xref: /titanic_50/usr/src/uts/common/sys/crypto/sched_impl.h (revision 8461248208fabd3a8230615f8615e5bf1b4dcdcb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #ifndef _SYS_CRYPTO_SCHED_IMPL_H
28 #define	_SYS_CRYPTO_SCHED_IMPL_H
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 /*
33  * Scheduler internal structures.
34  */
35 
36 #ifdef __cplusplus
37 extern "C" {
38 #endif
39 
40 #include <sys/types.h>
41 #include <sys/mutex.h>
42 #include <sys/condvar.h>
43 #include <sys/door.h>
44 #include <sys/crypto/api.h>
45 #include <sys/crypto/spi.h>
46 #include <sys/crypto/impl.h>
47 #include <sys/crypto/common.h>
48 #include <sys/crypto/ops_impl.h>
49 
50 typedef void (kcf_func_t)(void *, int);
51 
52 typedef enum kcf_req_status {
53 	REQ_ALLOCATED = 1,
54 	REQ_WAITING,		/* At the framework level */
55 	REQ_INPROGRESS,		/* At the provider level */
56 	REQ_DONE,
57 	REQ_CANCELED
58 } kcf_req_status_t;
59 
60 typedef enum kcf_call_type {
61 	CRYPTO_SYNCH = 1,
62 	CRYPTO_ASYNCH
63 } kcf_call_type_t;
64 
65 #define	CHECK_RESTRICT(crq) (crq != NULL &&	\
66 	((crq)->cr_flag & CRYPTO_RESTRICTED))
67 
68 #define	CHECK_FASTPATH(crq, pd) ((crq) == NULL ||	\
69 	!((crq)->cr_flag & CRYPTO_ALWAYS_QUEUE)) &&	\
70 	(pd)->pd_prov_type == CRYPTO_SW_PROVIDER
71 
72 #define	KCF_KMFLAG(crq)	(((crq) == NULL) ? KM_SLEEP : KM_NOSLEEP)
73 
74 /*
75  * The framework keeps an internal handle to use in the adaptive
76  * asynchronous case. This is the case when a client has the
77  * CRYPTO_ALWAYS_QUEUE bit clear and a software provider is used for
78  * the request. The request is completed in the context of the calling
79  * thread and kernel memory must be allocated with KM_NOSLEEP.
80  *
81  * The framework passes a pointer to the handle in crypto_req_handle_t
82  * argument when it calls the SPI of the software provider. The macros
83  * KCF_RHNDL() and KCF_SWFP_RHNDL() are used to do this.
84  *
85  * When a provider asks the framework for kmflag value via
86  * crypto_kmflag(9S) we use REQHNDL2_KMFLAG() macro.
87  */
88 extern ulong_t kcf_swprov_hndl;
89 #define	KCF_RHNDL(kmflag) (((kmflag) == KM_SLEEP) ? NULL : &kcf_swprov_hndl)
90 #define	KCF_SWFP_RHNDL(crq) (((crq) == NULL) ? NULL : &kcf_swprov_hndl)
91 #define	REQHNDL2_KMFLAG(rhndl) \
92 	((rhndl == &kcf_swprov_hndl) ? KM_NOSLEEP : KM_SLEEP)
93 
94 /* Internal call_req flags. They start after the public ones in api.h */
95 
96 #define	CRYPTO_SETDUAL	0x00001000	/* Set the 'cont' boolean before */
97 					/* submitting the request */
98 #define	KCF_ISDUALREQ(crq)	\
99 	(((crq) == NULL) ? B_FALSE : (crq->cr_flag & CRYPTO_SETDUAL))
100 
101 typedef struct kcf_prov_tried {
102 	kcf_provider_desc_t	*pt_pd;
103 	struct kcf_prov_tried	*pt_next;
104 } kcf_prov_tried_t;
105 
106 #define	IS_FG_SUPPORTED(mdesc, fg)		\
107 	(((mdesc)->pm_mech_info.cm_func_group_mask & (fg)) != 0)
108 
109 #define	IS_PROVIDER_TRIED(pd, tlist)		\
110 	(tlist != NULL && is_in_triedlist(pd, tlist))
111 
112 #define	IS_RECOVERABLE(error)			\
113 	(error == CRYPTO_BUFFER_TOO_BIG ||	\
114 	error == CRYPTO_BUSY ||			\
115 	error == CRYPTO_DEVICE_ERROR ||		\
116 	error == CRYPTO_DEVICE_MEMORY ||	\
117 	error == CRYPTO_KEY_SIZE_RANGE ||	\
118 	error == CRYPTO_NO_PERMISSION)
119 
120 #define	KCF_ATOMIC_INCR(x)	atomic_add_32(&(x), 1)
121 #define	KCF_ATOMIC_DECR(x)	atomic_add_32(&(x), -1)
122 
123 /*
124  * Node structure for synchronous requests.
125  */
126 typedef struct kcf_sreq_node {
127 	/* Should always be the first field in this structure */
128 	kcf_call_type_t		sn_type;
129 	/*
130 	 * sn_cv and sr_lock are used to wait for the
131 	 * operation to complete. sn_lock also protects
132 	 * the sn_state field.
133 	 */
134 	kcondvar_t		sn_cv;
135 	kmutex_t		sn_lock;
136 	kcf_req_status_t	sn_state;
137 
138 	/*
139 	 * Return value from the operation. This will be
140 	 * one of the CRYPTO_* errors defined in common.h.
141 	 */
142 	int			sn_rv;
143 
144 	/*
145 	 * parameters to call the SPI with. This can be
146 	 * a pointer as we know the caller context/stack stays.
147 	 */
148 	struct kcf_req_params	*sn_params;
149 
150 	/* Internal context for this request */
151 	struct kcf_context	*sn_context;
152 
153 	/* Provider handling this request */
154 	kcf_provider_desc_t	*sn_provider;
155 } kcf_sreq_node_t;
156 
157 /*
158  * Node structure for asynchronous requests. A node can be on
159  * on a chain of requests hanging of the internal context
160  * structure and can be in the global software provider queue.
161  */
162 typedef struct kcf_areq_node {
163 	/* Should always be the first field in this structure */
164 	kcf_call_type_t		an_type;
165 
166 	/* an_lock protects the field an_state  */
167 	kmutex_t		an_lock;
168 	kcf_req_status_t	an_state;
169 	crypto_call_req_t	an_reqarg;
170 
171 	/*
172 	 * parameters to call the SPI with. We need to
173 	 * save the params since the caller stack can go away.
174 	 */
175 	struct kcf_req_params	an_params;
176 
177 	/*
178 	 * The next two fields should be NULL for operations that
179 	 * don't need a context.
180 	 */
181 	/* Internal context for this request */
182 	struct kcf_context	*an_context;
183 
184 	/* next in chain of requests for context */
185 	struct kcf_areq_node	*an_ctxchain_next;
186 
187 	boolean_t		an_is_my_turn;
188 	boolean_t		an_isdual;	/* for internal reuse */
189 
190 	/*
191 	 * Next and previous nodes in the global software
192 	 * queue. These fields are NULL for a hardware
193 	 * provider since we use a taskq there.
194 	 */
195 	struct kcf_areq_node	*an_next;
196 	struct kcf_areq_node	*an_prev;
197 
198 	/* Provider handling this request */
199 	kcf_provider_desc_t	*an_provider;
200 	kcf_prov_tried_t	*an_tried_plist;
201 
202 	struct kcf_areq_node	*an_idnext;	/* Next in ID hash */
203 	struct kcf_areq_node	*an_idprev;	/* Prev in ID hash */
204 	kcondvar_t		an_done;	/* Signal request completion */
205 	uint_t			an_refcnt;
206 } kcf_areq_node_t;
207 
208 #define	KCF_AREQ_REFHOLD(areq) {		\
209 	atomic_add_32(&(areq)->an_refcnt, 1);	\
210 	ASSERT((areq)->an_refcnt != 0);		\
211 }
212 
213 #define	KCF_AREQ_REFRELE(areq) {				\
214 	ASSERT((areq)->an_refcnt != 0);				\
215 	membar_exit();						\
216 	if (atomic_add_32_nv(&(areq)->an_refcnt, -1) == 0)	\
217 		kcf_free_req(areq);				\
218 }
219 
220 #define	GET_REQ_TYPE(arg) *((kcf_call_type_t *)(arg))
221 
222 #define	NOTIFY_CLIENT(areq, err) (*(areq)->an_reqarg.cr_callback_func)(\
223 	(areq)->an_reqarg.cr_callback_arg, err);
224 
225 /* For internally generated call requests for dual operations */
226 typedef	struct kcf_call_req {
227 	crypto_call_req_t	kr_callreq;	/* external client call req */
228 	kcf_req_params_t	kr_params;	/* Params saved for next call */
229 	kcf_areq_node_t		*kr_areq;	/* Use this areq */
230 	off_t			kr_saveoffset;
231 	size_t			kr_savelen;
232 } kcf_dual_req_t;
233 
234 /*
235  * The following are some what similar to macros in callo.h, which implement
236  * callout tables.
237  *
238  * The lower four bits of the ID are used to encode the table ID to
239  * index in to. The REQID_COUNTER_HIGH bit is used to avoid any check for
240  * wrap around when generating ID. We assume that there won't be a request
241  * which takes more time than 2^^(sizeof (long) - 5) other requests submitted
242  * after it. This ensures there won't be any ID collision.
243  */
244 #define	REQID_COUNTER_HIGH	(1UL << (8 * sizeof (long) - 1))
245 #define	REQID_COUNTER_SHIFT	4
246 #define	REQID_COUNTER_LOW	(1 << REQID_COUNTER_SHIFT)
247 #define	REQID_TABLES		16
248 #define	REQID_TABLE_MASK	(REQID_TABLES - 1)
249 
250 #define	REQID_BUCKETS		512
251 #define	REQID_BUCKET_MASK	(REQID_BUCKETS - 1)
252 #define	REQID_HASH(id)	(((id) >> REQID_COUNTER_SHIFT) & REQID_BUCKET_MASK)
253 
254 #define	GET_REQID(areq) (areq)->an_reqarg.cr_reqid
255 #define	SET_REQID(areq, val)	GET_REQID(areq) = val
256 
257 /*
258  * Hash table for async requests.
259  */
260 typedef struct kcf_reqid_table {
261 	kmutex_t		rt_lock;
262 	crypto_req_id_t		rt_curid;
263 	kcf_areq_node_t		*rt_idhash[REQID_BUCKETS];
264 } kcf_reqid_table_t;
265 
266 /*
267  * Global software provider queue structure. Requests to be
268  * handled by a SW provider and have the ALWAYS_QUEUE flag set
269  * get queued here.
270  */
271 typedef struct kcf_global_swq {
272 	/*
273 	 * gs_cv and gs_lock are used to wait for new requests.
274 	 * gs_lock protects the changes to the queue.
275 	 */
276 	kcondvar_t		gs_cv;
277 	kmutex_t		gs_lock;
278 	uint_t			gs_njobs;
279 	uint_t			gs_maxjobs;
280 	kcf_areq_node_t		*gs_first;
281 	kcf_areq_node_t		*gs_last;
282 } kcf_global_swq_t;
283 
284 
285 /*
286  * Internal representation of a canonical context. We contain crypto_ctx_t
287  * structure in order to have just one memory allocation. The SPI
288  * ((crypto_ctx_t *)ctx)->cc_framework_private maps to this structure.
289  */
290 typedef struct kcf_context {
291 	crypto_ctx_t		kc_glbl_ctx;
292 	uint_t			kc_refcnt;
293 	kcondvar_t		kc_in_use_cv;
294 	kmutex_t		kc_in_use_lock;
295 	/*
296 	 * kc_req_chain_first and kc_req_chain_last are used to chain
297 	 * multiple async requests using the same context. They should be
298 	 * NULL for sync requests.
299 	 */
300 	kcf_areq_node_t		*kc_req_chain_first;
301 	kcf_areq_node_t		*kc_req_chain_last;
302 	boolean_t		kc_need_signal;	/* Initialized to B_FALSE */
303 	kcf_provider_desc_t	*kc_prov_desc;	/* Prov. descriptor */
304 	struct kcf_context	*kc_secondctx;	/* for dual contexts */
305 } kcf_context_t;
306 
307 /*
308  * Bump up the reference count on the framework private context. A
309  * global context or a request that references this structure should
310  * do a hold.
311  */
312 #define	KCF_CONTEXT_REFHOLD(ictx) {		\
313 	atomic_add_32(&(ictx)->kc_refcnt, 1);	\
314 	ASSERT((ictx)->kc_refcnt != 0);		\
315 }
316 
317 /*
318  * Decrement the reference count on the framework private context.
319  * When the last reference is released, the framework private
320  * context structure is freed along with the global context.
321  */
322 #define	KCF_CONTEXT_REFRELE(ictx) {				\
323 	ASSERT((ictx)->kc_refcnt != 0);				\
324 	membar_exit();						\
325 	if (atomic_add_32_nv(&(ictx)->kc_refcnt, -1) == 0)	\
326 		kcf_free_context(ictx);				\
327 }
328 
329 /*
330  * Check if we can release the context now. In case of CRYPTO_QUEUED
331  * we do not release it as we can do it only after the provider notified
332  * us. In case of CRYPTO_BUSY, the client can retry the request using
333  * the context, so we do not release the context.
334  *
335  * This macro should be called only from the final routine in
336  * an init/update/final sequence. We do not release the context in case
337  * of update operations. We require the consumer to free it
338  * explicitly, in case it wants to abandon the operation. This is done
339  * as there may be mechanisms in ECB mode that can continue even if
340  * an operation on a block fails.
341  */
342 #define	KCF_CONTEXT_COND_RELEASE(rv, kcf_ctx) {			\
343 	if (KCF_CONTEXT_DONE(rv))				\
344 		KCF_CONTEXT_REFRELE(kcf_ctx);			\
345 }
346 
347 /*
348  * This macro determines whether we're done with a context.
349  */
350 #define	KCF_CONTEXT_DONE(rv)					\
351 	((rv) != CRYPTO_QUEUED && (rv) != CRYPTO_BUSY &&	\
352 	    (rv) != CRYPTO_BUFFER_TOO_SMALL)
353 
354 /*
355  * A crypto_ctx_template_t is internally a pointer to this struct
356  */
357 typedef	struct kcf_ctx_template {
358 	crypto_kcf_provider_handle_t	ct_prov_handle;	/* provider handle */
359 	uint_t				ct_generation;	/* generation # */
360 	size_t				ct_size;	/* for freeing */
361 	crypto_spi_ctx_template_t	ct_prov_tmpl;	/* context template */
362 							/* from the SW prov */
363 } kcf_ctx_template_t;
364 
365 /*
366  * Structure for pool of threads working on global software queue.
367  */
368 typedef struct kcf_pool {
369 	uint32_t	kp_threads;		/* Number of threads in pool */
370 	uint32_t	kp_idlethreads;		/* Idle threads in pool */
371 	uint32_t	kp_blockedthreads;	/* Blocked threads in pool */
372 
373 	/*
374 	 * cv & lock to monitor the condition when no threads
375 	 * are around. In this case the failover thread kicks in.
376 	 */
377 	kcondvar_t	kp_nothr_cv;
378 	kmutex_t	kp_thread_lock;
379 
380 	/* Userspace thread creator variables. */
381 	boolean_t	kp_signal_create_thread; /* Create requested flag  */
382 	int		kp_nthrs;		/* # of threads to create */
383 	boolean_t	kp_user_waiting;	/* Thread waiting for work */
384 
385 	/*
386 	 * cv & lock for the condition where more threads need to be
387 	 * created. kp_user_lock also protects the three fileds above.
388 	 */
389 	kcondvar_t	kp_user_cv;		/* Creator cond. variable */
390 	kmutex_t	kp_user_lock;		/* Creator lock */
391 } kcf_pool_t;
392 
393 
394 /*
395  * State of a crypto bufcall element.
396  */
397 typedef enum cbuf_state {
398 	CBUF_FREE = 1,
399 	CBUF_WAITING,
400 	CBUF_RUNNING
401 } cbuf_state_t;
402 
403 /*
404  * Structure of a crypto bufcall element.
405  */
406 typedef struct kcf_cbuf_elem {
407 	/*
408 	 * lock and cv to wait for CBUF_RUNNING to be done
409 	 * kc_lock also protects kc_state.
410 	 */
411 	kmutex_t		kc_lock;
412 	kcondvar_t		kc_cv;
413 	cbuf_state_t		kc_state;
414 
415 	struct kcf_cbuf_elem	*kc_next;
416 	struct kcf_cbuf_elem	*kc_prev;
417 
418 	void			(*kc_func)(void *arg);
419 	void			*kc_arg;
420 } kcf_cbuf_elem_t;
421 
422 /*
423  * State of a notify element.
424  */
425 typedef enum ntfy_elem_state {
426 	NTFY_WAITING = 1,
427 	NTFY_RUNNING
428 } ntfy_elem_state_t;
429 
430 /*
431  * Structure of a notify list element.
432  */
433 typedef struct kcf_ntfy_elem {
434 	/*
435 	 * lock and cv to wait for NTFY_RUNNING to be done.
436 	 * kn_lock also protects kn_state.
437 	 */
438 	kmutex_t			kn_lock;
439 	kcondvar_t			kn_cv;
440 	ntfy_elem_state_t		kn_state;
441 
442 	struct kcf_ntfy_elem		*kn_next;
443 	struct kcf_ntfy_elem		*kn_prev;
444 
445 	crypto_notify_callback_t	kn_func;
446 	uint32_t			kn_event_mask;
447 } kcf_ntfy_elem_t;
448 
449 
450 /*
451  * The following values are based on the assumption that it would
452  * take around eight cpus to load a hardware provider (This is true for
453  * at least one product) and a kernel client may come from different
454  * low-priority interrupt levels. We will have CYRPTO_TASKQ_MIN number
455  * of cached taskq entries. These are just reasonable estimates and
456  * might need to change in future.
457  */
458 #define	CYRPTO_TASKQ_MIN	64
459 #define	CRYPTO_TASKQ_MAX	1024
460 
461 extern int crypto_taskq_minalloc;
462 extern int crypto_taskq_maxalloc;
463 extern kcf_global_swq_t *gswq;
464 extern int kcf_maxthreads;
465 extern int kcf_minthreads;
466 
467 /* Door handle for talking to kcfd */
468 extern door_handle_t kcf_dh;
469 extern kmutex_t	 kcf_dh_lock;
470 
471 /*
472  * All pending crypto bufcalls are put on a list. cbuf_list_lock
473  * protects changes to this list.
474  */
475 extern kmutex_t cbuf_list_lock;
476 extern kcondvar_t cbuf_list_cv;
477 
478 /*
479  * All event subscribers are put on a list. kcf_notify_list_lock
480  * protects changes to this list.
481  */
482 extern kmutex_t ntfy_list_lock;
483 extern kcondvar_t ntfy_list_cv;
484 
485 boolean_t kcf_get_next_logical_provider_member(kcf_provider_desc_t *,
486     kcf_provider_desc_t *, kcf_provider_desc_t **);
487 extern int kcf_get_hardware_provider(crypto_mech_type_t, offset_t, offset_t,
488     kcf_provider_desc_t *, kcf_provider_desc_t **);
489 extern int kcf_get_hardware_provider_nomech(offset_t, offset_t,
490     kcf_provider_desc_t *, kcf_provider_desc_t **);
491 extern void kcf_free_triedlist(kcf_prov_tried_t *);
492 extern kcf_prov_tried_t *kcf_insert_triedlist(kcf_prov_tried_t **,
493     kcf_provider_desc_t *, int);
494 extern kcf_provider_desc_t *kcf_get_mech_provider(crypto_mech_type_t,
495     kcf_mech_entry_t **, int *, kcf_prov_tried_t *, crypto_func_group_t,
496     boolean_t, size_t);
497 extern kcf_provider_desc_t *kcf_get_dual_provider(crypto_mechanism_t *,
498     crypto_mechanism_t *, kcf_mech_entry_t **, crypto_mech_type_t *,
499     crypto_mech_type_t *, int *, kcf_prov_tried_t *,
500     crypto_func_group_t, crypto_func_group_t, boolean_t, size_t);
501 extern crypto_ctx_t *kcf_new_ctx(crypto_call_req_t  *, kcf_provider_desc_t *,
502     crypto_session_id_t);
503 extern int kcf_submit_request(kcf_provider_desc_t *, crypto_ctx_t *,
504     crypto_call_req_t *, kcf_req_params_t *, boolean_t);
505 extern void kcf_sched_init(void);
506 extern void kcf_sched_start(void);
507 extern void kcf_sop_done(kcf_sreq_node_t *, int);
508 extern void kcf_aop_done(kcf_areq_node_t *, int);
509 extern int common_submit_request(kcf_provider_desc_t *,
510     crypto_ctx_t *, kcf_req_params_t *, crypto_req_handle_t);
511 extern void kcf_free_context(kcf_context_t *);
512 
513 extern int kcf_svc_wait(int *);
514 extern int kcf_svc_do_run(void);
515 extern int kcf_verify_signature(kcf_provider_desc_t *);
516 extern struct modctl *kcf_get_modctl(crypto_provider_info_t *);
517 extern void verify_unverified_providers();
518 extern void kcf_free_req(kcf_areq_node_t *areq);
519 extern void crypto_bufcall_service(void);
520 
521 extern void kcf_walk_ntfylist(uint32_t, void *);
522 
523 extern kcf_dual_req_t *kcf_alloc_req(crypto_call_req_t *);
524 extern void kcf_next_req(void *, int);
525 extern void kcf_last_req(void *, int);
526 
527 #ifdef __cplusplus
528 }
529 #endif
530 
531 #endif /* _SYS_CRYPTO_SCHED_IMPL_H */
532