char	*devi_compat_names;		/* A list of driver names */
178 	size_t	devi_compat_length;		/* Size of compat_names */
179 
180 	int (*devi_bus_dma_bindfunc)(dev_info_t *, dev_info_t *,
181 	    ddi_dma_handle_t, struct ddi_dma_req *, ddi_dma_cookie_t *,
182 	    uint_t *);
183 	int (*devi_bus_dma_unbindfunc)(dev_info_t *, dev_info_t *,
184 	    ddi_dma_handle_t);
185 
186 	char		*devi_devid_str;	/* registered device id */
187 
188 	/*
189 	 * power management entries
190 	 * components exist even if the device is not currently power managed
191 	 */
192 	struct pm_info *devi_pm_info;		/* 0 => dev not power managed */
193 	uint_t		devi_pm_flags;		/* pm flags */
194 	int		devi_pm_num_components;	/* number of components */
195 	size_t		devi_pm_comp_size;	/* size of devi_components */
196 	struct pm_component *devi_pm_components; /* array of pm components */
197 	struct dev_info *devi_pm_ppm;		/* ppm attached to this one */
198 	void		*devi_pm_ppm_private;	/* for use by ppm driver */
199 	int		devi_pm_dev_thresh;	/* "device" threshold */
200 	uint_t		devi_pm_kidsupcnt;	/* # of kids powered up */
201 	struct pm_scan	*devi_pm_scan;		/* pm scan info */
202 	uint_t		devi_pm_noinvolpm;	/* # of descendents no-invol */
203 	uint_t		devi_pm_volpmd;		/* # of voluntarily pm'ed */
204 	kmutex_t	devi_pm_lock;		/* pm lock for state */
205 	kmutex_t	devi_pm_busy_lock;	/* for component busy count */
206 
207 	uint_t		devi_state;		/* device/bus state flags */
208 						/* see below for definitions */
209 	kcondvar_t	devi_cv;		/* cv */
210 	int		devi_ref;		/* reference count */
211 
212 	dacf_rsrvlist_t *devi_dacf_tasks;	/* dacf reservation queue */
213 
214 	ddi_node_class_t devi_node_class;	/* Node class */
215 	int		devi_node_attributes;	/* Node attributes: See below */
216 
217 	char		*devi_device_class;
218 
219 	/*
220 	 * New mpxio kernel hooks entries
221 	 */
222 	int		devi_mdi_component;	/* mpxio component type */
223 	void		*devi_mdi_client;	/* mpxio client information */
224 	void		*devi_mdi_xhci;		/* vhci/phci info */
225 
226 	ddi_prop_list_t	*devi_global_prop_list;	/* driver global properties */
227 	major_t		devi_major;		/* driver major number */
228 	ddi_node_state_t devi_node_state;	/* state of node */
229 	uint_t		devi_flags;		/* configuration flags */
230 	int		devi_circular;		/* for recursive operations */
231 	void		*devi_busy_thread;	/* thread operating on node */
232 	void		*devi_taskq;		/* hotplug taskq */
233 
234 	/* device driver statistical and audit info */
235 	struct devinfo_audit *devi_audit;		/* last state change */
236 
237 	/*
238 	 * FMA support for resource caches and error handlers
239 	 */
240 	struct i_ddi_fmhdl	*devi_fmhdl;
241 
242 	uint_t		devi_cpr_flags;
243 
244 	/* Owned by DDI interrupt framework */
245 	devinfo_intr_t	*devi_intr_p;
246 
247 	void		*devi_nex_pm;		/* nexus PM private */
248 
249 	char		*devi_addr_buf;		/* buffer for devi_addr */
250 
251 	char		*devi_rebinding_name;	/* binding_name of rebind */
252 
253 	/* For device contracts that have this dip's minor node as resource */
254 	kmutex_t	devi_ct_lock;		/* contract lock */
255 	kcondvar_t	devi_ct_cv;		/* contract cv */
256 	int		devi_ct_count;		/* # of outstanding responses */
257 	int		devi_ct_neg;		/* neg. occurred on dip */
258 	list_t		devi_ct;
259 
260 	/* owned by bus framework */
261 	devi_bus_priv_t	devi_bus;		/* bus private data */
262 
263 	/* Declarations of the pure dynamic properties to snapshot */
264 	struct i_ddi_prop_dyn	*devi_prop_dyn_driver;	/* prop_op */
265 	struct i_ddi_prop_dyn	*devi_prop_dyn_parent;	/* bus_prop_op */
266 
267 #if defined(__x86)
268 	/* For x86 (Intel and AMD) IOMMU support */
269 	void		*devi_iommu;
270 	iommulib_handle_t	devi_iommulib_handle;
271 	iommulib_nexhandle_t	devi_iommulib_nex_handle;
272 #endif
273 
274 	/* Generic callback mechanism */
275 	ddi_cb_t	*devi_cb_p;
276 
277 	/* ndi 'flavors' */
278 	ndi_flavor_t	devi_flavor;		/* flavor assigned by parent */
279 	ndi_flavor_t	devi_flavorv_n;		/* number of child-flavors */
280 	void		**devi_flavorv;		/* child-flavor specific data */
281 
282 	/* Owned by hotplug framework */
283 	struct ddi_hp_cn_handle *devi_hp_hdlp;   /* hotplug handle list */
284 
285 	struct in_node  *devi_in_node; /* pointer to devinfo node's in_node_t */
286 
287 	/* detach event data */
288 	char	*devi_ev_path;
289 	int	devi_ev_instance;
290 };
291 
292 #define	DEVI(dev_info_type)	((struct dev_info *)(dev_info_type))
293 
294 /*
295  * NB: The 'name' field, for compatibility with old code (both existing
296  * device drivers and userland code), is now defined as the name used
297  * to bind the node to a device driver, and not the device node name.
298  * If the device node name does not define a binding to a device driver,
299  * and the framework uses a different algorithm to create the binding to
300  * the driver, the node name and binding name will be different.
301  *
302  * Note that this implies that the node name plus instance number does
303  * NOT create a unique driver id; only the binding name plus instance
304  * number creates a unique driver id.
305  *
306  * New code should not use 'devi_name'; use 'devi_binding_name' or
307  * 'devi_node_name' and/or the routines that access those fields.
308  */
309 
310 #define	devi_name devi_binding_name
311 
312 /*
313  * DDI_CF1, DDI_CF2 and DDI_DRV_UNLOADED are obsolete. They are kept
314  * around to allow legacy drivers to to compile.
315  */
316 #define	DDI_CF1(devi)		(DEVI(devi)->devi_addr != NULL)
317 #define	DDI_CF2(devi)		(DEVI(devi)->devi_ops != NULL)
318 #define	DDI_DRV_UNLOADED(devi)	(DEVI(devi)->devi_ops == &mod_nodev_ops)
319 
320 /*
321  * The device state flags (devi_state) contains information regarding
322  * the state of the device (Online/Offline/Down).  For bus nexus
323  * devices, the device state also contains state information regarding
324  * the state of the bus represented by this nexus node.
325  *
326  * Device state information is stored in bits [0-7], bus state in bits
327  * [8-15].
328  *
329  * NOTE: all devi_state updates should be protected by devi_lock.
330  */
331 #define	DEVI_DEVICE_OFFLINE	0x00000001
332 #define	DEVI_DEVICE_DOWN	0x00000002
333 #define	DEVI_DEVICE_DEGRADED	0x00000004
334 #define	DEVI_DEVICE_REMOVED	0x00000008 /* hardware removed */
335 
336 #define	DEVI_BUS_QUIESCED	0x00000100
337 #define	DEVI_BUS_DOWN		0x00000200
338 #define	DEVI_NDI_CONFIG		0x00000400 /* perform config when attaching */
339 
340 #define	DEVI_S_ATTACHING	0x00010000
341 #define	DEVI_S_DETACHING	0x00020000
342 #define	DEVI_S_ONLINING		0x00040000
343 #define	DEVI_S_OFFLINING	0x00080000
344 
345 #define	DEVI_S_INVOKING_DACF	0x00100000 /* busy invoking a dacf task */
346 
347 #define	DEVI_S_UNBOUND		0x00200000
348 #define	DEVI_S_REPORT		0x08000000 /* report status change */
349 
350 #define	DEVI_S_EVADD		0x10000000 /* state of devfs event */
351 #define	DEVI_S_EVREMOVE		0x20000000 /* state of devfs event */
352 #define	DEVI_S_NEED_RESET	0x40000000 /* devo_reset should be called */
353 
354 /*
355  * Device state macros.
356  * o All SET/CLR/DONE users must protect context with devi_lock.
357  * o DEVI_SET_DEVICE_ONLINE users must do his own DEVI_SET_REPORT.
358  * o DEVI_SET_DEVICE_{DOWN|DEGRADED|UP} should only be used when !OFFLINE.
359  * o DEVI_SET_DEVICE_UP clears DOWN and DEGRADED.
360  */
361 #define	DEVI_IS_DEVICE_OFFLINE(dip)					\
362 	((DEVI(dip)->devi_state & DEVI_DEVICE_OFFLINE) == DEVI_DEVICE_OFFLINE)
363 
364 #define	DEVI_SET_DEVICE_ONLINE(dip)	{				\
365 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
366 	if (DEVI(dip)->devi_state & DEVI_DEVICE_DEGRADED) {		\
367 		mutex_exit(&DEVI(dip)->devi_lock);			\
368 		e_ddi_undegrade_finalize(dip);				\
369 		mutex_enter(&DEVI(dip)->devi_lock);			\
370 	}								\
371 	/* setting ONLINE clears DOWN, DEGRADED, OFFLINE */		\
372 	DEVI(dip)->devi_state &= ~(DEVI_DEVICE_DOWN |			\
373 	    DEVI_DEVICE_DEGRADED | DEVI_DEVICE_OFFLINE);		\
374 	}
375 
376 #define	DEVI_SET_DEVICE_OFFLINE(dip)	{				\
377 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
378 	DEVI(dip)->devi_state |= (DEVI_DEVICE_OFFLINE | DEVI_S_REPORT);	\
379 	}
380 
381 #define	DEVI_IS_DEVICE_DOWN(dip)					\
382 	((DEVI(dip)->devi_state & DEVI_DEVICE_DOWN) == DEVI_DEVICE_DOWN)
383 
384 #define	DEVI_SET_DEVICE_DOWN(dip)	{				\
385 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
386 	ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip));				\
387 	DEVI(dip)->devi_state |= (DEVI_DEVICE_DOWN | DEVI_S_REPORT);	\
388 	}
389 
390 #define	DEVI_IS_DEVICE_DEGRADED(dip)					\
391 	((DEVI(dip)->devi_state &					\
392 	    (DEVI_DEVICE_DEGRADED|DEVI_DEVICE_DOWN)) == DEVI_DEVICE_DEGRADED)
393 
394 #define	DEVI_SET_DEVICE_DEGRADED(dip)	{				\
395 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
396 	ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip));				\
397 	mutex_exit(&DEVI(dip)->devi_lock);				\
398 	e_ddi_degrade_finalize(dip);					\
399 	mutex_enter(&DEVI(dip)->devi_lock);				\
400 	DEVI(dip)->devi_state |= (DEVI_DEVICE_DEGRADED | DEVI_S_REPORT); \
401 	}
402 
403 #define	DEVI_SET_DEVICE_UP(dip)		{				\
404 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
405 	ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip));				\
406 	if (DEVI(dip)->devi_state & DEVI_DEVICE_DEGRADED) {		\
407 		mutex_exit(&DEVI(dip)->devi_lock);			\
408 		e_ddi_undegrade_finalize(dip);				\
409 		mutex_enter(&DEVI(dip)->devi_lock);			\
410 	}								\
411 	DEVI(dip)->devi_state &= ~(DEVI_DEVICE_DEGRADED | DEVI_DEVICE_DOWN); \
412 	DEVI(dip)->devi_state |= DEVI_S_REPORT;				\
413 	}
414 
415 /* Device removal and insertion */
416 #define	DEVI_IS_DEVICE_REMOVED(dip)					\
417 	((DEVI(dip)->devi_state & DEVI_DEVICE_REMOVED) == DEVI_DEVICE_REMOVED)
418 
419 #define	DEVI_SET_DEVICE_REMOVED(dip)	{				\
420 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
421 	DEVI(dip)->devi_state |= DEVI_DEVICE_REMOVED | DEVI_S_REPORT;	\
422 	}
423 
424 #define	DEVI_SET_DEVICE_REINSERTED(dip)	{				\
425 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
426 	DEVI(dip)->devi_state &= ~DEVI_DEVICE_REMOVED;			\
427 	DEVI(dip)->devi_state |= DEVI_S_REPORT;				\
428 	}
429 
430 /* Bus state change macros */
431 #define	DEVI_IS_BUS_QUIESCED(dip)					\
432 	((DEVI(dip)->devi_state & DEVI_BUS_QUIESCED) == DEVI_BUS_QUIESCED)
433 
434 #define	DEVI_SET_BUS_ACTIVE(dip)	{				\
435 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
436 	DEVI(dip)->devi_state &= ~DEVI_BUS_QUIESCED;			\
437 	DEVI(dip)->devi_state |= DEVI_S_REPORT;				\
438 	}
439 
440 #define	DEVI_SET_BUS_QUIESCE(dip)	{				\
441 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
442 	DEVI(dip)->devi_state |= (DEVI_BUS_QUIESCED | DEVI_S_REPORT);	\
443 	}
444 
445 #define	DEVI_IS_BUS_DOWN(dip)						\
446 	((DEVI(dip)->devi_state & DEVI_BUS_DOWN) == DEVI_BUS_DOWN)
447 
448 #define	DEVI_SET_BUS_UP(dip)		{				\
449 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
450 	DEVI(dip)->devi_state &= ~DEVI_BUS_DOWN;			\
451 	DEVI(dip)->devi_state |= DEVI_S_REPORT;				\
452 	}
453 
454 #define	DEVI_SET_BUS_DOWN(dip)		{				\
455 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
456 	DEVI(dip)->devi_state |= (DEVI_BUS_DOWN | DEVI_S_REPORT);	\
457 	}
458 
459 /* Status change report needed */
460 #define	DEVI_NEED_REPORT(dip)						\
461 	((DEVI(dip)->devi_state & DEVI_S_REPORT) == DEVI_S_REPORT)
462 
463 #define	DEVI_SET_REPORT(dip)		{				\
464 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
465 	DEVI(dip)->devi_state |= DEVI_S_REPORT;				\
466 	}
467 
468 #define	DEVI_REPORT_DONE(dip)		{				\
469 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
470 	DEVI(dip)->devi_state &= ~DEVI_S_REPORT;			\
471 	}
472 
473 /* Do an NDI_CONFIG for its children */
474 #define	DEVI_NEED_NDI_CONFIG(dip)					\
475 	((DEVI(dip)->devi_state & DEVI_NDI_CONFIG) == DEVI_NDI_CONFIG)
476 
477 #define	DEVI_SET_NDI_CONFIG(dip)	{				\
478 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
479 	DEVI(dip)->devi_state |= DEVI_NDI_CONFIG;			\
480 	}
481 
482 #define	DEVI_CLR_NDI_CONFIG(dip)	{				\
483 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
484 	DEVI(dip)->devi_state &= ~DEVI_NDI_CONFIG;			\
485 	}
486 
487 /* Attaching or detaching state */
488 #define	DEVI_IS_ATTACHING(dip)						\
489 	((DEVI(dip)->devi_state & DEVI_S_ATTACHING) == DEVI_S_ATTACHING)
490 
491 #define	DEVI_SET_ATTACHING(dip)		{				\
492 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
493 	DEVI(dip)->devi_state |= DEVI_S_ATTACHING;			\
494 	}
495 
496 #define	DEVI_CLR_ATTACHING(dip)		{				\
497 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
498 	DEVI(dip)->devi_state &= ~DEVI_S_ATTACHING;			\
499 	}
500 
501 #define	DEVI_IS_DETACHING(dip)						\
502 	((DEVI(dip)->devi_state & DEVI_S_DETACHING) == DEVI_S_DETACHING)
503 
504 #define	DEVI_SET_DETACHING(dip)		{				\
505 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
506 	DEVI(dip)->devi_state |= DEVI_S_DETACHING;			\
507 	}
508 
509 #define	DEVI_CLR_DETACHING(dip)		{				\
510 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
511 	DEVI(dip)->devi_state &= ~DEVI_S_DETACHING;			\
512 	}
513 
514 /* Onlining or offlining state */
515 #define	DEVI_IS_ONLINING(dip)						\
516 	((DEVI(dip)->devi_state & DEVI_S_ONLINING) == DEVI_S_ONLINING)
517 
518 #define	DEVI_SET_ONLINING(dip)		{				\
519 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
520 	DEVI(dip)->devi_state |= DEVI_S_ONLINING;			\
521 	}
522 
523 #define	DEVI_CLR_ONLINING(dip)		{				\
524 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
525 	DEVI(dip)->devi_state &= ~DEVI_S_ONLINING;			\
526 	}
527 
528 #define	DEVI_IS_OFFLINING(dip)						\
529 	((DEVI(dip)->devi_state & DEVI_S_OFFLINING) == DEVI_S_OFFLINING)
530 
531 #define	DEVI_SET_OFFLINING(dip)		{				\
532 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
533 	DEVI(dip)->devi_state |= DEVI_S_OFFLINING;			\
534 	}
535 
536 #define	DEVI_CLR_OFFLINING(dip)		{				\
537 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
538 	DEVI(dip)->devi_state &= ~DEVI_S_OFFLINING;			\
539 	}
540 
541 #define	DEVI_IS_IN_RECONFIG(dip)					\
542 	(DEVI(dip)->devi_state & (DEVI_S_OFFLINING | DEVI_S_ONLINING))
543 
544 /* Busy invoking a dacf task against this node */
545 #define	DEVI_IS_INVOKING_DACF(dip)					\
546 	((DEVI(dip)->devi_state & DEVI_S_INVOKING_DACF) == DEVI_S_INVOKING_DACF)
547 
548 #define	DEVI_SET_INVOKING_DACF(dip)	{				\
549 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
550 	DEVI(dip)->devi_state |= DEVI_S_INVOKING_DACF;			\
551 	}
552 
553 #define	DEVI_CLR_INVOKING_DACF(dip)	{				\
554 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
555 	DEVI(dip)->devi_state &= ~DEVI_S_INVOKING_DACF;			\
556 	}
557 
558 /* Events for add/remove */
559 #define	DEVI_EVADD(dip)							\
560 	((DEVI(dip)->devi_state & DEVI_S_EVADD) == DEVI_S_EVADD)
561 
562 #define	DEVI_SET_EVADD(dip)		{				\
563 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
564 	DEVI(dip)->devi_state &= ~DEVI_S_EVREMOVE;			\
565 	DEVI(dip)->devi_state |= DEVI_S_EVADD;				\
566 	}
567 
568 #define	DEVI_EVREMOVE(dip)						\
569 	((DEVI(dip)->devi_state & DEVI_S_EVREMOVE) == DEVI_S_EVREMOVE)
570 
571 #define	DEVI_SET_EVREMOVE(dip)		{				\
572 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
573 	DEVI(dip)->devi_state &= ~DEVI_S_EVADD;				\
574 	DEVI(dip)->devi_state |= DEVI_S_EVREMOVE;			\
575 	}
576 
577 #define	DEVI_SET_EVUNINIT(dip)		{				\
578 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
579 	DEVI(dip)->devi_state &= ~(DEVI_S_EVADD | DEVI_S_EVREMOVE);	\
580 	}
581 
582 /* Need to call the devo_reset entry point for this device at shutdown */
583 #define	DEVI_NEED_RESET(dip)						\
584 	((DEVI(dip)->devi_state & DEVI_S_NEED_RESET) == DEVI_S_NEED_RESET)
585 
586 #define	DEVI_SET_NEED_RESET(dip)	{				\
587 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
588 	DEVI(dip)->devi_state |= DEVI_S_NEED_RESET;			\
589 	}
590 
591 #define	DEVI_CLR_NEED_RESET(dip)	{				\
592 	ASSERT(mutex_owned(&DEVI(dip)->devi_lock));			\
593 	DEVI(dip)->devi_state &= ~DEVI_S_NEED_RESET;			\
594 	}
595 
596 /*
597  * devi_flags bits
598  *
599  * NOTE: all devi_state updates should be protected by devi_lock.
600  */
601 #define	DEVI_BUSY		0x00000001 /* busy configuring children */
602 #define	DEVI_MADE_CHILDREN	0x00000002 /* children made from specs */
603 #define	DEVI_ATTACHED_CHILDREN	0x00000004 /* attached all existing children */
604 #define	DEVI_BRANCH_HELD	0x00000008 /* branch rooted at this dip held */
605 #define	DEVI_NO_BIND		0x00000010 /* prevent driver binding */
606 #define	DEVI_CACHED_DEVID	0x00000020 /* devid cached in devid cache */
607 #define	DEVI_PHCI_SIGNALS_VHCI	0x00000040 /* pHCI ndi_devi_exit signals vHCI */
608 #define	DEVI_REBIND		0x00000080 /* post initchild driver rebind */
609 #define	DEVI_RETIRED		0x00000100 /* device is retired */
610 #define	DEVI_RETIRING		0x00000200 /* being evaluated for retire */
611 #define	DEVI_R_CONSTRAINT	0x00000400 /* constraints have been applied  */
612 #define	DEVI_R_BLOCKED		0x00000800 /* constraints block retire  */
613 #define	DEVI_CT_NOP		0x00001000 /* NOP contract event occurred */
614 #define	DEVI_PCI_DEVICE		0x00002000 /* dip is PCI */
615 
616 #define	DEVI_BUSY_CHANGING(dip)	(DEVI(dip)->devi_flags & DEVI_BUSY)
617 #define	DEVI_BUSY_OWNED(dip)	(DEVI_BUSY_CHANGING(dip) &&	\
618 	((DEVI(dip))->devi_busy_thread == curthread))
619 
620 #define	DEVI_IS_PCI(dip)	(DEVI(dip)->devi_flags & DEVI_PCI_DEVICE)
621 #define	DEVI_SET_PCI(dip)	(DEVI(dip)->devi_flags |= (DEVI_PCI_DEVICE))
622 
623 char	*i_ddi_devi_class(dev_info_t *);
624 int	i_ddi_set_devi_class(dev_info_t *, char *, int);
625 
626 /*
627  * This structure represents one piece of bus space occupied by a given
628  * device. It is used in an array for devices with multiple address windows.
629  */
630 struct regspec {
631 	uint_t regspec_bustype;		/* cookie for bus type it's on */
632 	uint_t regspec_addr;		/* address of reg relative to bus */
633 	uint_t regspec_size;		/* size of this register set */
634 };
635 
636 /*
637  * This structure represents one piece of nexus bus space.
638  * It is used in an array for nexi with multiple bus spaces
639  * to define the childs offsets in the parents bus space.
640  */
641 struct rangespec {
642 	uint_t rng_cbustype;		/* Child's address, hi order */
643 	uint_t rng_coffset;		/* Child's address, lo order */
644 	uint_t rng_bustype;		/* Parent's address, hi order */
645 	uint_t rng_offset;		/* Parent's address, lo order */
646 	uint_t rng_size;		/* size of space for this entry */
647 };
648 
649 #ifdef _KERNEL
650 
651 typedef enum {
652 	DDI_PRE = 0,
653 	DDI_POST = 1
654 } ddi_pre_post_t;
655 
656 /*
657  * This structure represents notification of a child attach event
658  * These could both be the same if attach/detach commands were in the
659  * same name space.
660  * Note that the target dip is passed as an arg already.
661  */
662 struct attachspec {
663 	ddi_attach_cmd_t cmd;	/* type of event */
664 	ddi_pre_post_t	when;	/* one of DDI_PRE or DDI_POST */
665 	dev_info_t	*pdip;	/* parent of attaching node */
666 	int		result;	/* result of attach op (post command only) */
667 };
668 
669 /*
670  * This structure represents notification of a child detach event
671  * Note that the target dip is passed as an arg already.
672  */
673 struct detachspec {
674 	ddi_detach_cmd_t cmd;	/* type of event */
675 	ddi_pre_post_t	when;	/* one of DDI_PRE or DDI_POST */
676 	dev_info_t	*pdip;	/* parent of detaching node */
677 	int		result;	/* result of detach op (post command only) */
678 };
679 
680 #endif /* _KERNEL */
681 
682 typedef enum {
683 	DDM_MINOR = 0,
684 	DDM_ALIAS,
685 	DDM_DEFAULT,
686 	DDM_INTERNAL_PATH
687 } ddi_minor_type;
688 
689 /* implementation flags for driver specified device access control */
690 #define	DM_NO_FSPERM	0x1
691 
692 struct devplcy;
693 
694 struct ddi_minor {
695 	char		*name;		/* name of node */
696 	dev_t		dev;		/* device number */
697 	int		spec_type;	/* block or char */
698 	int		flags;		/* access flags */
699 	char		*node_type;	/* block, byte, serial, network */
700 	struct devplcy	*node_priv;	/* privilege for this minor */
701 	mode_t		priv_mode;	/* default apparent privilege mode */
702 };
703 
704 /*
705  * devi_node_attributes contains node attributes private to the
706  * ddi implementation. As a consumer, do not use these bit definitions
707  * directly, use the ndi functions that check for the existence of the
708  * specific node attributes.
709  *
710  * DDI_PERSISTENT indicates a 'persistent' node; one that is not
711  * automatically freed by the framework if the driver is unloaded
712  * or the driver fails to attach to this node.
713  *
714  * DDI_AUTO_ASSIGNED_NODEID indicates that the nodeid was auto-assigned
715  * by the framework and should be auto-freed if the node is removed.
716  *
717  * DDI_VHCI_NODE indicates that the node type is VHCI. This flag
718  * must be set by ndi_devi_config_vhci() routine only.
719  *
720  * DDI_HIDDEN_NODE indicates that the node should not show up in snapshots
721  * or in /devices.
722  *
723  * DDI_HOTPLUG_NODE indicates that the node created by nexus hotplug.
724  */
725 #define	DDI_PERSISTENT			0x01
726 #define	DDI_AUTO_ASSIGNED_NODEID	0x02
727 #define	DDI_VHCI_NODE			0x04
728 #define	DDI_HIDDEN_NODE			0x08
729 #define	DDI_HOTPLUG_NODE		0x10
730 
731 #define	DEVI_VHCI_NODE(dip)						\
732 	(DEVI(dip)->devi_node_attributes & DDI_VHCI_NODE)
733 
734 /*
735  * The ddi_minor_data structure gets filled in by ddi_create_minor_node.
736  * It then gets attached to the devinfo node as a property.
737  */
738 struct ddi_minor_data {
739 	struct ddi_minor_data *next;	/* next one in the chain */
740 	dev_info_t	*dip;		/* pointer to devinfo node */
741 	ddi_minor_type	type;		/* Following data type */
742 	struct ddi_minor d_minor;	/* Actual minor node data */
743 };
744 
745 #define	ddm_name	d_minor.name
746 #define	ddm_dev		d_minor.dev
747 #define	ddm_flags	d_minor.flags
748 #define	ddm_spec_type	d_minor.spec_type
749 #define	ddm_node_type	d_minor.node_type
750 #define	ddm_node_priv	d_minor.node_priv
751 #define	ddm_priv_mode	d_minor.priv_mode
752 
753 /*
754  * parent private data structure contains register, interrupt, property
755  * and range information.
756  */
757 struct ddi_parent_private_data {
758 	int par_nreg;			/* number of regs */
759 	struct regspec *par_reg;	/* array of regs */
760 	int par_nintr;			/* number of interrupts */
761 	struct intrspec *par_intr;	/* array of possible interrupts */
762 	int par_nrng;			/* number of ranges */
763 	struct rangespec *par_rng;	/* array of ranges */
764 };
765 #define	DEVI_PD(d)	\
766 	((struct ddi_parent_private_data *)DEVI((d))->devi_parent_data)
767 
768 #define	sparc_pd_getnreg(dev)		(DEVI_PD(dev)->par_nreg)
769 #define	sparc_pd_getnintr(dev)		(DEVI_PD(dev)->par_nintr)
770 #define	sparc_pd_getnrng(dev)		(DEVI_PD(dev)->par_nrng)
771 #define	sparc_pd_getreg(dev, n)		(&DEVI_PD(dev)->par_reg[(n)])
772 #define	sparc_pd_getintr(dev, n)	(&DEVI_PD(dev)->par_intr[(n)])
773 #define	sparc_pd_getrng(dev, n)		(&DEVI_PD(dev)->par_rng[(n)])
774 
775 #ifdef _KERNEL
776 /*
777  * This data structure is private to the indexed soft state allocator.
778  */
779 typedef struct i_ddi_soft_state {
780 	void		**array;	/* the array of pointers */
781 	kmutex_t	lock;		/* serialize access to this struct */
782 	size_t		size;		/* how many bytes per state struct */
783 	size_t		n_items;	/* how many structs herein */
784 	struct i_ddi_soft_state *next;	/* 'dirty' elements */
785 } i_ddi_soft_state;
786 
787 /*
788  * This data structure is private to the stringhashed soft state allocator.
789  */
790 typedef struct i_ddi_soft_state_bystr {
791 	size_t		ss_size;	/* how many bytes per state struct */
792 	mod_hash_t	*ss_mod_hash;	/* hash implementation */
793 } i_ddi_soft_state_bystr;
794 
795 /*
796  * This data structure is private to the ddi_strid_* implementation
797  */
798 typedef struct i_ddi_strid {
799 	size_t		strid_chunksz;
800 	size_t		strid_spacesz;
801 	id_space_t	*strid_space;
802 	mod_hash_t	*strid_byid;
803 	mod_hash_t	*strid_bystr;
804 } i_ddi_strid;
805 #endif /* _KERNEL */
806 
807 /*
808  * Solaris DDI DMA implementation structure and function definitions.
809  *
810  * Note: no callers of DDI functions must depend upon data structures
811  * declared below. They are not guaranteed to remain constant.
812  */
813 
814 /*
815  * Implementation DMA mapping structure.
816  *
817  * The publicly visible ddi_dma_req structure is filled
818  * in by a caller that wishes to map a memory object
819  * for DMA. Internal to this implementation of the public
820  * DDI DMA functions this request structure is put together
821  * with bus nexus specific functions that have additional
822  * information and constraints as to how to go about doing
823  * the requested mapping function
824  *
825  * In this implementation, some of the information from the
826  * original requester is retained throughout the lifetime
827  * of the I/O mapping being active.
828  */
829 
830 /*
831  * This is the implementation specific description
832  * of how we've mapped an object for DMA.
833  */
834 #if defined(__sparc)
835 typedef struct ddi_dma_impl {
836 	/*
837 	 * DMA mapping information
838 	 */
839 	ulong_t	dmai_mapping;	/* mapping cookie */
840 
841 	/*
842 	 * Size of the current mapping, in bytes.
843 	 *
844 	 * Note that this is distinct from the size of the object being mapped
845 	 * for DVMA. We might have only a portion of the object mapped at any
846 	 * given point in time.
847 	 */
848 	uint_t	dmai_size;
849 
850 	/*
851 	 * Offset, in bytes, into object that is currently mapped.
852 	 */
853 	off_t	dmai_offset;
854 
855 	/*
856 	 * Information gathered from the original DMA mapping
857 	 * request and saved for the lifetime of the mapping.
858 	 */
859 	uint_t		dmai_minxfer;
860 	uint_t		dmai_burstsizes;
861 	uint_t		dmai_ndvmapages;
862 	uint_t		dmai_pool;	/* cached DVMA space */
863 	uint_t		dmai_rflags;	/* requester's flags + ours */
864 	uint_t		dmai_inuse;	/* active handle? */
865 	uint_t		dmai_nwin;
866 	uint_t		dmai_winsize;
867 	caddr_t		dmai_nexus_private;
868 	void		*dmai_iopte;
869 	uint_t		*dmai_sbi;
870 	void		*dmai_minfo;	/* random mapping information */
871 	dev_info_t	*dmai_rdip;	/* original requester's dev_info_t */
872 	ddi_dma_obj_t	dmai_object;	/* requester's object */
873 	ddi_dma_attr_t	dmai_attr;	/* DMA attributes */
874 	ddi_dma_cookie_t *dmai_cookie;	/* pointer to first DMA cookie */
875 
876 	int		(*dmai_fault_check)(struct ddi_dma_impl *handle);
877 	void		(*dmai_fault_notify)(struct ddi_dma_impl *handle);
878 	int		dmai_fault;
879 	ndi_err_t	dmai_error;
880 
881 } ddi_dma_impl_t;
882 
883 #elif defined(__x86)
884 
885 /*
886  * ddi_dma_impl portion that genunix (sunddi.c) depends on. x86 rootnex
887  * implementation specific state is in dmai_private.
888  */
889 typedef struct ddi_dma_impl {
890 	ddi_dma_cookie_t *dmai_cookie; /* array of DMA cookies */
891 	void		*dmai_private;
892 
893 	/*
894 	 * Information gathered from the original dma mapping
895 	 * request and saved for the lifetime of the mapping.
896 	 */
897 	uint_t		dmai_minxfer;
898 	uint_t		dmai_burstsizes;
899 	uint_t		dmai_rflags;	/* requester's flags + ours */
900 	int		dmai_nwin;
901 	dev_info_t	*dmai_rdip;	/* original requester's dev_info_t */
902 
903 	ddi_dma_attr_t	dmai_attr;	/* DMA attributes */
904 
905 	int		(*dmai_fault_check)(struct ddi_dma_impl *handle);
906 	void		(*dmai_fault_notify)(struct ddi_dma_impl *handle);
907 	int		dmai_fault;
908 	ndi_err_t	dmai_error;
909 } ddi_dma_impl_t;
910 
911 #else
912 #error "struct ddi_dma_impl not defined for this architecture"
913 #endif  /* defined(__sparc) */
914 
915 /*
916  * For now DMA segments share state with the DMA handle
917  */
918 typedef ddi_dma_impl_t ddi_dma_seg_impl_t;
919 
920 /*
921  * These flags use reserved bits from the dma request flags.
922  *
923  * A note about the DMP_NOSYNC flags: the root nexus will
924  * set these as it sees best. If an intermediate nexus
925  * actually needs these operations, then during the unwind
926  * from the call to ddi_dma_bind, the nexus driver *must*
927  * clear the appropriate flag(s). This is because, as an
928  * optimization, ddi_dma_sync(9F) looks at these flags before
929  * deciding to spend the time going back up the tree.
930  */
931 
932 #define	_DMCM1	DDI_DMA_RDWR|DDI_DMA_REDZONE|DDI_DMA_PARTIAL
933 #define	_DMCM2	DDI_DMA_CONSISTENT|DMP_VMEREQ
934 #define	DMP_DDIFLAGS	(_DMCM1|_DMCM2)
935 #define	DMP_SHADOW	0x20
936 #define	DMP_LKIOPB	0x40
937 #define	DMP_LKSYSV	0x80
938 #define	DMP_IOCACHE	0x100
939 #define	DMP_USEHAT	0x200
940 #define	DMP_PHYSADDR	0x400
941 #define	DMP_INVALID	0x800
942 #define	DMP_NOLIMIT	0x1000
943 #define	DMP_VMEREQ	0x10000000
944 #define	DMP_BYPASSNEXUS	0x20000000
945 #define	DMP_NODEVSYNC	0x40000000
946 #define	DMP_NOCPUSYNC	0x80000000
947 #define	DMP_NOSYNC	(DMP_NODEVSYNC|DMP_NOCPUSYNC)
948 
949 /*
950  * In order to complete a device to device mapping that
951  * has percolated as high as an IU nexus (gone that high
952  * because the DMA request is a VADDR type), we define
953  * structure to use with the DDI_CTLOPS_DMAPMAPC request
954  * that re-traverses the request tree to finish the
955  * DMA 'mapping' for a device.
956  */
957 struct dma_phys_mapc {
958 	struct ddi_dma_req *dma_req;	/* original request */
959 	ddi_dma_impl_t *mp;		/* current handle, or none */
960 	int nptes;			/* number of ptes */
961 	void *ptes;			/* ptes already read */
962 };
963 
964 #define	MAXCALLBACK		20
965 
966 /*
967  * Callback definitions
968  */
969 struct ddi_callback {
970 	struct ddi_callback	*c_nfree;
971 	struct ddi_callback	*c_nlist;
972 	int			(*c_call)();
973 	int			c_count;
974 	caddr_t			c_arg;
975 	size_t			c_size;
976 };
977 
978 /*
979  * Pure dynamic property declaration. A pure dynamic property is a property
980  * for which a driver's prop_op(9E) implementation will return a value on
981  * demand, but the property name does not exist on a property list (global,
982  * driver, system, or hardware) - the person asking for the value must know
983  * the name and type information.
984  *
985  * For a pure dynamic property to show up in a di_init() devinfo shapshot, the
986  * devinfo driver must know name and type. The i_ddi_prop_dyn_t mechanism
987  * allows a driver to define an array of the name/type information of its
988  * dynamic properties. When a driver declares its dynamic properties in a
989  * i_ddi_prop_dyn_t array, and registers that array using
990  * i_ddi_prop_dyn_driver_set() the devinfo driver has sufficient information
991  * to represent the properties in a snapshot - calling the driver's
992  * prop_op(9E) to obtain values.
993  *
994  * The last element of a i_ddi_prop_dyn_t is detected via a NULL dp_name value.
995  *
996  * A pure dynamic property name associated with a minor_node/dev_t should be
997  * defined with a dp_spec_type of S_IFCHR or S_IFBLK, as appropriate.  The
998  * driver's prop_op(9E) entry point will be called for all
999  * ddi_create_minor_node(9F) nodes of the specified spec_type. For a driver
1000  * where not all minor_node/dev_t combinations support the same named
1001  * properties, it is the responsibility of the prop_op(9E) implementation to
1002  * sort out what combinations are appropriate.
1003  *
1004  * A pure dynamic property of a devinfo node should be defined with a
1005  * dp_spec_type of 0.
1006  *
1007  * NB: Public DDI property interfaces no longer support pure dynamic
1008  * properties, but they are still still used.  A prime example is the cmlb
1009  * implementation of size(9P) properties. Using pure dynamic properties
1010  * reduces the space required to maintain per-partition information. Since
1011  * there are no public interfaces to create pure dynamic properties,
1012  * the i_ddi_prop_dyn_t mechanism should remain private.
1013  */
1014 typedef struct i_ddi_prop_dyn {
1015 	char	*dp_name;		/* name of dynamic property */
1016 	int	dp_type;		/* DDI_PROP_TYPE_ of property */
1017 	int	dp_spec_type;		/* 0, S_IFCHR, S_IFBLK */
1018 } i_ddi_prop_dyn_t;
1019 void			i_ddi_prop_dyn_driver_set(dev_info_t *,
1020 			    i_ddi_prop_dyn_t *);
1021 i_ddi_prop_dyn_t	*i_ddi_prop_dyn_driver_get(dev_info_t *);
1022 void			i_ddi_prop_dyn_parent_set(dev_info_t *,
1023 			    i_ddi_prop_dyn_t *);
1024 i_ddi_prop_dyn_t	*i_ddi_prop_dyn_parent_get(dev_info_t *);
1025 void			i_ddi_prop_dyn_cache_invalidate(dev_info_t *,
1026 			    i_ddi_prop_dyn_t *);
1027 
1028 /*
1029  * Device id - Internal definition.
1030  */
1031 #define	DEVID_MAGIC_MSB		0x69
1032 #define	DEVID_MAGIC_LSB		0x64
1033 #define	DEVID_REV_MSB		0x00
1034 #define	DEVID_REV_LSB		0x01
1035 #define	DEVID_HINT_SIZE		4
1036 
1037 typedef struct impl_devid {
1038 	uchar_t	did_magic_hi;			/* device id magic # (msb) */
1039 	uchar_t	did_magic_lo;			/* device id magic # (lsb) */
1040 	uchar_t	did_rev_hi;			/* device id revision # (msb) */
1041 	uchar_t	did_rev_lo;			/* device id revision # (lsb) */
1042 	uchar_t	did_type_hi;			/* device id type (msb) */
1043 	uchar_t	did_type_lo;			/* device id type (lsb) */
1044 	uchar_t	did_len_hi;			/* length of devid data (msb) */
1045 	uchar_t	did_len_lo;			/* length of devid data (lsb) */
1046 	char	did_driver[DEVID_HINT_SIZE];	/* driver name - HINT */
1047 	char	did_id[1];			/* start of device id data */
1048 } impl_devid_t;
1049 
1050 #define	DEVID_GETTYPE(devid)		((ushort_t) \
1051 					    (((devid)->did_type_hi << NBBY) + \
1052 					    (devid)->did_type_lo))
1053 
1054 #define	DEVID_FORMTYPE(devid, type)	(devid)->did_type_hi = hibyte((type)); \
1055 					(devid)->did_type_lo = lobyte((type));
1056 
1057 #define	DEVID_GETLEN(devid)		((ushort_t) \
1058 					    (((devid)->did_len_hi << NBBY) + \
1059 					    (devid)->did_len_lo))
1060 
1061 #define	DEVID_FORMLEN(devid, len)	(devid)->did_len_hi = hibyte((len)); \
1062 					(devid)->did_len_lo = lobyte((len));
1063 
1064 /*
1065  * Per PSARC/1995/352, a binary devid contains fields for <magic number>,
1066  * <revision>, <driver_hint>, <type>, <id_length>, and the <id> itself.
1067  * This proposal would encode the binary devid into a string consisting
1068  * of "<magic><revision>,<driver_hint>@<type><id>" as indicated below
1069  * (<id_length> is rederived from the length of the string
1070  * representation of the <id>):
1071  *
1072  *	<magic>		->"id"
1073  *
1074  *	<rev>		->"%d"	// "0" -> type of DEVID_NONE  "id0"
1075  *				// NOTE: PSARC/1995/352 <revision> is "1".
1076  *				// NOTE: support limited to 10 revisions
1077  *				//	in current implementation
1078  *
1079  *	<driver_hint>	->"%s"	// "sd"/"ssd"
1080  *				// NOTE: driver names limited to 4
1081  *				//	characters for <revision> "1"
1082  *
1083  *	<type>		->'w' |	// DEVID_SCSI3_WWN	<hex_id>
1084  *			'W' |	// DEVID_SCSI3_WWN	<ascii_id>
1085  *			't' |	// DEVID_SCSI3_VPD_T10	<hex_id>
1086  *			'T' |	// DEVID_SCSI3_VPD_T10	<ascii_id>
1087  *			'x' |	// DEVID_SCSI3_VPD_EUI	<hex_id>
1088  *			'X' |	// DEVID_SCSI3_VPD_EUI	<ascii_id>
1089  *			'n' |	// DEVID_SCSI3_VPD_NAA	<hex_id>
1090  *			'N' |	// DEVID_SCSI3_VPD_NAA	<ascii_id>
1091  *			's' |	// DEVID_SCSI_SERIAL	<hex_id>
1092  *			'S' |	// DEVID_SCSI_SERIAL	<ascii_id>
1093  *			'f' |	// DEVID_FAB		<hex_id>
1094  *			'F' |	// DEVID_FAB		<ascii_id>
1095  *			'e' |	// DEVID_ENCAP		<hex_id>
1096  *			'E' |	// DEVID_ENCAP		<ascii_id>
1097  *			'a' |	// DEVID_ATA_SERIAL	<hex_id>
1098  *			'A' |	// DEVID_ATA_SERIAL	<ascii_id>
1099  *			'u' |	// unknown		<hex_id>
1100  *			'U'	// unknown		<ascii_id>
1101  *				// NOTE:lower case -> <hex_id>
1102  *				//	upper case -> <ascii_id>
1103  *				// NOTE:this covers all types currently
1104  *				//	defined for <revision> 1.
1105  *				// NOTE:a <type> can be added
1106  *				//	without changing the <revision>.
1107  *
1108  *	<id>		-> <ascii_id> |	// <type> is upper case
1109  *			<hex_id>	// <type> is lower case
1110  *
1111  *	<ascii_id>	// only if all bytes of binary <id> field
1112  *			// are in the set:
1113  *			//	[A-Z][a-z][0-9]+-.= and space and 0x00
1114  *			// the encoded form is:
1115  *			//	[A-Z][a-z][0-9]+-.= and _ and ~
1116  *			//	NOTE: ' ' <=> '_', 0x00 <=> '~'
1117  *			// these sets are chosen to avoid shell
1118  *			// and conflicts with DDI node names.
1119  *
1120  *	<hex_id>	// if not <ascii_id>; each byte of binary
1121  *			// <id> maps a to 2 digit ascii hex
1122  *			// representation in the string.
1123  *
1124  * This encoding provides a meaningful correlation between the /devices
1125  * path and the devid string where possible.
1126  *
1127  *   Fibre:
1128  *	sbus@6,0/SUNW,socal@d,10000/sf@1,0/ssd@w21000020370bb488,0:c,raw
1129  *	id1,ssd@w20000020370bb488:c,raw
1130  *
1131  *   Copper:
1132  *	sbus@7,0/SUNW,fas@3,8800000/sd@a,0:c
1133  *	id1,sd@SIBM_____1XY210__________:c
1134  */
1135 /* determine if a byte of an id meets ASCII representation requirements */
1136 #define	DEVID_IDBYTE_ISASCII(b)		(				\
1137 	(((b) >= 'a') && ((b) <= 'z')) ||				\
1138 	(((b) >= 'A') && ((b) <= 'Z')) ||				\
1139 	(((b) >= '0') && ((b) <= '9')) ||				\
1140 	(b == '+') || (b == '-') || (b == '.') || (b == '=') ||		\
1141 	(b == ' ') || (b == 0x00))
1142 
1143 /* set type to lower case to indicate that the did_id field is ascii */
1144 #define	DEVID_TYPE_SETASCII(c)	(c - 0x20)	/* 'a' -> 'A' */
1145 
1146 /* determine from type if did_id field is binary or ascii */
1147 #define	DEVID_TYPE_ISASCII(c)	(((c) >= 'A') && ((c) <= 'Z'))
1148 
1149 /* convert type field from binary to ascii */
1150 #define	DEVID_TYPE_BINTOASCII(b)	(				\
1151 	((b) == DEVID_SCSI3_WWN)	? 'w' :				\
1152 	((b) == DEVID_SCSI3_VPD_T10)	? 't' :				\
1153 	((b) == DEVID_SCSI3_VPD_EUI)	? 'x' :				\
1154 	((b) == DEVID_SCSI3_VPD_NAA)	? 'n' :				\
1155 	((b) == DEVID_SCSI_SERIAL)	? 's' :				\
1156 	((b) == DEVID_FAB)		? 'f' :				\
1157 	((b) == DEVID_ENCAP)		? 'e' :				\
1158 	((b) == DEVID_ATA_SERIAL)	? 'a' :				\
1159 	'u')						/* unknown */
1160 
1161 /* convert type field from ascii to binary */
1162 #define	DEVID_TYPE_ASCIITOBIN(c)	(				\
1163 	(((c) == 'w') || ((c) == 'W'))	? DEVID_SCSI3_WWN :		\
1164 	(((c) == 't') || ((c) == 'T'))	? DEVID_SCSI3_VPD_T10 :		\
1165 	(((c) == 'x') || ((c) == 'X'))	? DEVID_SCSI3_VPD_EUI :		\
1166 	(((c) == 'n') || ((c) == 'N'))	? DEVID_SCSI3_VPD_NAA :		\
1167 	(((c) == 's') || ((c) == 'S'))	? DEVID_SCSI_SERIAL :		\
1168 	(((c) == 'f') || ((c) == 'F'))	? DEVID_FAB :			\
1169 	(((c) == 'e') || ((c) == 'E'))	? DEVID_ENCAP :			\
1170 	(((c) == 'a') || ((c) == 'A'))	? DEVID_ATA_SERIAL :		\
1171 	DEVID_MAXTYPE +1)				/* unknown */
1172 
1173 /* determine if the type should be forced to hex encoding (non-ascii) */
1174 #define	DEVID_TYPE_BIN_FORCEHEX(b) (	\
1175 	((b) == DEVID_SCSI3_WWN) ||	\
1176 	((b) == DEVID_SCSI3_VPD_EUI) ||	\
1177 	((b) == DEVID_SCSI3_VPD_NAA) ||	\
1178 	((b) == DEVID_FAB))
1179 
1180 /* determine if the type is from a scsi3 vpd */
1181 #define	IS_DEVID_SCSI3_VPD_TYPE(b) (	\
1182 	((b) == DEVID_SCSI3_VPD_T10) ||	\
1183 	((b) == DEVID_SCSI3_VPD_EUI) ||	\
1184 	((b) == DEVID_SCSI3_VPD_NAA))
1185 
1186 /* convert rev field from binary to ascii (only supports 10 revs) */
1187 #define	DEVID_REV_BINTOASCII(b) (b + '0')
1188 
1189 /* convert rev field from ascii to binary (only supports 10 revs) */
1190 #define	DEVID_REV_ASCIITOBIN(c) (c - '0')
1191 
1192 /* name of devid property */
1193 #define	DEVID_PROP_NAME	"devid"
1194 
1195 /*
1196  * prop_name used by pci_{save,restore}_config_regs()
1197  */
1198 #define	SAVED_CONFIG_REGS "pci-config-regs"
1199 #define	SAVED_CONFIG_REGS_MASK "pcie-config-regs-mask"
1200 #define	SAVED_CONFIG_REGS_CAPINFO "pci-cap-info"
1201 
1202 typedef struct pci_config_header_state {
1203 	uint16_t	chs_command;
1204 	uint8_t		chs_cache_line_size;
1205 	uint8_t		chs_latency_timer;
1206 	uint8_t		chs_header_type;
1207 	uint8_t		chs_sec_latency_timer;
1208 	uint8_t		chs_bridge_control;
1209 	uint32_t	chs_base0;
1210 	uint32_t	chs_base1;
1211 	uint32_t	chs_base2;
1212 	uint32_t	chs_base3;
1213 	uint32_t	chs_base4;
1214 	uint32_t	chs_base5;
1215 } pci_config_header_state_t;
1216 
1217 #ifdef _KERNEL
1218 
1219 typedef struct pci_cap_save_desc {
1220 	uint16_t	cap_offset;
1221 	uint16_t	cap_id;
1222 	uint32_t	cap_nregs;
1223 } pci_cap_save_desc_t;
1224 
1225 typedef struct pci_cap_entry {
1226 	uint16_t		cap_id;
1227 	uint16_t		cap_reg;
1228 	uint16_t		cap_mask;
1229 	uint32_t		cap_ndwords;
1230 	uint32_t (*cap_save_func)(ddi_acc_handle_t confhdl, uint16_t cap_ptr,
1231 	    uint32_t *regbuf, uint32_t ndwords);
1232 } pci_cap_entry_t;
1233 
1234 #endif /* _KERNEL */
1235 
1236 #ifdef	__cplusplus
1237 }
1238 #endif
1239 
1240 #endif	/* _SYS_DDI_IMPLDEFS_H */
1241